* Check in merge from gcc2. See ChangeLog.11 and ChangeLog.12
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 #ifdef HAIFA
85 /* The main output of analyze_loop_iterations is placed here */
86
87 int *loop_can_insert_bct;
88
89 /* For each loop, determines whether some of its inner loops has used
90 count register */
91
92 int *loop_used_count_register;
93
94 /* loop parameters for arithmetic loops. These loops have a loop variable
95 which is initialized to loop_start_value, incremented in each iteration
96 by "loop_increment". At the end of the iteration the loop variable is
97 compared to the loop_comparison_value (using loop_comparison_code). */
98
99 rtx *loop_increment;
100 rtx *loop_comparison_value;
101 rtx *loop_start_value;
102 enum rtx_code *loop_comparison_code;
103 #endif /* HAIFA */
104
105 /* For each loop, keep track of its unrolling factor.
106 Potential values:
107 0: unrolled
108 1: not unrolled.
109 -1: completely unrolled
110 >0: holds the unroll exact factor. */
111 int *loop_unroll_factor;
112
113 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
114 really a loop (an insn outside the loop branches into it). */
115
116 static char *loop_invalid;
117
118 /* Indexed by loop number, links together all LABEL_REFs which refer to
119 code labels outside the loop. Used by routines that need to know all
120 loop exits, such as final_biv_value and final_giv_value.
121
122 This does not include loop exits due to return instructions. This is
123 because all bivs and givs are pseudos, and hence must be dead after a
124 return, so the presense of a return does not affect any of the
125 optimizations that use this info. It is simpler to just not include return
126 instructions on this list. */
127
128 rtx *loop_number_exit_labels;
129
130 /* Indexed by loop number, counts the number of LABEL_REFs on
131 loop_number_exit_labels for this loop and all loops nested inside it. */
132
133 int *loop_number_exit_count;
134
135 /* Holds the number of loop iterations. It is zero if the number could not be
136 calculated. Must be unsigned since the number of iterations can
137 be as high as 2^wordsize-1. For loops with a wider iterator, this number
138 will will be zero if the number of loop iterations is too large for an
139 unsigned integer to hold. */
140
141 unsigned HOST_WIDE_INT loop_n_iterations;
142
143 /* Nonzero if there is a subroutine call in the current loop. */
144
145 static int loop_has_call;
146
147 /* Nonzero if there is a volatile memory reference in the current
148 loop. */
149
150 static int loop_has_volatile;
151
152 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
153 current loop. A continue statement will generate a branch to
154 NEXT_INSN (loop_continue). */
155
156 static rtx loop_continue;
157
158 /* Indexed by register number, contains the number of times the reg
159 is set during the loop being scanned.
160 During code motion, a negative value indicates a reg that has been
161 made a candidate; in particular -2 means that it is an candidate that
162 we know is equal to a constant and -1 means that it is an candidate
163 not known equal to a constant.
164 After code motion, regs moved have 0 (which is accurate now)
165 while the failed candidates have the original number of times set.
166
167 Therefore, at all times, == 0 indicates an invariant register;
168 < 0 a conditionally invariant one. */
169
170 static int *n_times_set;
171
172 /* Original value of n_times_set; same except that this value
173 is not set negative for a reg whose sets have been made candidates
174 and not set to 0 for a reg that is moved. */
175
176 static int *n_times_used;
177
178 /* Index by register number, 1 indicates that the register
179 cannot be moved or strength reduced. */
180
181 static char *may_not_optimize;
182
183 /* Nonzero means reg N has already been moved out of one loop.
184 This reduces the desire to move it out of another. */
185
186 static char *moved_once;
187
188 /* Array of MEMs that are stored in this loop. If there are too many to fit
189 here, we just turn on unknown_address_altered. */
190
191 #define NUM_STORES 30
192 static rtx loop_store_mems[NUM_STORES];
193
194 /* Index of first available slot in above array. */
195 static int loop_store_mems_idx;
196
197 /* Nonzero if we don't know what MEMs were changed in the current loop.
198 This happens if the loop contains a call (in which case `loop_has_call'
199 will also be set) or if we store into more than NUM_STORES MEMs. */
200
201 static int unknown_address_altered;
202
203 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
204 static int num_movables;
205
206 /* Count of memory write instructions discovered in the loop. */
207 static int num_mem_sets;
208
209 /* Number of loops contained within the current one, including itself. */
210 static int loops_enclosed;
211
212 /* Bound on pseudo register number before loop optimization.
213 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
214 int max_reg_before_loop;
215
216 /* This obstack is used in product_cheap_p to allocate its rtl. It
217 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
218 If we used the same obstack that it did, we would be deallocating
219 that array. */
220
221 static struct obstack temp_obstack;
222
223 /* This is where the pointer to the obstack being used for RTL is stored. */
224
225 extern struct obstack *rtl_obstack;
226
227 #define obstack_chunk_alloc xmalloc
228 #define obstack_chunk_free free
229
230 extern char *oballoc ();
231 \f
232 /* During the analysis of a loop, a chain of `struct movable's
233 is made to record all the movable insns found.
234 Then the entire chain can be scanned to decide which to move. */
235
236 struct movable
237 {
238 rtx insn; /* A movable insn */
239 rtx set_src; /* The expression this reg is set from. */
240 rtx set_dest; /* The destination of this SET. */
241 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
242 of any registers used within the LIBCALL. */
243 int consec; /* Number of consecutive following insns
244 that must be moved with this one. */
245 int regno; /* The register it sets */
246 short lifetime; /* lifetime of that register;
247 may be adjusted when matching movables
248 that load the same value are found. */
249 short savings; /* Number of insns we can move for this reg,
250 including other movables that force this
251 or match this one. */
252 unsigned int cond : 1; /* 1 if only conditionally movable */
253 unsigned int force : 1; /* 1 means MUST move this insn */
254 unsigned int global : 1; /* 1 means reg is live outside this loop */
255 /* If PARTIAL is 1, GLOBAL means something different:
256 that the reg is live outside the range from where it is set
257 to the following label. */
258 unsigned int done : 1; /* 1 inhibits further processing of this */
259
260 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
261 In particular, moving it does not make it
262 invariant. */
263 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
264 load SRC, rather than copying INSN. */
265 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
266 first insn of a consecutive sets group. */
267 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
268 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
269 that we should avoid changing when clearing
270 the rest of the reg. */
271 struct movable *match; /* First entry for same value */
272 struct movable *forces; /* An insn that must be moved if this is */
273 struct movable *next;
274 };
275
276 FILE *loop_dump_stream;
277
278 /* Forward declarations. */
279
280 static void find_and_verify_loops ();
281 static void mark_loop_jump ();
282 static void prescan_loop ();
283 static int reg_in_basic_block_p ();
284 static int consec_sets_invariant_p ();
285 static rtx libcall_other_reg ();
286 static int labels_in_range_p ();
287 static void count_loop_regs_set ();
288 static void note_addr_stored ();
289 static int loop_reg_used_before_p ();
290 static void scan_loop ();
291 #if 0
292 static void replace_call_address ();
293 #endif
294 static rtx skip_consec_insns ();
295 static int libcall_benefit ();
296 static void ignore_some_movables ();
297 static void force_movables ();
298 static void combine_movables ();
299 static int rtx_equal_for_loop_p ();
300 static void move_movables ();
301 static void strength_reduce ();
302 static int valid_initial_value_p ();
303 static void find_mem_givs ();
304 static void record_biv ();
305 static void check_final_value ();
306 static void record_giv ();
307 static void update_giv_derive ();
308 static int basic_induction_var ();
309 static rtx simplify_giv_expr ();
310 static int general_induction_var ();
311 static int consec_sets_giv ();
312 static int check_dbra_loop ();
313 static rtx express_from ();
314 static int combine_givs_p ();
315 static void combine_givs ();
316 static int product_cheap_p ();
317 static int maybe_eliminate_biv ();
318 static int maybe_eliminate_biv_1 ();
319 static int last_use_this_basic_block ();
320 static void record_initial ();
321 static void update_reg_last_use ();
322
323 #ifdef HAIFA
324 /* This is extern from unroll.c */
325 void iteration_info ();
326
327 /* Two main functions for implementing bct:
328 first - to be called before loop unrolling, and the second - after */
329 #ifdef HAVE_decrement_and_branch_on_count
330 static void analyze_loop_iterations ();
331 static void insert_bct ();
332
333 /* Auxiliary function that inserts the bct pattern into the loop */
334 static void instrument_loop_bct ();
335 #endif /* HAVE_decrement_and_branch_on_count */
336 #endif /* HAIFA */
337
338 /* Indirect_jump_in_function is computed once per function. */
339 int indirect_jump_in_function = 0;
340 static int indirect_jump_in_function_p ();
341
342 \f
343 /* Relative gain of eliminating various kinds of operations. */
344 int add_cost;
345 #if 0
346 int shift_cost;
347 int mult_cost;
348 #endif
349
350 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
351 copy the value of the strength reduced giv to its original register. */
352 int copy_cost;
353
354 void
355 init_loop ()
356 {
357 char *free_point = (char *) oballoc (1);
358 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
359
360 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
361
362 /* We multiply by 2 to reconcile the difference in scale between
363 these two ways of computing costs. Otherwise the cost of a copy
364 will be far less than the cost of an add. */
365
366 copy_cost = 2 * 2;
367
368 /* Free the objects we just allocated. */
369 obfree (free_point);
370
371 /* Initialize the obstack used for rtl in product_cheap_p. */
372 gcc_obstack_init (&temp_obstack);
373 }
374 \f
375 /* Entry point of this file. Perform loop optimization
376 on the current function. F is the first insn of the function
377 and DUMPFILE is a stream for output of a trace of actions taken
378 (or 0 if none should be output). */
379
380 void
381 loop_optimize (f, dumpfile, unroll_p)
382 /* f is the first instruction of a chain of insns for one function */
383 rtx f;
384 FILE *dumpfile;
385 int unroll_p;
386 {
387 register rtx insn;
388 register int i;
389 rtx last_insn;
390
391 loop_dump_stream = dumpfile;
392
393 init_recog_no_volatile ();
394 init_alias_analysis ();
395
396 max_reg_before_loop = max_reg_num ();
397
398 moved_once = (char *) alloca (max_reg_before_loop);
399 bzero (moved_once, max_reg_before_loop);
400
401 regs_may_share = 0;
402
403 /* Count the number of loops. */
404
405 max_loop_num = 0;
406 for (insn = f; insn; insn = NEXT_INSN (insn))
407 {
408 if (GET_CODE (insn) == NOTE
409 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
410 max_loop_num++;
411 }
412
413 /* Don't waste time if no loops. */
414 if (max_loop_num == 0)
415 return;
416
417 /* Get size to use for tables indexed by uids.
418 Leave some space for labels allocated by find_and_verify_loops. */
419 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
420
421 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
422 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
423
424 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
425 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
426
427 /* Allocate tables for recording each loop. We set each entry, so they need
428 not be zeroed. */
429 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
430 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
431 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
432 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
433 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
434 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
435
436 /* This is initialized by the unrolling code, so we go ahead
437 and clear them just in case we are not performing loop
438 unrolling. */
439 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
440 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
441
442 #ifdef HAIFA
443 /* Allocate for BCT optimization */
444 loop_can_insert_bct = (int *) alloca (max_loop_num * sizeof (int));
445 bzero ((char *) loop_can_insert_bct, max_loop_num * sizeof (int));
446
447 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
448 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
449
450 loop_increment = (rtx *) alloca (max_loop_num * sizeof (rtx));
451 loop_comparison_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
452 loop_start_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
453 bzero ((char *) loop_increment, max_loop_num * sizeof (rtx));
454 bzero ((char *) loop_comparison_value, max_loop_num * sizeof (rtx));
455 bzero ((char *) loop_start_value, max_loop_num * sizeof (rtx));
456
457 loop_comparison_code
458 = (enum rtx_code *) alloca (max_loop_num * sizeof (enum rtx_code));
459 bzero ((char *) loop_comparison_code, max_loop_num * sizeof (enum rtx_code));
460 #endif /* HAIFA */
461
462 /* Find and process each loop.
463 First, find them, and record them in order of their beginnings. */
464 find_and_verify_loops (f);
465
466 /* Now find all register lifetimes. This must be done after
467 find_and_verify_loops, because it might reorder the insns in the
468 function. */
469 reg_scan (f, max_reg_num (), 1);
470
471 /* See if we went too far. */
472 if (get_max_uid () > max_uid_for_loop)
473 abort ();
474
475 /* Compute the mapping from uids to luids.
476 LUIDs are numbers assigned to insns, like uids,
477 except that luids increase monotonically through the code.
478 Don't assign luids to line-number NOTEs, so that the distance in luids
479 between two insns is not affected by -g. */
480
481 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
482 {
483 last_insn = insn;
484 if (GET_CODE (insn) != NOTE
485 || NOTE_LINE_NUMBER (insn) <= 0)
486 uid_luid[INSN_UID (insn)] = ++i;
487 else
488 /* Give a line number note the same luid as preceding insn. */
489 uid_luid[INSN_UID (insn)] = i;
490 }
491
492 max_luid = i + 1;
493
494 /* Don't leave gaps in uid_luid for insns that have been
495 deleted. It is possible that the first or last insn
496 using some register has been deleted by cross-jumping.
497 Make sure that uid_luid for that former insn's uid
498 points to the general area where that insn used to be. */
499 for (i = 0; i < max_uid_for_loop; i++)
500 {
501 uid_luid[0] = uid_luid[i];
502 if (uid_luid[0] != 0)
503 break;
504 }
505 for (i = 0; i < max_uid_for_loop; i++)
506 if (uid_luid[i] == 0)
507 uid_luid[i] = uid_luid[i - 1];
508
509 /* Create a mapping from loops to BLOCK tree nodes. */
510 if (unroll_p && write_symbols != NO_DEBUG)
511 find_loop_tree_blocks ();
512
513 /* Determine if the function has indirect jump. On some systems
514 this prevents low overhead loop instructions from being used. */
515 indirect_jump_in_function = indirect_jump_in_function_p (f);
516
517 /* Now scan the loops, last ones first, since this means inner ones are done
518 before outer ones. */
519 for (i = max_loop_num-1; i >= 0; i--)
520 if (! loop_invalid[i] && loop_number_loop_ends[i])
521 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
522 max_reg_num (), unroll_p);
523
524 /* If debugging and unrolling loops, we must replicate the tree nodes
525 corresponding to the blocks inside the loop, so that the original one
526 to one mapping will remain. */
527 if (unroll_p && write_symbols != NO_DEBUG)
528 unroll_block_trees ();
529 }
530 \f
531 /* Optimize one loop whose start is LOOP_START and end is END.
532 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
533 NOTE_INSN_LOOP_END. */
534
535 /* ??? Could also move memory writes out of loops if the destination address
536 is invariant, the source is invariant, the memory write is not volatile,
537 and if we can prove that no read inside the loop can read this address
538 before the write occurs. If there is a read of this address after the
539 write, then we can also mark the memory read as invariant. */
540
541 static void
542 scan_loop (loop_start, end, nregs, unroll_p)
543 rtx loop_start, end;
544 int nregs;
545 int unroll_p;
546 {
547 register int i;
548 register rtx p;
549 /* 1 if we are scanning insns that could be executed zero times. */
550 int maybe_never = 0;
551 /* 1 if we are scanning insns that might never be executed
552 due to a subroutine call which might exit before they are reached. */
553 int call_passed = 0;
554 /* For a rotated loop that is entered near the bottom,
555 this is the label at the top. Otherwise it is zero. */
556 rtx loop_top = 0;
557 /* Jump insn that enters the loop, or 0 if control drops in. */
558 rtx loop_entry_jump = 0;
559 /* Place in the loop where control enters. */
560 rtx scan_start;
561 /* Number of insns in the loop. */
562 int insn_count;
563 int in_libcall = 0;
564 int tem;
565 rtx temp;
566 /* The SET from an insn, if it is the only SET in the insn. */
567 rtx set, set1;
568 /* Chain describing insns movable in current loop. */
569 struct movable *movables = 0;
570 /* Last element in `movables' -- so we can add elements at the end. */
571 struct movable *last_movable = 0;
572 /* Ratio of extra register life span we can justify
573 for saving an instruction. More if loop doesn't call subroutines
574 since in that case saving an insn makes more difference
575 and more registers are available. */
576 int threshold;
577 /* If we have calls, contains the insn in which a register was used
578 if it was used exactly once; contains const0_rtx if it was used more
579 than once. */
580 rtx *reg_single_usage = 0;
581 /* Nonzero if we are scanning instructions in a sub-loop. */
582 int loop_depth = 0;
583
584 n_times_set = (int *) alloca (nregs * sizeof (int));
585 n_times_used = (int *) alloca (nregs * sizeof (int));
586 may_not_optimize = (char *) alloca (nregs);
587
588 /* Determine whether this loop starts with a jump down to a test at
589 the end. This will occur for a small number of loops with a test
590 that is too complex to duplicate in front of the loop.
591
592 We search for the first insn or label in the loop, skipping NOTEs.
593 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
594 (because we might have a loop executed only once that contains a
595 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
596 (in case we have a degenerate loop).
597
598 Note that if we mistakenly think that a loop is entered at the top
599 when, in fact, it is entered at the exit test, the only effect will be
600 slightly poorer optimization. Making the opposite error can generate
601 incorrect code. Since very few loops now start with a jump to the
602 exit test, the code here to detect that case is very conservative. */
603
604 for (p = NEXT_INSN (loop_start);
605 p != end
606 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
607 && (GET_CODE (p) != NOTE
608 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
609 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
610 p = NEXT_INSN (p))
611 ;
612
613 scan_start = p;
614
615 /* Set up variables describing this loop. */
616 prescan_loop (loop_start, end);
617 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
618
619 /* If loop has a jump before the first label,
620 the true entry is the target of that jump.
621 Start scan from there.
622 But record in LOOP_TOP the place where the end-test jumps
623 back to so we can scan that after the end of the loop. */
624 if (GET_CODE (p) == JUMP_INSN)
625 {
626 loop_entry_jump = p;
627
628 /* Loop entry must be unconditional jump (and not a RETURN) */
629 if (simplejump_p (p)
630 && JUMP_LABEL (p) != 0
631 /* Check to see whether the jump actually
632 jumps out of the loop (meaning it's no loop).
633 This case can happen for things like
634 do {..} while (0). If this label was generated previously
635 by loop, we can't tell anything about it and have to reject
636 the loop. */
637 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
638 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
639 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
640 {
641 loop_top = next_label (scan_start);
642 scan_start = JUMP_LABEL (p);
643 }
644 }
645
646 /* If SCAN_START was an insn created by loop, we don't know its luid
647 as required by loop_reg_used_before_p. So skip such loops. (This
648 test may never be true, but it's best to play it safe.)
649
650 Also, skip loops where we do not start scanning at a label. This
651 test also rejects loops starting with a JUMP_INSN that failed the
652 test above. */
653
654 if (INSN_UID (scan_start) >= max_uid_for_loop
655 || GET_CODE (scan_start) != CODE_LABEL)
656 {
657 if (loop_dump_stream)
658 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
659 INSN_UID (loop_start), INSN_UID (end));
660 return;
661 }
662
663 /* Count number of times each reg is set during this loop.
664 Set may_not_optimize[I] if it is not safe to move out
665 the setting of register I. If this loop has calls, set
666 reg_single_usage[I]. */
667
668 bzero ((char *) n_times_set, nregs * sizeof (int));
669 bzero (may_not_optimize, nregs);
670
671 if (loop_has_call)
672 {
673 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
674 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
675 }
676
677 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
678 may_not_optimize, reg_single_usage, &insn_count, nregs);
679
680 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
681 may_not_optimize[i] = 1, n_times_set[i] = 1;
682 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
683
684 if (loop_dump_stream)
685 {
686 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
687 INSN_UID (loop_start), INSN_UID (end), insn_count);
688 if (loop_continue)
689 fprintf (loop_dump_stream, "Continue at insn %d.\n",
690 INSN_UID (loop_continue));
691 }
692
693 /* Scan through the loop finding insns that are safe to move.
694 Set n_times_set negative for the reg being set, so that
695 this reg will be considered invariant for subsequent insns.
696 We consider whether subsequent insns use the reg
697 in deciding whether it is worth actually moving.
698
699 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
700 and therefore it is possible that the insns we are scanning
701 would never be executed. At such times, we must make sure
702 that it is safe to execute the insn once instead of zero times.
703 When MAYBE_NEVER is 0, all insns will be executed at least once
704 so that is not a problem. */
705
706 p = scan_start;
707 while (1)
708 {
709 p = NEXT_INSN (p);
710 /* At end of a straight-in loop, we are done.
711 At end of a loop entered at the bottom, scan the top. */
712 if (p == scan_start)
713 break;
714 if (p == end)
715 {
716 if (loop_top != 0)
717 p = loop_top;
718 else
719 break;
720 if (p == scan_start)
721 break;
722 }
723
724 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
725 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
726 in_libcall = 1;
727 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
728 && find_reg_note (p, REG_RETVAL, NULL_RTX))
729 in_libcall = 0;
730
731 if (GET_CODE (p) == INSN
732 && (set = single_set (p))
733 && GET_CODE (SET_DEST (set)) == REG
734 && ! may_not_optimize[REGNO (SET_DEST (set))])
735 {
736 int tem1 = 0;
737 int tem2 = 0;
738 int move_insn = 0;
739 rtx src = SET_SRC (set);
740 rtx dependencies = 0;
741
742 /* Figure out what to use as a source of this insn. If a REG_EQUIV
743 note is given or if a REG_EQUAL note with a constant operand is
744 specified, use it as the source and mark that we should move
745 this insn by calling emit_move_insn rather that duplicating the
746 insn.
747
748 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
749 is present. */
750 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
751 if (temp)
752 src = XEXP (temp, 0), move_insn = 1;
753 else
754 {
755 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
756 if (temp && CONSTANT_P (XEXP (temp, 0)))
757 src = XEXP (temp, 0), move_insn = 1;
758 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
759 {
760 src = XEXP (temp, 0);
761 /* A libcall block can use regs that don't appear in
762 the equivalent expression. To move the libcall,
763 we must move those regs too. */
764 dependencies = libcall_other_reg (p, src);
765 }
766 }
767
768 /* Don't try to optimize a register that was made
769 by loop-optimization for an inner loop.
770 We don't know its life-span, so we can't compute the benefit. */
771 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
772 ;
773 /* In order to move a register, we need to have one of three cases:
774 (1) it is used only in the same basic block as the set
775 (2) it is not a user variable and it is not used in the
776 exit test (this can cause the variable to be used
777 before it is set just like a user-variable).
778 (3) the set is guaranteed to be executed once the loop starts,
779 and the reg is not used until after that. */
780 else if (! ((! maybe_never
781 && ! loop_reg_used_before_p (set, p, loop_start,
782 scan_start, end))
783 || (! REG_USERVAR_P (SET_DEST (set))
784 && ! REG_LOOP_TEST_P (SET_DEST (set)))
785 || reg_in_basic_block_p (p, SET_DEST (set))))
786 ;
787 else if ((tem = invariant_p (src))
788 && (dependencies == 0
789 || (tem2 = invariant_p (dependencies)) != 0)
790 && (n_times_set[REGNO (SET_DEST (set))] == 1
791 || (tem1
792 = consec_sets_invariant_p (SET_DEST (set),
793 n_times_set[REGNO (SET_DEST (set))],
794 p)))
795 /* If the insn can cause a trap (such as divide by zero),
796 can't move it unless it's guaranteed to be executed
797 once loop is entered. Even a function call might
798 prevent the trap insn from being reached
799 (since it might exit!) */
800 && ! ((maybe_never || call_passed)
801 && may_trap_p (src)))
802 {
803 register struct movable *m;
804 register int regno = REGNO (SET_DEST (set));
805
806 /* A potential lossage is where we have a case where two insns
807 can be combined as long as they are both in the loop, but
808 we move one of them outside the loop. For large loops,
809 this can lose. The most common case of this is the address
810 of a function being called.
