loop.c (strength_reduce, [...]): Use HOST_WIDE_INT_PRINT_DEC to print CONST_INT values.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-7, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include <stdio.h>
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 #ifdef HAIFA
85 /* The main output of analyze_loop_iterations is placed here */
86
87 int *loop_can_insert_bct;
88
89 /* For each loop, determines whether some of its inner loops has used
90 count register */
91
92 int *loop_used_count_register;
93
94 /* loop parameters for arithmetic loops. These loops have a loop variable
95 which is initialized to loop_start_value, incremented in each iteration
96 by "loop_increment". At the end of the iteration the loop variable is
97 compared to the loop_comparison_value (using loop_comparison_code). */
98
99 rtx *loop_increment;
100 rtx *loop_comparison_value;
101 rtx *loop_start_value;
102 enum rtx_code *loop_comparison_code;
103 #endif /* HAIFA */
104
105 /* For each loop, keep track of its unrolling factor.
106 Potential values:
107 0: unrolled
108 1: not unrolled.
109 -1: completely unrolled
110 >0: holds the unroll exact factor. */
111 int *loop_unroll_factor;
112
113 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
114 really a loop (an insn outside the loop branches into it). */
115
116 static char *loop_invalid;
117
118 /* Indexed by loop number, links together all LABEL_REFs which refer to
119 code labels outside the loop. Used by routines that need to know all
120 loop exits, such as final_biv_value and final_giv_value.
121
122 This does not include loop exits due to return instructions. This is
123 because all bivs and givs are pseudos, and hence must be dead after a
124 return, so the presense of a return does not affect any of the
125 optimizations that use this info. It is simpler to just not include return
126 instructions on this list. */
127
128 rtx *loop_number_exit_labels;
129
130 /* Indexed by loop number, counts the number of LABEL_REFs on
131 loop_number_exit_labels for this loop and all loops nested inside it. */
132
133 int *loop_number_exit_count;
134
135 /* Holds the number of loop iterations. It is zero if the number could not be
136 calculated. Must be unsigned since the number of iterations can
137 be as high as 2^wordsize-1. For loops with a wider iterator, this number
138 will will be zero if the number of loop iterations is too large for an
139 unsigned integer to hold. */
140
141 unsigned HOST_WIDE_INT loop_n_iterations;
142
143 /* Nonzero if there is a subroutine call in the current loop. */
144
145 static int loop_has_call;
146
147 /* Nonzero if there is a volatile memory reference in the current
148 loop. */
149
150 static int loop_has_volatile;
151
152 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
153 current loop. A continue statement will generate a branch to
154 NEXT_INSN (loop_continue). */
155
156 static rtx loop_continue;
157
158 /* Indexed by register number, contains the number of times the reg
159 is set during the loop being scanned.
160 During code motion, a negative value indicates a reg that has been
161 made a candidate; in particular -2 means that it is an candidate that
162 we know is equal to a constant and -1 means that it is an candidate
163 not known equal to a constant.
164 After code motion, regs moved have 0 (which is accurate now)
165 while the failed candidates have the original number of times set.
166
167 Therefore, at all times, == 0 indicates an invariant register;
168 < 0 a conditionally invariant one. */
169
170 static int *n_times_set;
171
172 /* Original value of n_times_set; same except that this value
173 is not set negative for a reg whose sets have been made candidates
174 and not set to 0 for a reg that is moved. */
175
176 static int *n_times_used;
177
178 /* Index by register number, 1 indicates that the register
179 cannot be moved or strength reduced. */
180
181 static char *may_not_optimize;
182
183 /* Nonzero means reg N has already been moved out of one loop.
184 This reduces the desire to move it out of another. */
185
186 static char *moved_once;
187
188 /* Array of MEMs that are stored in this loop. If there are too many to fit
189 here, we just turn on unknown_address_altered. */
190
191 #define NUM_STORES 30
192 static rtx loop_store_mems[NUM_STORES];
193
194 /* Index of first available slot in above array. */
195 static int loop_store_mems_idx;
196
197 /* Nonzero if we don't know what MEMs were changed in the current loop.
198 This happens if the loop contains a call (in which case `loop_has_call'
199 will also be set) or if we store into more than NUM_STORES MEMs. */
200
201 static int unknown_address_altered;
202
203 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
204 static int num_movables;
205
206 /* Count of memory write instructions discovered in the loop. */
207 static int num_mem_sets;
208
209 /* Number of loops contained within the current one, including itself. */
210 static int loops_enclosed;
211
212 /* Bound on pseudo register number before loop optimization.
213 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
214 int max_reg_before_loop;
215
216 /* This obstack is used in product_cheap_p to allocate its rtl. It
217 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
218 If we used the same obstack that it did, we would be deallocating
219 that array. */
220
221 static struct obstack temp_obstack;
222
223 /* This is where the pointer to the obstack being used for RTL is stored. */
224
225 extern struct obstack *rtl_obstack;
226
227 #define obstack_chunk_alloc xmalloc
228 #define obstack_chunk_free free
229
230 extern char *oballoc ();
231 \f
232 /* During the analysis of a loop, a chain of `struct movable's
233 is made to record all the movable insns found.
234 Then the entire chain can be scanned to decide which to move. */
235
236 struct movable
237 {
238 rtx insn; /* A movable insn */
239 rtx set_src; /* The expression this reg is set from. */
240 rtx set_dest; /* The destination of this SET. */
241 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
242 of any registers used within the LIBCALL. */
243 int consec; /* Number of consecutive following insns
244 that must be moved with this one. */
245 int regno; /* The register it sets */
246 short lifetime; /* lifetime of that register;
247 may be adjusted when matching movables
248 that load the same value are found. */
249 short savings; /* Number of insns we can move for this reg,
250 including other movables that force this
251 or match this one. */
252 unsigned int cond : 1; /* 1 if only conditionally movable */
253 unsigned int force : 1; /* 1 means MUST move this insn */
254 unsigned int global : 1; /* 1 means reg is live outside this loop */
255 /* If PARTIAL is 1, GLOBAL means something different:
256 that the reg is live outside the range from where it is set
257 to the following label. */
258 unsigned int done : 1; /* 1 inhibits further processing of this */
259
260 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
261 In particular, moving it does not make it
262 invariant. */
263 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
264 load SRC, rather than copying INSN. */
265 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
266 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
267 that we should avoid changing when clearing
268 the rest of the reg. */
269 struct movable *match; /* First entry for same value */
270 struct movable *forces; /* An insn that must be moved if this is */
271 struct movable *next;
272 };
273
274 FILE *loop_dump_stream;
275
276 /* Forward declarations. */
277
278 static void find_and_verify_loops ();
279 static void mark_loop_jump ();
280 static void prescan_loop ();
281 static int reg_in_basic_block_p ();
282 static int consec_sets_invariant_p ();
283 static rtx libcall_other_reg ();
284 static int labels_in_range_p ();
285 static void count_loop_regs_set ();
286 static void note_addr_stored ();
287 static int loop_reg_used_before_p ();
288 static void scan_loop ();
289 #if 0
290 static void replace_call_address ();
291 #endif
292 static rtx skip_consec_insns ();
293 static int libcall_benefit ();
294 static void ignore_some_movables ();
295 static void force_movables ();
296 static void combine_movables ();
297 static int rtx_equal_for_loop_p ();
298 static void move_movables ();
299 static void strength_reduce ();
300 static int valid_initial_value_p ();
301 static void find_mem_givs ();
302 static void record_biv ();
303 static void check_final_value ();
304 static void record_giv ();
305 static void update_giv_derive ();
306 static int basic_induction_var ();
307 static rtx simplify_giv_expr ();
308 static int general_induction_var ();
309 static int consec_sets_giv ();
310 static int check_dbra_loop ();
311 static rtx express_from ();
312 static int combine_givs_p ();
313 static void combine_givs ();
314 static int product_cheap_p ();
315 static int maybe_eliminate_biv ();
316 static int maybe_eliminate_biv_1 ();
317 static int last_use_this_basic_block ();
318 static void record_initial ();
319 static void update_reg_last_use ();
320
321 #ifdef HAIFA
322 /* This is extern from unroll.c */
323 void iteration_info ();
324
325 /* Two main functions for implementing bct:
326 first - to be called before loop unrolling, and the second - after */
327 static void analyze_loop_iterations ();
328 static void insert_bct ();
329
330 /* Auxiliary function that inserts the bct pattern into the loop */
331 static void instrument_loop_bct ();
332 #endif /* HAIFA */
333
334 /* Indirect_jump_in_function is computed once per function. */
335 int indirect_jump_in_function = 0;
336 static int indirect_jump_in_function_p ();
337
338 \f
339 /* Relative gain of eliminating various kinds of operations. */
340 int add_cost;
341 #if 0
342 int shift_cost;
343 int mult_cost;
344 #endif
345
346 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
347 copy the value of the strength reduced giv to its original register. */
348 int copy_cost;
349
350 void
351 init_loop ()
352 {
353 char *free_point = (char *) oballoc (1);
354 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
355
356 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
357
358 /* We multiply by 2 to reconcile the difference in scale between
359 these two ways of computing costs. Otherwise the cost of a copy
360 will be far less than the cost of an add. */
361
362 copy_cost = 2 * 2;
363
364 /* Free the objects we just allocated. */
365 obfree (free_point);
366
367 /* Initialize the obstack used for rtl in product_cheap_p. */
368 gcc_obstack_init (&temp_obstack);
369 }
370 \f
371 /* Entry point of this file. Perform loop optimization
372 on the current function. F is the first insn of the function
373 and DUMPFILE is a stream for output of a trace of actions taken
374 (or 0 if none should be output). */
375
376 void
377 loop_optimize (f, dumpfile, unroll_p)
378 /* f is the first instruction of a chain of insns for one function */
379 rtx f;
380 FILE *dumpfile;
381 int unroll_p;
382 {
383 register rtx insn;
384 register int i;
385 rtx last_insn;
386
387 loop_dump_stream = dumpfile;
388
389 init_recog_no_volatile ();
390 init_alias_analysis ();
391
392 max_reg_before_loop = max_reg_num ();
393
394 moved_once = (char *) alloca (max_reg_before_loop);
395 bzero (moved_once, max_reg_before_loop);
396
397 regs_may_share = 0;
398
399 /* Count the number of loops. */
400
401 max_loop_num = 0;
402 for (insn = f; insn; insn = NEXT_INSN (insn))
403 {
404 if (GET_CODE (insn) == NOTE
405 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
406 max_loop_num++;
407 }
408
409 /* Don't waste time if no loops. */
410 if (max_loop_num == 0)
411 return;
412
413 /* Get size to use for tables indexed by uids.
414 Leave some space for labels allocated by find_and_verify_loops. */
415 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
416
417 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
418 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
419
420 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
421 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
422
423 /* Allocate tables for recording each loop. We set each entry, so they need
424 not be zeroed. */
425 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
426 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
427 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
428 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
429 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
430 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
431
432 /* This is initialized by the unrolling code, so we go ahead
433 and clear them just in case we are not performing loop
434 unrolling. */
435 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
436 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
437
438 #ifdef HAIFA
439 /* Allocate for BCT optimization */
440 loop_can_insert_bct = (int *) alloca (max_loop_num * sizeof (int));
441 bzero ((char *) loop_can_insert_bct, max_loop_num * sizeof (int));
442
443 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
444 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
445
446 loop_increment = (rtx *) alloca (max_loop_num * sizeof (rtx));
447 loop_comparison_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
448 loop_start_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
449 bzero ((char *) loop_increment, max_loop_num * sizeof (rtx));
450 bzero ((char *) loop_comparison_value, max_loop_num * sizeof (rtx));
451 bzero ((char *) loop_start_value, max_loop_num * sizeof (rtx));
452
453 loop_comparison_code
454 = (enum rtx_code *) alloca (max_loop_num * sizeof (enum rtx_code));
455 bzero ((char *) loop_comparison_code, max_loop_num * sizeof (enum rtx_code));
456 #endif /* HAIFA */
457
458 /* Find and process each loop.
459 First, find them, and record them in order of their beginnings. */
460 find_and_verify_loops (f);
461
462 /* Now find all register lifetimes. This must be done after
463 find_and_verify_loops, because it might reorder the insns in the
464 function. */
465 reg_scan (f, max_reg_num (), 1);
466
467 /* See if we went too far. */
468 if (get_max_uid () > max_uid_for_loop)
469 abort ();
470
471 /* Compute the mapping from uids to luids.
472 LUIDs are numbers assigned to insns, like uids,
473 except that luids increase monotonically through the code.
474 Don't assign luids to line-number NOTEs, so that the distance in luids
475 between two insns is not affected by -g. */
476
477 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
478 {
479 last_insn = insn;
480 if (GET_CODE (insn) != NOTE
481 || NOTE_LINE_NUMBER (insn) <= 0)
482 uid_luid[INSN_UID (insn)] = ++i;
483 else
484 /* Give a line number note the same luid as preceding insn. */
485 uid_luid[INSN_UID (insn)] = i;
486 }
487
488 max_luid = i + 1;
489
490 /* Don't leave gaps in uid_luid for insns that have been
491 deleted. It is possible that the first or last insn
492 using some register has been deleted by cross-jumping.
493 Make sure that uid_luid for that former insn's uid
494 points to the general area where that insn used to be. */
495 for (i = 0; i < max_uid_for_loop; i++)
496 {
497 uid_luid[0] = uid_luid[i];
498 if (uid_luid[0] != 0)
499 break;
500 }
501 for (i = 0; i < max_uid_for_loop; i++)
502 if (uid_luid[i] == 0)
503 uid_luid[i] = uid_luid[i - 1];
504
505 /* Create a mapping from loops to BLOCK tree nodes. */
506 if (unroll_p && write_symbols != NO_DEBUG)
507 find_loop_tree_blocks ();
508
509 /* Determine if the function has indirect jump. On some systems
510 this prevents low overhead loop instructions from being used. */
511 indirect_jump_in_function = indirect_jump_in_function_p (f);
512
513 /* Now scan the loops, last ones first, since this means inner ones are done
514 before outer ones. */
515 for (i = max_loop_num-1; i >= 0; i--)
516 if (! loop_invalid[i] && loop_number_loop_ends[i])
517 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
518 max_reg_num (), unroll_p);
519
520 /* If debugging and unrolling loops, we must replicate the tree nodes
521 corresponding to the blocks inside the loop, so that the original one
522 to one mapping will remain. */
523 if (unroll_p && write_symbols != NO_DEBUG)
524 unroll_block_trees ();
525 }
526 \f
527 /* Optimize one loop whose start is LOOP_START and end is END.
528 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
529 NOTE_INSN_LOOP_END. */
530
531 /* ??? Could also move memory writes out of loops if the destination address
532 is invariant, the source is invariant, the memory write is not volatile,
533 and if we can prove that no read inside the loop can read this address
534 before the write occurs. If there is a read of this address after the
535 write, then we can also mark the memory read as invariant. */
536
537 static void
538 scan_loop (loop_start, end, nregs, unroll_p)
539 rtx loop_start, end;
540 int nregs;
541 int unroll_p;
542 {
543 register int i;
544 register rtx p;
545 /* 1 if we are scanning insns that could be executed zero times. */
546 int maybe_never = 0;
547 /* 1 if we are scanning insns that might never be executed
548 due to a subroutine call which might exit before they are reached. */
549 int call_passed = 0;
550 /* For a rotated loop that is entered near the bottom,
551 this is the label at the top. Otherwise it is zero. */
552 rtx loop_top = 0;
553 /* Jump insn that enters the loop, or 0 if control drops in. */
554 rtx loop_entry_jump = 0;
555 /* Place in the loop where control enters. */
556 rtx scan_start;
557 /* Number of insns in the loop. */
558 int insn_count;
559 int in_libcall = 0;
560 int tem;
561 rtx temp;
562 /* The SET from an insn, if it is the only SET in the insn. */
563 rtx set, set1;
564 /* Chain describing insns movable in current loop. */
565 struct movable *movables = 0;
566 /* Last element in `movables' -- so we can add elements at the end. */
567 struct movable *last_movable = 0;
568 /* Ratio of extra register life span we can justify
569 for saving an instruction. More if loop doesn't call subroutines
570 since in that case saving an insn makes more difference
571 and more registers are available. */
572 int threshold;
573 /* If we have calls, contains the insn in which a register was used
574 if it was used exactly once; contains const0_rtx if it was used more
575 than once. */
576 rtx *reg_single_usage = 0;
577 /* Nonzero if we are scanning instructions in a sub-loop. */
578 int loop_depth = 0;
579
580 n_times_set = (int *) alloca (nregs * sizeof (int));
581 n_times_used = (int *) alloca (nregs * sizeof (int));
582 may_not_optimize = (char *) alloca (nregs);
583
584 /* Determine whether this loop starts with a jump down to a test at
585 the end. This will occur for a small number of loops with a test
586 that is too complex to duplicate in front of the loop.
587
588 We search for the first insn or label in the loop, skipping NOTEs.
589 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
590 (because we might have a loop executed only once that contains a
591 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
592 (in case we have a degenerate loop).
593
594 Note that if we mistakenly think that a loop is entered at the top
595 when, in fact, it is entered at the exit test, the only effect will be
596 slightly poorer optimization. Making the opposite error can generate
597 incorrect code. Since very few loops now start with a jump to the
598 exit test, the code here to detect that case is very conservative. */
599
600 for (p = NEXT_INSN (loop_start);
601 p != end
602 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
603 && (GET_CODE (p) != NOTE
604 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
605 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
606 p = NEXT_INSN (p))
607 ;
608
609 scan_start = p;
610
611 /* Set up variables describing this loop. */
612 prescan_loop (loop_start, end);
613 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
614
615 /* If loop has a jump before the first label,
616 the true entry is the target of that jump.
617 Start scan from there.
618 But record in LOOP_TOP the place where the end-test jumps
619 back to so we can scan that after the end of the loop. */
620 if (GET_CODE (p) == JUMP_INSN)
621 {
622 loop_entry_jump = p;
623
624 /* Loop entry must be unconditional jump (and not a RETURN) */
625 if (simplejump_p (p)
626 && JUMP_LABEL (p) != 0
627 /* Check to see whether the jump actually
628 jumps out of the loop (meaning it's no loop).
629 This case can happen for things like
630 do {..} while (0). If this label was generated previously
631 by loop, we can't tell anything about it and have to reject
632 the loop. */
633 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
634 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
635 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
636 {
637 loop_top = next_label (scan_start);
638 scan_start = JUMP_LABEL (p);
639 }
640 }
641
642 /* If SCAN_START was an insn created by loop, we don't know its luid
643 as required by loop_reg_used_before_p. So skip such loops. (This
644 test may never be true, but it's best to play it safe.)
645
646 Also, skip loops where we do not start scanning at a label. This
647 test also rejects loops starting with a JUMP_INSN that failed the
648 test above. */
649
650 if (INSN_UID (scan_start) >= max_uid_for_loop
651 || GET_CODE (scan_start) != CODE_LABEL)
652 {
653 if (loop_dump_stream)
654 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
655 INSN_UID (loop_start), INSN_UID (end));
656 return;
657 }
658
659 /* Count number of times each reg is set during this loop.
660 Set may_not_optimize[I] if it is not safe to move out
661 the setting of register I. If this loop has calls, set
662 reg_single_usage[I]. */
663
664 bzero ((char *) n_times_set, nregs * sizeof (int));
665 bzero (may_not_optimize, nregs);
666
667 if (loop_has_call)
668 {
669 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
670 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
671 }
672
673 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
674 may_not_optimize, reg_single_usage, &insn_count, nregs);
675
676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
677 may_not_optimize[i] = 1, n_times_set[i] = 1;
678 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
679
680 if (loop_dump_stream)
681 {
682 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
683 INSN_UID (loop_start), INSN_UID (end), insn_count);
684 if (loop_continue)
685 fprintf (loop_dump_stream, "Continue at insn %d.\n",
686 INSN_UID (loop_continue));
687 }
688
689 /* Scan through the loop finding insns that are safe to move.
690 Set n_times_set negative for the reg being set, so that
691 this reg will be considered invariant for subsequent insns.
692 We consider whether subsequent insns use the reg
693 in deciding whether it is worth actually moving.
694
695 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
696 and therefore it is possible that the insns we are scanning
697 would never be executed. At such times, we must make sure
698 that it is safe to execute the insn once instead of zero times.
699 When MAYBE_NEVER is 0, all insns will be executed at least once
700 so that is not a problem. */
701
702 p = scan_start;
703 while (1)
704 {
705 p = NEXT_INSN (p);
706 /* At end of a straight-in loop, we are done.
707 At end of a loop entered at the bottom, scan the top. */
708 if (p == scan_start)
709 break;
710 if (p == end)
711 {
712 if (loop_top != 0)
713 p = loop_top;
714 else
715 break;
716 if (p == scan_start)
717 break;
718 }
719
720 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
721 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
722 in_libcall = 1;
723 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
724 && find_reg_note (p, REG_RETVAL, NULL_RTX))
725 in_libcall = 0;
726
727 if (GET_CODE (p) == INSN
728 && (set = single_set (p))
729 && GET_CODE (SET_DEST (set)) == REG
730 && ! may_not_optimize[REGNO (SET_DEST (set))])
731 {
732 int tem1 = 0;
733 int tem2 = 0;
734 int move_insn = 0;
735 rtx src = SET_SRC (set);
736 rtx dependencies = 0;
737
738 /* Figure out what to use as a source of this insn. If a REG_EQUIV
739 note is given or if a REG_EQUAL note with a constant operand is
740 specified, use it as the source and mark that we should move
741 this insn by calling emit_move_insn rather that duplicating the
742 insn.
743
744 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
745 is present. */
746 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
747 if (temp)
748 src = XEXP (temp, 0), move_insn = 1;
749 else
750 {
751 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
752 if (temp && CONSTANT_P (XEXP (temp, 0)))
753 src = XEXP (temp, 0), move_insn = 1;
754 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
755 {
756 src = XEXP (temp, 0);
757 /* A libcall block can use regs that don't appear in
758 the equivalent expression. To move the libcall,
759 we must move those regs too. */
760 dependencies = libcall_other_reg (p, src);
761 }
762 }
763
764 /* Don't try to optimize a register that was made
765 by loop-optimization for an inner loop.
766 We don't know its life-span, so we can't compute the benefit. */
767 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
768 ;
769 /* In order to move a register, we need to have one of three cases:
770 (1) it is used only in the same basic block as the set
771 (2) it is not a user variable and it is not used in the
772 exit test (this can cause the variable to be used
773 before it is set just like a user-variable).
774 (3) the set is guaranteed to be executed once the loop starts,
775 and the reg is not used until after that. */
776 else if (! ((! maybe_never
777 && ! loop_reg_used_before_p (set, p, loop_start,
778 scan_start, end))
779 || (! REG_USERVAR_P (SET_DEST (set))
780 && ! REG_LOOP_TEST_P (SET_DEST (set)))
781 || reg_in_basic_block_p (p, SET_DEST (set))))
782 ;
783 else if ((tem = invariant_p (src))
784 && (dependencies == 0
785 || (tem2 = invariant_p (dependencies)) != 0)
786 && (n_times_set[REGNO (SET_DEST (set))] == 1
787 || (tem1
788 = consec_sets_invariant_p (SET_DEST (set),
789 n_times_set[REGNO (SET_DEST (set))],
790 p)))
791 /* If the insn can cause a trap (such as divide by zero),
792 can't move it unless it's guaranteed to be executed
793 once loop is entered. Even a function call might
794 prevent the trap insn from being reached
795 (since it might exit!) */
796 && ! ((maybe_never || call_passed)
797 && may_trap_p (src)))
798 {
799 register struct movable *m;
800 register int regno = REGNO (SET_DEST (set));
801
802 /* A potential lossage is where we have a case where two insns
803 can be combined as long as they are both in the loop, but
804 we move one of them outside the loop. For large loops,
805 this can lose. The most common case of this is the address
806 of a function being called.
807
808 Therefore, if this register is marked as being used exactly
809 once if we are in a loop with calls (a "large loop"), see if
810 we can replace the usage of this register with the source
811 of this SET. If we can, delete this insn.
812
813 Don't do this if P has a REG_RETVAL note or if we have
814 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
815
816 if (reg_single_usage && reg_single_usage[regno] != 0
817 && reg_single_usage[regno] != const0_rtx
818 && REGNO_FIRST_UID (regno) == INSN_UID (p)
819 && (REGNO_LAST_UID (regno)
820 == INSN_UID (reg_single_usage[regno]))
821 && n_times_set[REGNO (SET_DEST (set))] == 1
822 && ! side_effects_p (SET_SRC (set))
823 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
824 && (! SMALL_REGISTER_CLASSES
825 || (! (GET_CODE (SET_SRC (set)) == REG
826 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
827 /* This test is not redundant; SET_SRC (set) might be
828 a call-clobbered register and the life of REGNO
829 might span a call. */
830 && ! modified_between_p (SET_SRC (set), p,
831 reg_single_usage[regno])
832 && no_labels_between_p (p, reg_single_usage[regno])
833 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
834 reg_single_usage[regno]))
835 {
836 /* Replace any usage in a REG_EQUAL note. Must copy the
837 new source, so that we don't get rtx sharing between the
838 SET_SOURCE and REG_NOTES of insn p. */
839 REG_NOTES (reg_single_usage[regno])
840 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
841 SET_DEST (set), copy_rtx (SET_SRC (set)));
842
843 PUT_CODE (p, NOTE);
844 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
845 NOTE_SOURCE_FILE (p) = 0;
846 n_times_set[regno] = 0;
847 continue;
848 }
849
850 m = (struct movable *) alloca (sizeof (struct movable));
851 m->next = 0;
852 m->insn = p;
853 m->set_src = src;
854 m->dependencies = dependencies;
855 m->set_dest = SET_DEST (set);
856 m->force = 0;
857 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
858 m->done = 0;
859 m->forces = 0;
860 m->partial = 0;
861 m->move_insn = move_insn;
862 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
863 m->savemode = VOIDmode;
864 m->regno = regno;
865 /* Set M->cond if either invariant_p or consec_sets_invariant_p
866 returned 2 (only conditionally invariant). */
867 m->cond = ((tem | tem1 | tem2) > 1);
868 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
869 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
870 m->match = 0;
871 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
872 - uid_luid[REGNO_FIRST_UID (regno)]);
873 m->savings = n_times_used[regno];
874 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
875 m->savings += libcall_benefit (p);
876 n_times_set[regno] = move_insn ? -2 : -1;
877 /* Add M to the end of the chain MOVABLES. */
878 if (movables == 0)
879 movables = m;
880 else
881 last_movable->next = m;
882 last_movable = m;
883
884 if (m->consec > 0)
885 {
886 /* Skip this insn, not checking REG_LIBCALL notes. */
887 p = next_nonnote_insn (p);
888 /* Skip the consecutive insns, if there are any. */
889 p = skip_consec_insns (p, m->consec);
890 /* Back up to the last insn of the consecutive group. */
891 p = prev_nonnote_insn (p);
892
893 /* We must now reset m->move_insn, m->is_equiv, and possibly
894 m->set_src to correspond to the effects of all the
895 insns. */
896 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
897 if (temp)
898 m->set_src = XEXP (temp, 0), m->move_insn = 1;
899 else
900 {
901 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
902 if (temp && CONSTANT_P (XEXP (temp, 0)))
903 m->set_src = XEXP (temp, 0), m->move_insn = 1;
904 else
905 m->move_insn = 0;
906
907 }
908 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
909 }
910 }
911 /* If this register is always set within a STRICT_LOW_PART
912 or set to zero, then its high bytes are constant.
913 So clear them outside the loop and within the loop
914 just load the low bytes.
915 We must check that the machine has an instruction to do so.
916 Also, if the value loaded into the register
917 depends on the same register, this cannot be done. */
918 else if (SET_SRC (set) == const0_rtx
919 && GET_CODE (NEXT_INSN (p)) == INSN
920 && (set1 = single_set (NEXT_INSN (p)))
921 && GET_CODE (set1) == SET
922 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
923 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
924 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
925 == SET_DEST (set))
926 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
927 {
928 register int regno = REGNO (SET_DEST (set));
929 if (n_times_set[regno] == 2)
930 {
931 register struct movable *m;
932 m = (struct movable *) alloca (sizeof (struct movable));
933 m->next = 0;
934 m->insn = p;
935 m->set_dest = SET_DEST (set);
936 m->dependencies = 0;
937 m->force = 0;
938 m->consec = 0;
939 m->done = 0;
940 m->forces = 0;
941 m->move_insn = 0;
942 m->partial = 1;
943 /* If the insn may not be executed on some cycles,
944 we can't clear the whole reg; clear just high part.
945 Not even if the reg is used only within this loop.
946 Consider this:
947 while (1)
948 while (s != t) {
949 if (foo ()) x = *s;
950 use (x);
951 }
952 Clearing x before the inner loop could clobber a value
953 being saved from the last time around the outer loop.
954 However, if the reg is not used outside this loop
955 and all uses of the register are in the same
956 basic block as the store, there is no problem.
957
958 If this insn was made by loop, we don't know its
959 INSN_LUID and hence must make a conservative
960 assumption. */
961 m->global = (INSN_UID (p) >= max_uid_for_loop
962 || (uid_luid[REGNO_LAST_UID (regno)]
963 > INSN_LUID (end))
964 || (uid_luid[REGNO_FIRST_UID (regno)]
965 < INSN_LUID (p))
966 || (labels_in_range_p
967 (p, uid_luid[REGNO_FIRST_UID (regno)])));
968 if (maybe_never && m->global)
969 m->savemode = GET_MODE (SET_SRC (set1));
970 else
971 m->savemode = VOIDmode;
972 m->regno = regno;
973 m->cond = 0;
974 m->match = 0;
975 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
976 - uid_luid[REGNO_FIRST_UID (regno)]);
977 m->savings = 1;
978 n_times_set[regno] = -1;
979 /* Add M to the end of the chain MOVABLES. */
980 if (movables == 0)
981 movables = m;
982 else
983 last_movable->next = m;
984 last_movable = m;
985 }
986 }
987 }
988 /* Past a call insn, we get to insns which might not be executed
989 because the call might exit. This matters for insns that trap.
