loop.c (count_one_set): New static function, broken out of count_loop_regs_set
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51 #include "toplev.h"
52
53 /* Vector mapping INSN_UIDs to luids.
54 The luids are like uids but increase monotonically always.
55 We use them to see whether a jump comes from outside a given loop. */
56
57 int *uid_luid;
58
59 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
60 number the insn is contained in. */
61
62 int *uid_loop_num;
63
64 /* 1 + largest uid of any insn. */
65
66 int max_uid_for_loop;
67
68 /* 1 + luid of last insn. */
69
70 static int max_luid;
71
72 /* Number of loops detected in current function. Used as index to the
73 next few tables. */
74
75 static int max_loop_num;
76
77 /* Indexed by loop number, contains the first and last insn of each loop. */
78
79 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
80
81 /* For each loop, gives the containing loop number, -1 if none. */
82
83 int *loop_outer_loop;
84
85 #ifdef HAVE_decrement_and_branch_on_count
86 /* Records whether resource in use by inner loop. */
87
88 int *loop_used_count_register;
89 #endif /* HAVE_decrement_and_branch_on_count */
90
91 /* For each loop, keep track of its unrolling factor.
92 Potential values:
93 0: unrolled
94 1: not unrolled.
95 -1: completely unrolled
96 >0: holds the unroll exact factor. */
97 int *loop_unroll_factor;
98
99 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
100 really a loop (an insn outside the loop branches into it). */
101
102 static char *loop_invalid;
103
104 /* Indexed by loop number, links together all LABEL_REFs which refer to
105 code labels outside the loop. Used by routines that need to know all
106 loop exits, such as final_biv_value and final_giv_value.
107
108 This does not include loop exits due to return instructions. This is
109 because all bivs and givs are pseudos, and hence must be dead after a
110 return, so the presense of a return does not affect any of the
111 optimizations that use this info. It is simpler to just not include return
112 instructions on this list. */
113
114 rtx *loop_number_exit_labels;
115
116 /* Indexed by loop number, counts the number of LABEL_REFs on
117 loop_number_exit_labels for this loop and all loops nested inside it. */
118
119 int *loop_number_exit_count;
120
121 /* Holds the number of loop iterations. It is zero if the number could not be
122 calculated. Must be unsigned since the number of iterations can
123 be as high as 2^wordsize-1. For loops with a wider iterator, this number
124 will be zero if the number of loop iterations is too large for an
125 unsigned integer to hold. */
126
127 unsigned HOST_WIDE_INT loop_n_iterations;
128
129 /* Nonzero if there is a subroutine call in the current loop. */
130
131 static int loop_has_call;
132
133 /* Nonzero if there is a volatile memory reference in the current
134 loop. */
135
136 static int loop_has_volatile;
137
138 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
139 current loop. A continue statement will generate a branch to
140 NEXT_INSN (loop_continue). */
141
142 static rtx loop_continue;
143
144 /* Indexed by register number, contains the number of times the reg
145 is set during the loop being scanned.
146 During code motion, a negative value indicates a reg that has been
147 made a candidate; in particular -2 means that it is an candidate that
148 we know is equal to a constant and -1 means that it is an candidate
149 not known equal to a constant.
150 After code motion, regs moved have 0 (which is accurate now)
151 while the failed candidates have the original number of times set.
152
153 Therefore, at all times, == 0 indicates an invariant register;
154 < 0 a conditionally invariant one. */
155
156 static varray_type n_times_set;
157
158 /* Original value of n_times_set; same except that this value
159 is not set negative for a reg whose sets have been made candidates
160 and not set to 0 for a reg that is moved. */
161
162 static varray_type n_times_used;
163
164 /* Index by register number, 1 indicates that the register
165 cannot be moved or strength reduced. */
166
167 static varray_type may_not_optimize;
168
169 /* Nonzero means reg N has already been moved out of one loop.
170 This reduces the desire to move it out of another. */
171
172 static char *moved_once;
173
174 /* Array of MEMs that are stored in this loop. If there are too many to fit
175 here, we just turn on unknown_address_altered. */
176
177 #define NUM_STORES 30
178 static rtx loop_store_mems[NUM_STORES];
179
180 /* Index of first available slot in above array. */
181 static int loop_store_mems_idx;
182
183 typedef struct loop_mem_info {
184 rtx mem; /* The MEM itself. */
185 rtx reg; /* Corresponding pseudo, if any. */
186 int optimize; /* Nonzero if we can optimize access to this MEM. */
187 } loop_mem_info;
188
189 /* Array of MEMs that are used (read or written) in this loop, but
190 cannot be aliased by anything in this loop, except perhaps
191 themselves. In other words, if loop_mems[i] is altered during the
192 loop, it is altered by an expression that is rtx_equal_p to it. */
193
194 static loop_mem_info *loop_mems;
195
196 /* The index of the next available slot in LOOP_MEMS. */
197
198 static int loop_mems_idx;
199
200 /* The number of elements allocated in LOOP_MEMs. */
201
202 static int loop_mems_allocated;
203
204 /* Nonzero if we don't know what MEMs were changed in the current loop.
205 This happens if the loop contains a call (in which case `loop_has_call'
206 will also be set) or if we store into more than NUM_STORES MEMs. */
207
208 static int unknown_address_altered;
209
210 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
211 static int num_movables;
212
213 /* Count of memory write instructions discovered in the loop. */
214 static int num_mem_sets;
215
216 /* Number of loops contained within the current one, including itself. */
217 static int loops_enclosed;
218
219 /* Bound on pseudo register number before loop optimization.
220 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
221 int max_reg_before_loop;
222
223 /* This obstack is used in product_cheap_p to allocate its rtl. It
224 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
225 If we used the same obstack that it did, we would be deallocating
226 that array. */
227
228 static struct obstack temp_obstack;
229
230 /* This is where the pointer to the obstack being used for RTL is stored. */
231
232 extern struct obstack *rtl_obstack;
233
234 #define obstack_chunk_alloc xmalloc
235 #define obstack_chunk_free free
236 \f
237 /* During the analysis of a loop, a chain of `struct movable's
238 is made to record all the movable insns found.
239 Then the entire chain can be scanned to decide which to move. */
240
241 struct movable
242 {
243 rtx insn; /* A movable insn */
244 rtx set_src; /* The expression this reg is set from. */
245 rtx set_dest; /* The destination of this SET. */
246 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
247 of any registers used within the LIBCALL. */
248 int consec; /* Number of consecutive following insns
249 that must be moved with this one. */
250 int regno; /* The register it sets */
251 short lifetime; /* lifetime of that register;
252 may be adjusted when matching movables
253 that load the same value are found. */
254 short savings; /* Number of insns we can move for this reg,
255 including other movables that force this
256 or match this one. */
257 unsigned int cond : 1; /* 1 if only conditionally movable */
258 unsigned int force : 1; /* 1 means MUST move this insn */
259 unsigned int global : 1; /* 1 means reg is live outside this loop */
260 /* If PARTIAL is 1, GLOBAL means something different:
261 that the reg is live outside the range from where it is set
262 to the following label. */
263 unsigned int done : 1; /* 1 inhibits further processing of this */
264
265 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
266 In particular, moving it does not make it
267 invariant. */
268 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
269 load SRC, rather than copying INSN. */
270 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
271 first insn of a consecutive sets group. */
272 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
273 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
274 that we should avoid changing when clearing
275 the rest of the reg. */
276 struct movable *match; /* First entry for same value */
277 struct movable *forces; /* An insn that must be moved if this is */
278 struct movable *next;
279 };
280
281 static struct movable *the_movables;
282
283 FILE *loop_dump_stream;
284
285 /* Forward declarations. */
286
287 static void find_and_verify_loops PROTO((rtx));
288 static void mark_loop_jump PROTO((rtx, int));
289 static void prescan_loop PROTO((rtx, rtx));
290 static int reg_in_basic_block_p PROTO((rtx, rtx));
291 static int consec_sets_invariant_p PROTO((rtx, int, rtx));
292 static rtx libcall_other_reg PROTO((rtx, rtx));
293 static int labels_in_range_p PROTO((rtx, int));
294 static void count_loop_regs_set PROTO((rtx, rtx, varray_type, varray_type,
295 int *, int));
296 static void note_addr_stored PROTO((rtx, rtx));
297 static int loop_reg_used_before_p PROTO((rtx, rtx, rtx, rtx, rtx));
298 static void scan_loop PROTO((rtx, rtx, int, int));
299 #if 0
300 static void replace_call_address PROTO((rtx, rtx, rtx));
301 #endif
302 static rtx skip_consec_insns PROTO((rtx, int));
303 static int libcall_benefit PROTO((rtx));
304 static void ignore_some_movables PROTO((struct movable *));
305 static void force_movables PROTO((struct movable *));
306 static void combine_movables PROTO((struct movable *, int));
307 static int regs_match_p PROTO((rtx, rtx, struct movable *));
308 static int rtx_equal_for_loop_p PROTO((rtx, rtx, struct movable *));
309 static void add_label_notes PROTO((rtx, rtx));
310 static void move_movables PROTO((struct movable *, int, int, rtx, rtx, int));
311 static int count_nonfixed_reads PROTO((rtx));
312 static void strength_reduce PROTO((rtx, rtx, rtx, int, rtx, rtx, int, int));
313 static void find_single_use_in_loop PROTO((rtx, rtx, varray_type));
314 static int valid_initial_value_p PROTO((rtx, rtx, int, rtx));
315 static void find_mem_givs PROTO((rtx, rtx, int, rtx, rtx));
316 static void record_biv PROTO((struct induction *, rtx, rtx, rtx, rtx, int, int));
317 static void check_final_value PROTO((struct induction *, rtx, rtx));
318 static void record_giv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx, int, enum g_types, int, rtx *, rtx, rtx));
319 static void update_giv_derive PROTO((rtx));
320 static int basic_induction_var PROTO((rtx, enum machine_mode, rtx, rtx, rtx *, rtx *));
321 static rtx simplify_giv_expr PROTO((rtx, int *));
322 static int general_induction_var PROTO((rtx, rtx *, rtx *, rtx *, int, int *));
323 static int consec_sets_giv PROTO((int, rtx, rtx, rtx, rtx *, rtx *));
324 static int check_dbra_loop PROTO((rtx, int, rtx));
325 static rtx express_from_1 PROTO((rtx, rtx, rtx));
326 static rtx express_from PROTO((struct induction *, struct induction *));
327 static rtx combine_givs_p PROTO((struct induction *, struct induction *));
328 static void combine_givs PROTO((struct iv_class *));
329 static int product_cheap_p PROTO((rtx, rtx));
330 static int maybe_eliminate_biv PROTO((struct iv_class *, rtx, rtx, int, int, int));
331 static int maybe_eliminate_biv_1 PROTO((rtx, rtx, struct iv_class *, int, rtx));
332 static int last_use_this_basic_block PROTO((rtx, rtx));
333 static void record_initial PROTO((rtx, rtx));
334 static void update_reg_last_use PROTO((rtx, rtx));
335 static rtx next_insn_in_loop PROTO((rtx, rtx, rtx, rtx));
336 static void load_mems_and_recount_loop_regs_set PROTO((rtx, rtx, rtx,
337 rtx, varray_type,
338 int *));
339 static void load_mems PROTO((rtx, rtx, rtx, rtx));
340 static int insert_loop_mem PROTO((rtx *, void *));
341 static int replace_loop_mem PROTO((rtx *, void *));
342 static int replace_label PROTO((rtx *, void *));
343
344 typedef struct rtx_and_int {
345 rtx r;
346 int i;
347 } rtx_and_int;
348
349 typedef struct rtx_pair {
350 rtx r1;
351 rtx r2;
352 } rtx_pair;
353
354 /* Nonzero iff INSN is between START and END, inclusive. */
355 #define INSN_IN_RANGE_P(INSN, START, END) \
356 (INSN_UID (INSN) < max_uid_for_loop \
357 && INSN_LUID (INSN) >= INSN_LUID (START) \
358 && INSN_LUID (INSN) <= INSN_LUID (END))
359
360 #ifdef HAVE_decrement_and_branch_on_count
361 /* Test whether BCT applicable and safe. */
362 static void insert_bct PROTO((rtx, rtx));
363
364 /* Auxiliary function that inserts the BCT pattern into the loop. */
365 static void instrument_loop_bct PROTO((rtx, rtx, rtx));
366 #endif /* HAVE_decrement_and_branch_on_count */
367
368 /* Indirect_jump_in_function is computed once per function. */
369 int indirect_jump_in_function = 0;
370 static int indirect_jump_in_function_p PROTO((rtx));
371
372 \f
373 /* Relative gain of eliminating various kinds of operations. */
374 static int add_cost;
375 #if 0
376 static int shift_cost;
377 static int mult_cost;
378 #endif
379
380 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
381 copy the value of the strength reduced giv to its original register. */
382 static int copy_cost;
383
384 /* Cost of using a register, to normalize the benefits of a giv. */
385 static int reg_address_cost;
386
387
388 void
389 init_loop ()
390 {
391 char *free_point = (char *) oballoc (1);
392 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
393
394 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
395
396 #ifdef ADDRESS_COST
397 reg_address_cost = ADDRESS_COST (reg);
398 #else
399 reg_address_cost = rtx_cost (reg, MEM);
400 #endif
401
402 /* We multiply by 2 to reconcile the difference in scale between
403 these two ways of computing costs. Otherwise the cost of a copy
404 will be far less than the cost of an add. */
405
406 copy_cost = 2 * 2;
407
408 /* Free the objects we just allocated. */
409 obfree (free_point);
410
411 /* Initialize the obstack used for rtl in product_cheap_p. */
412 gcc_obstack_init (&temp_obstack);
413 }
414 \f
415 /* Entry point of this file. Perform loop optimization
416 on the current function. F is the first insn of the function
417 and DUMPFILE is a stream for output of a trace of actions taken
418 (or 0 if none should be output). */
419
420 void
421 loop_optimize (f, dumpfile, unroll_p, bct_p)
422 /* f is the first instruction of a chain of insns for one function */
423 rtx f;
424 FILE *dumpfile;
425 int unroll_p, bct_p;
426 {
427 register rtx insn;
428 register int i;
429 rtx last_insn;
430
431 loop_dump_stream = dumpfile;
432
433 init_recog_no_volatile ();
434
435 max_reg_before_loop = max_reg_num ();
436
437 moved_once = (char *) alloca (max_reg_before_loop);
438 bzero (moved_once, max_reg_before_loop);
439
440 regs_may_share = 0;
441
442 /* Count the number of loops. */
443
444 max_loop_num = 0;
445 for (insn = f; insn; insn = NEXT_INSN (insn))
446 {
447 if (GET_CODE (insn) == NOTE
448 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
449 max_loop_num++;
450 }
451
452 /* Don't waste time if no loops. */
453 if (max_loop_num == 0)
454 return;
455
456 /* Get size to use for tables indexed by uids.
457 Leave some space for labels allocated by find_and_verify_loops. */
458 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
459
460 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
461 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
462
463 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
464 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
465
466 /* Allocate tables for recording each loop. We set each entry, so they need
467 not be zeroed. */
468 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
469 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
470 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
471 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
472 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
473 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
474
475 /* This is initialized by the unrolling code, so we go ahead
476 and clear them just in case we are not performing loop
477 unrolling. */
478 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
479 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
480
481 #ifdef HAVE_decrement_and_branch_on_count
482 /* Allocate for BCT optimization */
483 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
484 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
485 #endif /* HAVE_decrement_and_branch_on_count */
486
487 /* Find and process each loop.
488 First, find them, and record them in order of their beginnings. */
489 find_and_verify_loops (f);
490
491 /* Now find all register lifetimes. This must be done after
492 find_and_verify_loops, because it might reorder the insns in the
493 function. */
494 reg_scan (f, max_reg_num (), 1);
495
496 /* This must occur after reg_scan so that registers created by gcse
497 will have entries in the register tables.
498
499 We could have added a call to reg_scan after gcse_main in toplev.c,
500 but moving this call to init_alias_analysis is more efficient. */
501 init_alias_analysis ();
502
503 /* See if we went too far. */
504 if (get_max_uid () > max_uid_for_loop)
505 abort ();
506 /* Now reset it to the actual size we need. See above. */
507 max_uid_for_loop = get_max_uid () + 1;
508
509 /* Compute the mapping from uids to luids.
510 LUIDs are numbers assigned to insns, like uids,
511 except that luids increase monotonically through the code.
512 Don't assign luids to line-number NOTEs, so that the distance in luids
513 between two insns is not affected by -g. */
514
515 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
516 {
517 last_insn = insn;
518 if (GET_CODE (insn) != NOTE
519 || NOTE_LINE_NUMBER (insn) <= 0)
520 uid_luid[INSN_UID (insn)] = ++i;
521 else
522 /* Give a line number note the same luid as preceding insn. */
523 uid_luid[INSN_UID (insn)] = i;
524 }
525
526 max_luid = i + 1;
527
528 /* Don't leave gaps in uid_luid for insns that have been
529 deleted. It is possible that the first or last insn
530 using some register has been deleted by cross-jumping.
531 Make sure that uid_luid for that former insn's uid
532 points to the general area where that insn used to be. */
533 for (i = 0; i < max_uid_for_loop; i++)
534 {
535 uid_luid[0] = uid_luid[i];
536 if (uid_luid[0] != 0)
537 break;
538 }
539 for (i = 0; i < max_uid_for_loop; i++)
540 if (uid_luid[i] == 0)
541 uid_luid[i] = uid_luid[i - 1];
542
543 /* Create a mapping from loops to BLOCK tree nodes. */
544 if (unroll_p && write_symbols != NO_DEBUG)
545 find_loop_tree_blocks ();
546
547 /* Determine if the function has indirect jump. On some systems
548 this prevents low overhead loop instructions from being used. */
549 indirect_jump_in_function = indirect_jump_in_function_p (f);
550
551 /* Now scan the loops, last ones first, since this means inner ones are done
552 before outer ones. */
553 for (i = max_loop_num-1; i >= 0; i--)
554 if (! loop_invalid[i] && loop_number_loop_ends[i])
555 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
556 unroll_p, bct_p);
557
558 /* If debugging and unrolling loops, we must replicate the tree nodes
559 corresponding to the blocks inside the loop, so that the original one
560 to one mapping will remain. */
561 if (unroll_p && write_symbols != NO_DEBUG)
562 unroll_block_trees ();
563
564 end_alias_analysis ();
565 }
566 \f
567 /* Returns the next insn, in execution order, after INSN. START and
568 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
569 respectively. LOOP_TOP, if non-NULL, is the top of the loop in the
570 insn-stream; it is used with loops that are entered near the
571 bottom. */
572
573 static rtx
574 next_insn_in_loop (insn, start, end, loop_top)
575 rtx insn;
576 rtx start;
577 rtx end;
578 rtx loop_top;
579 {
580 insn = NEXT_INSN (insn);
581
582 if (insn == end)
583 {
584 if (loop_top)
585 /* Go to the top of the loop, and continue there. */
586 insn = loop_top;
587 else
588 /* We're done. */
589 insn = NULL_RTX;
590 }
591
592 if (insn == start)
593 /* We're done. */
594 insn = NULL_RTX;
595
596 return insn;
597 }
598
599 /* Optimize one loop whose start is LOOP_START and end is END.
600 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
601 NOTE_INSN_LOOP_END. */
602
603 /* ??? Could also move memory writes out of loops if the destination address
604 is invariant, the source is invariant, the memory write is not volatile,
605 and if we can prove that no read inside the loop can read this address
606 before the write occurs. If there is a read of this address after the
607 write, then we can also mark the memory read as invariant. */
608
609 static void
610 scan_loop (loop_start, end, unroll_p, bct_p)
611 rtx loop_start, end;
612 int unroll_p, bct_p;
613 {
614 register int i;
615 rtx p;
616 /* 1 if we are scanning insns that could be executed zero times. */
617 int maybe_never = 0;
618 /* 1 if we are scanning insns that might never be executed
619 due to a subroutine call which might exit before they are reached. */
620 int call_passed = 0;
621 /* For a rotated loop that is entered near the bottom,
622 this is the label at the top. Otherwise it is zero. */
623 rtx loop_top = 0;
624 /* Jump insn that enters the loop, or 0 if control drops in. */
625 rtx loop_entry_jump = 0;
626 /* Place in the loop where control enters. */
627 rtx scan_start;
628 /* Number of insns in the loop. */
629 int insn_count;
630 int in_libcall = 0;
631 int tem;
632 rtx temp;
633 /* The SET from an insn, if it is the only SET in the insn. */
634 rtx set, set1;
635 /* Chain describing insns movable in current loop. */
636 struct movable *movables = 0;
637 /* Last element in `movables' -- so we can add elements at the end. */
638 struct movable *last_movable = 0;
639 /* Ratio of extra register life span we can justify
640 for saving an instruction. More if loop doesn't call subroutines
641 since in that case saving an insn makes more difference
642 and more registers are available. */
643 int threshold;
644 /* If we have calls, contains the insn in which a register was used
645 if it was used exactly once; contains const0_rtx if it was used more
646 than once. */
647 varray_type reg_single_usage = 0;
648 /* Nonzero if we are scanning instructions in a sub-loop. */
649 int loop_depth = 0;
650 int nregs;
651
652 /* Determine whether this loop starts with a jump down to a test at
653 the end. This will occur for a small number of loops with a test
654 that is too complex to duplicate in front of the loop.
655
656 We search for the first insn or label in the loop, skipping NOTEs.
657 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
658 (because we might have a loop executed only once that contains a
659 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
660 (in case we have a degenerate loop).
661
662 Note that if we mistakenly think that a loop is entered at the top
663 when, in fact, it is entered at the exit test, the only effect will be
664 slightly poorer optimization. Making the opposite error can generate
665 incorrect code. Since very few loops now start with a jump to the
666 exit test, the code here to detect that case is very conservative. */
667
668 for (p = NEXT_INSN (loop_start);
669 p != end
670 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
671 && (GET_CODE (p) != NOTE
672 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
673 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
674 p = NEXT_INSN (p))
675 ;
676
677 scan_start = p;
678
679 /* Set up variables describing this loop. */
680 prescan_loop (loop_start, end);
681 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
682
683 /* If loop has a jump before the first label,
684 the true entry is the target of that jump.
685 Start scan from there.
686 But record in LOOP_TOP the place where the end-test jumps
687 back to so we can scan that after the end of the loop. */
688 if (GET_CODE (p) == JUMP_INSN)
689 {
690 loop_entry_jump = p;
691
692 /* Loop entry must be unconditional jump (and not a RETURN) */
693 if (simplejump_p (p)
694 && JUMP_LABEL (p) != 0
695 /* Check to see whether the jump actually
696 jumps out of the loop (meaning it's no loop).
697 This case can happen for things like
698 do {..} while (0). If this label was generated previously
699 by loop, we can't tell anything about it and have to reject
700 the loop. */
701 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, end))
702 {
703 loop_top = next_label (scan_start);
704 scan_start = JUMP_LABEL (p);
705 }
706 }
707
708 /* If SCAN_START was an insn created by loop, we don't know its luid
709 as required by loop_reg_used_before_p. So skip such loops. (This
710 test may never be true, but it's best to play it safe.)
711
712 Also, skip loops where we do not start scanning at a label. This
713 test also rejects loops starting with a JUMP_INSN that failed the
714 test above. */
715
716 if (INSN_UID (scan_start) >= max_uid_for_loop
717 || GET_CODE (scan_start) != CODE_LABEL)
718 {
719 if (loop_dump_stream)
720 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
721 INSN_UID (loop_start), INSN_UID (end));
722 return;
723 }
724
725 /* Count number of times each reg is set during this loop.
726 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
727 the setting of register I. If this loop has calls, set
728 VARRAY_RTX (reg_single_usage, I). */
729
730 /* Allocate extra space for REGS that might be created by
731 load_mems. We allocate a little extra slop as well, in the hopes
732 that even after the moving of movables creates some new registers
733 we won't have to reallocate these arrays. However, we do grow
734 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
735 nregs = max_reg_num () + loop_mems_idx + 16;
736 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
737 VARRAY_INT_INIT (n_times_used, nregs, "n_times_used");
738 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
739
740 if (loop_has_call)
741 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
742
743 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
744 may_not_optimize, reg_single_usage, &insn_count, nregs);
745
746 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
747 {
748 VARRAY_CHAR (may_not_optimize, i) = 1;
749 VARRAY_INT (n_times_set, i) = 1;
750 }
751
752 #ifdef AVOID_CCMODE_COPIES
753 /* Don't try to move insns which set CC registers if we should not
754 create CCmode register copies. */
755 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
756 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
757 VARRAY_CHAR (may_not_optimize, i) = 1;
758 #endif
759
760 bcopy ((char *) &n_times_set->data,
761 (char *) &n_times_used->data, nregs * sizeof (int));
762
763 if (loop_dump_stream)
764 {
765 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
766 INSN_UID (loop_start), INSN_UID (end), insn_count);
767 if (loop_continue)
768 fprintf (loop_dump_stream, "Continue at insn %d.\n",
769 INSN_UID (loop_continue));
770 }
771
772 /* Scan through the loop finding insns that are safe to move.
773 Set n_times_set negative for the reg being set, so that
774 this reg will be considered invariant for subsequent insns.
775 We consider whether subsequent insns use the reg
776 in deciding whether it is worth actually moving.
777
778 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
779 and therefore it is possible that the insns we are scanning
780 would never be executed. At such times, we must make sure
781 that it is safe to execute the insn once instead of zero times.
782 When MAYBE_NEVER is 0, all insns will be executed at least once
783 so that is not a problem. */
784
785 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
786 p != NULL_RTX;
787 p = next_insn_in_loop (p, scan_start, end, loop_top))
788 {
789 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
790 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
791 in_libcall = 1;
792 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
793 && find_reg_note (p, REG_RETVAL, NULL_RTX))
794 in_libcall = 0;
795
796 if (GET_CODE (p) == INSN
797 && (set = single_set (p))
798 && GET_CODE (SET_DEST (set)) == REG
799 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
800 {
801 int tem1 = 0;
802 int tem2 = 0;
803 int move_insn = 0;
804 rtx src = SET_SRC (set);
805 rtx dependencies = 0;
806
807 /* Figure out what to use as a source of this insn. If a REG_EQUIV
808 note is given or if a REG_EQUAL note with a constant operand is
809 specified, use it as the source and mark that we should move
810 this insn by calling emit_move_insn rather that duplicating the
811 insn.
812
813 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
814 is present. */
815 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
816 if (temp)
817 src = XEXP (temp, 0), move_insn = 1;
818 else
819 {
820 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
821 if (temp && CONSTANT_P (XEXP (temp, 0)))
822 src = XEXP (temp, 0), move_insn = 1;
823 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
824 {
825 src = XEXP (temp, 0);
826 /* A libcall block can use regs that don't appear in
827 the equivalent expression. To move the libcall,
828 we must move those regs too. */
829 dependencies = libcall_other_reg (p, src);
830 }
831 }
832
833 /* Don't try to optimize a register that was made
834 by loop-optimization for an inner loop.
835 We don't know its life-span, so we can't compute the benefit. */
836 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
837 ;
838 else if (/* The set is a user-variable or it is used in
839 the exit test (this can cause the variable to be
840 used before it is set just like a
841 user-variable)... */
842 (REG_USERVAR_P (SET_DEST (set))
843 || REG_LOOP_TEST_P (SET_DEST (set)))
844 /* And the set is not guaranteed to be executed one
845 the loop starts, or the value before the set is
846 needed before the set occurs... */
847 && (maybe_never
848 || loop_reg_used_before_p (set, p, loop_start,
849 scan_start, end))
850 /* And the register is used in basic blocks other
851 than the one where it is set (meaning that
852 something after this point in the loop might
853 depend on its value before the set). */
854 && !reg_in_basic_block_p (p, SET_DEST (set)))
855 /* It is unsafe to move the set. The fact that these
856 three conditions are considered in conjunction means
857 that we are assuming various conditions, such as:
858
859 o It's OK to move a set of a variable which was not
860 created by the user and is not used in an exit test
861 even if that point in the set would not be reached
862 during execution of the loop. */
863 ;
864 else if ((tem = invariant_p (src))
865 && (dependencies == 0
866 || (tem2 = invariant_p (dependencies)) != 0)
867 && (VARRAY_INT (n_times_set,
868 REGNO (SET_DEST (set))) == 1
869 || (tem1
870 = consec_sets_invariant_p
871 (SET_DEST (set),
872 VARRAY_INT (n_times_set, REGNO (SET_DEST (set))),
873 p)))
874 /* If the insn can cause a trap (such as divide by zero),
875 can't move it unless it's guaranteed to be executed
876 once loop is entered. Even a function call might
877 prevent the trap insn from being reached
878 (since it might exit!) */
879 && ! ((maybe_never || call_passed)
880 && may_trap_p (src)))
881 {
882 register struct movable *m;
883 register int regno = REGNO (SET_DEST (set));
884
885 /* A potential lossage is where we have a case where two insns
886 can be combined as long as they are both in the loop, but
887 we move one of them outside the loop. For large loops,
888 this can lose. The most common case of this is the address
889 of a function being called.
890
891 Therefore, if this register is marked as being used exactly
892 once if we are in a loop with calls (a "large loop"), see if
893 we can replace the usage of this register with the source
894 of this SET. If we can, delete this insn.
895
896 Don't do this if P has a REG_RETVAL note or if we have
897 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
898
899 if (reg_single_usage && VARRAY_RTX (reg_single_usage, regno) != 0
900 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
901 && REGNO_FIRST_UID (regno) == INSN_UID (p)
902 && (REGNO_LAST_UID (regno)
903 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
904 && VARRAY_INT (n_times_set, regno) == 1
905 && ! side_effects_p (SET_SRC (set))
906 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
907 && (! SMALL_REGISTER_CLASSES
908 || (! (GET_CODE (SET_SRC (set)) == REG
909 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
910 /* This test is not redundant; SET_SRC (set) might be
911 a call-clobbered register and the life of REGNO
912 might span a call. */
913 && ! modified_between_p (SET_SRC (set), p,
914 VARRAY_RTX
915 (reg_single_usage, regno))
916 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
917 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
918 VARRAY_RTX
919 (reg_single_usage, regno)))
920 {
921 /* Replace any usage in a REG_EQUAL note. Must copy the
922 new source, so that we don't get rtx sharing between the
923 SET_SOURCE and REG_NOTES of insn p. */
924 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
925 = replace_rtx (REG_NOTES (VARRAY_RTX
926 (reg_single_usage, regno)),
927 SET_DEST (set), copy_rtx (SET_SRC (set)));
928
929 PUT_CODE (p, NOTE);
930 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
931 NOTE_SOURCE_FILE (p) = 0;
932 VARRAY_INT (n_times_set, regno) = 0;
933 continue;
934 }
935
936 m = (struct movable *) alloca (sizeof (struct movable));
937 m->next = 0;
938 m->insn = p;
939 m->set_src = src;
940 m->dependencies = dependencies;
941 m->set_dest = SET_DEST (set);
942 m->force = 0;
943 m->consec = VARRAY_INT (n_times_set,
944 REGNO (SET_DEST (set))) - 1;
945 m->done = 0;
946 m->forces = 0;
947 m->partial = 0;
948 m->move_insn = move_insn;
949 m->move_insn_first = 0;
950 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
951 m->savemode = VOIDmode;
952 m->regno = regno;
953 /* Set M->cond if either invariant_p or consec_sets_invariant_p
954 returned 2 (only conditionally invariant). */
955 m->cond = ((tem | tem1 | tem2) > 1);
956 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
957 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
958 m->match = 0;
959 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
960 - uid_luid[REGNO_FIRST_UID (regno)]);
961 m->savings = VARRAY_INT (n_times_used, regno);
962 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
963 m->savings += libcall_benefit (p);
964 VARRAY_INT (n_times_set, regno) = move_insn ? -2 : -1;
965 /* Add M to the end of the chain MOVABLES. */
966 if (movables == 0)
967 movables = m;
968 else
969 last_movable->next = m;
970 last_movable = m;
971
972 if (m->consec > 0)
973 {
974 /* It is possible for the first instruction to have a
975 REG_EQUAL note but a non-invariant SET_SRC, so we must
976 remember the status of the first instruction in case
977 the last instruction doesn't have a REG_EQUAL note. */
978 m->move_insn_first = m->move_insn;
979
980 /* Skip this insn, not checking REG_LIBCALL notes. */
981 p = next_nonnote_insn (p);
982 /* Skip the consecutive insns, if there are any. */
983 p = skip_consec_insns (p, m->consec);
984 /* Back up to the last insn of the consecutive group. */
985 p = prev_nonnote_insn (p);
986
987 /* We must now reset m->move_insn, m->is_equiv, and possibly
988 m->set_src to correspond to the effects of all the
989 insns. */
990 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
991 if (temp)
992 m->set_src = XEXP (temp, 0), m->move_insn = 1;
993 else
994 {
995 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
996 if (temp && CONSTANT_P (XEXP (temp, 0)))
997 m->set_src = XEXP (temp, 0), m->move_insn = 1;
998 else
999 m->move_insn = 0;
1000
1001 }
1002 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
1003 }
1004 }
1005 /* If this register is always set within a STRICT_LOW_PART
1006 or set to zero, then its high bytes are constant.
1007 So clear them outside the loop and within the loop
1008 just load the low bytes.
1009 We must check that the machine has an instruction to do so.
1010 Also, if the value loaded into the register
1011 depends on the same register, this cannot be done. */
1012 else if (SET_SRC (set) == const0_rtx
1013 && GET_CODE (NEXT_INSN (p)) == INSN
1014 && (set1 = single_set (NEXT_INSN (p)))
1015 && GET_CODE (set1) == SET
1016 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
1017 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
1018 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
1019 == SET_DEST (set))
1020 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1021 {
1022 register int regno = REGNO (SET_DEST (set));
1023 if (VARRAY_INT (n_times_set, regno) == 2)
1024 {
1025 register struct movable *m;
1026 m = (struct movable *) alloca (sizeof (struct movable));
1027 m->next = 0;
1028 m->insn = p;
1029 m->set_dest = SET_DEST (set);
1030 m->dependencies = 0;
1031 m->force = 0;
1032 m->consec = 0;
1033 m->done = 0;
1034 m->forces = 0;
1035 m->move_insn = 0;
1036 m->move_insn_first = 0;
1037 m->partial = 1;
1038 /* If the insn may not be executed on some cycles,
1039 we can't clear the whole reg; clear just high part.
1040 Not even if the reg is used only within this loop.
1041 Consider this:
1042 while (1)
1043 while (s != t) {
1044 if (foo ()) x = *s;
1045 use (x);
1046 }
1047 Clearing x before the inner loop could clobber a value
1048 being saved from the last time around the outer loop.