811
812 Therefore, if this register is marked as being used exactly
813 once if we are in a loop with calls (a "large loop"), see if
814 we can replace the usage of this register with the source
815 of this SET. If we can, delete this insn.
816
817 Don't do this if P has a REG_RETVAL note or if we have
818 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
819
820 if (reg_single_usage && reg_single_usage[regno] != 0
821 && reg_single_usage[regno] != const0_rtx
822 && REGNO_FIRST_UID (regno) == INSN_UID (p)
823 && (REGNO_LAST_UID (regno)
824 == INSN_UID (reg_single_usage[regno]))
825 && n_times_set[REGNO (SET_DEST (set))] == 1
826 && ! side_effects_p (SET_SRC (set))
827 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
828 && (! SMALL_REGISTER_CLASSES
829 || (! (GET_CODE (SET_SRC (set)) == REG
830 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
831 /* This test is not redundant; SET_SRC (set) might be
832 a call-clobbered register and the life of REGNO
833 might span a call. */
834 && ! modified_between_p (SET_SRC (set), p,
835 reg_single_usage[regno])
836 && no_labels_between_p (p, reg_single_usage[regno])
837 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
838 reg_single_usage[regno]))
839 {
840 /* Replace any usage in a REG_EQUAL note. Must copy the
841 new source, so that we don't get rtx sharing between the
842 SET_SOURCE and REG_NOTES of insn p. */
843 REG_NOTES (reg_single_usage[regno])
844 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
845 SET_DEST (set), copy_rtx (SET_SRC (set)));
846
847 PUT_CODE (p, NOTE);
848 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
849 NOTE_SOURCE_FILE (p) = 0;
850 n_times_set[regno] = 0;
851 continue;
852 }
853
854 m = (struct movable *) alloca (sizeof (struct movable));
855 m->next = 0;
856 m->insn = p;
857 m->set_src = src;
858 m->dependencies = dependencies;
859 m->set_dest = SET_DEST (set);
860 m->force = 0;
861 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
862 m->done = 0;
863 m->forces = 0;
864 m->partial = 0;
865 m->move_insn = move_insn;
866 m->move_insn_first = 0;
867 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
868 m->savemode = VOIDmode;
869 m->regno = regno;
870 /* Set M->cond if either invariant_p or consec_sets_invariant_p
871 returned 2 (only conditionally invariant). */
872 m->cond = ((tem | tem1 | tem2) > 1);
873 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
874 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
875 m->match = 0;
876 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
877 - uid_luid[REGNO_FIRST_UID (regno)]);
878 m->savings = n_times_used[regno];
879 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
880 m->savings += libcall_benefit (p);
881 n_times_set[regno] = move_insn ? -2 : -1;
882 /* Add M to the end of the chain MOVABLES. */
883 if (movables == 0)
884 movables = m;
885 else
886 last_movable->next = m;
887 last_movable = m;
888
889 if (m->consec > 0)
890 {
891 /* It is possible for the first instruction to have a
892 REG_EQUAL note but a non-invariant SET_SRC, so we must
893 remember the status of the first instruction in case
894 the last instruction doesn't have a REG_EQUAL note. */
895 m->move_insn_first = m->move_insn;
896
897 /* Skip this insn, not checking REG_LIBCALL notes. */
898 p = next_nonnote_insn (p);
899 /* Skip the consecutive insns, if there are any. */
900 p = skip_consec_insns (p, m->consec);
901 /* Back up to the last insn of the consecutive group. */
902 p = prev_nonnote_insn (p);
903
904 /* We must now reset m->move_insn, m->is_equiv, and possibly
905 m->set_src to correspond to the effects of all the
906 insns. */
907 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
908 if (temp)
909 m->set_src = XEXP (temp, 0), m->move_insn = 1;
910 else
911 {
912 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
913 if (temp && CONSTANT_P (XEXP (temp, 0)))
914 m->set_src = XEXP (temp, 0), m->move_insn = 1;
915 else
916 m->move_insn = 0;
917
918 }
919 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
920 }
921 }
922 /* If this register is always set within a STRICT_LOW_PART
923 or set to zero, then its high bytes are constant.
924 So clear them outside the loop and within the loop
925 just load the low bytes.
926 We must check that the machine has an instruction to do so.
927 Also, if the value loaded into the register
928 depends on the same register, this cannot be done. */
929 else if (SET_SRC (set) == const0_rtx
930 && GET_CODE (NEXT_INSN (p)) == INSN
931 && (set1 = single_set (NEXT_INSN (p)))
932 && GET_CODE (set1) == SET
933 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
934 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
935 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
936 == SET_DEST (set))
937 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
938 {
939 register int regno = REGNO (SET_DEST (set));
940 if (n_times_set[regno] == 2)
941 {
942 register struct movable *m;
943 m = (struct movable *) alloca (sizeof (struct movable));
944 m->next = 0;
945 m->insn = p;
946 m->set_dest = SET_DEST (set);
947 m->dependencies = 0;
948 m->force = 0;
949 m->consec = 0;
950 m->done = 0;
951 m->forces = 0;
952 m->move_insn = 0;
953 m->move_insn_first = 0;
954 m->partial = 1;
955 /* If the insn may not be executed on some cycles,
956 we can't clear the whole reg; clear just high part.
957 Not even if the reg is used only within this loop.
958 Consider this:
959 while (1)
960 while (s != t) {
961 if (foo ()) x = *s;
962 use (x);
963 }
964 Clearing x before the inner loop could clobber a value
965 being saved from the last time around the outer loop.
966 However, if the reg is not used outside this loop
967 and all uses of the register are in the same
968 basic block as the store, there is no problem.
969
970 If this insn was made by loop, we don't know its
971 INSN_LUID and hence must make a conservative
972 assumption. */
973 m->global = (INSN_UID (p) >= max_uid_for_loop
974 || (uid_luid[REGNO_LAST_UID (regno)]
975 > INSN_LUID (end))
976 || (uid_luid[REGNO_FIRST_UID (regno)]
977 < INSN_LUID (p))
978 || (labels_in_range_p
979 (p, uid_luid[REGNO_FIRST_UID (regno)])));
980 if (maybe_never && m->global)
981 m->savemode = GET_MODE (SET_SRC (set1));
982 else
983 m->savemode = VOIDmode;
984 m->regno = regno;
985 m->cond = 0;
986 m->match = 0;
987 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
988 - uid_luid[REGNO_FIRST_UID (regno)]);
989 m->savings = 1;
990 n_times_set[regno] = -1;
991 /* Add M to the end of the chain MOVABLES. */
992 if (movables == 0)
993 movables = m;
994 else
995 last_movable->next = m;
996 last_movable = m;
997 }
998 }
999 }
1000 /* Past a call insn, we get to insns which might not be executed
1001 because the call might exit. This matters for insns that trap.
1002 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1003 so they don't count. */
1004 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1005 call_passed = 1;
1006 /* Past a label or a jump, we get to insns for which we
1007 can't count on whether or how many times they will be
1008 executed during each iteration. Therefore, we can
1009 only move out sets of trivial variables
1010 (those not used after the loop). */
1011 /* Similar code appears twice in strength_reduce. */
1012 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1013 /* If we enter the loop in the middle, and scan around to the
1014 beginning, don't set maybe_never for that. This must be an
1015 unconditional jump, otherwise the code at the top of the
1016 loop might never be executed. Unconditional jumps are
1017 followed a by barrier then loop end. */
1018 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1019 && NEXT_INSN (NEXT_INSN (p)) == end
1020 && simplejump_p (p)))
1021 maybe_never = 1;
1022 else if (GET_CODE (p) == NOTE)
1023 {
1024 /* At the virtual top of a converted loop, insns are again known to
1025 be executed: logically, the loop begins here even though the exit
1026 code has been duplicated. */
1027 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1028 maybe_never = call_passed = 0;
1029 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1030 loop_depth++;
1031 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1032 loop_depth--;
1033 }
1034 }
1035
1036 /* If one movable subsumes another, ignore that other. */
1037
1038 ignore_some_movables (movables);
1039
1040 /* For each movable insn, see if the reg that it loads
1041 leads when it dies right into another conditionally movable insn.
1042 If so, record that the second insn "forces" the first one,
1043 since the second can be moved only if the first is. */
1044
1045 force_movables (movables);
1046
1047 /* See if there are multiple movable insns that load the same value.
1048 If there are, make all but the first point at the first one
1049 through the `match' field, and add the priorities of them
1050 all together as the priority of the first. */
1051
1052 combine_movables (movables, nregs);
1053
1054 /* Now consider each movable insn to decide whether it is worth moving.
1055 Store 0 in n_times_set for each reg that is moved. */
1056
1057 move_movables (movables, threshold,
1058 insn_count, loop_start, end, nregs);
1059
1060 /* Now candidates that still are negative are those not moved.
1061 Change n_times_set to indicate that those are not actually invariant. */
1062 for (i = 0; i < nregs; i++)
1063 if (n_times_set[i] < 0)
1064 n_times_set[i] = n_times_used[i];
1065
1066 if (flag_strength_reduce)
1067 strength_reduce (scan_start, end, loop_top,
1068 insn_count, loop_start, end, unroll_p);
1069 }
1070 \f
1071 /* Add elements to *OUTPUT to record all the pseudo-regs
1072 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1073
1074 void
1075 record_excess_regs (in_this, not_in_this, output)
1076 rtx in_this, not_in_this;
1077 rtx *output;
1078 {
1079 enum rtx_code code;
1080 char *fmt;
1081 int i;
1082
1083 code = GET_CODE (in_this);
1084
1085 switch (code)
1086 {
1087 case PC:
1088 case CC0:
1089 case CONST_INT:
1090 case CONST_DOUBLE:
1091 case CONST:
1092 case SYMBOL_REF:
1093 case LABEL_REF:
1094 return;
1095
1096 case REG:
1097 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1098 && ! reg_mentioned_p (in_this, not_in_this))
1099 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1100 return;
1101
1102 default:
1103 break;
1104 }
1105
1106 fmt = GET_RTX_FORMAT (code);
1107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1108 {
1109 int j;
1110
1111 switch (fmt[i])
1112 {
1113 case 'E':
1114 for (j = 0; j < XVECLEN (in_this, i); j++)
1115 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1116 break;
1117
1118 case 'e':
1119 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1120 break;
1121 }
1122 }
1123 }
1124 \f
1125 /* Check what regs are referred to in the libcall block ending with INSN,
1126 aside from those mentioned in the equivalent value.
1127 If there are none, return 0.
1128 If there are one or more, return an EXPR_LIST containing all of them. */
1129
1130 static rtx
1131 libcall_other_reg (insn, equiv)
1132 rtx insn, equiv;
1133 {
1134 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1135 rtx p = XEXP (note, 0);
1136 rtx output = 0;
1137
1138 /* First, find all the regs used in the libcall block
1139 that are not mentioned as inputs to the result. */
1140
1141 while (p != insn)
1142 {
1143 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1144 || GET_CODE (p) == CALL_INSN)
1145 record_excess_regs (PATTERN (p), equiv, &output);
1146 p = NEXT_INSN (p);
1147 }
1148
1149 return output;
1150 }
1151 \f
1152 /* Return 1 if all uses of REG
1153 are between INSN and the end of the basic block. */
1154
1155 static int
1156 reg_in_basic_block_p (insn, reg)
1157 rtx insn, reg;
1158 {
1159 int regno = REGNO (reg);
1160 rtx p;
1161
1162 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1163 return 0;
1164
1165 /* Search this basic block for the already recorded last use of the reg. */
1166 for (p = insn; p; p = NEXT_INSN (p))
1167 {
1168 switch (GET_CODE (p))
1169 {
1170 case NOTE:
1171 break;
1172
1173 case INSN:
1174 case CALL_INSN:
1175 /* Ordinary insn: if this is the last use, we win. */
1176 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1177 return 1;
1178 break;
1179
1180 case JUMP_INSN:
1181 /* Jump insn: if this is the last use, we win. */
1182 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1183 return 1;
1184 /* Otherwise, it's the end of the basic block, so we lose. */
1185 return 0;
1186
1187 case CODE_LABEL:
1188 case BARRIER:
1189 /* It's the end of the basic block, so we lose. */
1190 return 0;
1191
1192 default:
1193 break;
1194 }
1195 }
1196
1197 /* The "last use" doesn't follow the "first use"?? */
1198 abort ();
1199 }
1200 \f
1201 /* Compute the benefit of eliminating the insns in the block whose
1202 last insn is LAST. This may be a group of insns used to compute a
1203 value directly or can contain a library call. */
1204
1205 static int
1206 libcall_benefit (last)
1207 rtx last;
1208 {
1209 rtx insn;
1210 int benefit = 0;
1211
1212 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1213 insn != last; insn = NEXT_INSN (insn))
1214 {
1215 if (GET_CODE (insn) == CALL_INSN)
1216 benefit += 10; /* Assume at least this many insns in a library
1217 routine. */
1218 else if (GET_CODE (insn) == INSN
1219 && GET_CODE (PATTERN (insn)) != USE
1220 && GET_CODE (PATTERN (insn)) != CLOBBER)
1221 benefit++;
1222 }
1223
1224 return benefit;
1225 }
1226 \f
1227 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1228
1229 static rtx
1230 skip_consec_insns (insn, count)
1231 rtx insn;
1232 int count;
1233 {
1234 for (; count > 0; count--)
1235 {
1236 rtx temp;
1237
1238 /* If first insn of libcall sequence, skip to end. */
1239 /* Do this at start of loop, since INSN is guaranteed to
1240 be an insn here. */
1241 if (GET_CODE (insn) != NOTE
1242 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1243 insn = XEXP (temp, 0);
1244
1245 do insn = NEXT_INSN (insn);
1246 while (GET_CODE (insn) == NOTE);
1247 }
1248
1249 return insn;
1250 }
1251
1252 /* Ignore any movable whose insn falls within a libcall
1253 which is part of another movable.
1254 We make use of the fact that the movable for the libcall value
1255 was made later and so appears later on the chain. */
1256
1257 static void
1258 ignore_some_movables (movables)
1259 struct movable *movables;
1260 {
1261 register struct movable *m, *m1;
1262
1263 for (m = movables; m; m = m->next)
1264 {
1265 /* Is this a movable for the value of a libcall? */
1266 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1267 if (note)
1268 {
1269 rtx insn;
1270 /* Check for earlier movables inside that range,
1271 and mark them invalid. We cannot use LUIDs here because
1272 insns created by loop.c for prior loops don't have LUIDs.
1273 Rather than reject all such insns from movables, we just
1274 explicitly check each insn in the libcall (since invariant
1275 libcalls aren't that common). */
1276 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1277 for (m1 = movables; m1 != m; m1 = m1->next)
1278 if (m1->insn == insn)
1279 m1->done = 1;
1280 }
1281 }
1282 }
1283
1284 /* For each movable insn, see if the reg that it loads
1285 leads when it dies right into another conditionally movable insn.
1286 If so, record that the second insn "forces" the first one,
1287 since the second can be moved only if the first is. */
1288
1289 static void
1290 force_movables (movables)
1291 struct movable *movables;
1292 {
1293 register struct movable *m, *m1;
1294 for (m1 = movables; m1; m1 = m1->next)
1295 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1296 if (!m1->partial && !m1->done)
1297 {
1298 int regno = m1->regno;
1299 for (m = m1->next; m; m = m->next)
1300 /* ??? Could this be a bug? What if CSE caused the
1301 register of M1 to be used after this insn?
1302 Since CSE does not update regno_last_uid,
1303 this insn M->insn might not be where it dies.
1304 But very likely this doesn't matter; what matters is
1305 that M's reg is computed from M1's reg. */
1306 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1307 && !m->done)
1308 break;
1309 if (m != 0 && m->set_src == m1->set_dest
1310 /* If m->consec, m->set_src isn't valid. */
1311 && m->consec == 0)
1312 m = 0;
1313
1314 /* Increase the priority of the moving the first insn
1315 since it permits the second to be moved as well. */
1316 if (m != 0)
1317 {
1318 m->forces = m1;
1319 m1->lifetime += m->lifetime;
1320 m1->savings += m->savings;
1321 }
1322 }
1323 }
1324 \f
1325 /* Find invariant expressions that are equal and can be combined into
1326 one register. */
1327
1328 static void
1329 combine_movables (movables, nregs)
1330 struct movable *movables;
1331 int nregs;
1332 {
1333 register struct movable *m;
1334 char *matched_regs = (char *) alloca (nregs);
1335 enum machine_mode mode;
1336
1337 /* Regs that are set more than once are not allowed to match
1338 or be matched. I'm no longer sure why not. */
1339 /* Perhaps testing m->consec_sets would be more appropriate here? */
1340
1341 for (m = movables; m; m = m->next)
1342 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1343 {
1344 register struct movable *m1;
1345 int regno = m->regno;
1346
1347 bzero (matched_regs, nregs);
1348 matched_regs[regno] = 1;
1349
1350 /* We want later insns to match the first one. Don't make the first
1351 one match any later ones. So start this loop at m->next. */
1352 for (m1 = m->next; m1; m1 = m1->next)
1353 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1354 /* A reg used outside the loop mustn't be eliminated. */
1355 && !m1->global
1356 /* A reg used for zero-extending mustn't be eliminated. */
1357 && !m1->partial
1358 && (matched_regs[m1->regno]
1359 ||
1360 (
1361 /* Can combine regs with different modes loaded from the
1362 same constant only if the modes are the same or
1363 if both are integer modes with M wider or the same
1364 width as M1. The check for integer is redundant, but
1365 safe, since the only case of differing destination
1366 modes with equal sources is when both sources are
1367 VOIDmode, i.e., CONST_INT. */
1368 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1369 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1370 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1371 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1372 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1373 /* See if the source of M1 says it matches M. */
1374 && ((GET_CODE (m1->set_src) == REG
1375 && matched_regs[REGNO (m1->set_src)])
1376 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1377 movables))))
1378 && ((m->dependencies == m1->dependencies)
1379 || rtx_equal_p (m->dependencies, m1->dependencies)))
1380 {
1381 m->lifetime += m1->lifetime;
1382 m->savings += m1->savings;
1383 m1->done = 1;
1384 m1->match = m;
1385 matched_regs[m1->regno] = 1;
1386 }
1387 }
1388
1389 /* Now combine the regs used for zero-extension.
1390 This can be done for those not marked `global'
1391 provided their lives don't overlap. */
1392
1393 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1394 mode = GET_MODE_WIDER_MODE (mode))
1395 {
1396 register struct movable *m0 = 0;
1397
1398 /* Combine all the registers for extension from mode MODE.
1399 Don't combine any that are used outside this loop. */
1400 for (m = movables; m; m = m->next)
1401 if (m->partial && ! m->global
1402 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1403 {
1404 register struct movable *m1;
1405 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1406 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1407
1408 if (m0 == 0)
1409 {
1410 /* First one: don't check for overlap, just record it. */
1411 m0 = m;
1412 continue;
1413 }
1414
1415 /* Make sure they extend to the same mode.
1416 (Almost always true.) */
1417 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1418 continue;
1419
1420 /* We already have one: check for overlap with those
1421 already combined together. */
1422 for (m1 = movables; m1 != m; m1 = m1->next)
1423 if (m1 == m0 || (m1->partial && m1->match == m0))
1424 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1425 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1426 goto overlap;
1427
1428 /* No overlap: we can combine this with the others. */
1429 m0->lifetime += m->lifetime;
1430 m0->savings += m->savings;
1431 m->done = 1;
1432 m->match = m0;
1433
1434 overlap: ;
1435 }
1436 }
1437 }
1438 \f
1439 /* Return 1 if regs X and Y will become the same if moved. */
1440
1441 static int
1442 regs_match_p (x, y, movables)
1443 rtx x, y;
1444 struct movable *movables;
1445 {
1446 int xn = REGNO (x);
1447 int yn = REGNO (y);
1448 struct movable *mx, *my;
1449
1450 for (mx = movables; mx; mx = mx->next)
1451 if (mx->regno == xn)
1452 break;
1453
1454 for (my = movables; my; my = my->next)
1455 if (my->regno == yn)
1456 break;
1457
1458 return (mx && my
1459 && ((mx->match == my->match && mx->match != 0)
1460 || mx->match == my
1461 || mx == my->match));
1462 }
1463
1464 /* Return 1 if X and Y are identical-looking rtx's.
1465 This is the Lisp function EQUAL for rtx arguments.
1466
1467 If two registers are matching movables or a movable register and an
1468 equivalent constant, consider them equal. */
1469
1470 static int
1471 rtx_equal_for_loop_p (x, y, movables)
1472 rtx x, y;
1473 struct movable *movables;
1474 {
1475 register int i;
1476 register int j;
1477 register struct movable *m;
1478 register enum rtx_code code;
1479 register char *fmt;
1480
1481 if (x == y)
1482 return 1;
1483 if (x == 0 || y == 0)
1484 return 0;
1485
1486 code = GET_CODE (x);
1487
1488 /* If we have a register and a constant, they may sometimes be
1489 equal. */
1490 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1491 && CONSTANT_P (y))
1492 {
1493 for (m = movables; m; m = m->next)
1494 if (m->move_insn && m->regno == REGNO (x)
1495 && rtx_equal_p (m->set_src, y))
1496 return 1;
1497 }
1498 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1499 && CONSTANT_P (x))
1500 {
1501 for (m = movables; m; m = m->next)
1502 if (m->move_insn && m->regno == REGNO (y)
1503 && rtx_equal_p (m->set_src, x))
1504 return 1;
1505 }
1506
1507 /* Otherwise, rtx's of different codes cannot be equal. */
1508 if (code != GET_CODE (y))
1509 return 0;
1510
1511 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1512 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1513
1514 if (GET_MODE (x) != GET_MODE (y))
1515 return 0;
1516
1517 /* These three types of rtx's can be compared nonrecursively. */
1518 if (code == REG)
1519 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1520
1521 if (code == LABEL_REF)
1522 return XEXP (x, 0) == XEXP (y, 0);
1523 if (code == SYMBOL_REF)
1524 return XSTR (x, 0) == XSTR (y, 0);
1525
1526 /* Compare the elements. If any pair of corresponding elements
1527 fail to match, return 0 for the whole things. */
1528
1529 fmt = GET_RTX_FORMAT (code);
1530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1531 {
1532 switch (fmt[i])
1533 {
1534 case 'w':
1535 if (XWINT (x, i) != XWINT (y, i))
1536 return 0;
1537 break;
1538
1539 case 'i':
1540 if (XINT (x, i) != XINT (y, i))
1541 return 0;
1542 break;
1543
1544 case 'E':
1545 /* Two vectors must have the same length. */
1546 if (XVECLEN (x, i) != XVECLEN (y, i))
1547 return 0;
1548
1549 /* And the corresponding elements must match. */
1550 for (j = 0; j < XVECLEN (x, i); j++)
1551 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1552 return 0;
1553 break;
1554
1555 case 'e':
1556 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1557 return 0;
1558 break;
1559
1560 case 's':
1561 if (strcmp (XSTR (x, i), XSTR (y, i)))
1562 return 0;
1563 break;
1564
1565 case 'u':
1566 /* These are just backpointers, so they don't matter. */
1567 break;
1568
1569 case '0':
1570 break;
1571
1572 /* It is believed that rtx's at this level will never
1573 contain anything but integers and other rtx's,
1574 except for within LABEL_REFs and SYMBOL_REFs. */
1575 default:
1576 abort ();
1577 }
1578 }
1579 return 1;
1580 }
1581 \f
1582 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1583 insns in INSNS which use thet reference. */
1584
1585 static void
1586 add_label_notes (x, insns)
1587 rtx x;
1588 rtx insns;
1589 {
1590 enum rtx_code code = GET_CODE (x);
1591 int i, j;
1592 char *fmt;
1593 rtx insn;
1594
1595 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1596 {
1597 rtx next = next_real_insn (XEXP (x, 0));
1598
1599 /* Don't record labels that refer to dispatch tables.