990 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
991 so they don't count. */
992 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
993 call_passed = 1;
994 /* Past a label or a jump, we get to insns for which we
995 can't count on whether or how many times they will be
996 executed during each iteration. Therefore, we can
997 only move out sets of trivial variables
998 (those not used after the loop). */
999 /* Similar code appears twice in strength_reduce. */
1000 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1001 /* If we enter the loop in the middle, and scan around to the
1002 beginning, don't set maybe_never for that. This must be an
1003 unconditional jump, otherwise the code at the top of the
1004 loop might never be executed. Unconditional jumps are
1005 followed a by barrier then loop end. */
1006 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1007 && NEXT_INSN (NEXT_INSN (p)) == end
1008 && simplejump_p (p)))
1009 maybe_never = 1;
1010 else if (GET_CODE (p) == NOTE)
1011 {
1012 /* At the virtual top of a converted loop, insns are again known to
1013 be executed: logically, the loop begins here even though the exit
1014 code has been duplicated. */
1015 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1016 maybe_never = call_passed = 0;
1017 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1018 loop_depth++;
1019 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1020 loop_depth--;
1021 }
1022 }
1023
1024 /* If one movable subsumes another, ignore that other. */
1025
1026 ignore_some_movables (movables);
1027
1028 /* For each movable insn, see if the reg that it loads
1029 leads when it dies right into another conditionally movable insn.
1030 If so, record that the second insn "forces" the first one,
1031 since the second can be moved only if the first is. */
1032
1033 force_movables (movables);
1034
1035 /* See if there are multiple movable insns that load the same value.
1036 If there are, make all but the first point at the first one
1037 through the `match' field, and add the priorities of them
1038 all together as the priority of the first. */
1039
1040 combine_movables (movables, nregs);
1041
1042 /* Now consider each movable insn to decide whether it is worth moving.
1043 Store 0 in n_times_set for each reg that is moved. */
1044
1045 move_movables (movables, threshold,
1046 insn_count, loop_start, end, nregs);
1047
1048 /* Now candidates that still are negative are those not moved.
1049 Change n_times_set to indicate that those are not actually invariant. */
1050 for (i = 0; i < nregs; i++)
1051 if (n_times_set[i] < 0)
1052 n_times_set[i] = n_times_used[i];
1053
1054 if (flag_strength_reduce)
1055 strength_reduce (scan_start, end, loop_top,
1056 insn_count, loop_start, end, unroll_p);
1057 }
1058 \f
1059 /* Add elements to *OUTPUT to record all the pseudo-regs
1060 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1061
1062 void
1063 record_excess_regs (in_this, not_in_this, output)
1064 rtx in_this, not_in_this;
1065 rtx *output;
1066 {
1067 enum rtx_code code;
1068 char *fmt;
1069 int i;
1070
1071 code = GET_CODE (in_this);
1072
1073 switch (code)
1074 {
1075 case PC:
1076 case CC0:
1077 case CONST_INT:
1078 case CONST_DOUBLE:
1079 case CONST:
1080 case SYMBOL_REF:
1081 case LABEL_REF:
1082 return;
1083
1084 case REG:
1085 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1086 && ! reg_mentioned_p (in_this, not_in_this))
1087 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1088 return;
1089
1090 default:
1091 break;
1092 }
1093
1094 fmt = GET_RTX_FORMAT (code);
1095 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1096 {
1097 int j;
1098
1099 switch (fmt[i])
1100 {
1101 case 'E':
1102 for (j = 0; j < XVECLEN (in_this, i); j++)
1103 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1104 break;
1105
1106 case 'e':
1107 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1108 break;
1109 }
1110 }
1111 }
1112 \f
1113 /* Check what regs are referred to in the libcall block ending with INSN,
1114 aside from those mentioned in the equivalent value.
1115 If there are none, return 0.
1116 If there are one or more, return an EXPR_LIST containing all of them. */
1117
1118 static rtx
1119 libcall_other_reg (insn, equiv)
1120 rtx insn, equiv;
1121 {
1122 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1123 rtx p = XEXP (note, 0);
1124 rtx output = 0;
1125
1126 /* First, find all the regs used in the libcall block
1127 that are not mentioned as inputs to the result. */
1128
1129 while (p != insn)
1130 {
1131 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1132 || GET_CODE (p) == CALL_INSN)
1133 record_excess_regs (PATTERN (p), equiv, &output);
1134 p = NEXT_INSN (p);
1135 }
1136
1137 return output;
1138 }
1139 \f
1140 /* Return 1 if all uses of REG
1141 are between INSN and the end of the basic block. */
1142
1143 static int
1144 reg_in_basic_block_p (insn, reg)
1145 rtx insn, reg;
1146 {
1147 int regno = REGNO (reg);
1148 rtx p;
1149
1150 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1151 return 0;
1152
1153 /* Search this basic block for the already recorded last use of the reg. */
1154 for (p = insn; p; p = NEXT_INSN (p))
1155 {
1156 switch (GET_CODE (p))
1157 {
1158 case NOTE:
1159 break;
1160
1161 case INSN:
1162 case CALL_INSN:
1163 /* Ordinary insn: if this is the last use, we win. */
1164 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1165 return 1;
1166 break;
1167
1168 case JUMP_INSN:
1169 /* Jump insn: if this is the last use, we win. */
1170 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1171 return 1;
1172 /* Otherwise, it's the end of the basic block, so we lose. */
1173 return 0;
1174
1175 case CODE_LABEL:
1176 case BARRIER:
1177 /* It's the end of the basic block, so we lose. */
1178 return 0;
1179
1180 default:
1181 break;
1182 }
1183 }
1184
1185 /* The "last use" doesn't follow the "first use"?? */
1186 abort ();
1187 }
1188 \f
1189 /* Compute the benefit of eliminating the insns in the block whose
1190 last insn is LAST. This may be a group of insns used to compute a
1191 value directly or can contain a library call. */
1192
1193 static int
1194 libcall_benefit (last)
1195 rtx last;
1196 {
1197 rtx insn;
1198 int benefit = 0;
1199
1200 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1201 insn != last; insn = NEXT_INSN (insn))
1202 {
1203 if (GET_CODE (insn) == CALL_INSN)
1204 benefit += 10; /* Assume at least this many insns in a library
1205 routine. */
1206 else if (GET_CODE (insn) == INSN
1207 && GET_CODE (PATTERN (insn)) != USE
1208 && GET_CODE (PATTERN (insn)) != CLOBBER)
1209 benefit++;
1210 }
1211
1212 return benefit;
1213 }
1214 \f
1215 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1216
1217 static rtx
1218 skip_consec_insns (insn, count)
1219 rtx insn;
1220 int count;
1221 {
1222 for (; count > 0; count--)
1223 {
1224 rtx temp;
1225
1226 /* If first insn of libcall sequence, skip to end. */
1227 /* Do this at start of loop, since INSN is guaranteed to
1228 be an insn here. */
1229 if (GET_CODE (insn) != NOTE
1230 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1231 insn = XEXP (temp, 0);
1232
1233 do insn = NEXT_INSN (insn);
1234 while (GET_CODE (insn) == NOTE);
1235 }
1236
1237 return insn;
1238 }
1239
1240 /* Ignore any movable whose insn falls within a libcall
1241 which is part of another movable.
1242 We make use of the fact that the movable for the libcall value
1243 was made later and so appears later on the chain. */
1244
1245 static void
1246 ignore_some_movables (movables)
1247 struct movable *movables;
1248 {
1249 register struct movable *m, *m1;
1250
1251 for (m = movables; m; m = m->next)
1252 {
1253 /* Is this a movable for the value of a libcall? */
1254 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1255 if (note)
1256 {
1257 rtx insn;
1258 /* Check for earlier movables inside that range,
1259 and mark them invalid. We cannot use LUIDs here because
1260 insns created by loop.c for prior loops don't have LUIDs.
1261 Rather than reject all such insns from movables, we just
1262 explicitly check each insn in the libcall (since invariant
1263 libcalls aren't that common). */
1264 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1265 for (m1 = movables; m1 != m; m1 = m1->next)
1266 if (m1->insn == insn)
1267 m1->done = 1;
1268 }
1269 }
1270 }
1271
1272 /* For each movable insn, see if the reg that it loads
1273 leads when it dies right into another conditionally movable insn.
1274 If so, record that the second insn "forces" the first one,
1275 since the second can be moved only if the first is. */
1276
1277 static void
1278 force_movables (movables)
1279 struct movable *movables;
1280 {
1281 register struct movable *m, *m1;
1282 for (m1 = movables; m1; m1 = m1->next)
1283 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1284 if (!m1->partial && !m1->done)
1285 {
1286 int regno = m1->regno;
1287 for (m = m1->next; m; m = m->next)
1288 /* ??? Could this be a bug? What if CSE caused the
1289 register of M1 to be used after this insn?
1290 Since CSE does not update regno_last_uid,
1291 this insn M->insn might not be where it dies.
1292 But very likely this doesn't matter; what matters is
1293 that M's reg is computed from M1's reg. */
1294 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1295 && !m->done)
1296 break;
1297 if (m != 0 && m->set_src == m1->set_dest
1298 /* If m->consec, m->set_src isn't valid. */
1299 && m->consec == 0)
1300 m = 0;
1301
1302 /* Increase the priority of the moving the first insn
1303 since it permits the second to be moved as well. */
1304 if (m != 0)
1305 {
1306 m->forces = m1;
1307 m1->lifetime += m->lifetime;
1308 m1->savings += m1->savings;
1309 }
1310 }
1311 }
1312 \f
1313 /* Find invariant expressions that are equal and can be combined into
1314 one register. */
1315
1316 static void
1317 combine_movables (movables, nregs)
1318 struct movable *movables;
1319 int nregs;
1320 {
1321 register struct movable *m;
1322 char *matched_regs = (char *) alloca (nregs);
1323 enum machine_mode mode;
1324
1325 /* Regs that are set more than once are not allowed to match
1326 or be matched. I'm no longer sure why not. */
1327 /* Perhaps testing m->consec_sets would be more appropriate here? */
1328
1329 for (m = movables; m; m = m->next)
1330 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1331 {
1332 register struct movable *m1;
1333 int regno = m->regno;
1334
1335 bzero (matched_regs, nregs);
1336 matched_regs[regno] = 1;
1337
1338 /* We want later insns to match the first one. Don't make the first
1339 one match any later ones. So start this loop at m->next. */
1340 for (m1 = m->next; m1; m1 = m1->next)
1341 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1342 /* A reg used outside the loop mustn't be eliminated. */
1343 && !m1->global
1344 /* A reg used for zero-extending mustn't be eliminated. */
1345 && !m1->partial
1346 && (matched_regs[m1->regno]
1347 ||
1348 (
1349 /* Can combine regs with different modes loaded from the
1350 same constant only if the modes are the same or
1351 if both are integer modes with M wider or the same
1352 width as M1. The check for integer is redundant, but
1353 safe, since the only case of differing destination
1354 modes with equal sources is when both sources are
1355 VOIDmode, i.e., CONST_INT. */
1356 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1357 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1358 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1359 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1360 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1361 /* See if the source of M1 says it matches M. */
1362 && ((GET_CODE (m1->set_src) == REG
1363 && matched_regs[REGNO (m1->set_src)])
1364 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1365 movables))))
1366 && ((m->dependencies == m1->dependencies)
1367 || rtx_equal_p (m->dependencies, m1->dependencies)))
1368 {
1369 m->lifetime += m1->lifetime;
1370 m->savings += m1->savings;
1371 m1->done = 1;
1372 m1->match = m;
1373 matched_regs[m1->regno] = 1;
1374 }
1375 }
1376
1377 /* Now combine the regs used for zero-extension.
1378 This can be done for those not marked `global'
1379 provided their lives don't overlap. */
1380
1381 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1382 mode = GET_MODE_WIDER_MODE (mode))
1383 {
1384 register struct movable *m0 = 0;
1385
1386 /* Combine all the registers for extension from mode MODE.
1387 Don't combine any that are used outside this loop. */
1388 for (m = movables; m; m = m->next)
1389 if (m->partial && ! m->global
1390 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1391 {
1392 register struct movable *m1;
1393 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1394 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1395
1396 if (m0 == 0)
1397 {
1398 /* First one: don't check for overlap, just record it. */
1399 m0 = m;
1400 continue;
1401 }
1402
1403 /* Make sure they extend to the same mode.
1404 (Almost always true.) */
1405 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1406 continue;
1407
1408 /* We already have one: check for overlap with those
1409 already combined together. */
1410 for (m1 = movables; m1 != m; m1 = m1->next)
1411 if (m1 == m0 || (m1->partial && m1->match == m0))
1412 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1413 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1414 goto overlap;
1415
1416 /* No overlap: we can combine this with the others. */
1417 m0->lifetime += m->lifetime;
1418 m0->savings += m->savings;
1419 m->done = 1;
1420 m->match = m0;
1421
1422 overlap: ;
1423 }
1424 }
1425 }
1426 \f
1427 /* Return 1 if regs X and Y will become the same if moved. */
1428
1429 static int
1430 regs_match_p (x, y, movables)
1431 rtx x, y;
1432 struct movable *movables;
1433 {
1434 int xn = REGNO (x);
1435 int yn = REGNO (y);
1436 struct movable *mx, *my;
1437
1438 for (mx = movables; mx; mx = mx->next)
1439 if (mx->regno == xn)
1440 break;
1441
1442 for (my = movables; my; my = my->next)
1443 if (my->regno == yn)
1444 break;
1445
1446 return (mx && my
1447 && ((mx->match == my->match && mx->match != 0)
1448 || mx->match == my
1449 || mx == my->match));
1450 }
1451
1452 /* Return 1 if X and Y are identical-looking rtx's.
1453 This is the Lisp function EQUAL for rtx arguments.
1454
1455 If two registers are matching movables or a movable register and an
1456 equivalent constant, consider them equal. */
1457
1458 static int
1459 rtx_equal_for_loop_p (x, y, movables)
1460 rtx x, y;
1461 struct movable *movables;
1462 {
1463 register int i;
1464 register int j;
1465 register struct movable *m;
1466 register enum rtx_code code;
1467 register char *fmt;
1468
1469 if (x == y)
1470 return 1;
1471 if (x == 0 || y == 0)
1472 return 0;
1473
1474 code = GET_CODE (x);
1475
1476 /* If we have a register and a constant, they may sometimes be
1477 equal. */
1478 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1479 && CONSTANT_P (y))
1480 for (m = movables; m; m = m->next)
1481 if (m->move_insn && m->regno == REGNO (x)
1482 && rtx_equal_p (m->set_src, y))
1483 return 1;
1484
1485 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1486 && CONSTANT_P (x))
1487 for (m = movables; m; m = m->next)
1488 if (m->move_insn && m->regno == REGNO (y)
1489 && rtx_equal_p (m->set_src, x))
1490 return 1;
1491
1492 /* Otherwise, rtx's of different codes cannot be equal. */
1493 if (code != GET_CODE (y))
1494 return 0;
1495
1496 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1497 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1498
1499 if (GET_MODE (x) != GET_MODE (y))
1500 return 0;
1501
1502 /* These three types of rtx's can be compared nonrecursively. */
1503 if (code == REG)
1504 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1505
1506 if (code == LABEL_REF)
1507 return XEXP (x, 0) == XEXP (y, 0);
1508 if (code == SYMBOL_REF)
1509 return XSTR (x, 0) == XSTR (y, 0);
1510
1511 /* Compare the elements. If any pair of corresponding elements
1512 fail to match, return 0 for the whole things. */
1513
1514 fmt = GET_RTX_FORMAT (code);
1515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1516 {
1517 switch (fmt[i])
1518 {
1519 case 'w':
1520 if (XWINT (x, i) != XWINT (y, i))
1521 return 0;
1522 break;
1523
1524 case 'i':
1525 if (XINT (x, i) != XINT (y, i))
1526 return 0;
1527 break;
1528
1529 case 'E':
1530 /* Two vectors must have the same length. */
1531 if (XVECLEN (x, i) != XVECLEN (y, i))
1532 return 0;
1533
1534 /* And the corresponding elements must match. */
1535 for (j = 0; j < XVECLEN (x, i); j++)
1536 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1537 return 0;
1538 break;
1539
1540 case 'e':
1541 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1542 return 0;
1543 break;
1544
1545 case 's':
1546 if (strcmp (XSTR (x, i), XSTR (y, i)))
1547 return 0;
1548 break;
1549
1550 case 'u':
1551 /* These are just backpointers, so they don't matter. */
1552 break;
1553
1554 case '0':
1555 break;
1556
1557 /* It is believed that rtx's at this level will never
1558 contain anything but integers and other rtx's,
1559 except for within LABEL_REFs and SYMBOL_REFs. */
1560 default:
1561 abort ();
1562 }
1563 }
1564 return 1;
1565 }
1566 \f
1567 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1568 insns in INSNS which use thet reference. */
1569
1570 static void
1571 add_label_notes (x, insns)
1572 rtx x;
1573 rtx insns;
1574 {
1575 enum rtx_code code = GET_CODE (x);
1576 int i, j;
1577 char *fmt;
1578 rtx insn;
1579
1580 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1581 {
1582 rtx next = next_real_insn (XEXP (x, 0));
1583
1584 /* Don't record labels that refer to dispatch tables.
1585 This is not necessary, since the tablejump references the same label.
1586 And if we did record them, flow.c would make worse code. */
1587 if (next == 0
1588 || ! (GET_CODE (next) == JUMP_INSN
1589 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1590 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1591 {
1592 for (insn = insns; insn; insn = NEXT_INSN (insn))
1593 if (reg_mentioned_p (XEXP (x, 0), insn))
1594 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1595 REG_NOTES (insn));
1596 }
1597 return;
1598 }
1599
1600 fmt = GET_RTX_FORMAT (code);
1601 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1602 {
1603 if (fmt[i] == 'e')
1604 add_label_notes (XEXP (x, i), insns);
1605 else if (fmt[i] == 'E')
1606 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1607 add_label_notes (XVECEXP (x, i, j), insns);
1608 }
1609 }
1610 \f
1611 /* Scan MOVABLES, and move the insns that deserve to be moved.
1612 If two matching movables are combined, replace one reg with the
1613 other throughout. */
1614
1615 static void
1616 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1617 struct movable *movables;
1618 int threshold;
1619 int insn_count;
1620 rtx loop_start;
1621 rtx end;
1622 int nregs;
1623 {
1624 rtx new_start = 0;
1625 register struct movable *m;
1626 register rtx p;
1627 /* Map of pseudo-register replacements to handle combining
1628 when we move several insns that load the same value
1629 into different pseudo-registers. */
1630 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1631 char *already_moved = (char *) alloca (nregs);
1632
1633 bzero (already_moved, nregs);
1634 bzero ((char *) reg_map, nregs * sizeof (rtx));
1635
1636 num_movables = 0;
1637
1638 for (m = movables; m; m = m->next)
1639 {
1640 /* Describe this movable insn. */
1641
1642 if (loop_dump_stream)
1643 {
1644 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1645 INSN_UID (m->insn), m->regno, m->lifetime);
1646 if (m->consec > 0)
1647 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1648 if (m->cond)
1649 fprintf (loop_dump_stream, "cond ");
1650 if (m->force)
1651 fprintf (loop_dump_stream, "force ");
1652 if (m->global)
1653 fprintf (loop_dump_stream, "global ");
1654 if (m->done)
1655 fprintf (loop_dump_stream, "done ");
1656 if (m->move_insn)
1657 fprintf (loop_dump_stream, "move-insn ");
1658 if (m->match)
1659 fprintf (loop_dump_stream, "matches %d ",
1660 INSN_UID (m->match->insn));
1661 if (m->forces)
1662 fprintf (loop_dump_stream, "forces %d ",
1663 INSN_UID (m->forces->insn));
1664 }
1665
1666 /* Count movables. Value used in heuristics in strength_reduce. */
1667 num_movables++;
1668
1669 /* Ignore the insn if it's already done (it matched something else).
1670 Otherwise, see if it is now safe to move. */
1671
1672 if (!m->done
1673 && (! m->cond
1674 || (1 == invariant_p (m->set_src)
1675 && (m->dependencies == 0
1676 || 1 == invariant_p (m->dependencies))
1677 && (m->consec == 0
1678 || 1 == consec_sets_invariant_p (m->set_dest,
1679 m->consec + 1,
1680 m->insn))))
1681 && (! m->forces || m->forces->done))
1682 {
1683 register int regno;
1684 register rtx p;
1685 int savings = m->savings;
1686
1687 /* We have an insn that is safe to move.
1688 Compute its desirability. */
1689
1690 p = m->insn;
1691 regno = m->regno;
1692
1693 if (loop_dump_stream)
1694 fprintf (loop_dump_stream, "savings %d ", savings);
1695
1696 if (moved_once[regno])
1697 {
1698 insn_count *= 2;
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, "halved since already moved ");
1702 }
1703
1704 /* An insn MUST be moved if we already moved something else
1705 which is safe only if this one is moved too: that is,
1706 if already_moved[REGNO] is nonzero. */
1707
1708 /* An insn is desirable to move if the new lifetime of the
1709 register is no more than THRESHOLD times the old lifetime.
1710 If it's not desirable, it means the loop is so big
1711 that moving won't speed things up much,
1712 and it is liable to make register usage worse. */
1713
1714 /* It is also desirable to move if it can be moved at no
1715 extra cost because something else was already moved. */
1716
1717 if (already_moved[regno]
1718 || flag_move_all_movables
1719 || (threshold * savings * m->lifetime) >= insn_count
1720 || (m->forces && m->forces->done
1721 && n_times_used[m->forces->regno] == 1))
1722 {
1723 int count;
1724 register struct movable *m1;
1725 rtx first;
1726
1727 /* Now move the insns that set the reg. */
1728
1729 if (m->partial && m->match)
1730 {
1731 rtx newpat, i1;
1732 rtx r1, r2;
1733 /* Find the end of this chain of matching regs.
1734 Thus, we load each reg in the chain from that one reg.
1735 And that reg is loaded with 0 directly,
1736 since it has ->match == 0. */
1737 for (m1 = m; m1->match; m1 = m1->match);
1738 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1739 SET_DEST (PATTERN (m1->insn)));
1740 i1 = emit_insn_before (newpat, loop_start);
1741
1742 /* Mark the moved, invariant reg as being allowed to
1743 share a hard reg with the other matching invariant. */
1744 REG_NOTES (i1) = REG_NOTES (m->insn);
1745 r1 = SET_DEST (PATTERN (m->insn));
1746 r2 = SET_DEST (PATTERN (m1->insn));
1747 regs_may_share
1748 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1749 gen_rtx_EXPR_LIST (VOIDmode, r2,
1750 regs_may_share));
1751 delete_insn (m->insn);
1752
1753 if (new_start == 0)
1754 new_start = i1;
1755
1756 if (loop_dump_stream)
1757 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1758 }
1759 /* If we are to re-generate the item being moved with a
1760 new move insn, first delete what we have and then emit
1761 the move insn before the loop. */
1762 else if (m->move_insn)
1763 {
1764 rtx i1, temp;
1765
1766 for (count = m->consec; count >= 0; count--)
1767 {
1768 /* If this is the first insn of a library call sequence,
1769 skip to the end. */
1770 if (GET_CODE (p) != NOTE
1771 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1772 p = XEXP (temp, 0);
1773
1774 /* If this is the last insn of a libcall sequence, then
1775 delete every insn in the sequence except the last.
1776 The last insn is handled in the normal manner. */
1777 if (GET_CODE (p) != NOTE
1778 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1779 {
1780 temp = XEXP (temp, 0);
1781 while (temp != p)
1782 temp = delete_insn (temp);
1783 }
1784
1785 p = delete_insn (p);
1786 while (p && GET_CODE (p) == NOTE)
1787 p = NEXT_INSN (p);
1788 }
1789
1790 start_sequence ();
1791 emit_move_insn (m->set_dest, m->set_src);
1792 temp = get_insns ();
1793 end_sequence ();
1794
1795 add_label_notes (m->set_src, temp);
1796
1797 i1 = emit_insns_before (temp, loop_start);
1798 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1799 REG_NOTES (i1)
1800 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1801 m->set_src, REG_NOTES (i1));
1802
1803 if (loop_dump_stream)
1804 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1805
1806 /* The more regs we move, the less we like moving them. */
1807 threshold -= 3;
1808 }
1809 else
1810 {
1811 for (count = m->consec; count >= 0; count--)
1812 {
1813 rtx i1, temp;
1814
1815 /* If first insn of libcall sequence, skip to end. */
1816 /* Do this at start of loop, since p is guaranteed to
1817 be an insn here. */
1818 if (GET_CODE (p) != NOTE
1819 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1820 p = XEXP (temp, 0);
1821
1822 /* If last insn of libcall sequence, move all
1823 insns except the last before the loop. The last
1824 insn is handled in the normal manner. */
1825 if (GET_CODE (p) != NOTE
1826 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1827 {
1828 rtx fn_address = 0;
1829 rtx fn_reg = 0;
1830 rtx fn_address_insn = 0;
1831
1832 first = 0;
1833 for (temp = XEXP (temp, 0); temp != p;
1834 temp = NEXT_INSN (temp))
1835 {
1836 rtx body;
1837 rtx n;
1838 rtx next;
1839
1840 if (GET_CODE (temp) == NOTE)
1841 continue;
1842
1843 body = PATTERN (temp);
1844
1845 /* Find the next insn after TEMP,
1846 not counting USE or NOTE insns. */
1847 for (next = NEXT_INSN (temp); next != p;
1848 next = NEXT_INSN (next))
1849 if (! (GET_CODE (next) == INSN
1850 && GET_CODE (PATTERN (next)) == USE)
1851 && GET_CODE (next) != NOTE)
1852 break;
1853
1854 /* If that is the call, this may be the insn
1855 that loads the function address.
1856
1857 Extract the function address from the insn
1858 that loads it into a register.
1859 If this insn was cse'd, we get incorrect code.
1860
1861 So emit a new move insn that copies the
1862 function address into the register that the
1863 call insn will use. flow.c will delete any
1864 redundant stores that we have created. */
1865 if (GET_CODE (next) == CALL_INSN
1866 && GET_CODE (body) == SET
1867 && GET_CODE (SET_DEST (body)) == REG
1868 && (n = find_reg_note (temp, REG_EQUAL,
1869 NULL_RTX)))
1870 {
1871 fn_reg = SET_SRC (body);
1872 if (GET_CODE (fn_reg) != REG)
1873 fn_reg = SET_DEST (body);
1874 fn_address = XEXP (n, 0);
1875 fn_address_insn = temp;
1876 }
1877 /* We have the call insn.
1878 If it uses the register we suspect it might,
1879 load it with the correct address directly. */
1880 if (GET_CODE (temp) == CALL_INSN
1881 && fn_address != 0
1882 && reg_referenced_p (fn_reg, body))
1883 emit_insn_after (gen_move_insn (fn_reg,
1884 fn_address),
1885 fn_address_insn);
1886
1887 if (GET_CODE (temp) == CALL_INSN)
1888 {
1889 i1 = emit_call_insn_before (body, loop_start);
1890 /* Because the USAGE information potentially
1891 contains objects other than hard registers
1892 we need to copy it. */
1893 if (CALL_INSN_FUNCTION_USAGE (temp))
1894 CALL_INSN_FUNCTION_USAGE (i1)
1895 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1896 }
1897 else
1898 i1 = emit_insn_before (body, loop_start);
1899 if (first == 0)
1900 first = i1;
1901 if (temp == fn_address_insn)
1902 fn_address_insn = i1;
1903 REG_NOTES (i1) = REG_NOTES (temp);
1904 delete_insn (temp);
1905 }
1906 }
1907 if (m->savemode != VOIDmode)
1908 {
1909 /* P sets REG to zero; but we should clear only
1910 the bits that are not covered by the mode
1911 m->savemode. */
1912 rtx reg = m->set_dest;
1913 rtx sequence;
1914 rtx tem;
1915
1916 start_sequence ();
1917 tem = expand_binop
1918 (GET_MODE (reg), and_optab, reg,
1919 GEN_INT ((((HOST_WIDE_INT) 1
1920 << GET_MODE_BITSIZE (m->savemode)))
1921 - 1),
1922 reg, 1, OPTAB_LIB_WIDEN);
1923 if (tem == 0)
1924 abort ();
1925 if (tem != reg)
1926 emit_move_insn (reg, tem);
1927 sequence = gen_sequence ();
1928 end_sequence ();
1929 i1 = emit_insn_before (sequence, loop_start);
1930 }
1931 else if (GET_CODE (p) == CALL_INSN)
1932 {
1933 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1934 /* Because the USAGE information potentially
1935 contains objects other than hard registers
1936 we need to copy it. */
1937 if (CALL_INSN_FUNCTION_USAGE (p))
1938 CALL_INSN_FUNCTION_USAGE (i1)
1939 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1940 }
1941 else
1942 i1 = emit_insn_before (PATTERN (p), loop_start);
1943
1944 REG_NOTES (i1) = REG_NOTES (p);
1945
1946 /* If there is a REG_EQUAL note present whose value is
1947 not loop invariant, then delete it, since it may
1948 cause problems with later optimization passes.
1949 It is possible for cse to create such notes
1950 like this as a result of record_jump_cond. */
1951
1952 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1953 && ! invariant_p (XEXP (temp, 0)))
1954 remove_note (i1, temp);
1955
1956 if (new_start == 0)
1957 new_start = i1;
1958
1959 if (loop_dump_stream)
1960 fprintf (loop_dump_stream, " moved to %d",
1961 INSN_UID (i1));
1962
1963 #if 0
1964 /* This isn't needed because REG_NOTES is copied
1965 below and is wrong since P might be a PARALLEL. */
1966 if (REG_NOTES (i1) == 0
1967 && ! m->partial /* But not if it's a zero-extend clr. */
1968 && ! m->global /* and not if used outside the loop
1969 (since it might get set outside). */
1970 && CONSTANT_P (SET_SRC (PATTERN (p))))
1971 REG_NOTES (i1)
1972 = gen_rtx_EXPR_LIST (REG_EQUAL,
1973 SET_SRC (PATTERN (p)),
1974 REG_NOTES (i1));
1975 #endif
1976
1977 /* If library call, now fix the REG_NOTES that contain
1978 insn pointers, namely REG_LIBCALL on FIRST
1979 and REG_RETVAL on I1. */
1980 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1981 {
1982 XEXP (temp, 0) = first;
1983 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1984 XEXP (temp, 0) = i1;
1985 }
1986
1987 delete_insn (p);
1988 do p = NEXT_INSN (p);
1989 while (p && GET_CODE (p) == NOTE);
1990 }
1991
1992 /* The more regs we move, the less we like moving them. */
1993 threshold -= 3;
1994 }
1995
1996 /* Any other movable that loads the same register
1997 MUST be moved. */
1998 already_moved[regno] = 1;
1999
2000 /* This reg has been moved out of one loop. */
2001 moved_once[regno] = 1;
2002
2003 /* The reg set here is now invariant. */
2004 if (! m->partial)
2005 n_times_set[regno] = 0;
2006
2007 m->done = 1;
2008
2009 /* Change the length-of-life info for the register
2010 to say it lives at least the full length of this loop.