1049 However, if the reg is not used outside this loop
1050 and all uses of the register are in the same
1051 basic block as the store, there is no problem.
1052
1053 If this insn was made by loop, we don't know its
1054 INSN_LUID and hence must make a conservative
1055 assumption. */
1056 m->global = (INSN_UID (p) >= max_uid_for_loop
1057 || (uid_luid[REGNO_LAST_UID (regno)]
1058 > INSN_LUID (end))
1059 || (uid_luid[REGNO_FIRST_UID (regno)]
1060 < INSN_LUID (p))
1061 || (labels_in_range_p
1062 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1063 if (maybe_never && m->global)
1064 m->savemode = GET_MODE (SET_SRC (set1));
1065 else
1066 m->savemode = VOIDmode;
1067 m->regno = regno;
1068 m->cond = 0;
1069 m->match = 0;
1070 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1071 - uid_luid[REGNO_FIRST_UID (regno)]);
1072 m->savings = 1;
1073 VARRAY_INT (n_times_set, regno) = -1;
1074 /* Add M to the end of the chain MOVABLES. */
1075 if (movables == 0)
1076 movables = m;
1077 else
1078 last_movable->next = m;
1079 last_movable = m;
1080 }
1081 }
1082 }
1083 /* Past a call insn, we get to insns which might not be executed
1084 because the call might exit. This matters for insns that trap.
1085 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1086 so they don't count. */
1087 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1088 call_passed = 1;
1089 /* Past a label or a jump, we get to insns for which we
1090 can't count on whether or how many times they will be
1091 executed during each iteration. Therefore, we can
1092 only move out sets of trivial variables
1093 (those not used after the loop). */
1094 /* Similar code appears twice in strength_reduce. */
1095 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1096 /* If we enter the loop in the middle, and scan around to the
1097 beginning, don't set maybe_never for that. This must be an
1098 unconditional jump, otherwise the code at the top of the
1099 loop might never be executed. Unconditional jumps are
1100 followed a by barrier then loop end. */
1101 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1102 && NEXT_INSN (NEXT_INSN (p)) == end
1103 && simplejump_p (p)))
1104 maybe_never = 1;
1105 else if (GET_CODE (p) == NOTE)
1106 {
1107 /* At the virtual top of a converted loop, insns are again known to
1108 be executed: logically, the loop begins here even though the exit
1109 code has been duplicated. */
1110 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1111 maybe_never = call_passed = 0;
1112 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1113 loop_depth++;
1114 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1115 loop_depth--;
1116 }
1117 }
1118
1119 /* If one movable subsumes another, ignore that other. */
1120
1121 ignore_some_movables (movables);
1122
1123 /* For each movable insn, see if the reg that it loads
1124 leads when it dies right into another conditionally movable insn.
1125 If so, record that the second insn "forces" the first one,
1126 since the second can be moved only if the first is. */
1127
1128 force_movables (movables);
1129
1130 /* See if there are multiple movable insns that load the same value.
1131 If there are, make all but the first point at the first one
1132 through the `match' field, and add the priorities of them
1133 all together as the priority of the first. */
1134
1135 combine_movables (movables, nregs);
1136
1137 /* Now consider each movable insn to decide whether it is worth moving.
1138 Store 0 in n_times_set for each reg that is moved.
1139
1140 Generally this increases code size, so do not move moveables when
1141 optimizing for code size. */
1142
1143 if (! optimize_size)
1144 move_movables (movables, threshold,
1145 insn_count, loop_start, end, nregs);
1146
1147 /* Now candidates that still are negative are those not moved.
1148 Change n_times_set to indicate that those are not actually invariant. */
1149 for (i = 0; i < nregs; i++)
1150 if (VARRAY_INT (n_times_set, i) < 0)
1151 VARRAY_INT (n_times_set, i) = VARRAY_INT (n_times_used, i);
1152
1153 /* Now that we've moved some things out of the loop, we able to
1154 hoist even more memory references. There's no need to pass
1155 reg_single_usage this time, since we're done with it. */
1156 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top,
1157 loop_start, 0,
1158 &insn_count);
1159
1160 if (flag_strength_reduce)
1161 {
1162 the_movables = movables;
1163 strength_reduce (scan_start, end, loop_top,
1164 insn_count, loop_start, end, unroll_p, bct_p);
1165 }
1166
1167 VARRAY_FREE (n_times_set);
1168 VARRAY_FREE (n_times_used);
1169 VARRAY_FREE (may_not_optimize);
1170 VARRAY_FREE (reg_single_usage);
1171 }
1172 \f
1173 /* Add elements to *OUTPUT to record all the pseudo-regs
1174 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1175
1176 void
1177 record_excess_regs (in_this, not_in_this, output)
1178 rtx in_this, not_in_this;
1179 rtx *output;
1180 {
1181 enum rtx_code code;
1182 char *fmt;
1183 int i;
1184
1185 code = GET_CODE (in_this);
1186
1187 switch (code)
1188 {
1189 case PC:
1190 case CC0:
1191 case CONST_INT:
1192 case CONST_DOUBLE:
1193 case CONST:
1194 case SYMBOL_REF:
1195 case LABEL_REF:
1196 return;
1197
1198 case REG:
1199 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1200 && ! reg_mentioned_p (in_this, not_in_this))
1201 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1202 return;
1203
1204 default:
1205 break;
1206 }
1207
1208 fmt = GET_RTX_FORMAT (code);
1209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1210 {
1211 int j;
1212
1213 switch (fmt[i])
1214 {
1215 case 'E':
1216 for (j = 0; j < XVECLEN (in_this, i); j++)
1217 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1218 break;
1219
1220 case 'e':
1221 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1222 break;
1223 }
1224 }
1225 }
1226 \f
1227 /* Check what regs are referred to in the libcall block ending with INSN,
1228 aside from those mentioned in the equivalent value.
1229 If there are none, return 0.
1230 If there are one or more, return an EXPR_LIST containing all of them. */
1231
1232 static rtx
1233 libcall_other_reg (insn, equiv)
1234 rtx insn, equiv;
1235 {
1236 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1237 rtx p = XEXP (note, 0);
1238 rtx output = 0;
1239
1240 /* First, find all the regs used in the libcall block
1241 that are not mentioned as inputs to the result. */
1242
1243 while (p != insn)
1244 {
1245 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1246 || GET_CODE (p) == CALL_INSN)
1247 record_excess_regs (PATTERN (p), equiv, &output);
1248 p = NEXT_INSN (p);
1249 }
1250
1251 return output;
1252 }
1253 \f
1254 /* Return 1 if all uses of REG
1255 are between INSN and the end of the basic block. */
1256
1257 static int
1258 reg_in_basic_block_p (insn, reg)
1259 rtx insn, reg;
1260 {
1261 int regno = REGNO (reg);
1262 rtx p;
1263
1264 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1265 return 0;
1266
1267 /* Search this basic block for the already recorded last use of the reg. */
1268 for (p = insn; p; p = NEXT_INSN (p))
1269 {
1270 switch (GET_CODE (p))
1271 {
1272 case NOTE:
1273 break;
1274
1275 case INSN:
1276 case CALL_INSN:
1277 /* Ordinary insn: if this is the last use, we win. */
1278 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1279 return 1;
1280 break;
1281
1282 case JUMP_INSN:
1283 /* Jump insn: if this is the last use, we win. */
1284 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1285 return 1;
1286 /* Otherwise, it's the end of the basic block, so we lose. */
1287 return 0;
1288
1289 case CODE_LABEL:
1290 case BARRIER:
1291 /* It's the end of the basic block, so we lose. */
1292 return 0;
1293
1294 default:
1295 break;
1296 }
1297 }
1298
1299 /* The "last use" doesn't follow the "first use"?? */
1300 abort ();
1301 }
1302 \f
1303 /* Compute the benefit of eliminating the insns in the block whose
1304 last insn is LAST. This may be a group of insns used to compute a
1305 value directly or can contain a library call. */
1306
1307 static int
1308 libcall_benefit (last)
1309 rtx last;
1310 {
1311 rtx insn;
1312 int benefit = 0;
1313
1314 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1315 insn != last; insn = NEXT_INSN (insn))
1316 {
1317 if (GET_CODE (insn) == CALL_INSN)
1318 benefit += 10; /* Assume at least this many insns in a library
1319 routine. */
1320 else if (GET_CODE (insn) == INSN
1321 && GET_CODE (PATTERN (insn)) != USE
1322 && GET_CODE (PATTERN (insn)) != CLOBBER)
1323 benefit++;
1324 }
1325
1326 return benefit;
1327 }
1328 \f
1329 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1330
1331 static rtx
1332 skip_consec_insns (insn, count)
1333 rtx insn;
1334 int count;
1335 {
1336 for (; count > 0; count--)
1337 {
1338 rtx temp;
1339
1340 /* If first insn of libcall sequence, skip to end. */
1341 /* Do this at start of loop, since INSN is guaranteed to
1342 be an insn here. */
1343 if (GET_CODE (insn) != NOTE
1344 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1345 insn = XEXP (temp, 0);
1346
1347 do insn = NEXT_INSN (insn);
1348 while (GET_CODE (insn) == NOTE);
1349 }
1350
1351 return insn;
1352 }
1353
1354 /* Ignore any movable whose insn falls within a libcall
1355 which is part of another movable.
1356 We make use of the fact that the movable for the libcall value
1357 was made later and so appears later on the chain. */
1358
1359 static void
1360 ignore_some_movables (movables)
1361 struct movable *movables;
1362 {
1363 register struct movable *m, *m1;
1364
1365 for (m = movables; m; m = m->next)
1366 {
1367 /* Is this a movable for the value of a libcall? */
1368 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1369 if (note)
1370 {
1371 rtx insn;
1372 /* Check for earlier movables inside that range,
1373 and mark them invalid. We cannot use LUIDs here because
1374 insns created by loop.c for prior loops don't have LUIDs.
1375 Rather than reject all such insns from movables, we just
1376 explicitly check each insn in the libcall (since invariant
1377 libcalls aren't that common). */
1378 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1379 for (m1 = movables; m1 != m; m1 = m1->next)
1380 if (m1->insn == insn)
1381 m1->done = 1;
1382 }
1383 }
1384 }
1385
1386 /* For each movable insn, see if the reg that it loads
1387 leads when it dies right into another conditionally movable insn.
1388 If so, record that the second insn "forces" the first one,
1389 since the second can be moved only if the first is. */
1390
1391 static void
1392 force_movables (movables)
1393 struct movable *movables;
1394 {
1395 register struct movable *m, *m1;
1396 for (m1 = movables; m1; m1 = m1->next)
1397 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1398 if (!m1->partial && !m1->done)
1399 {
1400 int regno = m1->regno;
1401 for (m = m1->next; m; m = m->next)
1402 /* ??? Could this be a bug? What if CSE caused the
1403 register of M1 to be used after this insn?
1404 Since CSE does not update regno_last_uid,
1405 this insn M->insn might not be where it dies.
1406 But very likely this doesn't matter; what matters is
1407 that M's reg is computed from M1's reg. */
1408 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1409 && !m->done)
1410 break;
1411 if (m != 0 && m->set_src == m1->set_dest
1412 /* If m->consec, m->set_src isn't valid. */
1413 && m->consec == 0)
1414 m = 0;
1415
1416 /* Increase the priority of the moving the first insn
1417 since it permits the second to be moved as well. */
1418 if (m != 0)
1419 {
1420 m->forces = m1;
1421 m1->lifetime += m->lifetime;
1422 m1->savings += m->savings;
1423 }
1424 }
1425 }
1426 \f
1427 /* Find invariant expressions that are equal and can be combined into
1428 one register. */
1429
1430 static void
1431 combine_movables (movables, nregs)
1432 struct movable *movables;
1433 int nregs;
1434 {
1435 register struct movable *m;
1436 char *matched_regs = (char *) alloca (nregs);
1437 enum machine_mode mode;
1438
1439 /* Regs that are set more than once are not allowed to match
1440 or be matched. I'm no longer sure why not. */
1441 /* Perhaps testing m->consec_sets would be more appropriate here? */
1442
1443 for (m = movables; m; m = m->next)
1444 if (m->match == 0 && VARRAY_INT (n_times_used, m->regno) == 1 && !m->partial)
1445 {
1446 register struct movable *m1;
1447 int regno = m->regno;
1448
1449 bzero (matched_regs, nregs);
1450 matched_regs[regno] = 1;
1451
1452 /* We want later insns to match the first one. Don't make the first
1453 one match any later ones. So start this loop at m->next. */
1454 for (m1 = m->next; m1; m1 = m1->next)
1455 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_used, m1->regno) == 1
1456 /* A reg used outside the loop mustn't be eliminated. */
1457 && !m1->global
1458 /* A reg used for zero-extending mustn't be eliminated. */
1459 && !m1->partial
1460 && (matched_regs[m1->regno]
1461 ||
1462 (
1463 /* Can combine regs with different modes loaded from the
1464 same constant only if the modes are the same or
1465 if both are integer modes with M wider or the same
1466 width as M1. The check for integer is redundant, but
1467 safe, since the only case of differing destination
1468 modes with equal sources is when both sources are
1469 VOIDmode, i.e., CONST_INT. */
1470 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1471 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1472 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1473 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1474 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1475 /* See if the source of M1 says it matches M. */
1476 && ((GET_CODE (m1->set_src) == REG
1477 && matched_regs[REGNO (m1->set_src)])
1478 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1479 movables))))
1480 && ((m->dependencies == m1->dependencies)
1481 || rtx_equal_p (m->dependencies, m1->dependencies)))
1482 {
1483 m->lifetime += m1->lifetime;
1484 m->savings += m1->savings;
1485 m1->done = 1;
1486 m1->match = m;
1487 matched_regs[m1->regno] = 1;
1488 }
1489 }
1490
1491 /* Now combine the regs used for zero-extension.
1492 This can be done for those not marked `global'
1493 provided their lives don't overlap. */
1494
1495 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1496 mode = GET_MODE_WIDER_MODE (mode))
1497 {
1498 register struct movable *m0 = 0;
1499
1500 /* Combine all the registers for extension from mode MODE.
1501 Don't combine any that are used outside this loop. */
1502 for (m = movables; m; m = m->next)
1503 if (m->partial && ! m->global
1504 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1505 {
1506 register struct movable *m1;
1507 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1508 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1509
1510 if (m0 == 0)
1511 {
1512 /* First one: don't check for overlap, just record it. */
1513 m0 = m;
1514 continue;
1515 }
1516
1517 /* Make sure they extend to the same mode.
1518 (Almost always true.) */
1519 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1520 continue;
1521
1522 /* We already have one: check for overlap with those
1523 already combined together. */
1524 for (m1 = movables; m1 != m; m1 = m1->next)
1525 if (m1 == m0 || (m1->partial && m1->match == m0))
1526 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1527 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1528 goto overlap;
1529
1530 /* No overlap: we can combine this with the others. */
1531 m0->lifetime += m->lifetime;
1532 m0->savings += m->savings;
1533 m->done = 1;
1534 m->match = m0;
1535
1536 overlap: ;
1537 }
1538 }
1539 }
1540 \f
1541 /* Return 1 if regs X and Y will become the same if moved. */
1542
1543 static int
1544 regs_match_p (x, y, movables)
1545 rtx x, y;
1546 struct movable *movables;
1547 {
1548 int xn = REGNO (x);
1549 int yn = REGNO (y);
1550 struct movable *mx, *my;
1551
1552 for (mx = movables; mx; mx = mx->next)
1553 if (mx->regno == xn)
1554 break;
1555
1556 for (my = movables; my; my = my->next)
1557 if (my->regno == yn)
1558 break;
1559
1560 return (mx && my
1561 && ((mx->match == my->match && mx->match != 0)
1562 || mx->match == my
1563 || mx == my->match));
1564 }
1565
1566 /* Return 1 if X and Y are identical-looking rtx's.
1567 This is the Lisp function EQUAL for rtx arguments.
1568
1569 If two registers are matching movables or a movable register and an
1570 equivalent constant, consider them equal. */
1571
1572 static int
1573 rtx_equal_for_loop_p (x, y, movables)
1574 rtx x, y;
1575 struct movable *movables;
1576 {
1577 register int i;
1578 register int j;
1579 register struct movable *m;
1580 register enum rtx_code code;
1581 register char *fmt;
1582
1583 if (x == y)
1584 return 1;
1585 if (x == 0 || y == 0)
1586 return 0;
1587
1588 code = GET_CODE (x);
1589
1590 /* If we have a register and a constant, they may sometimes be
1591 equal. */
1592 if (GET_CODE (x) == REG && VARRAY_INT (n_times_set, REGNO (x)) == -2
1593 && CONSTANT_P (y))
1594 {
1595 for (m = movables; m; m = m->next)
1596 if (m->move_insn && m->regno == REGNO (x)
1597 && rtx_equal_p (m->set_src, y))
1598 return 1;
1599 }
1600 else if (GET_CODE (y) == REG && VARRAY_INT (n_times_set, REGNO (y)) == -2
1601 && CONSTANT_P (x))
1602 {
1603 for (m = movables; m; m = m->next)
1604 if (m->move_insn && m->regno == REGNO (y)
1605 && rtx_equal_p (m->set_src, x))
1606 return 1;
1607 }
1608
1609 /* Otherwise, rtx's of different codes cannot be equal. */
1610 if (code != GET_CODE (y))
1611 return 0;
1612
1613 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1614 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1615
1616 if (GET_MODE (x) != GET_MODE (y))
1617 return 0;
1618
1619 /* These three types of rtx's can be compared nonrecursively. */
1620 if (code == REG)
1621 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1622
1623 if (code == LABEL_REF)
1624 return XEXP (x, 0) == XEXP (y, 0);
1625 if (code == SYMBOL_REF)
1626 return XSTR (x, 0) == XSTR (y, 0);
1627
1628 /* Compare the elements. If any pair of corresponding elements
1629 fail to match, return 0 for the whole things. */
1630
1631 fmt = GET_RTX_FORMAT (code);
1632 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1633 {
1634 switch (fmt[i])
1635 {
1636 case 'w':
1637 if (XWINT (x, i) != XWINT (y, i))
1638 return 0;
1639 break;
1640
1641 case 'i':
1642 if (XINT (x, i) != XINT (y, i))
1643 return 0;
1644 break;
1645
1646 case 'E':
1647 /* Two vectors must have the same length. */
1648 if (XVECLEN (x, i) != XVECLEN (y, i))
1649 return 0;
1650
1651 /* And the corresponding elements must match. */
1652 for (j = 0; j < XVECLEN (x, i); j++)
1653 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1654 return 0;
1655 break;
1656
1657 case 'e':
1658 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1659 return 0;
1660 break;
1661
1662 case 's':
1663 if (strcmp (XSTR (x, i), XSTR (y, i)))
1664 return 0;
1665 break;
1666
1667 case 'u':
1668 /* These are just backpointers, so they don't matter. */
1669 break;
1670
1671 case '0':
1672 break;
1673
1674 /* It is believed that rtx's at this level will never
1675 contain anything but integers and other rtx's,
1676 except for within LABEL_REFs and SYMBOL_REFs. */
1677 default:
1678 abort ();
1679 }
1680 }
1681 return 1;
1682 }
1683 \f
1684 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1685 insns in INSNS which use thet reference. */
1686
1687 static void
1688 add_label_notes (x, insns)
1689 rtx x;
1690 rtx insns;
1691 {
1692 enum rtx_code code = GET_CODE (x);
1693 int i, j;
1694 char *fmt;
1695 rtx insn;
1696
1697 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1698 {
1699 /* This code used to ignore labels that referred to dispatch tables to
1700 avoid flow generating (slighly) worse code.
1701
1702 We no longer ignore such label references (see LABEL_REF handling in
1703 mark_jump_label for additional information). */
1704 for (insn = insns; insn; insn = NEXT_INSN (insn))
1705 if (reg_mentioned_p (XEXP (x, 0), insn))
1706 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1707 REG_NOTES (insn));
1708 }
1709
1710 fmt = GET_RTX_FORMAT (code);
1711 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1712 {
1713 if (fmt[i] == 'e')
1714 add_label_notes (XEXP (x, i), insns);
1715 else if (fmt[i] == 'E')
1716 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1717 add_label_notes (XVECEXP (x, i, j), insns);
1718 }
1719 }
1720 \f
1721 /* Scan MOVABLES, and move the insns that deserve to be moved.
1722 If two matching movables are combined, replace one reg with the
1723 other throughout. */
1724
1725 static void
1726 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1727 struct movable *movables;
1728 int threshold;
1729 int insn_count;
1730 rtx loop_start;
1731 rtx end;
1732 int nregs;
1733 {
1734 rtx new_start = 0;
1735 register struct movable *m;
1736 register rtx p;
1737 /* Map of pseudo-register replacements to handle combining
1738 when we move several insns that load the same value
1739 into different pseudo-registers. */
1740 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1741 char *already_moved = (char *) alloca (nregs);
1742
1743 bzero (already_moved, nregs);
1744 bzero ((char *) reg_map, nregs * sizeof (rtx));
1745
1746 num_movables = 0;
1747
1748 for (m = movables; m; m = m->next)
1749 {
1750 /* Describe this movable insn. */
1751
1752 if (loop_dump_stream)
1753 {
1754 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1755 INSN_UID (m->insn), m->regno, m->lifetime);
1756 if (m->consec > 0)
1757 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1758 if (m->cond)
1759 fprintf (loop_dump_stream, "cond ");
1760 if (m->force)
1761 fprintf (loop_dump_stream, "force ");
1762 if (m->global)
1763 fprintf (loop_dump_stream, "global ");
1764 if (m->done)
1765 fprintf (loop_dump_stream, "done ");
1766 if (m->move_insn)
1767 fprintf (loop_dump_stream, "move-insn ");
1768 if (m->match)
1769 fprintf (loop_dump_stream, "matches %d ",
1770 INSN_UID (m->match->insn));
1771 if (m->forces)
1772 fprintf (loop_dump_stream, "forces %d ",
1773 INSN_UID (m->forces->insn));
1774 }
1775
1776 /* Count movables. Value used in heuristics in strength_reduce. */
1777 num_movables++;
1778
1779 /* Ignore the insn if it's already done (it matched something else).
1780 Otherwise, see if it is now safe to move. */
1781
1782 if (!m->done
1783 && (! m->cond
1784 || (1 == invariant_p (m->set_src)
1785 && (m->dependencies == 0
1786 || 1 == invariant_p (m->dependencies))
1787 && (m->consec == 0
1788 || 1 == consec_sets_invariant_p (m->set_dest,
1789 m->consec + 1,
1790 m->insn))))
1791 && (! m->forces || m->forces->done))
1792 {
1793 register int regno;
1794 register rtx p;
1795 int savings = m->savings;
1796
1797 /* We have an insn that is safe to move.
1798 Compute its desirability. */
1799
1800 p = m->insn;
1801 regno = m->regno;
1802
1803 if (loop_dump_stream)
1804 fprintf (loop_dump_stream, "savings %d ", savings);
1805
1806 if (moved_once[regno] && loop_dump_stream)
1807 fprintf (loop_dump_stream, "halved since already moved ");
1808
1809 /* An insn MUST be moved if we already moved something else
1810 which is safe only if this one is moved too: that is,
1811 if already_moved[REGNO] is nonzero. */
1812
1813 /* An insn is desirable to move if the new lifetime of the
1814 register is no more than THRESHOLD times the old lifetime.
1815 If it's not desirable, it means the loop is so big
1816 that moving won't speed things up much,
1817 and it is liable to make register usage worse. */
1818
1819 /* It is also desirable to move if it can be moved at no
1820 extra cost because something else was already moved. */
1821
1822 if (already_moved[regno]
1823 || flag_move_all_movables
1824 || (threshold * savings * m->lifetime) >=
1825 (moved_once[regno] ? insn_count * 2 : insn_count)
1826 || (m->forces && m->forces->done
1827 && VARRAY_INT (n_times_used, m->forces->regno) == 1))
1828 {
1829 int count;
1830 register struct movable *m1;
1831 rtx first;
1832
1833 /* Now move the insns that set the reg. */
1834
1835 if (m->partial && m->match)
1836 {
1837 rtx newpat, i1;
1838 rtx r1, r2;
1839 /* Find the end of this chain of matching regs.
1840 Thus, we load each reg in the chain from that one reg.
1841 And that reg is loaded with 0 directly,
1842 since it has ->match == 0. */
1843 for (m1 = m; m1->match; m1 = m1->match);
1844 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1845 SET_DEST (PATTERN (m1->insn)));
1846 i1 = emit_insn_before (newpat, loop_start);
1847
1848 /* Mark the moved, invariant reg as being allowed to
1849 share a hard reg with the other matching invariant. */
1850 REG_NOTES (i1) = REG_NOTES (m->insn);
1851 r1 = SET_DEST (PATTERN (m->insn));
1852 r2 = SET_DEST (PATTERN (m1->insn));
1853 regs_may_share
1854 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1855 gen_rtx_EXPR_LIST (VOIDmode, r2,
1856 regs_may_share));
1857 delete_insn (m->insn);
1858
1859 if (new_start == 0)
1860 new_start = i1;
1861
1862 if (loop_dump_stream)
1863 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1864 }
1865 /* If we are to re-generate the item being moved with a
1866 new move insn, first delete what we have and then emit
1867 the move insn before the loop. */
1868 else if (m->move_insn)
1869 {
1870 rtx i1, temp;
1871
1872 for (count = m->consec; count >= 0; count--)
1873 {
1874 /* If this is the first insn of a library call sequence,
1875 skip to the end. */
1876 if (GET_CODE (p) != NOTE
1877 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1878 p = XEXP (temp, 0);
1879
1880 /* If this is the last insn of a libcall sequence, then
1881 delete every insn in the sequence except the last.
1882 The last insn is handled in the normal manner. */
1883 if (GET_CODE (p) != NOTE
1884 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1885 {
1886 temp = XEXP (temp, 0);
1887 while (temp != p)
1888 temp = delete_insn (temp);
1889 }
1890
1891 temp = p;
1892 p = delete_insn (p);
1893
1894 /* simplify_giv_expr expects that it can walk the insns
1895 at m->insn forwards and see this old sequence we are
1896 tossing here. delete_insn does preserve the next
1897 pointers, but when we skip over a NOTE we must fix
1898 it up. Otherwise that code walks into the non-deleted
1899 insn stream. */
1900 while (p && GET_CODE (p) == NOTE)
1901 p = NEXT_INSN (temp) = NEXT_INSN (p);
1902 }
1903
1904 start_sequence ();
1905 emit_move_insn (m->set_dest, m->set_src);
1906 temp = get_insns ();
1907 end_sequence ();
1908
1909 add_label_notes (m->set_src, temp);
1910
1911 i1 = emit_insns_before (temp, loop_start);
1912 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1913 REG_NOTES (i1)
1914 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1915 m->set_src, REG_NOTES (i1));
1916
1917 if (loop_dump_stream)
1918 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1919
1920 /* The more regs we move, the less we like moving them. */
1921 threshold -= 3;
1922 }
1923 else
1924 {
1925 for (count = m->consec; count >= 0; count--)
1926 {
1927 rtx i1, temp;
1928
1929 /* If first insn of libcall sequence, skip to end. */
1930 /* Do this at start of loop, since p is guaranteed to
1931 be an insn here. */
1932 if (GET_CODE (p) != NOTE
1933 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1934 p = XEXP (temp, 0);
1935
1936 /* If last insn of libcall sequence, move all
1937 insns except the last before the loop. The last
1938 insn is handled in the normal manner. */
1939 if (GET_CODE (p) != NOTE
1940 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1941 {
1942 rtx fn_address = 0;
1943 rtx fn_reg = 0;
1944 rtx fn_address_insn = 0;
1945
1946 first = 0;
1947 for (temp = XEXP (temp, 0); temp != p;
1948 temp = NEXT_INSN (temp))
1949 {
1950 rtx body;
1951 rtx n;
1952 rtx next;
1953
1954 if (GET_CODE (temp) == NOTE)
1955 continue;
1956
1957 body = PATTERN (temp);
1958
1959 /* Find the next insn after TEMP,
1960 not counting USE or NOTE insns. */
1961 for (next = NEXT_INSN (temp); next != p;
1962 next = NEXT_INSN (next))
1963 if (! (GET_CODE (next) == INSN
1964 && GET_CODE (PATTERN (next)) == USE)
1965 && GET_CODE (next) != NOTE)
1966 break;
1967
1968 /* If that is the call, this may be the insn
1969 that loads the function address.
1970
1971 Extract the function address from the insn
1972 that loads it into a register.
1973 If this insn was cse'd, we get incorrect code.
1974
1975 So emit a new move insn that copies the
1976 function address into the register that the
1977 call insn will use. flow.c will delete any
1978 redundant stores that we have created. */
1979 if (GET_CODE (next) == CALL_INSN
1980 && GET_CODE (body) == SET
1981 && GET_CODE (SET_DEST (body)) == REG
1982 && (n = find_reg_note (temp, REG_EQUAL,
1983 NULL_RTX)))
1984 {
1985 fn_reg = SET_SRC (body);
1986 if (GET_CODE (fn_reg) != REG)
1987 fn_reg = SET_DEST (body);
1988 fn_address = XEXP (n, 0);
1989 fn_address_insn = temp;
1990 }
1991 /* We have the call insn.
1992 If it uses the register we suspect it might,
1993 load it with the correct address directly. */
1994 if (GET_CODE (temp) == CALL_INSN
1995 && fn_address != 0
1996 && reg_referenced_p (fn_reg, body))
1997 emit_insn_after (gen_move_insn (fn_reg,
1998 fn_address),
1999 fn_address_insn);
2000
2001 if (GET_CODE (temp) == CALL_INSN)
2002 {
2003 i1 = emit_call_insn_before (body, loop_start);
2004 /* Because the USAGE information potentially
2005 contains objects other than hard registers
2006 we need to copy it. */
2007 if (CALL_INSN_FUNCTION_USAGE (temp))
2008 CALL_INSN_FUNCTION_USAGE (i1)
2009 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2010 }
2011 else
2012 i1 = emit_insn_before (body, loop_start);
2013 if (first == 0)
2014 first = i1;
2015 if (temp == fn_address_insn)
2016 fn_address_insn = i1;
2017 REG_NOTES (i1) = REG_NOTES (temp);
2018 delete_insn (temp);
2019 }
2020 }
2021 if (m->savemode != VOIDmode)
2022 {
2023 /* P sets REG to zero; but we should clear only
2024 the bits that are not covered by the mode
2025 m->savemode. */
2026 rtx reg = m->set_dest;
2027 rtx sequence;
2028 rtx tem;
2029
2030 start_sequence ();
2031 tem = expand_binop
2032 (GET_MODE (reg), and_optab, reg,
2033 GEN_INT ((((HOST_WIDE_INT) 1
2034 << GET_MODE_BITSIZE (m->savemode)))
2035 - 1),
2036 reg, 1, OPTAB_LIB_WIDEN);
2037 if (tem == 0)
2038 abort ();
2039 if (tem != reg)
2040 emit_move_insn (reg, tem);
2041 sequence = gen_sequence ();
2042 end_sequence ();
2043 i1 = emit_insn_before (sequence, loop_start);
2044 }
2045 else if (GET_CODE (p) == CALL_INSN)
2046 {
2047 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2048 /* Because the USAGE information potentially
2049 contains objects other than hard registers
2050 we need to copy it. */
2051 if (CALL_INSN_FUNCTION_USAGE (p))
2052 CALL_INSN_FUNCTION_USAGE (i1)
2053 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2054 }
2055 else if (count == m->consec && m->move_insn_first)
2056 {
2057 /* The SET_SRC might not be invariant, so we must
2058 use the REG_EQUAL note. */
2059 start_sequence ();
2060 emit_move_insn (m->set_dest, m->set_src);
2061 temp = get_insns ();
2062 end_sequence ();
2063
2064 add_label_notes (m->set_src, temp);
2065
2066 i1 = emit_insns_before (temp, loop_start);
2067 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2068 REG_NOTES (i1)
2069 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2070 : REG_EQUAL),
2071 m->set_src, REG_NOTES (i1));
2072 }
2073 else
2074 i1 = emit_insn_before (PATTERN (p), loop_start);
2075
2076 if (REG_NOTES (i1) == 0)
2077 {
2078 REG_NOTES (i1) = REG_NOTES (p);
2079
2080 /* If there is a REG_EQUAL note present whose value
2081 is not loop invariant, then delete it, since it
2082 may cause problems with later optimization passes.
2083 It is possible for cse to create such notes
2084 like this as a result of record_jump_cond. */
2085
2086 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2087 && ! invariant_p (XEXP (temp, 0)))
2088 remove_note (i1, temp);
2089 }
2090
2091 if (new_start == 0)
2092 new_start = i1;
2093
2094 if (loop_dump_stream)
2095 fprintf (loop_dump_stream, " moved to %d",
2096 INSN_UID (i1));
2097
2098 /* If library call, now fix the REG_NOTES that contain
2099 insn pointers, namely REG_LIBCALL on FIRST
2100 and REG_RETVAL on I1. */
2101 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2102 {
2103 XEXP (temp, 0) = first;
2104 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2105 XEXP (temp, 0) = i1;
2106 }
2107
2108 temp = p;
2109 delete_insn (p);
2110 p = NEXT_INSN (p);
2111
2112 /* simplify_giv_expr expects that it can walk the insns
2113 at m->insn forwards and see this old sequence we are
2114 tossing here. delete_insn does preserve the next
2115 pointers, but when we skip over a NOTE we must fix
2116 it up. Otherwise that code walks into the non-deleted
2117 insn stream. */
2118 while (p && GET_CODE (p) == NOTE)
2119 p = NEXT_INSN (temp) = NEXT_INSN (p);
2120 }
2121
2122 /* The more regs we move, the less we like moving them. */
2123 threshold -= 3;
2124 }
2125
2126 /* Any other movable that loads the same register
2127 MUST be moved. */
2128 already_moved[regno] = 1;
2129
2130 /* This reg has been moved out of one loop. */
2131 moved_once[regno] = 1;
2132
2133 /* The reg set here is now invariant. */
2134 if (! m->partial)
2135 VARRAY_INT (n_times_set, regno) = 0;
2136
2137 m->done = 1;
2138
2139 /* Change the length-of-life info for the register
2140 to say it lives at least the full length of this loop.
2141 This will help guide optimizations in outer loops. */
2142
2143 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2144 /* This is the old insn before all the moved insns.
2145 We can't use the moved insn because it is out of range
2146 in uid_luid. Only the old insns have luids. */
2147 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2148 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2149 REGNO_LAST_UID (regno) = INSN_UID (end);
2150
2151 /* Combine with this moved insn any other matching movables. */
2152
2153 if (! m->partial)
2154 for (m1 = movables; m1; m1 = m1->next)
2155 if (m1->match == m)
2156 {
2157 rtx temp;
2158
2159 /* Schedule the reg loaded by M1
2160 for replacement so that shares the reg of M.