1600 This is not necessary, since the tablejump references the same label.
1601 And if we did record them, flow.c would make worse code. */
1602 if (next == 0
1603 || ! (GET_CODE (next) == JUMP_INSN
1604 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1605 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1606 {
1607 for (insn = insns; insn; insn = NEXT_INSN (insn))
1608 if (reg_mentioned_p (XEXP (x, 0), insn))
1609 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1610 REG_NOTES (insn));
1611 }
1612 return;
1613 }
1614
1615 fmt = GET_RTX_FORMAT (code);
1616 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1617 {
1618 if (fmt[i] == 'e')
1619 add_label_notes (XEXP (x, i), insns);
1620 else if (fmt[i] == 'E')
1621 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1622 add_label_notes (XVECEXP (x, i, j), insns);
1623 }
1624 }
1625 \f
1626 /* Scan MOVABLES, and move the insns that deserve to be moved.
1627 If two matching movables are combined, replace one reg with the
1628 other throughout. */
1629
1630 static void
1631 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1632 struct movable *movables;
1633 int threshold;
1634 int insn_count;
1635 rtx loop_start;
1636 rtx end;
1637 int nregs;
1638 {
1639 rtx new_start = 0;
1640 register struct movable *m;
1641 register rtx p;
1642 /* Map of pseudo-register replacements to handle combining
1643 when we move several insns that load the same value
1644 into different pseudo-registers. */
1645 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1646 char *already_moved = (char *) alloca (nregs);
1647
1648 bzero (already_moved, nregs);
1649 bzero ((char *) reg_map, nregs * sizeof (rtx));
1650
1651 num_movables = 0;
1652
1653 for (m = movables; m; m = m->next)
1654 {
1655 /* Describe this movable insn. */
1656
1657 if (loop_dump_stream)
1658 {
1659 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1660 INSN_UID (m->insn), m->regno, m->lifetime);
1661 if (m->consec > 0)
1662 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1663 if (m->cond)
1664 fprintf (loop_dump_stream, "cond ");
1665 if (m->force)
1666 fprintf (loop_dump_stream, "force ");
1667 if (m->global)
1668 fprintf (loop_dump_stream, "global ");
1669 if (m->done)
1670 fprintf (loop_dump_stream, "done ");
1671 if (m->move_insn)
1672 fprintf (loop_dump_stream, "move-insn ");
1673 if (m->match)
1674 fprintf (loop_dump_stream, "matches %d ",
1675 INSN_UID (m->match->insn));
1676 if (m->forces)
1677 fprintf (loop_dump_stream, "forces %d ",
1678 INSN_UID (m->forces->insn));
1679 }
1680
1681 /* Count movables. Value used in heuristics in strength_reduce. */
1682 num_movables++;
1683
1684 /* Ignore the insn if it's already done (it matched something else).
1685 Otherwise, see if it is now safe to move. */
1686
1687 if (!m->done
1688 && (! m->cond
1689 || (1 == invariant_p (m->set_src)
1690 && (m->dependencies == 0
1691 || 1 == invariant_p (m->dependencies))
1692 && (m->consec == 0
1693 || 1 == consec_sets_invariant_p (m->set_dest,
1694 m->consec + 1,
1695 m->insn))))
1696 && (! m->forces || m->forces->done))
1697 {
1698 register int regno;
1699 register rtx p;
1700 int savings = m->savings;
1701
1702 /* We have an insn that is safe to move.
1703 Compute its desirability. */
1704
1705 p = m->insn;
1706 regno = m->regno;
1707
1708 if (loop_dump_stream)
1709 fprintf (loop_dump_stream, "savings %d ", savings);
1710
1711 if (moved_once[regno])
1712 {
1713 insn_count *= 2;
1714
1715 if (loop_dump_stream)
1716 fprintf (loop_dump_stream, "halved since already moved ");
1717 }
1718
1719 /* An insn MUST be moved if we already moved something else
1720 which is safe only if this one is moved too: that is,
1721 if already_moved[REGNO] is nonzero. */
1722
1723 /* An insn is desirable to move if the new lifetime of the
1724 register is no more than THRESHOLD times the old lifetime.
1725 If it's not desirable, it means the loop is so big
1726 that moving won't speed things up much,
1727 and it is liable to make register usage worse. */
1728
1729 /* It is also desirable to move if it can be moved at no
1730 extra cost because something else was already moved. */
1731
1732 if (already_moved[regno]
1733 || flag_move_all_movables
1734 || (threshold * savings * m->lifetime) >= insn_count
1735 || (m->forces && m->forces->done
1736 && n_times_used[m->forces->regno] == 1))
1737 {
1738 int count;
1739 register struct movable *m1;
1740 rtx first;
1741
1742 /* Now move the insns that set the reg. */
1743
1744 if (m->partial && m->match)
1745 {
1746 rtx newpat, i1;
1747 rtx r1, r2;
1748 /* Find the end of this chain of matching regs.
1749 Thus, we load each reg in the chain from that one reg.
1750 And that reg is loaded with 0 directly,
1751 since it has ->match == 0. */
1752 for (m1 = m; m1->match; m1 = m1->match);
1753 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1754 SET_DEST (PATTERN (m1->insn)));
1755 i1 = emit_insn_before (newpat, loop_start);
1756
1757 /* Mark the moved, invariant reg as being allowed to
1758 share a hard reg with the other matching invariant. */
1759 REG_NOTES (i1) = REG_NOTES (m->insn);
1760 r1 = SET_DEST (PATTERN (m->insn));
1761 r2 = SET_DEST (PATTERN (m1->insn));
1762 regs_may_share
1763 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1764 gen_rtx_EXPR_LIST (VOIDmode, r2,
1765 regs_may_share));
1766 delete_insn (m->insn);
1767
1768 if (new_start == 0)
1769 new_start = i1;
1770
1771 if (loop_dump_stream)
1772 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1773 }
1774 /* If we are to re-generate the item being moved with a
1775 new move insn, first delete what we have and then emit
1776 the move insn before the loop. */
1777 else if (m->move_insn)
1778 {
1779 rtx i1, temp;
1780
1781 for (count = m->consec; count >= 0; count--)
1782 {
1783 /* If this is the first insn of a library call sequence,
1784 skip to the end. */
1785 if (GET_CODE (p) != NOTE
1786 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1787 p = XEXP (temp, 0);
1788
1789 /* If this is the last insn of a libcall sequence, then
1790 delete every insn in the sequence except the last.
1791 The last insn is handled in the normal manner. */
1792 if (GET_CODE (p) != NOTE
1793 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1794 {
1795 temp = XEXP (temp, 0);
1796 while (temp != p)
1797 temp = delete_insn (temp);
1798 }
1799
1800 p = delete_insn (p);
1801 while (p && GET_CODE (p) == NOTE)
1802 p = NEXT_INSN (p);
1803 }
1804
1805 start_sequence ();
1806 emit_move_insn (m->set_dest, m->set_src);
1807 temp = get_insns ();
1808 end_sequence ();
1809
1810 add_label_notes (m->set_src, temp);
1811
1812 i1 = emit_insns_before (temp, loop_start);
1813 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1814 REG_NOTES (i1)
1815 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1816 m->set_src, REG_NOTES (i1));
1817
1818 if (loop_dump_stream)
1819 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1820
1821 /* The more regs we move, the less we like moving them. */
1822 threshold -= 3;
1823 }
1824 else
1825 {
1826 for (count = m->consec; count >= 0; count--)
1827 {
1828 rtx i1, temp;
1829
1830 /* If first insn of libcall sequence, skip to end. */
1831 /* Do this at start of loop, since p is guaranteed to
1832 be an insn here. */
1833 if (GET_CODE (p) != NOTE
1834 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1835 p = XEXP (temp, 0);
1836
1837 /* If last insn of libcall sequence, move all
1838 insns except the last before the loop. The last
1839 insn is handled in the normal manner. */
1840 if (GET_CODE (p) != NOTE
1841 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1842 {
1843 rtx fn_address = 0;
1844 rtx fn_reg = 0;
1845 rtx fn_address_insn = 0;
1846
1847 first = 0;
1848 for (temp = XEXP (temp, 0); temp != p;
1849 temp = NEXT_INSN (temp))
1850 {
1851 rtx body;
1852 rtx n;
1853 rtx next;
1854
1855 if (GET_CODE (temp) == NOTE)
1856 continue;
1857
1858 body = PATTERN (temp);
1859
1860 /* Find the next insn after TEMP,
1861 not counting USE or NOTE insns. */
1862 for (next = NEXT_INSN (temp); next != p;
1863 next = NEXT_INSN (next))
1864 if (! (GET_CODE (next) == INSN
1865 && GET_CODE (PATTERN (next)) == USE)
1866 && GET_CODE (next) != NOTE)
1867 break;
1868
1869 /* If that is the call, this may be the insn
1870 that loads the function address.
1871
1872 Extract the function address from the insn
1873 that loads it into a register.
1874 If this insn was cse'd, we get incorrect code.
1875
1876 So emit a new move insn that copies the
1877 function address into the register that the
1878 call insn will use. flow.c will delete any
1879 redundant stores that we have created. */
1880 if (GET_CODE (next) == CALL_INSN
1881 && GET_CODE (body) == SET
1882 && GET_CODE (SET_DEST (body)) == REG
1883 && (n = find_reg_note (temp, REG_EQUAL,
1884 NULL_RTX)))
1885 {
1886 fn_reg = SET_SRC (body);
1887 if (GET_CODE (fn_reg) != REG)
1888 fn_reg = SET_DEST (body);
1889 fn_address = XEXP (n, 0);
1890 fn_address_insn = temp;
1891 }
1892 /* We have the call insn.
1893 If it uses the register we suspect it might,
1894 load it with the correct address directly. */
1895 if (GET_CODE (temp) == CALL_INSN
1896 && fn_address != 0
1897 && reg_referenced_p (fn_reg, body))
1898 emit_insn_after (gen_move_insn (fn_reg,
1899 fn_address),
1900 fn_address_insn);
1901
1902 if (GET_CODE (temp) == CALL_INSN)
1903 {
1904 i1 = emit_call_insn_before (body, loop_start);
1905 /* Because the USAGE information potentially
1906 contains objects other than hard registers
1907 we need to copy it. */
1908 if (CALL_INSN_FUNCTION_USAGE (temp))
1909 CALL_INSN_FUNCTION_USAGE (i1)
1910 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1911 }
1912 else
1913 i1 = emit_insn_before (body, loop_start);
1914 if (first == 0)
1915 first = i1;
1916 if (temp == fn_address_insn)
1917 fn_address_insn = i1;
1918 REG_NOTES (i1) = REG_NOTES (temp);
1919 delete_insn (temp);
1920 }
1921 }
1922 if (m->savemode != VOIDmode)
1923 {
1924 /* P sets REG to zero; but we should clear only
1925 the bits that are not covered by the mode
1926 m->savemode. */
1927 rtx reg = m->set_dest;
1928 rtx sequence;
1929 rtx tem;
1930
1931 start_sequence ();
1932 tem = expand_binop
1933 (GET_MODE (reg), and_optab, reg,
1934 GEN_INT ((((HOST_WIDE_INT) 1
1935 << GET_MODE_BITSIZE (m->savemode)))
1936 - 1),
1937 reg, 1, OPTAB_LIB_WIDEN);
1938 if (tem == 0)
1939 abort ();
1940 if (tem != reg)
1941 emit_move_insn (reg, tem);
1942 sequence = gen_sequence ();
1943 end_sequence ();
1944 i1 = emit_insn_before (sequence, loop_start);
1945 }
1946 else if (GET_CODE (p) == CALL_INSN)
1947 {
1948 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1949 /* Because the USAGE information potentially
1950 contains objects other than hard registers
1951 we need to copy it. */
1952 if (CALL_INSN_FUNCTION_USAGE (p))
1953 CALL_INSN_FUNCTION_USAGE (i1)
1954 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1955 }
1956 else if (count == m->consec && m->move_insn_first)
1957 {
1958 /* The SET_SRC might not be invariant, so we must
1959 use the REG_EQUAL note. */
1960 start_sequence ();
1961 emit_move_insn (m->set_dest, m->set_src);
1962 temp = get_insns ();
1963 end_sequence ();
1964
1965 add_label_notes (m->set_src, temp);
1966
1967 i1 = emit_insns_before (temp, loop_start);
1968 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1969 REG_NOTES (i1)
1970 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
1971 : REG_EQUAL),
1972 m->set_src, REG_NOTES (i1));
1973 }
1974 else
1975 i1 = emit_insn_before (PATTERN (p), loop_start);
1976
1977 if (REG_NOTES (i1) == 0)
1978 {
1979 REG_NOTES (i1) = REG_NOTES (p);
1980
1981 /* If there is a REG_EQUAL note present whose value
1982 is not loop invariant, then delete it, since it
1983 may cause problems with later optimization passes.
1984 It is possible for cse to create such notes
1985 like this as a result of record_jump_cond. */
1986
1987 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1988 && ! invariant_p (XEXP (temp, 0)))
1989 remove_note (i1, temp);
1990 }
1991
1992 if (new_start == 0)
1993 new_start = i1;
1994
1995 if (loop_dump_stream)
1996 fprintf (loop_dump_stream, " moved to %d",
1997 INSN_UID (i1));
1998
1999 /* If library call, now fix the REG_NOTES that contain
2000 insn pointers, namely REG_LIBCALL on FIRST
2001 and REG_RETVAL on I1. */
2002 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2003 {
2004 XEXP (temp, 0) = first;
2005 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2006 XEXP (temp, 0) = i1;
2007 }
2008
2009 delete_insn (p);
2010 do p = NEXT_INSN (p);
2011 while (p && GET_CODE (p) == NOTE);
2012 }
2013
2014 /* The more regs we move, the less we like moving them. */
2015 threshold -= 3;
2016 }
2017
2018 /* Any other movable that loads the same register
2019 MUST be moved. */
2020 already_moved[regno] = 1;
2021
2022 /* This reg has been moved out of one loop. */
2023 moved_once[regno] = 1;
2024
2025 /* The reg set here is now invariant. */
2026 if (! m->partial)
2027 n_times_set[regno] = 0;
2028
2029 m->done = 1;
2030
2031 /* Change the length-of-life info for the register
2032 to say it lives at least the full length of this loop.
2033 This will help guide optimizations in outer loops. */
2034
2035 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2036 /* This is the old insn before all the moved insns.
2037 We can't use the moved insn because it is out of range
2038 in uid_luid. Only the old insns have luids. */
2039 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2040 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2041 REGNO_LAST_UID (regno) = INSN_UID (end);
2042
2043 /* Combine with this moved insn any other matching movables. */
2044
2045 if (! m->partial)
2046 for (m1 = movables; m1; m1 = m1->next)
2047 if (m1->match == m)
2048 {
2049 rtx temp;
2050
2051 /* Schedule the reg loaded by M1
2052 for replacement so that shares the reg of M.
2053 If the modes differ (only possible in restricted
2054 circumstances, make a SUBREG. */
2055 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2056 reg_map[m1->regno] = m->set_dest;
2057 else
2058 reg_map[m1->regno]
2059 = gen_lowpart_common (GET_MODE (m1->set_dest),
2060 m->set_dest);
2061
2062 /* Get rid of the matching insn
2063 and prevent further processing of it. */
2064 m1->done = 1;
2065
2066 /* if library call, delete all insn except last, which
2067 is deleted below */
2068 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2069 NULL_RTX)))
2070 {
2071 for (temp = XEXP (temp, 0); temp != m1->insn;
2072 temp = NEXT_INSN (temp))
2073 delete_insn (temp);
2074 }
2075 delete_insn (m1->insn);
2076
2077 /* Any other movable that loads the same register
2078 MUST be moved. */
2079 already_moved[m1->regno] = 1;
2080
2081 /* The reg merged here is now invariant,
2082 if the reg it matches is invariant. */
2083 if (! m->partial)
2084 n_times_set[m1->regno] = 0;
2085 }
2086 }
2087 else if (loop_dump_stream)
2088 fprintf (loop_dump_stream, "not desirable");
2089 }
2090 else if (loop_dump_stream && !m->match)
2091 fprintf (loop_dump_stream, "not safe");
2092
2093 if (loop_dump_stream)
2094 fprintf (loop_dump_stream, "\n");
2095 }
2096
2097 if (new_start == 0)
2098 new_start = loop_start;
2099
2100 /* Go through all the instructions in the loop, making
2101 all the register substitutions scheduled in REG_MAP. */
2102 for (p = new_start; p != end; p = NEXT_INSN (p))
2103 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2104 || GET_CODE (p) == CALL_INSN)
2105 {
2106 replace_regs (PATTERN (p), reg_map, nregs, 0);
2107 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2108 INSN_CODE (p) = -1;
2109 }
2110 }
2111 \f
2112 #if 0
2113 /* Scan X and replace the address of any MEM in it with ADDR.
2114 REG is the address that MEM should have before the replacement. */
2115
2116 static void
2117 replace_call_address (x, reg, addr)
2118 rtx x, reg, addr;
2119 {
2120 register enum rtx_code code;
2121 register int i;
2122 register char *fmt;
2123
2124 if (x == 0)
2125 return;
2126 code = GET_CODE (x);
2127 switch (code)
2128 {
2129 case PC:
2130 case CC0:
2131 case CONST_INT:
2132 case CONST_DOUBLE:
2133 case CONST:
2134 case SYMBOL_REF:
2135 case LABEL_REF:
2136 case REG:
2137 return;
2138
2139 case SET:
2140 /* Short cut for very common case. */
2141 replace_call_address (XEXP (x, 1), reg, addr);
2142 return;
2143
2144 case CALL:
2145 /* Short cut for very common case. */
2146 replace_call_address (XEXP (x, 0), reg, addr);
2147 return;
2148
2149 case MEM:
2150 /* If this MEM uses a reg other than the one we expected,
2151 something is wrong. */
2152 if (XEXP (x, 0) != reg)
2153 abort ();
2154 XEXP (x, 0) = addr;
2155 return;
2156
2157 default:
2158 break;
2159 }
2160
2161 fmt = GET_RTX_FORMAT (code);
2162 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2163 {
2164 if (fmt[i] == 'e')
2165 replace_call_address (XEXP (x, i), reg, addr);
2166 if (fmt[i] == 'E')
2167 {
2168 register int j;
2169 for (j = 0; j < XVECLEN (x, i); j++)
2170 replace_call_address (XVECEXP (x, i, j), reg, addr);
2171 }
2172 }
2173 }
2174 #endif
2175 \f
2176 /* Return the number of memory refs to addresses that vary
2177 in the rtx X. */
2178
2179 static int
2180 count_nonfixed_reads (x)
2181 rtx x;
2182 {
2183 register enum rtx_code code;
2184 register int i;
2185 register char *fmt;
2186 int value;
2187
2188 if (x == 0)
2189 return 0;
2190
2191 code = GET_CODE (x);
2192 switch (code)
2193 {
2194 case PC:
2195 case CC0:
2196 case CONST_INT:
2197 case CONST_DOUBLE:
2198 case CONST:
2199 case SYMBOL_REF:
2200 case LABEL_REF:
2201 case REG:
2202 return 0;
2203
2204 case MEM:
2205 return ((invariant_p (XEXP (x, 0)) != 1)
2206 + count_nonfixed_reads (XEXP (x, 0)));
2207
2208 default:
2209 break;
2210 }
2211
2212 value = 0;
2213 fmt = GET_RTX_FORMAT (code);
2214 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2215 {
2216 if (fmt[i] == 'e')
2217 value += count_nonfixed_reads (XEXP (x, i));
2218 if (fmt[i] == 'E')
2219 {
2220 register int j;
2221 for (j = 0; j < XVECLEN (x, i); j++)
2222 value += count_nonfixed_reads (XVECEXP (x, i, j));
2223 }
2224 }
2225 return value;
2226 }
2227
2228 \f
2229 #if 0
2230 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2231 Replace it with an instruction to load just the low bytes
2232 if the machine supports such an instruction,
2233 and insert above LOOP_START an instruction to clear the register. */
2234
2235 static void
2236 constant_high_bytes (p, loop_start)
2237 rtx p, loop_start;
2238 {
2239 register rtx new;
2240 register int insn_code_number;
2241
2242 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2243 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2244
2245 new = gen_rtx_SET (VOIDmode,
2246 gen_rtx_STRICT_LOW_PART (VOIDmode,
2247 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2248 SET_DEST (PATTERN (p)),
2249 0)),
2250 XEXP (SET_SRC (PATTERN (p)), 0));
2251 insn_code_number = recog (new, p);
2252
2253 if (insn_code_number)
2254 {
2255 register int i;
2256
2257 /* Clear destination register before the loop. */
2258 emit_insn_before (gen_rtx_SET (VOIDmode, SET_DEST (PATTERN (p)),
2259 const0_rtx),
2260 loop_start);
2261
2262 /* Inside the loop, just load the low part. */
2263 PATTERN (p) = new;
2264 }
2265 }
2266 #endif
2267 \f
2268 /* Scan a loop setting the variables `unknown_address_altered',
2269 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2270 and `loop_has_volatile'.
2271 Also, fill in the array `loop_store_mems'. */
2272
2273 static void
2274 prescan_loop (start, end)
2275 rtx start, end;
2276 {
2277 register int level = 1;
2278 register rtx insn;
2279
2280 unknown_address_altered = 0;
2281 loop_has_call = 0;
2282 loop_has_volatile = 0;
2283 loop_store_mems_idx = 0;
2284
2285 num_mem_sets = 0;
2286 loops_enclosed = 1;
2287 loop_continue = 0;
2288
2289 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2290 insn = NEXT_INSN (insn))
2291 {
2292 if (GET_CODE (insn) == NOTE)
2293 {
2294 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2295 {
2296 ++level;
2297 /* Count number of loops contained in this one. */
2298 loops_enclosed++;
2299 }
2300 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2301 {
2302 --level;
2303 if (level == 0)
2304 {
2305 end = insn;
2306 break;
2307 }
2308 }
2309 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2310 {
2311 if (level == 1)
2312 loop_continue = insn;
2313 }
2314 }
2315 else if (GET_CODE (insn) == CALL_INSN)
2316 {
2317 if (! CONST_CALL_P (insn))
2318 unknown_address_altered = 1;
2319 loop_has_call = 1;
2320 }
2321 else
2322 {
2323 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2324 {
2325 if (volatile_refs_p (PATTERN (insn)))
2326 loop_has_volatile = 1;
2327
2328 note_stores (PATTERN (insn), note_addr_stored);
2329 }
2330 }
2331 }
2332 }
2333 \f
2334 /* Scan the function looking for loops. Record the start and end of each loop.
2335 Also mark as invalid loops any loops that contain a setjmp or are branched
2336 to from outside the loop. */
2337
2338 static void
2339 find_and_verify_loops (f)
2340 rtx f;
2341 {
2342 rtx insn, label;
2343 int current_loop = -1;
2344 int next_loop = -1;
2345 int loop;
2346
2347 /* If there are jumps to undefined labels,
2348 treat them as jumps out of any/all loops.
2349 This also avoids writing past end of tables when there are no loops. */
2350 uid_loop_num[0] = -1;
2351
2352 /* Find boundaries of loops, mark which loops are contained within
2353 loops, and invalidate loops that have setjmp. */
2354
2355 for (insn = f; insn; insn = NEXT_INSN (insn))
2356 {
2357 if (GET_CODE (insn) == NOTE)
2358 switch (NOTE_LINE_NUMBER (insn))
2359 {
2360 case NOTE_INSN_LOOP_BEG:
2361 loop_number_loop_starts[++next_loop] = insn;
2362 loop_number_loop_ends[next_loop] = 0;
2363 loop_outer_loop[next_loop] = current_loop;
2364 loop_invalid[next_loop] = 0;
2365 loop_number_exit_labels[next_loop] = 0;
2366 loop_number_exit_count[next_loop] = 0;
2367 current_loop = next_loop;
2368 break;
2369
2370 case NOTE_INSN_SETJMP:
2371 /* In this case, we must invalidate our current loop and any
2372 enclosing loop. */
2373 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2374 {
2375 loop_invalid[loop] = 1;
2376 if (loop_dump_stream)
2377 fprintf (loop_dump_stream,
2378 "\nLoop at %d ignored due to setjmp.\n",
2379 INSN_UID (loop_number_loop_starts[loop]));
2380 }
2381 break;
2382
2383 case NOTE_INSN_LOOP_END:
2384 if (current_loop == -1)
2385 abort ();
2386
2387 loop_number_loop_ends[current_loop] = insn;
2388 current_loop = loop_outer_loop[current_loop];
2389 break;
2390
2391 default:
2392 break;
2393 }
2394
2395 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2396 enclosing loop, but this doesn't matter. */
2397 uid_loop_num[INSN_UID (insn)] = current_loop;
2398 }
2399
2400 /* Any loop containing a label used in an initializer must be invalidated,
2401 because it can be jumped into from anywhere. */
2402
2403 for (label = forced_labels; label; label = XEXP (label, 1))
2404 {
2405 int loop_num;
2406
2407 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2408 loop_num != -1;
2409 loop_num = loop_outer_loop[loop_num])
2410 loop_invalid[loop_num] = 1;
2411 }
2412
2413 /* Any loop containing a label used for an exception handler must be
2414 invalidated, because it can be jumped into from anywhere. */
2415
2416 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2417 {
2418 int loop_num;
2419
2420 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2421 loop_num != -1;
2422 loop_num = loop_outer_loop[loop_num])
2423 loop_invalid[loop_num] = 1;
2424 }
2425
2426 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2427 loop that it is not contained within, that loop is marked invalid.