2011 This will help guide optimizations in outer loops. */
2012
2013 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2014 /* This is the old insn before all the moved insns.
2015 We can't use the moved insn because it is out of range
2016 in uid_luid. Only the old insns have luids. */
2017 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2018 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2019 REGNO_LAST_UID (regno) = INSN_UID (end);
2020
2021 /* Combine with this moved insn any other matching movables. */
2022
2023 if (! m->partial)
2024 for (m1 = movables; m1; m1 = m1->next)
2025 if (m1->match == m)
2026 {
2027 rtx temp;
2028
2029 /* Schedule the reg loaded by M1
2030 for replacement so that shares the reg of M.
2031 If the modes differ (only possible in restricted
2032 circumstances, make a SUBREG. */
2033 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2034 reg_map[m1->regno] = m->set_dest;
2035 else
2036 reg_map[m1->regno]
2037 = gen_lowpart_common (GET_MODE (m1->set_dest),
2038 m->set_dest);
2039
2040 /* Get rid of the matching insn
2041 and prevent further processing of it. */
2042 m1->done = 1;
2043
2044 /* if library call, delete all insn except last, which
2045 is deleted below */
2046 if (temp = find_reg_note (m1->insn, REG_RETVAL,
2047 NULL_RTX))
2048 {
2049 for (temp = XEXP (temp, 0); temp != m1->insn;
2050 temp = NEXT_INSN (temp))
2051 delete_insn (temp);
2052 }
2053 delete_insn (m1->insn);
2054
2055 /* Any other movable that loads the same register
2056 MUST be moved. */
2057 already_moved[m1->regno] = 1;
2058
2059 /* The reg merged here is now invariant,
2060 if the reg it matches is invariant. */
2061 if (! m->partial)
2062 n_times_set[m1->regno] = 0;
2063 }
2064 }
2065 else if (loop_dump_stream)
2066 fprintf (loop_dump_stream, "not desirable");
2067 }
2068 else if (loop_dump_stream && !m->match)
2069 fprintf (loop_dump_stream, "not safe");
2070
2071 if (loop_dump_stream)
2072 fprintf (loop_dump_stream, "\n");
2073 }
2074
2075 if (new_start == 0)
2076 new_start = loop_start;
2077
2078 /* Go through all the instructions in the loop, making
2079 all the register substitutions scheduled in REG_MAP. */
2080 for (p = new_start; p != end; p = NEXT_INSN (p))
2081 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2082 || GET_CODE (p) == CALL_INSN)
2083 {
2084 replace_regs (PATTERN (p), reg_map, nregs, 0);
2085 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2086 INSN_CODE (p) = -1;
2087 }
2088 }
2089 \f
2090 #if 0
2091 /* Scan X and replace the address of any MEM in it with ADDR.
2092 REG is the address that MEM should have before the replacement. */
2093
2094 static void
2095 replace_call_address (x, reg, addr)
2096 rtx x, reg, addr;
2097 {
2098 register enum rtx_code code;
2099 register int i;
2100 register char *fmt;
2101
2102 if (x == 0)
2103 return;
2104 code = GET_CODE (x);
2105 switch (code)
2106 {
2107 case PC:
2108 case CC0:
2109 case CONST_INT:
2110 case CONST_DOUBLE:
2111 case CONST:
2112 case SYMBOL_REF:
2113 case LABEL_REF:
2114 case REG:
2115 return;
2116
2117 case SET:
2118 /* Short cut for very common case. */
2119 replace_call_address (XEXP (x, 1), reg, addr);
2120 return;
2121
2122 case CALL:
2123 /* Short cut for very common case. */
2124 replace_call_address (XEXP (x, 0), reg, addr);
2125 return;
2126
2127 case MEM:
2128 /* If this MEM uses a reg other than the one we expected,
2129 something is wrong. */
2130 if (XEXP (x, 0) != reg)
2131 abort ();
2132 XEXP (x, 0) = addr;
2133 return;
2134
2135 default:
2136 break;
2137 }
2138
2139 fmt = GET_RTX_FORMAT (code);
2140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2141 {
2142 if (fmt[i] == 'e')
2143 replace_call_address (XEXP (x, i), reg, addr);
2144 if (fmt[i] == 'E')
2145 {
2146 register int j;
2147 for (j = 0; j < XVECLEN (x, i); j++)
2148 replace_call_address (XVECEXP (x, i, j), reg, addr);
2149 }
2150 }
2151 }
2152 #endif
2153 \f
2154 /* Return the number of memory refs to addresses that vary
2155 in the rtx X. */
2156
2157 static int
2158 count_nonfixed_reads (x)
2159 rtx x;
2160 {
2161 register enum rtx_code code;
2162 register int i;
2163 register char *fmt;
2164 int value;
2165
2166 if (x == 0)
2167 return 0;
2168
2169 code = GET_CODE (x);
2170 switch (code)
2171 {
2172 case PC:
2173 case CC0:
2174 case CONST_INT:
2175 case CONST_DOUBLE:
2176 case CONST:
2177 case SYMBOL_REF:
2178 case LABEL_REF:
2179 case REG:
2180 return 0;
2181
2182 case MEM:
2183 return ((invariant_p (XEXP (x, 0)) != 1)
2184 + count_nonfixed_reads (XEXP (x, 0)));
2185
2186 default:
2187 break;
2188 }
2189
2190 value = 0;
2191 fmt = GET_RTX_FORMAT (code);
2192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2193 {
2194 if (fmt[i] == 'e')
2195 value += count_nonfixed_reads (XEXP (x, i));
2196 if (fmt[i] == 'E')
2197 {
2198 register int j;
2199 for (j = 0; j < XVECLEN (x, i); j++)
2200 value += count_nonfixed_reads (XVECEXP (x, i, j));
2201 }
2202 }
2203 return value;
2204 }
2205
2206 \f
2207 #if 0
2208 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2209 Replace it with an instruction to load just the low bytes
2210 if the machine supports such an instruction,
2211 and insert above LOOP_START an instruction to clear the register. */
2212
2213 static void
2214 constant_high_bytes (p, loop_start)
2215 rtx p, loop_start;
2216 {
2217 register rtx new;
2218 register int insn_code_number;
2219
2220 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2221 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2222
2223 new = gen_rtx_SET (VOIDmode,
2224 gen_rtx_STRICT_LOW_PART (VOIDmode,
2225 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2226 SET_DEST (PATTERN (p)),
2227 0)),
2228 XEXP (SET_SRC (PATTERN (p)), 0));
2229 insn_code_number = recog (new, p);
2230
2231 if (insn_code_number)
2232 {
2233 register int i;
2234
2235 /* Clear destination register before the loop. */
2236 emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
2237 const0_rtx),
2238 loop_start);
2239
2240 /* Inside the loop, just load the low part. */
2241 PATTERN (p) = new;
2242 }
2243 }
2244 #endif
2245 \f
2246 /* Scan a loop setting the variables `unknown_address_altered',
2247 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2248 and `loop_has_volatile'.
2249 Also, fill in the array `loop_store_mems'. */
2250
2251 static void
2252 prescan_loop (start, end)
2253 rtx start, end;
2254 {
2255 register int level = 1;
2256 register rtx insn;
2257
2258 unknown_address_altered = 0;
2259 loop_has_call = 0;
2260 loop_has_volatile = 0;
2261 loop_store_mems_idx = 0;
2262
2263 num_mem_sets = 0;
2264 loops_enclosed = 1;
2265 loop_continue = 0;
2266
2267 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2268 insn = NEXT_INSN (insn))
2269 {
2270 if (GET_CODE (insn) == NOTE)
2271 {
2272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2273 {
2274 ++level;
2275 /* Count number of loops contained in this one. */
2276 loops_enclosed++;
2277 }
2278 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2279 {
2280 --level;
2281 if (level == 0)
2282 {
2283 end = insn;
2284 break;
2285 }
2286 }
2287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2288 {
2289 if (level == 1)
2290 loop_continue = insn;
2291 }
2292 }
2293 else if (GET_CODE (insn) == CALL_INSN)
2294 {
2295 if (! CONST_CALL_P (insn))
2296 unknown_address_altered = 1;
2297 loop_has_call = 1;
2298 }
2299 else
2300 {
2301 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2302 {
2303 if (volatile_refs_p (PATTERN (insn)))
2304 loop_has_volatile = 1;
2305
2306 note_stores (PATTERN (insn), note_addr_stored);
2307 }
2308 }
2309 }
2310 }
2311 \f
2312 /* Scan the function looking for loops. Record the start and end of each loop.
2313 Also mark as invalid loops any loops that contain a setjmp or are branched
2314 to from outside the loop. */
2315
2316 static void
2317 find_and_verify_loops (f)
2318 rtx f;
2319 {
2320 rtx insn, label;
2321 int current_loop = -1;
2322 int next_loop = -1;
2323 int loop;
2324
2325 /* If there are jumps to undefined labels,
2326 treat them as jumps out of any/all loops.
2327 This also avoids writing past end of tables when there are no loops. */
2328 uid_loop_num[0] = -1;
2329
2330 /* Find boundaries of loops, mark which loops are contained within
2331 loops, and invalidate loops that have setjmp. */
2332
2333 for (insn = f; insn; insn = NEXT_INSN (insn))
2334 {
2335 if (GET_CODE (insn) == NOTE)
2336 switch (NOTE_LINE_NUMBER (insn))
2337 {
2338 case NOTE_INSN_LOOP_BEG:
2339 loop_number_loop_starts[++next_loop] = insn;
2340 loop_number_loop_ends[next_loop] = 0;
2341 loop_outer_loop[next_loop] = current_loop;
2342 loop_invalid[next_loop] = 0;
2343 loop_number_exit_labels[next_loop] = 0;
2344 loop_number_exit_count[next_loop] = 0;
2345 current_loop = next_loop;
2346 break;
2347
2348 case NOTE_INSN_SETJMP:
2349 /* In this case, we must invalidate our current loop and any
2350 enclosing loop. */
2351 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2352 {
2353 loop_invalid[loop] = 1;
2354 if (loop_dump_stream)
2355 fprintf (loop_dump_stream,
2356 "\nLoop at %d ignored due to setjmp.\n",
2357 INSN_UID (loop_number_loop_starts[loop]));
2358 }
2359 break;
2360
2361 case NOTE_INSN_LOOP_END:
2362 if (current_loop == -1)
2363 abort ();
2364
2365 loop_number_loop_ends[current_loop] = insn;
2366 current_loop = loop_outer_loop[current_loop];
2367 break;
2368
2369 default:
2370 break;
2371 }
2372
2373 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2374 enclosing loop, but this doesn't matter. */
2375 uid_loop_num[INSN_UID (insn)] = current_loop;
2376 }
2377
2378 /* Any loop containing a label used in an initializer must be invalidated,
2379 because it can be jumped into from anywhere. */
2380
2381 for (label = forced_labels; label; label = XEXP (label, 1))
2382 {
2383 int loop_num;
2384
2385 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2386 loop_num != -1;
2387 loop_num = loop_outer_loop[loop_num])
2388 loop_invalid[loop_num] = 1;
2389 }
2390
2391 /* Any loop containing a label used for an exception handler must be
2392 invalidated, because it can be jumped into from anywhere. */
2393
2394 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2395 {
2396 int loop_num;
2397
2398 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2399 loop_num != -1;
2400 loop_num = loop_outer_loop[loop_num])
2401 loop_invalid[loop_num] = 1;
2402 }
2403
2404 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2405 loop that it is not contained within, that loop is marked invalid.
2406 If any INSN or CALL_INSN uses a label's address, then the loop containing
2407 that label is marked invalid, because it could be jumped into from
2408 anywhere.
2409
2410 Also look for blocks of code ending in an unconditional branch that
2411 exits the loop. If such a block is surrounded by a conditional
2412 branch around the block, move the block elsewhere (see below) and
2413 invert the jump to point to the code block. This may eliminate a
2414 label in our loop and will simplify processing by both us and a
2415 possible second cse pass. */
2416
2417 for (insn = f; insn; insn = NEXT_INSN (insn))
2418 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2419 {
2420 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2421
2422 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2423 {
2424 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2425 if (note)
2426 {
2427 int loop_num;
2428
2429 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2430 loop_num != -1;
2431 loop_num = loop_outer_loop[loop_num])
2432 loop_invalid[loop_num] = 1;
2433 }
2434 }
2435
2436 if (GET_CODE (insn) != JUMP_INSN)
2437 continue;
2438
2439 mark_loop_jump (PATTERN (insn), this_loop_num);
2440
2441 /* See if this is an unconditional branch outside the loop. */
2442 if (this_loop_num != -1
2443 && (GET_CODE (PATTERN (insn)) == RETURN
2444 || (simplejump_p (insn)
2445 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2446 != this_loop_num)))
2447 && get_max_uid () < max_uid_for_loop)
2448 {
2449 rtx p;
2450 rtx our_next = next_real_insn (insn);
2451 int dest_loop;
2452 int outer_loop = -1;
2453
2454 /* Go backwards until we reach the start of the loop, a label,
2455 or a JUMP_INSN. */
2456 for (p = PREV_INSN (insn);
2457 GET_CODE (p) != CODE_LABEL
2458 && ! (GET_CODE (p) == NOTE
2459 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2460 && GET_CODE (p) != JUMP_INSN;
2461 p = PREV_INSN (p))
2462 ;
2463
2464 /* Check for the case where we have a jump to an inner nested
2465 loop, and do not perform the optimization in that case. */
2466
2467 if (JUMP_LABEL (insn))
2468 {
2469 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2470 if (dest_loop != -1)
2471 {
2472 for (outer_loop = dest_loop; outer_loop != -1;
2473 outer_loop = loop_outer_loop[outer_loop])
2474 if (outer_loop == this_loop_num)
2475 break;
2476 }
2477 }
2478
2479 /* Make sure that the target of P is within the current loop. */
2480
2481 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2482 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2483 outer_loop = this_loop_num;
2484
2485 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2486 we have a block of code to try to move.
2487
2488 We look backward and then forward from the target of INSN
2489 to find a BARRIER at the same loop depth as the target.
2490 If we find such a BARRIER, we make a new label for the start
2491 of the block, invert the jump in P and point it to that label,
2492 and move the block of code to the spot we found. */
2493
2494 if (outer_loop == -1
2495 && GET_CODE (p) == JUMP_INSN
2496 && JUMP_LABEL (p) != 0
2497 /* Just ignore jumps to labels that were never emitted.
2498 These always indicate compilation errors. */
2499 && INSN_UID (JUMP_LABEL (p)) != 0
2500 && condjump_p (p)
2501 && ! simplejump_p (p)
2502 && next_real_insn (JUMP_LABEL (p)) == our_next)
2503 {
2504 rtx target
2505 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2506 int target_loop_num = uid_loop_num[INSN_UID (target)];
2507 rtx loc;
2508
2509 for (loc = target; loc; loc = PREV_INSN (loc))
2510 if (GET_CODE (loc) == BARRIER
2511 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2512 break;
2513
2514 if (loc == 0)
2515 for (loc = target; loc; loc = NEXT_INSN (loc))
2516 if (GET_CODE (loc) == BARRIER
2517 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2518 break;
2519
2520 if (loc)
2521 {
2522 rtx cond_label = JUMP_LABEL (p);
2523 rtx new_label = get_label_after (p);
2524
2525 /* Ensure our label doesn't go away. */
2526 LABEL_NUSES (cond_label)++;
2527
2528 /* Verify that uid_loop_num is large enough and that
2529 we can invert P. */
2530 if (invert_jump (p, new_label))
2531 {
2532 rtx q, r;
2533
2534 /* If no suitable BARRIER was found, create a suitable
2535 one before TARGET. Since TARGET is a fall through
2536 path, we'll need to insert an jump around our block
2537 and a add a BARRIER before TARGET.
2538
2539 This creates an extra unconditional jump outside
2540 the loop. However, the benefits of removing rarely
2541 executed instructions from inside the loop usually
2542 outweighs the cost of the extra unconditional jump
2543 outside the loop. */
2544 if (loc == 0)
2545 {
2546 rtx temp;
2547
2548 temp = gen_jump (JUMP_LABEL (insn));
2549 temp = emit_jump_insn_before (temp, target);
2550 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2551 LABEL_NUSES (JUMP_LABEL (insn))++;
2552 loc = emit_barrier_before (target);
2553 }
2554
2555 /* Include the BARRIER after INSN and copy the
2556 block after LOC. */
2557 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2558 reorder_insns (new_label, NEXT_INSN (insn), loc);
2559
2560 /* All those insns are now in TARGET_LOOP_NUM. */
2561 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2562 q = NEXT_INSN (q))
2563 uid_loop_num[INSN_UID (q)] = target_loop_num;
2564
2565 /* The label jumped to by INSN is no longer a loop exit.
2566 Unless INSN does not have a label (e.g., it is a
2567 RETURN insn), search loop_number_exit_labels to find
2568 its label_ref, and remove it. Also turn off
2569 LABEL_OUTSIDE_LOOP_P bit. */
2570 if (JUMP_LABEL (insn))
2571 {
2572 int loop_num;
2573
2574 for (q = 0,
2575 r = loop_number_exit_labels[this_loop_num];
2576 r; q = r, r = LABEL_NEXTREF (r))
2577 if (XEXP (r, 0) == JUMP_LABEL (insn))
2578 {
2579 LABEL_OUTSIDE_LOOP_P (r) = 0;
2580 if (q)
2581 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2582 else
2583 loop_number_exit_labels[this_loop_num]
2584 = LABEL_NEXTREF (r);
2585 break;
2586 }
2587
2588 for (loop_num = this_loop_num;
2589 loop_num != -1 && loop_num != target_loop_num;
2590 loop_num = loop_outer_loop[loop_num])
2591 loop_number_exit_count[loop_num]--;
2592
2593 /* If we didn't find it, then something is wrong. */
2594 if (! r)
2595 abort ();
2596 }
2597
2598 /* P is now a jump outside the loop, so it must be put
2599 in loop_number_exit_labels, and marked as such.
2600 The easiest way to do this is to just call
2601 mark_loop_jump again for P. */
2602 mark_loop_jump (PATTERN (p), this_loop_num);
2603
2604 /* If INSN now jumps to the insn after it,
2605 delete INSN. */
2606 if (JUMP_LABEL (insn) != 0
2607 && (next_real_insn (JUMP_LABEL (insn))
2608 == next_real_insn (insn)))
2609 delete_insn (insn);
2610 }
2611
2612 /* Continue the loop after where the conditional
2613 branch used to jump, since the only branch insn
2614 in the block (if it still remains) is an inter-loop
2615 branch and hence needs no processing. */
2616 insn = NEXT_INSN (cond_label);
2617
2618 if (--LABEL_NUSES (cond_label) == 0)
2619 delete_insn (cond_label);
2620
2621 /* This loop will be continued with NEXT_INSN (insn). */
2622 insn = PREV_INSN (insn);
2623 }
2624 }
2625 }
2626 }
2627 }
2628
2629 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2630 loops it is contained in, mark the target loop invalid.
2631
2632 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2633
2634 static void
2635 mark_loop_jump (x, loop_num)
2636 rtx x;
2637 int loop_num;
2638 {
2639 int dest_loop;
2640 int outer_loop;
2641 int i;
2642
2643 switch (GET_CODE (x))
2644 {
2645 case PC:
2646 case USE:
2647 case CLOBBER:
2648 case REG:
2649 case MEM:
2650 case CONST_INT:
2651 case CONST_DOUBLE:
2652 case RETURN:
2653 return;
2654
2655 case CONST:
2656 /* There could be a label reference in here. */
2657 mark_loop_jump (XEXP (x, 0), loop_num);
2658 return;
2659
2660 case PLUS:
2661 case MINUS:
2662 case MULT:
2663 mark_loop_jump (XEXP (x, 0), loop_num);
2664 mark_loop_jump (XEXP (x, 1), loop_num);
2665 return;
2666
2667 case SIGN_EXTEND:
2668 case ZERO_EXTEND:
2669 mark_loop_jump (XEXP (x, 0), loop_num);
2670 return;
2671
2672 case LABEL_REF:
2673 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2674
2675 /* Link together all labels that branch outside the loop. This
2676 is used by final_[bg]iv_value and the loop unrolling code. Also
2677 mark this LABEL_REF so we know that this branch should predict
2678 false. */
2679
2680 /* A check to make sure the label is not in an inner nested loop,
2681 since this does not count as a loop exit. */
2682 if (dest_loop != -1)
2683 {
2684 for (outer_loop = dest_loop; outer_loop != -1;
2685 outer_loop = loop_outer_loop[outer_loop])
2686 if (outer_loop == loop_num)
2687 break;
2688 }
2689 else
2690 outer_loop = -1;
2691
2692 if (loop_num != -1 && outer_loop == -1)
2693 {
2694 LABEL_OUTSIDE_LOOP_P (x) = 1;
2695 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2696 loop_number_exit_labels[loop_num] = x;
2697
2698 for (outer_loop = loop_num;
2699 outer_loop != -1 && outer_loop != dest_loop;
2700 outer_loop = loop_outer_loop[outer_loop])
2701 loop_number_exit_count[outer_loop]++;
2702 }
2703
2704 /* If this is inside a loop, but not in the current loop or one enclosed
2705 by it, it invalidates at least one loop. */
2706
2707 if (dest_loop == -1)
2708 return;
2709
2710 /* We must invalidate every nested loop containing the target of this
2711 label, except those that also contain the jump insn. */
2712
2713 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2714 {
2715 /* Stop when we reach a loop that also contains the jump insn. */
2716 for (outer_loop = loop_num; outer_loop != -1;
2717 outer_loop = loop_outer_loop[outer_loop])
2718 if (dest_loop == outer_loop)
2719 return;
2720
2721 /* If we get here, we know we need to invalidate a loop. */
2722 if (loop_dump_stream && ! loop_invalid[dest_loop])
2723 fprintf (loop_dump_stream,
2724 "\nLoop at %d ignored due to multiple entry points.\n",
2725 INSN_UID (loop_number_loop_starts[dest_loop]));
2726
2727 loop_invalid[dest_loop] = 1;
2728 }
2729 return;
2730
2731 case SET:
2732 /* If this is not setting pc, ignore. */
2733 if (SET_DEST (x) == pc_rtx)
2734 mark_loop_jump (SET_SRC (x), loop_num);
2735 return;
2736
2737 case IF_THEN_ELSE:
2738 mark_loop_jump (XEXP (x, 1), loop_num);
2739 mark_loop_jump (XEXP (x, 2), loop_num);
2740 return;
2741
2742 case PARALLEL:
2743 case ADDR_VEC:
2744 for (i = 0; i < XVECLEN (x, 0); i++)
2745 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2746 return;
2747
2748 case ADDR_DIFF_VEC:
2749 for (i = 0; i < XVECLEN (x, 1); i++)
2750 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2751 return;
2752
2753 default:
2754 /* Treat anything else (such as a symbol_ref)
2755 as a branch out of this loop, but not into any loop. */
2756
2757 if (loop_num != -1)
2758 {
2759 #ifdef HAIFA
2760 LABEL_OUTSIDE_LOOP_P (x) = 1;
2761 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2762 #endif /* HAIFA */
2763
2764 loop_number_exit_labels[loop_num] = x;
2765
2766 for (outer_loop = loop_num; outer_loop != -1;
2767 outer_loop = loop_outer_loop[outer_loop])
2768 loop_number_exit_count[outer_loop]++;
2769 }
2770 return;
2771 }
2772 }
2773 \f
2774 /* Return nonzero if there is a label in the range from
2775 insn INSN to and including the insn whose luid is END
2776 INSN must have an assigned luid (i.e., it must not have
2777 been previously created by loop.c). */
2778
2779 static int
2780 labels_in_range_p (insn, end)
2781 rtx insn;
2782 int end;
2783 {
2784 while (insn && INSN_LUID (insn) <= end)
2785 {
2786 if (GET_CODE (insn) == CODE_LABEL)
2787 return 1;
2788 insn = NEXT_INSN (insn);
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* Record that a memory reference X is being set. */
2795
2796 static void
2797 note_addr_stored (x)
2798 rtx x;
2799 {
2800 register int i;
2801
2802 if (x == 0 || GET_CODE (x) != MEM)
2803 return;
2804
2805 /* Count number of memory writes.
2806 This affects heuristics in strength_reduce. */
2807 num_mem_sets++;
2808
2809 /* BLKmode MEM means all memory is clobbered. */
2810 if (GET_MODE (x) == BLKmode)
2811 unknown_address_altered = 1;
2812
2813 if (unknown_address_altered)
2814 return;
2815
2816 for (i = 0; i < loop_store_mems_idx; i++)
2817 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2818 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2819 {
2820 /* We are storing at the same address as previously noted. Save the
2821 wider reference. */
2822 if (GET_MODE_SIZE (GET_MODE (x))
2823 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2824 loop_store_mems[i] = x;
2825 break;
2826 }
2827
2828 if (i == NUM_STORES)
2829 unknown_address_altered = 1;
2830
2831 else if (i == loop_store_mems_idx)
2832 loop_store_mems[loop_store_mems_idx++] = x;
2833 }
2834 \f
2835 /* Return nonzero if the rtx X is invariant over the current loop.
2836
2837 The value is 2 if we refer to something only conditionally invariant.
2838
2839 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2840 Otherwise, a memory ref is invariant if it does not conflict with
2841 anything stored in `loop_store_mems'. */
2842
2843 int
2844 invariant_p (x)
2845 register rtx x;
2846 {
2847 register int i;
2848 register enum rtx_code code;
2849 register char *fmt;
2850 int conditional = 0;
2851
2852 if (x == 0)
2853 return 1;
2854 code = GET_CODE (x);
2855 switch (code)
2856 {
2857 case CONST_INT:
2858 case CONST_DOUBLE:
2859 case SYMBOL_REF:
2860 case CONST:
2861 return 1;
2862
2863 case LABEL_REF:
2864 /* A LABEL_REF is normally invariant, however, if we are unrolling
2865 loops, and this label is inside the loop, then it isn't invariant.
2866 This is because each unrolled copy of the loop body will have
2867 a copy of this label. If this was invariant, then an insn loading
2868 the address of this label into a register might get moved outside
2869 the loop, and then each loop body would end up using the same label.
2870
2871 We don't know the loop bounds here though, so just fail for all
2872 labels. */
2873 if (flag_unroll_loops)
2874 return 0;
2875 else
2876 return 1;
2877
2878 case PC:
2879 case CC0:
2880 case UNSPEC_VOLATILE:
2881 return 0;
2882
2883 case REG:
2884 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2885 since the reg might be set by initialization within the loop. */
2886
2887 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2888 || x == arg_pointer_rtx)
2889 && ! current_function_has_nonlocal_goto)
2890 return 1;
2891
2892 if (loop_has_call
2893 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2894 return 0;
2895
2896 if (n_times_set[REGNO (x)] < 0)
2897 return 2;
2898
2899 return n_times_set[REGNO (x)] == 0;
2900
2901 case MEM:
2902 /* Volatile memory references must be rejected. Do this before
2903 checking for read-only items, so that volatile read-only items
2904 will be rejected also. */
2905 if (MEM_VOLATILE_P (x))
2906 return 0;
2907
2908 /* Read-only items (such as constants in a constant pool) are
2909 invariant if their address is. */
2910 if (RTX_UNCHANGING_P (x))
2911 break;
2912
2913 /* If we filled the table (or had a subroutine call), any location
2914 in memory could have been clobbered. */
2915 if (unknown_address_altered)
2916 return 0;
2917
2918 /* See if there is any dependence between a store and this load. */
2919 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2920 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2921 return 0;
2922
2923 /* It's not invalidated by a store in memory
2924 but we must still verify the address is invariant. */
2925 break;
2926
2927 case ASM_OPERANDS:
2928 /* Don't mess with insns declared volatile. */
2929 if (MEM_VOLATILE_P (x))
2930 return 0;
2931 break;
2932
2933 default:
2934 break;
2935 }
2936
2937 fmt = GET_RTX_FORMAT (code);
2938 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2939 {
2940 if (fmt[i] == 'e')
2941 {
2942 int tem = invariant_p (XEXP (x, i));
2943 if (tem == 0)
2944 return 0;
2945 if (tem == 2)
2946 conditional = 1;
2947 }
2948 else if (fmt[i] == 'E')
2949 {
2950 register int j;
2951 for (j = 0; j < XVECLEN (x, i); j++)
2952 {
2953 int tem = invariant_p (XVECEXP (x, i, j));
2954 if (tem == 0)
2955 return 0;
2956 if (tem == 2)
2957 conditional = 1;
2958 }
2959
2960 }
2961 }
2962
2963 return 1 + conditional;
2964 }
2965
2966 \f
2967 /* Return nonzero if all the insns in the loop that set REG
2968 are INSN and the immediately following insns,
2969 and if each of those insns sets REG in an invariant way
2970 (not counting uses of REG in them).