2161 If the modes differ (only possible in restricted
2162 circumstances, make a SUBREG. */
2163 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2164 reg_map[m1->regno] = m->set_dest;
2165 else
2166 reg_map[m1->regno]
2167 = gen_lowpart_common (GET_MODE (m1->set_dest),
2168 m->set_dest);
2169
2170 /* Get rid of the matching insn
2171 and prevent further processing of it. */
2172 m1->done = 1;
2173
2174 /* if library call, delete all insn except last, which
2175 is deleted below */
2176 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2177 NULL_RTX)))
2178 {
2179 for (temp = XEXP (temp, 0); temp != m1->insn;
2180 temp = NEXT_INSN (temp))
2181 delete_insn (temp);
2182 }
2183 delete_insn (m1->insn);
2184
2185 /* Any other movable that loads the same register
2186 MUST be moved. */
2187 already_moved[m1->regno] = 1;
2188
2189 /* The reg merged here is now invariant,
2190 if the reg it matches is invariant. */
2191 if (! m->partial)
2192 VARRAY_INT (n_times_set, m1->regno) = 0;
2193 }
2194 }
2195 else if (loop_dump_stream)
2196 fprintf (loop_dump_stream, "not desirable");
2197 }
2198 else if (loop_dump_stream && !m->match)
2199 fprintf (loop_dump_stream, "not safe");
2200
2201 if (loop_dump_stream)
2202 fprintf (loop_dump_stream, "\n");
2203 }
2204
2205 if (new_start == 0)
2206 new_start = loop_start;
2207
2208 /* Go through all the instructions in the loop, making
2209 all the register substitutions scheduled in REG_MAP. */
2210 for (p = new_start; p != end; p = NEXT_INSN (p))
2211 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2212 || GET_CODE (p) == CALL_INSN)
2213 {
2214 replace_regs (PATTERN (p), reg_map, nregs, 0);
2215 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2216 INSN_CODE (p) = -1;
2217 }
2218 }
2219 \f
2220 #if 0
2221 /* Scan X and replace the address of any MEM in it with ADDR.
2222 REG is the address that MEM should have before the replacement. */
2223
2224 static void
2225 replace_call_address (x, reg, addr)
2226 rtx x, reg, addr;
2227 {
2228 register enum rtx_code code;
2229 register int i;
2230 register char *fmt;
2231
2232 if (x == 0)
2233 return;
2234 code = GET_CODE (x);
2235 switch (code)
2236 {
2237 case PC:
2238 case CC0:
2239 case CONST_INT:
2240 case CONST_DOUBLE:
2241 case CONST:
2242 case SYMBOL_REF:
2243 case LABEL_REF:
2244 case REG:
2245 return;
2246
2247 case SET:
2248 /* Short cut for very common case. */
2249 replace_call_address (XEXP (x, 1), reg, addr);
2250 return;
2251
2252 case CALL:
2253 /* Short cut for very common case. */
2254 replace_call_address (XEXP (x, 0), reg, addr);
2255 return;
2256
2257 case MEM:
2258 /* If this MEM uses a reg other than the one we expected,
2259 something is wrong. */
2260 if (XEXP (x, 0) != reg)
2261 abort ();
2262 XEXP (x, 0) = addr;
2263 return;
2264
2265 default:
2266 break;
2267 }
2268
2269 fmt = GET_RTX_FORMAT (code);
2270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2271 {
2272 if (fmt[i] == 'e')
2273 replace_call_address (XEXP (x, i), reg, addr);
2274 if (fmt[i] == 'E')
2275 {
2276 register int j;
2277 for (j = 0; j < XVECLEN (x, i); j++)
2278 replace_call_address (XVECEXP (x, i, j), reg, addr);
2279 }
2280 }
2281 }
2282 #endif
2283 \f
2284 /* Return the number of memory refs to addresses that vary
2285 in the rtx X. */
2286
2287 static int
2288 count_nonfixed_reads (x)
2289 rtx x;
2290 {
2291 register enum rtx_code code;
2292 register int i;
2293 register char *fmt;
2294 int value;
2295
2296 if (x == 0)
2297 return 0;
2298
2299 code = GET_CODE (x);
2300 switch (code)
2301 {
2302 case PC:
2303 case CC0:
2304 case CONST_INT:
2305 case CONST_DOUBLE:
2306 case CONST:
2307 case SYMBOL_REF:
2308 case LABEL_REF:
2309 case REG:
2310 return 0;
2311
2312 case MEM:
2313 return ((invariant_p (XEXP (x, 0)) != 1)
2314 + count_nonfixed_reads (XEXP (x, 0)));
2315
2316 default:
2317 break;
2318 }
2319
2320 value = 0;
2321 fmt = GET_RTX_FORMAT (code);
2322 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2323 {
2324 if (fmt[i] == 'e')
2325 value += count_nonfixed_reads (XEXP (x, i));
2326 if (fmt[i] == 'E')
2327 {
2328 register int j;
2329 for (j = 0; j < XVECLEN (x, i); j++)
2330 value += count_nonfixed_reads (XVECEXP (x, i, j));
2331 }
2332 }
2333 return value;
2334 }
2335
2336 \f
2337 #if 0
2338 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2339 Replace it with an instruction to load just the low bytes
2340 if the machine supports such an instruction,
2341 and insert above LOOP_START an instruction to clear the register. */
2342
2343 static void
2344 constant_high_bytes (p, loop_start)
2345 rtx p, loop_start;
2346 {
2347 register rtx new;
2348 register int insn_code_number;
2349
2350 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2351 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2352
2353 new = gen_rtx_SET (VOIDmode,
2354 gen_rtx_STRICT_LOW_PART (VOIDmode,
2355 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2356 SET_DEST (PATTERN (p)),
2357 0)),
2358 XEXP (SET_SRC (PATTERN (p)), 0));
2359 insn_code_number = recog (new, p);
2360
2361 if (insn_code_number)
2362 {
2363 register int i;
2364
2365 /* Clear destination register before the loop. */
2366 emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
2367 const0_rtx),
2368 loop_start);
2369
2370 /* Inside the loop, just load the low part. */
2371 PATTERN (p) = new;
2372 }
2373 }
2374 #endif
2375 \f
2376 /* Scan a loop setting the variables `unknown_address_altered',
2377 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2378 and `loop_has_volatile'. Also, fill in the arrays `loop_mems' and
2379 `loop_store_mems'. */
2380
2381 static void
2382 prescan_loop (start, end)
2383 rtx start, end;
2384 {
2385 register int level = 1;
2386 rtx insn;
2387 int loop_has_multiple_exit_targets = 0;
2388 /* The label after END. Jumping here is just like falling off the
2389 end of the loop. We use next_nonnote_insn instead of next_label
2390 as a hedge against the (pathological) case where some actual insn
2391 might end up between the two. */
2392 rtx exit_target = next_nonnote_insn (end);
2393 if (exit_target == NULL_RTX || GET_CODE (exit_target) != CODE_LABEL)
2394 loop_has_multiple_exit_targets = 1;
2395
2396 unknown_address_altered = 0;
2397 loop_has_call = 0;
2398 loop_has_volatile = 0;
2399 loop_store_mems_idx = 0;
2400 loop_mems_idx = 0;
2401
2402 num_mem_sets = 0;
2403 loops_enclosed = 1;
2404 loop_continue = 0;
2405
2406 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2407 insn = NEXT_INSN (insn))
2408 {
2409 if (GET_CODE (insn) == NOTE)
2410 {
2411 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2412 {
2413 ++level;
2414 /* Count number of loops contained in this one. */
2415 loops_enclosed++;
2416 }
2417 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2418 {
2419 --level;
2420 if (level == 0)
2421 {
2422 end = insn;
2423 break;
2424 }
2425 }
2426 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2427 {
2428 if (level == 1)
2429 loop_continue = insn;
2430 }
2431 }
2432 else if (GET_CODE (insn) == CALL_INSN)
2433 {
2434 if (! CONST_CALL_P (insn))
2435 unknown_address_altered = 1;
2436 loop_has_call = 1;
2437 }
2438 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2439 {
2440 rtx label1 = NULL_RTX;
2441 rtx label2 = NULL_RTX;
2442
2443 if (volatile_refs_p (PATTERN (insn)))
2444 loop_has_volatile = 1;
2445
2446 note_stores (PATTERN (insn), note_addr_stored);
2447
2448 if (!loop_has_multiple_exit_targets
2449 && GET_CODE (insn) == JUMP_INSN
2450 && GET_CODE (PATTERN (insn)) == SET
2451 && SET_DEST (PATTERN (insn)) == pc_rtx)
2452 {
2453 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2454 {
2455 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2456 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2457 }
2458 else
2459 {
2460 label1 = SET_SRC (PATTERN (insn));
2461 }
2462
2463 do {
2464 if (label1 && label1 != pc_rtx)
2465 {
2466 if (GET_CODE (label1) != LABEL_REF)
2467 {
2468 /* Something tricky. */
2469 loop_has_multiple_exit_targets = 1;
2470 break;
2471 }
2472 else if (XEXP (label1, 0) != exit_target
2473 && LABEL_OUTSIDE_LOOP_P (label1))
2474 {
2475 /* A jump outside the current loop. */
2476 loop_has_multiple_exit_targets = 1;
2477 break;
2478 }
2479 }
2480
2481 label1 = label2;
2482 label2 = NULL_RTX;
2483 } while (label1);
2484 }
2485 }
2486 else if (GET_CODE (insn) == RETURN)
2487 loop_has_multiple_exit_targets = 1;
2488 }
2489
2490 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2491 if (/* We can't tell what MEMs are aliased by what. */
2492 !unknown_address_altered
2493 /* An exception thrown by a called function might land us
2494 anywhere. */
2495 && !loop_has_call
2496 /* We don't want loads for MEMs moved to a location before the
2497 one at which their stack memory becomes allocated. (Note
2498 that this is not a problem for malloc, etc., since those
2499 require actual function calls. */
2500 && !current_function_calls_alloca
2501 /* There are ways to leave the loop other than falling off the
2502 end. */
2503 && !loop_has_multiple_exit_targets)
2504 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2505 insn = NEXT_INSN (insn))
2506 for_each_rtx (&insn, insert_loop_mem, 0);
2507 }
2508 \f
2509 /* Scan the function looking for loops. Record the start and end of each loop.
2510 Also mark as invalid loops any loops that contain a setjmp or are branched
2511 to from outside the loop. */
2512
2513 static void
2514 find_and_verify_loops (f)
2515 rtx f;
2516 {
2517 rtx insn, label;
2518 int current_loop = -1;
2519 int next_loop = -1;
2520 int loop;
2521
2522 /* If there are jumps to undefined labels,
2523 treat them as jumps out of any/all loops.
2524 This also avoids writing past end of tables when there are no loops. */
2525 uid_loop_num[0] = -1;
2526
2527 /* Find boundaries of loops, mark which loops are contained within
2528 loops, and invalidate loops that have setjmp. */
2529
2530 for (insn = f; insn; insn = NEXT_INSN (insn))
2531 {
2532 if (GET_CODE (insn) == NOTE)
2533 switch (NOTE_LINE_NUMBER (insn))
2534 {
2535 case NOTE_INSN_LOOP_BEG:
2536 loop_number_loop_starts[++next_loop] = insn;
2537 loop_number_loop_ends[next_loop] = 0;
2538 loop_outer_loop[next_loop] = current_loop;
2539 loop_invalid[next_loop] = 0;
2540 loop_number_exit_labels[next_loop] = 0;
2541 loop_number_exit_count[next_loop] = 0;
2542 current_loop = next_loop;
2543 break;
2544
2545 case NOTE_INSN_SETJMP:
2546 /* In this case, we must invalidate our current loop and any
2547 enclosing loop. */
2548 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2549 {
2550 loop_invalid[loop] = 1;
2551 if (loop_dump_stream)
2552 fprintf (loop_dump_stream,
2553 "\nLoop at %d ignored due to setjmp.\n",
2554 INSN_UID (loop_number_loop_starts[loop]));
2555 }
2556 break;
2557
2558 case NOTE_INSN_LOOP_END:
2559 if (current_loop == -1)
2560 abort ();
2561
2562 loop_number_loop_ends[current_loop] = insn;
2563 current_loop = loop_outer_loop[current_loop];
2564 break;
2565
2566 default:
2567 break;
2568 }
2569
2570 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2571 enclosing loop, but this doesn't matter. */
2572 uid_loop_num[INSN_UID (insn)] = current_loop;
2573 }
2574
2575 /* Any loop containing a label used in an initializer must be invalidated,
2576 because it can be jumped into from anywhere. */
2577
2578 for (label = forced_labels; label; label = XEXP (label, 1))
2579 {
2580 int loop_num;
2581
2582 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2583 loop_num != -1;
2584 loop_num = loop_outer_loop[loop_num])
2585 loop_invalid[loop_num] = 1;
2586 }
2587
2588 /* Any loop containing a label used for an exception handler must be
2589 invalidated, because it can be jumped into from anywhere. */
2590
2591 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2592 {
2593 int loop_num;
2594
2595 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2596 loop_num != -1;
2597 loop_num = loop_outer_loop[loop_num])
2598 loop_invalid[loop_num] = 1;
2599 }
2600
2601 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2602 loop that it is not contained within, that loop is marked invalid.
2603 If any INSN or CALL_INSN uses a label's address, then the loop containing
2604 that label is marked invalid, because it could be jumped into from
2605 anywhere.
2606
2607 Also look for blocks of code ending in an unconditional branch that
2608 exits the loop. If such a block is surrounded by a conditional
2609 branch around the block, move the block elsewhere (see below) and
2610 invert the jump to point to the code block. This may eliminate a
2611 label in our loop and will simplify processing by both us and a
2612 possible second cse pass. */
2613
2614 for (insn = f; insn; insn = NEXT_INSN (insn))
2615 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2616 {
2617 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2618
2619 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2620 {
2621 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2622 if (note)
2623 {
2624 int loop_num;
2625
2626 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2627 loop_num != -1;
2628 loop_num = loop_outer_loop[loop_num])
2629 loop_invalid[loop_num] = 1;
2630 }
2631 }
2632
2633 if (GET_CODE (insn) != JUMP_INSN)
2634 continue;
2635
2636 mark_loop_jump (PATTERN (insn), this_loop_num);
2637
2638 /* See if this is an unconditional branch outside the loop. */
2639 if (this_loop_num != -1
2640 && (GET_CODE (PATTERN (insn)) == RETURN
2641 || (simplejump_p (insn)
2642 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2643 != this_loop_num)))
2644 && get_max_uid () < max_uid_for_loop)
2645 {
2646 rtx p;
2647 rtx our_next = next_real_insn (insn);
2648 int dest_loop;
2649 int outer_loop = -1;
2650
2651 /* Go backwards until we reach the start of the loop, a label,
2652 or a JUMP_INSN. */
2653 for (p = PREV_INSN (insn);
2654 GET_CODE (p) != CODE_LABEL
2655 && ! (GET_CODE (p) == NOTE
2656 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2657 && GET_CODE (p) != JUMP_INSN;
2658 p = PREV_INSN (p))
2659 ;
2660
2661 /* Check for the case where we have a jump to an inner nested
2662 loop, and do not perform the optimization in that case. */
2663
2664 if (JUMP_LABEL (insn))
2665 {
2666 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2667 if (dest_loop != -1)
2668 {
2669 for (outer_loop = dest_loop; outer_loop != -1;
2670 outer_loop = loop_outer_loop[outer_loop])
2671 if (outer_loop == this_loop_num)
2672 break;
2673 }
2674 }
2675
2676 /* Make sure that the target of P is within the current loop. */
2677
2678 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2679 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2680 outer_loop = this_loop_num;
2681
2682 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2683 we have a block of code to try to move.
2684
2685 We look backward and then forward from the target of INSN
2686 to find a BARRIER at the same loop depth as the target.
2687 If we find such a BARRIER, we make a new label for the start
2688 of the block, invert the jump in P and point it to that label,
2689 and move the block of code to the spot we found. */
2690
2691 if (outer_loop == -1
2692 && GET_CODE (p) == JUMP_INSN
2693 && JUMP_LABEL (p) != 0
2694 /* Just ignore jumps to labels that were never emitted.
2695 These always indicate compilation errors. */
2696 && INSN_UID (JUMP_LABEL (p)) != 0
2697 && condjump_p (p)
2698 && ! simplejump_p (p)
2699 && next_real_insn (JUMP_LABEL (p)) == our_next)
2700 {
2701 rtx target
2702 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2703 int target_loop_num = uid_loop_num[INSN_UID (target)];
2704 rtx loc;
2705
2706 for (loc = target; loc; loc = PREV_INSN (loc))
2707 if (GET_CODE (loc) == BARRIER
2708 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2709 break;
2710
2711 if (loc == 0)
2712 for (loc = target; loc; loc = NEXT_INSN (loc))
2713 if (GET_CODE (loc) == BARRIER
2714 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2715 break;
2716
2717 if (loc)
2718 {
2719 rtx cond_label = JUMP_LABEL (p);
2720 rtx new_label = get_label_after (p);
2721
2722 /* Ensure our label doesn't go away. */
2723 LABEL_NUSES (cond_label)++;
2724
2725 /* Verify that uid_loop_num is large enough and that
2726 we can invert P. */
2727 if (invert_jump (p, new_label))
2728 {
2729 rtx q, r;
2730
2731 /* If no suitable BARRIER was found, create a suitable
2732 one before TARGET. Since TARGET is a fall through
2733 path, we'll need to insert an jump around our block
2734 and a add a BARRIER before TARGET.
2735
2736 This creates an extra unconditional jump outside
2737 the loop. However, the benefits of removing rarely
2738 executed instructions from inside the loop usually
2739 outweighs the cost of the extra unconditional jump
2740 outside the loop. */
2741 if (loc == 0)
2742 {
2743 rtx temp;
2744
2745 temp = gen_jump (JUMP_LABEL (insn));
2746 temp = emit_jump_insn_before (temp, target);
2747 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2748 LABEL_NUSES (JUMP_LABEL (insn))++;
2749 loc = emit_barrier_before (target);
2750 }
2751
2752 /* Include the BARRIER after INSN and copy the
2753 block after LOC. */
2754 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2755 reorder_insns (new_label, NEXT_INSN (insn), loc);
2756
2757 /* All those insns are now in TARGET_LOOP_NUM. */
2758 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2759 q = NEXT_INSN (q))
2760 uid_loop_num[INSN_UID (q)] = target_loop_num;
2761
2762 /* The label jumped to by INSN is no longer a loop exit.
2763 Unless INSN does not have a label (e.g., it is a
2764 RETURN insn), search loop_number_exit_labels to find
2765 its label_ref, and remove it. Also turn off
2766 LABEL_OUTSIDE_LOOP_P bit. */
2767 if (JUMP_LABEL (insn))
2768 {
2769 int loop_num;
2770
2771 for (q = 0,
2772 r = loop_number_exit_labels[this_loop_num];
2773 r; q = r, r = LABEL_NEXTREF (r))
2774 if (XEXP (r, 0) == JUMP_LABEL (insn))
2775 {
2776 LABEL_OUTSIDE_LOOP_P (r) = 0;
2777 if (q)
2778 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2779 else
2780 loop_number_exit_labels[this_loop_num]
2781 = LABEL_NEXTREF (r);
2782 break;
2783 }
2784
2785 for (loop_num = this_loop_num;
2786 loop_num != -1 && loop_num != target_loop_num;
2787 loop_num = loop_outer_loop[loop_num])
2788 loop_number_exit_count[loop_num]--;
2789
2790 /* If we didn't find it, then something is wrong. */
2791 if (! r)
2792 abort ();
2793 }
2794
2795 /* P is now a jump outside the loop, so it must be put
2796 in loop_number_exit_labels, and marked as such.
2797 The easiest way to do this is to just call
2798 mark_loop_jump again for P. */
2799 mark_loop_jump (PATTERN (p), this_loop_num);
2800
2801 /* If INSN now jumps to the insn after it,
2802 delete INSN. */
2803 if (JUMP_LABEL (insn) != 0
2804 && (next_real_insn (JUMP_LABEL (insn))
2805 == next_real_insn (insn)))
2806 delete_insn (insn);
2807 }
2808
2809 /* Continue the loop after where the conditional
2810 branch used to jump, since the only branch insn
2811 in the block (if it still remains) is an inter-loop
2812 branch and hence needs no processing. */
2813 insn = NEXT_INSN (cond_label);
2814
2815 if (--LABEL_NUSES (cond_label) == 0)
2816 delete_insn (cond_label);
2817
2818 /* This loop will be continued with NEXT_INSN (insn). */
2819 insn = PREV_INSN (insn);
2820 }
2821 }
2822 }
2823 }
2824 }
2825
2826 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2827 loops it is contained in, mark the target loop invalid.
2828
2829 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2830
2831 static void
2832 mark_loop_jump (x, loop_num)
2833 rtx x;
2834 int loop_num;
2835 {
2836 int dest_loop;
2837 int outer_loop;
2838 int i;
2839
2840 switch (GET_CODE (x))
2841 {
2842 case PC:
2843 case USE:
2844 case CLOBBER:
2845 case REG:
2846 case MEM:
2847 case CONST_INT:
2848 case CONST_DOUBLE:
2849 case RETURN:
2850 return;
2851
2852 case CONST:
2853 /* There could be a label reference in here. */
2854 mark_loop_jump (XEXP (x, 0), loop_num);
2855 return;
2856
2857 case PLUS:
2858 case MINUS:
2859 case MULT:
2860 mark_loop_jump (XEXP (x, 0), loop_num);
2861 mark_loop_jump (XEXP (x, 1), loop_num);
2862 return;
2863
2864 case SIGN_EXTEND:
2865 case ZERO_EXTEND:
2866 mark_loop_jump (XEXP (x, 0), loop_num);
2867 return;
2868
2869 case LABEL_REF:
2870 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2871
2872 /* Link together all labels that branch outside the loop. This
2873 is used by final_[bg]iv_value and the loop unrolling code. Also
2874 mark this LABEL_REF so we know that this branch should predict
2875 false. */
2876
2877 /* A check to make sure the label is not in an inner nested loop,
2878 since this does not count as a loop exit. */
2879 if (dest_loop != -1)
2880 {
2881 for (outer_loop = dest_loop; outer_loop != -1;
2882 outer_loop = loop_outer_loop[outer_loop])
2883 if (outer_loop == loop_num)
2884 break;
2885 }
2886 else
2887 outer_loop = -1;
2888
2889 if (loop_num != -1 && outer_loop == -1)
2890 {
2891 LABEL_OUTSIDE_LOOP_P (x) = 1;
2892 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2893 loop_number_exit_labels[loop_num] = x;
2894
2895 for (outer_loop = loop_num;
2896 outer_loop != -1 && outer_loop != dest_loop;
2897 outer_loop = loop_outer_loop[outer_loop])
2898 loop_number_exit_count[outer_loop]++;
2899 }
2900
2901 /* If this is inside a loop, but not in the current loop or one enclosed
2902 by it, it invalidates at least one loop. */
2903
2904 if (dest_loop == -1)
2905 return;
2906
2907 /* We must invalidate every nested loop containing the target of this
2908 label, except those that also contain the jump insn. */
2909
2910 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2911 {
2912 /* Stop when we reach a loop that also contains the jump insn. */
2913 for (outer_loop = loop_num; outer_loop != -1;
2914 outer_loop = loop_outer_loop[outer_loop])
2915 if (dest_loop == outer_loop)
2916 return;
2917
2918 /* If we get here, we know we need to invalidate a loop. */
2919 if (loop_dump_stream && ! loop_invalid[dest_loop])
2920 fprintf (loop_dump_stream,
2921 "\nLoop at %d ignored due to multiple entry points.\n",
2922 INSN_UID (loop_number_loop_starts[dest_loop]));
2923
2924 loop_invalid[dest_loop] = 1;
2925 }
2926 return;
2927
2928 case SET:
2929 /* If this is not setting pc, ignore. */
2930 if (SET_DEST (x) == pc_rtx)
2931 mark_loop_jump (SET_SRC (x), loop_num);
2932 return;
2933
2934 case IF_THEN_ELSE:
2935 mark_loop_jump (XEXP (x, 1), loop_num);
2936 mark_loop_jump (XEXP (x, 2), loop_num);
2937 return;
2938
2939 case PARALLEL:
2940 case ADDR_VEC:
2941 for (i = 0; i < XVECLEN (x, 0); i++)
2942 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2943 return;
2944
2945 case ADDR_DIFF_VEC:
2946 for (i = 0; i < XVECLEN (x, 1); i++)
2947 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2948 return;
2949
2950 default:
2951 /* Treat anything else (such as a symbol_ref)
2952 as a branch out of this loop, but not into any loop. */
2953
2954 if (loop_num != -1)
2955 {
2956 #ifdef HAVE_decrement_and_branch_on_count
2957 LABEL_OUTSIDE_LOOP_P (x) = 1;
2958 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2959 #endif /* HAVE_decrement_and_branch_on_count */
2960
2961 loop_number_exit_labels[loop_num] = x;
2962
2963 for (outer_loop = loop_num; outer_loop != -1;
2964 outer_loop = loop_outer_loop[outer_loop])
2965 loop_number_exit_count[outer_loop]++;
2966 }
2967 return;
2968 }
2969 }
2970 \f
2971 /* Return nonzero if there is a label in the range from
2972 insn INSN to and including the insn whose luid is END
2973 INSN must have an assigned luid (i.e., it must not have
2974 been previously created by loop.c). */
2975
2976 static int
2977 labels_in_range_p (insn, end)
2978 rtx insn;
2979 int end;
2980 {
2981 while (insn && INSN_LUID (insn) <= end)
2982 {
2983 if (GET_CODE (insn) == CODE_LABEL)
2984 return 1;
2985 insn = NEXT_INSN (insn);
2986 }
2987
2988 return 0;
2989 }
2990
2991 /* Record that a memory reference X is being set. */
2992
2993 static void
2994 note_addr_stored (x, y)
2995 rtx x;
2996 rtx y ATTRIBUTE_UNUSED;
2997 {
2998 register int i;
2999
3000 if (x == 0 || GET_CODE (x) != MEM)
3001 return;
3002
3003 /* Count number of memory writes.
3004 This affects heuristics in strength_reduce. */
3005 num_mem_sets++;
3006
3007 /* BLKmode MEM means all memory is clobbered. */
3008 if (GET_MODE (x) == BLKmode)
3009 unknown_address_altered = 1;
3010
3011 if (unknown_address_altered)
3012 return;
3013
3014 for (i = 0; i < loop_store_mems_idx; i++)
3015 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
3016 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
3017 {
3018 /* We are storing at the same address as previously noted. Save the
3019 wider reference. */
3020 if (GET_MODE_SIZE (GET_MODE (x))
3021 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
3022 loop_store_mems[i] = x;
3023 break;
3024 }
3025
3026 if (i == NUM_STORES)
3027 unknown_address_altered = 1;
3028
3029 else if (i == loop_store_mems_idx)
3030 loop_store_mems[loop_store_mems_idx++] = x;
3031 }
3032 \f
3033 /* Return nonzero if the rtx X is invariant over the current loop.
3034
3035 The value is 2 if we refer to something only conditionally invariant.
3036
3037 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3038 Otherwise, a memory ref is invariant if it does not conflict with
3039 anything stored in `loop_store_mems'. */
3040
3041 int
3042 invariant_p (x)
3043 register rtx x;
3044 {
3045 register int i;
3046 register enum rtx_code code;
3047 register char *fmt;
3048 int conditional = 0;
3049
3050 if (x == 0)
3051 return 1;
3052 code = GET_CODE (x);
3053 switch (code)
3054 {
3055 case CONST_INT:
3056 case CONST_DOUBLE:
3057 case SYMBOL_REF:
3058 case CONST:
3059 return 1;
3060
3061 case LABEL_REF:
3062 /* A LABEL_REF is normally invariant, however, if we are unrolling
3063 loops, and this label is inside the loop, then it isn't invariant.
3064 This is because each unrolled copy of the loop body will have
3065 a copy of this label. If this was invariant, then an insn loading
3066 the address of this label into a register might get moved outside
3067 the loop, and then each loop body would end up using the same label.
3068
3069 We don't know the loop bounds here though, so just fail for all
3070 labels. */
3071 if (flag_unroll_loops)
3072 return 0;
3073 else
3074 return 1;
3075
3076 case PC:
3077 case CC0:
3078 case UNSPEC_VOLATILE:
3079 return 0;
3080
3081 case REG:
3082 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3083 since the reg might be set by initialization within the loop. */
3084
3085 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3086 || x == arg_pointer_rtx)
3087 && ! current_function_has_nonlocal_goto)
3088 return 1;
3089
3090 if (loop_has_call
3091 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3092 return 0;
3093
3094 if (VARRAY_INT (n_times_set, REGNO (x)) < 0)
3095 return 2;
3096
3097 return VARRAY_INT (n_times_set, REGNO (x)) == 0;
3098
3099 case MEM:
3100 /* Volatile memory references must be rejected. Do this before
3101 checking for read-only items, so that volatile read-only items
3102 will be rejected also. */
3103 if (MEM_VOLATILE_P (x))
3104 return 0;
3105
3106 /* Read-only items (such as constants in a constant pool) are
3107 invariant if their address is. */
3108 if (RTX_UNCHANGING_P (x))
3109 break;
3110
3111 /* If we filled the table (or had a subroutine call), any location
3112 in memory could have been clobbered. */
3113 if (unknown_address_altered)
3114 return 0;
3115
3116 /* See if there is any dependence between a store and this load. */
3117 for (i = loop_store_mems_idx - 1; i >= 0; i--)
3118 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
3119 return 0;
3120
3121 /* It's not invalidated by a store in memory
3122 but we must still verify the address is invariant. */
3123 break;
3124
3125 case ASM_OPERANDS:
3126 /* Don't mess with insns declared volatile. */
3127 if (MEM_VOLATILE_P (x))
3128 return 0;
3129 break;
3130
3131 default:
3132 break;
3133 }
3134
3135 fmt = GET_RTX_FORMAT (code);
3136 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3137 {
3138 if (fmt[i] == 'e')
3139 {
3140 int tem = invariant_p (XEXP (x, i));
3141 if (tem == 0)
3142 return 0;
3143 if (tem == 2)
3144 conditional = 1;
3145 }
3146 else if (fmt[i] == 'E')
3147 {
3148 register int j;
3149 for (j = 0; j < XVECLEN (x, i); j++)
3150 {
3151 int tem = invariant_p (XVECEXP (x, i, j));
3152 if (tem == 0)
3153 return 0;
3154 if (tem == 2)
3155 conditional = 1;
3156 }
3157
3158 }
3159 }
3160
3161 return 1 + conditional;
3162 }
3163
3164 \f
3165 /* Return nonzero if all the insns in the loop that set REG
3166 are INSN and the immediately following insns,
3167 and if each of those insns sets REG in an invariant way
3168 (not counting uses of REG in them).
3169
3170 The value is 2 if some of these insns are only conditionally invariant.
3171
3172 We assume that INSN itself is the first set of REG
3173 and that its source is invariant. */
3174
3175 static int
3176 consec_sets_invariant_p (reg, n_sets, insn)
3177 int n_sets;
3178 rtx reg, insn;
3179 {
3180 register rtx p = insn;
3181 register int regno = REGNO (reg);
3182 rtx temp;
3183 /* Number of sets we have to insist on finding after INSN. */
3184 int count = n_sets - 1;
3185 int old = VARRAY_INT (n_times_set, regno);
3186 int value = 0;
3187 int this;
3188
3189 /* If N_SETS hit the limit, we can't rely on its value. */
3190 if (n_sets == 127)
3191 return 0;
3192
3193 VARRAY_INT (n_times_set, regno) = 0;
3194
3195 while (count > 0)
3196 {
3197 register enum rtx_code code;
3198 rtx set;
3199
3200 p = NEXT_INSN (p);
3201 code = GET_CODE (p);
3202
3203 /* If library call, skip to end of it. */
3204 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3205 p = XEXP (temp, 0);
3206
3207 this = 0;
3208 if (code == INSN
3209 && (set = single_set (p))
3210 && GET_CODE (SET_DEST (set)) == REG
3211 && REGNO (SET_DEST (set)) == regno)
3212 {
3213 this = invariant_p (SET_SRC (set));
3214 if (this != 0)
3215 value |= this;
3216 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3217 {
3218 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3219 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3220 notes are OK. */
3221 this = (CONSTANT_P (XEXP (temp, 0))
3222 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3223 && invariant_p (XEXP (temp, 0))));
3224 if (this != 0)
3225 value |= this;
3226 }
3227 }
3228 if (this != 0)
3229 count--;
3230 else if (code != NOTE)
3231 {
3232 VARRAY_INT (n_times_set, regno) = old;
3233 return 0;
3234 }
3235 }
3236
3237 VARRAY_INT (n_times_set, regno) = old;
3238 /* If invariant_p ever returned 2, we return 2. */
3239 return 1 + (value & 2);
3240 }
3241
3242 #if 0
3243 /* I don't think this condition is sufficient to allow INSN
3244 to be moved, so we no longer test it. */
3245
3246 /* Return 1 if all insns in the basic block of INSN and following INSN
3247 that set REG are invariant according to TABLE. */
3248
3249 static int
3250 all_sets_invariant_p (reg, insn, table)
3251 rtx reg, insn;
3252 short *table;
3253 {
3254 register rtx p = insn;
3255 register int regno = REGNO (reg);
3256
3257 while (1)
3258 {
3259 register enum rtx_code code;
3260 p = NEXT_INSN (p);
3261 code = GET_CODE (p);
3262 if (code == CODE_LABEL || code == JUMP_INSN)
3263 return 1;
3264 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3265 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3266 && REGNO (SET_DEST (PATTERN (p))) == regno)
3267 {
3268 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3269 return 0;
3270 }
3271 }
3272 }
3273 #endif /* 0 */
3274 \f
3275 /* Look at all uses (not sets) of registers in X. For each, if it is
3276 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3277 a different insn, set USAGE[REGNO] to const0_rtx. */
3278
3279 static void
3280 find_single_use_in_loop (insn, x, usage)
3281 rtx insn;
3282 rtx x;
3283 varray_type usage;
3284 {
3285 enum rtx_code code = GET_CODE (x);
3286 char *fmt = GET_RTX_FORMAT (code);
3287 int i, j;
3288
3289 if (code == REG)
3290 VARRAY_RTX (usage, REGNO (x))
3291 = (VARRAY_RTX (usage, REGNO (x)) != 0
3292 && VARRAY_RTX (usage, REGNO (x)) != insn)
3293 ? const0_rtx : insn;
3294
3295 else if (code == SET)
3296 {
3297 /* Don't count SET_DEST if it is a REG; otherwise count things
3298 in SET_DEST because if a register is partially modified, it won't
3299 show up as a potential movable so we don't care how USAGE is set
3300 for it. */
3301 if (GET_CODE (SET_DEST (x)) != REG)
3302 find_single_use_in_loop (insn, SET_DEST (x), usage);
3303 find_single_use_in_loop (insn, SET_SRC (x), usage);
3304 }
3305 else
3306 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3307 {
3308 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3309 find_single_use_in_loop (insn, XEXP (x, i), usage);
3310 else if (fmt[i] == 'E')
3311 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3312 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3313 }
3314 }
3315 \f
3316 /* Count and record any set in X which is contained in INSN. Update
3317 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3318
3319 static void
3320 count_one_set (insn, x, may_not_move, last_set)
3321 rtx insn, x;
3322 varray_type may_not_move;
3323 rtx *last_set;
3324 {
3325 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3326 /* Don't move a reg that has an explicit clobber.