2428 If any INSN or CALL_INSN uses a label's address, then the loop containing
2429 that label is marked invalid, because it could be jumped into from
2430 anywhere.
2431
2432 Also look for blocks of code ending in an unconditional branch that
2433 exits the loop. If such a block is surrounded by a conditional
2434 branch around the block, move the block elsewhere (see below) and
2435 invert the jump to point to the code block. This may eliminate a
2436 label in our loop and will simplify processing by both us and a
2437 possible second cse pass. */
2438
2439 for (insn = f; insn; insn = NEXT_INSN (insn))
2440 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2441 {
2442 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2443
2444 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2445 {
2446 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2447 if (note)
2448 {
2449 int loop_num;
2450
2451 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2452 loop_num != -1;
2453 loop_num = loop_outer_loop[loop_num])
2454 loop_invalid[loop_num] = 1;
2455 }
2456 }
2457
2458 if (GET_CODE (insn) != JUMP_INSN)
2459 continue;
2460
2461 mark_loop_jump (PATTERN (insn), this_loop_num);
2462
2463 /* See if this is an unconditional branch outside the loop. */
2464 if (this_loop_num != -1
2465 && (GET_CODE (PATTERN (insn)) == RETURN
2466 || (simplejump_p (insn)
2467 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2468 != this_loop_num)))
2469 && get_max_uid () < max_uid_for_loop)
2470 {
2471 rtx p;
2472 rtx our_next = next_real_insn (insn);
2473 int dest_loop;
2474 int outer_loop = -1;
2475
2476 /* Go backwards until we reach the start of the loop, a label,
2477 or a JUMP_INSN. */
2478 for (p = PREV_INSN (insn);
2479 GET_CODE (p) != CODE_LABEL
2480 && ! (GET_CODE (p) == NOTE
2481 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2482 && GET_CODE (p) != JUMP_INSN;
2483 p = PREV_INSN (p))
2484 ;
2485
2486 /* Check for the case where we have a jump to an inner nested
2487 loop, and do not perform the optimization in that case. */
2488
2489 if (JUMP_LABEL (insn))
2490 {
2491 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2492 if (dest_loop != -1)
2493 {
2494 for (outer_loop = dest_loop; outer_loop != -1;
2495 outer_loop = loop_outer_loop[outer_loop])
2496 if (outer_loop == this_loop_num)
2497 break;
2498 }
2499 }
2500
2501 /* Make sure that the target of P is within the current loop. */
2502
2503 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2504 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2505 outer_loop = this_loop_num;
2506
2507 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2508 we have a block of code to try to move.
2509
2510 We look backward and then forward from the target of INSN
2511 to find a BARRIER at the same loop depth as the target.
2512 If we find such a BARRIER, we make a new label for the start
2513 of the block, invert the jump in P and point it to that label,
2514 and move the block of code to the spot we found. */
2515
2516 if (outer_loop == -1
2517 && GET_CODE (p) == JUMP_INSN
2518 && JUMP_LABEL (p) != 0
2519 /* Just ignore jumps to labels that were never emitted.
2520 These always indicate compilation errors. */
2521 && INSN_UID (JUMP_LABEL (p)) != 0
2522 && condjump_p (p)
2523 && ! simplejump_p (p)
2524 && next_real_insn (JUMP_LABEL (p)) == our_next)
2525 {
2526 rtx target
2527 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2528 int target_loop_num = uid_loop_num[INSN_UID (target)];
2529 rtx loc;
2530
2531 for (loc = target; loc; loc = PREV_INSN (loc))
2532 if (GET_CODE (loc) == BARRIER
2533 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2534 break;
2535
2536 if (loc == 0)
2537 for (loc = target; loc; loc = NEXT_INSN (loc))
2538 if (GET_CODE (loc) == BARRIER
2539 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2540 break;
2541
2542 if (loc)
2543 {
2544 rtx cond_label = JUMP_LABEL (p);
2545 rtx new_label = get_label_after (p);
2546
2547 /* Ensure our label doesn't go away. */
2548 LABEL_NUSES (cond_label)++;
2549
2550 /* Verify that uid_loop_num is large enough and that
2551 we can invert P. */
2552 if (invert_jump (p, new_label))
2553 {
2554 rtx q, r;
2555
2556 /* If no suitable BARRIER was found, create a suitable
2557 one before TARGET. Since TARGET is a fall through
2558 path, we'll need to insert an jump around our block
2559 and a add a BARRIER before TARGET.
2560
2561 This creates an extra unconditional jump outside
2562 the loop. However, the benefits of removing rarely
2563 executed instructions from inside the loop usually
2564 outweighs the cost of the extra unconditional jump
2565 outside the loop. */
2566 if (loc == 0)
2567 {
2568 rtx temp;
2569
2570 temp = gen_jump (JUMP_LABEL (insn));
2571 temp = emit_jump_insn_before (temp, target);
2572 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2573 LABEL_NUSES (JUMP_LABEL (insn))++;
2574 loc = emit_barrier_before (target);
2575 }
2576
2577 /* Include the BARRIER after INSN and copy the
2578 block after LOC. */
2579 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2580 reorder_insns (new_label, NEXT_INSN (insn), loc);
2581
2582 /* All those insns are now in TARGET_LOOP_NUM. */
2583 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2584 q = NEXT_INSN (q))
2585 uid_loop_num[INSN_UID (q)] = target_loop_num;
2586
2587 /* The label jumped to by INSN is no longer a loop exit.
2588 Unless INSN does not have a label (e.g., it is a
2589 RETURN insn), search loop_number_exit_labels to find
2590 its label_ref, and remove it. Also turn off
2591 LABEL_OUTSIDE_LOOP_P bit. */
2592 if (JUMP_LABEL (insn))
2593 {
2594 int loop_num;
2595
2596 for (q = 0,
2597 r = loop_number_exit_labels[this_loop_num];
2598 r; q = r, r = LABEL_NEXTREF (r))
2599 if (XEXP (r, 0) == JUMP_LABEL (insn))
2600 {
2601 LABEL_OUTSIDE_LOOP_P (r) = 0;
2602 if (q)
2603 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2604 else
2605 loop_number_exit_labels[this_loop_num]
2606 = LABEL_NEXTREF (r);
2607 break;
2608 }
2609
2610 for (loop_num = this_loop_num;
2611 loop_num != -1 && loop_num != target_loop_num;
2612 loop_num = loop_outer_loop[loop_num])
2613 loop_number_exit_count[loop_num]--;
2614
2615 /* If we didn't find it, then something is wrong. */
2616 if (! r)
2617 abort ();
2618 }
2619
2620 /* P is now a jump outside the loop, so it must be put
2621 in loop_number_exit_labels, and marked as such.
2622 The easiest way to do this is to just call
2623 mark_loop_jump again for P. */
2624 mark_loop_jump (PATTERN (p), this_loop_num);
2625
2626 /* If INSN now jumps to the insn after it,
2627 delete INSN. */
2628 if (JUMP_LABEL (insn) != 0
2629 && (next_real_insn (JUMP_LABEL (insn))
2630 == next_real_insn (insn)))
2631 delete_insn (insn);
2632 }
2633
2634 /* Continue the loop after where the conditional
2635 branch used to jump, since the only branch insn
2636 in the block (if it still remains) is an inter-loop
2637 branch and hence needs no processing. */
2638 insn = NEXT_INSN (cond_label);
2639
2640 if (--LABEL_NUSES (cond_label) == 0)
2641 delete_insn (cond_label);
2642
2643 /* This loop will be continued with NEXT_INSN (insn). */
2644 insn = PREV_INSN (insn);
2645 }
2646 }
2647 }
2648 }
2649 }
2650
2651 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2652 loops it is contained in, mark the target loop invalid.
2653
2654 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2655
2656 static void
2657 mark_loop_jump (x, loop_num)
2658 rtx x;
2659 int loop_num;
2660 {
2661 int dest_loop;
2662 int outer_loop;
2663 int i;
2664
2665 switch (GET_CODE (x))
2666 {
2667 case PC:
2668 case USE:
2669 case CLOBBER:
2670 case REG:
2671 case MEM:
2672 case CONST_INT:
2673 case CONST_DOUBLE:
2674 case RETURN:
2675 return;
2676
2677 case CONST:
2678 /* There could be a label reference in here. */
2679 mark_loop_jump (XEXP (x, 0), loop_num);
2680 return;
2681
2682 case PLUS:
2683 case MINUS:
2684 case MULT:
2685 mark_loop_jump (XEXP (x, 0), loop_num);
2686 mark_loop_jump (XEXP (x, 1), loop_num);
2687 return;
2688
2689 case SIGN_EXTEND:
2690 case ZERO_EXTEND:
2691 mark_loop_jump (XEXP (x, 0), loop_num);
2692 return;
2693
2694 case LABEL_REF:
2695 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2696
2697 /* Link together all labels that branch outside the loop. This
2698 is used by final_[bg]iv_value and the loop unrolling code. Also
2699 mark this LABEL_REF so we know that this branch should predict
2700 false. */
2701
2702 /* A check to make sure the label is not in an inner nested loop,
2703 since this does not count as a loop exit. */
2704 if (dest_loop != -1)
2705 {
2706 for (outer_loop = dest_loop; outer_loop != -1;
2707 outer_loop = loop_outer_loop[outer_loop])
2708 if (outer_loop == loop_num)
2709 break;
2710 }
2711 else
2712 outer_loop = -1;
2713
2714 if (loop_num != -1 && outer_loop == -1)
2715 {
2716 LABEL_OUTSIDE_LOOP_P (x) = 1;
2717 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2718 loop_number_exit_labels[loop_num] = x;
2719
2720 for (outer_loop = loop_num;
2721 outer_loop != -1 && outer_loop != dest_loop;
2722 outer_loop = loop_outer_loop[outer_loop])
2723 loop_number_exit_count[outer_loop]++;
2724 }
2725
2726 /* If this is inside a loop, but not in the current loop or one enclosed
2727 by it, it invalidates at least one loop. */
2728
2729 if (dest_loop == -1)
2730 return;
2731
2732 /* We must invalidate every nested loop containing the target of this
2733 label, except those that also contain the jump insn. */
2734
2735 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2736 {
2737 /* Stop when we reach a loop that also contains the jump insn. */
2738 for (outer_loop = loop_num; outer_loop != -1;
2739 outer_loop = loop_outer_loop[outer_loop])
2740 if (dest_loop == outer_loop)
2741 return;
2742
2743 /* If we get here, we know we need to invalidate a loop. */
2744 if (loop_dump_stream && ! loop_invalid[dest_loop])
2745 fprintf (loop_dump_stream,
2746 "\nLoop at %d ignored due to multiple entry points.\n",
2747 INSN_UID (loop_number_loop_starts[dest_loop]));
2748
2749 loop_invalid[dest_loop] = 1;
2750 }
2751 return;
2752
2753 case SET:
2754 /* If this is not setting pc, ignore. */
2755 if (SET_DEST (x) == pc_rtx)
2756 mark_loop_jump (SET_SRC (x), loop_num);
2757 return;
2758
2759 case IF_THEN_ELSE:
2760 mark_loop_jump (XEXP (x, 1), loop_num);
2761 mark_loop_jump (XEXP (x, 2), loop_num);
2762 return;
2763
2764 case PARALLEL:
2765 case ADDR_VEC:
2766 for (i = 0; i < XVECLEN (x, 0); i++)
2767 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2768 return;
2769
2770 case ADDR_DIFF_VEC:
2771 for (i = 0; i < XVECLEN (x, 1); i++)
2772 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2773 return;
2774
2775 default:
2776 /* Treat anything else (such as a symbol_ref)
2777 as a branch out of this loop, but not into any loop. */
2778
2779 if (loop_num != -1)
2780 {
2781 #ifdef HAIFA
2782 LABEL_OUTSIDE_LOOP_P (x) = 1;
2783 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2784 #endif /* HAIFA */
2785
2786 loop_number_exit_labels[loop_num] = x;
2787
2788 for (outer_loop = loop_num; outer_loop != -1;
2789 outer_loop = loop_outer_loop[outer_loop])
2790 loop_number_exit_count[outer_loop]++;
2791 }
2792 return;
2793 }
2794 }
2795 \f
2796 /* Return nonzero if there is a label in the range from
2797 insn INSN to and including the insn whose luid is END
2798 INSN must have an assigned luid (i.e., it must not have
2799 been previously created by loop.c). */
2800
2801 static int
2802 labels_in_range_p (insn, end)
2803 rtx insn;
2804 int end;
2805 {
2806 while (insn && INSN_LUID (insn) <= end)
2807 {
2808 if (GET_CODE (insn) == CODE_LABEL)
2809 return 1;
2810 insn = NEXT_INSN (insn);
2811 }
2812
2813 return 0;
2814 }
2815
2816 /* Record that a memory reference X is being set. */
2817
2818 static void
2819 note_addr_stored (x)
2820 rtx x;
2821 {
2822 register int i;
2823
2824 if (x == 0 || GET_CODE (x) != MEM)
2825 return;
2826
2827 /* Count number of memory writes.
2828 This affects heuristics in strength_reduce. */
2829 num_mem_sets++;
2830
2831 /* BLKmode MEM means all memory is clobbered. */
2832 if (GET_MODE (x) == BLKmode)
2833 unknown_address_altered = 1;
2834
2835 if (unknown_address_altered)
2836 return;
2837
2838 for (i = 0; i < loop_store_mems_idx; i++)
2839 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2840 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2841 {
2842 /* We are storing at the same address as previously noted. Save the
2843 wider reference. */
2844 if (GET_MODE_SIZE (GET_MODE (x))
2845 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2846 loop_store_mems[i] = x;
2847 break;
2848 }
2849
2850 if (i == NUM_STORES)
2851 unknown_address_altered = 1;
2852
2853 else if (i == loop_store_mems_idx)
2854 loop_store_mems[loop_store_mems_idx++] = x;
2855 }
2856 \f
2857 /* Return nonzero if the rtx X is invariant over the current loop.
2858
2859 The value is 2 if we refer to something only conditionally invariant.
2860
2861 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2862 Otherwise, a memory ref is invariant if it does not conflict with
2863 anything stored in `loop_store_mems'. */
2864
2865 int
2866 invariant_p (x)
2867 register rtx x;
2868 {
2869 register int i;
2870 register enum rtx_code code;
2871 register char *fmt;
2872 int conditional = 0;
2873
2874 if (x == 0)
2875 return 1;
2876 code = GET_CODE (x);
2877 switch (code)
2878 {
2879 case CONST_INT:
2880 case CONST_DOUBLE:
2881 case SYMBOL_REF:
2882 case CONST:
2883 return 1;
2884
2885 case LABEL_REF:
2886 /* A LABEL_REF is normally invariant, however, if we are unrolling
2887 loops, and this label is inside the loop, then it isn't invariant.
2888 This is because each unrolled copy of the loop body will have
2889 a copy of this label. If this was invariant, then an insn loading
2890 the address of this label into a register might get moved outside
2891 the loop, and then each loop body would end up using the same label.
2892
2893 We don't know the loop bounds here though, so just fail for all
2894 labels. */
2895 if (flag_unroll_loops)
2896 return 0;
2897 else
2898 return 1;
2899
2900 case PC:
2901 case CC0:
2902 case UNSPEC_VOLATILE:
2903 return 0;
2904
2905 case REG:
2906 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2907 since the reg might be set by initialization within the loop. */
2908
2909 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2910 || x == arg_pointer_rtx)
2911 && ! current_function_has_nonlocal_goto)
2912 return 1;
2913
2914 if (loop_has_call
2915 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2916 return 0;
2917
2918 if (n_times_set[REGNO (x)] < 0)
2919 return 2;
2920
2921 return n_times_set[REGNO (x)] == 0;
2922
2923 case MEM:
2924 /* Volatile memory references must be rejected. Do this before
2925 checking for read-only items, so that volatile read-only items
2926 will be rejected also. */
2927 if (MEM_VOLATILE_P (x))
2928 return 0;
2929
2930 /* Read-only items (such as constants in a constant pool) are
2931 invariant if their address is. */
2932 if (RTX_UNCHANGING_P (x))
2933 break;
2934
2935 /* If we filled the table (or had a subroutine call), any location
2936 in memory could have been clobbered. */
2937 if (unknown_address_altered)
2938 return 0;
2939
2940 /* See if there is any dependence between a store and this load. */
2941 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2942 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2943 return 0;
2944
2945 /* It's not invalidated by a store in memory
2946 but we must still verify the address is invariant. */
2947 break;
2948
2949 case ASM_OPERANDS:
2950 /* Don't mess with insns declared volatile. */
2951 if (MEM_VOLATILE_P (x))
2952 return 0;
2953 break;
2954
2955 default:
2956 break;
2957 }
2958
2959 fmt = GET_RTX_FORMAT (code);
2960 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2961 {
2962 if (fmt[i] == 'e')
2963 {
2964 int tem = invariant_p (XEXP (x, i));
2965 if (tem == 0)
2966 return 0;
2967 if (tem == 2)
2968 conditional = 1;
2969 }
2970 else if (fmt[i] == 'E')
2971 {
2972 register int j;
2973 for (j = 0; j < XVECLEN (x, i); j++)
2974 {
2975 int tem = invariant_p (XVECEXP (x, i, j));
2976 if (tem == 0)
2977 return 0;
2978 if (tem == 2)
2979 conditional = 1;
2980 }
2981
2982 }
2983 }
2984
2985 return 1 + conditional;
2986 }
2987
2988 \f
2989 /* Return nonzero if all the insns in the loop that set REG
2990 are INSN and the immediately following insns,
2991 and if each of those insns sets REG in an invariant way
2992 (not counting uses of REG in them).
2993
2994 The value is 2 if some of these insns are only conditionally invariant.
2995
2996 We assume that INSN itself is the first set of REG
2997 and that its source is invariant. */
2998
2999 static int
3000 consec_sets_invariant_p (reg, n_sets, insn)
3001 int n_sets;
3002 rtx reg, insn;
3003 {
3004 register rtx p = insn;
3005 register int regno = REGNO (reg);
3006 rtx temp;
3007 /* Number of sets we have to insist on finding after INSN. */
3008 int count = n_sets - 1;
3009 int old = n_times_set[regno];
3010 int value = 0;
3011 int this;
3012
3013 /* If N_SETS hit the limit, we can't rely on its value. */
3014 if (n_sets == 127)
3015 return 0;
3016
3017 n_times_set[regno] = 0;
3018
3019 while (count > 0)
3020 {
3021 register enum rtx_code code;
3022 rtx set;
3023
3024 p = NEXT_INSN (p);
3025 code = GET_CODE (p);
3026
3027 /* If library call, skip to end of of it. */
3028 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3029 p = XEXP (temp, 0);
3030
3031 this = 0;
3032 if (code == INSN
3033 && (set = single_set (p))
3034 && GET_CODE (SET_DEST (set)) == REG
3035 && REGNO (SET_DEST (set)) == regno)
3036 {
3037 this = invariant_p (SET_SRC (set));
3038 if (this != 0)
3039 value |= this;
3040 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3041 {
3042 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3043 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3044 notes are OK. */
3045 this = (CONSTANT_P (XEXP (temp, 0))
3046 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3047 && invariant_p (XEXP (temp, 0))));
3048 if (this != 0)
3049 value |= this;
3050 }
3051 }
3052 if (this != 0)
3053 count--;
3054 else if (code != NOTE)
3055 {
3056 n_times_set[regno] = old;
3057 return 0;
3058 }
3059 }
3060
3061 n_times_set[regno] = old;
3062 /* If invariant_p ever returned 2, we return 2. */
3063 return 1 + (value & 2);
3064 }
3065
3066 #if 0
3067 /* I don't think this condition is sufficient to allow INSN
3068 to be moved, so we no longer test it. */
3069
3070 /* Return 1 if all insns in the basic block of INSN and following INSN
3071 that set REG are invariant according to TABLE. */
3072
3073 static int
3074 all_sets_invariant_p (reg, insn, table)
3075 rtx reg, insn;
3076 short *table;
3077 {
3078 register rtx p = insn;
3079 register int regno = REGNO (reg);
3080
3081 while (1)
3082 {
3083 register enum rtx_code code;
3084 p = NEXT_INSN (p);
3085 code = GET_CODE (p);
3086 if (code == CODE_LABEL || code == JUMP_INSN)
3087 return 1;
3088 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3089 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3090 && REGNO (SET_DEST (PATTERN (p))) == regno)
3091 {
3092 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3093 return 0;
3094 }
3095 }
3096 }
3097 #endif /* 0 */
3098 \f
3099 /* Look at all uses (not sets) of registers in X. For each, if it is
3100 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3101 a different insn, set USAGE[REGNO] to const0_rtx. */
3102
3103 static void
3104 find_single_use_in_loop (insn, x, usage)
3105 rtx insn;
3106 rtx x;
3107 rtx *usage;
3108 {
3109 enum rtx_code code = GET_CODE (x);
3110 char *fmt = GET_RTX_FORMAT (code);
3111 int i, j;
3112
3113 if (code == REG)
3114 usage[REGNO (x)]
3115 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
3116 ? const0_rtx : insn;
3117
3118 else if (code == SET)
3119 {
3120 /* Don't count SET_DEST if it is a REG; otherwise count things
3121 in SET_DEST because if a register is partially modified, it won't
3122 show up as a potential movable so we don't care how USAGE is set
3123 for it. */
3124 if (GET_CODE (SET_DEST (x)) != REG)
3125 find_single_use_in_loop (insn, SET_DEST (x), usage);
3126 find_single_use_in_loop (insn, SET_SRC (x), usage);
3127 }
3128 else
3129 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3130 {
3131 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3132 find_single_use_in_loop (insn, XEXP (x, i), usage);
3133 else if (fmt[i] == 'E')
3134 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3135 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3136 }
3137 }
3138 \f
3139 /* Increment N_TIMES_SET at the index of each register
3140 that is modified by an insn between FROM and TO.
3141 If the value of an element of N_TIMES_SET becomes 127 or more,
3142 stop incrementing it, to avoid overflow.
3143
3144 Store in SINGLE_USAGE[I] the single insn in which register I is
3145 used, if it is only used once. Otherwise, it is set to 0 (for no
3146 uses) or const0_rtx for more than one use. This parameter may be zero,
3147 in which case this processing is not done.
3148
3149 Store in *COUNT_PTR the number of actual instruction
3150 in the loop. We use this to decide what is worth moving out. */
3151
3152 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3153 In that case, it is the insn that last set reg n. */
3154
3155 static void
3156 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3157 register rtx from, to;
3158 char *may_not_move;
3159 rtx *single_usage;
3160 int *count_ptr;
3161 int nregs;
3162 {
3163 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3164 register rtx insn;
3165 register int count = 0;
3166 register rtx dest;
3167
3168 bzero ((char *) last_set, nregs * sizeof (rtx));
3169 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3170 {
3171 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3172 {
3173 ++count;
3174
3175 /* If requested, record registers that have exactly one use. */
3176 if (single_usage)
3177 {
3178 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3179
3180 /* Include uses in REG_EQUAL notes. */
3181 if (REG_NOTES (insn))
3182 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3183 }
3184
3185 if (GET_CODE (PATTERN (insn)) == CLOBBER
3186 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3187 /* Don't move a reg that has an explicit clobber.