2971
2972 The value is 2 if some of these insns are only conditionally invariant.
2973
2974 We assume that INSN itself is the first set of REG
2975 and that its source is invariant. */
2976
2977 static int
2978 consec_sets_invariant_p (reg, n_sets, insn)
2979 int n_sets;
2980 rtx reg, insn;
2981 {
2982 register rtx p = insn;
2983 register int regno = REGNO (reg);
2984 rtx temp;
2985 /* Number of sets we have to insist on finding after INSN. */
2986 int count = n_sets - 1;
2987 int old = n_times_set[regno];
2988 int value = 0;
2989 int this;
2990
2991 /* If N_SETS hit the limit, we can't rely on its value. */
2992 if (n_sets == 127)
2993 return 0;
2994
2995 n_times_set[regno] = 0;
2996
2997 while (count > 0)
2998 {
2999 register enum rtx_code code;
3000 rtx set;
3001
3002 p = NEXT_INSN (p);
3003 code = GET_CODE (p);
3004
3005 /* If library call, skip to end of of it. */
3006 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3007 p = XEXP (temp, 0);
3008
3009 this = 0;
3010 if (code == INSN
3011 && (set = single_set (p))
3012 && GET_CODE (SET_DEST (set)) == REG
3013 && REGNO (SET_DEST (set)) == regno)
3014 {
3015 this = invariant_p (SET_SRC (set));
3016 if (this != 0)
3017 value |= this;
3018 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
3019 {
3020 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3021 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3022 notes are OK. */
3023 this = (CONSTANT_P (XEXP (temp, 0))
3024 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3025 && invariant_p (XEXP (temp, 0))));
3026 if (this != 0)
3027 value |= this;
3028 }
3029 }
3030 if (this != 0)
3031 count--;
3032 else if (code != NOTE)
3033 {
3034 n_times_set[regno] = old;
3035 return 0;
3036 }
3037 }
3038
3039 n_times_set[regno] = old;
3040 /* If invariant_p ever returned 2, we return 2. */
3041 return 1 + (value & 2);
3042 }
3043
3044 #if 0
3045 /* I don't think this condition is sufficient to allow INSN
3046 to be moved, so we no longer test it. */
3047
3048 /* Return 1 if all insns in the basic block of INSN and following INSN
3049 that set REG are invariant according to TABLE. */
3050
3051 static int
3052 all_sets_invariant_p (reg, insn, table)
3053 rtx reg, insn;
3054 short *table;
3055 {
3056 register rtx p = insn;
3057 register int regno = REGNO (reg);
3058
3059 while (1)
3060 {
3061 register enum rtx_code code;
3062 p = NEXT_INSN (p);
3063 code = GET_CODE (p);
3064 if (code == CODE_LABEL || code == JUMP_INSN)
3065 return 1;
3066 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3067 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3068 && REGNO (SET_DEST (PATTERN (p))) == regno)
3069 {
3070 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3071 return 0;
3072 }
3073 }
3074 }
3075 #endif /* 0 */
3076 \f
3077 /* Look at all uses (not sets) of registers in X. For each, if it is
3078 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3079 a different insn, set USAGE[REGNO] to const0_rtx. */
3080
3081 static void
3082 find_single_use_in_loop (insn, x, usage)
3083 rtx insn;
3084 rtx x;
3085 rtx *usage;
3086 {
3087 enum rtx_code code = GET_CODE (x);
3088 char *fmt = GET_RTX_FORMAT (code);
3089 int i, j;
3090
3091 if (code == REG)
3092 usage[REGNO (x)]
3093 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
3094 ? const0_rtx : insn;
3095
3096 else if (code == SET)
3097 {
3098 /* Don't count SET_DEST if it is a REG; otherwise count things
3099 in SET_DEST because if a register is partially modified, it won't
3100 show up as a potential movable so we don't care how USAGE is set
3101 for it. */
3102 if (GET_CODE (SET_DEST (x)) != REG)
3103 find_single_use_in_loop (insn, SET_DEST (x), usage);
3104 find_single_use_in_loop (insn, SET_SRC (x), usage);
3105 }
3106 else
3107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3108 {
3109 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3110 find_single_use_in_loop (insn, XEXP (x, i), usage);
3111 else if (fmt[i] == 'E')
3112 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3113 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3114 }
3115 }
3116 \f
3117 /* Increment N_TIMES_SET at the index of each register
3118 that is modified by an insn between FROM and TO.
3119 If the value of an element of N_TIMES_SET becomes 127 or more,
3120 stop incrementing it, to avoid overflow.
3121
3122 Store in SINGLE_USAGE[I] the single insn in which register I is
3123 used, if it is only used once. Otherwise, it is set to 0 (for no
3124 uses) or const0_rtx for more than one use. This parameter may be zero,
3125 in which case this processing is not done.
3126
3127 Store in *COUNT_PTR the number of actual instruction
3128 in the loop. We use this to decide what is worth moving out. */
3129
3130 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3131 In that case, it is the insn that last set reg n. */
3132
3133 static void
3134 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3135 register rtx from, to;
3136 char *may_not_move;
3137 rtx *single_usage;
3138 int *count_ptr;
3139 int nregs;
3140 {
3141 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3142 register rtx insn;
3143 register int count = 0;
3144 register rtx dest;
3145
3146 bzero ((char *) last_set, nregs * sizeof (rtx));
3147 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3148 {
3149 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3150 {
3151 ++count;
3152
3153 /* If requested, record registers that have exactly one use. */
3154 if (single_usage)
3155 {
3156 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3157
3158 /* Include uses in REG_EQUAL notes. */
3159 if (REG_NOTES (insn))
3160 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3161 }
3162
3163 if (GET_CODE (PATTERN (insn)) == CLOBBER
3164 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3165 /* Don't move a reg that has an explicit clobber.
3166 We might do so sometimes, but it's not worth the pain. */
3167 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3168
3169 if (GET_CODE (PATTERN (insn)) == SET
3170 || GET_CODE (PATTERN (insn)) == CLOBBER)
3171 {
3172 dest = SET_DEST (PATTERN (insn));
3173 while (GET_CODE (dest) == SUBREG
3174 || GET_CODE (dest) == ZERO_EXTRACT
3175 || GET_CODE (dest) == SIGN_EXTRACT
3176 || GET_CODE (dest) == STRICT_LOW_PART)
3177 dest = XEXP (dest, 0);
3178 if (GET_CODE (dest) == REG)
3179 {
3180 register int regno = REGNO (dest);
3181 /* If this is the first setting of this reg
3182 in current basic block, and it was set before,
3183 it must be set in two basic blocks, so it cannot
3184 be moved out of the loop. */
3185 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3186 may_not_move[regno] = 1;
3187 /* If this is not first setting in current basic block,
3188 see if reg was used in between previous one and this.
3189 If so, neither one can be moved. */
3190 if (last_set[regno] != 0
3191 && reg_used_between_p (dest, last_set[regno], insn))
3192 may_not_move[regno] = 1;
3193 if (n_times_set[regno] < 127)
3194 ++n_times_set[regno];
3195 last_set[regno] = insn;
3196 }
3197 }
3198 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3199 {
3200 register int i;
3201 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3202 {
3203 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3204 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3205 /* Don't move a reg that has an explicit clobber.
3206 It's not worth the pain to try to do it correctly. */
3207 may_not_move[REGNO (XEXP (x, 0))] = 1;
3208
3209 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3210 {
3211 dest = SET_DEST (x);
3212 while (GET_CODE (dest) == SUBREG
3213 || GET_CODE (dest) == ZERO_EXTRACT
3214 || GET_CODE (dest) == SIGN_EXTRACT
3215 || GET_CODE (dest) == STRICT_LOW_PART)
3216 dest = XEXP (dest, 0);
3217 if (GET_CODE (dest) == REG)
3218 {
3219 register int regno = REGNO (dest);
3220 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3221 may_not_move[regno] = 1;
3222 if (last_set[regno] != 0
3223 && reg_used_between_p (dest, last_set[regno], insn))
3224 may_not_move[regno] = 1;
3225 if (n_times_set[regno] < 127)
3226 ++n_times_set[regno];
3227 last_set[regno] = insn;
3228 }
3229 }
3230 }
3231 }
3232 }
3233
3234 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3235 bzero ((char *) last_set, nregs * sizeof (rtx));
3236 }
3237 *count_ptr = count;
3238 }
3239 \f
3240 /* Given a loop that is bounded by LOOP_START and LOOP_END
3241 and that is entered at SCAN_START,
3242 return 1 if the register set in SET contained in insn INSN is used by
3243 any insn that precedes INSN in cyclic order starting
3244 from the loop entry point.
3245
3246 We don't want to use INSN_LUID here because if we restrict INSN to those
3247 that have a valid INSN_LUID, it means we cannot move an invariant out
3248 from an inner loop past two loops. */
3249
3250 static int
3251 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3252 rtx set, insn, loop_start, scan_start, loop_end;
3253 {
3254 rtx reg = SET_DEST (set);
3255 rtx p;
3256
3257 /* Scan forward checking for register usage. If we hit INSN, we
3258 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3259 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3260 {
3261 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3262 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3263 return 1;
3264
3265 if (p == loop_end)
3266 p = loop_start;
3267 }
3268
3269 return 0;
3270 }
3271 \f
3272 /* A "basic induction variable" or biv is a pseudo reg that is set
3273 (within this loop) only by incrementing or decrementing it. */
3274 /* A "general induction variable" or giv is a pseudo reg whose
3275 value is a linear function of a biv. */
3276
3277 /* Bivs are recognized by `basic_induction_var';
3278 Givs by `general_induct_var'. */
3279
3280 /* Indexed by register number, indicates whether or not register is an
3281 induction variable, and if so what type. */
3282
3283 enum iv_mode *reg_iv_type;
3284
3285 /* Indexed by register number, contains pointer to `struct induction'
3286 if register is an induction variable. This holds general info for
3287 all induction variables. */
3288
3289 struct induction **reg_iv_info;
3290
3291 /* Indexed by register number, contains pointer to `struct iv_class'
3292 if register is a basic induction variable. This holds info describing
3293 the class (a related group) of induction variables that the biv belongs
3294 to. */
3295
3296 struct iv_class **reg_biv_class;
3297
3298 /* The head of a list which links together (via the next field)
3299 every iv class for the current loop. */
3300
3301 struct iv_class *loop_iv_list;
3302
3303 /* Communication with routines called via `note_stores'. */
3304
3305 static rtx note_insn;
3306
3307 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3308
3309 static rtx addr_placeholder;
3310
3311 /* ??? Unfinished optimizations, and possible future optimizations,
3312 for the strength reduction code. */
3313
3314 /* ??? There is one more optimization you might be interested in doing: to
3315 allocate pseudo registers for frequently-accessed memory locations.
3316 If the same memory location is referenced each time around, it might
3317 be possible to copy it into a register before and out after.
3318 This is especially useful when the memory location is a variable which
3319 is in a stack slot because somewhere its address is taken. If the
3320 loop doesn't contain a function call and the variable isn't volatile,
3321 it is safe to keep the value in a register for the duration of the
3322 loop. One tricky thing is that the copying of the value back from the
3323 register has to be done on all exits from the loop. You need to check that
3324 all the exits from the loop go to the same place. */
3325
3326 /* ??? The interaction of biv elimination, and recognition of 'constant'
3327 bivs, may cause problems. */
3328
3329 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3330 performance problems.
3331
3332 Perhaps don't eliminate things that can be combined with an addressing
3333 mode. Find all givs that have the same biv, mult_val, and add_val;
3334 then for each giv, check to see if its only use dies in a following
3335 memory address. If so, generate a new memory address and check to see
3336 if it is valid. If it is valid, then store the modified memory address,
3337 otherwise, mark the giv as not done so that it will get its own iv. */
3338
3339 /* ??? Could try to optimize branches when it is known that a biv is always
3340 positive. */
3341
3342 /* ??? When replace a biv in a compare insn, we should replace with closest
3343 giv so that an optimized branch can still be recognized by the combiner,
3344 e.g. the VAX acb insn. */
3345
3346 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3347 was rerun in loop_optimize whenever a register was added or moved.
3348 Also, some of the optimizations could be a little less conservative. */
3349 \f
3350 /* Perform strength reduction and induction variable elimination. */
3351
3352 /* Pseudo registers created during this function will be beyond the last
3353 valid index in several tables including n_times_set and regno_last_uid.
3354 This does not cause a problem here, because the added registers cannot be
3355 givs outside of their loop, and hence will never be reconsidered.
3356 But scan_loop must check regnos to make sure they are in bounds. */
3357
3358 static void
3359 strength_reduce (scan_start, end, loop_top, insn_count,
3360 loop_start, loop_end, unroll_p)
3361 rtx scan_start;
3362 rtx end;
3363 rtx loop_top;
3364 int insn_count;
3365 rtx loop_start;
3366 rtx loop_end;
3367 int unroll_p;
3368 {
3369 rtx p;
3370 rtx set;
3371 rtx inc_val;
3372 rtx mult_val;
3373 rtx dest_reg;
3374 /* This is 1 if current insn is not executed at least once for every loop
3375 iteration. */
3376 int not_every_iteration = 0;
3377 /* This is 1 if current insn may be executed more than once for every
3378 loop iteration. */
3379 int maybe_multiple = 0;
3380 /* Temporary list pointers for traversing loop_iv_list. */
3381 struct iv_class *bl, **backbl;
3382 /* Ratio of extra register life span we can justify
3383 for saving an instruction. More if loop doesn't call subroutines
3384 since in that case saving an insn makes more difference
3385 and more registers are available. */
3386 /* ??? could set this to last value of threshold in move_movables */
3387 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3388 /* Map of pseudo-register replacements. */
3389 rtx *reg_map;
3390 int call_seen;
3391 rtx test;
3392 rtx end_insert_before;
3393 int loop_depth = 0;
3394
3395 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3396 * sizeof (enum iv_mode *));
3397 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3398 reg_iv_info = (struct induction **)
3399 alloca (max_reg_before_loop * sizeof (struct induction *));
3400 bzero ((char *) reg_iv_info, (max_reg_before_loop
3401 * sizeof (struct induction *)));
3402 reg_biv_class = (struct iv_class **)
3403 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3404 bzero ((char *) reg_biv_class, (max_reg_before_loop
3405 * sizeof (struct iv_class *)));
3406
3407 loop_iv_list = 0;
3408 addr_placeholder = gen_reg_rtx (Pmode);
3409
3410 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3411 must be put before this insn, so that they will appear in the right
3412 order (i.e. loop order).
3413
3414 If loop_end is the end of the current function, then emit a
3415 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3416 dummy note insn. */
3417 if (NEXT_INSN (loop_end) != 0)
3418 end_insert_before = NEXT_INSN (loop_end);
3419 else
3420 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3421
3422 /* Scan through loop to find all possible bivs. */
3423
3424 p = scan_start;
3425 while (1)
3426 {
3427 p = NEXT_INSN (p);
3428 /* At end of a straight-in loop, we are done.
3429 At end of a loop entered at the bottom, scan the top. */
3430 if (p == scan_start)
3431 break;
3432 if (p == end)
3433 {
3434 if (loop_top != 0)
3435 p = loop_top;
3436 else
3437 break;
3438 if (p == scan_start)
3439 break;
3440 }
3441
3442 if (GET_CODE (p) == INSN
3443 && (set = single_set (p))
3444 && GET_CODE (SET_DEST (set)) == REG)
3445 {
3446 dest_reg = SET_DEST (set);
3447 if (REGNO (dest_reg) < max_reg_before_loop
3448 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3449 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3450 {
3451 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3452 dest_reg, p, &inc_val, &mult_val))
3453 {
3454 /* It is a possible basic induction variable.
3455 Create and initialize an induction structure for it. */
3456
3457 struct induction *v
3458 = (struct induction *) alloca (sizeof (struct induction));
3459
3460 record_biv (v, p, dest_reg, inc_val, mult_val,
3461 not_every_iteration, maybe_multiple);
3462 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3463 }
3464 else if (REGNO (dest_reg) < max_reg_before_loop)
3465 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3466 }
3467 }
3468
3469 /* Past CODE_LABEL, we get to insns that may be executed multiple
3470 times. The only way we can be sure that they can't is if every
3471 every jump insn between here and the end of the loop either
3472 returns, exits the loop, is a forward jump, or is a jump
3473 to the loop start. */
3474
3475 if (GET_CODE (p) == CODE_LABEL)
3476 {
3477 rtx insn = p;
3478
3479 maybe_multiple = 0;
3480
3481 while (1)
3482 {
3483 insn = NEXT_INSN (insn);
3484 if (insn == scan_start)
3485 break;
3486 if (insn == end)
3487 {
3488 if (loop_top != 0)
3489 insn = loop_top;
3490 else
3491 break;
3492 if (insn == scan_start)
3493 break;
3494 }
3495
3496 if (GET_CODE (insn) == JUMP_INSN
3497 && GET_CODE (PATTERN (insn)) != RETURN
3498 && (! condjump_p (insn)
3499 || (JUMP_LABEL (insn) != 0
3500 && JUMP_LABEL (insn) != scan_start
3501 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3502 || INSN_UID (insn) >= max_uid_for_loop
3503 || (INSN_LUID (JUMP_LABEL (insn))
3504 < INSN_LUID (insn))))))
3505 {
3506 maybe_multiple = 1;
3507 break;
3508 }
3509 }
3510 }
3511
3512 /* Past a jump, we get to insns for which we can't count
3513 on whether they will be executed during each iteration. */
3514 /* This code appears twice in strength_reduce. There is also similar
3515 code in scan_loop. */
3516 if (GET_CODE (p) == JUMP_INSN
3517 /* If we enter the loop in the middle, and scan around to the
3518 beginning, don't set not_every_iteration for that.
3519 This can be any kind of jump, since we want to know if insns
3520 will be executed if the loop is executed. */
3521 && ! (JUMP_LABEL (p) == loop_top
3522 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3523 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3524 {
3525 rtx label = 0;
3526
3527 /* If this is a jump outside the loop, then it also doesn't
3528 matter. Check to see if the target of this branch is on the
3529 loop_number_exits_labels list. */
3530
3531 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3532 label;
3533 label = LABEL_NEXTREF (label))
3534 if (XEXP (label, 0) == JUMP_LABEL (p))
3535 break;
3536
3537 if (! label)
3538 not_every_iteration = 1;
3539 }
3540
3541 else if (GET_CODE (p) == NOTE)
3542 {
3543 /* At the virtual top of a converted loop, insns are again known to
3544 be executed each iteration: logically, the loop begins here
3545 even though the exit code has been duplicated. */
3546 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3547 not_every_iteration = 0;
3548 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3549 loop_depth++;
3550 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3551 loop_depth--;
3552 }
3553
3554 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3555 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3556 or not an insn is known to be executed each iteration of the
3557 loop, whether or not any iterations are known to occur.
3558
3559 Therefore, if we have just passed a label and have no more labels
3560 between here and the test insn of the loop, we know these insns
3561 will be executed each iteration. */
3562
3563 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3564 && no_labels_between_p (p, loop_end))
3565 not_every_iteration = 0;
3566 }
3567
3568 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3569 Make a sanity check against n_times_set. */
3570 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3571 {
3572 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3573 /* Above happens if register modified by subreg, etc. */
3574 /* Make sure it is not recognized as a basic induction var: */
3575 || n_times_set[bl->regno] != bl->biv_count
3576 /* If never incremented, it is invariant that we decided not to
3577 move. So leave it alone. */
3578 || ! bl->incremented)
3579 {
3580 if (loop_dump_stream)
3581 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3582 bl->regno,
3583 (reg_iv_type[bl->regno] != BASIC_INDUCT
3584 ? "not induction variable"
3585 : (! bl->incremented ? "never incremented"
3586 : "count error")));
3587
3588 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3589 *backbl = bl->next;
3590 }
3591 else
3592 {
3593 backbl = &bl->next;
3594
3595 if (loop_dump_stream)
3596 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3597 }
3598 }
3599
3600 /* Exit if there are no bivs. */
3601 if (! loop_iv_list)
3602 {
3603 /* Can still unroll the loop anyways, but indicate that there is no
3604 strength reduction info available. */
3605 if (unroll_p)
3606 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3607
3608 return;
3609 }
3610
3611 /* Find initial value for each biv by searching backwards from loop_start,
3612 halting at first label. Also record any test condition. */
3613
3614 call_seen = 0;
3615 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3616 {
3617 note_insn = p;
3618
3619 if (GET_CODE (p) == CALL_INSN)
3620 call_seen = 1;
3621
3622 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3623 || GET_CODE (p) == CALL_INSN)
3624 note_stores (PATTERN (p), record_initial);
3625
3626 /* Record any test of a biv that branches around the loop if no store
3627 between it and the start of loop. We only care about tests with
3628 constants and registers and only certain of those. */
3629 if (GET_CODE (p) == JUMP_INSN
3630 && JUMP_LABEL (p) != 0
3631 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3632 && (test = get_condition_for_loop (p)) != 0
3633 && GET_CODE (XEXP (test, 0)) == REG
3634 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3635 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3636 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3637 && bl->init_insn == 0)
3638 {
3639 /* If an NE test, we have an initial value! */
3640 if (GET_CODE (test) == NE)
3641 {
3642 bl->init_insn = p;
3643 bl->init_set = gen_rtx_SET (VOIDmode,
3644 XEXP (test, 0), XEXP (test, 1));
3645 }
3646 else
3647 bl->initial_test = test;
3648 }
3649 }
3650
3651 /* Look at the each biv and see if we can say anything better about its
3652 initial value from any initializing insns set up above. (This is done
3653 in two passes to avoid missing SETs in a PARALLEL.) */
3654 for (bl = loop_iv_list; bl; bl = bl->next)
3655 {
3656 rtx src;
3657 rtx note;
3658
3659 if (! bl->init_insn)
3660 continue;
3661
3662 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3663 is a constant, use the value of that. */
3664 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3665 && CONSTANT_P (XEXP (note, 0)))
3666 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3667 && CONSTANT_P (XEXP (note, 0))))
3668 src = XEXP (note, 0);
3669 else
3670 src = SET_SRC (bl->init_set);
3671
3672 if (loop_dump_stream)
3673 fprintf (loop_dump_stream,
3674 "Biv %d initialized at insn %d: initial value ",
3675 bl->regno, INSN_UID (bl->init_insn));
3676
3677 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3678 || GET_MODE (src) == VOIDmode)
3679 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3680 {
3681 bl->initial_value = src;
3682
3683 if (loop_dump_stream)
3684 {
3685 if (GET_CODE (src) == CONST_INT)
3686 {
3687 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
3688 fputc ('\n', loop_dump_stream);
3689 }
3690 else
3691 {
3692 print_rtl (loop_dump_stream, src);
3693 fprintf (loop_dump_stream, "\n");
3694 }
3695 }
3696 }
3697 else
3698 {
3699 /* Biv initial value is not simple move,
3700 so let it keep initial value of "itself". */
3701
3702 if (loop_dump_stream)
3703 fprintf (loop_dump_stream, "is complex\n");
3704 }
3705 }
3706
3707 /* Search the loop for general induction variables. */
3708
3709 /* A register is a giv if: it is only set once, it is a function of a
3710 biv and a constant (or invariant), and it is not a biv. */
3711
3712 not_every_iteration = 0;
3713 loop_depth = 0;
3714 p = scan_start;
3715 while (1)
3716 {
3717 p = NEXT_INSN (p);
3718 /* At end of a straight-in loop, we are done.
3719 At end of a loop entered at the bottom, scan the top. */
3720 if (p == scan_start)
3721 break;
3722 if (p == end)
3723 {
3724 if (loop_top != 0)
3725 p = loop_top;
3726 else
3727 break;
3728 if (p == scan_start)
3729 break;
3730 }
3731
3732 /* Look for a general induction variable in a register. */
3733 if (GET_CODE (p) == INSN
3734 && (set = single_set (p))
3735 && GET_CODE (SET_DEST (set)) == REG
3736 && ! may_not_optimize[REGNO (SET_DEST (set))])
3737 {
3738 rtx src_reg;
3739 rtx add_val;
3740 rtx mult_val;
3741 int benefit;
3742 rtx regnote = 0;
3743
3744 dest_reg = SET_DEST (set);
3745 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3746 continue;
3747
3748 if (/* SET_SRC is a giv. */
3749 ((benefit = general_induction_var (SET_SRC (set),
3750 &src_reg, &add_val,
3751 &mult_val))
3752 /* Equivalent expression is a giv. */
3753 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3754 && (benefit = general_induction_var (XEXP (regnote, 0),
3755 &src_reg,
3756 &add_val, &mult_val))))
3757 /* Don't try to handle any regs made by loop optimization.
3758 We have nothing on them in regno_first_uid, etc. */
3759 && REGNO (dest_reg) < max_reg_before_loop
3760 /* Don't recognize a BASIC_INDUCT_VAR here. */
3761 && dest_reg != src_reg
3762 /* This must be the only place where the register is set. */
3763 && (n_times_set[REGNO (dest_reg)] == 1
3764 /* or all sets must be consecutive and make a giv. */
3765 || (benefit = consec_sets_giv (benefit, p,
3766 src_reg, dest_reg,
3767 &add_val, &mult_val))))
3768 {
3769 int count;
3770 struct induction *v
3771 = (struct induction *) alloca (sizeof (struct induction));
3772 rtx temp;
3773
3774 /* If this is a library call, increase benefit. */
3775 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3776 benefit += libcall_benefit (p);
3777
3778 /* Skip the consecutive insns, if there are any. */
3779 for (count = n_times_set[REGNO (dest_reg)] - 1;
3780 count > 0; count--)
3781 {
3782 /* If first insn of libcall sequence, skip to end.
3783 Do this at start of loop, since INSN is guaranteed to
3784 be an insn here. */
3785 if (GET_CODE (p) != NOTE
3786 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3787 p = XEXP (temp, 0);
3788
3789 do p = NEXT_INSN (p);
3790 while (GET_CODE (p) == NOTE);
3791 }
3792
3793 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3794 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3795 loop_end);
3796
3797 }
3798 }
3799
3800 #ifndef DONT_REDUCE_ADDR
3801 /* Look for givs which are memory addresses. */
3802 /* This resulted in worse code on a VAX 8600. I wonder if it
3803 still does. */
3804 if (GET_CODE (p) == INSN)
3805 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3806 loop_end);
3807 #endif
3808
3809 /* Update the status of whether giv can derive other givs. This can
3810 change when we pass a label or an insn that updates a biv. */
3811 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3812 || GET_CODE (p) == CODE_LABEL)
3813 update_giv_derive (p);
3814
3815 /* Past a jump, we get to insns for which we can't count
3816 on whether they will be executed during each iteration. */
3817 /* This code appears twice in strength_reduce. There is also similar
3818 code in scan_loop. */
3819 if (GET_CODE (p) == JUMP_INSN
3820 /* If we enter the loop in the middle, and scan around to the
3821 beginning, don't set not_every_iteration for that.
3822 This can be any kind of jump, since we want to know if insns
3823 will be executed if the loop is executed. */
3824 && ! (JUMP_LABEL (p) == loop_top
3825 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3826 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3827 {
3828 rtx label = 0;
3829
3830 /* If this is a jump outside the loop, then it also doesn't
3831 matter. Check to see if the target of this branch is on the
3832 loop_number_exits_labels list. */
3833
3834 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3835 label;
3836 label = LABEL_NEXTREF (label))
3837 if (XEXP (label, 0) == JUMP_LABEL (p))
3838 break;
3839
3840 if (! label)
3841 not_every_iteration = 1;
3842 }
3843
3844 else if (GET_CODE (p) == NOTE)
3845 {
3846 /* At the virtual top of a converted loop, insns are again known to
3847 be executed each iteration: logically, the loop begins here
3848 even though the exit code has been duplicated. */
3849 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3850 not_every_iteration = 0;
3851 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3852 loop_depth++;
3853 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3854 loop_depth--;
3855 }
3856
3857 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3858 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3859 or not an insn is known to be executed each iteration of the
3860 loop, whether or not any iterations are known to occur.
3861
3862 Therefore, if we have just passed a label and have no more labels
3863 between here and the test insn of the loop, we know these insns
3864 will be executed each iteration. */
3865
3866 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3867 && no_labels_between_p (p, loop_end))
3868 not_every_iteration = 0;
3869 }
3870
3871 /* Try to calculate and save the number of loop iterations. This is
3872 set to zero if the actual number can not be calculated. This must
3873 be called after all giv's have been identified, since otherwise it may
3874 fail if the iteration variable is a giv. */
3875
3876 loop_n_iterations = loop_iterations (loop_start, loop_end);
3877
3878 /* Now for each giv for which we still don't know whether or not it is
3879 replaceable, check to see if it is replaceable because its final value
3880 can be calculated. This must be done after loop_iterations is called,
3881 so that final_giv_value will work correctly. */
3882
3883 for (bl = loop_iv_list; bl; bl = bl->next)
3884 {
3885 struct induction *v;
3886
3887 for (v = bl->giv; v; v = v->next_iv)
3888 if (! v->replaceable && ! v->not_replaceable)
3889 check_final_value (v, loop_start, loop_end);
3890 }
3891
3892 /* Try to prove that the loop counter variable (if any) is always
3893 nonnegative; if so, record that fact with a REG_NONNEG note
3894 so that "decrement and branch until zero" insn can be used. */
3895 check_dbra_loop (loop_end, insn_count, loop_start);
3896
3897 #ifdef HAIFA
3898 /* record loop-variables relevant for BCT optimization before unrolling
3899 the loop. Unrolling may update part of this information, and the
3900 correct data will be used for generating the BCT. */
3901 #ifdef HAVE_decrement_and_branch_on_count
3902 if (HAVE_decrement_and_branch_on_count)
3903 analyze_loop_iterations (loop_start, loop_end);
3904 #endif
3905 #endif /* HAIFA */
3906
3907 /* Create reg_map to hold substitutions for replaceable giv regs. */
3908 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3909 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3910
3911 /* Examine each iv class for feasibility of strength reduction/induction
3912 variable elimination. */
3913
3914 for (bl = loop_iv_list; bl; bl = bl->next)
3915 {
3916 struct induction *v;
3917 int benefit;
3918 int all_reduced;
3919 rtx final_value = 0;
3920
3921 /* Test whether it will be possible to eliminate this biv
3922 provided all givs are reduced. This is possible if either
3923 the reg is not used outside the loop, or we can compute
3924 what its final value will be.
3925
3926 For architectures with a decrement_and_branch_until_zero insn,
3927 don't do this if we put a REG_NONNEG note on the endtest for
3928 this biv. */
3929
3930 /* Compare against bl->init_insn rather than loop_start.
3931 We aren't concerned with any uses of the biv between
3932 init_insn and loop_start since these won't be affected
3933 by the value of the biv elsewhere in the function, so
3934 long as init_insn doesn't use the biv itself.
3935 March 14, 1989 -- self@bayes.arc.nasa.gov */
3936
3937 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3938 && bl->init_insn
3939 && INSN_UID (bl->init_insn) < max_uid_for_loop
3940 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3941 #ifdef HAVE_decrement_and_branch_until_zero
3942 && ! bl->nonneg
3943 #endif
3944 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3945 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3946 #ifdef HAVE_decrement_and_branch_until_zero
3947 && ! bl->nonneg
3948 #endif
3949 ))
3950 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3951 threshold, insn_count);
3952 else
3953 {
3954 if (loop_dump_stream)
3955 {
3956 fprintf (loop_dump_stream,
3957 "Cannot eliminate biv %d.\n",
3958 bl->regno);
3959 fprintf (loop_dump_stream,
3960 "First use: insn %d, last use: insn %d.\n",
3961 REGNO_FIRST_UID (bl->regno),
3962 REGNO_LAST_UID (bl->regno));
3963 }
3964 }
3965
3966 /* Combine all giv's for this iv_class. */
3967 combine_givs (bl);
3968
3969 /* This will be true at the end, if all givs which depend on this
3970 biv have been strength reduced.