3327 It's not worth the pain to try to do it correctly. */
3328 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3329
3330 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3331 {
3332 rtx dest = SET_DEST (x);
3333 while (GET_CODE (dest) == SUBREG
3334 || GET_CODE (dest) == ZERO_EXTRACT
3335 || GET_CODE (dest) == SIGN_EXTRACT
3336 || GET_CODE (dest) == STRICT_LOW_PART)
3337 dest = XEXP (dest, 0);
3338 if (GET_CODE (dest) == REG)
3339 {
3340 register int regno = REGNO (dest);
3341 /* If this is the first setting of this reg
3342 in current basic block, and it was set before,
3343 it must be set in two basic blocks, so it cannot
3344 be moved out of the loop. */
3345 if (VARRAY_INT (n_times_set, regno) > 0
3346 && last_set[regno] == 0)
3347 VARRAY_CHAR (may_not_move, regno) = 1;
3348 /* If this is not first setting in current basic block,
3349 see if reg was used in between previous one and this.
3350 If so, neither one can be moved. */
3351 if (last_set[regno] != 0
3352 && reg_used_between_p (dest, last_set[regno], insn))
3353 VARRAY_CHAR (may_not_move, regno) = 1;
3354 if (VARRAY_INT (n_times_set, regno) < 127)
3355 ++VARRAY_INT (n_times_set, regno);
3356 last_set[regno] = insn;
3357 }
3358 }
3359 }
3360
3361 /* Increment N_TIMES_SET at the index of each register
3362 that is modified by an insn between FROM and TO.
3363 If the value of an element of N_TIMES_SET becomes 127 or more,
3364 stop incrementing it, to avoid overflow.
3365
3366 Store in SINGLE_USAGE[I] the single insn in which register I is
3367 used, if it is only used once. Otherwise, it is set to 0 (for no
3368 uses) or const0_rtx for more than one use. This parameter may be zero,
3369 in which case this processing is not done.
3370
3371 Store in *COUNT_PTR the number of actual instruction
3372 in the loop. We use this to decide what is worth moving out. */
3373
3374 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3375 In that case, it is the insn that last set reg n. */
3376
3377 static void
3378 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3379 register rtx from, to;
3380 varray_type may_not_move;
3381 varray_type single_usage;
3382 int *count_ptr;
3383 int nregs;
3384 {
3385 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3386 register rtx insn;
3387 register int count = 0;
3388 register rtx dest;
3389
3390 bzero ((char *) last_set, nregs * sizeof (rtx));
3391 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3392 {
3393 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3394 {
3395 ++count;
3396
3397 /* If requested, record registers that have exactly one use. */
3398 if (single_usage)
3399 {
3400 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3401
3402 /* Include uses in REG_EQUAL notes. */
3403 if (REG_NOTES (insn))
3404 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3405 }
3406
3407 if (GET_CODE (PATTERN (insn)) == SET
3408 || GET_CODE (PATTERN (insn)) == CLOBBER)
3409 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3410 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3411 {
3412 register int i;
3413 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3414 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3415 may_not_move, last_set);
3416 }
3417 }
3418
3419 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3420 bzero ((char *) last_set, nregs * sizeof (rtx));
3421 }
3422 *count_ptr = count;
3423 }
3424 \f
3425 /* Given a loop that is bounded by LOOP_START and LOOP_END
3426 and that is entered at SCAN_START,
3427 return 1 if the register set in SET contained in insn INSN is used by
3428 any insn that precedes INSN in cyclic order starting
3429 from the loop entry point.
3430
3431 We don't want to use INSN_LUID here because if we restrict INSN to those
3432 that have a valid INSN_LUID, it means we cannot move an invariant out
3433 from an inner loop past two loops. */
3434
3435 static int
3436 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3437 rtx set, insn, loop_start, scan_start, loop_end;
3438 {
3439 rtx reg = SET_DEST (set);
3440 rtx p;
3441
3442 /* Scan forward checking for register usage. If we hit INSN, we
3443 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3444 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3445 {
3446 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3447 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3448 return 1;
3449
3450 if (p == loop_end)
3451 p = loop_start;
3452 }
3453
3454 return 0;
3455 }
3456 \f
3457 /* A "basic induction variable" or biv is a pseudo reg that is set
3458 (within this loop) only by incrementing or decrementing it. */
3459 /* A "general induction variable" or giv is a pseudo reg whose
3460 value is a linear function of a biv. */
3461
3462 /* Bivs are recognized by `basic_induction_var';
3463 Givs by `general_induction_var'. */
3464
3465 /* Indexed by register number, indicates whether or not register is an
3466 induction variable, and if so what type. */
3467
3468 enum iv_mode *reg_iv_type;
3469
3470 /* Indexed by register number, contains pointer to `struct induction'
3471 if register is an induction variable. This holds general info for
3472 all induction variables. */
3473
3474 struct induction **reg_iv_info;
3475
3476 /* Indexed by register number, contains pointer to `struct iv_class'
3477 if register is a basic induction variable. This holds info describing
3478 the class (a related group) of induction variables that the biv belongs
3479 to. */
3480
3481 struct iv_class **reg_biv_class;
3482
3483 /* The head of a list which links together (via the next field)
3484 every iv class for the current loop. */
3485
3486 struct iv_class *loop_iv_list;
3487
3488 /* Communication with routines called via `note_stores'. */
3489
3490 static rtx note_insn;
3491
3492 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3493
3494 static rtx addr_placeholder;
3495
3496 /* ??? Unfinished optimizations, and possible future optimizations,
3497 for the strength reduction code. */
3498
3499 /* ??? The interaction of biv elimination, and recognition of 'constant'
3500 bivs, may cause problems. */
3501
3502 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3503 performance problems.
3504
3505 Perhaps don't eliminate things that can be combined with an addressing
3506 mode. Find all givs that have the same biv, mult_val, and add_val;
3507 then for each giv, check to see if its only use dies in a following
3508 memory address. If so, generate a new memory address and check to see
3509 if it is valid. If it is valid, then store the modified memory address,
3510 otherwise, mark the giv as not done so that it will get its own iv. */
3511
3512 /* ??? Could try to optimize branches when it is known that a biv is always
3513 positive. */
3514
3515 /* ??? When replace a biv in a compare insn, we should replace with closest
3516 giv so that an optimized branch can still be recognized by the combiner,
3517 e.g. the VAX acb insn. */
3518
3519 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3520 was rerun in loop_optimize whenever a register was added or moved.
3521 Also, some of the optimizations could be a little less conservative. */
3522 \f
3523 /* Perform strength reduction and induction variable elimination.
3524
3525 Pseudo registers created during this function will be beyond the last
3526 valid index in several tables including n_times_set and regno_last_uid.
3527 This does not cause a problem here, because the added registers cannot be
3528 givs outside of their loop, and hence will never be reconsidered.
3529 But scan_loop must check regnos to make sure they are in bounds.
3530
3531 SCAN_START is the first instruction in the loop, as the loop would
3532 actually be executed. END is the NOTE_INSN_LOOP_END. LOOP_TOP is
3533 the first instruction in the loop, as it is layed out in the
3534 instruction stream. LOOP_START is the NOTE_INSN_LOOP_BEG. */
3535
3536 static void
3537 strength_reduce (scan_start, end, loop_top, insn_count,
3538 loop_start, loop_end, unroll_p, bct_p)
3539 rtx scan_start;
3540 rtx end;
3541 rtx loop_top;
3542 int insn_count;
3543 rtx loop_start;
3544 rtx loop_end;
3545 int unroll_p, bct_p;
3546 {
3547 rtx p;
3548 rtx set;
3549 rtx inc_val;
3550 rtx mult_val;
3551 rtx dest_reg;
3552 /* This is 1 if current insn is not executed at least once for every loop
3553 iteration. */
3554 int not_every_iteration = 0;
3555 /* This is 1 if current insn may be executed more than once for every
3556 loop iteration. */
3557 int maybe_multiple = 0;
3558 /* Temporary list pointers for traversing loop_iv_list. */
3559 struct iv_class *bl, **backbl;
3560 /* Ratio of extra register life span we can justify
3561 for saving an instruction. More if loop doesn't call subroutines
3562 since in that case saving an insn makes more difference
3563 and more registers are available. */
3564 /* ??? could set this to last value of threshold in move_movables */
3565 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3566 /* Map of pseudo-register replacements. */
3567 rtx *reg_map;
3568 int call_seen;
3569 rtx test;
3570 rtx end_insert_before;
3571 int loop_depth = 0;
3572
3573 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3574 * sizeof (enum iv_mode *));
3575 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3576 reg_iv_info = (struct induction **)
3577 alloca (max_reg_before_loop * sizeof (struct induction *));
3578 bzero ((char *) reg_iv_info, (max_reg_before_loop
3579 * sizeof (struct induction *)));
3580 reg_biv_class = (struct iv_class **)
3581 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3582 bzero ((char *) reg_biv_class, (max_reg_before_loop
3583 * sizeof (struct iv_class *)));
3584
3585 loop_iv_list = 0;
3586 addr_placeholder = gen_reg_rtx (Pmode);
3587
3588 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3589 must be put before this insn, so that they will appear in the right
3590 order (i.e. loop order).
3591
3592 If loop_end is the end of the current function, then emit a
3593 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3594 dummy note insn. */
3595 if (NEXT_INSN (loop_end) != 0)
3596 end_insert_before = NEXT_INSN (loop_end);
3597 else
3598 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3599
3600 /* Scan through loop to find all possible bivs. */
3601
3602 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
3603 p != NULL_RTX;
3604 p = next_insn_in_loop (p, scan_start, end, loop_top))
3605 {
3606 if (GET_CODE (p) == INSN
3607 && (set = single_set (p))
3608 && GET_CODE (SET_DEST (set)) == REG)
3609 {
3610 dest_reg = SET_DEST (set);
3611 if (REGNO (dest_reg) < max_reg_before_loop
3612 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3613 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3614 {
3615 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3616 dest_reg, p, &inc_val, &mult_val))
3617 {
3618 /* It is a possible basic induction variable.
3619 Create and initialize an induction structure for it. */
3620
3621 struct induction *v
3622 = (struct induction *) alloca (sizeof (struct induction));
3623
3624 record_biv (v, p, dest_reg, inc_val, mult_val,
3625 not_every_iteration, maybe_multiple);
3626 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3627 }
3628 else if (REGNO (dest_reg) < max_reg_before_loop)
3629 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3630 }
3631 }
3632
3633 /* Past CODE_LABEL, we get to insns that may be executed multiple
3634 times. The only way we can be sure that they can't is if every
3635 jump insn between here and the end of the loop either
3636 returns, exits the loop, is a forward jump, or is a jump
3637 to the loop start. */
3638
3639 if (GET_CODE (p) == CODE_LABEL)
3640 {
3641 rtx insn = p;
3642
3643 maybe_multiple = 0;
3644
3645 while (1)
3646 {
3647 insn = NEXT_INSN (insn);
3648 if (insn == scan_start)
3649 break;
3650 if (insn == end)
3651 {
3652 if (loop_top != 0)
3653 insn = loop_top;
3654 else
3655 break;
3656 if (insn == scan_start)
3657 break;
3658 }
3659
3660 if (GET_CODE (insn) == JUMP_INSN
3661 && GET_CODE (PATTERN (insn)) != RETURN
3662 && (! condjump_p (insn)
3663 || (JUMP_LABEL (insn) != 0
3664 && JUMP_LABEL (insn) != scan_start
3665 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3666 || INSN_UID (insn) >= max_uid_for_loop
3667 || (INSN_LUID (JUMP_LABEL (insn))
3668 < INSN_LUID (insn))))))
3669 {
3670 maybe_multiple = 1;
3671 break;
3672 }
3673 }
3674 }
3675
3676 /* Past a jump, we get to insns for which we can't count
3677 on whether they will be executed during each iteration. */
3678 /* This code appears twice in strength_reduce. There is also similar
3679 code in scan_loop. */
3680 if (GET_CODE (p) == JUMP_INSN
3681 /* If we enter the loop in the middle, and scan around to the
3682 beginning, don't set not_every_iteration for that.
3683 This can be any kind of jump, since we want to know if insns
3684 will be executed if the loop is executed. */
3685 && ! (JUMP_LABEL (p) == loop_top
3686 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3687 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3688 {
3689 rtx label = 0;
3690
3691 /* If this is a jump outside the loop, then it also doesn't
3692 matter. Check to see if the target of this branch is on the
3693 loop_number_exits_labels list. */
3694
3695 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3696 label;
3697 label = LABEL_NEXTREF (label))
3698 if (XEXP (label, 0) == JUMP_LABEL (p))
3699 break;
3700
3701 if (! label)
3702 not_every_iteration = 1;
3703 }
3704
3705 else if (GET_CODE (p) == NOTE)
3706 {
3707 /* At the virtual top of a converted loop, insns are again known to
3708 be executed each iteration: logically, the loop begins here
3709 even though the exit code has been duplicated. */
3710 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3711 not_every_iteration = 0;
3712 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3713 loop_depth++;
3714 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3715 loop_depth--;
3716 }
3717
3718 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3719 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3720 or not an insn is known to be executed each iteration of the
3721 loop, whether or not any iterations are known to occur.
3722
3723 Therefore, if we have just passed a label and have no more labels
3724 between here and the test insn of the loop, we know these insns
3725 will be executed each iteration. */
3726
3727 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3728 && no_labels_between_p (p, loop_end))
3729 not_every_iteration = 0;
3730 }
3731
3732 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3733 Make a sanity check against n_times_set. */
3734 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3735 {
3736 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3737 /* Above happens if register modified by subreg, etc. */
3738 /* Make sure it is not recognized as a basic induction var: */
3739 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3740 /* If never incremented, it is invariant that we decided not to
3741 move. So leave it alone. */
3742 || ! bl->incremented)
3743 {
3744 if (loop_dump_stream)
3745 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3746 bl->regno,
3747 (reg_iv_type[bl->regno] != BASIC_INDUCT
3748 ? "not induction variable"
3749 : (! bl->incremented ? "never incremented"
3750 : "count error")));
3751
3752 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3753 *backbl = bl->next;
3754 }
3755 else
3756 {
3757 backbl = &bl->next;
3758
3759 if (loop_dump_stream)
3760 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3761 }
3762 }
3763
3764 /* Exit if there are no bivs. */
3765 if (! loop_iv_list)
3766 {
3767 /* Can still unroll the loop anyways, but indicate that there is no
3768 strength reduction info available. */
3769 if (unroll_p)
3770 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3771
3772 return;
3773 }
3774
3775 /* Find initial value for each biv by searching backwards from loop_start,
3776 halting at first label. Also record any test condition. */
3777
3778 call_seen = 0;
3779 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3780 {
3781 note_insn = p;
3782
3783 if (GET_CODE (p) == CALL_INSN)
3784 call_seen = 1;
3785
3786 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3787 || GET_CODE (p) == CALL_INSN)
3788 note_stores (PATTERN (p), record_initial);
3789
3790 /* Record any test of a biv that branches around the loop if no store
3791 between it and the start of loop. We only care about tests with
3792 constants and registers and only certain of those. */
3793 if (GET_CODE (p) == JUMP_INSN
3794 && JUMP_LABEL (p) != 0
3795 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3796 && (test = get_condition_for_loop (p)) != 0
3797 && GET_CODE (XEXP (test, 0)) == REG
3798 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3799 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3800 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3801 && bl->init_insn == 0)
3802 {
3803 /* If an NE test, we have an initial value! */
3804 if (GET_CODE (test) == NE)
3805 {
3806 bl->init_insn = p;
3807 bl->init_set = gen_rtx_SET (VOIDmode,
3808 XEXP (test, 0), XEXP (test, 1));
3809 }
3810 else
3811 bl->initial_test = test;
3812 }
3813 }
3814
3815 /* Look at the each biv and see if we can say anything better about its
3816 initial value from any initializing insns set up above. (This is done
3817 in two passes to avoid missing SETs in a PARALLEL.) */
3818 for (bl = loop_iv_list; bl; bl = bl->next)
3819 {
3820 rtx src;
3821 rtx note;
3822
3823 if (! bl->init_insn)
3824 continue;
3825
3826 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3827 is a constant, use the value of that. */
3828 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3829 && CONSTANT_P (XEXP (note, 0)))
3830 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3831 && CONSTANT_P (XEXP (note, 0))))
3832 src = XEXP (note, 0);
3833 else
3834 src = SET_SRC (bl->init_set);
3835
3836 if (loop_dump_stream)
3837 fprintf (loop_dump_stream,
3838 "Biv %d initialized at insn %d: initial value ",
3839 bl->regno, INSN_UID (bl->init_insn));
3840
3841 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3842 || GET_MODE (src) == VOIDmode)
3843 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3844 {
3845 bl->initial_value = src;
3846
3847 if (loop_dump_stream)
3848 {
3849 if (GET_CODE (src) == CONST_INT)
3850 {
3851 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
3852 fputc ('\n', loop_dump_stream);
3853 }
3854 else
3855 {
3856 print_rtl (loop_dump_stream, src);
3857 fprintf (loop_dump_stream, "\n");
3858 }
3859 }
3860 }
3861 else
3862 {
3863 /* Biv initial value is not simple move,
3864 so let it keep initial value of "itself". */
3865
3866 if (loop_dump_stream)
3867 fprintf (loop_dump_stream, "is complex\n");
3868 }
3869 }
3870
3871 /* Search the loop for general induction variables. */
3872
3873 /* A register is a giv if: it is only set once, it is a function of a
3874 biv and a constant (or invariant), and it is not a biv. */
3875
3876 not_every_iteration = 0;
3877 loop_depth = 0;
3878 p = scan_start;
3879 while (1)
3880 {
3881 p = NEXT_INSN (p);
3882 /* At end of a straight-in loop, we are done.
3883 At end of a loop entered at the bottom, scan the top. */
3884 if (p == scan_start)
3885 break;
3886 if (p == end)
3887 {
3888 if (loop_top != 0)
3889 p = loop_top;
3890 else
3891 break;
3892 if (p == scan_start)
3893 break;
3894 }
3895
3896 /* Look for a general induction variable in a register. */
3897 if (GET_CODE (p) == INSN
3898 && (set = single_set (p))
3899 && GET_CODE (SET_DEST (set)) == REG
3900 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
3901 {
3902 rtx src_reg;
3903 rtx add_val;
3904 rtx mult_val;
3905 int benefit;
3906 rtx regnote = 0;
3907
3908 dest_reg = SET_DEST (set);
3909 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3910 continue;
3911
3912 if (/* SET_SRC is a giv. */
3913 (general_induction_var (SET_SRC (set), &src_reg, &add_val,
3914 &mult_val, 0, &benefit)
3915 /* Equivalent expression is a giv. */
3916 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3917 && general_induction_var (XEXP (regnote, 0), &src_reg,
3918 &add_val, &mult_val, 0,
3919 &benefit)))
3920 /* Don't try to handle any regs made by loop optimization.
3921 We have nothing on them in regno_first_uid, etc. */
3922 && REGNO (dest_reg) < max_reg_before_loop
3923 /* Don't recognize a BASIC_INDUCT_VAR here. */
3924 && dest_reg != src_reg
3925 /* This must be the only place where the register is set. */
3926 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
3927 /* or all sets must be consecutive and make a giv. */
3928 || (benefit = consec_sets_giv (benefit, p,
3929 src_reg, dest_reg,
3930 &add_val, &mult_val))))
3931 {
3932 int count;
3933 struct induction *v
3934 = (struct induction *) alloca (sizeof (struct induction));
3935 rtx temp;
3936
3937 /* If this is a library call, increase benefit. */
3938 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3939 benefit += libcall_benefit (p);
3940
3941 /* Skip the consecutive insns, if there are any. */
3942 for (count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
3943 count > 0; count--)
3944 {
3945 /* If first insn of libcall sequence, skip to end.
3946 Do this at start of loop, since INSN is guaranteed to
3947 be an insn here. */
3948 if (GET_CODE (p) != NOTE
3949 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3950 p = XEXP (temp, 0);
3951
3952 do p = NEXT_INSN (p);
3953 while (GET_CODE (p) == NOTE);
3954 }
3955
3956 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3957 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3958 loop_end);
3959
3960 }
3961 }
3962
3963 #ifndef DONT_REDUCE_ADDR
3964 /* Look for givs which are memory addresses. */
3965 /* This resulted in worse code on a VAX 8600. I wonder if it
3966 still does. */
3967 if (GET_CODE (p) == INSN)
3968 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3969 loop_end);
3970 #endif
3971
3972 /* Update the status of whether giv can derive other givs. This can
3973 change when we pass a label or an insn that updates a biv. */
3974 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3975 || GET_CODE (p) == CODE_LABEL)
3976 update_giv_derive (p);
3977
3978 /* Past a jump, we get to insns for which we can't count
3979 on whether they will be executed during each iteration. */
3980 /* This code appears twice in strength_reduce. There is also similar
3981 code in scan_loop. */
3982 if (GET_CODE (p) == JUMP_INSN
3983 /* If we enter the loop in the middle, and scan around to the
3984 beginning, don't set not_every_iteration for that.
3985 This can be any kind of jump, since we want to know if insns
3986 will be executed if the loop is executed. */
3987 && ! (JUMP_LABEL (p) == loop_top
3988 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3989 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3990 {
3991 rtx label = 0;
3992
3993 /* If this is a jump outside the loop, then it also doesn't
3994 matter. Check to see if the target of this branch is on the
3995 loop_number_exits_labels list. */
3996
3997 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3998 label;
3999 label = LABEL_NEXTREF (label))
4000 if (XEXP (label, 0) == JUMP_LABEL (p))
4001 break;
4002
4003 if (! label)
4004 not_every_iteration = 1;
4005 }
4006
4007 else if (GET_CODE (p) == NOTE)
4008 {
4009 /* At the virtual top of a converted loop, insns are again known to
4010 be executed each iteration: logically, the loop begins here
4011 even though the exit code has been duplicated. */
4012 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
4013 not_every_iteration = 0;
4014 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4015 loop_depth++;
4016 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4017 loop_depth--;
4018 }
4019
4020 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4021 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4022 or not an insn is known to be executed each iteration of the
4023 loop, whether or not any iterations are known to occur.
4024
4025 Therefore, if we have just passed a label and have no more labels
4026 between here and the test insn of the loop, we know these insns
4027 will be executed each iteration. */
4028
4029 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
4030 && no_labels_between_p (p, loop_end))
4031 not_every_iteration = 0;
4032 }
4033
4034 /* Try to calculate and save the number of loop iterations. This is
4035 set to zero if the actual number can not be calculated. This must
4036 be called after all giv's have been identified, since otherwise it may
4037 fail if the iteration variable is a giv. */
4038
4039 loop_n_iterations = loop_iterations (loop_start, loop_end);
4040
4041 /* Now for each giv for which we still don't know whether or not it is
4042 replaceable, check to see if it is replaceable because its final value
4043 can be calculated. This must be done after loop_iterations is called,
4044 so that final_giv_value will work correctly. */
4045
4046 for (bl = loop_iv_list; bl; bl = bl->next)
4047 {
4048 struct induction *v;
4049
4050 for (v = bl->giv; v; v = v->next_iv)
4051 if (! v->replaceable && ! v->not_replaceable)
4052 check_final_value (v, loop_start, loop_end);
4053 }
4054
4055 /* Try to prove that the loop counter variable (if any) is always
4056 nonnegative; if so, record that fact with a REG_NONNEG note
4057 so that "decrement and branch until zero" insn can be used. */
4058 check_dbra_loop (loop_end, insn_count, loop_start);
4059
4060 /* Create reg_map to hold substitutions for replaceable giv regs. */
4061 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
4062 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
4063
4064 /* Examine each iv class for feasibility of strength reduction/induction
4065 variable elimination. */
4066
4067 for (bl = loop_iv_list; bl; bl = bl->next)
4068 {
4069 struct induction *v;
4070 int benefit;
4071 int all_reduced;
4072 rtx final_value = 0;
4073
4074 /* Test whether it will be possible to eliminate this biv
4075 provided all givs are reduced. This is possible if either
4076 the reg is not used outside the loop, or we can compute
4077 what its final value will be.
4078
4079 For architectures with a decrement_and_branch_until_zero insn,
4080 don't do this if we put a REG_NONNEG note on the endtest for
4081 this biv. */
4082
4083 /* Compare against bl->init_insn rather than loop_start.
4084 We aren't concerned with any uses of the biv between
4085 init_insn and loop_start since these won't be affected
4086 by the value of the biv elsewhere in the function, so
4087 long as init_insn doesn't use the biv itself.
4088 March 14, 1989 -- self@bayes.arc.nasa.gov */
4089
4090 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4091 && bl->init_insn
4092 && INSN_UID (bl->init_insn) < max_uid_for_loop
4093 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4094 #ifdef HAVE_decrement_and_branch_until_zero
4095 && ! bl->nonneg
4096 #endif
4097 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4098 || ((final_value = final_biv_value (bl, loop_start, loop_end))
4099 #ifdef HAVE_decrement_and_branch_until_zero
4100 && ! bl->nonneg
4101 #endif
4102 ))
4103 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
4104 threshold, insn_count);
4105 else
4106 {
4107 if (loop_dump_stream)
4108 {
4109 fprintf (loop_dump_stream,
4110 "Cannot eliminate biv %d.\n",
4111 bl->regno);
4112 fprintf (loop_dump_stream,
4113 "First use: insn %d, last use: insn %d.\n",
4114 REGNO_FIRST_UID (bl->regno),
4115 REGNO_LAST_UID (bl->regno));
4116 }
4117 }
4118
4119 /* Combine all giv's for this iv_class. */
4120 combine_givs (bl);
4121
4122 /* This will be true at the end, if all givs which depend on this
4123 biv have been strength reduced.
4124 We can't (currently) eliminate the biv unless this is so. */
4125 all_reduced = 1;
4126
4127 /* Check each giv in this class to see if we will benefit by reducing
4128 it. Skip giv's combined with others. */
4129 for (v = bl->giv; v; v = v->next_iv)
4130 {
4131 struct induction *tv;
4132
4133 if (v->ignore || v->same)
4134 continue;
4135
4136 benefit = v->benefit;
4137
4138 /* Reduce benefit if not replaceable, since we will insert
4139 a move-insn to replace the insn that calculates this giv.
4140 Don't do this unless the giv is a user variable, since it
4141 will often be marked non-replaceable because of the duplication
4142 of the exit code outside the loop. In such a case, the copies
4143 we insert are dead and will be deleted. So they don't have
4144 a cost. Similar situations exist. */
4145 /* ??? The new final_[bg]iv_value code does a much better job
4146 of finding replaceable giv's, and hence this code may no longer
4147 be necessary. */
4148 if (! v->replaceable && ! bl->eliminable
4149 && REG_USERVAR_P (v->dest_reg))
4150 benefit -= copy_cost;
4151
4152 /* Decrease the benefit to count the add-insns that we will
4153 insert to increment the reduced reg for the giv. */
4154 benefit -= add_cost * bl->biv_count;
4155
4156 /* Decide whether to strength-reduce this giv or to leave the code
4157 unchanged (recompute it from the biv each time it is used).
4158 This decision can be made independently for each giv. */
4159
4160 #ifdef AUTO_INC_DEC
4161 /* Attempt to guess whether autoincrement will handle some of the
4162 new add insns; if so, increase BENEFIT (undo the subtraction of
4163 add_cost that was done above). */
4164 if (v->giv_type == DEST_ADDR
4165 && GET_CODE (v->mult_val) == CONST_INT)
4166 {
4167 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
4168 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4169 benefit += add_cost * bl->biv_count;
4170 #endif
4171 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
4172 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4173 benefit += add_cost * bl->biv_count;
4174 #endif
4175 }
4176 #endif
4177
4178 /* If an insn is not to be strength reduced, then set its ignore
4179 flag, and clear all_reduced. */
4180
4181 /* A giv that depends on a reversed biv must be reduced if it is
4182 used after the loop exit, otherwise, it would have the wrong
4183 value after the loop exit. To make it simple, just reduce all
4184 of such giv's whether or not we know they are used after the loop
4185 exit. */
4186
4187 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4188 && ! bl->reversed )
4189 {
4190 if (loop_dump_stream)
4191 fprintf (loop_dump_stream,
4192 "giv of insn %d not worth while, %d vs %d.\n",
4193 INSN_UID (v->insn),
4194 v->lifetime * threshold * benefit, insn_count);
4195 v->ignore = 1;
4196 all_reduced = 0;
4197 }
4198 else
4199 {
4200 /* Check that we can increment the reduced giv without a
4201 multiply insn. If not, reject it. */
4202
4203 for (tv = bl->biv; tv; tv = tv->next_iv)
4204 if (tv->mult_val == const1_rtx
4205 && ! product_cheap_p (tv->add_val, v->mult_val))
4206 {
4207 if (loop_dump_stream)
4208 fprintf (loop_dump_stream,
4209 "giv of insn %d: would need a multiply.\n",
4210 INSN_UID (v->insn));
4211 v->ignore = 1;
4212 all_reduced = 0;
4213 break;
4214 }
4215 }
4216 }
4217
4218 /* Reduce each giv that we decided to reduce. */
4219
4220 for (v = bl->giv; v; v = v->next_iv)
4221 {
4222 struct induction *tv;
4223 if (! v->ignore && v->same == 0)
4224 {
4225 int auto_inc_opt = 0;
4226
4227 v->new_reg = gen_reg_rtx (v->mode);
4228
4229 #ifdef AUTO_INC_DEC
4230 /* If the target has auto-increment addressing modes, and
4231 this is an address giv, then try to put the increment
4232 immediately after its use, so that flow can create an
4233 auto-increment addressing mode. */
4234 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4235 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4236 /* We don't handle reversed biv's because bl->biv->insn
4237 does not have a valid INSN_LUID. */
4238 && ! bl->reversed
4239 && v->always_executed && ! v->maybe_multiple
4240 && INSN_UID (v->insn) < max_uid_for_loop)
4241 {
4242 /* If other giv's have been combined with this one, then
4243 this will work only if all uses of the other giv's occur
4244 before this giv's insn. This is difficult to check.
4245
4246 We simplify this by looking for the common case where
4247 there is one DEST_REG giv, and this giv's insn is the
4248 last use of the dest_reg of that DEST_REG giv. If the
4249 increment occurs after the address giv, then we can
4250 perform the optimization. (Otherwise, the increment
4251 would have to go before other_giv, and we would not be
4252 able to combine it with the address giv to get an
4253 auto-inc address.) */
4254 if (v->combined_with)
4255 {
4256 struct induction *other_giv = 0;
4257
4258 for (tv = bl->giv; tv; tv = tv->next_iv)
4259 if (tv->same == v)
4260 {
4261 if (other_giv)
4262 break;
4263 else
4264 other_giv = tv;
4265 }
4266 if (! tv && other_giv
4267 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4268 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4269 == INSN_UID (v->insn))
4270 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4271 auto_inc_opt = 1;
4272 }
4273 /* Check for case where increment is before the address
4274 giv. Do this test in "loop order". */
4275 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4276 && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4277 || (INSN_LUID (bl->biv->insn)
4278 > INSN_LUID (scan_start))))
4279 || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4280 && (INSN_LUID (scan_start)
4281 < INSN_LUID (bl->biv->insn))))
4282 auto_inc_opt = -1;
4283 else
4284 auto_inc_opt = 1;
4285
4286 #ifdef HAVE_cc0
4287 {
4288 rtx prev;
4289
4290 /* We can't put an insn immediately after one setting
4291 cc0, or immediately before one using cc0. */
4292 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4293 || (auto_inc_opt == -1
4294 && (prev = prev_nonnote_insn (v->insn)) != 0
4295 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4296 && sets_cc0_p (PATTERN (prev))))
4297 auto_inc_opt = 0;
4298 }
4299 #endif
4300
4301 if (auto_inc_opt)
4302 v->auto_inc_opt = 1;
4303 }
4304 #endif
4305
4306 /* For each place where the biv is incremented, add an insn
4307 to increment the new, reduced reg for the giv. */
4308 for (tv = bl->biv; tv; tv = tv->next_iv)
4309 {
4310 rtx insert_before;
4311
4312 if (! auto_inc_opt)
4313 insert_before = tv->insn;
4314 else if (auto_inc_opt == 1)
4315 insert_before = NEXT_INSN (v->insn);
4316 else
4317 insert_before = v->insn;
4318
4319 if (tv->mult_val == const1_rtx)
4320 emit_iv_add_mult (tv->add_val, v->mult_val,
4321 v->new_reg, v->new_reg, insert_before);
4322 else /* tv->mult_val == const0_rtx */
4323 /* A multiply is acceptable here
4324 since this is presumed to be seldom executed. */
4325 emit_iv_add_mult (tv->add_val, v->mult_val,
4326 v->add_val, v->new_reg, insert_before);
4327 }
4328
4329 /* Add code at loop start to initialize giv's reduced reg. */
4330
4331 emit_iv_add_mult (bl->initial_value, v->mult_val,
4332 v->add_val, v->new_reg, loop_start);
4333 }
4334 }
4335
4336 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4337 as not reduced.
4338
4339 For each giv register that can be reduced now: if replaceable,
4340 substitute reduced reg wherever the old giv occurs;
4341 else add new move insn "giv_reg = reduced_reg".