3188 We might do so sometimes, but it's not worth the pain. */
3189 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3190
3191 if (GET_CODE (PATTERN (insn)) == SET
3192 || GET_CODE (PATTERN (insn)) == CLOBBER)
3193 {
3194 dest = SET_DEST (PATTERN (insn));
3195 while (GET_CODE (dest) == SUBREG
3196 || GET_CODE (dest) == ZERO_EXTRACT
3197 || GET_CODE (dest) == SIGN_EXTRACT
3198 || GET_CODE (dest) == STRICT_LOW_PART)
3199 dest = XEXP (dest, 0);
3200 if (GET_CODE (dest) == REG)
3201 {
3202 register int regno = REGNO (dest);
3203 /* If this is the first setting of this reg
3204 in current basic block, and it was set before,
3205 it must be set in two basic blocks, so it cannot
3206 be moved out of the loop. */
3207 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3208 may_not_move[regno] = 1;
3209 /* If this is not first setting in current basic block,
3210 see if reg was used in between previous one and this.
3211 If so, neither one can be moved. */
3212 if (last_set[regno] != 0
3213 && reg_used_between_p (dest, last_set[regno], insn))
3214 may_not_move[regno] = 1;
3215 if (n_times_set[regno] < 127)
3216 ++n_times_set[regno];
3217 last_set[regno] = insn;
3218 }
3219 }
3220 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3221 {
3222 register int i;
3223 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3224 {
3225 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3226 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3227 /* Don't move a reg that has an explicit clobber.
3228 It's not worth the pain to try to do it correctly. */
3229 may_not_move[REGNO (XEXP (x, 0))] = 1;
3230
3231 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3232 {
3233 dest = SET_DEST (x);
3234 while (GET_CODE (dest) == SUBREG
3235 || GET_CODE (dest) == ZERO_EXTRACT
3236 || GET_CODE (dest) == SIGN_EXTRACT
3237 || GET_CODE (dest) == STRICT_LOW_PART)
3238 dest = XEXP (dest, 0);
3239 if (GET_CODE (dest) == REG)
3240 {
3241 register int regno = REGNO (dest);
3242 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3243 may_not_move[regno] = 1;
3244 if (last_set[regno] != 0
3245 && reg_used_between_p (dest, last_set[regno], insn))
3246 may_not_move[regno] = 1;
3247 if (n_times_set[regno] < 127)
3248 ++n_times_set[regno];
3249 last_set[regno] = insn;
3250 }
3251 }
3252 }
3253 }
3254 }
3255
3256 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3257 bzero ((char *) last_set, nregs * sizeof (rtx));
3258 }
3259 *count_ptr = count;
3260 }
3261 \f
3262 /* Given a loop that is bounded by LOOP_START and LOOP_END
3263 and that is entered at SCAN_START,
3264 return 1 if the register set in SET contained in insn INSN is used by
3265 any insn that precedes INSN in cyclic order starting
3266 from the loop entry point.
3267
3268 We don't want to use INSN_LUID here because if we restrict INSN to those
3269 that have a valid INSN_LUID, it means we cannot move an invariant out
3270 from an inner loop past two loops. */
3271
3272 static int
3273 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3274 rtx set, insn, loop_start, scan_start, loop_end;
3275 {
3276 rtx reg = SET_DEST (set);
3277 rtx p;
3278
3279 /* Scan forward checking for register usage. If we hit INSN, we
3280 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3281 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3282 {
3283 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3284 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3285 return 1;
3286
3287 if (p == loop_end)
3288 p = loop_start;
3289 }
3290
3291 return 0;
3292 }
3293 \f
3294 /* A "basic induction variable" or biv is a pseudo reg that is set
3295 (within this loop) only by incrementing or decrementing it. */
3296 /* A "general induction variable" or giv is a pseudo reg whose
3297 value is a linear function of a biv. */
3298
3299 /* Bivs are recognized by `basic_induction_var';
3300 Givs by `general_induct_var'. */
3301
3302 /* Indexed by register number, indicates whether or not register is an
3303 induction variable, and if so what type. */
3304
3305 enum iv_mode *reg_iv_type;
3306
3307 /* Indexed by register number, contains pointer to `struct induction'
3308 if register is an induction variable. This holds general info for
3309 all induction variables. */
3310
3311 struct induction **reg_iv_info;
3312
3313 /* Indexed by register number, contains pointer to `struct iv_class'
3314 if register is a basic induction variable. This holds info describing
3315 the class (a related group) of induction variables that the biv belongs
3316 to. */
3317
3318 struct iv_class **reg_biv_class;
3319
3320 /* The head of a list which links together (via the next field)
3321 every iv class for the current loop. */
3322
3323 struct iv_class *loop_iv_list;
3324
3325 /* Communication with routines called via `note_stores'. */
3326
3327 static rtx note_insn;
3328
3329 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3330
3331 static rtx addr_placeholder;
3332
3333 /* ??? Unfinished optimizations, and possible future optimizations,
3334 for the strength reduction code. */
3335
3336 /* ??? There is one more optimization you might be interested in doing: to
3337 allocate pseudo registers for frequently-accessed memory locations.
3338 If the same memory location is referenced each time around, it might
3339 be possible to copy it into a register before and out after.
3340 This is especially useful when the memory location is a variable which
3341 is in a stack slot because somewhere its address is taken. If the
3342 loop doesn't contain a function call and the variable isn't volatile,
3343 it is safe to keep the value in a register for the duration of the
3344 loop. One tricky thing is that the copying of the value back from the
3345 register has to be done on all exits from the loop. You need to check that
3346 all the exits from the loop go to the same place. */
3347
3348 /* ??? The interaction of biv elimination, and recognition of 'constant'
3349 bivs, may cause problems. */
3350
3351 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3352 performance problems.
3353
3354 Perhaps don't eliminate things that can be combined with an addressing
3355 mode. Find all givs that have the same biv, mult_val, and add_val;
3356 then for each giv, check to see if its only use dies in a following
3357 memory address. If so, generate a new memory address and check to see
3358 if it is valid. If it is valid, then store the modified memory address,
3359 otherwise, mark the giv as not done so that it will get its own iv. */
3360
3361 /* ??? Could try to optimize branches when it is known that a biv is always
3362 positive. */
3363
3364 /* ??? When replace a biv in a compare insn, we should replace with closest
3365 giv so that an optimized branch can still be recognized by the combiner,
3366 e.g. the VAX acb insn. */
3367
3368 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3369 was rerun in loop_optimize whenever a register was added or moved.
3370 Also, some of the optimizations could be a little less conservative. */
3371 \f
3372 /* Perform strength reduction and induction variable elimination. */
3373
3374 /* Pseudo registers created during this function will be beyond the last
3375 valid index in several tables including n_times_set and regno_last_uid.
3376 This does not cause a problem here, because the added registers cannot be
3377 givs outside of their loop, and hence will never be reconsidered.
3378 But scan_loop must check regnos to make sure they are in bounds. */
3379
3380 static void
3381 strength_reduce (scan_start, end, loop_top, insn_count,
3382 loop_start, loop_end, unroll_p)
3383 rtx scan_start;
3384 rtx end;
3385 rtx loop_top;
3386 int insn_count;
3387 rtx loop_start;
3388 rtx loop_end;
3389 int unroll_p;
3390 {
3391 rtx p;
3392 rtx set;
3393 rtx inc_val;
3394 rtx mult_val;
3395 rtx dest_reg;
3396 /* This is 1 if current insn is not executed at least once for every loop
3397 iteration. */
3398 int not_every_iteration = 0;
3399 /* This is 1 if current insn may be executed more than once for every
3400 loop iteration. */
3401 int maybe_multiple = 0;
3402 /* Temporary list pointers for traversing loop_iv_list. */
3403 struct iv_class *bl, **backbl;
3404 /* Ratio of extra register life span we can justify
3405 for saving an instruction. More if loop doesn't call subroutines
3406 since in that case saving an insn makes more difference
3407 and more registers are available. */
3408 /* ??? could set this to last value of threshold in move_movables */
3409 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3410 /* Map of pseudo-register replacements. */
3411 rtx *reg_map;
3412 int call_seen;
3413 rtx test;
3414 rtx end_insert_before;
3415 int loop_depth = 0;
3416
3417 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3418 * sizeof (enum iv_mode *));
3419 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3420 reg_iv_info = (struct induction **)
3421 alloca (max_reg_before_loop * sizeof (struct induction *));
3422 bzero ((char *) reg_iv_info, (max_reg_before_loop
3423 * sizeof (struct induction *)));
3424 reg_biv_class = (struct iv_class **)
3425 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3426 bzero ((char *) reg_biv_class, (max_reg_before_loop
3427 * sizeof (struct iv_class *)));
3428
3429 loop_iv_list = 0;
3430 addr_placeholder = gen_reg_rtx (Pmode);
3431
3432 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3433 must be put before this insn, so that they will appear in the right
3434 order (i.e. loop order).
3435
3436 If loop_end is the end of the current function, then emit a
3437 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3438 dummy note insn. */
3439 if (NEXT_INSN (loop_end) != 0)
3440 end_insert_before = NEXT_INSN (loop_end);
3441 else
3442 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3443
3444 /* Scan through loop to find all possible bivs. */
3445
3446 p = scan_start;
3447 while (1)
3448 {
3449 p = NEXT_INSN (p);
3450 /* At end of a straight-in loop, we are done.
3451 At end of a loop entered at the bottom, scan the top. */
3452 if (p == scan_start)
3453 break;
3454 if (p == end)
3455 {
3456 if (loop_top != 0)
3457 p = loop_top;
3458 else
3459 break;
3460 if (p == scan_start)
3461 break;
3462 }
3463
3464 if (GET_CODE (p) == INSN
3465 && (set = single_set (p))
3466 && GET_CODE (SET_DEST (set)) == REG)
3467 {
3468 dest_reg = SET_DEST (set);
3469 if (REGNO (dest_reg) < max_reg_before_loop
3470 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3471 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3472 {
3473 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3474 dest_reg, p, &inc_val, &mult_val))
3475 {
3476 /* It is a possible basic induction variable.
3477 Create and initialize an induction structure for it. */
3478
3479 struct induction *v
3480 = (struct induction *) alloca (sizeof (struct induction));
3481
3482 record_biv (v, p, dest_reg, inc_val, mult_val,
3483 not_every_iteration, maybe_multiple);
3484 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3485 }
3486 else if (REGNO (dest_reg) < max_reg_before_loop)
3487 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3488 }
3489 }
3490
3491 /* Past CODE_LABEL, we get to insns that may be executed multiple
3492 times. The only way we can be sure that they can't is if every
3493 every jump insn between here and the end of the loop either
3494 returns, exits the loop, is a forward jump, or is a jump
3495 to the loop start. */
3496
3497 if (GET_CODE (p) == CODE_LABEL)
3498 {
3499 rtx insn = p;
3500
3501 maybe_multiple = 0;
3502
3503 while (1)
3504 {
3505 insn = NEXT_INSN (insn);
3506 if (insn == scan_start)
3507 break;
3508 if (insn == end)
3509 {
3510 if (loop_top != 0)
3511 insn = loop_top;
3512 else
3513 break;
3514 if (insn == scan_start)
3515 break;
3516 }
3517
3518 if (GET_CODE (insn) == JUMP_INSN
3519 && GET_CODE (PATTERN (insn)) != RETURN
3520 && (! condjump_p (insn)
3521 || (JUMP_LABEL (insn) != 0
3522 && JUMP_LABEL (insn) != scan_start
3523 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3524 || INSN_UID (insn) >= max_uid_for_loop
3525 || (INSN_LUID (JUMP_LABEL (insn))
3526 < INSN_LUID (insn))))))
3527 {
3528 maybe_multiple = 1;
3529 break;
3530 }
3531 }
3532 }
3533
3534 /* Past a jump, we get to insns for which we can't count
3535 on whether they will be executed during each iteration. */
3536 /* This code appears twice in strength_reduce. There is also similar
3537 code in scan_loop. */
3538 if (GET_CODE (p) == JUMP_INSN
3539 /* If we enter the loop in the middle, and scan around to the
3540 beginning, don't set not_every_iteration for that.
3541 This can be any kind of jump, since we want to know if insns
3542 will be executed if the loop is executed. */
3543 && ! (JUMP_LABEL (p) == loop_top
3544 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3545 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3546 {
3547 rtx label = 0;
3548
3549 /* If this is a jump outside the loop, then it also doesn't
3550 matter. Check to see if the target of this branch is on the
3551 loop_number_exits_labels list. */
3552
3553 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3554 label;
3555 label = LABEL_NEXTREF (label))
3556 if (XEXP (label, 0) == JUMP_LABEL (p))
3557 break;
3558
3559 if (! label)
3560 not_every_iteration = 1;
3561 }
3562
3563 else if (GET_CODE (p) == NOTE)
3564 {
3565 /* At the virtual top of a converted loop, insns are again known to
3566 be executed each iteration: logically, the loop begins here
3567 even though the exit code has been duplicated. */
3568 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3569 not_every_iteration = 0;
3570 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3571 loop_depth++;
3572 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3573 loop_depth--;
3574 }
3575
3576 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3577 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3578 or not an insn is known to be executed each iteration of the
3579 loop, whether or not any iterations are known to occur.
3580
3581 Therefore, if we have just passed a label and have no more labels
3582 between here and the test insn of the loop, we know these insns
3583 will be executed each iteration. */
3584
3585 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3586 && no_labels_between_p (p, loop_end))
3587 not_every_iteration = 0;
3588 }
3589
3590 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3591 Make a sanity check against n_times_set. */
3592 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3593 {
3594 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3595 /* Above happens if register modified by subreg, etc. */
3596 /* Make sure it is not recognized as a basic induction var: */
3597 || n_times_set[bl->regno] != bl->biv_count
3598 /* If never incremented, it is invariant that we decided not to
3599 move. So leave it alone. */
3600 || ! bl->incremented)
3601 {
3602 if (loop_dump_stream)
3603 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3604 bl->regno,
3605 (reg_iv_type[bl->regno] != BASIC_INDUCT
3606 ? "not induction variable"
3607 : (! bl->incremented ? "never incremented"
3608 : "count error")));
3609
3610 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3611 *backbl = bl->next;
3612 }
3613 else
3614 {
3615 backbl = &bl->next;
3616
3617 if (loop_dump_stream)
3618 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3619 }
3620 }
3621
3622 /* Exit if there are no bivs. */
3623 if (! loop_iv_list)
3624 {
3625 /* Can still unroll the loop anyways, but indicate that there is no
3626 strength reduction info available. */
3627 if (unroll_p)
3628 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3629
3630 return;
3631 }
3632
3633 /* Find initial value for each biv by searching backwards from loop_start,
3634 halting at first label. Also record any test condition. */
3635
3636 call_seen = 0;
3637 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3638 {
3639 note_insn = p;
3640
3641 if (GET_CODE (p) == CALL_INSN)
3642 call_seen = 1;
3643
3644 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3645 || GET_CODE (p) == CALL_INSN)
3646 note_stores (PATTERN (p), record_initial);
3647
3648 /* Record any test of a biv that branches around the loop if no store
3649 between it and the start of loop. We only care about tests with
3650 constants and registers and only certain of those. */
3651 if (GET_CODE (p) == JUMP_INSN
3652 && JUMP_LABEL (p) != 0
3653 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3654 && (test = get_condition_for_loop (p)) != 0
3655 && GET_CODE (XEXP (test, 0)) == REG
3656 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3657 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3658 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3659 && bl->init_insn == 0)
3660 {
3661 /* If an NE test, we have an initial value! */
3662 if (GET_CODE (test) == NE)
3663 {
3664 bl->init_insn = p;
3665 bl->init_set = gen_rtx_SET (VOIDmode,
3666 XEXP (test, 0), XEXP (test, 1));
3667 }
3668 else
3669 bl->initial_test = test;
3670 }
3671 }
3672
3673 /* Look at the each biv and see if we can say anything better about its
3674 initial value from any initializing insns set up above. (This is done
3675 in two passes to avoid missing SETs in a PARALLEL.) */
3676 for (bl = loop_iv_list; bl; bl = bl->next)
3677 {
3678 rtx src;
3679 rtx note;
3680
3681 if (! bl->init_insn)
3682 continue;
3683
3684 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3685 is a constant, use the value of that. */
3686 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3687 && CONSTANT_P (XEXP (note, 0)))
3688 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3689 && CONSTANT_P (XEXP (note, 0))))
3690 src = XEXP (note, 0);
3691 else
3692 src = SET_SRC (bl->init_set);
3693
3694 if (loop_dump_stream)
3695 fprintf (loop_dump_stream,
3696 "Biv %d initialized at insn %d: initial value ",
3697 bl->regno, INSN_UID (bl->init_insn));
3698
3699 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3700 || GET_MODE (src) == VOIDmode)
3701 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3702 {
3703 bl->initial_value = src;
3704
3705 if (loop_dump_stream)
3706 {
3707 if (GET_CODE (src) == CONST_INT)
3708 {
3709 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
3710 fputc ('\n', loop_dump_stream);
3711 }
3712 else
3713 {
3714 print_rtl (loop_dump_stream, src);
3715 fprintf (loop_dump_stream, "\n");
3716 }
3717 }
3718 }
3719 else
3720 {
3721 /* Biv initial value is not simple move,
3722 so let it keep initial value of "itself". */
3723
3724 if (loop_dump_stream)
3725 fprintf (loop_dump_stream, "is complex\n");
3726 }
3727 }
3728
3729 /* Search the loop for general induction variables. */
3730
3731 /* A register is a giv if: it is only set once, it is a function of a
3732 biv and a constant (or invariant), and it is not a biv. */
3733
3734 not_every_iteration = 0;
3735 loop_depth = 0;
3736 p = scan_start;
3737 while (1)
3738 {
3739 p = NEXT_INSN (p);
3740 /* At end of a straight-in loop, we are done.
3741 At end of a loop entered at the bottom, scan the top. */
3742 if (p == scan_start)
3743 break;
3744 if (p == end)
3745 {
3746 if (loop_top != 0)
3747 p = loop_top;
3748 else
3749 break;
3750 if (p == scan_start)
3751 break;
3752 }
3753
3754 /* Look for a general induction variable in a register. */
3755 if (GET_CODE (p) == INSN
3756 && (set = single_set (p))
3757 && GET_CODE (SET_DEST (set)) == REG
3758 && ! may_not_optimize[REGNO (SET_DEST (set))])
3759 {
3760 rtx src_reg;
3761 rtx add_val;
3762 rtx mult_val;
3763 int benefit;
3764 rtx regnote = 0;
3765
3766 dest_reg = SET_DEST (set);
3767 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3768 continue;
3769
3770 if (/* SET_SRC is a giv. */
3771 ((benefit = general_induction_var (SET_SRC (set),
3772 &src_reg, &add_val,
3773 &mult_val))
3774 /* Equivalent expression is a giv. */
3775 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3776 && (benefit = general_induction_var (XEXP (regnote, 0),
3777 &src_reg,
3778 &add_val, &mult_val))))
3779 /* Don't try to handle any regs made by loop optimization.
3780 We have nothing on them in regno_first_uid, etc. */
3781 && REGNO (dest_reg) < max_reg_before_loop
3782 /* Don't recognize a BASIC_INDUCT_VAR here. */
3783 && dest_reg != src_reg
3784 /* This must be the only place where the register is set. */
3785 && (n_times_set[REGNO (dest_reg)] == 1
3786 /* or all sets must be consecutive and make a giv. */
3787 || (benefit = consec_sets_giv (benefit, p,
3788 src_reg, dest_reg,
3789 &add_val, &mult_val))))
3790 {
3791 int count;
3792 struct induction *v
3793 = (struct induction *) alloca (sizeof (struct induction));
3794 rtx temp;
3795
3796 /* If this is a library call, increase benefit. */
3797 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3798 benefit += libcall_benefit (p);
3799
3800 /* Skip the consecutive insns, if there are any. */
3801 for (count = n_times_set[REGNO (dest_reg)] - 1;
3802 count > 0; count--)
3803 {
3804 /* If first insn of libcall sequence, skip to end.
3805 Do this at start of loop, since INSN is guaranteed to
3806 be an insn here. */
3807 if (GET_CODE (p) != NOTE
3808 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3809 p = XEXP (temp, 0);
3810
3811 do p = NEXT_INSN (p);
3812 while (GET_CODE (p) == NOTE);
3813 }
3814
3815 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3816 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3817 loop_end);
3818
3819 }
3820 }
3821
3822 #ifndef DONT_REDUCE_ADDR
3823 /* Look for givs which are memory addresses. */
3824 /* This resulted in worse code on a VAX 8600. I wonder if it
3825 still does. */
3826 if (GET_CODE (p) == INSN)
3827 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3828 loop_end);
3829 #endif
3830
3831 /* Update the status of whether giv can derive other givs. This can
3832 change when we pass a label or an insn that updates a biv. */
3833 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3834 || GET_CODE (p) == CODE_LABEL)
3835 update_giv_derive (p);
3836
3837 /* Past a jump, we get to insns for which we can't count
3838 on whether they will be executed during each iteration. */
3839 /* This code appears twice in strength_reduce. There is also similar
3840 code in scan_loop. */
3841 if (GET_CODE (p) == JUMP_INSN
3842 /* If we enter the loop in the middle, and scan around to the
3843 beginning, don't set not_every_iteration for that.
3844 This can be any kind of jump, since we want to know if insns
3845 will be executed if the loop is executed. */
3846 && ! (JUMP_LABEL (p) == loop_top
3847 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3848 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3849 {
3850 rtx label = 0;
3851
3852 /* If this is a jump outside the loop, then it also doesn't
3853 matter. Check to see if the target of this branch is on the
3854 loop_number_exits_labels list. */
3855
3856 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3857 label;
3858 label = LABEL_NEXTREF (label))
3859 if (XEXP (label, 0) == JUMP_LABEL (p))
3860 break;
3861
3862 if (! label)
3863 not_every_iteration = 1;
3864 }
3865
3866 else if (GET_CODE (p) == NOTE)
3867 {
3868 /* At the virtual top of a converted loop, insns are again known to
3869 be executed each iteration: logically, the loop begins here
3870 even though the exit code has been duplicated. */
3871 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3872 not_every_iteration = 0;
3873 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3874 loop_depth++;
3875 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3876 loop_depth--;
3877 }
3878
3879 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3880 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3881 or not an insn is known to be executed each iteration of the
3882 loop, whether or not any iterations are known to occur.
3883
3884 Therefore, if we have just passed a label and have no more labels
3885 between here and the test insn of the loop, we know these insns
3886 will be executed each iteration. */
3887
3888 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3889 && no_labels_between_p (p, loop_end))
3890 not_every_iteration = 0;
3891 }
3892
3893 /* Try to calculate and save the number of loop iterations. This is
3894 set to zero if the actual number can not be calculated. This must
3895 be called after all giv's have been identified, since otherwise it may
3896 fail if the iteration variable is a giv. */
3897
3898 loop_n_iterations = loop_iterations (loop_start, loop_end);
3899
3900 /* Now for each giv for which we still don't know whether or not it is
3901 replaceable, check to see if it is replaceable because its final value
3902 can be calculated. This must be done after loop_iterations is called,
3903 so that final_giv_value will work correctly. */
3904
3905 for (bl = loop_iv_list; bl; bl = bl->next)
3906 {
3907 struct induction *v;
3908
3909 for (v = bl->giv; v; v = v->next_iv)
3910 if (! v->replaceable && ! v->not_replaceable)
3911 check_final_value (v, loop_start, loop_end);
3912 }
3913
3914 /* Try to prove that the loop counter variable (if any) is always
3915 nonnegative; if so, record that fact with a REG_NONNEG note
3916 so that "decrement and branch until zero" insn can be used. */
3917 check_dbra_loop (loop_end, insn_count, loop_start);
3918
3919 #ifdef HAIFA
3920 /* record loop-variables relevant for BCT optimization before unrolling
3921 the loop. Unrolling may update part of this information, and the
3922 correct data will be used for generating the BCT. */
3923 #ifdef HAVE_decrement_and_branch_on_count
3924 if (HAVE_decrement_and_branch_on_count)
3925 analyze_loop_iterations (loop_start, loop_end);
3926 #endif
3927 #endif /* HAIFA */
3928
3929 /* Create reg_map to hold substitutions for replaceable giv regs. */
3930 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3931 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3932
3933 /* Examine each iv class for feasibility of strength reduction/induction
3934 variable elimination. */
3935
3936 for (bl = loop_iv_list; bl; bl = bl->next)
3937 {
3938 struct induction *v;
3939 int benefit;
3940 int all_reduced;
3941 rtx final_value = 0;
3942
3943 /* Test whether it will be possible to eliminate this biv
3944 provided all givs are reduced. This is possible if either
3945 the reg is not used outside the loop, or we can compute
3946 what its final value will be.