3971 We can't (currently) eliminate the biv unless this is so. */
3972 all_reduced = 1;
3973
3974 /* Check each giv in this class to see if we will benefit by reducing
3975 it. Skip giv's combined with others. */
3976 for (v = bl->giv; v; v = v->next_iv)
3977 {
3978 struct induction *tv;
3979
3980 if (v->ignore || v->same)
3981 continue;
3982
3983 benefit = v->benefit;
3984
3985 /* Reduce benefit if not replaceable, since we will insert
3986 a move-insn to replace the insn that calculates this giv.
3987 Don't do this unless the giv is a user variable, since it
3988 will often be marked non-replaceable because of the duplication
3989 of the exit code outside the loop. In such a case, the copies
3990 we insert are dead and will be deleted. So they don't have
3991 a cost. Similar situations exist. */
3992 /* ??? The new final_[bg]iv_value code does a much better job
3993 of finding replaceable giv's, and hence this code may no longer
3994 be necessary. */
3995 if (! v->replaceable && ! bl->eliminable
3996 && REG_USERVAR_P (v->dest_reg))
3997 benefit -= copy_cost;
3998
3999 /* Decrease the benefit to count the add-insns that we will
4000 insert to increment the reduced reg for the giv. */
4001 benefit -= add_cost * bl->biv_count;
4002
4003 /* Decide whether to strength-reduce this giv or to leave the code
4004 unchanged (recompute it from the biv each time it is used).
4005 This decision can be made independently for each giv. */
4006
4007 #ifdef AUTO_INC_DEC
4008 /* Attempt to guess whether autoincrement will handle some of the
4009 new add insns; if so, increase BENEFIT (undo the subtraction of
4010 add_cost that was done above). */
4011 if (v->giv_type == DEST_ADDR
4012 && GET_CODE (v->mult_val) == CONST_INT)
4013 {
4014 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
4015 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4016 benefit += add_cost * bl->biv_count;
4017 #endif
4018 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
4019 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4020 benefit += add_cost * bl->biv_count;
4021 #endif
4022 }
4023 #endif
4024
4025 /* If an insn is not to be strength reduced, then set its ignore
4026 flag, and clear all_reduced. */
4027
4028 /* A giv that depends on a reversed biv must be reduced if it is
4029 used after the loop exit, otherwise, it would have the wrong
4030 value after the loop exit. To make it simple, just reduce all
4031 of such giv's whether or not we know they are used after the loop
4032 exit. */
4033
4034 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4035 && ! bl->reversed )
4036 {
4037 if (loop_dump_stream)
4038 fprintf (loop_dump_stream,
4039 "giv of insn %d not worth while, %d vs %d.\n",
4040 INSN_UID (v->insn),
4041 v->lifetime * threshold * benefit, insn_count);
4042 v->ignore = 1;
4043 all_reduced = 0;
4044 }
4045 else
4046 {
4047 /* Check that we can increment the reduced giv without a
4048 multiply insn. If not, reject it. */
4049
4050 for (tv = bl->biv; tv; tv = tv->next_iv)
4051 if (tv->mult_val == const1_rtx
4052 && ! product_cheap_p (tv->add_val, v->mult_val))
4053 {
4054 if (loop_dump_stream)
4055 fprintf (loop_dump_stream,
4056 "giv of insn %d: would need a multiply.\n",
4057 INSN_UID (v->insn));
4058 v->ignore = 1;
4059 all_reduced = 0;
4060 break;
4061 }
4062 }
4063 }
4064
4065 /* Reduce each giv that we decided to reduce. */
4066
4067 for (v = bl->giv; v; v = v->next_iv)
4068 {
4069 struct induction *tv;
4070 if (! v->ignore && v->same == 0)
4071 {
4072 int auto_inc_opt = 0;
4073
4074 v->new_reg = gen_reg_rtx (v->mode);
4075
4076 #ifdef AUTO_INC_DEC
4077 /* If the target has auto-increment addressing modes, and
4078 this is an address giv, then try to put the increment
4079 immediately after its use, so that flow can create an
4080 auto-increment addressing mode. */
4081 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4082 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4083 /* We don't handle reversed biv's because bl->biv->insn
4084 does not have a valid INSN_LUID. */
4085 && ! bl->reversed
4086 && v->always_executed && ! v->maybe_multiple)
4087 {
4088 /* If other giv's have been combined with this one, then
4089 this will work only if all uses of the other giv's occur
4090 before this giv's insn. This is difficult to check.
4091
4092 We simplify this by looking for the common case where
4093 there is one DEST_REG giv, and this giv's insn is the
4094 last use of the dest_reg of that DEST_REG giv. If the
4095 the increment occurs after the address giv, then we can
4096 perform the optimization. (Otherwise, the increment
4097 would have to go before other_giv, and we would not be
4098 able to combine it with the address giv to get an
4099 auto-inc address.) */
4100 if (v->combined_with)
4101 {
4102 struct induction *other_giv = 0;
4103
4104 for (tv = bl->giv; tv; tv = tv->next_iv)
4105 if (tv->same == v)
4106 {
4107 if (other_giv)
4108 break;
4109 else
4110 other_giv = tv;
4111 }
4112 if (! tv && other_giv
4113 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4114 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4115 == INSN_UID (v->insn))
4116 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4117 auto_inc_opt = 1;
4118 }
4119 /* Check for case where increment is before the the address
4120 giv. Do this test in "loop order". */
4121 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4122 && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4123 || (INSN_LUID (bl->biv->insn)
4124 > INSN_LUID (scan_start))))
4125 || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4126 && (INSN_LUID (scan_start)
4127 < INSN_LUID (bl->biv->insn))))
4128 auto_inc_opt = -1;
4129 else
4130 auto_inc_opt = 1;
4131
4132 #ifdef HAVE_cc0
4133 {
4134 rtx prev;
4135
4136 /* We can't put an insn immediately after one setting
4137 cc0, or immediately before one using cc0. */
4138 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4139 || (auto_inc_opt == -1
4140 && (prev = prev_nonnote_insn (v->insn)) != 0
4141 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4142 && sets_cc0_p (PATTERN (prev))))
4143 auto_inc_opt = 0;
4144 }
4145 #endif
4146
4147 if (auto_inc_opt)
4148 v->auto_inc_opt = 1;
4149 }
4150 #endif
4151
4152 /* For each place where the biv is incremented, add an insn
4153 to increment the new, reduced reg for the giv. */
4154 for (tv = bl->biv; tv; tv = tv->next_iv)
4155 {
4156 rtx insert_before;
4157
4158 if (! auto_inc_opt)
4159 insert_before = tv->insn;
4160 else if (auto_inc_opt == 1)
4161 insert_before = NEXT_INSN (v->insn);
4162 else
4163 insert_before = v->insn;
4164
4165 if (tv->mult_val == const1_rtx)
4166 emit_iv_add_mult (tv->add_val, v->mult_val,
4167 v->new_reg, v->new_reg, insert_before);
4168 else /* tv->mult_val == const0_rtx */
4169 /* A multiply is acceptable here
4170 since this is presumed to be seldom executed. */
4171 emit_iv_add_mult (tv->add_val, v->mult_val,
4172 v->add_val, v->new_reg, insert_before);
4173 }
4174
4175 /* Add code at loop start to initialize giv's reduced reg. */
4176
4177 emit_iv_add_mult (bl->initial_value, v->mult_val,
4178 v->add_val, v->new_reg, loop_start);
4179 }
4180 }
4181
4182 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4183 as not reduced.
4184
4185 For each giv register that can be reduced now: if replaceable,
4186 substitute reduced reg wherever the old giv occurs;
4187 else add new move insn "giv_reg = reduced_reg".
4188
4189 Also check for givs whose first use is their definition and whose
4190 last use is the definition of another giv. If so, it is likely
4191 dead and should not be used to eliminate a biv. */
4192 for (v = bl->giv; v; v = v->next_iv)
4193 {
4194 if (v->same && v->same->ignore)
4195 v->ignore = 1;
4196
4197 if (v->ignore)
4198 continue;
4199
4200 if (v->giv_type == DEST_REG
4201 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4202 {
4203 struct induction *v1;
4204
4205 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4206 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4207 v->maybe_dead = 1;
4208 }
4209
4210 /* Update expression if this was combined, in case other giv was
4211 replaced. */
4212 if (v->same)
4213 v->new_reg = replace_rtx (v->new_reg,
4214 v->same->dest_reg, v->same->new_reg);
4215
4216 if (v->giv_type == DEST_ADDR)
4217 /* Store reduced reg as the address in the memref where we found
4218 this giv. */
4219 validate_change (v->insn, v->location, v->new_reg, 0);
4220 else if (v->replaceable)
4221 {
4222 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4223
4224 #if 0
4225 /* I can no longer duplicate the original problem. Perhaps
4226 this is unnecessary now? */
4227
4228 /* Replaceable; it isn't strictly necessary to delete the old
4229 insn and emit a new one, because v->dest_reg is now dead.
4230
4231 However, especially when unrolling loops, the special
4232 handling for (set REG0 REG1) in the second cse pass may
4233 make v->dest_reg live again. To avoid this problem, emit
4234 an insn to set the original giv reg from the reduced giv.
4235 We can not delete the original insn, since it may be part
4236 of a LIBCALL, and the code in flow that eliminates dead
4237 libcalls will fail if it is deleted. */
4238 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4239 v->insn);
4240 #endif
4241 }
4242 else
4243 {
4244 /* Not replaceable; emit an insn to set the original giv reg from
4245 the reduced giv, same as above. */
4246 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4247 v->insn);
4248 }
4249
4250 /* When a loop is reversed, givs which depend on the reversed
4251 biv, and which are live outside the loop, must be set to their
4252 correct final value. This insn is only needed if the giv is
4253 not replaceable. The correct final value is the same as the
4254 value that the giv starts the reversed loop with. */
4255 if (bl->reversed && ! v->replaceable)
4256 emit_iv_add_mult (bl->initial_value, v->mult_val,
4257 v->add_val, v->dest_reg, end_insert_before);
4258 else if (v->final_value)
4259 {
4260 rtx insert_before;
4261
4262 /* If the loop has multiple exits, emit the insn before the
4263 loop to ensure that it will always be executed no matter
4264 how the loop exits. Otherwise, emit the insn after the loop,
4265 since this is slightly more efficient. */
4266 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4267 insert_before = loop_start;
4268 else
4269 insert_before = end_insert_before;
4270 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4271 insert_before);
4272
4273 #if 0
4274 /* If the insn to set the final value of the giv was emitted
4275 before the loop, then we must delete the insn inside the loop
4276 that sets it. If this is a LIBCALL, then we must delete
4277 every insn in the libcall. Note, however, that
4278 final_giv_value will only succeed when there are multiple
4279 exits if the giv is dead at each exit, hence it does not
4280 matter that the original insn remains because it is dead
4281 anyways. */
4282 /* Delete the insn inside the loop that sets the giv since
4283 the giv is now set before (or after) the loop. */
4284 delete_insn (v->insn);
4285 #endif
4286 }
4287
4288 if (loop_dump_stream)
4289 {
4290 fprintf (loop_dump_stream, "giv at %d reduced to ",
4291 INSN_UID (v->insn));
4292 print_rtl (loop_dump_stream, v->new_reg);
4293 fprintf (loop_dump_stream, "\n");
4294 }
4295 }
4296
4297 /* All the givs based on the biv bl have been reduced if they
4298 merit it. */
4299
4300 /* For each giv not marked as maybe dead that has been combined with a
4301 second giv, clear any "maybe dead" mark on that second giv.
4302 v->new_reg will either be or refer to the register of the giv it
4303 combined with.
4304
4305 Doing this clearing avoids problems in biv elimination where a
4306 giv's new_reg is a complex value that can't be put in the insn but
4307 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4308 Since the register will be used in either case, we'd prefer it be
4309 used from the simpler giv. */
4310
4311 for (v = bl->giv; v; v = v->next_iv)
4312 if (! v->maybe_dead && v->same)
4313 v->same->maybe_dead = 0;
4314
4315 /* Try to eliminate the biv, if it is a candidate.
4316 This won't work if ! all_reduced,
4317 since the givs we planned to use might not have been reduced.
4318
4319 We have to be careful that we didn't initially think we could eliminate
4320 this biv because of a giv that we now think may be dead and shouldn't
4321 be used as a biv replacement.
4322
4323 Also, there is the possibility that we may have a giv that looks
4324 like it can be used to eliminate a biv, but the resulting insn
4325 isn't valid. This can happen, for example, on the 88k, where a
4326 JUMP_INSN can compare a register only with zero. Attempts to
4327 replace it with a compare with a constant will fail.
4328
4329 Note that in cases where this call fails, we may have replaced some
4330 of the occurrences of the biv with a giv, but no harm was done in
4331 doing so in the rare cases where it can occur. */
4332
4333 if (all_reduced == 1 && bl->eliminable
4334 && maybe_eliminate_biv (bl, loop_start, end, 1,
4335 threshold, insn_count))
4336
4337 {
4338 /* ?? If we created a new test to bypass the loop entirely,
4339 or otherwise drop straight in, based on this test, then
4340 we might want to rewrite it also. This way some later
4341 pass has more hope of removing the initialization of this
4342 biv entirely. */
4343
4344 /* If final_value != 0, then the biv may be used after loop end
4345 and we must emit an insn to set it just in case.
4346
4347 Reversed bivs already have an insn after the loop setting their
4348 value, so we don't need another one. We can't calculate the
4349 proper final value for such a biv here anyways. */
4350 if (final_value != 0 && ! bl->reversed)
4351 {
4352 rtx insert_before;
4353
4354 /* If the loop has multiple exits, emit the insn before the
4355 loop to ensure that it will always be executed no matter
4356 how the loop exits. Otherwise, emit the insn after the
4357 loop, since this is slightly more efficient. */
4358 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4359 insert_before = loop_start;
4360 else
4361 insert_before = end_insert_before;
4362
4363 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4364 end_insert_before);
4365 }
4366
4367 #if 0
4368 /* Delete all of the instructions inside the loop which set
4369 the biv, as they are all dead. If is safe to delete them,
4370 because an insn setting a biv will never be part of a libcall. */
4371 /* However, deleting them will invalidate the regno_last_uid info,
4372 so keeping them around is more convenient. Final_biv_value
4373 will only succeed when there are multiple exits if the biv
4374 is dead at each exit, hence it does not matter that the original
4375 insn remains, because it is dead anyways. */
4376 for (v = bl->biv; v; v = v->next_iv)
4377 delete_insn (v->insn);
4378 #endif
4379
4380 if (loop_dump_stream)
4381 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4382 bl->regno);
4383 }
4384 }
4385
4386 /* Go through all the instructions in the loop, making all the
4387 register substitutions scheduled in REG_MAP. */
4388
4389 for (p = loop_start; p != end; p = NEXT_INSN (p))
4390 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4391 || GET_CODE (p) == CALL_INSN)
4392 {
4393 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4394 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4395 INSN_CODE (p) = -1;
4396 }
4397
4398 /* Unroll loops from within strength reduction so that we can use the
4399 induction variable information that strength_reduce has already
4400 collected. */
4401
4402 if (unroll_p)
4403 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4404
4405 #ifdef HAIFA
4406 /* instrument the loop with bct insn */
4407 #ifdef HAVE_decrement_and_branch_on_count
4408 if (HAVE_decrement_and_branch_on_count)
4409 insert_bct (loop_start, loop_end);
4410 #endif
4411 #endif /* HAIFA */
4412
4413 if (loop_dump_stream)
4414 fprintf (loop_dump_stream, "\n");
4415 }
4416 \f
4417 /* Return 1 if X is a valid source for an initial value (or as value being
4418 compared against in an initial test).
4419
4420 X must be either a register or constant and must not be clobbered between
4421 the current insn and the start of the loop.
4422
4423 INSN is the insn containing X. */
4424
4425 static int
4426 valid_initial_value_p (x, insn, call_seen, loop_start)
4427 rtx x;
4428 rtx insn;
4429 int call_seen;
4430 rtx loop_start;
4431 {
4432 if (CONSTANT_P (x))
4433 return 1;
4434
4435 /* Only consider pseudos we know about initialized in insns whose luids
4436 we know. */
4437 if (GET_CODE (x) != REG
4438 || REGNO (x) >= max_reg_before_loop)
4439 return 0;
4440
4441 /* Don't use call-clobbered registers across a call which clobbers it. On
4442 some machines, don't use any hard registers at all. */
4443 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4444 && (SMALL_REGISTER_CLASSES
4445 || (call_used_regs[REGNO (x)] && call_seen)))
4446 return 0;
4447
4448 /* Don't use registers that have been clobbered before the start of the
4449 loop. */
4450 if (reg_set_between_p (x, insn, loop_start))
4451 return 0;
4452
4453 return 1;
4454 }
4455 \f
4456 /* Scan X for memory refs and check each memory address
4457 as a possible giv. INSN is the insn whose pattern X comes from.
4458 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4459 every loop iteration. */
4460
4461 static void
4462 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4463 rtx x;
4464 rtx insn;
4465 int not_every_iteration;
4466 rtx loop_start, loop_end;
4467 {
4468 register int i, j;
4469 register enum rtx_code code;
4470 register char *fmt;
4471
4472 if (x == 0)
4473 return;
4474
4475 code = GET_CODE (x);
4476 switch (code)
4477 {
4478 case REG:
4479 case CONST_INT:
4480 case CONST:
4481 case CONST_DOUBLE:
4482 case SYMBOL_REF:
4483 case LABEL_REF:
4484 case PC:
4485 case CC0:
4486 case ADDR_VEC:
4487 case ADDR_DIFF_VEC:
4488 case USE:
4489 case CLOBBER:
4490 return;
4491
4492 case MEM:
4493 {
4494 rtx src_reg;
4495 rtx add_val;
4496 rtx mult_val;
4497 int benefit;
4498
4499 benefit = general_induction_var (XEXP (x, 0),
4500 &src_reg, &add_val, &mult_val);
4501
4502 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4503 Such a giv isn't useful. */
4504 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4505 {
4506 /* Found one; record it. */
4507 struct induction *v
4508 = (struct induction *) oballoc (sizeof (struct induction));
4509
4510 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4511 add_val, benefit, DEST_ADDR, not_every_iteration,
4512 &XEXP (x, 0), loop_start, loop_end);
4513
4514 v->mem_mode = GET_MODE (x);
4515 }
4516 }
4517 return;
4518
4519 default:
4520 break;
4521 }
4522
4523 /* Recursively scan the subexpressions for other mem refs. */
4524
4525 fmt = GET_RTX_FORMAT (code);
4526 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4527 if (fmt[i] == 'e')
4528 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4529 loop_end);
4530 else if (fmt[i] == 'E')
4531 for (j = 0; j < XVECLEN (x, i); j++)
4532 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4533 loop_start, loop_end);
4534 }
4535 \f
4536 /* Fill in the data about one biv update.
4537 V is the `struct induction' in which we record the biv. (It is
4538 allocated by the caller, with alloca.)
4539 INSN is the insn that sets it.
4540 DEST_REG is the biv's reg.
4541
4542 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4543 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4544 being set to INC_VAL.
4545
4546 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4547 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4548 can be executed more than once per iteration. If MAYBE_MULTIPLE
4549 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4550 executed exactly once per iteration. */
4551
4552 static void
4553 record_biv (v, insn, dest_reg, inc_val, mult_val,
4554 not_every_iteration, maybe_multiple)
4555 struct induction *v;
4556 rtx insn;
4557 rtx dest_reg;
4558 rtx inc_val;
4559 rtx mult_val;
4560 int not_every_iteration;
4561 int maybe_multiple;
4562 {
4563 struct iv_class *bl;
4564
4565 v->insn = insn;
4566 v->src_reg = dest_reg;
4567 v->dest_reg = dest_reg;
4568 v->mult_val = mult_val;
4569 v->add_val = inc_val;
4570 v->mode = GET_MODE (dest_reg);
4571 v->always_computable = ! not_every_iteration;
4572 v->always_executed = ! not_every_iteration;
4573 v->maybe_multiple = maybe_multiple;
4574
4575 /* Add this to the reg's iv_class, creating a class
4576 if this is the first incrementation of the reg. */
4577
4578 bl = reg_biv_class[REGNO (dest_reg)];
4579 if (bl == 0)
4580 {
4581 /* Create and initialize new iv_class. */
4582
4583 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4584
4585 bl->regno = REGNO (dest_reg);
4586 bl->biv = 0;
4587 bl->giv = 0;
4588 bl->biv_count = 0;
4589 bl->giv_count = 0;
4590
4591 /* Set initial value to the reg itself. */
4592 bl->initial_value = dest_reg;
4593 /* We haven't seen the initializing insn yet */
4594 bl->init_insn = 0;
4595 bl->init_set = 0;
4596 bl->initial_test = 0;
4597 bl->incremented = 0;
4598 bl->eliminable = 0;
4599 bl->nonneg = 0;
4600 bl->reversed = 0;
4601 bl->total_benefit = 0;
4602
4603 /* Add this class to loop_iv_list. */
4604 bl->next = loop_iv_list;
4605 loop_iv_list = bl;
4606
4607 /* Put it in the array of biv register classes. */
4608 reg_biv_class[REGNO (dest_reg)] = bl;
4609 }
4610
4611 /* Update IV_CLASS entry for this biv. */
4612 v->next_iv = bl->biv;
4613 bl->biv = v;
4614 bl->biv_count++;
4615 if (mult_val == const1_rtx)
4616 bl->incremented = 1;
4617
4618 if (loop_dump_stream)
4619 {
4620 fprintf (loop_dump_stream,
4621 "Insn %d: possible biv, reg %d,",
4622 INSN_UID (insn), REGNO (dest_reg));
4623 if (GET_CODE (inc_val) == CONST_INT)
4624 {
4625 fprintf (loop_dump_stream, " const =");
4626 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
4627 fputc ('\n', loop_dump_stream);
4628 }
4629 else
4630 {
4631 fprintf (loop_dump_stream, " const = ");
4632 print_rtl (loop_dump_stream, inc_val);
4633 fprintf (loop_dump_stream, "\n");
4634 }
4635 }
4636 }
4637 \f
4638 /* Fill in the data about one giv.
4639 V is the `struct induction' in which we record the giv. (It is
4640 allocated by the caller, with alloca.)
4641 INSN is the insn that sets it.
4642 BENEFIT estimates the savings from deleting this insn.
4643 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4644 into a register or is used as a memory address.
4645
4646 SRC_REG is the biv reg which the giv is computed from.
4647 DEST_REG is the giv's reg (if the giv is stored in a reg).
4648 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4649 LOCATION points to the place where this giv's value appears in INSN. */
4650
4651 static void
4652 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4653 type, not_every_iteration, location, loop_start, loop_end)
4654 struct induction *v;
4655 rtx insn;
4656 rtx src_reg;
4657 rtx dest_reg;
4658 rtx mult_val, add_val;
4659 int benefit;
4660 enum g_types type;
4661 int not_every_iteration;
4662 rtx *location;
4663 rtx loop_start, loop_end;
4664 {
4665 struct induction *b;
4666 struct iv_class *bl;
4667 rtx set = single_set (insn);
4668
4669 v->insn = insn;
4670 v->src_reg = src_reg;
4671 v->giv_type = type;
4672 v->dest_reg = dest_reg;
4673 v->mult_val = mult_val;
4674 v->add_val = add_val;
4675 v->benefit = benefit;
4676 v->location = location;
4677 v->cant_derive = 0;
4678 v->combined_with = 0;
4679 v->maybe_multiple = 0;
4680 v->maybe_dead = 0;
4681 v->derive_adjustment = 0;
4682 v->same = 0;
4683 v->ignore = 0;
4684 v->new_reg = 0;
4685 v->final_value = 0;
4686 v->same_insn = 0;
4687 v->auto_inc_opt = 0;
4688 v->unrolled = 0;
4689 v->shared = 0;
4690
4691 /* The v->always_computable field is used in update_giv_derive, to
4692 determine whether a giv can be used to derive another giv. For a
4693 DEST_REG giv, INSN computes a new value for the giv, so its value
4694 isn't computable if INSN insn't executed every iteration.
4695 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4696 it does not compute a new value. Hence the value is always computable
4697 regardless of whether INSN is executed each iteration. */
4698
4699 if (type == DEST_ADDR)
4700 v->always_computable = 1;
4701 else
4702 v->always_computable = ! not_every_iteration;
4703
4704 v->always_executed = ! not_every_iteration;
4705
4706 if (type == DEST_ADDR)
4707 {
4708 v->mode = GET_MODE (*location);
4709 v->lifetime = 1;
4710 v->times_used = 1;
4711 }
4712 else /* type == DEST_REG */
4713 {
4714 v->mode = GET_MODE (SET_DEST (set));
4715
4716 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4717 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4718
4719 v->times_used = n_times_used[REGNO (dest_reg)];
4720
4721 /* If the lifetime is zero, it means that this register is
4722 really a dead store. So mark this as a giv that can be
4723 ignored. This will not prevent the biv from being eliminated. */
4724 if (v->lifetime == 0)
4725 v->ignore = 1;
4726
4727 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4728 reg_iv_info[REGNO (dest_reg)] = v;
4729 }
4730
4731 /* Add the giv to the class of givs computed from one biv. */
4732
4733 bl = reg_biv_class[REGNO (src_reg)];
4734 if (bl)
4735 {
4736 v->next_iv = bl->giv;
4737 bl->giv = v;
4738 /* Don't count DEST_ADDR. This is supposed to count the number of
4739 insns that calculate givs. */
4740 if (type == DEST_REG)
4741 bl->giv_count++;
4742 bl->total_benefit += benefit;
4743 }
4744 else
4745 /* Fatal error, biv missing for this giv? */
4746 abort ();
4747
4748 if (type == DEST_ADDR)
4749 v->replaceable = 1;
4750 else
4751 {
4752 /* The giv can be replaced outright by the reduced register only if all
4753 of the following conditions are true:
4754 - the insn that sets the giv is always executed on any iteration
4755 on which the giv is used at all
4756 (there are two ways to deduce this:
4757 either the insn is executed on every iteration,
4758 or all uses follow that insn in the same basic block),
4759 - the giv is not used outside the loop
4760 - no assignments to the biv occur during the giv's lifetime. */
4761
4762 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4763 /* Previous line always fails if INSN was moved by loop opt. */
4764 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4765 && (! not_every_iteration
4766 || last_use_this_basic_block (dest_reg, insn)))
4767 {
4768 /* Now check that there are no assignments to the biv within the
4769 giv's lifetime. This requires two separate checks. */
4770
4771 /* Check each biv update, and fail if any are between the first
4772 and last use of the giv.
4773
4774 If this loop contains an inner loop that was unrolled, then
4775 the insn modifying the biv may have been emitted by the loop
4776 unrolling code, and hence does not have a valid luid. Just
4777 mark the biv as not replaceable in this case. It is not very
4778 useful as a biv, because it is used in two different loops.
4779 It is very unlikely that we would be able to optimize the giv
4780 using this biv anyways. */
4781
4782 v->replaceable = 1;
4783 for (b = bl->biv; b; b = b->next_iv)
4784 {
4785 if (INSN_UID (b->insn) >= max_uid_for_loop
4786 || ((uid_luid[INSN_UID (b->insn)]
4787 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4788 && (uid_luid[INSN_UID (b->insn)]
4789 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4790 {
4791 v->replaceable = 0;
4792 v->not_replaceable = 1;
4793 break;
4794 }
4795 }
4796
4797 /* If there are any backwards branches that go from after the
4798 biv update to before it, then this giv is not replaceable. */
4799 if (v->replaceable)
4800 for (b = bl->biv; b; b = b->next_iv)
4801 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4802 {
4803 v->replaceable = 0;
4804 v->not_replaceable = 1;
4805 break;
4806 }
4807 }
4808 else
4809 {
4810 /* May still be replaceable, we don't have enough info here to
4811 decide. */
4812 v->replaceable = 0;
4813 v->not_replaceable = 0;
4814 }
4815 }
4816
4817 if (loop_dump_stream)
4818 {
4819 if (type == DEST_REG)
4820 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4821 INSN_UID (insn), REGNO (dest_reg));
4822 else
4823 fprintf (loop_dump_stream, "Insn %d: dest address",
4824 INSN_UID (insn));
4825
4826 fprintf (loop_dump_stream, " src reg %d benefit %d",
4827 REGNO (src_reg), v->benefit);
4828 fprintf (loop_dump_stream, " used %d lifetime %d",
4829 v->times_used, v->lifetime);
4830
4831 if (v->replaceable)
4832 fprintf (loop_dump_stream, " replaceable");
4833
4834 if (GET_CODE (mult_val) == CONST_INT)
4835 {
4836 fprintf (loop_dump_stream, " mult ");
4837 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
4838 }
4839 else
4840 {
4841 fprintf (loop_dump_stream, " mult ");
4842 print_rtl (loop_dump_stream, mult_val);
4843 }
4844
4845 if (GET_CODE (add_val) == CONST_INT)
4846 {
4847 fprintf (loop_dump_stream, " add ");
4848 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
4849 }
4850 else
4851 {
4852 fprintf (loop_dump_stream, " add ");
4853 print_rtl (loop_dump_stream, add_val);
4854 }
4855 }
4856
4857 if (loop_dump_stream)
4858 fprintf (loop_dump_stream, "\n");
4859
4860 }
4861
4862
4863 /* All this does is determine whether a giv can be made replaceable because
4864 its final value can be calculated. This code can not be part of record_giv
4865 above, because final_giv_value requires that the number of loop iterations
4866 be known, and that can not be accurately calculated until after all givs
4867 have been identified. */
4868
4869 static void
4870 check_final_value (v, loop_start, loop_end)
4871 struct induction *v;
4872 rtx loop_start, loop_end;
4873 {
4874 struct iv_class *bl;
4875 rtx final_value = 0;
4876
4877 bl = reg_biv_class[REGNO (v->src_reg)];
4878
4879 /* DEST_ADDR givs will never reach here, because they are always marked
4880 replaceable above in record_giv. */
4881
4882 /* The giv can be replaced outright by the reduced register only if all
4883 of the following conditions are true:
4884 - the insn that sets the giv is always executed on any iteration
4885 on which the giv is used at all
4886 (there are two ways to deduce this:
4887 either the insn is executed on every iteration,
4888 or all uses follow that insn in the same basic block),
4889 - its final value can be calculated (this condition is different
4890 than the one above in record_giv)
4891 - no assignments to the biv occur during the giv's lifetime. */
4892
4893 #if 0
4894 /* This is only called now when replaceable is known to be false. */
4895 /* Clear replaceable, so that it won't confuse final_giv_value. */
4896 v->replaceable = 0;
4897 #endif
4898
4899 if ((final_value = final_giv_value (v, loop_start, loop_end))
4900 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4901 {
4902 int biv_increment_seen = 0;
4903 rtx p = v->insn;
4904 rtx last_giv_use;
4905
4906 v->replaceable = 1;
4907
4908 /* When trying to determine whether or not a biv increment occurs
4909 during the lifetime of the giv, we can ignore uses of the variable
4910 outside the loop because final_value is true. Hence we can not
4911 use regno_last_uid and regno_first_uid as above in record_giv. */
4912
4913 /* Search the loop to determine whether any assignments to the
4914 biv occur during the giv's lifetime. Start with the insn
4915 that sets the giv, and search around the loop until we come
4916 back to that insn again.