4342
4343 Also check for givs whose first use is their definition and whose
4344 last use is the definition of another giv. If so, it is likely
4345 dead and should not be used to eliminate a biv. */
4346 for (v = bl->giv; v; v = v->next_iv)
4347 {
4348 if (v->same && v->same->ignore)
4349 v->ignore = 1;
4350
4351 if (v->ignore)
4352 continue;
4353
4354 if (v->giv_type == DEST_REG
4355 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4356 {
4357 struct induction *v1;
4358
4359 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4360 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4361 v->maybe_dead = 1;
4362 }
4363
4364 /* Update expression if this was combined, in case other giv was
4365 replaced. */
4366 if (v->same)
4367 v->new_reg = replace_rtx (v->new_reg,
4368 v->same->dest_reg, v->same->new_reg);
4369
4370 if (v->giv_type == DEST_ADDR)
4371 /* Store reduced reg as the address in the memref where we found
4372 this giv. */
4373 validate_change (v->insn, v->location, v->new_reg, 0);
4374 else if (v->replaceable)
4375 {
4376 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4377
4378 #if 0
4379 /* I can no longer duplicate the original problem. Perhaps
4380 this is unnecessary now? */
4381
4382 /* Replaceable; it isn't strictly necessary to delete the old
4383 insn and emit a new one, because v->dest_reg is now dead.
4384
4385 However, especially when unrolling loops, the special
4386 handling for (set REG0 REG1) in the second cse pass may
4387 make v->dest_reg live again. To avoid this problem, emit
4388 an insn to set the original giv reg from the reduced giv.
4389 We can not delete the original insn, since it may be part
4390 of a LIBCALL, and the code in flow that eliminates dead
4391 libcalls will fail if it is deleted. */
4392 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4393 v->insn);
4394 #endif
4395 }
4396 else
4397 {
4398 /* Not replaceable; emit an insn to set the original giv reg from
4399 the reduced giv, same as above. */
4400 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4401 v->insn);
4402 }
4403
4404 /* When a loop is reversed, givs which depend on the reversed
4405 biv, and which are live outside the loop, must be set to their
4406 correct final value. This insn is only needed if the giv is
4407 not replaceable. The correct final value is the same as the
4408 value that the giv starts the reversed loop with. */
4409 if (bl->reversed && ! v->replaceable)
4410 emit_iv_add_mult (bl->initial_value, v->mult_val,
4411 v->add_val, v->dest_reg, end_insert_before);
4412 else if (v->final_value)
4413 {
4414 rtx insert_before;
4415
4416 /* If the loop has multiple exits, emit the insn before the
4417 loop to ensure that it will always be executed no matter
4418 how the loop exits. Otherwise, emit the insn after the loop,
4419 since this is slightly more efficient. */
4420 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4421 insert_before = loop_start;
4422 else
4423 insert_before = end_insert_before;
4424 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4425 insert_before);
4426
4427 #if 0
4428 /* If the insn to set the final value of the giv was emitted
4429 before the loop, then we must delete the insn inside the loop
4430 that sets it. If this is a LIBCALL, then we must delete
4431 every insn in the libcall. Note, however, that
4432 final_giv_value will only succeed when there are multiple
4433 exits if the giv is dead at each exit, hence it does not
4434 matter that the original insn remains because it is dead
4435 anyways. */
4436 /* Delete the insn inside the loop that sets the giv since
4437 the giv is now set before (or after) the loop. */
4438 delete_insn (v->insn);
4439 #endif
4440 }
4441
4442 if (loop_dump_stream)
4443 {
4444 fprintf (loop_dump_stream, "giv at %d reduced to ",
4445 INSN_UID (v->insn));
4446 print_rtl (loop_dump_stream, v->new_reg);
4447 fprintf (loop_dump_stream, "\n");
4448 }
4449 }
4450
4451 /* All the givs based on the biv bl have been reduced if they
4452 merit it. */
4453
4454 /* For each giv not marked as maybe dead that has been combined with a
4455 second giv, clear any "maybe dead" mark on that second giv.
4456 v->new_reg will either be or refer to the register of the giv it
4457 combined with.
4458
4459 Doing this clearing avoids problems in biv elimination where a
4460 giv's new_reg is a complex value that can't be put in the insn but
4461 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4462 Since the register will be used in either case, we'd prefer it be
4463 used from the simpler giv. */
4464
4465 for (v = bl->giv; v; v = v->next_iv)
4466 if (! v->maybe_dead && v->same)
4467 v->same->maybe_dead = 0;
4468
4469 /* Try to eliminate the biv, if it is a candidate.
4470 This won't work if ! all_reduced,
4471 since the givs we planned to use might not have been reduced.
4472
4473 We have to be careful that we didn't initially think we could eliminate
4474 this biv because of a giv that we now think may be dead and shouldn't
4475 be used as a biv replacement.
4476
4477 Also, there is the possibility that we may have a giv that looks
4478 like it can be used to eliminate a biv, but the resulting insn
4479 isn't valid. This can happen, for example, on the 88k, where a
4480 JUMP_INSN can compare a register only with zero. Attempts to
4481 replace it with a compare with a constant will fail.
4482
4483 Note that in cases where this call fails, we may have replaced some
4484 of the occurrences of the biv with a giv, but no harm was done in
4485 doing so in the rare cases where it can occur. */
4486
4487 if (all_reduced == 1 && bl->eliminable
4488 && maybe_eliminate_biv (bl, loop_start, end, 1,
4489 threshold, insn_count))
4490
4491 {
4492 /* ?? If we created a new test to bypass the loop entirely,
4493 or otherwise drop straight in, based on this test, then
4494 we might want to rewrite it also. This way some later
4495 pass has more hope of removing the initialization of this
4496 biv entirely. */
4497
4498 /* If final_value != 0, then the biv may be used after loop end
4499 and we must emit an insn to set it just in case.
4500
4501 Reversed bivs already have an insn after the loop setting their
4502 value, so we don't need another one. We can't calculate the
4503 proper final value for such a biv here anyways. */
4504 if (final_value != 0 && ! bl->reversed)
4505 {
4506 rtx insert_before;
4507
4508 /* If the loop has multiple exits, emit the insn before the
4509 loop to ensure that it will always be executed no matter
4510 how the loop exits. Otherwise, emit the insn after the
4511 loop, since this is slightly more efficient. */
4512 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4513 insert_before = loop_start;
4514 else
4515 insert_before = end_insert_before;
4516
4517 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4518 end_insert_before);
4519 }
4520
4521 #if 0
4522 /* Delete all of the instructions inside the loop which set
4523 the biv, as they are all dead. If is safe to delete them,
4524 because an insn setting a biv will never be part of a libcall. */
4525 /* However, deleting them will invalidate the regno_last_uid info,
4526 so keeping them around is more convenient. Final_biv_value
4527 will only succeed when there are multiple exits if the biv
4528 is dead at each exit, hence it does not matter that the original
4529 insn remains, because it is dead anyways. */
4530 for (v = bl->biv; v; v = v->next_iv)
4531 delete_insn (v->insn);
4532 #endif
4533
4534 if (loop_dump_stream)
4535 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4536 bl->regno);
4537 }
4538 }
4539
4540 /* Go through all the instructions in the loop, making all the
4541 register substitutions scheduled in REG_MAP. */
4542
4543 for (p = loop_start; p != end; p = NEXT_INSN (p))
4544 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4545 || GET_CODE (p) == CALL_INSN)
4546 {
4547 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4548 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4549 INSN_CODE (p) = -1;
4550 }
4551
4552 /* Unroll loops from within strength reduction so that we can use the
4553 induction variable information that strength_reduce has already
4554 collected. */
4555
4556 if (unroll_p)
4557 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4558
4559 #ifdef HAVE_decrement_and_branch_on_count
4560 /* Instrument the loop with BCT insn. */
4561 if (HAVE_decrement_and_branch_on_count && bct_p
4562 && flag_branch_on_count_reg)
4563 insert_bct (loop_start, loop_end);
4564 #endif /* HAVE_decrement_and_branch_on_count */
4565
4566 if (loop_dump_stream)
4567 fprintf (loop_dump_stream, "\n");
4568 }
4569 \f
4570 /* Return 1 if X is a valid source for an initial value (or as value being
4571 compared against in an initial test).
4572
4573 X must be either a register or constant and must not be clobbered between
4574 the current insn and the start of the loop.
4575
4576 INSN is the insn containing X. */
4577
4578 static int
4579 valid_initial_value_p (x, insn, call_seen, loop_start)
4580 rtx x;
4581 rtx insn;
4582 int call_seen;
4583 rtx loop_start;
4584 {
4585 if (CONSTANT_P (x))
4586 return 1;
4587
4588 /* Only consider pseudos we know about initialized in insns whose luids
4589 we know. */
4590 if (GET_CODE (x) != REG
4591 || REGNO (x) >= max_reg_before_loop)
4592 return 0;
4593
4594 /* Don't use call-clobbered registers across a call which clobbers it. On
4595 some machines, don't use any hard registers at all. */
4596 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4597 && (SMALL_REGISTER_CLASSES
4598 || (call_used_regs[REGNO (x)] && call_seen)))
4599 return 0;
4600
4601 /* Don't use registers that have been clobbered before the start of the
4602 loop. */
4603 if (reg_set_between_p (x, insn, loop_start))
4604 return 0;
4605
4606 return 1;
4607 }
4608 \f
4609 /* Scan X for memory refs and check each memory address
4610 as a possible giv. INSN is the insn whose pattern X comes from.
4611 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4612 every loop iteration. */
4613
4614 static void
4615 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4616 rtx x;
4617 rtx insn;
4618 int not_every_iteration;
4619 rtx loop_start, loop_end;
4620 {
4621 register int i, j;
4622 register enum rtx_code code;
4623 register char *fmt;
4624
4625 if (x == 0)
4626 return;
4627
4628 code = GET_CODE (x);
4629 switch (code)
4630 {
4631 case REG:
4632 case CONST_INT:
4633 case CONST:
4634 case CONST_DOUBLE:
4635 case SYMBOL_REF:
4636 case LABEL_REF:
4637 case PC:
4638 case CC0:
4639 case ADDR_VEC:
4640 case ADDR_DIFF_VEC:
4641 case USE:
4642 case CLOBBER:
4643 return;
4644
4645 case MEM:
4646 {
4647 rtx src_reg;
4648 rtx add_val;
4649 rtx mult_val;
4650 int benefit;
4651
4652 /* This code used to disable creating GIVs with mult_val == 1 and
4653 add_val == 0. However, this leads to lost optimizations when
4654 it comes time to combine a set of related DEST_ADDR GIVs, since
4655 this one would not be seen. */
4656
4657 if (general_induction_var (XEXP (x, 0), &src_reg, &add_val,
4658 &mult_val, 1, &benefit))
4659 {
4660 /* Found one; record it. */
4661 struct induction *v
4662 = (struct induction *) oballoc (sizeof (struct induction));
4663
4664 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4665 add_val, benefit, DEST_ADDR, not_every_iteration,
4666 &XEXP (x, 0), loop_start, loop_end);
4667
4668 v->mem_mode = GET_MODE (x);
4669 }
4670 }
4671 return;
4672
4673 default:
4674 break;
4675 }
4676
4677 /* Recursively scan the subexpressions for other mem refs. */
4678
4679 fmt = GET_RTX_FORMAT (code);
4680 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4681 if (fmt[i] == 'e')
4682 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4683 loop_end);
4684 else if (fmt[i] == 'E')
4685 for (j = 0; j < XVECLEN (x, i); j++)
4686 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4687 loop_start, loop_end);
4688 }
4689 \f
4690 /* Fill in the data about one biv update.
4691 V is the `struct induction' in which we record the biv. (It is
4692 allocated by the caller, with alloca.)
4693 INSN is the insn that sets it.
4694 DEST_REG is the biv's reg.
4695
4696 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4697 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4698 being set to INC_VAL.
4699
4700 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4701 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4702 can be executed more than once per iteration. If MAYBE_MULTIPLE
4703 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4704 executed exactly once per iteration. */
4705
4706 static void
4707 record_biv (v, insn, dest_reg, inc_val, mult_val,
4708 not_every_iteration, maybe_multiple)
4709 struct induction *v;
4710 rtx insn;
4711 rtx dest_reg;
4712 rtx inc_val;
4713 rtx mult_val;
4714 int not_every_iteration;
4715 int maybe_multiple;
4716 {
4717 struct iv_class *bl;
4718
4719 v->insn = insn;
4720 v->src_reg = dest_reg;
4721 v->dest_reg = dest_reg;
4722 v->mult_val = mult_val;
4723 v->add_val = inc_val;
4724 v->mode = GET_MODE (dest_reg);
4725 v->always_computable = ! not_every_iteration;
4726 v->always_executed = ! not_every_iteration;
4727 v->maybe_multiple = maybe_multiple;
4728
4729 /* Add this to the reg's iv_class, creating a class
4730 if this is the first incrementation of the reg. */
4731
4732 bl = reg_biv_class[REGNO (dest_reg)];
4733 if (bl == 0)
4734 {
4735 /* Create and initialize new iv_class. */
4736
4737 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4738
4739 bl->regno = REGNO (dest_reg);
4740 bl->biv = 0;
4741 bl->giv = 0;
4742 bl->biv_count = 0;
4743 bl->giv_count = 0;
4744
4745 /* Set initial value to the reg itself. */
4746 bl->initial_value = dest_reg;
4747 /* We haven't seen the initializing insn yet */
4748 bl->init_insn = 0;
4749 bl->init_set = 0;
4750 bl->initial_test = 0;
4751 bl->incremented = 0;
4752 bl->eliminable = 0;
4753 bl->nonneg = 0;
4754 bl->reversed = 0;
4755 bl->total_benefit = 0;
4756
4757 /* Add this class to loop_iv_list. */
4758 bl->next = loop_iv_list;
4759 loop_iv_list = bl;
4760
4761 /* Put it in the array of biv register classes. */
4762 reg_biv_class[REGNO (dest_reg)] = bl;
4763 }
4764
4765 /* Update IV_CLASS entry for this biv. */
4766 v->next_iv = bl->biv;
4767 bl->biv = v;
4768 bl->biv_count++;
4769 if (mult_val == const1_rtx)
4770 bl->incremented = 1;
4771
4772 if (loop_dump_stream)
4773 {
4774 fprintf (loop_dump_stream,
4775 "Insn %d: possible biv, reg %d,",
4776 INSN_UID (insn), REGNO (dest_reg));
4777 if (GET_CODE (inc_val) == CONST_INT)
4778 {
4779 fprintf (loop_dump_stream, " const =");
4780 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
4781 fputc ('\n', loop_dump_stream);
4782 }
4783 else
4784 {
4785 fprintf (loop_dump_stream, " const = ");
4786 print_rtl (loop_dump_stream, inc_val);
4787 fprintf (loop_dump_stream, "\n");
4788 }
4789 }
4790 }
4791 \f
4792 /* Fill in the data about one giv.
4793 V is the `struct induction' in which we record the giv. (It is
4794 allocated by the caller, with alloca.)
4795 INSN is the insn that sets it.
4796 BENEFIT estimates the savings from deleting this insn.
4797 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4798 into a register or is used as a memory address.
4799
4800 SRC_REG is the biv reg which the giv is computed from.
4801 DEST_REG is the giv's reg (if the giv is stored in a reg).
4802 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4803 LOCATION points to the place where this giv's value appears in INSN. */
4804
4805 static void
4806 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4807 type, not_every_iteration, location, loop_start, loop_end)
4808 struct induction *v;
4809 rtx insn;
4810 rtx src_reg;
4811 rtx dest_reg;
4812 rtx mult_val, add_val;
4813 int benefit;
4814 enum g_types type;
4815 int not_every_iteration;
4816 rtx *location;
4817 rtx loop_start, loop_end;
4818 {
4819 struct induction *b;
4820 struct iv_class *bl;
4821 rtx set = single_set (insn);
4822
4823 v->insn = insn;
4824 v->src_reg = src_reg;
4825 v->giv_type = type;
4826 v->dest_reg = dest_reg;
4827 v->mult_val = mult_val;
4828 v->add_val = add_val;
4829 v->benefit = benefit;
4830 v->location = location;
4831 v->cant_derive = 0;
4832 v->combined_with = 0;
4833 v->maybe_multiple = 0;
4834 v->maybe_dead = 0;
4835 v->derive_adjustment = 0;
4836 v->same = 0;
4837 v->ignore = 0;
4838 v->new_reg = 0;
4839 v->final_value = 0;
4840 v->same_insn = 0;
4841 v->auto_inc_opt = 0;
4842 v->unrolled = 0;
4843 v->shared = 0;
4844
4845 /* The v->always_computable field is used in update_giv_derive, to
4846 determine whether a giv can be used to derive another giv. For a
4847 DEST_REG giv, INSN computes a new value for the giv, so its value
4848 isn't computable if INSN insn't executed every iteration.
4849 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4850 it does not compute a new value. Hence the value is always computable
4851 regardless of whether INSN is executed each iteration. */
4852
4853 if (type == DEST_ADDR)
4854 v->always_computable = 1;
4855 else
4856 v->always_computable = ! not_every_iteration;
4857
4858 v->always_executed = ! not_every_iteration;
4859
4860 if (type == DEST_ADDR)
4861 {
4862 v->mode = GET_MODE (*location);
4863 v->lifetime = 1;
4864 v->times_used = 1;
4865 }
4866 else /* type == DEST_REG */
4867 {
4868 v->mode = GET_MODE (SET_DEST (set));
4869
4870 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4871 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4872
4873 v->times_used = VARRAY_INT (n_times_used, REGNO (dest_reg));
4874
4875 /* If the lifetime is zero, it means that this register is
4876 really a dead store. So mark this as a giv that can be
4877 ignored. This will not prevent the biv from being eliminated. */
4878 if (v->lifetime == 0)
4879 v->ignore = 1;
4880
4881 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4882 reg_iv_info[REGNO (dest_reg)] = v;
4883 }
4884
4885 /* Add the giv to the class of givs computed from one biv. */
4886
4887 bl = reg_biv_class[REGNO (src_reg)];
4888 if (bl)
4889 {
4890 v->next_iv = bl->giv;
4891 bl->giv = v;
4892 /* Don't count DEST_ADDR. This is supposed to count the number of
4893 insns that calculate givs. */
4894 if (type == DEST_REG)
4895 bl->giv_count++;
4896 bl->total_benefit += benefit;
4897 }
4898 else
4899 /* Fatal error, biv missing for this giv? */
4900 abort ();
4901
4902 if (type == DEST_ADDR)
4903 v->replaceable = 1;
4904 else
4905 {
4906 /* The giv can be replaced outright by the reduced register only if all
4907 of the following conditions are true:
4908 - the insn that sets the giv is always executed on any iteration
4909 on which the giv is used at all
4910 (there are two ways to deduce this:
4911 either the insn is executed on every iteration,
4912 or all uses follow that insn in the same basic block),
4913 - the giv is not used outside the loop
4914 - no assignments to the biv occur during the giv's lifetime. */
4915
4916 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4917 /* Previous line always fails if INSN was moved by loop opt. */
4918 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4919 && (! not_every_iteration
4920 || last_use_this_basic_block (dest_reg, insn)))
4921 {
4922 /* Now check that there are no assignments to the biv within the
4923 giv's lifetime. This requires two separate checks. */
4924
4925 /* Check each biv update, and fail if any are between the first
4926 and last use of the giv.
4927
4928 If this loop contains an inner loop that was unrolled, then
4929 the insn modifying the biv may have been emitted by the loop
4930 unrolling code, and hence does not have a valid luid. Just
4931 mark the biv as not replaceable in this case. It is not very
4932 useful as a biv, because it is used in two different loops.
4933 It is very unlikely that we would be able to optimize the giv
4934 using this biv anyways. */
4935
4936 v->replaceable = 1;
4937 for (b = bl->biv; b; b = b->next_iv)
4938 {
4939 if (INSN_UID (b->insn) >= max_uid_for_loop
4940 || ((uid_luid[INSN_UID (b->insn)]
4941 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4942 && (uid_luid[INSN_UID (b->insn)]
4943 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4944 {
4945 v->replaceable = 0;
4946 v->not_replaceable = 1;
4947 break;
4948 }
4949 }
4950
4951 /* If there are any backwards branches that go from after the
4952 biv update to before it, then this giv is not replaceable. */
4953 if (v->replaceable)
4954 for (b = bl->biv; b; b = b->next_iv)
4955 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4956 {
4957 v->replaceable = 0;
4958 v->not_replaceable = 1;
4959 break;
4960 }
4961 }
4962 else
4963 {
4964 /* May still be replaceable, we don't have enough info here to
4965 decide. */
4966 v->replaceable = 0;
4967 v->not_replaceable = 0;
4968 }
4969 }
4970
4971 /* Record whether the add_val contains a const_int, for later use by
4972 combine_givs. */
4973 {
4974 rtx tem = add_val;
4975
4976 v->no_const_addval = 1;
4977 if (tem == const0_rtx)
4978 ;
4979 else if (GET_CODE (tem) == CONST_INT)
4980 v->no_const_addval = 0;
4981 else if (GET_CODE (tem) == PLUS)
4982 {
4983 while (1)
4984 {
4985 if (GET_CODE (XEXP (tem, 0)) == PLUS)
4986 tem = XEXP (tem, 0);
4987 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
4988 tem = XEXP (tem, 1);
4989 else
4990 break;
4991 }
4992 if (GET_CODE (XEXP (tem, 1)) == CONST_INT)
4993 v->no_const_addval = 0;
4994 }
4995 }
4996
4997 if (loop_dump_stream)
4998 {
4999 if (type == DEST_REG)
5000 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
5001 INSN_UID (insn), REGNO (dest_reg));
5002 else
5003 fprintf (loop_dump_stream, "Insn %d: dest address",
5004 INSN_UID (insn));
5005
5006 fprintf (loop_dump_stream, " src reg %d benefit %d",
5007 REGNO (src_reg), v->benefit);
5008 fprintf (loop_dump_stream, " used %d lifetime %d",
5009 v->times_used, v->lifetime);
5010
5011 if (v->replaceable)
5012 fprintf (loop_dump_stream, " replaceable");
5013
5014 if (v->no_const_addval)
5015 fprintf (loop_dump_stream, " ncav");
5016
5017 if (GET_CODE (mult_val) == CONST_INT)
5018 {
5019 fprintf (loop_dump_stream, " mult ");
5020 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5021 }
5022 else
5023 {
5024 fprintf (loop_dump_stream, " mult ");
5025 print_rtl (loop_dump_stream, mult_val);
5026 }
5027
5028 if (GET_CODE (add_val) == CONST_INT)
5029 {
5030 fprintf (loop_dump_stream, " add ");
5031 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5032 }
5033 else
5034 {
5035 fprintf (loop_dump_stream, " add ");
5036 print_rtl (loop_dump_stream, add_val);
5037 }
5038 }
5039
5040 if (loop_dump_stream)
5041 fprintf (loop_dump_stream, "\n");
5042
5043 }
5044
5045
5046 /* All this does is determine whether a giv can be made replaceable because
5047 its final value can be calculated. This code can not be part of record_giv
5048 above, because final_giv_value requires that the number of loop iterations
5049 be known, and that can not be accurately calculated until after all givs
5050 have been identified. */
5051
5052 static void
5053 check_final_value (v, loop_start, loop_end)
5054 struct induction *v;
5055 rtx loop_start, loop_end;
5056 {
5057 struct iv_class *bl;
5058 rtx final_value = 0;
5059
5060 bl = reg_biv_class[REGNO (v->src_reg)];
5061
5062 /* DEST_ADDR givs will never reach here, because they are always marked
5063 replaceable above in record_giv. */
5064
5065 /* The giv can be replaced outright by the reduced register only if all
5066 of the following conditions are true:
5067 - the insn that sets the giv is always executed on any iteration
5068 on which the giv is used at all
5069 (there are two ways to deduce this:
5070 either the insn is executed on every iteration,
5071 or all uses follow that insn in the same basic block),
5072 - its final value can be calculated (this condition is different
5073 than the one above in record_giv)
5074 - no assignments to the biv occur during the giv's lifetime. */
5075
5076 #if 0
5077 /* This is only called now when replaceable is known to be false. */
5078 /* Clear replaceable, so that it won't confuse final_giv_value. */
5079 v->replaceable = 0;
5080 #endif
5081
5082 if ((final_value = final_giv_value (v, loop_start, loop_end))
5083 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5084 {
5085 int biv_increment_seen = 0;
5086 rtx p = v->insn;
5087 rtx last_giv_use;
5088
5089 v->replaceable = 1;
5090
5091 /* When trying to determine whether or not a biv increment occurs
5092 during the lifetime of the giv, we can ignore uses of the variable
5093 outside the loop because final_value is true. Hence we can not
5094 use regno_last_uid and regno_first_uid as above in record_giv. */
5095
5096 /* Search the loop to determine whether any assignments to the
5097 biv occur during the giv's lifetime. Start with the insn
5098 that sets the giv, and search around the loop until we come
5099 back to that insn again.
5100
5101 Also fail if there is a jump within the giv's lifetime that jumps
5102 to somewhere outside the lifetime but still within the loop. This
5103 catches spaghetti code where the execution order is not linear, and
5104 hence the above test fails. Here we assume that the giv lifetime
5105 does not extend from one iteration of the loop to the next, so as
5106 to make the test easier. Since the lifetime isn't known yet,
5107 this requires two loops. See also record_giv above. */
5108
5109 last_giv_use = v->insn;
5110
5111 while (1)
5112 {
5113 p = NEXT_INSN (p);
5114 if (p == loop_end)
5115 p = NEXT_INSN (loop_start);
5116 if (p == v->insn)
5117 break;
5118
5119 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5120 || GET_CODE (p) == CALL_INSN)
5121 {
5122 if (biv_increment_seen)
5123 {
5124 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5125 {
5126 v->replaceable = 0;
5127 v->not_replaceable = 1;
5128 break;
5129 }
5130 }
5131 else if (reg_set_p (v->src_reg, PATTERN (p)))
5132 biv_increment_seen = 1;
5133 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5134 last_giv_use = p;
5135 }
5136 }
5137
5138 /* Now that the lifetime of the giv is known, check for branches
5139 from within the lifetime to outside the lifetime if it is still
5140 replaceable. */
5141
5142 if (v->replaceable)
5143 {
5144 p = v->insn;
5145 while (1)
5146 {
5147 p = NEXT_INSN (p);
5148 if (p == loop_end)
5149 p = NEXT_INSN (loop_start);
5150 if (p == last_giv_use)
5151 break;
5152
5153 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5154 && LABEL_NAME (JUMP_LABEL (p))
5155 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
5156 || (INSN_UID (v->insn) >= max_uid_for_loop)
5157 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
5158 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
5159 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
5160 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
5161 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
5162 {
5163 v->replaceable = 0;
5164 v->not_replaceable = 1;
5165
5166 if (loop_dump_stream)
5167 fprintf (loop_dump_stream,
5168 "Found branch outside giv lifetime.\n");
5169
5170 break;
5171 }
5172 }
5173 }
5174
5175 /* If it is replaceable, then save the final value. */
5176 if (v->replaceable)
5177 v->final_value = final_value;
5178 }
5179
5180 if (loop_dump_stream && v->replaceable)
5181 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5182 INSN_UID (v->insn), REGNO (v->dest_reg));
5183 }
5184 \f
5185 /* Update the status of whether a giv can derive other givs.
5186
5187 We need to do something special if there is or may be an update to the biv
5188 between the time the giv is defined and the time it is used to derive
5189 another giv.
5190
5191 In addition, a giv that is only conditionally set is not allowed to
5192 derive another giv once a label has been passed.
5193
5194 The cases we look at are when a label or an update to a biv is passed. */
5195
5196 static void
5197 update_giv_derive (p)
5198 rtx p;
5199 {
5200 struct iv_class *bl;
5201 struct induction *biv, *giv;
5202 rtx tem;
5203 int dummy;
5204
5205 /* Search all IV classes, then all bivs, and finally all givs.
5206
5207 There are three cases we are concerned with. First we have the situation
5208 of a giv that is only updated conditionally. In that case, it may not
5209 derive any givs after a label is passed.
5210
5211 The second case is when a biv update occurs, or may occur, after the
5212 definition of a giv. For certain biv updates (see below) that are
5213 known to occur between the giv definition and use, we can adjust the
5214 giv definition. For others, or when the biv update is conditional,
5215 we must prevent the giv from deriving any other givs. There are two
5216 sub-cases within this case.
5217
5218 If this is a label, we are concerned with any biv update that is done
5219 conditionally, since it may be done after the giv is defined followed by
5220 a branch here (actually, we need to pass both a jump and a label, but
5221 this extra tracking doesn't seem worth it).
5222
5223 If this is a jump, we are concerned about any biv update that may be
5224 executed multiple times. We are actually only concerned about
5225 backward jumps, but it is probably not worth performing the test
5226 on the jump again here.
5227
5228 If this is a biv update, we must adjust the giv status to show that a
5229 subsequent biv update was performed. If this adjustment cannot be done,
5230 the giv cannot derive further givs. */
5231
5232 for (bl = loop_iv_list; bl; bl = bl->next)
5233 for (biv = bl->biv; biv; biv = biv->next_iv)
5234 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5235 || biv->insn == p)
5236 {
5237 for (giv = bl->giv; giv; giv = giv->next_iv)
5238 {
5239 /* If cant_derive is already true, there is no point in
5240 checking all of these conditions again. */
5241 if (giv->cant_derive)
5242 continue;
5243
5244 /* If this giv is conditionally set and we have passed a label,
5245 it cannot derive anything. */
5246 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5247 giv->cant_derive = 1;
5248
5249 /* Skip givs that have mult_val == 0, since
5250 they are really invariants. Also skip those that are
5251 replaceable, since we know their lifetime doesn't contain
5252 any biv update. */
5253 else if (giv->mult_val == const0_rtx || giv->replaceable)
5254 continue;
5255
5256 /* The only way we can allow this giv to derive another
5257 is if this is a biv increment and we can form the product
5258 of biv->add_val and giv->mult_val. In this case, we will
5259 be able to compute a compensation. */
5260 else if (biv->insn == p)
5261 {
5262 tem = 0;
5263
5264 if (biv->mult_val == const1_rtx)
5265 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5266 biv->add_val,
5267 giv->mult_val),
5268 &dummy);
5269
5270 if (tem && giv->derive_adjustment)
5271 tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
5272 giv->derive_adjustment),
5273 &dummy);
5274 if (tem)
5275 giv->derive_adjustment = tem;
5276 else
5277 giv->cant_derive = 1;
5278 }
5279 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5280 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5281 giv->cant_derive = 1;
5282 }
5283 }
5284 }
5285 \f
5286 /* Check whether an insn is an increment legitimate for a basic induction var.
5287 X is the source of insn P, or a part of it.
5288 MODE is the mode in which X should be interpreted.
5289
5290 DEST_REG is the putative biv, also the destination of the insn.
5291 We accept patterns of these forms:
5292 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5293 REG = INVARIANT + REG
5294
5295 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5296 and store the additive term into *INC_VAL.
5297
5298 If X is an assignment of an invariant into DEST_REG, we set
5299 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5300
5301 We also want to detect a BIV when it corresponds to a variable
5302 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5303 of the variable may be a PLUS that adds a SUBREG of that variable to
5304 an invariant and then sign- or zero-extends the result of the PLUS
5305 into the variable.
5306
5307 Most GIVs in such cases will be in the promoted mode, since that is the
5308 probably the natural computation mode (and almost certainly the mode
5309 used for addresses) on the machine. So we view the pseudo-reg containing
5310 the variable as the BIV, as if it were simply incremented.
5311
5312 Note that treating the entire pseudo as a BIV will result in making
5313 simple increments to any GIVs based on it. However, if the variable
5314 overflows in its declared mode but not its promoted mode, the result will
5315 be incorrect. This is acceptable if the variable is signed, since
5316 overflows in such cases are undefined, but not if it is unsigned, since
5317 those overflows are defined. So we only check for SIGN_EXTEND and
5318 not ZERO_EXTEND.
5319
5320 If we cannot find a biv, we return 0. */
5321
5322 static int
5323 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5324 register rtx x;
5325 enum machine_mode mode;
5326 rtx p;
5327 rtx dest_reg;
5328 rtx *inc_val;
5329 rtx *mult_val;
5330 {
5331 register enum rtx_code code;
5332 rtx arg;
5333 rtx insn, set = 0;
5334
5335 code = GET_CODE (x);
5336 switch (code)
5337 {
5338 case PLUS:
5339 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5340 || (GET_CODE (XEXP (x, 0)) == SUBREG
5341 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5342 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5343 arg = XEXP (x, 1);
5344 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5345 || (GET_CODE (XEXP (x, 1)) == SUBREG
5346 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5347 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5348 arg = XEXP (x, 0);
5349 else
5350 return 0;
5351
5352 if (invariant_p (arg) != 1)
5353 return 0;
5354
5355 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5356 *mult_val = const1_rtx;
5357 return 1;
5358
5359 case SUBREG:
5360 /* If this is a SUBREG for a promoted variable, check the inner
5361 value. */
5362 if (SUBREG_PROMOTED_VAR_P (x))
5363 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5364 dest_reg, p, inc_val, mult_val);
5365 return 0;
5366
5367 case REG:
5368 /* If this register is assigned in a previous insn, look at its
5369 source, but don't go outside the loop or past a label. */
5370
5371 insn = p;
5372 while (1)
5373 {
5374 do {
5375 insn = PREV_INSN (insn);
5376 } while (insn && GET_CODE (insn) == NOTE
5377 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5378
5379 if (!insn)
5380 break;
5381 set = single_set (insn);
5382 if (set == 0)
5383 break;
5384
5385 if ((SET_DEST (set) == x
5386 || (GET_CODE (SET_DEST (set)) == SUBREG
5387 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5388 <= UNITS_PER_WORD)
5389 && SUBREG_REG (SET_DEST (set)) == x))
5390 && basic_induction_var (SET_SRC (set),
5391 (GET_MODE (SET_SRC (set)) == VOIDmode
5392 ? GET_MODE (x)
5393 : GET_MODE (SET_SRC (set))),
5394 dest_reg, insn,
5395 inc_val, mult_val))
5396 return 1;
5397 }
5398 /* ... fall through ... */
5399
5400 /* Can accept constant setting of biv only when inside inner most loop.
5401 Otherwise, a biv of an inner loop may be incorrectly recognized
5402 as a biv of the outer loop,
5403 causing code to be moved INTO the inner loop. */
5404 case MEM:
5405 if (invariant_p (x) != 1)
5406 return 0;
5407 case CONST_INT:
5408 case SYMBOL_REF:
5409 case CONST:
5410 /* convert_modes aborts if we try to convert to or from CCmode, so just
5411 exclude that case. It is very unlikely that a condition code value
5412 would be a useful iterator anyways. */
5413 if (loops_enclosed == 1
5414 && GET_MODE_CLASS (mode) != MODE_CC
5415 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
5416 {
5417 /* Possible bug here? Perhaps we don't know the mode of X. */
5418 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5419 *mult_val = const0_rtx;
5420 return 1;
5421 }
5422 else
5423 return 0;
5424
5425 case SIGN_EXTEND:
5426 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5427 dest_reg, p, inc_val, mult_val);
5428
5429 case ASHIFTRT:
5430 /* Similar, since this can be a sign extension. */
5431 for (insn = PREV_INSN (p);
5432 (insn && GET_CODE (insn) == NOTE
5433 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5434 insn = PREV_INSN (insn))
5435 ;
5436
5437 if (insn)
5438 set = single_set (insn);
5439
5440 if (set && SET_DEST (set) == XEXP (x, 0)
5441 && GET_CODE (XEXP (x, 1)) == CONST_INT
5442 && INTVAL (XEXP (x, 1)) >= 0
5443 && GET_CODE (SET_SRC (set)) == ASHIFT
5444 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5445 return basic_induction_var (XEXP (SET_SRC (set), 0),
5446 GET_MODE (XEXP (x, 0)),
5447 dest_reg, insn, inc_val, mult_val);
5448 return 0;
5449
5450 default:
5451 return 0;
5452 }
5453 }
5454 \f
5455 /* A general induction variable (giv) is any quantity that is a linear
5456 function of a basic induction variable,
5457 i.e. giv = biv * mult_val + add_val.