3947
3948 For architectures with a decrement_and_branch_until_zero insn,
3949 don't do this if we put a REG_NONNEG note on the endtest for
3950 this biv. */
3951
3952 /* Compare against bl->init_insn rather than loop_start.
3953 We aren't concerned with any uses of the biv between
3954 init_insn and loop_start since these won't be affected
3955 by the value of the biv elsewhere in the function, so
3956 long as init_insn doesn't use the biv itself.
3957 March 14, 1989 -- self@bayes.arc.nasa.gov */
3958
3959 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3960 && bl->init_insn
3961 && INSN_UID (bl->init_insn) < max_uid_for_loop
3962 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3963 #ifdef HAVE_decrement_and_branch_until_zero
3964 && ! bl->nonneg
3965 #endif
3966 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3967 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3968 #ifdef HAVE_decrement_and_branch_until_zero
3969 && ! bl->nonneg
3970 #endif
3971 ))
3972 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3973 threshold, insn_count);
3974 else
3975 {
3976 if (loop_dump_stream)
3977 {
3978 fprintf (loop_dump_stream,
3979 "Cannot eliminate biv %d.\n",
3980 bl->regno);
3981 fprintf (loop_dump_stream,
3982 "First use: insn %d, last use: insn %d.\n",
3983 REGNO_FIRST_UID (bl->regno),
3984 REGNO_LAST_UID (bl->regno));
3985 }
3986 }
3987
3988 /* Combine all giv's for this iv_class. */
3989 combine_givs (bl);
3990
3991 /* This will be true at the end, if all givs which depend on this
3992 biv have been strength reduced.
3993 We can't (currently) eliminate the biv unless this is so. */
3994 all_reduced = 1;
3995
3996 /* Check each giv in this class to see if we will benefit by reducing
3997 it. Skip giv's combined with others. */
3998 for (v = bl->giv; v; v = v->next_iv)
3999 {
4000 struct induction *tv;
4001
4002 if (v->ignore || v->same)
4003 continue;
4004
4005 benefit = v->benefit;
4006
4007 /* Reduce benefit if not replaceable, since we will insert
4008 a move-insn to replace the insn that calculates this giv.
4009 Don't do this unless the giv is a user variable, since it
4010 will often be marked non-replaceable because of the duplication
4011 of the exit code outside the loop. In such a case, the copies
4012 we insert are dead and will be deleted. So they don't have
4013 a cost. Similar situations exist. */
4014 /* ??? The new final_[bg]iv_value code does a much better job
4015 of finding replaceable giv's, and hence this code may no longer
4016 be necessary. */
4017 if (! v->replaceable && ! bl->eliminable
4018 && REG_USERVAR_P (v->dest_reg))
4019 benefit -= copy_cost;
4020
4021 /* Decrease the benefit to count the add-insns that we will
4022 insert to increment the reduced reg for the giv. */
4023 benefit -= add_cost * bl->biv_count;
4024
4025 /* Decide whether to strength-reduce this giv or to leave the code
4026 unchanged (recompute it from the biv each time it is used).
4027 This decision can be made independently for each giv. */
4028
4029 #ifdef AUTO_INC_DEC
4030 /* Attempt to guess whether autoincrement will handle some of the
4031 new add insns; if so, increase BENEFIT (undo the subtraction of
4032 add_cost that was done above). */
4033 if (v->giv_type == DEST_ADDR
4034 && GET_CODE (v->mult_val) == CONST_INT)
4035 {
4036 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
4037 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4038 benefit += add_cost * bl->biv_count;
4039 #endif
4040 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
4041 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4042 benefit += add_cost * bl->biv_count;
4043 #endif
4044 }
4045 #endif
4046
4047 /* If an insn is not to be strength reduced, then set its ignore
4048 flag, and clear all_reduced. */
4049
4050 /* A giv that depends on a reversed biv must be reduced if it is
4051 used after the loop exit, otherwise, it would have the wrong
4052 value after the loop exit. To make it simple, just reduce all
4053 of such giv's whether or not we know they are used after the loop
4054 exit. */
4055
4056 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4057 && ! bl->reversed )
4058 {
4059 if (loop_dump_stream)
4060 fprintf (loop_dump_stream,
4061 "giv of insn %d not worth while, %d vs %d.\n",
4062 INSN_UID (v->insn),
4063 v->lifetime * threshold * benefit, insn_count);
4064 v->ignore = 1;
4065 all_reduced = 0;
4066 }
4067 else
4068 {
4069 /* Check that we can increment the reduced giv without a
4070 multiply insn. If not, reject it. */
4071
4072 for (tv = bl->biv; tv; tv = tv->next_iv)
4073 if (tv->mult_val == const1_rtx
4074 && ! product_cheap_p (tv->add_val, v->mult_val))
4075 {
4076 if (loop_dump_stream)
4077 fprintf (loop_dump_stream,
4078 "giv of insn %d: would need a multiply.\n",
4079 INSN_UID (v->insn));
4080 v->ignore = 1;
4081 all_reduced = 0;
4082 break;
4083 }
4084 }
4085 }
4086
4087 /* Reduce each giv that we decided to reduce. */
4088
4089 for (v = bl->giv; v; v = v->next_iv)
4090 {
4091 struct induction *tv;
4092 if (! v->ignore && v->same == 0)
4093 {
4094 int auto_inc_opt = 0;
4095
4096 v->new_reg = gen_reg_rtx (v->mode);
4097
4098 #ifdef AUTO_INC_DEC
4099 /* If the target has auto-increment addressing modes, and
4100 this is an address giv, then try to put the increment
4101 immediately after its use, so that flow can create an
4102 auto-increment addressing mode. */
4103 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4104 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4105 /* We don't handle reversed biv's because bl->biv->insn
4106 does not have a valid INSN_LUID. */
4107 && ! bl->reversed
4108 && v->always_executed && ! v->maybe_multiple)
4109 {
4110 /* If other giv's have been combined with this one, then
4111 this will work only if all uses of the other giv's occur
4112 before this giv's insn. This is difficult to check.
4113
4114 We simplify this by looking for the common case where
4115 there is one DEST_REG giv, and this giv's insn is the
4116 last use of the dest_reg of that DEST_REG giv. If the
4117 the increment occurs after the address giv, then we can
4118 perform the optimization. (Otherwise, the increment
4119 would have to go before other_giv, and we would not be
4120 able to combine it with the address giv to get an
4121 auto-inc address.) */
4122 if (v->combined_with)
4123 {
4124 struct induction *other_giv = 0;
4125
4126 for (tv = bl->giv; tv; tv = tv->next_iv)
4127 if (tv->same == v)
4128 {
4129 if (other_giv)
4130 break;
4131 else
4132 other_giv = tv;
4133 }
4134 if (! tv && other_giv
4135 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4136 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4137 == INSN_UID (v->insn))
4138 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4139 auto_inc_opt = 1;
4140 }
4141 /* Check for case where increment is before the the address
4142 giv. Do this test in "loop order". */
4143 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4144 && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4145 || (INSN_LUID (bl->biv->insn)
4146 > INSN_LUID (scan_start))))
4147 || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4148 && (INSN_LUID (scan_start)
4149 < INSN_LUID (bl->biv->insn))))
4150 auto_inc_opt = -1;
4151 else
4152 auto_inc_opt = 1;
4153
4154 #ifdef HAVE_cc0
4155 {
4156 rtx prev;
4157
4158 /* We can't put an insn immediately after one setting
4159 cc0, or immediately before one using cc0. */
4160 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4161 || (auto_inc_opt == -1
4162 && (prev = prev_nonnote_insn (v->insn)) != 0
4163 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4164 && sets_cc0_p (PATTERN (prev))))
4165 auto_inc_opt = 0;
4166 }
4167 #endif
4168
4169 if (auto_inc_opt)
4170 v->auto_inc_opt = 1;
4171 }
4172 #endif
4173
4174 /* For each place where the biv is incremented, add an insn
4175 to increment the new, reduced reg for the giv. */
4176 for (tv = bl->biv; tv; tv = tv->next_iv)
4177 {
4178 rtx insert_before;
4179
4180 if (! auto_inc_opt)
4181 insert_before = tv->insn;
4182 else if (auto_inc_opt == 1)
4183 insert_before = NEXT_INSN (v->insn);
4184 else
4185 insert_before = v->insn;
4186
4187 if (tv->mult_val == const1_rtx)
4188 emit_iv_add_mult (tv->add_val, v->mult_val,
4189 v->new_reg, v->new_reg, insert_before);
4190 else /* tv->mult_val == const0_rtx */
4191 /* A multiply is acceptable here
4192 since this is presumed to be seldom executed. */
4193 emit_iv_add_mult (tv->add_val, v->mult_val,
4194 v->add_val, v->new_reg, insert_before);
4195 }
4196
4197 /* Add code at loop start to initialize giv's reduced reg. */
4198
4199 emit_iv_add_mult (bl->initial_value, v->mult_val,
4200 v->add_val, v->new_reg, loop_start);
4201 }
4202 }
4203
4204 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4205 as not reduced.
4206
4207 For each giv register that can be reduced now: if replaceable,
4208 substitute reduced reg wherever the old giv occurs;
4209 else add new move insn "giv_reg = reduced_reg".
4210
4211 Also check for givs whose first use is their definition and whose
4212 last use is the definition of another giv. If so, it is likely
4213 dead and should not be used to eliminate a biv. */
4214 for (v = bl->giv; v; v = v->next_iv)
4215 {
4216 if (v->same && v->same->ignore)
4217 v->ignore = 1;
4218
4219 if (v->ignore)
4220 continue;
4221
4222 if (v->giv_type == DEST_REG
4223 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4224 {
4225 struct induction *v1;
4226
4227 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4228 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4229 v->maybe_dead = 1;
4230 }
4231
4232 /* Update expression if this was combined, in case other giv was
4233 replaced. */
4234 if (v->same)
4235 v->new_reg = replace_rtx (v->new_reg,
4236 v->same->dest_reg, v->same->new_reg);
4237
4238 if (v->giv_type == DEST_ADDR)
4239 /* Store reduced reg as the address in the memref where we found
4240 this giv. */
4241 validate_change (v->insn, v->location, v->new_reg, 0);
4242 else if (v->replaceable)
4243 {
4244 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4245
4246 #if 0
4247 /* I can no longer duplicate the original problem. Perhaps
4248 this is unnecessary now? */
4249
4250 /* Replaceable; it isn't strictly necessary to delete the old
4251 insn and emit a new one, because v->dest_reg is now dead.
4252
4253 However, especially when unrolling loops, the special
4254 handling for (set REG0 REG1) in the second cse pass may
4255 make v->dest_reg live again. To avoid this problem, emit
4256 an insn to set the original giv reg from the reduced giv.
4257 We can not delete the original insn, since it may be part
4258 of a LIBCALL, and the code in flow that eliminates dead
4259 libcalls will fail if it is deleted. */
4260 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4261 v->insn);
4262 #endif
4263 }
4264 else
4265 {
4266 /* Not replaceable; emit an insn to set the original giv reg from
4267 the reduced giv, same as above. */
4268 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4269 v->insn);
4270 }
4271
4272 /* When a loop is reversed, givs which depend on the reversed
4273 biv, and which are live outside the loop, must be set to their
4274 correct final value. This insn is only needed if the giv is
4275 not replaceable. The correct final value is the same as the
4276 value that the giv starts the reversed loop with. */
4277 if (bl->reversed && ! v->replaceable)
4278 emit_iv_add_mult (bl->initial_value, v->mult_val,
4279 v->add_val, v->dest_reg, end_insert_before);
4280 else if (v->final_value)
4281 {
4282 rtx insert_before;
4283
4284 /* If the loop has multiple exits, emit the insn before the
4285 loop to ensure that it will always be executed no matter
4286 how the loop exits. Otherwise, emit the insn after the loop,
4287 since this is slightly more efficient. */
4288 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4289 insert_before = loop_start;
4290 else
4291 insert_before = end_insert_before;
4292 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4293 insert_before);
4294
4295 #if 0
4296 /* If the insn to set the final value of the giv was emitted
4297 before the loop, then we must delete the insn inside the loop
4298 that sets it. If this is a LIBCALL, then we must delete
4299 every insn in the libcall. Note, however, that
4300 final_giv_value will only succeed when there are multiple
4301 exits if the giv is dead at each exit, hence it does not
4302 matter that the original insn remains because it is dead
4303 anyways. */
4304 /* Delete the insn inside the loop that sets the giv since
4305 the giv is now set before (or after) the loop. */
4306 delete_insn (v->insn);
4307 #endif
4308 }
4309
4310 if (loop_dump_stream)
4311 {
4312 fprintf (loop_dump_stream, "giv at %d reduced to ",
4313 INSN_UID (v->insn));
4314 print_rtl (loop_dump_stream, v->new_reg);
4315 fprintf (loop_dump_stream, "\n");
4316 }
4317 }
4318
4319 /* All the givs based on the biv bl have been reduced if they
4320 merit it. */
4321
4322 /* For each giv not marked as maybe dead that has been combined with a
4323 second giv, clear any "maybe dead" mark on that second giv.
4324 v->new_reg will either be or refer to the register of the giv it
4325 combined with.
4326
4327 Doing this clearing avoids problems in biv elimination where a
4328 giv's new_reg is a complex value that can't be put in the insn but
4329 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4330 Since the register will be used in either case, we'd prefer it be
4331 used from the simpler giv. */
4332
4333 for (v = bl->giv; v; v = v->next_iv)
4334 if (! v->maybe_dead && v->same)
4335 v->same->maybe_dead = 0;
4336
4337 /* Try to eliminate the biv, if it is a candidate.
4338 This won't work if ! all_reduced,
4339 since the givs we planned to use might not have been reduced.
4340
4341 We have to be careful that we didn't initially think we could eliminate
4342 this biv because of a giv that we now think may be dead and shouldn't
4343 be used as a biv replacement.
4344
4345 Also, there is the possibility that we may have a giv that looks
4346 like it can be used to eliminate a biv, but the resulting insn
4347 isn't valid. This can happen, for example, on the 88k, where a
4348 JUMP_INSN can compare a register only with zero. Attempts to
4349 replace it with a compare with a constant will fail.
4350
4351 Note that in cases where this call fails, we may have replaced some
4352 of the occurrences of the biv with a giv, but no harm was done in
4353 doing so in the rare cases where it can occur. */
4354
4355 if (all_reduced == 1 && bl->eliminable
4356 && maybe_eliminate_biv (bl, loop_start, end, 1,
4357 threshold, insn_count))
4358
4359 {
4360 /* ?? If we created a new test to bypass the loop entirely,
4361 or otherwise drop straight in, based on this test, then
4362 we might want to rewrite it also. This way some later
4363 pass has more hope of removing the initialization of this
4364 biv entirely. */
4365
4366 /* If final_value != 0, then the biv may be used after loop end
4367 and we must emit an insn to set it just in case.
4368
4369 Reversed bivs already have an insn after the loop setting their
4370 value, so we don't need another one. We can't calculate the
4371 proper final value for such a biv here anyways. */
4372 if (final_value != 0 && ! bl->reversed)
4373 {
4374 rtx insert_before;
4375
4376 /* If the loop has multiple exits, emit the insn before the
4377 loop to ensure that it will always be executed no matter
4378 how the loop exits. Otherwise, emit the insn after the
4379 loop, since this is slightly more efficient. */
4380 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4381 insert_before = loop_start;
4382 else
4383 insert_before = end_insert_before;
4384
4385 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4386 end_insert_before);
4387 }
4388
4389 #if 0
4390 /* Delete all of the instructions inside the loop which set
4391 the biv, as they are all dead. If is safe to delete them,
4392 because an insn setting a biv will never be part of a libcall. */
4393 /* However, deleting them will invalidate the regno_last_uid info,
4394 so keeping them around is more convenient. Final_biv_value
4395 will only succeed when there are multiple exits if the biv
4396 is dead at each exit, hence it does not matter that the original
4397 insn remains, because it is dead anyways. */
4398 for (v = bl->biv; v; v = v->next_iv)
4399 delete_insn (v->insn);
4400 #endif
4401
4402 if (loop_dump_stream)
4403 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4404 bl->regno);
4405 }
4406 }
4407
4408 /* Go through all the instructions in the loop, making all the
4409 register substitutions scheduled in REG_MAP. */
4410
4411 for (p = loop_start; p != end; p = NEXT_INSN (p))
4412 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4413 || GET_CODE (p) == CALL_INSN)
4414 {
4415 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4416 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4417 INSN_CODE (p) = -1;
4418 }
4419
4420 /* Unroll loops from within strength reduction so that we can use the
4421 induction variable information that strength_reduce has already
4422 collected. */
4423
4424 if (unroll_p)
4425 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4426
4427 #ifdef HAIFA
4428 /* instrument the loop with bct insn */
4429 #ifdef HAVE_decrement_and_branch_on_count
4430 if (HAVE_decrement_and_branch_on_count)
4431 insert_bct (loop_start, loop_end);
4432 #endif
4433 #endif /* HAIFA */
4434
4435 if (loop_dump_stream)
4436 fprintf (loop_dump_stream, "\n");
4437 }
4438 \f
4439 /* Return 1 if X is a valid source for an initial value (or as value being
4440 compared against in an initial test).
4441
4442 X must be either a register or constant and must not be clobbered between
4443 the current insn and the start of the loop.
4444
4445 INSN is the insn containing X. */
4446
4447 static int
4448 valid_initial_value_p (x, insn, call_seen, loop_start)
4449 rtx x;
4450 rtx insn;
4451 int call_seen;
4452 rtx loop_start;
4453 {
4454 if (CONSTANT_P (x))
4455 return 1;
4456
4457 /* Only consider pseudos we know about initialized in insns whose luids
4458 we know. */
4459 if (GET_CODE (x) != REG
4460 || REGNO (x) >= max_reg_before_loop)
4461 return 0;
4462
4463 /* Don't use call-clobbered registers across a call which clobbers it. On
4464 some machines, don't use any hard registers at all. */
4465 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4466 && (SMALL_REGISTER_CLASSES
4467 || (call_used_regs[REGNO (x)] && call_seen)))
4468 return 0;
4469
4470 /* Don't use registers that have been clobbered before the start of the
4471 loop. */
4472 if (reg_set_between_p (x, insn, loop_start))
4473 return 0;
4474
4475 return 1;
4476 }
4477 \f
4478 /* Scan X for memory refs and check each memory address
4479 as a possible giv. INSN is the insn whose pattern X comes from.
4480 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4481 every loop iteration. */
4482
4483 static void
4484 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4485 rtx x;
4486 rtx insn;
4487 int not_every_iteration;
4488 rtx loop_start, loop_end;
4489 {
4490 register int i, j;
4491 register enum rtx_code code;
4492 register char *fmt;
4493
4494 if (x == 0)
4495 return;
4496
4497 code = GET_CODE (x);
4498 switch (code)
4499 {
4500 case REG:
4501 case CONST_INT:
4502 case CONST:
4503 case CONST_DOUBLE:
4504 case SYMBOL_REF:
4505 case LABEL_REF:
4506 case PC:
4507 case CC0:
4508 case ADDR_VEC:
4509 case ADDR_DIFF_VEC:
4510 case USE:
4511 case CLOBBER:
4512 return;
4513
4514 case MEM:
4515 {
4516 rtx src_reg;
4517 rtx add_val;
4518 rtx mult_val;
4519 int benefit;
4520
4521 benefit = general_induction_var (XEXP (x, 0),
4522 &src_reg, &add_val, &mult_val);
4523
4524 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4525 Such a giv isn't useful. */
4526 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4527 {
4528 /* Found one; record it. */
4529 struct induction *v
4530 = (struct induction *) oballoc (sizeof (struct induction));
4531
4532 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4533 add_val, benefit, DEST_ADDR, not_every_iteration,
4534 &XEXP (x, 0), loop_start, loop_end);
4535
4536 v->mem_mode = GET_MODE (x);
4537 }
4538 }
4539 return;
4540
4541 default:
4542 break;
4543 }
4544
4545 /* Recursively scan the subexpressions for other mem refs. */
4546
4547 fmt = GET_RTX_FORMAT (code);
4548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4549 if (fmt[i] == 'e')
4550 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4551 loop_end);
4552 else if (fmt[i] == 'E')
4553 for (j = 0; j < XVECLEN (x, i); j++)
4554 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4555 loop_start, loop_end);
4556 }
4557 \f
4558 /* Fill in the data about one biv update.
4559 V is the `struct induction' in which we record the biv. (It is
4560 allocated by the caller, with alloca.)
4561 INSN is the insn that sets it.
4562 DEST_REG is the biv's reg.
4563
4564 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4565 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4566 being set to INC_VAL.
4567
4568 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4569 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4570 can be executed more than once per iteration. If MAYBE_MULTIPLE
4571 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4572 executed exactly once per iteration. */
4573
4574 static void
4575 record_biv (v, insn, dest_reg, inc_val, mult_val,
4576 not_every_iteration, maybe_multiple)
4577 struct induction *v;
4578 rtx insn;
4579 rtx dest_reg;
4580 rtx inc_val;
4581 rtx mult_val;
4582 int not_every_iteration;
4583 int maybe_multiple;
4584 {
4585 struct iv_class *bl;
4586
4587 v->insn = insn;
4588 v->src_reg = dest_reg;
4589 v->dest_reg = dest_reg;
4590 v->mult_val = mult_val;
4591 v->add_val = inc_val;
4592 v->mode = GET_MODE (dest_reg);
4593 v->always_computable = ! not_every_iteration;
4594 v->always_executed = ! not_every_iteration;
4595 v->maybe_multiple = maybe_multiple;
4596
4597 /* Add this to the reg's iv_class, creating a class
4598 if this is the first incrementation of the reg. */
4599
4600 bl = reg_biv_class[REGNO (dest_reg)];
4601 if (bl == 0)
4602 {
4603 /* Create and initialize new iv_class. */
4604
4605 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4606
4607 bl->regno = REGNO (dest_reg);
4608 bl->biv = 0;
4609 bl->giv = 0;
4610 bl->biv_count = 0;
4611 bl->giv_count = 0;
4612
4613 /* Set initial value to the reg itself. */
4614 bl->initial_value = dest_reg;
4615 /* We haven't seen the initializing insn yet */
4616 bl->init_insn = 0;
4617 bl->init_set = 0;
4618 bl->initial_test = 0;
4619 bl->incremented = 0;
4620 bl->eliminable = 0;
4621 bl->nonneg = 0;
4622 bl->reversed = 0;
4623 bl->total_benefit = 0;
4624
4625 /* Add this class to loop_iv_list. */
4626 bl->next = loop_iv_list;
4627 loop_iv_list = bl;
4628
4629 /* Put it in the array of biv register classes. */
4630 reg_biv_class[REGNO (dest_reg)] = bl;
4631 }
4632
4633 /* Update IV_CLASS entry for this biv. */
4634 v->next_iv = bl->biv;
4635 bl->biv = v;
4636 bl->biv_count++;
4637 if (mult_val == const1_rtx)
4638 bl->incremented = 1;
4639
4640 if (loop_dump_stream)
4641 {
4642 fprintf (loop_dump_stream,
4643 "Insn %d: possible biv, reg %d,",
4644 INSN_UID (insn), REGNO (dest_reg));
4645 if (GET_CODE (inc_val) == CONST_INT)
4646 {
4647 fprintf (loop_dump_stream, " const =");
4648 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
4649 fputc ('\n', loop_dump_stream);
4650 }
4651 else
4652 {
4653 fprintf (loop_dump_stream, " const = ");
4654 print_rtl (loop_dump_stream, inc_val);
4655 fprintf (loop_dump_stream, "\n");
4656 }
4657 }
4658 }
4659 \f
4660 /* Fill in the data about one giv.