4917
4918 Also fail if there is a jump within the giv's lifetime that jumps
4919 to somewhere outside the lifetime but still within the loop. This
4920 catches spaghetti code where the execution order is not linear, and
4921 hence the above test fails. Here we assume that the giv lifetime
4922 does not extend from one iteration of the loop to the next, so as
4923 to make the test easier. Since the lifetime isn't known yet,
4924 this requires two loops. See also record_giv above. */
4925
4926 last_giv_use = v->insn;
4927
4928 while (1)
4929 {
4930 p = NEXT_INSN (p);
4931 if (p == loop_end)
4932 p = NEXT_INSN (loop_start);
4933 if (p == v->insn)
4934 break;
4935
4936 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4937 || GET_CODE (p) == CALL_INSN)
4938 {
4939 if (biv_increment_seen)
4940 {
4941 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4942 {
4943 v->replaceable = 0;
4944 v->not_replaceable = 1;
4945 break;
4946 }
4947 }
4948 else if (reg_set_p (v->src_reg, PATTERN (p)))
4949 biv_increment_seen = 1;
4950 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4951 last_giv_use = p;
4952 }
4953 }
4954
4955 /* Now that the lifetime of the giv is known, check for branches
4956 from within the lifetime to outside the lifetime if it is still
4957 replaceable. */
4958
4959 if (v->replaceable)
4960 {
4961 p = v->insn;
4962 while (1)
4963 {
4964 p = NEXT_INSN (p);
4965 if (p == loop_end)
4966 p = NEXT_INSN (loop_start);
4967 if (p == last_giv_use)
4968 break;
4969
4970 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4971 && LABEL_NAME (JUMP_LABEL (p))
4972 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4973 || (INSN_UID (v->insn) >= max_uid_for_loop)
4974 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4975 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4976 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4977 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4978 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4979 {
4980 v->replaceable = 0;
4981 v->not_replaceable = 1;
4982
4983 if (loop_dump_stream)
4984 fprintf (loop_dump_stream,
4985 "Found branch outside giv lifetime.\n");
4986
4987 break;
4988 }
4989 }
4990 }
4991
4992 /* If it is replaceable, then save the final value. */
4993 if (v->replaceable)
4994 v->final_value = final_value;
4995 }
4996
4997 if (loop_dump_stream && v->replaceable)
4998 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4999 INSN_UID (v->insn), REGNO (v->dest_reg));
5000 }
5001 \f
5002 /* Update the status of whether a giv can derive other givs.
5003
5004 We need to do something special if there is or may be an update to the biv
5005 between the time the giv is defined and the time it is used to derive
5006 another giv.
5007
5008 In addition, a giv that is only conditionally set is not allowed to
5009 derive another giv once a label has been passed.
5010
5011 The cases we look at are when a label or an update to a biv is passed. */
5012
5013 static void
5014 update_giv_derive (p)
5015 rtx p;
5016 {
5017 struct iv_class *bl;
5018 struct induction *biv, *giv;
5019 rtx tem;
5020 int dummy;
5021
5022 /* Search all IV classes, then all bivs, and finally all givs.
5023
5024 There are three cases we are concerned with. First we have the situation
5025 of a giv that is only updated conditionally. In that case, it may not
5026 derive any givs after a label is passed.
5027
5028 The second case is when a biv update occurs, or may occur, after the
5029 definition of a giv. For certain biv updates (see below) that are
5030 known to occur between the giv definition and use, we can adjust the
5031 giv definition. For others, or when the biv update is conditional,
5032 we must prevent the giv from deriving any other givs. There are two
5033 sub-cases within this case.
5034
5035 If this is a label, we are concerned with any biv update that is done
5036 conditionally, since it may be done after the giv is defined followed by
5037 a branch here (actually, we need to pass both a jump and a label, but
5038 this extra tracking doesn't seem worth it).
5039
5040 If this is a jump, we are concerned about any biv update that may be
5041 executed multiple times. We are actually only concerned about
5042 backward jumps, but it is probably not worth performing the test
5043 on the jump again here.
5044
5045 If this is a biv update, we must adjust the giv status to show that a
5046 subsequent biv update was performed. If this adjustment cannot be done,
5047 the giv cannot derive further givs. */
5048
5049 for (bl = loop_iv_list; bl; bl = bl->next)
5050 for (biv = bl->biv; biv; biv = biv->next_iv)
5051 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5052 || biv->insn == p)
5053 {
5054 for (giv = bl->giv; giv; giv = giv->next_iv)
5055 {
5056 /* If cant_derive is already true, there is no point in
5057 checking all of these conditions again. */
5058 if (giv->cant_derive)
5059 continue;
5060
5061 /* If this giv is conditionally set and we have passed a label,
5062 it cannot derive anything. */
5063 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5064 giv->cant_derive = 1;
5065
5066 /* Skip givs that have mult_val == 0, since
5067 they are really invariants. Also skip those that are
5068 replaceable, since we know their lifetime doesn't contain
5069 any biv update. */
5070 else if (giv->mult_val == const0_rtx || giv->replaceable)
5071 continue;
5072
5073 /* The only way we can allow this giv to derive another
5074 is if this is a biv increment and we can form the product
5075 of biv->add_val and giv->mult_val. In this case, we will
5076 be able to compute a compensation. */
5077 else if (biv->insn == p)
5078 {
5079 tem = 0;
5080
5081 if (biv->mult_val == const1_rtx)
5082 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5083 biv->add_val,
5084 giv->mult_val),
5085 &dummy);
5086
5087 if (tem && giv->derive_adjustment)
5088 tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
5089 giv->derive_adjustment),
5090 &dummy);
5091 if (tem)
5092 giv->derive_adjustment = tem;
5093 else
5094 giv->cant_derive = 1;
5095 }
5096 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5097 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5098 giv->cant_derive = 1;
5099 }
5100 }
5101 }
5102 \f
5103 /* Check whether an insn is an increment legitimate for a basic induction var.
5104 X is the source of insn P, or a part of it.
5105 MODE is the mode in which X should be interpreted.
5106
5107 DEST_REG is the putative biv, also the destination of the insn.
5108 We accept patterns of these forms:
5109 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5110 REG = INVARIANT + REG
5111
5112 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5113 and store the additive term into *INC_VAL.
5114
5115 If X is an assignment of an invariant into DEST_REG, we set
5116 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5117
5118 We also want to detect a BIV when it corresponds to a variable
5119 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5120 of the variable may be a PLUS that adds a SUBREG of that variable to
5121 an invariant and then sign- or zero-extends the result of the PLUS
5122 into the variable.
5123
5124 Most GIVs in such cases will be in the promoted mode, since that is the
5125 probably the natural computation mode (and almost certainly the mode
5126 used for addresses) on the machine. So we view the pseudo-reg containing
5127 the variable as the BIV, as if it were simply incremented.
5128
5129 Note that treating the entire pseudo as a BIV will result in making
5130 simple increments to any GIVs based on it. However, if the variable
5131 overflows in its declared mode but not its promoted mode, the result will
5132 be incorrect. This is acceptable if the variable is signed, since
5133 overflows in such cases are undefined, but not if it is unsigned, since
5134 those overflows are defined. So we only check for SIGN_EXTEND and
5135 not ZERO_EXTEND.
5136
5137 If we cannot find a biv, we return 0. */
5138
5139 static int
5140 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5141 register rtx x;
5142 enum machine_mode mode;
5143 rtx p;
5144 rtx dest_reg;
5145 rtx *inc_val;
5146 rtx *mult_val;
5147 {
5148 register enum rtx_code code;
5149 rtx arg;
5150 rtx insn, set = 0;
5151
5152 code = GET_CODE (x);
5153 switch (code)
5154 {
5155 case PLUS:
5156 if (XEXP (x, 0) == dest_reg
5157 || (GET_CODE (XEXP (x, 0)) == SUBREG
5158 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5159 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5160 arg = XEXP (x, 1);
5161 else if (XEXP (x, 1) == dest_reg
5162 || (GET_CODE (XEXP (x, 1)) == SUBREG
5163 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5164 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5165 arg = XEXP (x, 0);
5166 else
5167 return 0;
5168
5169 if (invariant_p (arg) != 1)
5170 return 0;
5171
5172 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5173 *mult_val = const1_rtx;
5174 return 1;
5175
5176 case SUBREG:
5177 /* If this is a SUBREG for a promoted variable, check the inner
5178 value. */
5179 if (SUBREG_PROMOTED_VAR_P (x))
5180 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5181 dest_reg, p, inc_val, mult_val);
5182 return 0;
5183
5184 case REG:
5185 /* If this register is assigned in the previous insn, look at its
5186 source, but don't go outside the loop or past a label. */
5187
5188 for (insn = PREV_INSN (p);
5189 (insn && GET_CODE (insn) == NOTE
5190 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5191 insn = PREV_INSN (insn))
5192 ;
5193
5194 if (insn)
5195 set = single_set (insn);
5196
5197 if (set != 0
5198 && (SET_DEST (set) == x
5199 || (GET_CODE (SET_DEST (set)) == SUBREG
5200 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5201 <= UNITS_PER_WORD)
5202 && SUBREG_REG (SET_DEST (set)) == x)))
5203 return basic_induction_var (SET_SRC (set),
5204 (GET_MODE (SET_SRC (set)) == VOIDmode
5205 ? GET_MODE (x)
5206 : GET_MODE (SET_SRC (set))),
5207 dest_reg, insn,
5208 inc_val, mult_val);
5209 /* ... fall through ... */
5210
5211 /* Can accept constant setting of biv only when inside inner most loop.
5212 Otherwise, a biv of an inner loop may be incorrectly recognized
5213 as a biv of the outer loop,
5214 causing code to be moved INTO the inner loop. */
5215 case MEM:
5216 if (invariant_p (x) != 1)
5217 return 0;
5218 case CONST_INT:
5219 case SYMBOL_REF:
5220 case CONST:
5221 if (loops_enclosed == 1)
5222 {
5223 /* Possible bug here? Perhaps we don't know the mode of X. */
5224 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5225 *mult_val = const0_rtx;
5226 return 1;
5227 }
5228 else
5229 return 0;
5230
5231 case SIGN_EXTEND:
5232 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5233 dest_reg, p, inc_val, mult_val);
5234 case ASHIFTRT:
5235 /* Similar, since this can be a sign extension. */
5236 for (insn = PREV_INSN (p);
5237 (insn && GET_CODE (insn) == NOTE
5238 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5239 insn = PREV_INSN (insn))
5240 ;
5241
5242 if (insn)
5243 set = single_set (insn);
5244
5245 if (set && SET_DEST (set) == XEXP (x, 0)
5246 && GET_CODE (XEXP (x, 1)) == CONST_INT
5247 && INTVAL (XEXP (x, 1)) >= 0
5248 && GET_CODE (SET_SRC (set)) == ASHIFT
5249 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5250 return basic_induction_var (XEXP (SET_SRC (set), 0),
5251 GET_MODE (XEXP (x, 0)),
5252 dest_reg, insn, inc_val, mult_val);
5253 return 0;
5254
5255 default:
5256 return 0;
5257 }
5258 }
5259 \f
5260 /* A general induction variable (giv) is any quantity that is a linear
5261 function of a basic induction variable,
5262 i.e. giv = biv * mult_val + add_val.
5263 The coefficients can be any loop invariant quantity.
5264 A giv need not be computed directly from the biv;
5265 it can be computed by way of other givs. */
5266
5267 /* Determine whether X computes a giv.
5268 If it does, return a nonzero value
5269 which is the benefit from eliminating the computation of X;
5270 set *SRC_REG to the register of the biv that it is computed from;
5271 set *ADD_VAL and *MULT_VAL to the coefficients,
5272 such that the value of X is biv * mult + add; */
5273
5274 static int
5275 general_induction_var (x, src_reg, add_val, mult_val)
5276 rtx x;
5277 rtx *src_reg;
5278 rtx *add_val;
5279 rtx *mult_val;
5280 {
5281 rtx orig_x = x;
5282 int benefit = 0;
5283 char *storage;
5284
5285 /* If this is an invariant, forget it, it isn't a giv. */
5286 if (invariant_p (x) == 1)
5287 return 0;
5288
5289 /* See if the expression could be a giv and get its form.
5290 Mark our place on the obstack in case we don't find a giv. */
5291 storage = (char *) oballoc (0);
5292 x = simplify_giv_expr (x, &benefit);
5293 if (x == 0)
5294 {
5295 obfree (storage);
5296 return 0;
5297 }
5298
5299 switch (GET_CODE (x))
5300 {
5301 case USE:
5302 case CONST_INT:
5303 /* Since this is now an invariant and wasn't before, it must be a giv
5304 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5305 with. */
5306 *src_reg = loop_iv_list->biv->dest_reg;
5307 *mult_val = const0_rtx;
5308 *add_val = x;
5309 break;
5310
5311 case REG:
5312 /* This is equivalent to a BIV. */
5313 *src_reg = x;
5314 *mult_val = const1_rtx;
5315 *add_val = const0_rtx;
5316 break;
5317
5318 case PLUS:
5319 /* Either (plus (biv) (invar)) or
5320 (plus (mult (biv) (invar_1)) (invar_2)). */
5321 if (GET_CODE (XEXP (x, 0)) == MULT)
5322 {
5323 *src_reg = XEXP (XEXP (x, 0), 0);
5324 *mult_val = XEXP (XEXP (x, 0), 1);
5325 }
5326 else
5327 {
5328 *src_reg = XEXP (x, 0);
5329 *mult_val = const1_rtx;
5330 }
5331 *add_val = XEXP (x, 1);
5332 break;
5333
5334 case MULT:
5335 /* ADD_VAL is zero. */
5336 *src_reg = XEXP (x, 0);
5337 *mult_val = XEXP (x, 1);
5338 *add_val = const0_rtx;
5339 break;
5340
5341 default:
5342 abort ();
5343 }
5344
5345 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5346 unless they are CONST_INT). */
5347 if (GET_CODE (*add_val) == USE)
5348 *add_val = XEXP (*add_val, 0);
5349 if (GET_CODE (*mult_val) == USE)
5350 *mult_val = XEXP (*mult_val, 0);
5351
5352 benefit += rtx_cost (orig_x, SET);
5353
5354 /* Always return some benefit if this is a giv so it will be detected
5355 as such. This allows elimination of bivs that might otherwise
5356 not be eliminated. */
5357 return benefit == 0 ? 1 : benefit;
5358 }
5359 \f
5360 /* Given an expression, X, try to form it as a linear function of a biv.
5361 We will canonicalize it to be of the form
5362 (plus (mult (BIV) (invar_1))
5363 (invar_2))
5364 with possible degeneracies.
5365
5366 The invariant expressions must each be of a form that can be used as a
5367 machine operand. We surround then with a USE rtx (a hack, but localized
5368 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5369 routine; it is the caller's responsibility to strip them.
5370
5371 If no such canonicalization is possible (i.e., two biv's are used or an
5372 expression that is neither invariant nor a biv or giv), this routine
5373 returns 0.
5374
5375 For a non-zero return, the result will have a code of CONST_INT, USE,
5376 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5377
5378 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5379
5380 static rtx
5381 simplify_giv_expr (x, benefit)
5382 rtx x;
5383 int *benefit;
5384 {
5385 enum machine_mode mode = GET_MODE (x);
5386 rtx arg0, arg1;
5387 rtx tem;
5388
5389 /* If this is not an integer mode, or if we cannot do arithmetic in this
5390 mode, this can't be a giv. */
5391 if (mode != VOIDmode
5392 && (GET_MODE_CLASS (mode) != MODE_INT
5393 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5394 return 0;
5395
5396 switch (GET_CODE (x))
5397 {
5398 case PLUS:
5399 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5400 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5401 if (arg0 == 0 || arg1 == 0)
5402 return 0;
5403
5404 /* Put constant last, CONST_INT last if both constant. */
5405 if ((GET_CODE (arg0) == USE
5406 || GET_CODE (arg0) == CONST_INT)
5407 && GET_CODE (arg1) != CONST_INT)
5408 tem = arg0, arg0 = arg1, arg1 = tem;
5409
5410 /* Handle addition of zero, then addition of an invariant. */
5411 if (arg1 == const0_rtx)
5412 return arg0;
5413 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5414 switch (GET_CODE (arg0))
5415 {
5416 case CONST_INT:
5417 case USE:
5418 /* Both invariant. Only valid if sum is machine operand.
5419 First strip off possible USE on the operands. */
5420 if (GET_CODE (arg0) == USE)
5421 arg0 = XEXP (arg0, 0);
5422
5423 if (GET_CODE (arg1) == USE)
5424 arg1 = XEXP (arg1, 0);
5425
5426 tem = 0;
5427 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5428 {
5429 tem = plus_constant (arg0, INTVAL (arg1));
5430 if (GET_CODE (tem) != CONST_INT)
5431 tem = gen_rtx_USE (mode, tem);
5432 }
5433 else
5434 {
5435 /* Adding two invariants must result in an invariant,
5436 so enclose addition operation inside a USE and
5437 return it. */
5438 tem = gen_rtx_USE (mode, gen_rtx_PLUS (mode, arg0, arg1));
5439 }
5440
5441 return tem;
5442
5443 case REG:
5444 case MULT:
5445 /* biv + invar or mult + invar. Return sum. */
5446 return gen_rtx_PLUS (mode, arg0, arg1);
5447
5448 case PLUS:
5449 /* (a + invar_1) + invar_2. Associate. */
5450 return simplify_giv_expr (gen_rtx_PLUS (mode,
5451 XEXP (arg0, 0),
5452 gen_rtx_PLUS (mode,
5453 XEXP (arg0, 1), arg1)),
5454 benefit);
5455
5456 default:
5457 abort ();
5458 }
5459
5460 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5461 MULT to reduce cases. */
5462 if (GET_CODE (arg0) == REG)
5463 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
5464 if (GET_CODE (arg1) == REG)
5465 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
5466
5467 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5468 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5469 Recurse to associate the second PLUS. */
5470 if (GET_CODE (arg1) == MULT)
5471 tem = arg0, arg0 = arg1, arg1 = tem;
5472
5473 if (GET_CODE (arg1) == PLUS)
5474 return simplify_giv_expr (gen_rtx_PLUS (mode,
5475 gen_rtx_PLUS (mode, arg0,
5476 XEXP (arg1, 0)),
5477 XEXP (arg1, 1)),
5478 benefit);
5479
5480 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5481 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5482 abort ();
5483
5484 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5485 return 0;
5486
5487 return simplify_giv_expr (gen_rtx_MULT (mode,
5488 XEXP (arg0, 0),
5489 gen_rtx_PLUS (mode,
5490 XEXP (arg0, 1),
5491 XEXP (arg1, 1))),
5492 benefit);
5493
5494 case MINUS:
5495 /* Handle "a - b" as "a + b * (-1)". */
5496 return simplify_giv_expr (gen_rtx_PLUS (mode,
5497 XEXP (x, 0),
5498 gen_rtx_MULT (mode, XEXP (x, 1),
5499 constm1_rtx)),
5500 benefit);
5501
5502 case MULT:
5503 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5504 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5505 if (arg0 == 0 || arg1 == 0)
5506 return 0;
5507
5508 /* Put constant last, CONST_INT last if both constant. */
5509 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5510 && GET_CODE (arg1) != CONST_INT)
5511 tem = arg0, arg0 = arg1, arg1 = tem;
5512
5513 /* If second argument is not now constant, not giv. */
5514 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5515 return 0;
5516
5517 /* Handle multiply by 0 or 1. */
5518 if (arg1 == const0_rtx)
5519 return const0_rtx;
5520
5521 else if (arg1 == const1_rtx)
5522 return arg0;
5523
5524 switch (GET_CODE (arg0))
5525 {
5526 case REG:
5527 /* biv * invar. Done. */
5528 return gen_rtx_MULT (mode, arg0, arg1);
5529
5530 case CONST_INT:
5531 /* Product of two constants. */
5532 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5533
5534 case USE:
5535 /* invar * invar. Not giv. */
5536 return 0;
5537
5538 case MULT:
5539 /* (a * invar_1) * invar_2. Associate. */
5540 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
5541 gen_rtx_MULT (mode,
5542 XEXP (arg0, 1),
5543 arg1)),
5544 benefit);
5545
5546 case PLUS:
5547 /* (a + invar_1) * invar_2. Distribute. */
5548 return simplify_giv_expr (gen_rtx_PLUS (mode,
5549 gen_rtx_MULT (mode,
5550 XEXP (arg0, 0),
5551 arg1),
5552 gen_rtx_MULT (mode,
5553 XEXP (arg0, 1),
5554 arg1)),
5555 benefit);
5556
5557 default:
5558 abort ();
5559 }
5560
5561 case ASHIFT:
5562 /* Shift by constant is multiply by power of two. */
5563 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5564 return 0;
5565
5566 return simplify_giv_expr (gen_rtx_MULT (mode,
5567 XEXP (x, 0),
5568 GEN_INT ((HOST_WIDE_INT) 1
5569 << INTVAL (XEXP (x, 1)))),
5570 benefit);
5571
5572 case NEG:
5573 /* "-a" is "a * (-1)" */
5574 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
5575 benefit);
5576
5577 case NOT:
5578 /* "~a" is "-a - 1". Silly, but easy. */
5579 return simplify_giv_expr (gen_rtx_MINUS (mode,
5580 gen_rtx_NEG (mode, XEXP (x, 0)),
5581 const1_rtx),
5582 benefit);
5583
5584 case USE:
5585 /* Already in proper form for invariant. */
5586 return x;
5587
5588 case REG:
5589 /* If this is a new register, we can't deal with it. */
5590 if (REGNO (x) >= max_reg_before_loop)
5591 return 0;
5592
5593 /* Check for biv or giv. */
5594 switch (reg_iv_type[REGNO (x)])
5595 {
5596 case BASIC_INDUCT:
5597 return x;
5598 case GENERAL_INDUCT:
5599 {
5600 struct induction *v = reg_iv_info[REGNO (x)];
5601
5602 /* Form expression from giv and add benefit. Ensure this giv
5603 can derive another and subtract any needed adjustment if so. */
5604 *benefit += v->benefit;
5605 if (v->cant_derive)
5606 return 0;
5607
5608 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
5609 v->mult_val),
5610 v->add_val);
5611 if (v->derive_adjustment)
5612 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
5613 return simplify_giv_expr (tem, benefit);
5614 }
5615
5616 default:
5617 break;
5618 }
5619
5620 /* Fall through to general case. */
5621 default:
5622 /* If invariant, return as USE (unless CONST_INT).
5623 Otherwise, not giv. */
5624 if (GET_CODE (x) == USE)
5625 x = XEXP (x, 0);
5626
5627 if (invariant_p (x) == 1)
5628 {
5629 if (GET_CODE (x) == CONST_INT)
5630 return x;
5631 else
5632 return gen_rtx_USE (mode, x);
5633 }
5634 else
5635 return 0;
5636 }
5637 }
5638 \f
5639 /* Help detect a giv that is calculated by several consecutive insns;
5640 for example,
5641 giv = biv * M
5642 giv = giv + A
5643 The caller has already identified the first insn P as having a giv as dest;
5644 we check that all other insns that set the same register follow
5645 immediately after P, that they alter nothing else,
5646 and that the result of the last is still a giv.
5647
5648 The value is 0 if the reg set in P is not really a giv.
5649 Otherwise, the value is the amount gained by eliminating
5650 all the consecutive insns that compute the value.
5651
5652 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5653 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5654
5655 The coefficients of the ultimate giv value are stored in
5656 *MULT_VAL and *ADD_VAL. */
5657
5658 static int
5659 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5660 add_val, mult_val)
5661 int first_benefit;
5662 rtx p;
5663 rtx src_reg;
5664 rtx dest_reg;
5665 rtx *add_val;
5666 rtx *mult_val;
5667 {
5668 int count;
5669 enum rtx_code code;
5670 int benefit;
5671 rtx temp;
5672 rtx set;
5673
5674 /* Indicate that this is a giv so that we can update the value produced in
5675 each insn of the multi-insn sequence.
5676
5677 This induction structure will be used only by the call to
5678 general_induction_var below, so we can allocate it on our stack.
5679 If this is a giv, our caller will replace the induct var entry with
5680 a new induction structure. */
5681 struct induction *v
5682 = (struct induction *) alloca (sizeof (struct induction));
5683 v->src_reg = src_reg;
5684 v->mult_val = *mult_val;
5685 v->add_val = *add_val;
5686 v->benefit = first_benefit;
5687 v->cant_derive = 0;
5688 v->derive_adjustment = 0;
5689
5690 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5691 reg_iv_info[REGNO (dest_reg)] = v;
5692
5693 count = n_times_set[REGNO (dest_reg)] - 1;
5694
5695 while (count > 0)
5696 {
5697 p = NEXT_INSN (p);
5698 code = GET_CODE (p);
5699
5700 /* If libcall, skip to end of call sequence. */
5701 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5702 p = XEXP (temp, 0);
5703
5704 if (code == INSN
5705 && (set = single_set (p))
5706 && GET_CODE (SET_DEST (set)) == REG
5707 && SET_DEST (set) == dest_reg
5708 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5709 add_val, mult_val))
5710 /* Giv created by equivalent expression. */
5711 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5712 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5713 add_val, mult_val))))
5714 && src_reg == v->src_reg)
5715 {
5716 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5717 benefit += libcall_benefit (p);
5718
5719 count--;
5720 v->mult_val = *mult_val;
5721 v->add_val = *add_val;
5722 v->benefit = benefit;
5723 }
5724 else if (code != NOTE)
5725 {
5726 /* Allow insns that set something other than this giv to a
5727 constant. Such insns are needed on machines which cannot
5728 include long constants and should not disqualify a giv. */
5729 if (code == INSN
5730 && (set = single_set (p))
5731 && SET_DEST (set) != dest_reg
5732 && CONSTANT_P (SET_SRC (set)))
5733 continue;
5734
5735 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5736 return 0;
5737 }
5738 }
5739
5740 return v->benefit;
5741 }
5742 \f
5743 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5744 represented by G1. If no such expression can be found, or it is clear that
5745 it cannot possibly be a valid address, 0 is returned.
5746
5747 To perform the computation, we note that
5748 G1 = a * v + b and
5749 G2 = c * v + d
5750 where `v' is the biv.
5751
5752 So G2 = (c/a) * G1 + (d - b*c/a) */
5753
5754 #ifdef ADDRESS_COST
5755 static rtx
5756 express_from (g1, g2)
5757 struct induction *g1, *g2;
5758 {
5759 rtx mult, add;
5760
5761 /* The value that G1 will be multiplied by must be a constant integer. Also,
5762 the only chance we have of getting a valid address is if b*c/a (see above
5763 for notation) is also an integer. */
5764 if (GET_CODE (g1->mult_val) != CONST_INT
5765 || GET_CODE (g2->mult_val) != CONST_INT
5766 || GET_CODE (g1->add_val) != CONST_INT
5767 || g1->mult_val == const0_rtx
5768 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5769 return 0;
5770
5771 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5772 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5773
5774 /* Form simplified final result. */
5775 if (mult == const0_rtx)
5776 return add;
5777 else if (mult == const1_rtx)
5778 mult = g1->dest_reg;
5779 else
5780 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
5781
5782 if (add == const0_rtx)
5783 return mult;
5784 else
5785 return gen_rtx_PLUS (g2->mode, mult, add);
5786 }
5787 #endif
5788 \f
5789 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5790 (either directly or via an address expression) a register used to represent
5791 G1. Set g2->new_reg to a represtation of G1 (normally just
5792 g1->dest_reg). */
5793
5794 static int
5795 combine_givs_p (g1, g2)
5796 struct induction *g1, *g2;
5797 {
5798 rtx tem;
5799
5800 /* If these givs are identical, they can be combined. */
5801 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5802 && rtx_equal_p (g1->add_val, g2->add_val))
5803 {
5804 g2->new_reg = g1->dest_reg;
5805 return 1;
5806 }
5807
5808 #ifdef ADDRESS_COST
5809 /* If G2 can be expressed as a function of G1 and that function is valid
5810 as an address and no more expensive than using a register for G2,
5811 the expression of G2 in terms of G1 can be used. */
5812 if (g2->giv_type == DEST_ADDR
5813 && (tem = express_from (g1, g2)) != 0
5814 && memory_address_p (g2->mem_mode, tem)
5815 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5816 {
5817 g2->new_reg = tem;
5818 return 1;
5819 }
5820 #endif
5821
5822 return 0;
5823 }
5824 \f
5825 #ifdef GIV_SORT_CRITERION
5826 /* Compare two givs and sort the most desirable one for combinations first.
5827 This is used only in one qsort call below. */
5828
5829 static int
5830 giv_sort (x, y)
5831 struct induction **x, **y;
5832 {
5833 GIV_SORT_CRITERION (*x, *y);
5834
5835 return 0;
5836 }
5837 #endif
5838
5839 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5840 any other. If so, point SAME to the giv combined with and set NEW_REG to
5841 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5842 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5843
5844 static void
5845 combine_givs (bl)
5846 struct iv_class *bl;
5847 {
5848 struct induction *g1, *g2, **giv_array;
5849 int i, j, giv_count, pass;
5850
5851 /* Count givs, because bl->giv_count is incorrect here. */
5852 giv_count = 0;
5853 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5854 giv_count++;
5855
5856 giv_array
5857 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5858 i = 0;
5859 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5860 giv_array[i++] = g1;
5861
5862 #ifdef GIV_SORT_CRITERION
5863 /* Sort the givs if GIV_SORT_CRITERION is defined.