5458 The coefficients can be any loop invariant quantity.
5459 A giv need not be computed directly from the biv;
5460 it can be computed by way of other givs. */
5461
5462 /* Determine whether X computes a giv.
5463 If it does, return a nonzero value
5464 which is the benefit from eliminating the computation of X;
5465 set *SRC_REG to the register of the biv that it is computed from;
5466 set *ADD_VAL and *MULT_VAL to the coefficients,
5467 such that the value of X is biv * mult + add; */
5468
5469 static int
5470 general_induction_var (x, src_reg, add_val, mult_val, is_addr, pbenefit)
5471 rtx x;
5472 rtx *src_reg;
5473 rtx *add_val;
5474 rtx *mult_val;
5475 int is_addr;
5476 int *pbenefit;
5477 {
5478 rtx orig_x = x;
5479 char *storage;
5480
5481 /* If this is an invariant, forget it, it isn't a giv. */
5482 if (invariant_p (x) == 1)
5483 return 0;
5484
5485 /* See if the expression could be a giv and get its form.
5486 Mark our place on the obstack in case we don't find a giv. */
5487 storage = (char *) oballoc (0);
5488 *pbenefit = 0;
5489 x = simplify_giv_expr (x, pbenefit);
5490 if (x == 0)
5491 {
5492 obfree (storage);
5493 return 0;
5494 }
5495
5496 switch (GET_CODE (x))
5497 {
5498 case USE:
5499 case CONST_INT:
5500 /* Since this is now an invariant and wasn't before, it must be a giv
5501 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5502 with. */
5503 *src_reg = loop_iv_list->biv->dest_reg;
5504 *mult_val = const0_rtx;
5505 *add_val = x;
5506 break;
5507
5508 case REG:
5509 /* This is equivalent to a BIV. */
5510 *src_reg = x;
5511 *mult_val = const1_rtx;
5512 *add_val = const0_rtx;
5513 break;
5514
5515 case PLUS:
5516 /* Either (plus (biv) (invar)) or
5517 (plus (mult (biv) (invar_1)) (invar_2)). */
5518 if (GET_CODE (XEXP (x, 0)) == MULT)
5519 {
5520 *src_reg = XEXP (XEXP (x, 0), 0);
5521 *mult_val = XEXP (XEXP (x, 0), 1);
5522 }
5523 else
5524 {
5525 *src_reg = XEXP (x, 0);
5526 *mult_val = const1_rtx;
5527 }
5528 *add_val = XEXP (x, 1);
5529 break;
5530
5531 case MULT:
5532 /* ADD_VAL is zero. */
5533 *src_reg = XEXP (x, 0);
5534 *mult_val = XEXP (x, 1);
5535 *add_val = const0_rtx;
5536 break;
5537
5538 default:
5539 abort ();
5540 }
5541
5542 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5543 unless they are CONST_INT). */
5544 if (GET_CODE (*add_val) == USE)
5545 *add_val = XEXP (*add_val, 0);
5546 if (GET_CODE (*mult_val) == USE)
5547 *mult_val = XEXP (*mult_val, 0);
5548
5549 if (is_addr)
5550 {
5551 #ifdef ADDRESS_COST
5552 *pbenefit += ADDRESS_COST (orig_x) - reg_address_cost;
5553 #else
5554 *pbenefit += rtx_cost (orig_x, MEM) - reg_address_cost;
5555 #endif
5556 }
5557 else
5558 *pbenefit += rtx_cost (orig_x, SET);
5559
5560 /* Always return true if this is a giv so it will be detected as such,
5561 even if the benefit is zero or negative. This allows elimination
5562 of bivs that might otherwise not be eliminated. */
5563 return 1;
5564 }
5565 \f
5566 /* Given an expression, X, try to form it as a linear function of a biv.
5567 We will canonicalize it to be of the form
5568 (plus (mult (BIV) (invar_1))
5569 (invar_2))
5570 with possible degeneracies.
5571
5572 The invariant expressions must each be of a form that can be used as a
5573 machine operand. We surround then with a USE rtx (a hack, but localized
5574 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5575 routine; it is the caller's responsibility to strip them.
5576
5577 If no such canonicalization is possible (i.e., two biv's are used or an
5578 expression that is neither invariant nor a biv or giv), this routine
5579 returns 0.
5580
5581 For a non-zero return, the result will have a code of CONST_INT, USE,
5582 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5583
5584 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5585
5586 static rtx sge_plus PROTO ((enum machine_mode, rtx, rtx));
5587 static rtx sge_plus_constant PROTO ((rtx, rtx));
5588
5589 static rtx
5590 simplify_giv_expr (x, benefit)
5591 rtx x;
5592 int *benefit;
5593 {
5594 enum machine_mode mode = GET_MODE (x);
5595 rtx arg0, arg1;
5596 rtx tem;
5597
5598 /* If this is not an integer mode, or if we cannot do arithmetic in this
5599 mode, this can't be a giv. */
5600 if (mode != VOIDmode
5601 && (GET_MODE_CLASS (mode) != MODE_INT
5602 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5603 return NULL_RTX;
5604
5605 switch (GET_CODE (x))
5606 {
5607 case PLUS:
5608 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5609 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5610 if (arg0 == 0 || arg1 == 0)
5611 return NULL_RTX;
5612
5613 /* Put constant last, CONST_INT last if both constant. */
5614 if ((GET_CODE (arg0) == USE
5615 || GET_CODE (arg0) == CONST_INT)
5616 && ! ((GET_CODE (arg0) == USE
5617 && GET_CODE (arg1) == USE)
5618 || GET_CODE (arg1) == CONST_INT))
5619 tem = arg0, arg0 = arg1, arg1 = tem;
5620
5621 /* Handle addition of zero, then addition of an invariant. */
5622 if (arg1 == const0_rtx)
5623 return arg0;
5624 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5625 switch (GET_CODE (arg0))
5626 {
5627 case CONST_INT:
5628 case USE:
5629 /* Adding two invariants must result in an invariant, so enclose
5630 addition operation inside a USE and return it. */
5631 if (GET_CODE (arg0) == USE)
5632 arg0 = XEXP (arg0, 0);
5633 if (GET_CODE (arg1) == USE)
5634 arg1 = XEXP (arg1, 0);
5635
5636 if (GET_CODE (arg0) == CONST_INT)
5637 tem = arg0, arg0 = arg1, arg1 = tem;
5638 if (GET_CODE (arg1) == CONST_INT)
5639 tem = sge_plus_constant (arg0, arg1);
5640 else
5641 tem = sge_plus (mode, arg0, arg1);
5642
5643 if (GET_CODE (tem) != CONST_INT)
5644 tem = gen_rtx_USE (mode, tem);
5645 return tem;
5646
5647 case REG:
5648 case MULT:
5649 /* biv + invar or mult + invar. Return sum. */
5650 return gen_rtx_PLUS (mode, arg0, arg1);
5651
5652 case PLUS:
5653 /* (a + invar_1) + invar_2. Associate. */
5654 return simplify_giv_expr (
5655 gen_rtx_PLUS (mode, XEXP (arg0, 0),
5656 gen_rtx_PLUS (mode, XEXP (arg0, 1), arg1)),
5657 benefit);
5658
5659 default:
5660 abort ();
5661 }
5662
5663 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5664 MULT to reduce cases. */
5665 if (GET_CODE (arg0) == REG)
5666 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
5667 if (GET_CODE (arg1) == REG)
5668 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
5669
5670 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5671 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5672 Recurse to associate the second PLUS. */
5673 if (GET_CODE (arg1) == MULT)
5674 tem = arg0, arg0 = arg1, arg1 = tem;
5675
5676 if (GET_CODE (arg1) == PLUS)
5677 return simplify_giv_expr (gen_rtx_PLUS (mode,
5678 gen_rtx_PLUS (mode, arg0,
5679 XEXP (arg1, 0)),
5680 XEXP (arg1, 1)),
5681 benefit);
5682
5683 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5684 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5685 return NULL_RTX;
5686
5687 if (!rtx_equal_p (arg0, arg1))
5688 return NULL_RTX;
5689
5690 return simplify_giv_expr (gen_rtx_MULT (mode,
5691 XEXP (arg0, 0),
5692 gen_rtx_PLUS (mode,
5693 XEXP (arg0, 1),
5694 XEXP (arg1, 1))),
5695 benefit);
5696
5697 case MINUS:
5698 /* Handle "a - b" as "a + b * (-1)". */
5699 return simplify_giv_expr (gen_rtx_PLUS (mode,
5700 XEXP (x, 0),
5701 gen_rtx_MULT (mode, XEXP (x, 1),
5702 constm1_rtx)),
5703 benefit);
5704
5705 case MULT:
5706 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5707 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5708 if (arg0 == 0 || arg1 == 0)
5709 return NULL_RTX;
5710
5711 /* Put constant last, CONST_INT last if both constant. */
5712 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5713 && GET_CODE (arg1) != CONST_INT)
5714 tem = arg0, arg0 = arg1, arg1 = tem;
5715
5716 /* If second argument is not now constant, not giv. */
5717 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5718 return NULL_RTX;
5719
5720 /* Handle multiply by 0 or 1. */
5721 if (arg1 == const0_rtx)
5722 return const0_rtx;
5723
5724 else if (arg1 == const1_rtx)
5725 return arg0;
5726
5727 switch (GET_CODE (arg0))
5728 {
5729 case REG:
5730 /* biv * invar. Done. */
5731 return gen_rtx_MULT (mode, arg0, arg1);
5732
5733 case CONST_INT:
5734 /* Product of two constants. */
5735 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5736
5737 case USE:
5738 /* invar * invar. It is a giv, but very few of these will
5739 actually pay off, so limit to simple registers. */
5740 if (GET_CODE (arg1) != CONST_INT)
5741 return NULL_RTX;
5742
5743 arg0 = XEXP (arg0, 0);
5744 if (GET_CODE (arg0) == REG)
5745 tem = gen_rtx_MULT (mode, arg0, arg1);
5746 else if (GET_CODE (arg0) == MULT
5747 && GET_CODE (XEXP (arg0, 0)) == REG
5748 && GET_CODE (XEXP (arg0, 1)) == CONST_INT)
5749 {
5750 tem = gen_rtx_MULT (mode, XEXP (arg0, 0),
5751 GEN_INT (INTVAL (XEXP (arg0, 1))
5752 * INTVAL (arg1)));
5753 }
5754 else
5755 return NULL_RTX;
5756 return gen_rtx_USE (mode, tem);
5757
5758 case MULT:
5759 /* (a * invar_1) * invar_2. Associate. */
5760 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
5761 gen_rtx_MULT (mode,
5762 XEXP (arg0, 1),
5763 arg1)),
5764 benefit);
5765
5766 case PLUS:
5767 /* (a + invar_1) * invar_2. Distribute. */
5768 return simplify_giv_expr (gen_rtx_PLUS (mode,
5769 gen_rtx_MULT (mode,
5770 XEXP (arg0, 0),
5771 arg1),
5772 gen_rtx_MULT (mode,
5773 XEXP (arg0, 1),
5774 arg1)),
5775 benefit);
5776
5777 default:
5778 abort ();
5779 }
5780
5781 case ASHIFT:
5782 /* Shift by constant is multiply by power of two. */
5783 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5784 return 0;
5785
5786 return simplify_giv_expr (gen_rtx_MULT (mode,
5787 XEXP (x, 0),
5788 GEN_INT ((HOST_WIDE_INT) 1
5789 << INTVAL (XEXP (x, 1)))),
5790 benefit);
5791
5792 case NEG:
5793 /* "-a" is "a * (-1)" */
5794 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
5795 benefit);
5796
5797 case NOT:
5798 /* "~a" is "-a - 1". Silly, but easy. */
5799 return simplify_giv_expr (gen_rtx_MINUS (mode,
5800 gen_rtx_NEG (mode, XEXP (x, 0)),
5801 const1_rtx),
5802 benefit);
5803
5804 case USE:
5805 /* Already in proper form for invariant. */
5806 return x;
5807
5808 case REG:
5809 /* If this is a new register, we can't deal with it. */
5810 if (REGNO (x) >= max_reg_before_loop)
5811 return 0;
5812
5813 /* Check for biv or giv. */
5814 switch (reg_iv_type[REGNO (x)])
5815 {
5816 case BASIC_INDUCT:
5817 return x;
5818 case GENERAL_INDUCT:
5819 {
5820 struct induction *v = reg_iv_info[REGNO (x)];
5821
5822 /* Form expression from giv and add benefit. Ensure this giv
5823 can derive another and subtract any needed adjustment if so. */
5824 *benefit += v->benefit;
5825 if (v->cant_derive)
5826 return 0;
5827
5828 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
5829 v->mult_val),
5830 v->add_val);
5831 if (v->derive_adjustment)
5832 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
5833 return simplify_giv_expr (tem, benefit);
5834 }
5835
5836 default:
5837 /* If it isn't an induction variable, and it is invariant, we
5838 may be able to simplify things further by looking through
5839 the bits we just moved outside the loop. */
5840 if (invariant_p (x) == 1)
5841 {
5842 struct movable *m;
5843
5844 for (m = the_movables; m ; m = m->next)
5845 if (rtx_equal_p (x, m->set_dest))
5846 {
5847 /* Ok, we found a match. Substitute and simplify. */
5848
5849 /* If we match another movable, we must use that, as
5850 this one is going away. */
5851 if (m->match)
5852 return simplify_giv_expr (m->match->set_dest, benefit);
5853
5854 /* If consec is non-zero, this is a member of a group of
5855 instructions that were moved together. We handle this
5856 case only to the point of seeking to the last insn and
5857 looking for a REG_EQUAL. Fail if we don't find one. */
5858 if (m->consec != 0)
5859 {
5860 int i = m->consec;
5861 tem = m->insn;
5862 do { tem = NEXT_INSN (tem); } while (--i > 0);
5863
5864 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
5865 if (tem)
5866 tem = XEXP (tem, 0);
5867 }
5868 else
5869 {
5870 tem = single_set (m->insn);
5871 if (tem)
5872 tem = SET_SRC (tem);
5873 }
5874
5875 if (tem)
5876 {
5877 /* What we are most interested in is pointer
5878 arithmetic on invariants -- only take
5879 patterns we may be able to do something with. */
5880 if (GET_CODE (tem) == PLUS
5881 || GET_CODE (tem) == MULT
5882 || GET_CODE (tem) == ASHIFT
5883 || GET_CODE (tem) == CONST_INT
5884 || GET_CODE (tem) == SYMBOL_REF)
5885 {
5886 tem = simplify_giv_expr (tem, benefit);
5887 if (tem)
5888 return tem;
5889 }
5890 else if (GET_CODE (tem) == CONST
5891 && GET_CODE (XEXP (tem, 0)) == PLUS
5892 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
5893 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
5894 {
5895 tem = simplify_giv_expr (XEXP (tem, 0), benefit);
5896 if (tem)
5897 return tem;
5898 }
5899 }
5900 break;
5901 }
5902 }
5903 break;
5904 }
5905
5906 /* Fall through to general case. */
5907 default:
5908 /* If invariant, return as USE (unless CONST_INT).
5909 Otherwise, not giv. */
5910 if (GET_CODE (x) == USE)
5911 x = XEXP (x, 0);
5912
5913 if (invariant_p (x) == 1)
5914 {
5915 if (GET_CODE (x) == CONST_INT)
5916 return x;
5917 if (GET_CODE (x) == CONST
5918 && GET_CODE (XEXP (x, 0)) == PLUS
5919 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
5920 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
5921 x = XEXP (x, 0);
5922 return gen_rtx_USE (mode, x);
5923 }
5924 else
5925 return 0;
5926 }
5927 }
5928
5929 /* This routine folds invariants such that there is only ever one
5930 CONST_INT in the summation. It is only used by simplify_giv_expr. */
5931
5932 static rtx
5933 sge_plus_constant (x, c)
5934 rtx x, c;
5935 {
5936 if (GET_CODE (x) == CONST_INT)
5937 return GEN_INT (INTVAL (x) + INTVAL (c));
5938 else if (GET_CODE (x) != PLUS)
5939 return gen_rtx_PLUS (GET_MODE (x), x, c);
5940 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5941 {
5942 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
5943 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
5944 }
5945 else if (GET_CODE (XEXP (x, 0)) == PLUS
5946 || GET_CODE (XEXP (x, 1)) != PLUS)
5947 {
5948 return gen_rtx_PLUS (GET_MODE (x),
5949 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
5950 }
5951 else
5952 {
5953 return gen_rtx_PLUS (GET_MODE (x),
5954 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
5955 }
5956 }
5957
5958 static rtx
5959 sge_plus (mode, x, y)
5960 enum machine_mode mode;
5961 rtx x, y;
5962 {
5963 while (GET_CODE (y) == PLUS)
5964 {
5965 rtx a = XEXP (y, 0);
5966 if (GET_CODE (a) == CONST_INT)
5967 x = sge_plus_constant (x, a);
5968 else
5969 x = gen_rtx_PLUS (mode, x, a);
5970 y = XEXP (y, 1);
5971 }
5972 if (GET_CODE (y) == CONST_INT)
5973 x = sge_plus_constant (x, y);
5974 else
5975 x = gen_rtx_PLUS (mode, x, y);
5976 return x;
5977 }
5978 \f
5979 /* Help detect a giv that is calculated by several consecutive insns;
5980 for example,
5981 giv = biv * M
5982 giv = giv + A
5983 The caller has already identified the first insn P as having a giv as dest;
5984 we check that all other insns that set the same register follow
5985 immediately after P, that they alter nothing else,
5986 and that the result of the last is still a giv.
5987
5988 The value is 0 if the reg set in P is not really a giv.
5989 Otherwise, the value is the amount gained by eliminating
5990 all the consecutive insns that compute the value.
5991
5992 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5993 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5994
5995 The coefficients of the ultimate giv value are stored in
5996 *MULT_VAL and *ADD_VAL. */
5997
5998 static int
5999 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
6000 add_val, mult_val)
6001 int first_benefit;
6002 rtx p;
6003 rtx src_reg;
6004 rtx dest_reg;
6005 rtx *add_val;
6006 rtx *mult_val;
6007 {
6008 int count;
6009 enum rtx_code code;
6010 int benefit;
6011 rtx temp;
6012 rtx set;
6013
6014 /* Indicate that this is a giv so that we can update the value produced in
6015 each insn of the multi-insn sequence.
6016
6017 This induction structure will be used only by the call to
6018 general_induction_var below, so we can allocate it on our stack.
6019 If this is a giv, our caller will replace the induct var entry with
6020 a new induction structure. */
6021 struct induction *v
6022 = (struct induction *) alloca (sizeof (struct induction));
6023 v->src_reg = src_reg;
6024 v->mult_val = *mult_val;
6025 v->add_val = *add_val;
6026 v->benefit = first_benefit;
6027 v->cant_derive = 0;
6028 v->derive_adjustment = 0;
6029
6030 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
6031 reg_iv_info[REGNO (dest_reg)] = v;
6032
6033 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6034
6035 while (count > 0)
6036 {
6037 p = NEXT_INSN (p);
6038 code = GET_CODE (p);
6039
6040 /* If libcall, skip to end of call sequence. */
6041 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6042 p = XEXP (temp, 0);
6043
6044 if (code == INSN
6045 && (set = single_set (p))
6046 && GET_CODE (SET_DEST (set)) == REG
6047 && SET_DEST (set) == dest_reg
6048 && (general_induction_var (SET_SRC (set), &src_reg,
6049 add_val, mult_val, 0, &benefit)
6050 /* Giv created by equivalent expression. */
6051 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6052 && general_induction_var (XEXP (temp, 0), &src_reg,
6053 add_val, mult_val, 0, &benefit)))
6054 && src_reg == v->src_reg)
6055 {
6056 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6057 benefit += libcall_benefit (p);
6058
6059 count--;
6060 v->mult_val = *mult_val;
6061 v->add_val = *add_val;
6062 v->benefit = benefit;
6063 }
6064 else if (code != NOTE)
6065 {
6066 /* Allow insns that set something other than this giv to a
6067 constant. Such insns are needed on machines which cannot
6068 include long constants and should not disqualify a giv. */
6069 if (code == INSN
6070 && (set = single_set (p))
6071 && SET_DEST (set) != dest_reg
6072 && CONSTANT_P (SET_SRC (set)))
6073 continue;
6074
6075 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
6076 return 0;
6077 }
6078 }
6079
6080 return v->benefit;
6081 }
6082 \f
6083 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6084 represented by G1. If no such expression can be found, or it is clear that
6085 it cannot possibly be a valid address, 0 is returned.
6086
6087 To perform the computation, we note that
6088 G1 = x * v + a and
6089 G2 = y * v + b
6090 where `v' is the biv.
6091
6092 So G2 = (y/b) * G1 + (b - a*y/x).
6093
6094 Note that MULT = y/x.
6095
6096 Update: A and B are now allowed to be additive expressions such that
6097 B contains all variables in A. That is, computing B-A will not require
6098 subtracting variables. */
6099
6100 static rtx
6101 express_from_1 (a, b, mult)
6102 rtx a, b, mult;
6103 {
6104 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6105
6106 if (mult == const0_rtx)
6107 return b;
6108
6109 /* If MULT is not 1, we cannot handle A with non-constants, since we
6110 would then be required to subtract multiples of the registers in A.
6111 This is theoretically possible, and may even apply to some Fortran
6112 constructs, but it is a lot of work and we do not attempt it here. */
6113
6114 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6115 return NULL_RTX;
6116
6117 /* In general these structures are sorted top to bottom (down the PLUS
6118 chain), but not left to right across the PLUS. If B is a higher
6119 order giv than A, we can strip one level and recurse. If A is higher
6120 order, we'll eventually bail out, but won't know that until the end.
6121 If they are the same, we'll strip one level around this loop. */
6122
6123 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6124 {
6125 rtx ra, rb, oa, ob, tmp;
6126
6127 ra = XEXP (a, 0), oa = XEXP (a, 1);
6128 if (GET_CODE (ra) == PLUS)
6129 tmp = ra, ra = oa, oa = tmp;
6130
6131 rb = XEXP (b, 0), ob = XEXP (b, 1);
6132 if (GET_CODE (rb) == PLUS)
6133 tmp = rb, rb = ob, ob = tmp;
6134
6135 if (rtx_equal_p (ra, rb))
6136 /* We matched: remove one reg completely. */
6137 a = oa, b = ob;
6138 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6139 /* An alternate match. */
6140 a = oa, b = rb;
6141 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6142 /* An alternate match. */
6143 a = ra, b = ob;
6144 else
6145 {
6146 /* Indicates an extra register in B. Strip one level from B and
6147 recurse, hoping B was the higher order expression. */
6148 ob = express_from_1 (a, ob, mult);
6149 if (ob == NULL_RTX)
6150 return NULL_RTX;
6151 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6152 }
6153 }
6154
6155 /* Here we are at the last level of A, go through the cases hoping to
6156 get rid of everything but a constant. */
6157
6158 if (GET_CODE (a) == PLUS)
6159 {
6160 rtx ra, oa;
6161
6162 ra = XEXP (a, 0), oa = XEXP (a, 1);
6163 if (rtx_equal_p (oa, b))
6164 oa = ra;
6165 else if (!rtx_equal_p (ra, b))
6166 return NULL_RTX;
6167
6168 if (GET_CODE (oa) != CONST_INT)
6169 return NULL_RTX;
6170
6171 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6172 }
6173 else if (GET_CODE (a) == CONST_INT)
6174 {
6175 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6176 }
6177 else if (GET_CODE (b) == PLUS)
6178 {
6179 if (rtx_equal_p (a, XEXP (b, 0)))
6180 return XEXP (b, 1);
6181 else if (rtx_equal_p (a, XEXP (b, 1)))
6182 return XEXP (b, 0);
6183 else
6184 return NULL_RTX;
6185 }
6186 else if (rtx_equal_p (a, b))
6187 return const0_rtx;
6188
6189 return NULL_RTX;
6190 }
6191
6192 static rtx
6193 express_from (g1, g2)
6194 struct induction *g1, *g2;
6195 {
6196 rtx mult, add;
6197
6198 /* The value that G1 will be multiplied by must be a constant integer. Also,
6199 the only chance we have of getting a valid address is if b*c/a (see above
6200 for notation) is also an integer. */
6201 if (GET_CODE (g1->mult_val) == CONST_INT
6202 && GET_CODE (g2->mult_val) == CONST_INT)
6203 {
6204 if (g1->mult_val == const0_rtx
6205 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6206 return NULL_RTX;
6207 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6208 }
6209 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6210 mult = const1_rtx;
6211 else
6212 {
6213 /* ??? Find out if the one is a multiple of the other? */
6214 return NULL_RTX;
6215 }
6216
6217 add = express_from_1 (g1->add_val, g2->add_val, mult);
6218 if (add == NULL_RTX)
6219 return NULL_RTX;
6220
6221 /* Form simplified final result. */
6222 if (mult == const0_rtx)
6223 return add;
6224 else if (mult == const1_rtx)
6225 mult = g1->dest_reg;
6226 else
6227 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6228
6229 if (add == const0_rtx)
6230 return mult;
6231 else
6232 return gen_rtx_PLUS (g2->mode, mult, add);
6233 }
6234 \f
6235 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6236 represented by G1. This indicates that G2 should be combined with G1 and
6237 that G2 can use (either directly or via an address expression) a register
6238 used to represent G1. */
6239
6240 static rtx
6241 combine_givs_p (g1, g2)
6242 struct induction *g1, *g2;
6243 {
6244 rtx tem = express_from (g1, g2);
6245
6246 /* If these givs are identical, they can be combined. We use the results
6247 of express_from because the addends are not in a canonical form, so
6248 rtx_equal_p is a weaker test. */
6249 if (tem == g1->dest_reg)
6250 {
6251 return g1->dest_reg;
6252 }
6253
6254 /* If G2 can be expressed as a function of G1 and that function is valid
6255 as an address and no more expensive than using a register for G2,
6256 the expression of G2 in terms of G1 can be used. */
6257 if (tem != NULL_RTX
6258 && g2->giv_type == DEST_ADDR
6259 && memory_address_p (g2->mem_mode, tem)
6260 /* ??? Looses, especially with -fforce-addr, where *g2->location
6261 will always be a register, and so anything more complicated
6262 gets discarded. */
6263 #if 0
6264 #ifdef ADDRESS_COST
6265 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6266 #else
6267 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6268 #endif
6269 #endif
6270 )
6271 {
6272 return tem;
6273 }
6274
6275 return NULL_RTX;
6276 }
6277 \f
6278 struct combine_givs_stats
6279 {
6280 int giv_number;
6281 int total_benefit;
6282 };
6283
6284 static int
6285 cmp_combine_givs_stats (x, y)
6286 struct combine_givs_stats *x, *y;
6287 {
6288 int d;
6289 d = y->total_benefit - x->total_benefit;
6290 /* Stabilize the sort. */
6291 if (!d)
6292 d = x->giv_number - y->giv_number;
6293 return d;
6294 }
6295
6296 /* If one of these givs is a DEST_REG that was only used once, by the
6297 other giv, this is actually a single use. Return 0 if this is not
6298 the case, -1 if g1 is the DEST_REG involved, and 1 if it was g2. */
6299
6300 static int
6301 combine_givs_used_once (g1, g2)
6302 struct induction *g1, *g2;
6303 {
6304 if (g1->giv_type == DEST_REG
6305 && VARRAY_INT (n_times_used, REGNO (g1->dest_reg)) == 1
6306 && reg_mentioned_p (g1->dest_reg, PATTERN (g2->insn)))
6307 return -1;
6308
6309 if (g2->giv_type == DEST_REG
6310 && VARRAY_INT (n_times_used, REGNO (g2->dest_reg)) == 1
6311 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
6312 return 1;
6313
6314 return 0;
6315 }
6316
6317 static int
6318 combine_givs_benefit_from (g1, g2)
6319 struct induction *g1, *g2;
6320 {
6321 int tmp = combine_givs_used_once (g1, g2);
6322 if (tmp < 0)
6323 return 0;
6324 else if (tmp > 0)
6325 return g2->benefit - g1->benefit;
6326 else
6327 return g2->benefit;
6328 }
6329
6330 /* Check all pairs of givs for iv_class BL and see if any can be combined with
6331 any other. If so, point SAME to the giv combined with and set NEW_REG to
6332 be an expression (in terms of the other giv's DEST_REG) equivalent to the
6333 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
6334
6335 static void
6336 combine_givs (bl)
6337 struct iv_class *bl;
6338 {
6339 struct induction *g1, *g2, **giv_array;
6340 int i, j, k, giv_count;
6341 struct combine_givs_stats *stats;
6342 rtx *can_combine;
6343
6344 /* Count givs, because bl->giv_count is incorrect here. */
6345 giv_count = 0;
6346 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6347 if (!g1->ignore)
6348 giv_count++;
6349
6350 giv_array
6351 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
6352 i = 0;
6353 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6354 if (!g1->ignore)
6355 giv_array[i++] = g1;
6356
6357 stats = (struct combine_givs_stats *) alloca (giv_count * sizeof (*stats));
6358 bzero ((char *) stats, giv_count * sizeof (*stats));
6359
6360 can_combine = (rtx *) alloca (giv_count * giv_count * sizeof(rtx));
6361 bzero ((char *) can_combine, giv_count * giv_count * sizeof(rtx));
6362
6363 for (i = 0; i < giv_count; i++)
6364 {
6365 int this_benefit;
6366
6367 g1 = giv_array[i];
6368
6369 this_benefit = g1->benefit;
6370 /* Add an additional weight for zero addends. */
6371 if (g1->no_const_addval)
6372 this_benefit += 1;
6373 for (j = 0; j < giv_count; j++)
6374 {
6375 rtx this_combine;
6376
6377 g2 = giv_array[j];
6378 if (g1 != g2
6379 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
6380 {
6381 can_combine[i*giv_count + j] = this_combine;
6382 this_benefit += combine_givs_benefit_from (g1, g2);
6383 /* Add an additional weight for being reused more times. */
6384 this_benefit += 3;
6385 }
6386 }
6387 stats[i].giv_number = i;
6388 stats[i].total_benefit = this_benefit;
6389 }
6390
6391 /* Iterate, combining until we can't. */
6392 restart:
6393 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
6394
6395 if (loop_dump_stream)
6396 {
6397 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
6398 for (k = 0; k < giv_count; k++)
6399 {
6400 g1 = giv_array[stats[k].giv_number];
6401 if (!g1->combined_with && !g1->same)
6402 fprintf (loop_dump_stream, " {%d, %d}",
6403 INSN_UID (giv_array[stats[k].giv_number]->insn),
6404 stats[k].total_benefit);
6405 }
6406 putc ('\n', loop_dump_stream);
6407 }
6408
6409 for (k = 0; k < giv_count; k++)
6410 {
6411 int g1_add_benefit = 0;
6412
6413 i = stats[k].giv_number;
6414 g1 = giv_array[i];
6415
6416 /* If it has already been combined, skip. */
6417 if (g1->combined_with || g1->same)
6418 continue;
6419
6420 for (j = 0; j < giv_count; j++)
6421 {
6422 g2 = giv_array[j];
6423 if (g1 != g2 && can_combine[i*giv_count + j]
6424 /* If it has already been combined, skip. */
6425 && ! g2->same && ! g2->combined_with)
6426 {
6427 int l;
6428
6429 g2->new_reg = can_combine[i*giv_count + j];
6430 g2->same = g1;
6431 g1->combined_with = 1;
6432 if (!combine_givs_used_once (g1, g2))
6433 g1->times_used += 1;
6434 g1->lifetime += g2->lifetime;
6435
6436 g1_add_benefit += combine_givs_benefit_from (g1, g2);
6437
6438 /* ??? The new final_[bg]iv_value code does a much better job
6439 of finding replaceable giv's, and hence this code may no
6440 longer be necessary. */
6441 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
6442 g1_add_benefit -= copy_cost;
6443
6444 /* To help optimize the next set of combinations, remove
6445 this giv from the benefits of other potential mates. */
6446 for (l = 0; l < giv_count; ++l)
6447 {
6448 int m = stats[l].giv_number;
6449 if (can_combine[m*giv_count + j])
6450 {
6451 /* Remove additional weight for being reused. */
6452 stats[l].total_benefit -= 3 +
6453 combine_givs_benefit_from (giv_array[m], g2);
6454 }
6455 }
6456
6457 if (loop_dump_stream)
6458 fprintf (loop_dump_stream,
6459 "giv at %d combined with giv at %d\n",
6460 INSN_UID (g2->insn), INSN_UID (g1->insn));
6461 }
6462 }
6463
6464 /* To help optimize the next set of combinations, remove
6465 this giv from the benefits of other potential mates. */
6466 if (g1->combined_with)
6467 {
6468 for (j = 0; j < giv_count; ++j)
6469 {
6470 int m = stats[j].giv_number;
6471 if (can_combine[m*giv_count + j])
6472 {
6473 /* Remove additional weight for being reused. */
6474 stats[j].total_benefit -= 3 +
6475 combine_givs_benefit_from (giv_array[m], g1);
6476 }
6477 }
6478
6479 g1->benefit += g1_add_benefit;
6480
6481 /* We've finished with this giv, and everything it touched.