4661 V is the `struct induction' in which we record the giv. (It is
4662 allocated by the caller, with alloca.)
4663 INSN is the insn that sets it.
4664 BENEFIT estimates the savings from deleting this insn.
4665 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4666 into a register or is used as a memory address.
4667
4668 SRC_REG is the biv reg which the giv is computed from.
4669 DEST_REG is the giv's reg (if the giv is stored in a reg).
4670 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4671 LOCATION points to the place where this giv's value appears in INSN. */
4672
4673 static void
4674 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4675 type, not_every_iteration, location, loop_start, loop_end)
4676 struct induction *v;
4677 rtx insn;
4678 rtx src_reg;
4679 rtx dest_reg;
4680 rtx mult_val, add_val;
4681 int benefit;
4682 enum g_types type;
4683 int not_every_iteration;
4684 rtx *location;
4685 rtx loop_start, loop_end;
4686 {
4687 struct induction *b;
4688 struct iv_class *bl;
4689 rtx set = single_set (insn);
4690
4691 v->insn = insn;
4692 v->src_reg = src_reg;
4693 v->giv_type = type;
4694 v->dest_reg = dest_reg;
4695 v->mult_val = mult_val;
4696 v->add_val = add_val;
4697 v->benefit = benefit;
4698 v->location = location;
4699 v->cant_derive = 0;
4700 v->combined_with = 0;
4701 v->maybe_multiple = 0;
4702 v->maybe_dead = 0;
4703 v->derive_adjustment = 0;
4704 v->same = 0;
4705 v->ignore = 0;
4706 v->new_reg = 0;
4707 v->final_value = 0;
4708 v->same_insn = 0;
4709 v->auto_inc_opt = 0;
4710 v->unrolled = 0;
4711 v->shared = 0;
4712
4713 /* The v->always_computable field is used in update_giv_derive, to
4714 determine whether a giv can be used to derive another giv. For a
4715 DEST_REG giv, INSN computes a new value for the giv, so its value
4716 isn't computable if INSN insn't executed every iteration.
4717 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4718 it does not compute a new value. Hence the value is always computable
4719 regardless of whether INSN is executed each iteration. */
4720
4721 if (type == DEST_ADDR)
4722 v->always_computable = 1;
4723 else
4724 v->always_computable = ! not_every_iteration;
4725
4726 v->always_executed = ! not_every_iteration;
4727
4728 if (type == DEST_ADDR)
4729 {
4730 v->mode = GET_MODE (*location);
4731 v->lifetime = 1;
4732 v->times_used = 1;
4733 }
4734 else /* type == DEST_REG */
4735 {
4736 v->mode = GET_MODE (SET_DEST (set));
4737
4738 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4739 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4740
4741 v->times_used = n_times_used[REGNO (dest_reg)];
4742
4743 /* If the lifetime is zero, it means that this register is
4744 really a dead store. So mark this as a giv that can be
4745 ignored. This will not prevent the biv from being eliminated. */
4746 if (v->lifetime == 0)
4747 v->ignore = 1;
4748
4749 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4750 reg_iv_info[REGNO (dest_reg)] = v;
4751 }
4752
4753 /* Add the giv to the class of givs computed from one biv. */
4754
4755 bl = reg_biv_class[REGNO (src_reg)];
4756 if (bl)
4757 {
4758 v->next_iv = bl->giv;
4759 bl->giv = v;
4760 /* Don't count DEST_ADDR. This is supposed to count the number of
4761 insns that calculate givs. */
4762 if (type == DEST_REG)
4763 bl->giv_count++;
4764 bl->total_benefit += benefit;
4765 }
4766 else
4767 /* Fatal error, biv missing for this giv? */
4768 abort ();
4769
4770 if (type == DEST_ADDR)
4771 v->replaceable = 1;
4772 else
4773 {
4774 /* The giv can be replaced outright by the reduced register only if all
4775 of the following conditions are true:
4776 - the insn that sets the giv is always executed on any iteration
4777 on which the giv is used at all
4778 (there are two ways to deduce this:
4779 either the insn is executed on every iteration,
4780 or all uses follow that insn in the same basic block),
4781 - the giv is not used outside the loop
4782 - no assignments to the biv occur during the giv's lifetime. */
4783
4784 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4785 /* Previous line always fails if INSN was moved by loop opt. */
4786 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4787 && (! not_every_iteration
4788 || last_use_this_basic_block (dest_reg, insn)))
4789 {
4790 /* Now check that there are no assignments to the biv within the
4791 giv's lifetime. This requires two separate checks. */
4792
4793 /* Check each biv update, and fail if any are between the first
4794 and last use of the giv.
4795
4796 If this loop contains an inner loop that was unrolled, then
4797 the insn modifying the biv may have been emitted by the loop
4798 unrolling code, and hence does not have a valid luid. Just
4799 mark the biv as not replaceable in this case. It is not very
4800 useful as a biv, because it is used in two different loops.
4801 It is very unlikely that we would be able to optimize the giv
4802 using this biv anyways. */
4803
4804 v->replaceable = 1;
4805 for (b = bl->biv; b; b = b->next_iv)
4806 {
4807 if (INSN_UID (b->insn) >= max_uid_for_loop
4808 || ((uid_luid[INSN_UID (b->insn)]
4809 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4810 && (uid_luid[INSN_UID (b->insn)]
4811 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4812 {
4813 v->replaceable = 0;
4814 v->not_replaceable = 1;
4815 break;
4816 }
4817 }
4818
4819 /* If there are any backwards branches that go from after the
4820 biv update to before it, then this giv is not replaceable. */
4821 if (v->replaceable)
4822 for (b = bl->biv; b; b = b->next_iv)
4823 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4824 {
4825 v->replaceable = 0;
4826 v->not_replaceable = 1;
4827 break;
4828 }
4829 }
4830 else
4831 {
4832 /* May still be replaceable, we don't have enough info here to
4833 decide. */
4834 v->replaceable = 0;
4835 v->not_replaceable = 0;
4836 }
4837 }
4838
4839 if (loop_dump_stream)
4840 {
4841 if (type == DEST_REG)
4842 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4843 INSN_UID (insn), REGNO (dest_reg));
4844 else
4845 fprintf (loop_dump_stream, "Insn %d: dest address",
4846 INSN_UID (insn));
4847
4848 fprintf (loop_dump_stream, " src reg %d benefit %d",
4849 REGNO (src_reg), v->benefit);
4850 fprintf (loop_dump_stream, " used %d lifetime %d",
4851 v->times_used, v->lifetime);
4852
4853 if (v->replaceable)
4854 fprintf (loop_dump_stream, " replaceable");
4855
4856 if (GET_CODE (mult_val) == CONST_INT)
4857 {
4858 fprintf (loop_dump_stream, " mult ");
4859 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
4860 }
4861 else
4862 {
4863 fprintf (loop_dump_stream, " mult ");
4864 print_rtl (loop_dump_stream, mult_val);
4865 }
4866
4867 if (GET_CODE (add_val) == CONST_INT)
4868 {
4869 fprintf (loop_dump_stream, " add ");
4870 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
4871 }
4872 else
4873 {
4874 fprintf (loop_dump_stream, " add ");
4875 print_rtl (loop_dump_stream, add_val);
4876 }
4877 }
4878
4879 if (loop_dump_stream)
4880 fprintf (loop_dump_stream, "\n");
4881
4882 }
4883
4884
4885 /* All this does is determine whether a giv can be made replaceable because
4886 its final value can be calculated. This code can not be part of record_giv
4887 above, because final_giv_value requires that the number of loop iterations
4888 be known, and that can not be accurately calculated until after all givs
4889 have been identified. */
4890
4891 static void
4892 check_final_value (v, loop_start, loop_end)
4893 struct induction *v;
4894 rtx loop_start, loop_end;
4895 {
4896 struct iv_class *bl;
4897 rtx final_value = 0;
4898
4899 bl = reg_biv_class[REGNO (v->src_reg)];
4900
4901 /* DEST_ADDR givs will never reach here, because they are always marked
4902 replaceable above in record_giv. */
4903
4904 /* The giv can be replaced outright by the reduced register only if all
4905 of the following conditions are true:
4906 - the insn that sets the giv is always executed on any iteration
4907 on which the giv is used at all
4908 (there are two ways to deduce this:
4909 either the insn is executed on every iteration,
4910 or all uses follow that insn in the same basic block),
4911 - its final value can be calculated (this condition is different
4912 than the one above in record_giv)
4913 - no assignments to the biv occur during the giv's lifetime. */
4914
4915 #if 0
4916 /* This is only called now when replaceable is known to be false. */
4917 /* Clear replaceable, so that it won't confuse final_giv_value. */
4918 v->replaceable = 0;
4919 #endif
4920
4921 if ((final_value = final_giv_value (v, loop_start, loop_end))
4922 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4923 {
4924 int biv_increment_seen = 0;
4925 rtx p = v->insn;
4926 rtx last_giv_use;
4927
4928 v->replaceable = 1;
4929
4930 /* When trying to determine whether or not a biv increment occurs
4931 during the lifetime of the giv, we can ignore uses of the variable
4932 outside the loop because final_value is true. Hence we can not
4933 use regno_last_uid and regno_first_uid as above in record_giv. */
4934
4935 /* Search the loop to determine whether any assignments to the
4936 biv occur during the giv's lifetime. Start with the insn
4937 that sets the giv, and search around the loop until we come
4938 back to that insn again.
4939
4940 Also fail if there is a jump within the giv's lifetime that jumps
4941 to somewhere outside the lifetime but still within the loop. This
4942 catches spaghetti code where the execution order is not linear, and
4943 hence the above test fails. Here we assume that the giv lifetime
4944 does not extend from one iteration of the loop to the next, so as
4945 to make the test easier. Since the lifetime isn't known yet,
4946 this requires two loops. See also record_giv above. */
4947
4948 last_giv_use = v->insn;
4949
4950 while (1)
4951 {
4952 p = NEXT_INSN (p);
4953 if (p == loop_end)
4954 p = NEXT_INSN (loop_start);
4955 if (p == v->insn)
4956 break;
4957
4958 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4959 || GET_CODE (p) == CALL_INSN)
4960 {
4961 if (biv_increment_seen)
4962 {
4963 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4964 {
4965 v->replaceable = 0;
4966 v->not_replaceable = 1;
4967 break;
4968 }
4969 }
4970 else if (reg_set_p (v->src_reg, PATTERN (p)))
4971 biv_increment_seen = 1;
4972 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4973 last_giv_use = p;
4974 }
4975 }
4976
4977 /* Now that the lifetime of the giv is known, check for branches
4978 from within the lifetime to outside the lifetime if it is still
4979 replaceable. */
4980
4981 if (v->replaceable)
4982 {
4983 p = v->insn;
4984 while (1)
4985 {
4986 p = NEXT_INSN (p);
4987 if (p == loop_end)
4988 p = NEXT_INSN (loop_start);
4989 if (p == last_giv_use)
4990 break;
4991
4992 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4993 && LABEL_NAME (JUMP_LABEL (p))
4994 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4995 || (INSN_UID (v->insn) >= max_uid_for_loop)
4996 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4997 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4998 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4999 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
5000 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
5001 {
5002 v->replaceable = 0;
5003 v->not_replaceable = 1;
5004
5005 if (loop_dump_stream)
5006 fprintf (loop_dump_stream,
5007 "Found branch outside giv lifetime.\n");
5008
5009 break;
5010 }
5011 }
5012 }
5013
5014 /* If it is replaceable, then save the final value. */
5015 if (v->replaceable)
5016 v->final_value = final_value;
5017 }
5018
5019 if (loop_dump_stream && v->replaceable)
5020 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5021 INSN_UID (v->insn), REGNO (v->dest_reg));
5022 }
5023 \f
5024 /* Update the status of whether a giv can derive other givs.
5025
5026 We need to do something special if there is or may be an update to the biv
5027 between the time the giv is defined and the time it is used to derive
5028 another giv.
5029
5030 In addition, a giv that is only conditionally set is not allowed to
5031 derive another giv once a label has been passed.
5032
5033 The cases we look at are when a label or an update to a biv is passed. */
5034
5035 static void
5036 update_giv_derive (p)
5037 rtx p;
5038 {
5039 struct iv_class *bl;
5040 struct induction *biv, *giv;
5041 rtx tem;
5042 int dummy;
5043
5044 /* Search all IV classes, then all bivs, and finally all givs.
5045
5046 There are three cases we are concerned with. First we have the situation
5047 of a giv that is only updated conditionally. In that case, it may not
5048 derive any givs after a label is passed.
5049
5050 The second case is when a biv update occurs, or may occur, after the
5051 definition of a giv. For certain biv updates (see below) that are
5052 known to occur between the giv definition and use, we can adjust the
5053 giv definition. For others, or when the biv update is conditional,
5054 we must prevent the giv from deriving any other givs. There are two
5055 sub-cases within this case.
5056
5057 If this is a label, we are concerned with any biv update that is done
5058 conditionally, since it may be done after the giv is defined followed by
5059 a branch here (actually, we need to pass both a jump and a label, but
5060 this extra tracking doesn't seem worth it).
5061
5062 If this is a jump, we are concerned about any biv update that may be
5063 executed multiple times. We are actually only concerned about
5064 backward jumps, but it is probably not worth performing the test
5065 on the jump again here.
5066
5067 If this is a biv update, we must adjust the giv status to show that a
5068 subsequent biv update was performed. If this adjustment cannot be done,
5069 the giv cannot derive further givs. */
5070
5071 for (bl = loop_iv_list; bl; bl = bl->next)
5072 for (biv = bl->biv; biv; biv = biv->next_iv)
5073 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5074 || biv->insn == p)
5075 {
5076 for (giv = bl->giv; giv; giv = giv->next_iv)
5077 {
5078 /* If cant_derive is already true, there is no point in
5079 checking all of these conditions again. */
5080 if (giv->cant_derive)
5081 continue;
5082
5083 /* If this giv is conditionally set and we have passed a label,
5084 it cannot derive anything. */
5085 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5086 giv->cant_derive = 1;
5087
5088 /* Skip givs that have mult_val == 0, since
5089 they are really invariants. Also skip those that are
5090 replaceable, since we know their lifetime doesn't contain
5091 any biv update. */
5092 else if (giv->mult_val == const0_rtx || giv->replaceable)
5093 continue;
5094
5095 /* The only way we can allow this giv to derive another
5096 is if this is a biv increment and we can form the product
5097 of biv->add_val and giv->mult_val. In this case, we will
5098 be able to compute a compensation. */
5099 else if (biv->insn == p)
5100 {
5101 tem = 0;
5102
5103 if (biv->mult_val == const1_rtx)
5104 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5105 biv->add_val,
5106 giv->mult_val),
5107 &dummy);
5108
5109 if (tem && giv->derive_adjustment)
5110 tem = simplify_giv_expr (gen_rtx_PLUS (giv->mode, tem,
5111 giv->derive_adjustment),
5112 &dummy);
5113 if (tem)
5114 giv->derive_adjustment = tem;
5115 else
5116 giv->cant_derive = 1;
5117 }
5118 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5119 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5120 giv->cant_derive = 1;
5121 }
5122 }
5123 }
5124 \f
5125 /* Check whether an insn is an increment legitimate for a basic induction var.
5126 X is the source of insn P, or a part of it.
5127 MODE is the mode in which X should be interpreted.
5128
5129 DEST_REG is the putative biv, also the destination of the insn.
5130 We accept patterns of these forms:
5131 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5132 REG = INVARIANT + REG
5133
5134 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5135 and store the additive term into *INC_VAL.
5136
5137 If X is an assignment of an invariant into DEST_REG, we set
5138 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5139
5140 We also want to detect a BIV when it corresponds to a variable
5141 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5142 of the variable may be a PLUS that adds a SUBREG of that variable to
5143 an invariant and then sign- or zero-extends the result of the PLUS
5144 into the variable.
5145
5146 Most GIVs in such cases will be in the promoted mode, since that is the
5147 probably the natural computation mode (and almost certainly the mode
5148 used for addresses) on the machine. So we view the pseudo-reg containing
5149 the variable as the BIV, as if it were simply incremented.
5150
5151 Note that treating the entire pseudo as a BIV will result in making
5152 simple increments to any GIVs based on it. However, if the variable
5153 overflows in its declared mode but not its promoted mode, the result will
5154 be incorrect. This is acceptable if the variable is signed, since
5155 overflows in such cases are undefined, but not if it is unsigned, since
5156 those overflows are defined. So we only check for SIGN_EXTEND and
5157 not ZERO_EXTEND.
5158
5159 If we cannot find a biv, we return 0. */
5160
5161 static int
5162 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5163 register rtx x;
5164 enum machine_mode mode;
5165 rtx p;
5166 rtx dest_reg;
5167 rtx *inc_val;
5168 rtx *mult_val;
5169 {
5170 register enum rtx_code code;
5171 rtx arg;
5172 rtx insn, set = 0;
5173
5174 code = GET_CODE (x);
5175 switch (code)
5176 {
5177 case PLUS:
5178 if (XEXP (x, 0) == dest_reg
5179 || (GET_CODE (XEXP (x, 0)) == SUBREG
5180 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5181 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5182 arg = XEXP (x, 1);
5183 else if (XEXP (x, 1) == dest_reg
5184 || (GET_CODE (XEXP (x, 1)) == SUBREG
5185 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5186 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5187 arg = XEXP (x, 0);
5188 else
5189 return 0;
5190
5191 if (invariant_p (arg) != 1)
5192 return 0;
5193
5194 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5195 *mult_val = const1_rtx;
5196 return 1;
5197
5198 case SUBREG:
5199 /* If this is a SUBREG for a promoted variable, check the inner
5200 value. */
5201 if (SUBREG_PROMOTED_VAR_P (x))
5202 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5203 dest_reg, p, inc_val, mult_val);
5204 return 0;
5205
5206 case REG:
5207 /* If this register is assigned in the previous insn, look at its
5208 source, but don't go outside the loop or past a label. */
5209
5210 for (insn = PREV_INSN (p);
5211 (insn && GET_CODE (insn) == NOTE
5212 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5213 insn = PREV_INSN (insn))
5214 ;
5215
5216 if (insn)
5217 set = single_set (insn);
5218
5219 if (set != 0
5220 && (SET_DEST (set) == x
5221 || (GET_CODE (SET_DEST (set)) == SUBREG
5222 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5223 <= UNITS_PER_WORD)
5224 && SUBREG_REG (SET_DEST (set)) == x)))
5225 return basic_induction_var (SET_SRC (set),
5226 (GET_MODE (SET_SRC (set)) == VOIDmode
5227 ? GET_MODE (x)
5228 : GET_MODE (SET_SRC (set))),
5229 dest_reg, insn,
5230 inc_val, mult_val);
5231 /* ... fall through ... */
5232
5233 /* Can accept constant setting of biv only when inside inner most loop.
5234 Otherwise, a biv of an inner loop may be incorrectly recognized
5235 as a biv of the outer loop,
5236 causing code to be moved INTO the inner loop. */
5237 case MEM:
5238 if (invariant_p (x) != 1)
5239 return 0;
5240 case CONST_INT:
5241 case SYMBOL_REF:
5242 case CONST:
5243 if (loops_enclosed == 1)
5244 {
5245 /* Possible bug here? Perhaps we don't know the mode of X. */
5246 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5247 *mult_val = const0_rtx;
5248 return 1;
5249 }
5250 else
5251 return 0;
5252
5253 case SIGN_EXTEND:
5254 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5255 dest_reg, p, inc_val, mult_val);
5256 case ASHIFTRT:
5257 /* Similar, since this can be a sign extension. */
5258 for (insn = PREV_INSN (p);
5259 (insn && GET_CODE (insn) == NOTE
5260 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5261 insn = PREV_INSN (insn))
5262 ;
5263
5264 if (insn)
5265 set = single_set (insn);
5266
5267 if (set && SET_DEST (set) == XEXP (x, 0)
5268 && GET_CODE (XEXP (x, 1)) == CONST_INT
5269 && INTVAL (XEXP (x, 1)) >= 0
5270 && GET_CODE (SET_SRC (set)) == ASHIFT
5271 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5272 return basic_induction_var (XEXP (SET_SRC (set), 0),
5273 GET_MODE (XEXP (x, 0)),
5274 dest_reg, insn, inc_val, mult_val);
5275 return 0;
5276
5277 default:
5278 return 0;
5279 }
5280 }
5281 \f
5282 /* A general induction variable (giv) is any quantity that is a linear
5283 function of a basic induction variable,
5284 i.e. giv = biv * mult_val + add_val.
5285 The coefficients can be any loop invariant quantity.
5286 A giv need not be computed directly from the biv;
5287 it can be computed by way of other givs. */
5288
5289 /* Determine whether X computes a giv.
5290 If it does, return a nonzero value
5291 which is the benefit from eliminating the computation of X;
5292 set *SRC_REG to the register of the biv that it is computed from;
5293 set *ADD_VAL and *MULT_VAL to the coefficients,
5294 such that the value of X is biv * mult + add; */
5295
5296 static int
5297 general_induction_var (x, src_reg, add_val, mult_val)
5298 rtx x;
5299 rtx *src_reg;
5300 rtx *add_val;
5301 rtx *mult_val;
5302 {
5303 rtx orig_x = x;
5304 int benefit = 0;
5305 char *storage;
5306
5307 /* If this is an invariant, forget it, it isn't a giv. */
5308 if (invariant_p (x) == 1)
5309 return 0;
5310
5311 /* See if the expression could be a giv and get its form.
5312 Mark our place on the obstack in case we don't find a giv. */
5313 storage = (char *) oballoc (0);
5314 x = simplify_giv_expr (x, &benefit);
5315 if (x == 0)
5316 {
5317 obfree (storage);
5318 return 0;
5319 }
5320
5321 switch (GET_CODE (x))
5322 {
5323 case USE:
5324 case CONST_INT:
5325 /* Since this is now an invariant and wasn't before, it must be a giv
5326 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5327 with. */
5328 *src_reg = loop_iv_list->biv->dest_reg;
5329 *mult_val = const0_rtx;
5330 *add_val = x;
5331 break;
5332
5333 case REG:
5334 /* This is equivalent to a BIV. */
5335 *src_reg = x;
5336 *mult_val = const1_rtx;
5337 *add_val = const0_rtx;
5338 break;
5339
5340 case PLUS:
5341 /* Either (plus (biv) (invar)) or
5342 (plus (mult (biv) (invar_1)) (invar_2)). */
5343 if (GET_CODE (XEXP (x, 0)) == MULT)
5344 {
5345 *src_reg = XEXP (XEXP (x, 0), 0);
5346 *mult_val = XEXP (XEXP (x, 0), 1);
5347 }
5348 else
5349 {
5350 *src_reg = XEXP (x, 0);
5351 *mult_val = const1_rtx;
5352 }
5353 *add_val = XEXP (x, 1);
5354 break;
5355
5356 case MULT:
5357 /* ADD_VAL is zero. */
5358 *src_reg = XEXP (x, 0);
5359 *mult_val = XEXP (x, 1);
5360 *add_val = const0_rtx;
5361 break;
5362
5363 default:
5364 abort ();
5365 }
5366
5367 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5368 unless they are CONST_INT). */
5369 if (GET_CODE (*add_val) == USE)
5370 *add_val = XEXP (*add_val, 0);
5371 if (GET_CODE (*mult_val) == USE)
5372 *mult_val = XEXP (*mult_val, 0);
5373
5374 benefit += rtx_cost (orig_x, SET);
5375
5376 /* Always return some benefit if this is a giv so it will be detected
5377 as such. This allows elimination of bivs that might otherwise
5378 not be eliminated. */
5379 return benefit == 0 ? 1 : benefit;
5380 }
5381 \f
5382 /* Given an expression, X, try to form it as a linear function of a biv.