5864 This is usually defined for processors which lack
5865 negative register offsets so more givs may be combined. */
5866
5867 if (loop_dump_stream)
5868 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5869
5870 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5871 #endif
5872
5873 for (i = 0; i < giv_count; i++)
5874 {
5875 g1 = giv_array[i];
5876 for (pass = 0; pass <= 1; pass++)
5877 for (j = 0; j < giv_count; j++)
5878 {
5879 g2 = giv_array[j];
5880 if (g1 != g2
5881 /* First try to combine with replaceable givs, then all givs. */
5882 && (g1->replaceable || pass == 1)
5883 /* If either has already been combined or is to be ignored, can't
5884 combine. */
5885 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5886 /* If something has been based on G2, G2 cannot itself be based
5887 on something else. */
5888 && ! g2->combined_with
5889 && combine_givs_p (g1, g2))
5890 {
5891 /* g2->new_reg set by `combine_givs_p' */
5892 g2->same = g1;
5893 g1->combined_with = 1;
5894
5895 /* If one of these givs is a DEST_REG that was only used
5896 once, by the other giv, this is actually a single use.
5897 The DEST_REG has the correct cost, while the other giv
5898 counts the REG use too often. */
5899 if (g2->giv_type == DEST_REG
5900 && n_times_used[REGNO (g2->dest_reg)] == 1
5901 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5902 g1->benefit = g2->benefit;
5903 else if (g1->giv_type != DEST_REG
5904 || n_times_used[REGNO (g1->dest_reg)] != 1
5905 || ! reg_mentioned_p (g1->dest_reg,
5906 PATTERN (g2->insn)))
5907 {
5908 g1->benefit += g2->benefit;
5909 g1->times_used += g2->times_used;
5910 }
5911 /* ??? The new final_[bg]iv_value code does a much better job
5912 of finding replaceable giv's, and hence this code may no
5913 longer be necessary. */
5914 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5915 g1->benefit -= copy_cost;
5916 g1->lifetime += g2->lifetime;
5917
5918 if (loop_dump_stream)
5919 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5920 INSN_UID (g2->insn), INSN_UID (g1->insn));
5921 }
5922 }
5923 }
5924 }
5925 \f
5926 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5927
5928 void
5929 emit_iv_add_mult (b, m, a, reg, insert_before)
5930 rtx b; /* initial value of basic induction variable */
5931 rtx m; /* multiplicative constant */
5932 rtx a; /* additive constant */
5933 rtx reg; /* destination register */
5934 rtx insert_before;
5935 {
5936 rtx seq;
5937 rtx result;
5938
5939 /* Prevent unexpected sharing of these rtx. */
5940 a = copy_rtx (a);
5941 b = copy_rtx (b);
5942
5943 /* Increase the lifetime of any invariants moved further in code. */
5944 update_reg_last_use (a, insert_before);
5945 update_reg_last_use (b, insert_before);
5946 update_reg_last_use (m, insert_before);
5947
5948 start_sequence ();
5949 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5950 if (reg != result)
5951 emit_move_insn (reg, result);
5952 seq = gen_sequence ();
5953 end_sequence ();
5954
5955 emit_insn_before (seq, insert_before);
5956
5957 record_base_value (REGNO (reg), b);
5958 }
5959 \f
5960 /* Test whether A * B can be computed without
5961 an actual multiply insn. Value is 1 if so. */
5962
5963 static int
5964 product_cheap_p (a, b)
5965 rtx a;
5966 rtx b;
5967 {
5968 int i;
5969 rtx tmp;
5970 struct obstack *old_rtl_obstack = rtl_obstack;
5971 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5972 int win = 1;
5973
5974 /* If only one is constant, make it B. */
5975 if (GET_CODE (a) == CONST_INT)
5976 tmp = a, a = b, b = tmp;
5977
5978 /* If first constant, both constant, so don't need multiply. */
5979 if (GET_CODE (a) == CONST_INT)
5980 return 1;
5981
5982 /* If second not constant, neither is constant, so would need multiply. */
5983 if (GET_CODE (b) != CONST_INT)
5984 return 0;
5985
5986 /* One operand is constant, so might not need multiply insn. Generate the
5987 code for the multiply and see if a call or multiply, or long sequence
5988 of insns is generated. */
5989
5990 rtl_obstack = &temp_obstack;
5991 start_sequence ();
5992 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5993 tmp = gen_sequence ();
5994 end_sequence ();
5995
5996 if (GET_CODE (tmp) == SEQUENCE)
5997 {
5998 if (XVEC (tmp, 0) == 0)
5999 win = 1;
6000 else if (XVECLEN (tmp, 0) > 3)
6001 win = 0;
6002 else
6003 for (i = 0; i < XVECLEN (tmp, 0); i++)
6004 {
6005 rtx insn = XVECEXP (tmp, 0, i);
6006
6007 if (GET_CODE (insn) != INSN
6008 || (GET_CODE (PATTERN (insn)) == SET
6009 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
6010 || (GET_CODE (PATTERN (insn)) == PARALLEL
6011 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
6012 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
6013 {
6014 win = 0;
6015 break;
6016 }
6017 }
6018 }
6019 else if (GET_CODE (tmp) == SET
6020 && GET_CODE (SET_SRC (tmp)) == MULT)
6021 win = 0;
6022 else if (GET_CODE (tmp) == PARALLEL
6023 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
6024 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
6025 win = 0;
6026
6027 /* Free any storage we obtained in generating this multiply and restore rtl
6028 allocation to its normal obstack. */
6029 obstack_free (&temp_obstack, storage);
6030 rtl_obstack = old_rtl_obstack;
6031
6032 return win;
6033 }
6034 \f
6035 /* Check to see if loop can be terminated by a "decrement and branch until
6036 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
6037 Also try reversing an increment loop to a decrement loop
6038 to see if the optimization can be performed.
6039 Value is nonzero if optimization was performed. */
6040
6041 /* This is useful even if the architecture doesn't have such an insn,
6042 because it might change a loops which increments from 0 to n to a loop
6043 which decrements from n to 0. A loop that decrements to zero is usually
6044 faster than one that increments from zero. */
6045
6046 /* ??? This could be rewritten to use some of the loop unrolling procedures,
6047 such as approx_final_value, biv_total_increment, loop_iterations, and
6048 final_[bg]iv_value. */
6049
6050 static int
6051 check_dbra_loop (loop_end, insn_count, loop_start)
6052 rtx loop_end;
6053 int insn_count;
6054 rtx loop_start;
6055 {
6056 struct iv_class *bl;
6057 rtx reg;
6058 rtx jump_label;
6059 rtx final_value;
6060 rtx start_value;
6061 rtx new_add_val;
6062 rtx comparison;
6063 rtx before_comparison;
6064 rtx p;
6065
6066 /* If last insn is a conditional branch, and the insn before tests a
6067 register value, try to optimize it. Otherwise, we can't do anything. */
6068
6069 comparison = get_condition_for_loop (PREV_INSN (loop_end));
6070 if (comparison == 0)
6071 return 0;
6072
6073 /* Check all of the bivs to see if the compare uses one of them.
6074 Skip biv's set more than once because we can't guarantee that
6075 it will be zero on the last iteration. Also skip if the biv is
6076 used between its update and the test insn. */
6077
6078 for (bl = loop_iv_list; bl; bl = bl->next)
6079 {
6080 if (bl->biv_count == 1
6081 && bl->biv->dest_reg == XEXP (comparison, 0)
6082 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6083 PREV_INSN (PREV_INSN (loop_end))))
6084 break;
6085 }
6086
6087 if (! bl)
6088 return 0;
6089
6090 /* Look for the case where the basic induction variable is always
6091 nonnegative, and equals zero on the last iteration.
6092 In this case, add a reg_note REG_NONNEG, which allows the
6093 m68k DBRA instruction to be used. */
6094
6095 if (((GET_CODE (comparison) == GT
6096 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6097 && INTVAL (XEXP (comparison, 1)) == -1)
6098 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6099 && GET_CODE (bl->biv->add_val) == CONST_INT
6100 && INTVAL (bl->biv->add_val) < 0)
6101 {
6102 /* Initial value must be greater than 0,
6103 init_val % -dec_value == 0 to ensure that it equals zero on
6104 the last iteration */
6105
6106 if (GET_CODE (bl->initial_value) == CONST_INT
6107 && INTVAL (bl->initial_value) > 0
6108 && (INTVAL (bl->initial_value)
6109 % (-INTVAL (bl->biv->add_val))) == 0)
6110 {
6111 /* register always nonnegative, add REG_NOTE to branch */
6112 REG_NOTES (PREV_INSN (loop_end))
6113 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6114 REG_NOTES (PREV_INSN (loop_end)));
6115 bl->nonneg = 1;
6116
6117 return 1;
6118 }
6119
6120 /* If the decrement is 1 and the value was tested as >= 0 before
6121 the loop, then we can safely optimize. */
6122 for (p = loop_start; p; p = PREV_INSN (p))
6123 {
6124 if (GET_CODE (p) == CODE_LABEL)
6125 break;
6126 if (GET_CODE (p) != JUMP_INSN)
6127 continue;
6128
6129 before_comparison = get_condition_for_loop (p);
6130 if (before_comparison
6131 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6132 && GET_CODE (before_comparison) == LT
6133 && XEXP (before_comparison, 1) == const0_rtx
6134 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6135 && INTVAL (bl->biv->add_val) == -1)
6136 {
6137 REG_NOTES (PREV_INSN (loop_end))
6138 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6139 REG_NOTES (PREV_INSN (loop_end)));
6140 bl->nonneg = 1;
6141
6142 return 1;
6143 }
6144 }
6145 }
6146 else if (num_mem_sets <= 1)
6147 {
6148 /* Try to change inc to dec, so can apply above optimization. */
6149 /* Can do this if:
6150 all registers modified are induction variables or invariant,
6151 all memory references have non-overlapping addresses
6152 (obviously true if only one write)
6153 allow 2 insns for the compare/jump at the end of the loop. */
6154 /* Also, we must avoid any instructions which use both the reversed
6155 biv and another biv. Such instructions will fail if the loop is
6156 reversed. We meet this condition by requiring that either
6157 no_use_except_counting is true, or else that there is only
6158 one biv. */
6159 int num_nonfixed_reads = 0;
6160 /* 1 if the iteration var is used only to count iterations. */
6161 int no_use_except_counting = 0;
6162 /* 1 if the loop has no memory store, or it has a single memory store
6163 which is reversible. */
6164 int reversible_mem_store = 1;
6165
6166 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6167 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6168 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6169
6170 if (bl->giv_count == 0
6171 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6172 {
6173 rtx bivreg = regno_reg_rtx[bl->regno];
6174
6175 /* If there are no givs for this biv, and the only exit is the
6176 fall through at the end of the the loop, then
6177 see if perhaps there are no uses except to count. */
6178 no_use_except_counting = 1;
6179 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6180 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6181 {
6182 rtx set = single_set (p);
6183
6184 if (set && GET_CODE (SET_DEST (set)) == REG
6185 && REGNO (SET_DEST (set)) == bl->regno)
6186 /* An insn that sets the biv is okay. */
6187 ;
6188 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6189 || p == prev_nonnote_insn (loop_end))
6190 /* Don't bother about the end test. */
6191 ;
6192 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6193 /* Any other use of the biv is no good. */
6194 {
6195 no_use_except_counting = 0;
6196 break;
6197 }
6198 }
6199 }
6200
6201 /* If the loop has a single store, and the destination address is
6202 invariant, then we can't reverse the loop, because this address
6203 might then have the wrong value at loop exit.
6204 This would work if the source was invariant also, however, in that
6205 case, the insn should have been moved out of the loop. */
6206
6207 if (num_mem_sets == 1)
6208 reversible_mem_store
6209 = (! unknown_address_altered
6210 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6211
6212 /* This code only acts for innermost loops. Also it simplifies
6213 the memory address check by only reversing loops with
6214 zero or one memory access.
6215 Two memory accesses could involve parts of the same array,
6216 and that can't be reversed. */
6217
6218 if (num_nonfixed_reads <= 1
6219 && !loop_has_call
6220 && !loop_has_volatile
6221 && reversible_mem_store
6222 && (no_use_except_counting
6223 || ((bl->giv_count + bl->biv_count + num_mem_sets
6224 + num_movables + 2 == insn_count)
6225 && (bl == loop_iv_list && bl->next == 0))))
6226 {
6227 rtx tem;
6228
6229 /* Loop can be reversed. */
6230 if (loop_dump_stream)
6231 fprintf (loop_dump_stream, "Can reverse loop\n");
6232
6233 /* Now check other conditions:
6234
6235 The increment must be a constant, as must the initial value,
6236 and the comparison code must be LT.
6237
6238 This test can probably be improved since +/- 1 in the constant
6239 can be obtained by changing LT to LE and vice versa; this is
6240 confusing. */
6241
6242 if (comparison
6243 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6244 /* LE gets turned into LT */
6245 && GET_CODE (comparison) == LT
6246 && GET_CODE (bl->initial_value) == CONST_INT)
6247 {
6248 HOST_WIDE_INT add_val, comparison_val;
6249 rtx initial_value;
6250
6251 add_val = INTVAL (bl->biv->add_val);
6252 comparison_val = INTVAL (XEXP (comparison, 1));
6253 initial_value = bl->initial_value;
6254
6255 /* Normalize the initial value if it is an integer and
6256 has no other use except as a counter. This will allow
6257 a few more loops to be reversed. */
6258 if (no_use_except_counting
6259 && GET_CODE (initial_value) == CONST_INT)
6260 {
6261 comparison_val = comparison_val - INTVAL (bl->initial_value);
6262 initial_value = const0_rtx;
6263 }
6264
6265 /* If the initial value is not zero, or if the comparison
6266 value is not an exact multiple of the increment, then we
6267 can not reverse this loop. */
6268 if (initial_value != const0_rtx
6269 || (comparison_val % add_val) != 0)
6270 return 0;
6271
6272 /* Reset these in case we normalized the initial value
6273 and comparison value above. */
6274 bl->initial_value = initial_value;
6275 XEXP (comparison, 1) = GEN_INT (comparison_val);
6276
6277 /* Register will always be nonnegative, with value
6278 0 on last iteration if loop reversed */
6279
6280 /* Save some info needed to produce the new insns. */
6281 reg = bl->biv->dest_reg;
6282 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6283 if (jump_label == pc_rtx)
6284 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6285 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6286
6287 final_value = XEXP (comparison, 1);
6288 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6289 - INTVAL (bl->biv->add_val));
6290
6291 /* Initialize biv to start_value before loop start.
6292 The old initializing insn will be deleted as a
6293 dead store by flow.c. */
6294 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6295
6296 /* Add insn to decrement register, and delete insn
6297 that incremented the register. */
6298 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6299 bl->biv->insn);
6300 delete_insn (bl->biv->insn);
6301
6302 /* Update biv info to reflect its new status. */
6303 bl->biv->insn = p;
6304 bl->initial_value = start_value;
6305 bl->biv->add_val = new_add_val;
6306
6307 /* Inc LABEL_NUSES so that delete_insn will
6308 not delete the label. */
6309 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6310
6311 /* Emit an insn after the end of the loop to set the biv's
6312 proper exit value if it is used anywhere outside the loop. */
6313 if ((REGNO_LAST_UID (bl->regno)
6314 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6315 || ! bl->init_insn
6316 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6317 emit_insn_after (gen_move_insn (reg, final_value),
6318 loop_end);
6319
6320 /* Delete compare/branch at end of loop. */
6321 delete_insn (PREV_INSN (loop_end));
6322 delete_insn (PREV_INSN (loop_end));
6323
6324 /* Add new compare/branch insn at end of loop. */
6325 start_sequence ();
6326 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6327 GET_MODE (reg), 0, 0);
6328 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6329 tem = gen_sequence ();
6330 end_sequence ();
6331 emit_jump_insn_before (tem, loop_end);
6332
6333 for (tem = PREV_INSN (loop_end);
6334 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6335 ;
6336 if (tem)
6337 {
6338 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6339
6340 /* Increment of LABEL_NUSES done above. */
6341 /* Register is now always nonnegative,
6342 so add REG_NONNEG note to the branch. */
6343 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6344 REG_NOTES (tem));
6345 }
6346
6347 bl->nonneg = 1;
6348
6349 /* Mark that this biv has been reversed. Each giv which depends
6350 on this biv, and which is also live past the end of the loop
6351 will have to be fixed up. */
6352
6353 bl->reversed = 1;
6354
6355 if (loop_dump_stream)
6356 fprintf (loop_dump_stream,
6357 "Reversed loop and added reg_nonneg\n");
6358
6359 return 1;
6360 }
6361 }
6362 }
6363
6364 return 0;
6365 }
6366 \f
6367 /* Verify whether the biv BL appears to be eliminable,
6368 based on the insns in the loop that refer to it.
6369 LOOP_START is the first insn of the loop, and END is the end insn.
6370
6371 If ELIMINATE_P is non-zero, actually do the elimination.
6372
6373 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6374 determine whether invariant insns should be placed inside or at the
6375 start of the loop. */
6376
6377 static int
6378 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6379 struct iv_class *bl;
6380 rtx loop_start;
6381 rtx end;
6382 int eliminate_p;
6383 int threshold, insn_count;
6384 {
6385 rtx reg = bl->biv->dest_reg;
6386 rtx p;
6387
6388 /* Scan all insns in the loop, stopping if we find one that uses the
6389 biv in a way that we cannot eliminate. */
6390
6391 for (p = loop_start; p != end; p = NEXT_INSN (p))
6392 {
6393 enum rtx_code code = GET_CODE (p);
6394 rtx where = threshold >= insn_count ? loop_start : p;
6395
6396 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6397 && reg_mentioned_p (reg, PATTERN (p))
6398 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6399 {
6400 if (loop_dump_stream)
6401 fprintf (loop_dump_stream,
6402 "Cannot eliminate biv %d: biv used in insn %d.\n",
6403 bl->regno, INSN_UID (p));
6404 break;
6405 }
6406 }
6407
6408 if (p == end)
6409 {
6410 if (loop_dump_stream)
6411 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6412 bl->regno, eliminate_p ? "was" : "can be");
6413 return 1;
6414 }
6415
6416 return 0;
6417 }
6418 \f
6419 /* If BL appears in X (part of the pattern of INSN), see if we can
6420 eliminate its use. If so, return 1. If not, return 0.
6421
6422 If BIV does not appear in X, return 1.
6423
6424 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6425 where extra insns should be added. Depending on how many items have been
6426 moved out of the loop, it will either be before INSN or at the start of
6427 the loop. */
6428
6429 static int
6430 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6431 rtx x, insn;
6432 struct iv_class *bl;
6433 int eliminate_p;
6434 rtx where;
6435 {
6436 enum rtx_code code = GET_CODE (x);
6437 rtx reg = bl->biv->dest_reg;
6438 enum machine_mode mode = GET_MODE (reg);
6439 struct induction *v;
6440 rtx arg, new, tem;
6441 int arg_operand;
6442 char *fmt;
6443 int i, j;
6444
6445 switch (code)
6446 {
6447 case REG:
6448 /* If we haven't already been able to do something with this BIV,
6449 we can't eliminate it. */
6450 if (x == reg)
6451 return 0;
6452 return 1;
6453
6454 case SET:
6455 /* If this sets the BIV, it is not a problem. */
6456 if (SET_DEST (x) == reg)
6457 return 1;
6458
6459 /* If this is an insn that defines a giv, it is also ok because
6460 it will go away when the giv is reduced. */
6461 for (v = bl->giv; v; v = v->next_iv)
6462 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6463 return 1;
6464
6465 #ifdef HAVE_cc0
6466 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6467 {
6468 /* Can replace with any giv that was reduced and
6469 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6470 Require a constant for MULT_VAL, so we know it's nonzero.
6471 ??? We disable this optimization to avoid potential
6472 overflows. */
6473
6474 for (v = bl->giv; v; v = v->next_iv)
6475 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6476 && v->add_val == const0_rtx
6477 && ! v->ignore && ! v->maybe_dead && v->always_computable
6478 && v->mode == mode
6479 && 0)
6480 {
6481 /* If the giv V had the auto-inc address optimization applied
6482 to it, and INSN occurs between the giv insn and the biv
6483 insn, then we must adjust the value used here.
6484 This is rare, so we don't bother to do so. */
6485 if (v->auto_inc_opt
6486 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6487 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6488 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6489 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6490 continue;
6491
6492 if (! eliminate_p)
6493 return 1;
6494
6495 /* If the giv has the opposite direction of change,
6496 then reverse the comparison. */
6497 if (INTVAL (v->mult_val) < 0)
6498 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
6499 const0_rtx, v->new_reg);
6500 else
6501 new = v->new_reg;
6502
6503 /* We can probably test that giv's reduced reg. */
6504 if (validate_change (insn, &SET_SRC (x), new, 0))
6505 return 1;
6506 }
6507
6508 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6509 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6510 Require a constant for MULT_VAL, so we know it's nonzero.
6511 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6512 overflow problem. */
6513
6514 for (v = bl->giv; v; v = v->next_iv)
6515 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6516 && ! v->ignore && ! v->maybe_dead && v->always_computable
6517 && v->mode == mode
6518 && (GET_CODE (v->add_val) == SYMBOL_REF
6519 || GET_CODE (v->add_val) == LABEL_REF
6520 || GET_CODE (v->add_val) == CONST
6521 || (GET_CODE (v->add_val) == REG
6522 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6523 {
6524 /* If the giv V had the auto-inc address optimization applied
6525 to it, and INSN occurs between the giv insn and the biv
6526 insn, then we must adjust the value used here.
6527 This is rare, so we don't bother to do so. */
6528 if (v->auto_inc_opt
6529 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6530 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6531 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6532 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6533 continue;
6534
6535 if (! eliminate_p)
6536 return 1;
6537
6538 /* If the giv has the opposite direction of change,
6539 then reverse the comparison. */
6540 if (INTVAL (v->mult_val) < 0)
6541 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
6542 v->new_reg);
6543 else
6544 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
6545 copy_rtx (v->add_val));
6546
6547 /* Replace biv with the giv's reduced register. */
6548 update_reg_last_use (v->add_val, insn);
6549 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6550 return 1;
6551
6552 /* Insn doesn't support that constant or invariant. Copy it
6553 into a register (it will be a loop invariant.) */
6554 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6555
6556 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6557 where);
6558
6559 /* Substitute the new register for its invariant value in
6560 the compare expression. */
6561 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6562 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6563 return 1;
6564 }
6565 }
6566 #endif
6567 break;
6568
6569 case COMPARE:
6570 case EQ: case NE:
6571 case GT: case GE: case GTU: case GEU:
6572 case LT: case LE: case LTU: case LEU:
6573 /* See if either argument is the biv. */
6574 if (XEXP (x, 0) == reg)
6575 arg = XEXP (x, 1), arg_operand = 1;
6576 else if (XEXP (x, 1) == reg)
6577 arg = XEXP (x, 0), arg_operand = 0;
6578 else
6579 break;
6580
6581 if (CONSTANT_P (arg))
6582 {
6583 /* First try to replace with any giv that has constant positive
6584 mult_val and constant add_val. We might be able to support
6585 negative mult_val, but it seems complex to do it in general. */
6586
6587 for (v = bl->giv; v; v = v->next_iv)
6588 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6589 && (GET_CODE (v->add_val) == SYMBOL_REF
6590 || GET_CODE (v->add_val) == LABEL_REF
6591 || GET_CODE (v->add_val) == CONST
6592 || (GET_CODE (v->add_val) == REG
6593 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6594 && ! v->ignore && ! v->maybe_dead && v->always_computable
6595 && v->mode == mode)
6596 {
6597 /* If the giv V had the auto-inc address optimization applied
6598 to it, and INSN occurs between the giv insn and the biv
6599 insn, then we must adjust the value used here.
6600 This is rare, so we don't bother to do so. */
6601 if (v->auto_inc_opt
6602 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6603 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6604 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6605 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6606 continue;
6607
6608 if (! eliminate_p)
6609 return 1;
6610
6611 /* Replace biv with the giv's reduced reg. */
6612 XEXP (x, 1-arg_operand) = v->new_reg;
6613
6614 /* If all constants are actually constant integers and
6615 the derived constant can be directly placed in the COMPARE,
6616 do so. */
6617 if (GET_CODE (arg) == CONST_INT
6618 && GET_CODE (v->mult_val) == CONST_INT
6619 && GET_CODE (v->add_val) == CONST_INT
6620 && validate_change (insn, &XEXP (x, arg_operand),
6621 GEN_INT (INTVAL (arg)
6622 * INTVAL (v->mult_val)
6623 + INTVAL (v->add_val)), 0))
6624 return 1;
6625
6626 /* Otherwise, load it into a register. */
6627 tem = gen_reg_rtx (mode);
6628 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6629 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6630 return 1;
6631
6632 /* If that failed, put back the change we made above. */
6633 XEXP (x, 1-arg_operand) = reg;
6634 }
6635
6636 /* Look for giv with positive constant mult_val and nonconst add_val.
6637 Insert insns to calculate new compare value.
6638 ??? Turn this off due to possible overflow. */
6639
6640 for (v = bl->giv; v; v = v->next_iv)
6641 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6642 && ! v->ignore && ! v->maybe_dead && v->always_computable
6643 && v->mode == mode
6644 && 0)
6645 {
6646 rtx tem;
6647
6648 /* If the giv V had the auto-inc address optimization applied
6649 to it, and INSN occurs between the giv insn and the biv
6650 insn, then we must adjust the value used here.
6651 This is rare, so we don't bother to do so. */
6652 if (v->auto_inc_opt
6653 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6654 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6655 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6656 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6657 continue;
6658
6659 if (! eliminate_p)
6660 return 1;
6661
6662 tem = gen_reg_rtx (mode);
6663
6664 /* Replace biv with giv's reduced register. */
6665 validate_change (insn, &XEXP (x, 1 - arg_operand),
6666 v->new_reg, 1);
6667
6668 /* Compute value to compare against. */
6669 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6670 /* Use it in this insn. */
6671 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6672 if (apply_change_group ())
6673 return 1;
6674 }
6675 }
6676 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6677 {
6678 if (invariant_p (arg) == 1)
6679 {
6680 /* Look for giv with constant positive mult_val and nonconst
6681 add_val. Insert insns to compute new compare value.
6682 ??? Turn this off due to possible overflow. */
6683
6684 for (v = bl->giv; v; v = v->next_iv)
6685 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6686 && ! v->ignore && ! v->maybe_dead && v->always_computable
6687 && v->mode == mode
6688 && 0)
6689 {
6690 rtx tem;
6691
6692 /* If the giv V had the auto-inc address optimization applied
6693 to it, and INSN occurs between the giv insn and the biv
6694 insn, then we must adjust the value used here.
6695 This is rare, so we don't bother to do so. */
6696 if (v->auto_inc_opt
6697 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6698 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6699 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6700 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6701 continue;
6702
6703 if (! eliminate_p)
6704 return 1;
6705
6706 tem = gen_reg_rtx (mode);
6707
6708 /* Replace biv with giv's reduced register. */
6709 validate_change (insn, &XEXP (x, 1 - arg_operand),
6710 v->new_reg, 1);
6711
6712 /* Compute value to compare against. */
6713 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6714 tem, where);
6715 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6716 if (apply_change_group ())
6717 return 1;
6718 }
6719 }
6720
6721 /* This code has problems. Basically, you can't know when
6722 seeing if we will eliminate BL, whether a particular giv
6723 of ARG will be reduced. If it isn't going to be reduced,
6724 we can't eliminate BL. We can try forcing it to be reduced,
6725 but that can generate poor code.
6726
6727 The problem is that the benefit of reducing TV, below should
6728 be increased if BL can actually be eliminated, but this means
6729 we might have to do a topological sort of the order in which
6730 we try to process biv. It doesn't seem worthwhile to do
6731 this sort of thing now. */
6732
6733 #if 0
6734 /* Otherwise the reg compared with had better be a biv. */
6735 if (GET_CODE (arg) != REG
6736 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6737 return 0;
6738
6739 /* Look for a pair of givs, one for each biv,
6740 with identical coefficients. */
6741 for (v = bl->giv; v; v = v->next_iv)
6742 {
6743 struct induction *tv;
6744
6745 if (v->ignore || v->maybe_dead || v->mode != mode)
6746 continue;
6747
6748 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6749 if (! tv->ignore && ! tv->maybe_dead
6750 && rtx_equal_p (tv->mult_val, v->mult_val)
6751 && rtx_equal_p (tv->add_val, v->add_val)
6752 && tv->mode == mode)
6753 {
6754 /* If the giv V had the auto-inc address optimization applied
6755 to it, and INSN occurs between the giv insn and the biv
6756 insn, then we must adjust the value used here.
6757 This is rare, so we don't bother to do so. */
6758 if (v->auto_inc_opt
6759 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6760 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6761 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6762 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6763 continue;
6764
6765 if (! eliminate_p)
6766 return 1;
6767
6768 /* Replace biv with its giv's reduced reg. */
6769 XEXP (x, 1-arg_operand) = v->new_reg;
6770 /* Replace other operand with the other giv's
6771 reduced reg. */
6772 XEXP (x, arg_operand) = tv->new_reg;
6773 return 1;
6774 }
6775 }
6776 #endif
6777 }
6778
6779 /* If we get here, the biv can't be eliminated. */
6780 return 0;
6781
6782 case MEM:
6783 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6784 biv is used in it, since it will be replaced. */
6785 for (v = bl->giv; v; v = v->next_iv)
6786 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6787 return 1;
6788 break;
6789
6790 default:
6791 break;
6792 }
6793
6794 /* See if any subexpression fails elimination. */
6795 fmt = GET_RTX_FORMAT (code);
6796 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6797 {
6798 switch (fmt[i])
6799 {
6800 case 'e':
6801 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6802 eliminate_p, where))
6803 return 0;
6804 break;
6805
6806 case 'E':
6807 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6808 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6809 eliminate_p, where))
6810 return 0;
6811 break;
6812 }
6813 }
6814
6815 return 1;
6816 }
6817 \f
6818 /* Return nonzero if the last use of REG
6819 is in an insn following INSN in the same basic block. */
6820
6821 static int
6822 last_use_this_basic_block (reg, insn)
6823 rtx reg;
6824 rtx insn;
6825 {
6826 rtx n;
6827 for (n = insn;
6828 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6829 n = NEXT_INSN (n))
6830 {
6831 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6832 return 1;
6833 }
6834 return 0;
6835 }
6836 \f
6837 /* Called via `note_stores' to record the initial value of a biv. Here we
6838 just record the location of the set and process it later. */
6839
6840 static void
6841 record_initial (dest, set)
6842 rtx dest;
6843 rtx set;
6844 {
6845 struct iv_class *bl;
6846
6847 if (GET_CODE (dest) != REG
6848 || REGNO (dest) >= max_reg_before_loop
6849 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6850 return;
6851
6852 bl = reg_biv_class[REGNO (dest)];
6853
6854 /* If this is the first set found, record it. */
6855 if (bl->init_insn == 0)
6856 {
6857 bl->init_insn = note_insn;
6858 bl->init_set = set;
6859 }
6860 }
6861 \f
6862 /* If any of the registers in X are "old" and currently have a last use earlier
6863 than INSN, update them to have a last use of INSN. Their actual last use
6864 will be the previous insn but it will not have a valid uid_luid so we can't
6865 use it. */
6866
6867 static void
6868 update_reg_last_use (x, insn)
6869 rtx x;
6870 rtx insn;
6871 {
6872 /* Check for the case where INSN does not have a valid luid. In this case,
6873 there is no need to modify the regno_last_uid, as this can only happen
6874 when code is inserted after the loop_end to set a pseudo's final value,
6875 and hence this insn will never be the last use of x. */
6876 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6877 && INSN_UID (insn) < max_uid_for_loop
6878 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6879 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6880 else
6881 {
6882 register int i, j;
6883 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6884 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6885 {
6886 if (fmt[i] == 'e')
6887 update_reg_last_use (XEXP (x, i), insn);
6888 else if (fmt[i] == 'E')
6889 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6890 update_reg_last_use (XVECEXP (x, i, j), insn);
6891 }
6892 }
6893 }
6894 \f
6895 /* Given a jump insn JUMP, return the condition that will cause it to branch
6896 to its JUMP_LABEL. If the condition cannot be understood, or is an
6897 inequality floating-point comparison which needs to be reversed, 0 will
6898 be returned.