6482 Restart the combination so that proper weights for the
6483 rest of the givs are properly taken into account. */
6484 /* ??? Ideally we would compact the arrays at this point, so
6485 as to not cover old ground. But sanely compacting
6486 can_combine is tricky. */
6487 goto restart;
6488 }
6489 }
6490 }
6491 \f
6492 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
6493
6494 void
6495 emit_iv_add_mult (b, m, a, reg, insert_before)
6496 rtx b; /* initial value of basic induction variable */
6497 rtx m; /* multiplicative constant */
6498 rtx a; /* additive constant */
6499 rtx reg; /* destination register */
6500 rtx insert_before;
6501 {
6502 rtx seq;
6503 rtx result;
6504
6505 /* Prevent unexpected sharing of these rtx. */
6506 a = copy_rtx (a);
6507 b = copy_rtx (b);
6508
6509 /* Increase the lifetime of any invariants moved further in code. */
6510 update_reg_last_use (a, insert_before);
6511 update_reg_last_use (b, insert_before);
6512 update_reg_last_use (m, insert_before);
6513
6514 start_sequence ();
6515 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
6516 if (reg != result)
6517 emit_move_insn (reg, result);
6518 seq = gen_sequence ();
6519 end_sequence ();
6520
6521 emit_insn_before (seq, insert_before);
6522
6523 /* It is entirely possible that the expansion created lots of new
6524 registers. Iterate over the sequence we just created and
6525 record them all. */
6526
6527 if (GET_CODE (seq) == SEQUENCE)
6528 {
6529 int i;
6530 for (i = 0; i < XVECLEN (seq, 0); ++i)
6531 {
6532 rtx set = single_set (XVECEXP (seq, 0, i));
6533 if (set && GET_CODE (SET_DEST (set)) == REG)
6534 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
6535 }
6536 }
6537 else if (GET_CODE (seq) == SET
6538 && GET_CODE (SET_DEST (seq)) == REG)
6539 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
6540 }
6541 \f
6542 /* Test whether A * B can be computed without
6543 an actual multiply insn. Value is 1 if so. */
6544
6545 static int
6546 product_cheap_p (a, b)
6547 rtx a;
6548 rtx b;
6549 {
6550 int i;
6551 rtx tmp;
6552 struct obstack *old_rtl_obstack = rtl_obstack;
6553 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
6554 int win = 1;
6555
6556 /* If only one is constant, make it B. */
6557 if (GET_CODE (a) == CONST_INT)
6558 tmp = a, a = b, b = tmp;
6559
6560 /* If first constant, both constant, so don't need multiply. */
6561 if (GET_CODE (a) == CONST_INT)
6562 return 1;
6563
6564 /* If second not constant, neither is constant, so would need multiply. */
6565 if (GET_CODE (b) != CONST_INT)
6566 return 0;
6567
6568 /* One operand is constant, so might not need multiply insn. Generate the
6569 code for the multiply and see if a call or multiply, or long sequence
6570 of insns is generated. */
6571
6572 rtl_obstack = &temp_obstack;
6573 start_sequence ();
6574 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
6575 tmp = gen_sequence ();
6576 end_sequence ();
6577
6578 if (GET_CODE (tmp) == SEQUENCE)
6579 {
6580 if (XVEC (tmp, 0) == 0)
6581 win = 1;
6582 else if (XVECLEN (tmp, 0) > 3)
6583 win = 0;
6584 else
6585 for (i = 0; i < XVECLEN (tmp, 0); i++)
6586 {
6587 rtx insn = XVECEXP (tmp, 0, i);
6588
6589 if (GET_CODE (insn) != INSN
6590 || (GET_CODE (PATTERN (insn)) == SET
6591 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
6592 || (GET_CODE (PATTERN (insn)) == PARALLEL
6593 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
6594 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
6595 {
6596 win = 0;
6597 break;
6598 }
6599 }
6600 }
6601 else if (GET_CODE (tmp) == SET
6602 && GET_CODE (SET_SRC (tmp)) == MULT)
6603 win = 0;
6604 else if (GET_CODE (tmp) == PARALLEL
6605 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
6606 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
6607 win = 0;
6608
6609 /* Free any storage we obtained in generating this multiply and restore rtl
6610 allocation to its normal obstack. */
6611 obstack_free (&temp_obstack, storage);
6612 rtl_obstack = old_rtl_obstack;
6613
6614 return win;
6615 }
6616 \f
6617 /* Check to see if loop can be terminated by a "decrement and branch until
6618 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
6619 Also try reversing an increment loop to a decrement loop
6620 to see if the optimization can be performed.
6621 Value is nonzero if optimization was performed. */
6622
6623 /* This is useful even if the architecture doesn't have such an insn,
6624 because it might change a loops which increments from 0 to n to a loop
6625 which decrements from n to 0. A loop that decrements to zero is usually
6626 faster than one that increments from zero. */
6627
6628 /* ??? This could be rewritten to use some of the loop unrolling procedures,
6629 such as approx_final_value, biv_total_increment, loop_iterations, and
6630 final_[bg]iv_value. */
6631
6632 static int
6633 check_dbra_loop (loop_end, insn_count, loop_start)
6634 rtx loop_end;
6635 int insn_count;
6636 rtx loop_start;
6637 {
6638 struct iv_class *bl;
6639 rtx reg;
6640 rtx jump_label;
6641 rtx final_value;
6642 rtx start_value;
6643 rtx new_add_val;
6644 rtx comparison;
6645 rtx before_comparison;
6646 rtx p;
6647 rtx jump;
6648 rtx first_compare;
6649 int compare_and_branch;
6650
6651 /* If last insn is a conditional branch, and the insn before tests a
6652 register value, try to optimize it. Otherwise, we can't do anything. */
6653
6654 jump = PREV_INSN (loop_end);
6655 comparison = get_condition_for_loop (jump);
6656 if (comparison == 0)
6657 return 0;
6658
6659 /* Try to compute whether the compare/branch at the loop end is one or
6660 two instructions. */
6661 get_condition (jump, &first_compare);
6662 if (first_compare == jump)
6663 compare_and_branch = 1;
6664 else if (first_compare == prev_nonnote_insn (jump))
6665 compare_and_branch = 2;
6666 else
6667 return 0;
6668
6669 /* Check all of the bivs to see if the compare uses one of them.
6670 Skip biv's set more than once because we can't guarantee that
6671 it will be zero on the last iteration. Also skip if the biv is
6672 used between its update and the test insn. */
6673
6674 for (bl = loop_iv_list; bl; bl = bl->next)
6675 {
6676 if (bl->biv_count == 1
6677 && bl->biv->dest_reg == XEXP (comparison, 0)
6678 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6679 first_compare))
6680 break;
6681 }
6682
6683 if (! bl)
6684 return 0;
6685
6686 /* Look for the case where the basic induction variable is always
6687 nonnegative, and equals zero on the last iteration.
6688 In this case, add a reg_note REG_NONNEG, which allows the
6689 m68k DBRA instruction to be used. */
6690
6691 if (((GET_CODE (comparison) == GT
6692 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6693 && INTVAL (XEXP (comparison, 1)) == -1)
6694 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6695 && GET_CODE (bl->biv->add_val) == CONST_INT
6696 && INTVAL (bl->biv->add_val) < 0)
6697 {
6698 /* Initial value must be greater than 0,
6699 init_val % -dec_value == 0 to ensure that it equals zero on
6700 the last iteration */
6701
6702 if (GET_CODE (bl->initial_value) == CONST_INT
6703 && INTVAL (bl->initial_value) > 0
6704 && (INTVAL (bl->initial_value)
6705 % (-INTVAL (bl->biv->add_val))) == 0)
6706 {
6707 /* register always nonnegative, add REG_NOTE to branch */
6708 REG_NOTES (PREV_INSN (loop_end))
6709 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6710 REG_NOTES (PREV_INSN (loop_end)));
6711 bl->nonneg = 1;
6712
6713 return 1;
6714 }
6715
6716 /* If the decrement is 1 and the value was tested as >= 0 before
6717 the loop, then we can safely optimize. */
6718 for (p = loop_start; p; p = PREV_INSN (p))
6719 {
6720 if (GET_CODE (p) == CODE_LABEL)
6721 break;
6722 if (GET_CODE (p) != JUMP_INSN)
6723 continue;
6724
6725 before_comparison = get_condition_for_loop (p);
6726 if (before_comparison
6727 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6728 && GET_CODE (before_comparison) == LT
6729 && XEXP (before_comparison, 1) == const0_rtx
6730 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6731 && INTVAL (bl->biv->add_val) == -1)
6732 {
6733 REG_NOTES (PREV_INSN (loop_end))
6734 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6735 REG_NOTES (PREV_INSN (loop_end)));
6736 bl->nonneg = 1;
6737
6738 return 1;
6739 }
6740 }
6741 }
6742 else if (INTVAL (bl->biv->add_val) > 0)
6743 {
6744 /* Try to change inc to dec, so can apply above optimization. */
6745 /* Can do this if:
6746 all registers modified are induction variables or invariant,
6747 all memory references have non-overlapping addresses
6748 (obviously true if only one write)
6749 allow 2 insns for the compare/jump at the end of the loop. */
6750 /* Also, we must avoid any instructions which use both the reversed
6751 biv and another biv. Such instructions will fail if the loop is
6752 reversed. We meet this condition by requiring that either
6753 no_use_except_counting is true, or else that there is only
6754 one biv. */
6755 int num_nonfixed_reads = 0;
6756 /* 1 if the iteration var is used only to count iterations. */
6757 int no_use_except_counting = 0;
6758 /* 1 if the loop has no memory store, or it has a single memory store
6759 which is reversible. */
6760 int reversible_mem_store = 1;
6761
6762 if (bl->giv_count == 0
6763 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6764 {
6765 rtx bivreg = regno_reg_rtx[bl->regno];
6766
6767 /* If there are no givs for this biv, and the only exit is the
6768 fall through at the end of the loop, then
6769 see if perhaps there are no uses except to count. */
6770 no_use_except_counting = 1;
6771 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6772 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6773 {
6774 rtx set = single_set (p);
6775
6776 if (set && GET_CODE (SET_DEST (set)) == REG
6777 && REGNO (SET_DEST (set)) == bl->regno)
6778 /* An insn that sets the biv is okay. */
6779 ;
6780 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6781 || p == prev_nonnote_insn (loop_end))
6782 /* Don't bother about the end test. */
6783 ;
6784 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6785 {
6786 no_use_except_counting = 0;
6787 break;
6788 }
6789 }
6790 }
6791
6792 if (no_use_except_counting)
6793 ; /* no need to worry about MEMs. */
6794 else if (num_mem_sets <= 1)
6795 {
6796 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6797 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6798 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6799
6800 /* If the loop has a single store, and the destination address is
6801 invariant, then we can't reverse the loop, because this address
6802 might then have the wrong value at loop exit.
6803 This would work if the source was invariant also, however, in that
6804 case, the insn should have been moved out of the loop. */
6805
6806 if (num_mem_sets == 1)
6807 reversible_mem_store
6808 = (! unknown_address_altered
6809 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6810 }
6811 else
6812 return 0;
6813
6814 /* This code only acts for innermost loops. Also it simplifies
6815 the memory address check by only reversing loops with
6816 zero or one memory access.
6817 Two memory accesses could involve parts of the same array,
6818 and that can't be reversed.
6819 If the biv is used only for counting, than we don't need to worry
6820 about all these things. */
6821
6822 if ((num_nonfixed_reads <= 1
6823 && !loop_has_call
6824 && !loop_has_volatile
6825 && reversible_mem_store
6826 && (bl->giv_count + bl->biv_count + num_mem_sets
6827 + num_movables + compare_and_branch == insn_count)
6828 && (bl == loop_iv_list && bl->next == 0))
6829 || no_use_except_counting)
6830 {
6831 rtx tem;
6832
6833 /* Loop can be reversed. */
6834 if (loop_dump_stream)
6835 fprintf (loop_dump_stream, "Can reverse loop\n");
6836
6837 /* Now check other conditions:
6838
6839 The increment must be a constant, as must the initial value,
6840 and the comparison code must be LT.
6841
6842 This test can probably be improved since +/- 1 in the constant
6843 can be obtained by changing LT to LE and vice versa; this is
6844 confusing. */
6845
6846 if (comparison
6847 /* for constants, LE gets turned into LT */
6848 && (GET_CODE (comparison) == LT
6849 || (GET_CODE (comparison) == LE
6850 && no_use_except_counting)))
6851 {
6852 HOST_WIDE_INT add_val, add_adjust, comparison_val;
6853 rtx initial_value, comparison_value;
6854 int nonneg = 0;
6855 enum rtx_code cmp_code;
6856 int comparison_const_width;
6857 unsigned HOST_WIDE_INT comparison_sign_mask;
6858 rtx vtop;
6859
6860 add_val = INTVAL (bl->biv->add_val);
6861 comparison_value = XEXP (comparison, 1);
6862 comparison_const_width
6863 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 1)));
6864 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
6865 comparison_const_width = HOST_BITS_PER_WIDE_INT;
6866 comparison_sign_mask
6867 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
6868
6869 /* If the comparison value is not a loop invariant, then we
6870 can not reverse this loop.
6871
6872 ??? If the insns which initialize the comparison value as
6873 a whole compute an invariant result, then we could move
6874 them out of the loop and proceed with loop reversal. */
6875 if (!invariant_p (comparison_value))
6876 return 0;
6877
6878 if (GET_CODE (comparison_value) == CONST_INT)
6879 comparison_val = INTVAL (comparison_value);
6880 initial_value = bl->initial_value;
6881
6882 /* Normalize the initial value if it is an integer and
6883 has no other use except as a counter. This will allow
6884 a few more loops to be reversed. */
6885 if (no_use_except_counting
6886 && GET_CODE (comparison_value) == CONST_INT
6887 && GET_CODE (initial_value) == CONST_INT)
6888 {
6889 comparison_val = comparison_val - INTVAL (bl->initial_value);
6890 /* The code below requires comparison_val to be a multiple
6891 of add_val in order to do the loop reversal, so
6892 round up comparison_val to a multiple of add_val.
6893 Since comparison_value is constant, we know that the
6894 current comparison code is LT. */
6895 comparison_val = comparison_val + add_val - 1;
6896 comparison_val
6897 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
6898 /* We postpone overflow checks for COMPARISON_VAL here;
6899 even if there is an overflow, we might still be able to
6900 reverse the loop, if converting the loop exit test to
6901 NE is possible. */
6902 initial_value = const0_rtx;
6903 }
6904
6905 /* Check if there is a NOTE_INSN_LOOP_VTOP note. If there is,
6906 that means that this is a for or while style loop, with
6907 a loop exit test at the start. Thus, we can assume that
6908 the loop condition was true when the loop was entered.
6909 This allows us to change the loop exit condition to an
6910 equality test.
6911 We start at the end and search backwards for the previous
6912 NOTE. If there is no NOTE_INSN_LOOP_VTOP for this loop,
6913 the search will stop at the NOTE_INSN_LOOP_CONT. */
6914 vtop = loop_end;
6915 do
6916 vtop = PREV_INSN (vtop);
6917 while (GET_CODE (vtop) != NOTE
6918 || NOTE_LINE_NUMBER (vtop) > 0
6919 || NOTE_LINE_NUMBER (vtop) == NOTE_REPEATED_LINE_NUMBER
6920 || NOTE_LINE_NUMBER (vtop) == NOTE_INSN_DELETED);
6921 if (NOTE_LINE_NUMBER (vtop) != NOTE_INSN_LOOP_VTOP)
6922 vtop = NULL_RTX;
6923
6924 /* First check if we can do a vanilla loop reversal. */
6925 if (initial_value == const0_rtx
6926 /* If we have a decrement_and_branch_on_count, prefer
6927 the NE test, since this will allow that instruction to
6928 be generated. Note that we must use a vanilla loop
6929 reversal if the biv is used to calculate a giv or has
6930 a non-counting use. */
6931 #if ! defined (HAVE_decrement_and_branch_until_zero) && defined (HAVE_decrement_and_branch_on_count)
6932 && (! (add_val == 1 && vtop
6933 && (bl->biv_count == 0
6934 || no_use_except_counting)))
6935 #endif
6936 && GET_CODE (comparison_value) == CONST_INT
6937 /* Now do postponed overflow checks on COMPARISON_VAL. */
6938 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
6939 & comparison_sign_mask))
6940 {
6941 /* Register will always be nonnegative, with value
6942 0 on last iteration */
6943 add_adjust = add_val;
6944 nonneg = 1;
6945 cmp_code = GE;
6946 }
6947 else if (add_val == 1 && vtop
6948 && (bl->biv_count == 0
6949 || no_use_except_counting))
6950 {
6951 add_adjust = 0;
6952 cmp_code = NE;
6953 }
6954 else
6955 return 0;
6956
6957 if (GET_CODE (comparison) == LE)
6958 add_adjust -= add_val;
6959
6960 /* If the initial value is not zero, or if the comparison
6961 value is not an exact multiple of the increment, then we
6962 can not reverse this loop. */
6963 if (initial_value == const0_rtx
6964 && GET_CODE (comparison_value) == CONST_INT)
6965 {
6966 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
6967 return 0;
6968 }
6969 else
6970 {
6971 if (! no_use_except_counting || add_val != 1)
6972 return 0;
6973 }
6974
6975 final_value = comparison_value;
6976
6977 /* Reset these in case we normalized the initial value
6978 and comparison value above. */
6979 if (GET_CODE (comparison_value) == CONST_INT
6980 && GET_CODE (initial_value) == CONST_INT)
6981 {
6982 comparison_value = GEN_INT (comparison_val);
6983 final_value
6984 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
6985 }
6986 bl->initial_value = initial_value;
6987
6988 /* Save some info needed to produce the new insns. */
6989 reg = bl->biv->dest_reg;
6990 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6991 if (jump_label == pc_rtx)
6992 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6993 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6994
6995 /* Set start_value; if this is not a CONST_INT, we need
6996 to generate a SUB.
6997 Initialize biv to start_value before loop start.
6998 The old initializing insn will be deleted as a
6999 dead store by flow.c. */
7000 if (initial_value == const0_rtx
7001 && GET_CODE (comparison_value) == CONST_INT)
7002 {
7003 start_value = GEN_INT (comparison_val - add_adjust);
7004 emit_insn_before (gen_move_insn (reg, start_value),
7005 loop_start);
7006 }
7007 else if (GET_CODE (initial_value) == CONST_INT)
7008 {
7009 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
7010 enum machine_mode mode = GET_MODE (reg);
7011 enum insn_code icode
7012 = add_optab->handlers[(int) mode].insn_code;
7013 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
7014 || ! ((*insn_operand_predicate[icode][1])
7015 (comparison_value, mode))
7016 || ! (*insn_operand_predicate[icode][2]) (offset, mode))
7017 return 0;
7018 start_value
7019 = gen_rtx_PLUS (mode, comparison_value, offset);
7020 emit_insn_before ((GEN_FCN (icode)
7021 (reg, comparison_value, offset)),
7022 loop_start);
7023 if (GET_CODE (comparison) == LE)
7024 final_value = gen_rtx_PLUS (mode, comparison_value,
7025 GEN_INT (add_val));
7026 }
7027 else if (! add_adjust)
7028 {
7029 enum machine_mode mode = GET_MODE (reg);
7030 enum insn_code icode
7031 = sub_optab->handlers[(int) mode].insn_code;
7032 if (! (*insn_operand_predicate[icode][0]) (reg, mode)
7033 || ! ((*insn_operand_predicate[icode][1])
7034 (comparison_value, mode))
7035 || ! ((*insn_operand_predicate[icode][2])
7036 (initial_value, mode)))
7037 return 0;
7038 start_value
7039 = gen_rtx_MINUS (mode, comparison_value, initial_value);
7040 emit_insn_before ((GEN_FCN (icode)
7041 (reg, comparison_value, initial_value)),
7042 loop_start);
7043 }
7044 else
7045 /* We could handle the other cases too, but it'll be
7046 better to have a testcase first. */
7047 return 0;
7048
7049 /* Add insn to decrement register, and delete insn
7050 that incremented the register. */
7051 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
7052 bl->biv->insn);
7053 delete_insn (bl->biv->insn);
7054
7055 /* Update biv info to reflect its new status. */
7056 bl->biv->insn = p;
7057 bl->initial_value = start_value;
7058 bl->biv->add_val = new_add_val;
7059
7060 /* Inc LABEL_NUSES so that delete_insn will
7061 not delete the label. */
7062 LABEL_NUSES (XEXP (jump_label, 0)) ++;
7063
7064 /* Emit an insn after the end of the loop to set the biv's
7065 proper exit value if it is used anywhere outside the loop. */
7066 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
7067 || ! bl->init_insn
7068 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
7069 emit_insn_after (gen_move_insn (reg, final_value),
7070 loop_end);
7071
7072 /* Delete compare/branch at end of loop. */
7073 delete_insn (PREV_INSN (loop_end));
7074 if (compare_and_branch == 2)
7075 delete_insn (first_compare);
7076
7077 /* Add new compare/branch insn at end of loop. */
7078 start_sequence ();
7079 emit_cmp_insn (reg, const0_rtx, cmp_code, NULL_RTX,
7080 GET_MODE (reg), 0, 0);
7081 emit_jump_insn ((*bcc_gen_fctn[(int) cmp_code])
7082 (XEXP (jump_label, 0)));
7083 tem = gen_sequence ();
7084 end_sequence ();
7085 emit_jump_insn_before (tem, loop_end);
7086
7087 if (nonneg)
7088 {
7089 for (tem = PREV_INSN (loop_end);
7090 tem && GET_CODE (tem) != JUMP_INSN;
7091 tem = PREV_INSN (tem))
7092 ;
7093 if (tem)
7094 {
7095 JUMP_LABEL (tem) = XEXP (jump_label, 0);
7096
7097 /* Increment of LABEL_NUSES done above. */
7098 /* Register is now always nonnegative,
7099 so add REG_NONNEG note to the branch. */
7100 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7101 REG_NOTES (tem));
7102 }
7103 bl->nonneg = 1;
7104 }
7105
7106 /* Mark that this biv has been reversed. Each giv which depends
7107 on this biv, and which is also live past the end of the loop
7108 will have to be fixed up. */
7109
7110 bl->reversed = 1;
7111
7112 if (loop_dump_stream)
7113 fprintf (loop_dump_stream,
7114 "Reversed loop and added reg_nonneg\n");
7115
7116 return 1;
7117 }
7118 }
7119 }
7120
7121 return 0;
7122 }
7123 \f
7124 /* Verify whether the biv BL appears to be eliminable,
7125 based on the insns in the loop that refer to it.
7126 LOOP_START is the first insn of the loop, and END is the end insn.
7127
7128 If ELIMINATE_P is non-zero, actually do the elimination.
7129
7130 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
7131 determine whether invariant insns should be placed inside or at the
7132 start of the loop. */
7133
7134 static int
7135 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
7136 struct iv_class *bl;
7137 rtx loop_start;
7138 rtx end;
7139 int eliminate_p;
7140 int threshold, insn_count;
7141 {
7142 rtx reg = bl->biv->dest_reg;
7143 rtx p;
7144
7145 /* Scan all insns in the loop, stopping if we find one that uses the
7146 biv in a way that we cannot eliminate. */
7147
7148 for (p = loop_start; p != end; p = NEXT_INSN (p))
7149 {
7150 enum rtx_code code = GET_CODE (p);
7151 rtx where = threshold >= insn_count ? loop_start : p;
7152
7153 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
7154 && reg_mentioned_p (reg, PATTERN (p))
7155 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
7156 {
7157 if (loop_dump_stream)
7158 fprintf (loop_dump_stream,
7159 "Cannot eliminate biv %d: biv used in insn %d.\n",
7160 bl->regno, INSN_UID (p));
7161 break;
7162 }
7163 }
7164
7165 if (p == end)
7166 {
7167 if (loop_dump_stream)
7168 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
7169 bl->regno, eliminate_p ? "was" : "can be");
7170 return 1;
7171 }
7172
7173 return 0;
7174 }
7175 \f
7176 /* If BL appears in X (part of the pattern of INSN), see if we can
7177 eliminate its use. If so, return 1. If not, return 0.
7178
7179 If BIV does not appear in X, return 1.
7180
7181 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
7182 where extra insns should be added. Depending on how many items have been
7183 moved out of the loop, it will either be before INSN or at the start of
7184 the loop. */
7185
7186 static int
7187 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
7188 rtx x, insn;
7189 struct iv_class *bl;
7190 int eliminate_p;
7191 rtx where;
7192 {
7193 enum rtx_code code = GET_CODE (x);
7194 rtx reg = bl->biv->dest_reg;
7195 enum machine_mode mode = GET_MODE (reg);
7196 struct induction *v;
7197 rtx arg, tem;
7198 #ifdef HAVE_cc0
7199 rtx new;
7200 #endif
7201 int arg_operand;
7202 char *fmt;
7203 int i, j;
7204
7205 switch (code)
7206 {
7207 case REG:
7208 /* If we haven't already been able to do something with this BIV,
7209 we can't eliminate it. */
7210 if (x == reg)
7211 return 0;
7212 return 1;
7213
7214 case SET:
7215 /* If this sets the BIV, it is not a problem. */
7216 if (SET_DEST (x) == reg)
7217 return 1;
7218
7219 /* If this is an insn that defines a giv, it is also ok because
7220 it will go away when the giv is reduced. */
7221 for (v = bl->giv; v; v = v->next_iv)
7222 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
7223 return 1;
7224
7225 #ifdef HAVE_cc0
7226 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
7227 {
7228 /* Can replace with any giv that was reduced and
7229 that has (MULT_VAL != 0) and (ADD_VAL == 0).
7230 Require a constant for MULT_VAL, so we know it's nonzero.
7231 ??? We disable this optimization to avoid potential
7232 overflows. */
7233
7234 for (v = bl->giv; v; v = v->next_iv)
7235 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
7236 && v->add_val == const0_rtx
7237 && ! v->ignore && ! v->maybe_dead && v->always_computable
7238 && v->mode == mode
7239 && 0)
7240 {
7241 /* If the giv V had the auto-inc address optimization applied
7242 to it, and INSN occurs between the giv insn and the biv
7243 insn, then we must adjust the value used here.
7244 This is rare, so we don't bother to do so. */
7245 if (v->auto_inc_opt
7246 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7247 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7248 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7249 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7250 continue;
7251
7252 if (! eliminate_p)
7253 return 1;
7254
7255 /* If the giv has the opposite direction of change,
7256 then reverse the comparison. */
7257 if (INTVAL (v->mult_val) < 0)
7258 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
7259 const0_rtx, v->new_reg);
7260 else
7261 new = v->new_reg;
7262
7263 /* We can probably test that giv's reduced reg. */
7264 if (validate_change (insn, &SET_SRC (x), new, 0))
7265 return 1;
7266 }
7267
7268 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
7269 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
7270 Require a constant for MULT_VAL, so we know it's nonzero.
7271 ??? Do this only if ADD_VAL is a pointer to avoid a potential
7272 overflow problem. */
7273
7274 for (v = bl->giv; v; v = v->next_iv)
7275 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
7276 && ! v->ignore && ! v->maybe_dead && v->always_computable
7277 && v->mode == mode
7278 && (GET_CODE (v->add_val) == SYMBOL_REF
7279 || GET_CODE (v->add_val) == LABEL_REF
7280 || GET_CODE (v->add_val) == CONST
7281 || (GET_CODE (v->add_val) == REG
7282 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
7283 {
7284 /* If the giv V had the auto-inc address optimization applied
7285 to it, and INSN occurs between the giv insn and the biv
7286 insn, then we must adjust the value used here.
7287 This is rare, so we don't bother to do so. */
7288 if (v->auto_inc_opt
7289 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7290 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7291 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7292 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7293 continue;
7294
7295 if (! eliminate_p)
7296 return 1;
7297
7298 /* If the giv has the opposite direction of change,
7299 then reverse the comparison. */
7300 if (INTVAL (v->mult_val) < 0)
7301 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
7302 v->new_reg);
7303 else
7304 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
7305 copy_rtx (v->add_val));
7306
7307 /* Replace biv with the giv's reduced register. */
7308 update_reg_last_use (v->add_val, insn);
7309 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
7310 return 1;
7311
7312 /* Insn doesn't support that constant or invariant. Copy it
7313 into a register (it will be a loop invariant.) */
7314 tem = gen_reg_rtx (GET_MODE (v->new_reg));
7315
7316 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
7317 where);
7318
7319 /* Substitute the new register for its invariant value in
7320 the compare expression. */
7321 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
7322 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
7323 return 1;
7324 }
7325 }
7326 #endif
7327 break;
7328
7329 case COMPARE:
7330 case EQ: case NE:
7331 case GT: case GE: case GTU: case GEU:
7332 case LT: case LE: case LTU: case LEU:
7333 /* See if either argument is the biv. */
7334 if (XEXP (x, 0) == reg)
7335 arg = XEXP (x, 1), arg_operand = 1;
7336 else if (XEXP (x, 1) == reg)
7337 arg = XEXP (x, 0), arg_operand = 0;
7338 else
7339 break;
7340
7341 if (CONSTANT_P (arg))
7342 {
7343 /* First try to replace with any giv that has constant positive
7344 mult_val and constant add_val. We might be able to support
7345 negative mult_val, but it seems complex to do it in general. */
7346
7347 for (v = bl->giv; v; v = v->next_iv)
7348 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
7349 && (GET_CODE (v->add_val) == SYMBOL_REF
7350 || GET_CODE (v->add_val) == LABEL_REF
7351 || GET_CODE (v->add_val) == CONST
7352 || (GET_CODE (v->add_val) == REG
7353 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
7354 && ! v->ignore && ! v->maybe_dead && v->always_computable
7355 && v->mode == mode)
7356 {
7357 /* If the giv V had the auto-inc address optimization applied
7358 to it, and INSN occurs between the giv insn and the biv
7359 insn, then we must adjust the value used here.
7360 This is rare, so we don't bother to do so. */
7361 if (v->auto_inc_opt
7362 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7363 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7364 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7365 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7366 continue;
7367
7368 if (! eliminate_p)
7369 return 1;
7370
7371 /* Replace biv with the giv's reduced reg. */
7372 XEXP (x, 1-arg_operand) = v->new_reg;
7373
7374 /* If all constants are actually constant integers and
7375 the derived constant can be directly placed in the COMPARE,
7376 do so. */
7377 if (GET_CODE (arg) == CONST_INT
7378 && GET_CODE (v->mult_val) == CONST_INT
7379 && GET_CODE (v->add_val) == CONST_INT
7380 && validate_change (insn, &XEXP (x, arg_operand),
7381 GEN_INT (INTVAL (arg)
7382 * INTVAL (v->mult_val)
7383 + INTVAL (v->add_val)), 0))
7384 return 1;
7385
7386 /* Otherwise, load it into a register. */
7387 tem = gen_reg_rtx (mode);
7388 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
7389 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
7390 return 1;
7391
7392 /* If that failed, put back the change we made above. */
7393 XEXP (x, 1-arg_operand) = reg;
7394 }
7395
7396 /* Look for giv with positive constant mult_val and nonconst add_val.
7397 Insert insns to calculate new compare value.
7398 ??? Turn this off due to possible overflow. */
7399
7400 for (v = bl->giv; v; v = v->next_iv)
7401 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
7402 && ! v->ignore && ! v->maybe_dead && v->always_computable
7403 && v->mode == mode
7404 && 0)
7405 {
7406 rtx tem;
7407
7408 /* If the giv V had the auto-inc address optimization applied
7409 to it, and INSN occurs between the giv insn and the biv
7410 insn, then we must adjust the value used here.
7411 This is rare, so we don't bother to do so. */
7412 if (v->auto_inc_opt
7413 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7414 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7415 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7416 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7417 continue;
7418
7419 if (! eliminate_p)
7420 return 1;
7421
7422 tem = gen_reg_rtx (mode);
7423
7424 /* Replace biv with giv's reduced register. */
7425 validate_change (insn, &XEXP (x, 1 - arg_operand),
7426 v->new_reg, 1);
7427
7428 /* Compute value to compare against. */
7429 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
7430 /* Use it in this insn. */
7431 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
7432 if (apply_change_group ())
7433 return 1;
7434 }
7435 }
7436 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
7437 {
7438 if (invariant_p (arg) == 1)
7439 {
7440 /* Look for giv with constant positive mult_val and nonconst
7441 add_val. Insert insns to compute new compare value.
7442 ??? Turn this off due to possible overflow. */
7443
7444 for (v = bl->giv; v; v = v->next_iv)
7445 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
7446 && ! v->ignore && ! v->maybe_dead && v->always_computable
7447 && v->mode == mode
7448 && 0)
7449 {
7450 rtx tem;
7451
7452 /* If the giv V had the auto-inc address optimization applied
7453 to it, and INSN occurs between the giv insn and the biv
7454 insn, then we must adjust the value used here.
7455 This is rare, so we don't bother to do so. */
7456 if (v->auto_inc_opt
7457 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7458 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7459 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7460 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7461 continue;
7462
7463 if (! eliminate_p)
7464 return 1;
7465
7466 tem = gen_reg_rtx (mode);
7467
7468 /* Replace biv with giv's reduced register. */
7469 validate_change (insn, &XEXP (x, 1 - arg_operand),
7470 v->new_reg, 1);
7471
7472 /* Compute value to compare against. */
7473 emit_iv_add_mult (arg, v->mult_val, v->add_val,
7474 tem, where);
7475 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
7476 if (apply_change_group ())
7477 return 1;
7478 }
7479 }
7480
7481 /* This code has problems. Basically, you can't know when
7482 seeing if we will eliminate BL, whether a particular giv
7483 of ARG will be reduced. If it isn't going to be reduced,
7484 we can't eliminate BL. We can try forcing it to be reduced,
7485 but that can generate poor code.
7486
7487 The problem is that the benefit of reducing TV, below should
7488 be increased if BL can actually be eliminated, but this means
7489 we might have to do a topological sort of the order in which
7490 we try to process biv. It doesn't seem worthwhile to do
7491 this sort of thing now. */
7492
7493 #if 0
7494 /* Otherwise the reg compared with had better be a biv. */
7495 if (GET_CODE (arg) != REG
7496 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
7497 return 0;
7498
7499 /* Look for a pair of givs, one for each biv,
7500 with identical coefficients. */
7501 for (v = bl->giv; v; v = v->next_iv)
7502 {
7503 struct induction *tv;
7504
7505 if (v->ignore || v->maybe_dead || v->mode != mode)
7506 continue;
7507
7508 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
7509 if (! tv->ignore && ! tv->maybe_dead
7510 && rtx_equal_p (tv->mult_val, v->mult_val)
7511 && rtx_equal_p (tv->add_val, v->add_val)
7512 && tv->mode == mode)
7513 {
7514 /* If the giv V had the auto-inc address optimization applied
7515 to it, and INSN occurs between the giv insn and the biv
7516 insn, then we must adjust the value used here.