6899
6900 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6901 insn used in locating the condition was found. If a replacement test
6902 of the condition is desired, it should be placed in front of that
6903 insn and we will be sure that the inputs are still valid.
6904
6905 The condition will be returned in a canonical form to simplify testing by
6906 callers. Specifically:
6907
6908 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6909 (2) Both operands will be machine operands; (cc0) will have been replaced.
6910 (3) If an operand is a constant, it will be the second operand.
6911 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6912 for GE, GEU, and LEU. */
6913
6914 rtx
6915 get_condition (jump, earliest)
6916 rtx jump;
6917 rtx *earliest;
6918 {
6919 enum rtx_code code;
6920 rtx prev = jump;
6921 rtx set;
6922 rtx tem;
6923 rtx op0, op1;
6924 int reverse_code = 0;
6925 int did_reverse_condition = 0;
6926
6927 /* If this is not a standard conditional jump, we can't parse it. */
6928 if (GET_CODE (jump) != JUMP_INSN
6929 || ! condjump_p (jump) || simplejump_p (jump))
6930 return 0;
6931
6932 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6933 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6934 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6935
6936 if (earliest)
6937 *earliest = jump;
6938
6939 /* If this branches to JUMP_LABEL when the condition is false, reverse
6940 the condition. */
6941 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6942 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6943 code = reverse_condition (code), did_reverse_condition ^= 1;
6944
6945 /* If we are comparing a register with zero, see if the register is set
6946 in the previous insn to a COMPARE or a comparison operation. Perform
6947 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6948 in cse.c */
6949
6950 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6951 {
6952 /* Set non-zero when we find something of interest. */
6953 rtx x = 0;
6954
6955 #ifdef HAVE_cc0
6956 /* If comparison with cc0, import actual comparison from compare
6957 insn. */
6958 if (op0 == cc0_rtx)
6959 {
6960 if ((prev = prev_nonnote_insn (prev)) == 0
6961 || GET_CODE (prev) != INSN
6962 || (set = single_set (prev)) == 0
6963 || SET_DEST (set) != cc0_rtx)
6964 return 0;
6965
6966 op0 = SET_SRC (set);
6967 op1 = CONST0_RTX (GET_MODE (op0));
6968 if (earliest)
6969 *earliest = prev;
6970 }
6971 #endif
6972
6973 /* If this is a COMPARE, pick up the two things being compared. */
6974 if (GET_CODE (op0) == COMPARE)
6975 {
6976 op1 = XEXP (op0, 1);
6977 op0 = XEXP (op0, 0);
6978 continue;
6979 }
6980 else if (GET_CODE (op0) != REG)
6981 break;
6982
6983 /* Go back to the previous insn. Stop if it is not an INSN. We also
6984 stop if it isn't a single set or if it has a REG_INC note because
6985 we don't want to bother dealing with it. */
6986
6987 if ((prev = prev_nonnote_insn (prev)) == 0
6988 || GET_CODE (prev) != INSN
6989 || FIND_REG_INC_NOTE (prev, 0)
6990 || (set = single_set (prev)) == 0)
6991 break;
6992
6993 /* If this is setting OP0, get what it sets it to if it looks
6994 relevant. */
6995 if (rtx_equal_p (SET_DEST (set), op0))
6996 {
6997 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6998
6999 if ((GET_CODE (SET_SRC (set)) == COMPARE
7000 || (((code == NE
7001 || (code == LT
7002 && GET_MODE_CLASS (inner_mode) == MODE_INT
7003 && (GET_MODE_BITSIZE (inner_mode)
7004 <= HOST_BITS_PER_WIDE_INT)
7005 && (STORE_FLAG_VALUE
7006 & ((HOST_WIDE_INT) 1
7007 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7008 #ifdef FLOAT_STORE_FLAG_VALUE
7009 || (code == LT
7010 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7011 && FLOAT_STORE_FLAG_VALUE < 0)
7012 #endif
7013 ))
7014 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
7015 x = SET_SRC (set);
7016 else if (((code == EQ
7017 || (code == GE
7018 && (GET_MODE_BITSIZE (inner_mode)
7019 <= HOST_BITS_PER_WIDE_INT)
7020 && GET_MODE_CLASS (inner_mode) == MODE_INT
7021 && (STORE_FLAG_VALUE
7022 & ((HOST_WIDE_INT) 1
7023 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7024 #ifdef FLOAT_STORE_FLAG_VALUE
7025 || (code == GE
7026 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7027 && FLOAT_STORE_FLAG_VALUE < 0)
7028 #endif
7029 ))
7030 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
7031 {
7032 /* We might have reversed a LT to get a GE here. But this wasn't
7033 actually the comparison of data, so we don't flag that we
7034 have had to reverse the condition. */
7035 did_reverse_condition ^= 1;
7036 reverse_code = 1;
7037 x = SET_SRC (set);
7038 }
7039 else
7040 break;
7041 }
7042
7043 else if (reg_set_p (op0, prev))
7044 /* If this sets OP0, but not directly, we have to give up. */
7045 break;
7046
7047 if (x)
7048 {
7049 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
7050 code = GET_CODE (x);
7051 if (reverse_code)
7052 {
7053 code = reverse_condition (code);
7054 did_reverse_condition ^= 1;
7055 reverse_code = 0;
7056 }
7057
7058 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
7059 if (earliest)
7060 *earliest = prev;
7061 }
7062 }
7063
7064 /* If constant is first, put it last. */
7065 if (CONSTANT_P (op0))
7066 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
7067
7068 /* If OP0 is the result of a comparison, we weren't able to find what
7069 was really being compared, so fail. */
7070 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
7071 return 0;
7072
7073 /* Canonicalize any ordered comparison with integers involving equality
7074 if we can do computations in the relevant mode and we do not
7075 overflow. */
7076
7077 if (GET_CODE (op1) == CONST_INT
7078 && GET_MODE (op0) != VOIDmode
7079 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
7080 {
7081 HOST_WIDE_INT const_val = INTVAL (op1);
7082 unsigned HOST_WIDE_INT uconst_val = const_val;
7083 unsigned HOST_WIDE_INT max_val
7084 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
7085
7086 switch (code)
7087 {
7088 case LE:
7089 if (const_val != max_val >> 1)
7090 code = LT, op1 = GEN_INT (const_val + 1);
7091 break;
7092
7093 /* When cross-compiling, const_val might be sign-extended from
7094 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
7095 case GE:
7096 if ((const_val & max_val)
7097 != (((HOST_WIDE_INT) 1
7098 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7099 code = GT, op1 = GEN_INT (const_val - 1);
7100 break;
7101
7102 case LEU:
7103 if (uconst_val < max_val)
7104 code = LTU, op1 = GEN_INT (uconst_val + 1);
7105 break;
7106
7107 case GEU:
7108 if (uconst_val != 0)
7109 code = GTU, op1 = GEN_INT (uconst_val - 1);
7110 break;
7111
7112 default:
7113 break;
7114 }
7115 }
7116
7117 /* If this was floating-point and we reversed anything other than an
7118 EQ or NE, return zero. */
7119 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7120 && did_reverse_condition && code != NE && code != EQ
7121 && ! flag_fast_math
7122 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7123 return 0;
7124
7125 #ifdef HAVE_cc0
7126 /* Never return CC0; return zero instead. */
7127 if (op0 == cc0_rtx)
7128 return 0;
7129 #endif
7130
7131 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
7132 }
7133
7134 /* Similar to above routine, except that we also put an invariant last
7135 unless both operands are invariants. */
7136
7137 rtx
7138 get_condition_for_loop (x)
7139 rtx x;
7140 {
7141 rtx comparison = get_condition (x, NULL_PTR);
7142
7143 if (comparison == 0
7144 || ! invariant_p (XEXP (comparison, 0))
7145 || invariant_p (XEXP (comparison, 1)))
7146 return comparison;
7147
7148 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
7149 XEXP (comparison, 1), XEXP (comparison, 0));
7150 }
7151
7152 #ifdef HAIFA
7153 /* Analyze a loop in order to instrument it with the use of count register.
7154 loop_start and loop_end are the first and last insns of the loop.
7155 This function works in cooperation with insert_bct ().
7156 loop_can_insert_bct[loop_num] is set according to whether the optimization
7157 is applicable to the loop. When it is applicable, the following variables
7158 are also set:
7159 loop_start_value[loop_num]
7160 loop_comparison_value[loop_num]
7161 loop_increment[loop_num]
7162 loop_comparison_code[loop_num] */
7163
7164 static
7165 void analyze_loop_iterations (loop_start, loop_end)
7166 rtx loop_start, loop_end;
7167 {
7168 rtx comparison, comparison_value;
7169 rtx iteration_var, initial_value, increment;
7170 enum rtx_code comparison_code;
7171
7172 rtx last_loop_insn;
7173 rtx insn;
7174 int i;
7175
7176 /* loop_variable mode */
7177 enum machine_mode original_mode;
7178
7179 /* find the number of the loop */
7180 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7181
7182 /* we change our mind only when we are sure that loop will be instrumented */
7183 loop_can_insert_bct[loop_num] = 0;
7184
7185 /* is the optimization suppressed. */
7186 if ( !flag_branch_on_count_reg )
7187 return;
7188
7189 /* make sure that count-reg is not in use */
7190 if (loop_used_count_register[loop_num]){
7191 if (loop_dump_stream)
7192 fprintf (loop_dump_stream,
7193 "analyze_loop_iterations %d: BCT instrumentation failed: count register already in use\n",
7194 loop_num);
7195 return;
7196 }
7197
7198 /* make sure that the function has no indirect jumps. */
7199 if (indirect_jump_in_function){
7200 if (loop_dump_stream)
7201 fprintf (loop_dump_stream,
7202 "analyze_loop_iterations %d: BCT instrumentation failed: indirect jump in function\n",
7203 loop_num);
7204 return;
7205 }
7206
7207 /* make sure that the last loop insn is a conditional jump */
7208 last_loop_insn = PREV_INSN (loop_end);
7209 if (GET_CODE (last_loop_insn) != JUMP_INSN || !condjump_p (last_loop_insn)) {
7210 if (loop_dump_stream)
7211 fprintf (loop_dump_stream,
7212 "analyze_loop_iterations %d: BCT instrumentation failed: invalid jump at loop end\n",
7213 loop_num);
7214 return;
7215 }
7216
7217 /* First find the iteration variable. If the last insn is a conditional
7218 branch, and the insn preceding it tests a register value, make that
7219 register the iteration variable. */
7220
7221 /* We used to use prev_nonnote_insn here, but that fails because it might
7222 accidentally get the branch for a contained loop if the branch for this
7223 loop was deleted. We can only trust branches immediately before the
7224 loop_end. */
7225
7226 comparison = get_condition_for_loop (last_loop_insn);
7227 /* ??? Get_condition may switch position of induction variable and
7228 invariant register when it canonicalizes the comparison. */
7229
7230 if (comparison == 0) {
7231 if (loop_dump_stream)
7232 fprintf (loop_dump_stream,
7233 "analyze_loop_iterations %d: BCT instrumentation failed: comparison not found\n",
7234 loop_num);
7235 return;
7236 }
7237
7238 comparison_code = GET_CODE (comparison);
7239 iteration_var = XEXP (comparison, 0);
7240 comparison_value = XEXP (comparison, 1);
7241
7242 original_mode = GET_MODE (iteration_var);
7243 if (GET_MODE_CLASS (original_mode) != MODE_INT
7244 || GET_MODE_SIZE (original_mode) != UNITS_PER_WORD) {
7245 if (loop_dump_stream)
7246 fprintf (loop_dump_stream,
7247 "analyze_loop_iterations %d: BCT Instrumentation failed: loop variable not integer\n",
7248 loop_num);
7249 return;
7250 }
7251
7252 /* get info about loop bounds and increment */
7253 iteration_info (iteration_var, &initial_value, &increment,
7254 loop_start, loop_end);
7255
7256 /* make sure that all required loop data were found */
7257 if (!(initial_value && increment && comparison_value
7258 && invariant_p (comparison_value) && invariant_p (increment)
7259 && ! indirect_jump_in_function))
7260 {
7261 if (loop_dump_stream) {
7262 fprintf (loop_dump_stream,
7263 "analyze_loop_iterations %d: BCT instrumentation failed because of wrong loop: ", loop_num);
7264 if (!(initial_value && increment && comparison_value)) {
7265 fprintf (loop_dump_stream, "\tbounds not available: ");
7266 if ( ! initial_value )
7267 fprintf (loop_dump_stream, "initial ");
7268 if ( ! increment )
7269 fprintf (loop_dump_stream, "increment ");
7270 if ( ! comparison_value )
7271 fprintf (loop_dump_stream, "comparison ");
7272 fprintf (loop_dump_stream, "\n");
7273 }
7274 if (!invariant_p (comparison_value) || !invariant_p (increment))
7275 fprintf (loop_dump_stream, "\tloop bounds not invariant\n");
7276 }
7277 return;
7278 }
7279
7280 /* make sure that the increment is constant */
7281 if (GET_CODE (increment) != CONST_INT) {
7282 if (loop_dump_stream)
7283 fprintf (loop_dump_stream,
7284 "analyze_loop_iterations %d: instrumentation failed: not arithmetic loop\n",
7285 loop_num);
7286 return;
7287 }
7288
7289 /* make sure that the loop contains neither function call, nor jump on table.
7290 (the count register might be altered by the called function, and might
7291 be used for a branch on table). */
7292 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn)) {
7293 if (GET_CODE (insn) == CALL_INSN){
7294 if (loop_dump_stream)
7295 fprintf (loop_dump_stream,
7296 "analyze_loop_iterations %d: BCT instrumentation failed: function call in the loop\n",
7297 loop_num);
7298 return;
7299 }
7300
7301 if (GET_CODE (insn) == JUMP_INSN
7302 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
7303 || GET_CODE (PATTERN (insn)) == ADDR_VEC)){
7304 if (loop_dump_stream)
7305 fprintf (loop_dump_stream,
7306 "analyze_loop_iterations %d: BCT instrumentation failed: computed branch in the loop\n",
7307 loop_num);
7308 return;
7309 }
7310 }
7311
7312 /* At this point, we are sure that the loop can be instrumented with BCT.
7313 Some of the loops, however, will not be instrumented - the final decision
7314 is taken by insert_bct () */
7315 if (loop_dump_stream)
7316 fprintf (loop_dump_stream,
7317 "analyze_loop_iterations: loop (luid =%d) can be BCT instrumented.\n",
7318 loop_num);
7319
7320 /* mark all enclosing loops that they cannot use count register */
7321 /* ???: In fact, since insert_bct may decide not to instrument this loop,
7322 marking here may prevent instrumenting an enclosing loop that could
7323 actually be instrumented. But since this is rare, it is safer to mark
7324 here in case the order of calling (analyze/insert)_bct would be changed. */
7325 for (i=loop_num; i != -1; i = loop_outer_loop[i])
7326 loop_used_count_register[i] = 1;
7327
7328 /* Set data structures which will be used by the instrumentation phase */
7329 loop_start_value[loop_num] = initial_value;
7330 loop_comparison_value[loop_num] = comparison_value;
7331 loop_increment[loop_num] = increment;
7332 loop_comparison_code[loop_num] = comparison_code;
7333 loop_can_insert_bct[loop_num] = 1;
7334 }
7335
7336
7337 /* instrument loop for insertion of bct instruction. We distinguish between
7338 loops with compile-time bounds, to those with run-time bounds. The loop
7339 behaviour is analized according to the following characteristics/variables:
7340 ; Input variables:
7341 ; comparison-value: the value to which the iteration counter is compared.
7342 ; initial-value: iteration-counter initial value.
7343 ; increment: iteration-counter increment.
7344 ; Computed variables:
7345 ; increment-direction: the sign of the increment.
7346 ; compare-direction: '1' for GT, GTE, '-1' for LT, LTE, '0' for NE.
7347 ; range-direction: sign (comparison-value - initial-value)
7348 We give up on the following cases:
7349 ; loop variable overflow.
7350 ; run-time loop bounds with comparison code NE.
7351 */
7352
7353 static void
7354 insert_bct (loop_start, loop_end)
7355 rtx loop_start, loop_end;
7356 {
7357 rtx initial_value, comparison_value, increment;
7358 enum rtx_code comparison_code;
7359
7360 int increment_direction, compare_direction;
7361 int unsigned_p = 0;
7362
7363 /* if the loop condition is <= or >=, the number of iteration
7364 is 1 more than the range of the bounds of the loop */
7365 int add_iteration = 0;
7366
7367 /* the only machine mode we work with - is the integer of the size that the
7368 machine has */
7369 enum machine_mode loop_var_mode = SImode;
7370
7371 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7372
7373 /* get loop-variables. No need to check that these are valid - already
7374 checked in analyze_loop_iterations (). */
7375 comparison_code = loop_comparison_code[loop_num];
7376 initial_value = loop_start_value[loop_num];
7377 comparison_value = loop_comparison_value[loop_num];
7378 increment = loop_increment[loop_num];
7379
7380 /* check analyze_loop_iterations decision for this loop. */
7381 if (! loop_can_insert_bct[loop_num]){
7382 if (loop_dump_stream)
7383 fprintf (loop_dump_stream,
7384 "insert_bct: [%d] - was decided not to instrument by analyze_loop_iterations ()\n",
7385 loop_num);
7386 return;
7387 }
7388
7389 /* It's impossible to instrument a competely unrolled loop. */
7390 if (loop_unroll_factor [loop_num] == -1)
7391 return;
7392
7393 /* make sure that the last loop insn is a conditional jump .
7394 This check is repeated from analyze_loop_iterations (),
7395 because unrolling might have changed that. */
7396 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7397 || !condjump_p (PREV_INSN (loop_end))) {
7398 if (loop_dump_stream)
7399 fprintf (loop_dump_stream,
7400 "insert_bct: not instrumenting BCT because of invalid branch\n");
7401 return;
7402 }
7403
7404 /* fix increment in case loop was unrolled. */
7405 if (loop_unroll_factor [loop_num] > 1)
7406 increment = GEN_INT ( INTVAL (increment) * loop_unroll_factor [loop_num] );
7407
7408 /* determine properties and directions of the loop */
7409 increment_direction = (INTVAL (increment) > 0) ? 1:-1;
7410 switch ( comparison_code ) {
7411 case LEU:
7412 unsigned_p = 1;
7413 /* fallthrough */
7414 case LE:
7415 compare_direction = 1;
7416 add_iteration = 1;
7417 break;
7418 case GEU:
7419 unsigned_p = 1;
7420 /* fallthrough */
7421 case GE:
7422 compare_direction = -1;
7423 add_iteration = 1;
7424 break;
7425 case EQ:
7426 /* in this case we cannot know the number of iterations */
7427 if (loop_dump_stream)
7428 fprintf (loop_dump_stream,
7429 "insert_bct: %d: loop cannot be instrumented: == in condition\n",
7430 loop_num);
7431 return;
7432 case LTU:
7433 unsigned_p = 1;
7434 /* fallthrough */
7435 case LT:
7436 compare_direction = 1;
7437 break;
7438 case GTU:
7439 unsigned_p = 1;
7440 /* fallthrough */
7441 case GT:
7442 compare_direction = -1;
7443 break;
7444 case NE:
7445 compare_direction = 0;
7446 break;
7447 default:
7448 abort ();
7449 }
7450
7451
7452 /* make sure that the loop does not end by an overflow */
7453 if (compare_direction != increment_direction) {
7454 if (loop_dump_stream)
7455 fprintf (loop_dump_stream,
7456 "insert_bct: %d: loop cannot be instrumented: terminated by overflow\n",
7457 loop_num);
7458 return;
7459 }
7460
7461 /* try to instrument the loop. */
7462
7463 /* Handle the simpler case, where the bounds are known at compile time. */
7464 if (GET_CODE (initial_value) == CONST_INT && GET_CODE (comparison_value) == CONST_INT)
7465 {
7466 int n_iterations;
7467 int increment_value_abs = INTVAL (increment) * increment_direction;
7468
7469 /* check the relation between compare-val and initial-val */
7470 int difference = INTVAL (comparison_value) - INTVAL (initial_value);
7471 int range_direction = (difference > 0) ? 1 : -1;
7472
7473 /* make sure the loop executes enough iterations to gain from BCT */
7474 if (difference > -3 && difference < 3) {
7475 if (loop_dump_stream)
7476 fprintf (loop_dump_stream,
7477 "insert_bct: loop %d not BCT instrumented: too small iteration count.\n",
7478 loop_num);
7479 return;
7480 }
7481
7482 /* make sure that the loop executes at least once */
7483 if ((range_direction == 1 && compare_direction == -1)
7484 || (range_direction == -1 && compare_direction == 1))
7485 {
7486 if (loop_dump_stream)
7487 fprintf (loop_dump_stream,
7488 "insert_bct: loop %d: does not iterate even once. Not instrumenting.\n",
7489 loop_num);
7490 return;
7491 }
7492
7493 /* make sure that the loop does not end by an overflow (in compile time
7494 bounds we must have an additional check for overflow, because here
7495 we also support the compare code of 'NE'. */
7496 if (comparison_code == NE
7497 && increment_direction != range_direction) {
7498 if (loop_dump_stream)
7499 fprintf (loop_dump_stream,
7500 "insert_bct (compile time bounds): %d: loop not instrumented: terminated by overflow\n",
7501 loop_num);
7502 return;
7503 }
7504
7505 /* Determine the number of iterations by:
7506 ;
7507 ; compare-val - initial-val + (increment -1) + additional-iteration
7508 ; num_iterations = -----------------------------------------------------------------
7509 ; increment
7510 */
7511 difference = (range_direction > 0) ? difference : -difference;
7512 #if 0
7513 fprintf (stderr, "difference is: %d\n", difference); /* @*/
7514 fprintf (stderr, "increment_value_abs is: %d\n", increment_value_abs); /* @*/
7515 fprintf (stderr, "add_iteration is: %d\n", add_iteration); /* @*/
7516 fprintf (stderr, "INTVAL (comparison_value) is: %d\n", INTVAL (comparison_value)); /* @*/
7517 fprintf (stderr, "INTVAL (initial_value) is: %d\n", INTVAL (initial_value)); /* @*/
7518 #endif
7519
7520 if (increment_value_abs == 0) {
7521 fprintf (stderr, "insert_bct: error: increment == 0 !!!\n");
7522 abort ();
7523 }
7524 n_iterations = (difference + increment_value_abs - 1 + add_iteration)
7525 / increment_value_abs;
7526
7527 #if 0
7528 fprintf (stderr, "number of iterations is: %d\n", n_iterations); /* @*/
7529 #endif
7530 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
7531
7532 /* Done with this loop. */
7533 return;
7534 }
7535
7536 /* Handle the more complex case, that the bounds are NOT known at compile time. */
7537 /* In this case we generate run_time calculation of the number of iterations */
7538
7539 /* With runtime bounds, if the compare is of the form '!=' we give up */
7540 if (comparison_code == NE) {
7541 if (loop_dump_stream)
7542 fprintf (loop_dump_stream,
7543 "insert_bct: fail for loop %d: runtime bounds with != comparison\n",
7544 loop_num);
7545 return;
7546 }
7547
7548 else {
7549 /* We rely on the existence of run-time guard to ensure that the
7550 loop executes at least once. */
7551 rtx sequence;
7552 rtx iterations_num_reg;
7553
7554 int increment_value_abs = INTVAL (increment) * increment_direction;
7555
7556 /* make sure that the increment is a power of two, otherwise (an
7557 expensive) divide is needed. */
7558 if (exact_log2 (increment_value_abs) == -1)
7559 {
7560 if (loop_dump_stream)
7561 fprintf (loop_dump_stream,
7562 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
7563 return;
7564 }
7565
7566 /* compute the number of iterations */
7567 start_sequence ();
7568 {
7569 /* CYGNUS LOCAL: HAIFA bug fix */
7570 rtx temp_reg;
7571
7572 /* Again, the number of iterations is calculated by:
7573 ;
7574 ; compare-val - initial-val + (increment -1) + additional-iteration
7575 ; num_iterations = -----------------------------------------------------------------
7576 ; increment
7577 */
7578 /* ??? Do we have to call copy_rtx here before passing rtx to
7579 expand_binop? */
7580 if (compare_direction > 0) {
7581 /* <, <= :the loop variable is increasing */
7582 temp_reg = expand_binop (loop_var_mode, sub_optab, comparison_value,
7583 initial_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7584 }
7585 else {
7586 temp_reg = expand_binop (loop_var_mode, sub_optab, initial_value,
7587 comparison_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7588 }
7589
7590 if (increment_value_abs - 1 + add_iteration != 0)
7591 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
7592 GEN_INT (increment_value_abs - 1 + add_iteration),
7593 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7594
7595 if (increment_value_abs != 1)
7596 {
7597 /* ??? This will generate an expensive divide instruction for
7598 most targets. The original authors apparently expected this
7599 to be a shift, since they test for power-of-2 divisors above,
7600 but just naively generating a divide instruction will not give
7601 a shift. It happens to work for the PowerPC target because
7602 the rs6000.md file has a divide pattern that emits shifts.
7603 It will probably not work for any other target. */
7604 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
7605 temp_reg,
7606 GEN_INT (increment_value_abs),
7607 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7608 }
7609 else
7610 iterations_num_reg = temp_reg;
7611 /* END CYGNUS LOCAL: HAIFA bug fix */
7612 }
7613 sequence = gen_sequence ();
7614 end_sequence ();
7615 emit_insn_before (sequence, loop_start);
7616 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
7617 }
7618 }
7619
7620 /* instrument loop by inserting a bct in it. This is done in the following way:
7621 1. A new register is created and assigned the hard register number of the count
7622 register.
7623 2. In the head of the loop the new variable is initialized by the value passed in the
7624 loop_num_iterations parameter.
7625 3. At the end of the loop, comparison of the register with 0 is generated.
7626 The created comparison follows the pattern defined for the
7627 decrement_and_branch_on_count insn, so this insn will be generated in assembly
7628 generation phase.
7629 4. The compare&branch on the old variable is deleted. So, if the loop-variable was
7630 not used elsewhere, it will be eliminated by data-flow analisys. */
7631
7632 static void
7633 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
7634 rtx loop_start, loop_end;
7635 rtx loop_num_iterations;
7636 {
7637 rtx temp_reg1, temp_reg2;
7638 rtx start_label;
7639
7640 rtx sequence;
7641 enum machine_mode loop_var_mode = SImode;
7642
7643 #ifdef HAVE_decrement_and_branch_on_count
7644 if (HAVE_decrement_and_branch_on_count)
7645 {
7646 if (loop_dump_stream)
7647 fprintf (loop_dump_stream, "Loop: Inserting BCT\n");
7648
7649 /* eliminate the check on the old variable */
7650 delete_insn (PREV_INSN (loop_end));
7651 delete_insn (PREV_INSN (loop_end));
7652
7653 /* insert the label which will delimit the start of the loop */
7654 start_label = gen_label_rtx ();
7655 emit_label_after (start_label, loop_start);
7656
7657 /* insert initialization of the count register into the loop header */
7658 start_sequence ();
7659 temp_reg1 = gen_reg_rtx (loop_var_mode);
7660 emit_insn (gen_move_insn (temp_reg1, loop_num_iterations));
7661
7662 /* this will be count register */
7663 temp_reg2 = gen_rtx_REG (loop_var_mode, COUNT_REGISTER_REGNUM);
7664 /* we have to move the value to the count register from an GPR
7665 because rtx pointed to by loop_num_iterations could contain
7666 expression which cannot be moved into count register */
7667 emit_insn (gen_move_insn (temp_reg2, temp_reg1));
7668
7669 sequence = gen_sequence ();
7670 end_sequence ();
7671 emit_insn_after (sequence, loop_start);
7672
7673 /* insert new comparison on the count register instead of the
7674 old one, generating the needed BCT pattern (that will be
7675 later recognized by assembly generation phase). */
7676 emit_jump_insn_before (gen_decrement_and_branch_on_count (temp_reg2, start_label),
7677 loop_end);
7678 LABEL_NUSES (start_label)++;
7679 }
7680
7681 #endif /* HAVE_decrement_and_branch_on_count */
7682 }
7683 #endif /* HAIFA */
7684
7685 /* Scan the function and determine whether it has indirect (computed) jumps.
7686
7687 This is taken mostly from flow.c; similar code exists elsewhere
7688 in the compiler. It may be useful to put this into rtlanal.c. */
7689 static int
7690 indirect_jump_in_function_p (start)
7691 rtx start;
7692 {
7693 rtx insn;
7694
7695 for (insn = start; insn; insn = NEXT_INSN (insn))
7696 if (computed_jump_p (insn))
7697 return 1;
7698
7699 return 0;
7700 }