7517 This is rare, so we don't bother to do so. */
7518 if (v->auto_inc_opt
7519 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
7520 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
7521 || (INSN_LUID (v->insn) > INSN_LUID (insn)
7522 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
7523 continue;
7524
7525 if (! eliminate_p)
7526 return 1;
7527
7528 /* Replace biv with its giv's reduced reg. */
7529 XEXP (x, 1-arg_operand) = v->new_reg;
7530 /* Replace other operand with the other giv's
7531 reduced reg. */
7532 XEXP (x, arg_operand) = tv->new_reg;
7533 return 1;
7534 }
7535 }
7536 #endif
7537 }
7538
7539 /* If we get here, the biv can't be eliminated. */
7540 return 0;
7541
7542 case MEM:
7543 /* If this address is a DEST_ADDR giv, it doesn't matter if the
7544 biv is used in it, since it will be replaced. */
7545 for (v = bl->giv; v; v = v->next_iv)
7546 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
7547 return 1;
7548 break;
7549
7550 default:
7551 break;
7552 }
7553
7554 /* See if any subexpression fails elimination. */
7555 fmt = GET_RTX_FORMAT (code);
7556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7557 {
7558 switch (fmt[i])
7559 {
7560 case 'e':
7561 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
7562 eliminate_p, where))
7563 return 0;
7564 break;
7565
7566 case 'E':
7567 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7568 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
7569 eliminate_p, where))
7570 return 0;
7571 break;
7572 }
7573 }
7574
7575 return 1;
7576 }
7577 \f
7578 /* Return nonzero if the last use of REG
7579 is in an insn following INSN in the same basic block. */
7580
7581 static int
7582 last_use_this_basic_block (reg, insn)
7583 rtx reg;
7584 rtx insn;
7585 {
7586 rtx n;
7587 for (n = insn;
7588 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
7589 n = NEXT_INSN (n))
7590 {
7591 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
7592 return 1;
7593 }
7594 return 0;
7595 }
7596 \f
7597 /* Called via `note_stores' to record the initial value of a biv. Here we
7598 just record the location of the set and process it later. */
7599
7600 static void
7601 record_initial (dest, set)
7602 rtx dest;
7603 rtx set;
7604 {
7605 struct iv_class *bl;
7606
7607 if (GET_CODE (dest) != REG
7608 || REGNO (dest) >= max_reg_before_loop
7609 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
7610 return;
7611
7612 bl = reg_biv_class[REGNO (dest)];
7613
7614 /* If this is the first set found, record it. */
7615 if (bl->init_insn == 0)
7616 {
7617 bl->init_insn = note_insn;
7618 bl->init_set = set;
7619 }
7620 }
7621 \f
7622 /* If any of the registers in X are "old" and currently have a last use earlier
7623 than INSN, update them to have a last use of INSN. Their actual last use
7624 will be the previous insn but it will not have a valid uid_luid so we can't
7625 use it. */
7626
7627 static void
7628 update_reg_last_use (x, insn)
7629 rtx x;
7630 rtx insn;
7631 {
7632 /* Check for the case where INSN does not have a valid luid. In this case,
7633 there is no need to modify the regno_last_uid, as this can only happen
7634 when code is inserted after the loop_end to set a pseudo's final value,
7635 and hence this insn will never be the last use of x. */
7636 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
7637 && INSN_UID (insn) < max_uid_for_loop
7638 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
7639 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
7640 else
7641 {
7642 register int i, j;
7643 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
7644 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
7645 {
7646 if (fmt[i] == 'e')
7647 update_reg_last_use (XEXP (x, i), insn);
7648 else if (fmt[i] == 'E')
7649 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7650 update_reg_last_use (XVECEXP (x, i, j), insn);
7651 }
7652 }
7653 }
7654 \f
7655 /* Given a jump insn JUMP, return the condition that will cause it to branch
7656 to its JUMP_LABEL. If the condition cannot be understood, or is an
7657 inequality floating-point comparison which needs to be reversed, 0 will
7658 be returned.
7659
7660 If EARLIEST is non-zero, it is a pointer to a place where the earliest
7661 insn used in locating the condition was found. If a replacement test
7662 of the condition is desired, it should be placed in front of that
7663 insn and we will be sure that the inputs are still valid.
7664
7665 The condition will be returned in a canonical form to simplify testing by
7666 callers. Specifically:
7667
7668 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
7669 (2) Both operands will be machine operands; (cc0) will have been replaced.
7670 (3) If an operand is a constant, it will be the second operand.
7671 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
7672 for GE, GEU, and LEU. */
7673
7674 rtx
7675 get_condition (jump, earliest)
7676 rtx jump;
7677 rtx *earliest;
7678 {
7679 enum rtx_code code;
7680 rtx prev = jump;
7681 rtx set;
7682 rtx tem;
7683 rtx op0, op1;
7684 int reverse_code = 0;
7685 int did_reverse_condition = 0;
7686 enum machine_mode mode;
7687
7688 /* If this is not a standard conditional jump, we can't parse it. */
7689 if (GET_CODE (jump) != JUMP_INSN
7690 || ! condjump_p (jump) || simplejump_p (jump))
7691 return 0;
7692
7693 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
7694 mode = GET_MODE (XEXP (SET_SRC (PATTERN (jump)), 0));
7695 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
7696 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
7697
7698 if (earliest)
7699 *earliest = jump;
7700
7701 /* If this branches to JUMP_LABEL when the condition is false, reverse
7702 the condition. */
7703 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
7704 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
7705 code = reverse_condition (code), did_reverse_condition ^= 1;
7706
7707 /* If we are comparing a register with zero, see if the register is set
7708 in the previous insn to a COMPARE or a comparison operation. Perform
7709 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
7710 in cse.c */
7711
7712 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
7713 {
7714 /* Set non-zero when we find something of interest. */
7715 rtx x = 0;
7716
7717 #ifdef HAVE_cc0
7718 /* If comparison with cc0, import actual comparison from compare
7719 insn. */
7720 if (op0 == cc0_rtx)
7721 {
7722 if ((prev = prev_nonnote_insn (prev)) == 0
7723 || GET_CODE (prev) != INSN
7724 || (set = single_set (prev)) == 0
7725 || SET_DEST (set) != cc0_rtx)
7726 return 0;
7727
7728 op0 = SET_SRC (set);
7729 op1 = CONST0_RTX (GET_MODE (op0));
7730 if (earliest)
7731 *earliest = prev;
7732 }
7733 #endif
7734
7735 /* If this is a COMPARE, pick up the two things being compared. */
7736 if (GET_CODE (op0) == COMPARE)
7737 {
7738 op1 = XEXP (op0, 1);
7739 op0 = XEXP (op0, 0);
7740 continue;
7741 }
7742 else if (GET_CODE (op0) != REG)
7743 break;
7744
7745 /* Go back to the previous insn. Stop if it is not an INSN. We also
7746 stop if it isn't a single set or if it has a REG_INC note because
7747 we don't want to bother dealing with it. */
7748
7749 if ((prev = prev_nonnote_insn (prev)) == 0
7750 || GET_CODE (prev) != INSN
7751 || FIND_REG_INC_NOTE (prev, 0)
7752 || (set = single_set (prev)) == 0)
7753 break;
7754
7755 /* If this is setting OP0, get what it sets it to if it looks
7756 relevant. */
7757 if (rtx_equal_p (SET_DEST (set), op0))
7758 {
7759 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
7760
7761 /* ??? We may not combine comparisons done in a CCmode with
7762 comparisons not done in a CCmode. This is to aid targets
7763 like Alpha that have an IEEE compliant EQ instruction, and
7764 a non-IEEE compliant BEQ instruction. The use of CCmode is
7765 actually artificial, simply to prevent the combination, but
7766 should not affect other platforms. */
7767
7768 if ((GET_CODE (SET_SRC (set)) == COMPARE
7769 || (((code == NE
7770 || (code == LT
7771 && GET_MODE_CLASS (inner_mode) == MODE_INT
7772 && (GET_MODE_BITSIZE (inner_mode)
7773 <= HOST_BITS_PER_WIDE_INT)
7774 && (STORE_FLAG_VALUE
7775 & ((HOST_WIDE_INT) 1
7776 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7777 #ifdef FLOAT_STORE_FLAG_VALUE
7778 || (code == LT
7779 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7780 && FLOAT_STORE_FLAG_VALUE < 0)
7781 #endif
7782 ))
7783 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
7784 && ((GET_MODE_CLASS (mode) == MODE_CC)
7785 == (GET_MODE_CLASS (inner_mode) == MODE_CC)))
7786 x = SET_SRC (set);
7787 else if (((code == EQ
7788 || (code == GE
7789 && (GET_MODE_BITSIZE (inner_mode)
7790 <= HOST_BITS_PER_WIDE_INT)
7791 && GET_MODE_CLASS (inner_mode) == MODE_INT
7792 && (STORE_FLAG_VALUE
7793 & ((HOST_WIDE_INT) 1
7794 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7795 #ifdef FLOAT_STORE_FLAG_VALUE
7796 || (code == GE
7797 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7798 && FLOAT_STORE_FLAG_VALUE < 0)
7799 #endif
7800 ))
7801 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
7802 && ((GET_MODE_CLASS (mode) == MODE_CC)
7803 == (GET_MODE_CLASS (inner_mode) == MODE_CC)))
7804 {
7805 /* We might have reversed a LT to get a GE here. But this wasn't
7806 actually the comparison of data, so we don't flag that we
7807 have had to reverse the condition. */
7808 did_reverse_condition ^= 1;
7809 reverse_code = 1;
7810 x = SET_SRC (set);
7811 }
7812 else
7813 break;
7814 }
7815
7816 else if (reg_set_p (op0, prev))
7817 /* If this sets OP0, but not directly, we have to give up. */
7818 break;
7819
7820 if (x)
7821 {
7822 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
7823 code = GET_CODE (x);
7824 if (reverse_code)
7825 {
7826 code = reverse_condition (code);
7827 did_reverse_condition ^= 1;
7828 reverse_code = 0;
7829 }
7830
7831 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
7832 if (earliest)
7833 *earliest = prev;
7834 }
7835 }
7836
7837 /* If constant is first, put it last. */
7838 if (CONSTANT_P (op0))
7839 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
7840
7841 /* If OP0 is the result of a comparison, we weren't able to find what
7842 was really being compared, so fail. */
7843 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
7844 return 0;
7845
7846 /* Canonicalize any ordered comparison with integers involving equality
7847 if we can do computations in the relevant mode and we do not
7848 overflow. */
7849
7850 if (GET_CODE (op1) == CONST_INT
7851 && GET_MODE (op0) != VOIDmode
7852 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
7853 {
7854 HOST_WIDE_INT const_val = INTVAL (op1);
7855 unsigned HOST_WIDE_INT uconst_val = const_val;
7856 unsigned HOST_WIDE_INT max_val
7857 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
7858
7859 switch (code)
7860 {
7861 case LE:
7862 if (const_val != max_val >> 1)
7863 code = LT, op1 = GEN_INT (const_val + 1);
7864 break;
7865
7866 /* When cross-compiling, const_val might be sign-extended from
7867 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
7868 case GE:
7869 if ((const_val & max_val)
7870 != (((HOST_WIDE_INT) 1
7871 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7872 code = GT, op1 = GEN_INT (const_val - 1);
7873 break;
7874
7875 case LEU:
7876 if (uconst_val < max_val)
7877 code = LTU, op1 = GEN_INT (uconst_val + 1);
7878 break;
7879
7880 case GEU:
7881 if (uconst_val != 0)
7882 code = GTU, op1 = GEN_INT (uconst_val - 1);
7883 break;
7884
7885 default:
7886 break;
7887 }
7888 }
7889
7890 /* If this was floating-point and we reversed anything other than an
7891 EQ or NE, return zero. */
7892 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7893 && did_reverse_condition && code != NE && code != EQ
7894 && ! flag_fast_math
7895 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7896 return 0;
7897
7898 #ifdef HAVE_cc0
7899 /* Never return CC0; return zero instead. */
7900 if (op0 == cc0_rtx)
7901 return 0;
7902 #endif
7903
7904 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
7905 }
7906
7907 /* Similar to above routine, except that we also put an invariant last
7908 unless both operands are invariants. */
7909
7910 rtx
7911 get_condition_for_loop (x)
7912 rtx x;
7913 {
7914 rtx comparison = get_condition (x, NULL_PTR);
7915
7916 if (comparison == 0
7917 || ! invariant_p (XEXP (comparison, 0))
7918 || invariant_p (XEXP (comparison, 1)))
7919 return comparison;
7920
7921 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
7922 XEXP (comparison, 1), XEXP (comparison, 0));
7923 }
7924
7925 #ifdef HAVE_decrement_and_branch_on_count
7926 /* Instrument loop for insertion of bct instruction. We distinguish between
7927 loops with compile-time bounds and those with run-time bounds.
7928 Information from loop_iterations() is used to compute compile-time bounds.
7929 Run-time bounds should use loop preconditioning, but currently ignored.
7930 */
7931
7932 static void
7933 insert_bct (loop_start, loop_end)
7934 rtx loop_start, loop_end;
7935 {
7936 int i;
7937 unsigned HOST_WIDE_INT n_iterations;
7938 rtx insn;
7939
7940 int increment_direction, compare_direction;
7941
7942 /* If the loop condition is <= or >=, the number of iteration
7943 is 1 more than the range of the bounds of the loop. */
7944 int add_iteration = 0;
7945
7946 enum machine_mode loop_var_mode = word_mode;
7947
7948 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7949
7950 /* It's impossible to instrument a competely unrolled loop. */
7951 if (loop_unroll_factor [loop_num] == -1)
7952 return;
7953
7954 /* Make sure that the count register is not in use. */
7955 if (loop_used_count_register [loop_num])
7956 {
7957 if (loop_dump_stream)
7958 fprintf (loop_dump_stream,
7959 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
7960 loop_num);
7961 return;
7962 }
7963
7964 /* Make sure that the function has no indirect jumps. */
7965 if (indirect_jump_in_function)
7966 {
7967 if (loop_dump_stream)
7968 fprintf (loop_dump_stream,
7969 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
7970 loop_num);
7971 return;
7972 }
7973
7974 /* Make sure that the last loop insn is a conditional jump. */
7975 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7976 || ! condjump_p (PREV_INSN (loop_end))
7977 || simplejump_p (PREV_INSN (loop_end)))
7978 {
7979 if (loop_dump_stream)
7980 fprintf (loop_dump_stream,
7981 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
7982 loop_num);
7983 return;
7984 }
7985
7986 /* Make sure that the loop does not contain a function call
7987 (the count register might be altered by the called function). */
7988 if (loop_has_call)
7989 {
7990 if (loop_dump_stream)
7991 fprintf (loop_dump_stream,
7992 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
7993 loop_num);
7994 return;
7995 }
7996
7997 /* Make sure that the loop does not jump via a table.
7998 (the count register might be used to perform the branch on table). */
7999 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn))
8000 {
8001 if (GET_CODE (insn) == JUMP_INSN
8002 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
8003 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
8004 {
8005 if (loop_dump_stream)
8006 fprintf (loop_dump_stream,
8007 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
8008 loop_num);
8009 return;
8010 }
8011 }
8012
8013 /* Account for loop unrolling in instrumented iteration count. */
8014 if (loop_unroll_factor [loop_num] > 1)
8015 n_iterations = loop_n_iterations / loop_unroll_factor [loop_num];
8016 else
8017 n_iterations = loop_n_iterations;
8018
8019 if (n_iterations != 0 && n_iterations < 3)
8020 {
8021 /* Allow an enclosing outer loop to benefit if possible. */
8022 if (loop_dump_stream)
8023 fprintf (loop_dump_stream,
8024 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
8025 loop_num);
8026 return;
8027 }
8028
8029 /* Try to instrument the loop. */
8030
8031 /* Handle the simpler case, where the bounds are known at compile time. */
8032 if (n_iterations > 0)
8033 {
8034 /* Mark all enclosing loops that they cannot use count register. */
8035 for (i=loop_num; i != -1; i = loop_outer_loop[i])
8036 loop_used_count_register[i] = 1;
8037 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
8038 return;
8039 }
8040
8041 /* Handle the more complex case, that the bounds are NOT known
8042 at compile time. In this case we generate run_time calculation
8043 of the number of iterations. */
8044
8045 if (GET_MODE_CLASS (GET_MODE (loop_iteration_var)) != MODE_INT
8046 || GET_MODE_SIZE (GET_MODE (loop_iteration_var)) != UNITS_PER_WORD)
8047 {
8048 if (loop_dump_stream)
8049 fprintf (loop_dump_stream,
8050 "insert_bct %d: BCT Instrumentation failed: loop variable not integer\n",
8051 loop_num);
8052 return;
8053 }
8054
8055 /* With runtime bounds, if the compare is of the form '!=' we give up */
8056 if (loop_comparison_code == NE)
8057 {
8058 if (loop_dump_stream)
8059 fprintf (loop_dump_stream,
8060 "insert_bct %d: runtime bounds with != comparison\n",
8061 loop_num);
8062 return;
8063 }
8064 /* Use common loop preconditioning code instead. */
8065 #if 0
8066 else
8067 {
8068 /* We rely on the existence of run-time guard to ensure that the
8069 loop executes at least once. */
8070 rtx sequence;
8071 rtx iterations_num_reg;
8072
8073 unsigned HOST_WIDE_INT increment_value_abs
8074 = INTVAL (increment) * increment_direction;
8075
8076 /* make sure that the increment is a power of two, otherwise (an
8077 expensive) divide is needed. */
8078 if (exact_log2 (increment_value_abs) == -1)
8079 {
8080 if (loop_dump_stream)
8081 fprintf (loop_dump_stream,
8082 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
8083 return;
8084 }
8085
8086 /* compute the number of iterations */
8087 start_sequence ();
8088 {
8089 rtx temp_reg;
8090
8091 /* Again, the number of iterations is calculated by:
8092 ;
8093 ; compare-val - initial-val + (increment -1) + additional-iteration
8094 ; num_iterations = -----------------------------------------------------------------
8095 ; increment
8096 */
8097 /* ??? Do we have to call copy_rtx here before passing rtx to
8098 expand_binop? */
8099 if (compare_direction > 0)
8100 {
8101 /* <, <= :the loop variable is increasing */
8102 temp_reg = expand_binop (loop_var_mode, sub_optab,
8103 comparison_value, initial_value,
8104 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8105 }
8106 else
8107 {
8108 temp_reg = expand_binop (loop_var_mode, sub_optab,
8109 initial_value, comparison_value,
8110 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8111 }
8112
8113 if (increment_value_abs - 1 + add_iteration != 0)
8114 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
8115 GEN_INT (increment_value_abs - 1
8116 + add_iteration),
8117 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8118
8119 if (increment_value_abs != 1)
8120 {
8121 /* ??? This will generate an expensive divide instruction for
8122 most targets. The original authors apparently expected this
8123 to be a shift, since they test for power-of-2 divisors above,
8124 but just naively generating a divide instruction will not give
8125 a shift. It happens to work for the PowerPC target because
8126 the rs6000.md file has a divide pattern that emits shifts.
8127 It will probably not work for any other target. */
8128 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
8129 temp_reg,
8130 GEN_INT (increment_value_abs),
8131 NULL_RTX, 0, OPTAB_LIB_WIDEN);
8132 }
8133 else
8134 iterations_num_reg = temp_reg;
8135 }
8136 sequence = gen_sequence ();
8137 end_sequence ();
8138 emit_insn_before (sequence, loop_start);
8139 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
8140 }
8141
8142 return;
8143 #endif /* Complex case */
8144 }
8145
8146 /* Instrument loop by inserting a bct in it as follows:
8147 1. A new counter register is created.
8148 2. In the head of the loop the new variable is initialized to the value
8149 passed in the loop_num_iterations parameter.
8150 3. At the end of the loop, comparison of the register with 0 is generated.
8151 The created comparison follows the pattern defined for the
8152 decrement_and_branch_on_count insn, so this insn will be generated.
8153 4. The branch on the old variable are deleted. The compare must remain
8154 because it might be used elsewhere. If the loop-variable or condition
8155 register are used elsewhere, they will be eliminated by flow. */
8156
8157 static void
8158 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
8159 rtx loop_start, loop_end;
8160 rtx loop_num_iterations;
8161 {
8162 rtx counter_reg;
8163 rtx start_label;
8164 rtx sequence;
8165
8166 if (HAVE_decrement_and_branch_on_count)
8167 {
8168 if (loop_dump_stream)
8169 {
8170 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
8171 if (GET_CODE (loop_num_iterations) == CONST_INT)
8172 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
8173 INTVAL (loop_num_iterations));
8174 else
8175 fputs ("runtime", loop_dump_stream);
8176 fputs (" iterations)", loop_dump_stream);
8177 }
8178
8179 /* Discard original jump to continue loop. Original compare result
8180 may still be live, so it cannot be discarded explicitly. */
8181 delete_insn (PREV_INSN (loop_end));
8182
8183 /* Insert the label which will delimit the start of the loop. */
8184 start_label = gen_label_rtx ();
8185 emit_label_after (start_label, loop_start);
8186
8187 /* Insert initialization of the count register into the loop header. */
8188 start_sequence ();
8189 counter_reg = gen_reg_rtx (word_mode);
8190 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
8191 sequence = gen_sequence ();
8192 end_sequence ();
8193 emit_insn_before (sequence, loop_start);
8194
8195 /* Insert new comparison on the count register instead of the
8196 old one, generating the needed BCT pattern (that will be
8197 later recognized by assembly generation phase). */
8198 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
8199 start_label),
8200 loop_end);
8201 LABEL_NUSES (start_label)++;
8202 }
8203
8204 }
8205 #endif /* HAVE_decrement_and_branch_on_count */
8206
8207 /* Scan the function and determine whether it has indirect (computed) jumps.
8208
8209 This is taken mostly from flow.c; similar code exists elsewhere
8210 in the compiler. It may be useful to put this into rtlanal.c. */
8211 static int
8212 indirect_jump_in_function_p (start)
8213 rtx start;
8214 {
8215 rtx insn;
8216
8217 for (insn = start; insn; insn = NEXT_INSN (insn))
8218 if (computed_jump_p (insn))
8219 return 1;
8220
8221 return 0;
8222 }
8223
8224 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
8225 documentation for LOOP_MEMS for the definition of `appropriate'.
8226 This function is called from prescan_loop via for_each_rtx. */
8227
8228 static int
8229 insert_loop_mem (mem, data)
8230 rtx *mem;
8231 void *data;
8232 {
8233 int i;
8234 rtx m = *mem;
8235
8236 if (m == NULL_RTX)
8237 return 0;
8238
8239 switch (GET_CODE (m))
8240 {
8241 case MEM:
8242 break;
8243
8244 case CONST_DOUBLE:
8245 /* We're not interested in the MEM associated with a
8246 CONST_DOUBLE, so there's no need to traverse into this. */
8247 return -1;
8248
8249 default:
8250 /* This is not a MEM. */
8251 return 0;
8252 }
8253
8254 /* See if we've already seen this MEM. */
8255 for (i = 0; i < loop_mems_idx; ++i)
8256 if (rtx_equal_p (m, loop_mems[i].mem))
8257 {
8258 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
8259 /* The modes of the two memory accesses are different. If
8260 this happens, something tricky is going on, and we just
8261 don't optimize accesses to this MEM. */
8262 loop_mems[i].optimize = 0;
8263
8264 return 0;
8265 }
8266
8267 /* Resize the array, if necessary. */
8268 if (loop_mems_idx == loop_mems_allocated)
8269 {
8270 if (loop_mems_allocated != 0)
8271 loop_mems_allocated *= 2;
8272 else
8273 loop_mems_allocated = 32;
8274
8275 loop_mems = (loop_mem_info*)
8276 xrealloc (loop_mems,
8277 loop_mems_allocated * sizeof (loop_mem_info));
8278 }
8279
8280 /* Actually insert the MEM. */
8281 loop_mems[loop_mems_idx].mem = m;
8282 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
8283 because we can't put it in a register. We still store it in the
8284 table, though, so that if we see the same address later, but in a
8285 non-BLK mode, we'll not think we can optimize it at that point. */
8286 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
8287 loop_mems[loop_mems_idx].reg = NULL_RTX;
8288 ++loop_mems_idx;
8289
8290 return 0;
8291 }
8292
8293 /* Like load_mems, but also ensures that N_TIMES_SET,
8294 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
8295 values after load_mems. */
8296
8297 static void
8298 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top, start,
8299 reg_single_usage, insn_count)
8300 rtx scan_start;
8301 rtx end;
8302 rtx loop_top;
8303 rtx start;
8304 varray_type reg_single_usage;
8305 int *insn_count;
8306 {
8307 int nregs = max_reg_num ();
8308
8309 load_mems (scan_start, end, loop_top, start);
8310
8311 /* Recalculate n_times_set and friends since load_mems may have
8312 created new registers. */
8313 if (max_reg_num () > nregs)
8314 {
8315 int i;
8316 int old_nregs;
8317
8318 old_nregs = nregs;
8319 nregs = max_reg_num ();
8320
8321 if (nregs > n_times_set->num_elements)
8322 {
8323 /* Grow all the arrays. */
8324 VARRAY_GROW (n_times_set, nregs);
8325 VARRAY_GROW (n_times_used, nregs);
8326 VARRAY_GROW (may_not_optimize, nregs);
8327 if (reg_single_usage)
8328 VARRAY_GROW (reg_single_usage, nregs);
8329 }
8330 /* Clear the arrays */
8331 bzero ((char *) &n_times_set->data, nregs * sizeof (int));
8332 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
8333 if (reg_single_usage)
8334 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
8335
8336 count_loop_regs_set (loop_top ? loop_top : start, end,
8337 may_not_optimize, reg_single_usage,
8338 insn_count, nregs);
8339
8340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8341 {
8342 VARRAY_CHAR (may_not_optimize, i) = 1;
8343 VARRAY_INT (n_times_set, i) = 1;
8344 }
8345
8346 #ifdef AVOID_CCMODE_COPIES
8347 /* Don't try to move insns which set CC registers if we should not
8348 create CCmode register copies. */
8349 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
8350 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
8351 VARRAY_CHAR (may_not_optimize, i) = 1;
8352 #endif
8353
8354 /* Set n_times_used for the new registers. */
8355 bcopy ((char *) (&n_times_set->data.i[0] + old_nregs),
8356 (char *) (&n_times_used->data.i[0] + old_nregs),
8357 (nregs - old_nregs) * sizeof (int));
8358 }
8359 }
8360
8361 /* Move MEMs into registers for the duration of the loop. SCAN_START
8362 is the first instruction in the loop (as it is executed). The
8363 other parameters are as for next_insn_in_loop. */
8364
8365 static void
8366 load_mems (scan_start, end, loop_top, start)
8367 rtx scan_start;
8368 rtx end;
8369 rtx loop_top;
8370 rtx start;
8371 {
8372 int maybe_never = 0;
8373 int i;
8374 rtx p;
8375 rtx label = NULL_RTX;
8376 rtx end_label;
8377
8378 if (loop_mems_idx > 0)
8379 {
8380 /* Nonzero if the next instruction may never be executed. */
8381 int next_maybe_never = 0;
8382
8383 /* Check to see if it's possible that some instructions in the
8384 loop are never executed. */
8385 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
8386 p != NULL_RTX && !maybe_never;
8387 p = next_insn_in_loop (p, scan_start, end, loop_top))
8388 {
8389 if (GET_CODE (p) == CODE_LABEL)
8390 maybe_never = 1;
8391 else if (GET_CODE (p) == JUMP_INSN
8392 /* If we enter the loop in the middle, and scan
8393 around to the beginning, don't set maybe_never
8394 for that. This must be an unconditional jump,
8395 otherwise the code at the top of the loop might
8396 never be executed. Unconditional jumps are
8397 followed a by barrier then loop end. */
8398 && ! (GET_CODE (p) == JUMP_INSN
8399 && JUMP_LABEL (p) == loop_top
8400 && NEXT_INSN (NEXT_INSN (p)) == end
8401 && simplejump_p (p)))
8402 {
8403 if (!condjump_p (p))
8404 /* Something complicated. */
8405 maybe_never = 1;
8406 else
8407 /* If there are any more instructions in the loop, they
8408 might not be reached. */
8409 next_maybe_never = 1;
8410 }
8411 else if (next_maybe_never)
8412 maybe_never = 1;
8413 }
8414
8415 /* Actually move the MEMs. */
8416 for (i = 0; i < loop_mems_idx; ++i)
8417 {
8418 int j;
8419 int written = 0;
8420 rtx reg;
8421 rtx mem = loop_mems[i].mem;
8422
8423 if (MEM_VOLATILE_P (mem)
8424 || invariant_p (XEXP (mem, 0)) != 1)
8425 /* There's no telling whether or not MEM is modified. */
8426 loop_mems[i].optimize = 0;
8427
8428 /* Go through the MEMs written to in the loop to see if this
8429 one is aliased by one of them. */
8430 for (j = 0; j < loop_store_mems_idx; ++j)
8431 {
8432 if (rtx_equal_p (mem, loop_store_mems[j]))
8433 written = 1;
8434 else if (true_dependence (loop_store_mems[j], VOIDmode,
8435 mem, rtx_varies_p))
8436 {
8437 /* MEM is indeed aliased by this store. */
8438 loop_mems[i].optimize = 0;
8439 break;
8440 }
8441 }
8442
8443 /* If this MEM is written to, we must be sure that there
8444 are no reads from another MEM that aliases this one. */
8445 if (loop_mems[i].optimize && written)
8446 {
8447 int j;
8448
8449 for (j = 0; j < loop_mems_idx; ++j)
8450 {
8451 if (j == i)
8452 continue;
8453 else if (true_dependence (mem,
8454 VOIDmode,
8455 loop_mems[j].mem,
8456 rtx_varies_p))
8457 {
8458 /* It's not safe to hoist loop_mems[i] out of
8459 the loop because writes to it might not be
8460 seen by reads from loop_mems[j]. */
8461 loop_mems[i].optimize = 0;
8462 break;
8463 }
8464 }
8465 }
8466
8467 if (maybe_never && may_trap_p (mem))
8468 /* We can't access the MEM outside the loop; it might
8469 cause a trap that wouldn't have happened otherwise. */
8470 loop_mems[i].optimize = 0;
8471
8472 if (!loop_mems[i].optimize)
8473 /* We thought we were going to lift this MEM out of the
8474 loop, but later discovered that we could not. */
8475 continue;
8476
8477 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
8478 order to keep scan_loop from moving stores to this MEM
8479 out of the loop just because this REG is neither a
8480 user-variable nor used in the loop test. */
8481 reg = gen_reg_rtx (GET_MODE (mem));
8482 REG_USERVAR_P (reg) = 1;
8483 loop_mems[i].reg = reg;
8484
8485 /* Now, replace all references to the MEM with the
8486 corresponding pesudos. */
8487 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
8488 p != NULL_RTX;
8489 p = next_insn_in_loop (p, scan_start, end, loop_top))
8490 {
8491 rtx_and_int ri;
8492 ri.r = p;
8493 ri.i = i;
8494 for_each_rtx (&p, replace_loop_mem, &ri);
8495 }
8496
8497 if (!apply_change_group ())
8498 /* We couldn't replace all occurrences of the MEM. */
8499 loop_mems[i].optimize = 0;
8500 else
8501 {
8502 rtx set;
8503
8504 /* Load the memory immediately before START, which is
8505 the NOTE_LOOP_BEG. */
8506 set = gen_rtx_SET (GET_MODE (reg), reg, mem);
8507 emit_insn_before (set, start);
8508
8509 if (written)
8510 {
8511 if (label == NULL_RTX)
8512 {
8513 /* We must compute the former
8514 right-after-the-end label before we insert
8515 the new one. */
8516 end_label = next_label (end);
8517 label = gen_label_rtx ();
8518 emit_label_after (label, end);
8519 }
8520
8521 /* Store the memory immediately after END, which is
8522 the NOTE_LOOP_END. */
8523 set = gen_rtx_SET (GET_MODE (reg), copy_rtx (mem), reg);
8524 emit_insn_after (set, label);
8525 }
8526
8527 if (loop_dump_stream)
8528 {
8529 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
8530 REGNO (reg), (written ? "r/w" : "r/o"));
8531 print_rtl (loop_dump_stream, mem);
8532 fputc ('\n', loop_dump_stream);
8533 }
8534 }
8535 }
8536 }
8537
8538 if (label != NULL_RTX)
8539 {
8540 /* Now, we need to replace all references to the previous exit
8541 label with the new one. */
8542 rtx_pair rr;
8543 rr.r1 = end_label;
8544 rr.r2 = label;
8545
8546 for (p = start; p != end; p = NEXT_INSN (p))
8547 {
8548 for_each_rtx (&p, replace_label, &rr);
8549
8550 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
8551 field. This is not handled by for_each_rtx because it doesn't
8552 handle unprinted ('0') fields. We need to update JUMP_LABEL
8553 because the immediately following unroll pass will use it.
8554 replace_label would not work anyways, because that only handles
8555 LABEL_REFs. */
8556 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
8557 JUMP_LABEL (p) = label;
8558 }
8559 }
8560 }
8561
8562 /* Replace MEM with its associated pseudo register. This function is
8563 called from load_mems via for_each_rtx. DATA is actually an
8564 rtx_and_int * describing the instruction currently being scanned
8565 and the MEM we are currently replacing. */
8566
8567 static int
8568 replace_loop_mem (mem, data)
8569 rtx *mem;
8570 void *data;
8571 {
8572 rtx_and_int *ri;
8573 rtx insn;
8574 int i;
8575 rtx m = *mem;
8576
8577 if (m == NULL_RTX)
8578 return 0;
8579
8580 switch (GET_CODE (m))
8581 {
8582 case MEM:
8583 break;
8584
8585 case CONST_DOUBLE:
8586 /* We're not interested in the MEM associated with a
8587 CONST_DOUBLE, so there's no need to traverse into one. */
8588 return -1;
8589
8590 default:
8591 /* This is not a MEM. */
8592 return 0;
8593 }
8594
8595 ri = (rtx_and_int*) data;
8596 i = ri->i;
8597
8598 if (!rtx_equal_p (loop_mems[i].mem, m))
8599 /* This is not the MEM we are currently replacing. */
8600 return 0;
8601
8602 insn = ri->r;
8603
8604 /* Actually replace the MEM. */
8605 validate_change (insn, mem, loop_mems[i].reg, 1);
8606
8607 return 0;
8608 }
8609
8610 /* Replace occurrences of the old exit label for the loop with the new
8611 one. DATA is an rtx_pair containing the old and new labels,
8612 respectively. */
8613
8614 static int
8615 replace_label (x, data)
8616 rtx *x;
8617 void *data;
8618 {
8619 rtx l = *x;
8620 rtx old_label = ((rtx_pair*) data)->r1;
8621 rtx new_label = ((rtx_pair*) data)->r2;
8622
8623 if (l == NULL_RTX)
8624 return 0;
8625
8626 if (GET_CODE (l) != LABEL_REF)
8627 return 0;
8628
8629 if (XEXP (l, 0) != old_label)
8630 return 0;
8631
8632 XEXP (l, 0) = new_label;
8633 ++LABEL_NUSES (new_label);
8634 --LABEL_NUSES (old_label);
8635
8636 return 0;
8637 }
8638