5383 We will canonicalize it to be of the form
5384 (plus (mult (BIV) (invar_1))
5385 (invar_2))
5386 with possible degeneracies.
5387
5388 The invariant expressions must each be of a form that can be used as a
5389 machine operand. We surround then with a USE rtx (a hack, but localized
5390 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5391 routine; it is the caller's responsibility to strip them.
5392
5393 If no such canonicalization is possible (i.e., two biv's are used or an
5394 expression that is neither invariant nor a biv or giv), this routine
5395 returns 0.
5396
5397 For a non-zero return, the result will have a code of CONST_INT, USE,
5398 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5399
5400 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5401
5402 static rtx
5403 simplify_giv_expr (x, benefit)
5404 rtx x;
5405 int *benefit;
5406 {
5407 enum machine_mode mode = GET_MODE (x);
5408 rtx arg0, arg1;
5409 rtx tem;
5410
5411 /* If this is not an integer mode, or if we cannot do arithmetic in this
5412 mode, this can't be a giv. */
5413 if (mode != VOIDmode
5414 && (GET_MODE_CLASS (mode) != MODE_INT
5415 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5416 return 0;
5417
5418 switch (GET_CODE (x))
5419 {
5420 case PLUS:
5421 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5422 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5423 if (arg0 == 0 || arg1 == 0)
5424 return 0;
5425
5426 /* Put constant last, CONST_INT last if both constant. */
5427 if ((GET_CODE (arg0) == USE
5428 || GET_CODE (arg0) == CONST_INT)
5429 && GET_CODE (arg1) != CONST_INT)
5430 tem = arg0, arg0 = arg1, arg1 = tem;
5431
5432 /* Handle addition of zero, then addition of an invariant. */
5433 if (arg1 == const0_rtx)
5434 return arg0;
5435 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5436 switch (GET_CODE (arg0))
5437 {
5438 case CONST_INT:
5439 case USE:
5440 /* Both invariant. Only valid if sum is machine operand.
5441 First strip off possible USE on the operands. */
5442 if (GET_CODE (arg0) == USE)
5443 arg0 = XEXP (arg0, 0);
5444
5445 if (GET_CODE (arg1) == USE)
5446 arg1 = XEXP (arg1, 0);
5447
5448 tem = 0;
5449 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5450 {
5451 tem = plus_constant (arg0, INTVAL (arg1));
5452 if (GET_CODE (tem) != CONST_INT)
5453 tem = gen_rtx_USE (mode, tem);
5454 }
5455 else
5456 {
5457 /* Adding two invariants must result in an invariant,
5458 so enclose addition operation inside a USE and
5459 return it. */
5460 tem = gen_rtx_USE (mode, gen_rtx_PLUS (mode, arg0, arg1));
5461 }
5462
5463 return tem;
5464
5465 case REG:
5466 case MULT:
5467 /* biv + invar or mult + invar. Return sum. */
5468 return gen_rtx_PLUS (mode, arg0, arg1);
5469
5470 case PLUS:
5471 /* (a + invar_1) + invar_2. Associate. */
5472 return simplify_giv_expr (gen_rtx_PLUS (mode,
5473 XEXP (arg0, 0),
5474 gen_rtx_PLUS (mode,
5475 XEXP (arg0, 1), arg1)),
5476 benefit);
5477
5478 default:
5479 abort ();
5480 }
5481
5482 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5483 MULT to reduce cases. */
5484 if (GET_CODE (arg0) == REG)
5485 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
5486 if (GET_CODE (arg1) == REG)
5487 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
5488
5489 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5490 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5491 Recurse to associate the second PLUS. */
5492 if (GET_CODE (arg1) == MULT)
5493 tem = arg0, arg0 = arg1, arg1 = tem;
5494
5495 if (GET_CODE (arg1) == PLUS)
5496 return simplify_giv_expr (gen_rtx_PLUS (mode,
5497 gen_rtx_PLUS (mode, arg0,
5498 XEXP (arg1, 0)),
5499 XEXP (arg1, 1)),
5500 benefit);
5501
5502 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5503 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5504 abort ();
5505
5506 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5507 return 0;
5508
5509 return simplify_giv_expr (gen_rtx_MULT (mode,
5510 XEXP (arg0, 0),
5511 gen_rtx_PLUS (mode,
5512 XEXP (arg0, 1),
5513 XEXP (arg1, 1))),
5514 benefit);
5515
5516 case MINUS:
5517 /* Handle "a - b" as "a + b * (-1)". */
5518 return simplify_giv_expr (gen_rtx_PLUS (mode,
5519 XEXP (x, 0),
5520 gen_rtx_MULT (mode, XEXP (x, 1),
5521 constm1_rtx)),
5522 benefit);
5523
5524 case MULT:
5525 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5526 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5527 if (arg0 == 0 || arg1 == 0)
5528 return 0;
5529
5530 /* Put constant last, CONST_INT last if both constant. */
5531 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5532 && GET_CODE (arg1) != CONST_INT)
5533 tem = arg0, arg0 = arg1, arg1 = tem;
5534
5535 /* If second argument is not now constant, not giv. */
5536 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5537 return 0;
5538
5539 /* Handle multiply by 0 or 1. */
5540 if (arg1 == const0_rtx)
5541 return const0_rtx;
5542
5543 else if (arg1 == const1_rtx)
5544 return arg0;
5545
5546 switch (GET_CODE (arg0))
5547 {
5548 case REG:
5549 /* biv * invar. Done. */
5550 return gen_rtx_MULT (mode, arg0, arg1);
5551
5552 case CONST_INT:
5553 /* Product of two constants. */
5554 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5555
5556 case USE:
5557 /* invar * invar. Not giv. */
5558 return 0;
5559
5560 case MULT:
5561 /* (a * invar_1) * invar_2. Associate. */
5562 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (arg0, 0),
5563 gen_rtx_MULT (mode,
5564 XEXP (arg0, 1),
5565 arg1)),
5566 benefit);
5567
5568 case PLUS:
5569 /* (a + invar_1) * invar_2. Distribute. */
5570 return simplify_giv_expr (gen_rtx_PLUS (mode,
5571 gen_rtx_MULT (mode,
5572 XEXP (arg0, 0),
5573 arg1),
5574 gen_rtx_MULT (mode,
5575 XEXP (arg0, 1),
5576 arg1)),
5577 benefit);
5578
5579 default:
5580 abort ();
5581 }
5582
5583 case ASHIFT:
5584 /* Shift by constant is multiply by power of two. */
5585 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5586 return 0;
5587
5588 return simplify_giv_expr (gen_rtx_MULT (mode,
5589 XEXP (x, 0),
5590 GEN_INT ((HOST_WIDE_INT) 1
5591 << INTVAL (XEXP (x, 1)))),
5592 benefit);
5593
5594 case NEG:
5595 /* "-a" is "a * (-1)" */
5596 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
5597 benefit);
5598
5599 case NOT:
5600 /* "~a" is "-a - 1". Silly, but easy. */
5601 return simplify_giv_expr (gen_rtx_MINUS (mode,
5602 gen_rtx_NEG (mode, XEXP (x, 0)),
5603 const1_rtx),
5604 benefit);
5605
5606 case USE:
5607 /* Already in proper form for invariant. */
5608 return x;
5609
5610 case REG:
5611 /* If this is a new register, we can't deal with it. */
5612 if (REGNO (x) >= max_reg_before_loop)
5613 return 0;
5614
5615 /* Check for biv or giv. */
5616 switch (reg_iv_type[REGNO (x)])
5617 {
5618 case BASIC_INDUCT:
5619 return x;
5620 case GENERAL_INDUCT:
5621 {
5622 struct induction *v = reg_iv_info[REGNO (x)];
5623
5624 /* Form expression from giv and add benefit. Ensure this giv
5625 can derive another and subtract any needed adjustment if so. */
5626 *benefit += v->benefit;
5627 if (v->cant_derive)
5628 return 0;
5629
5630 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode, v->src_reg,
5631 v->mult_val),
5632 v->add_val);
5633 if (v->derive_adjustment)
5634 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
5635 return simplify_giv_expr (tem, benefit);
5636 }
5637
5638 default:
5639 break;
5640 }
5641
5642 /* Fall through to general case. */
5643 default:
5644 /* If invariant, return as USE (unless CONST_INT).
5645 Otherwise, not giv. */
5646 if (GET_CODE (x) == USE)
5647 x = XEXP (x, 0);
5648
5649 if (invariant_p (x) == 1)
5650 {
5651 if (GET_CODE (x) == CONST_INT)
5652 return x;
5653 else
5654 return gen_rtx_USE (mode, x);
5655 }
5656 else
5657 return 0;
5658 }
5659 }
5660 \f
5661 /* Help detect a giv that is calculated by several consecutive insns;
5662 for example,
5663 giv = biv * M
5664 giv = giv + A
5665 The caller has already identified the first insn P as having a giv as dest;
5666 we check that all other insns that set the same register follow
5667 immediately after P, that they alter nothing else,
5668 and that the result of the last is still a giv.
5669
5670 The value is 0 if the reg set in P is not really a giv.
5671 Otherwise, the value is the amount gained by eliminating
5672 all the consecutive insns that compute the value.
5673
5674 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5675 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5676
5677 The coefficients of the ultimate giv value are stored in
5678 *MULT_VAL and *ADD_VAL. */
5679
5680 static int
5681 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5682 add_val, mult_val)
5683 int first_benefit;
5684 rtx p;
5685 rtx src_reg;
5686 rtx dest_reg;
5687 rtx *add_val;
5688 rtx *mult_val;
5689 {
5690 int count;
5691 enum rtx_code code;
5692 int benefit;
5693 rtx temp;
5694 rtx set;
5695
5696 /* Indicate that this is a giv so that we can update the value produced in
5697 each insn of the multi-insn sequence.
5698
5699 This induction structure will be used only by the call to
5700 general_induction_var below, so we can allocate it on our stack.
5701 If this is a giv, our caller will replace the induct var entry with
5702 a new induction structure. */
5703 struct induction *v
5704 = (struct induction *) alloca (sizeof (struct induction));
5705 v->src_reg = src_reg;
5706 v->mult_val = *mult_val;
5707 v->add_val = *add_val;
5708 v->benefit = first_benefit;
5709 v->cant_derive = 0;
5710 v->derive_adjustment = 0;
5711
5712 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5713 reg_iv_info[REGNO (dest_reg)] = v;
5714
5715 count = n_times_set[REGNO (dest_reg)] - 1;
5716
5717 while (count > 0)
5718 {
5719 p = NEXT_INSN (p);
5720 code = GET_CODE (p);
5721
5722 /* If libcall, skip to end of call sequence. */
5723 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5724 p = XEXP (temp, 0);
5725
5726 if (code == INSN
5727 && (set = single_set (p))
5728 && GET_CODE (SET_DEST (set)) == REG
5729 && SET_DEST (set) == dest_reg
5730 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5731 add_val, mult_val))
5732 /* Giv created by equivalent expression. */
5733 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5734 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5735 add_val, mult_val))))
5736 && src_reg == v->src_reg)
5737 {
5738 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5739 benefit += libcall_benefit (p);
5740
5741 count--;
5742 v->mult_val = *mult_val;
5743 v->add_val = *add_val;
5744 v->benefit = benefit;
5745 }
5746 else if (code != NOTE)
5747 {
5748 /* Allow insns that set something other than this giv to a
5749 constant. Such insns are needed on machines which cannot
5750 include long constants and should not disqualify a giv. */
5751 if (code == INSN
5752 && (set = single_set (p))
5753 && SET_DEST (set) != dest_reg
5754 && CONSTANT_P (SET_SRC (set)))
5755 continue;
5756
5757 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5758 return 0;
5759 }
5760 }
5761
5762 return v->benefit;
5763 }
5764 \f
5765 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5766 represented by G1. If no such expression can be found, or it is clear that
5767 it cannot possibly be a valid address, 0 is returned.
5768
5769 To perform the computation, we note that
5770 G1 = a * v + b and
5771 G2 = c * v + d
5772 where `v' is the biv.
5773
5774 So G2 = (c/a) * G1 + (d - b*c/a) */
5775
5776 #ifdef ADDRESS_COST
5777 static rtx
5778 express_from (g1, g2)
5779 struct induction *g1, *g2;
5780 {
5781 rtx mult, add;
5782
5783 /* The value that G1 will be multiplied by must be a constant integer. Also,
5784 the only chance we have of getting a valid address is if b*c/a (see above
5785 for notation) is also an integer. */
5786 if (GET_CODE (g1->mult_val) != CONST_INT
5787 || GET_CODE (g2->mult_val) != CONST_INT
5788 || GET_CODE (g1->add_val) != CONST_INT
5789 || g1->mult_val == const0_rtx
5790 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5791 return 0;
5792
5793 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5794 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5795
5796 /* Form simplified final result. */
5797 if (mult == const0_rtx)
5798 return add;
5799 else if (mult == const1_rtx)
5800 mult = g1->dest_reg;
5801 else
5802 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
5803
5804 if (add == const0_rtx)
5805 return mult;
5806 else
5807 return gen_rtx_PLUS (g2->mode, mult, add);
5808 }
5809 #endif
5810 \f
5811 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5812 (either directly or via an address expression) a register used to represent
5813 G1. Set g2->new_reg to a represtation of G1 (normally just
5814 g1->dest_reg). */
5815
5816 static int
5817 combine_givs_p (g1, g2)
5818 struct induction *g1, *g2;
5819 {
5820 rtx tem;
5821
5822 /* If these givs are identical, they can be combined. */
5823 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5824 && rtx_equal_p (g1->add_val, g2->add_val))
5825 {
5826 g2->new_reg = g1->dest_reg;
5827 return 1;
5828 }
5829
5830 #ifdef ADDRESS_COST
5831 /* If G2 can be expressed as a function of G1 and that function is valid
5832 as an address and no more expensive than using a register for G2,
5833 the expression of G2 in terms of G1 can be used. */
5834 if (g2->giv_type == DEST_ADDR
5835 && (tem = express_from (g1, g2)) != 0
5836 && memory_address_p (g2->mem_mode, tem)
5837 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5838 {
5839 g2->new_reg = tem;
5840 return 1;
5841 }
5842 #endif
5843
5844 return 0;
5845 }
5846 \f
5847 #ifdef GIV_SORT_CRITERION
5848 /* Compare two givs and sort the most desirable one for combinations first.
5849 This is used only in one qsort call below. */
5850
5851 static int
5852 giv_sort (x, y)
5853 struct induction **x, **y;
5854 {
5855 GIV_SORT_CRITERION (*x, *y);
5856
5857 return 0;
5858 }
5859 #endif
5860
5861 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5862 any other. If so, point SAME to the giv combined with and set NEW_REG to
5863 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5864 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5865
5866 static void
5867 combine_givs (bl)
5868 struct iv_class *bl;
5869 {
5870 struct induction *g1, *g2, **giv_array;
5871 int i, j, giv_count, pass;
5872
5873 /* Count givs, because bl->giv_count is incorrect here. */
5874 giv_count = 0;
5875 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5876 giv_count++;
5877
5878 giv_array
5879 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5880 i = 0;
5881 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5882 giv_array[i++] = g1;
5883
5884 #ifdef GIV_SORT_CRITERION
5885 /* Sort the givs if GIV_SORT_CRITERION is defined.
5886 This is usually defined for processors which lack
5887 negative register offsets so more givs may be combined. */
5888
5889 if (loop_dump_stream)
5890 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5891
5892 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5893 #endif
5894
5895 for (i = 0; i < giv_count; i++)
5896 {
5897 g1 = giv_array[i];
5898 for (pass = 0; pass <= 1; pass++)
5899 for (j = 0; j < giv_count; j++)
5900 {
5901 g2 = giv_array[j];
5902 if (g1 != g2
5903 /* First try to combine with replaceable givs, then all givs. */
5904 && (g1->replaceable || pass == 1)
5905 /* If either has already been combined or is to be ignored, can't
5906 combine. */
5907 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5908 /* If something has been based on G2, G2 cannot itself be based
5909 on something else. */
5910 && ! g2->combined_with
5911 && combine_givs_p (g1, g2))
5912 {
5913 /* g2->new_reg set by `combine_givs_p' */
5914 g2->same = g1;
5915 g1->combined_with = 1;
5916
5917 /* If one of these givs is a DEST_REG that was only used
5918 once, by the other giv, this is actually a single use.
5919 The DEST_REG has the correct cost, while the other giv
5920 counts the REG use too often. */
5921 if (g2->giv_type == DEST_REG
5922 && n_times_used[REGNO (g2->dest_reg)] == 1
5923 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5924 g1->benefit = g2->benefit;
5925 else if (g1->giv_type != DEST_REG
5926 || n_times_used[REGNO (g1->dest_reg)] != 1
5927 || ! reg_mentioned_p (g1->dest_reg,
5928 PATTERN (g2->insn)))
5929 {
5930 g1->benefit += g2->benefit;
5931 g1->times_used += g2->times_used;
5932 }
5933 /* ??? The new final_[bg]iv_value code does a much better job
5934 of finding replaceable giv's, and hence this code may no
5935 longer be necessary. */
5936 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5937 g1->benefit -= copy_cost;
5938 g1->lifetime += g2->lifetime;
5939
5940 if (loop_dump_stream)
5941 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5942 INSN_UID (g2->insn), INSN_UID (g1->insn));
5943 }
5944 }
5945 }
5946 }
5947 \f
5948 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5949
5950 void
5951 emit_iv_add_mult (b, m, a, reg, insert_before)
5952 rtx b; /* initial value of basic induction variable */
5953 rtx m; /* multiplicative constant */
5954 rtx a; /* additive constant */
5955 rtx reg; /* destination register */
5956 rtx insert_before;
5957 {
5958 rtx seq;
5959 rtx result;
5960
5961 /* Prevent unexpected sharing of these rtx. */
5962 a = copy_rtx (a);
5963 b = copy_rtx (b);
5964
5965 /* Increase the lifetime of any invariants moved further in code. */
5966 update_reg_last_use (a, insert_before);
5967 update_reg_last_use (b, insert_before);
5968 update_reg_last_use (m, insert_before);
5969
5970 start_sequence ();
5971 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5972 if (reg != result)
5973 emit_move_insn (reg, result);
5974 seq = gen_sequence ();
5975 end_sequence ();
5976
5977 emit_insn_before (seq, insert_before);
5978
5979 record_base_value (REGNO (reg), b);
5980 }
5981 \f
5982 /* Test whether A * B can be computed without
5983 an actual multiply insn. Value is 1 if so. */
5984
5985 static int
5986 product_cheap_p (a, b)
5987 rtx a;
5988 rtx b;
5989 {
5990 int i;
5991 rtx tmp;
5992 struct obstack *old_rtl_obstack = rtl_obstack;
5993 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5994 int win = 1;
5995
5996 /* If only one is constant, make it B. */
5997 if (GET_CODE (a) == CONST_INT)
5998 tmp = a, a = b, b = tmp;
5999
6000 /* If first constant, both constant, so don't need multiply. */
6001 if (GET_CODE (a) == CONST_INT)
6002 return 1;
6003
6004 /* If second not constant, neither is constant, so would need multiply. */
6005 if (GET_CODE (b) != CONST_INT)
6006 return 0;
6007
6008 /* One operand is constant, so might not need multiply insn. Generate the
6009 code for the multiply and see if a call or multiply, or long sequence
6010 of insns is generated. */
6011
6012 rtl_obstack = &temp_obstack;
6013 start_sequence ();
6014 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
6015 tmp = gen_sequence ();
6016 end_sequence ();
6017
6018 if (GET_CODE (tmp) == SEQUENCE)
6019 {
6020 if (XVEC (tmp, 0) == 0)
6021 win = 1;
6022 else if (XVECLEN (tmp, 0) > 3)
6023 win = 0;
6024 else
6025 for (i = 0; i < XVECLEN (tmp, 0); i++)
6026 {
6027 rtx insn = XVECEXP (tmp, 0, i);
6028
6029 if (GET_CODE (insn) != INSN
6030 || (GET_CODE (PATTERN (insn)) == SET
6031 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
6032 || (GET_CODE (PATTERN (insn)) == PARALLEL
6033 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
6034 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
6035 {
6036 win = 0;
6037 break;
6038 }
6039 }
6040 }
6041 else if (GET_CODE (tmp) == SET
6042 && GET_CODE (SET_SRC (tmp)) == MULT)
6043 win = 0;
6044 else if (GET_CODE (tmp) == PARALLEL
6045 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
6046 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
6047 win = 0;
6048
6049 /* Free any storage we obtained in generating this multiply and restore rtl
6050 allocation to its normal obstack. */
6051 obstack_free (&temp_obstack, storage);
6052 rtl_obstack = old_rtl_obstack;
6053
6054 return win;
6055 }
6056 \f
6057 /* Check to see if loop can be terminated by a "decrement and branch until
6058 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
6059 Also try reversing an increment loop to a decrement loop
6060 to see if the optimization can be performed.
6061 Value is nonzero if optimization was performed. */
6062
6063 /* This is useful even if the architecture doesn't have such an insn,
6064 because it might change a loops which increments from 0 to n to a loop
6065 which decrements from n to 0. A loop that decrements to zero is usually
6066 faster than one that increments from zero. */
6067
6068 /* ??? This could be rewritten to use some of the loop unrolling procedures,
6069 such as approx_final_value, biv_total_increment, loop_iterations, and
6070 final_[bg]iv_value. */
6071
6072 static int
6073 check_dbra_loop (loop_end, insn_count, loop_start)
6074 rtx loop_end;
6075 int insn_count;
6076 rtx loop_start;
6077 {
6078 struct iv_class *bl;
6079 rtx reg;
6080 rtx jump_label;
6081 rtx final_value;
6082 rtx start_value;
6083 rtx new_add_val;
6084 rtx comparison;
6085 rtx before_comparison;
6086 rtx p;
6087
6088 /* If last insn is a conditional branch, and the insn before tests a
6089 register value, try to optimize it. Otherwise, we can't do anything. */
6090
6091 comparison = get_condition_for_loop (PREV_INSN (loop_end));
6092 if (comparison == 0)
6093 return 0;
6094
6095 /* Check all of the bivs to see if the compare uses one of them.
6096 Skip biv's set more than once because we can't guarantee that
6097 it will be zero on the last iteration. Also skip if the biv is
6098 used between its update and the test insn. */
6099
6100 for (bl = loop_iv_list; bl; bl = bl->next)
6101 {
6102 if (bl->biv_count == 1
6103 && bl->biv->dest_reg == XEXP (comparison, 0)
6104 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6105 PREV_INSN (PREV_INSN (loop_end))))
6106 break;
6107 }
6108
6109 if (! bl)
6110 return 0;
6111
6112 /* Look for the case where the basic induction variable is always
6113 nonnegative, and equals zero on the last iteration.
6114 In this case, add a reg_note REG_NONNEG, which allows the
6115 m68k DBRA instruction to be used. */
6116
6117 if (((GET_CODE (comparison) == GT
6118 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6119 && INTVAL (XEXP (comparison, 1)) == -1)
6120 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6121 && GET_CODE (bl->biv->add_val) == CONST_INT
6122 && INTVAL (bl->biv->add_val) < 0)
6123 {
6124 /* Initial value must be greater than 0,
6125 init_val % -dec_value == 0 to ensure that it equals zero on
6126 the last iteration */
6127
6128 if (GET_CODE (bl->initial_value) == CONST_INT
6129 && INTVAL (bl->initial_value) > 0
6130 && (INTVAL (bl->initial_value)
6131 % (-INTVAL (bl->biv->add_val))) == 0)
6132 {
6133 /* register always nonnegative, add REG_NOTE to branch */
6134 REG_NOTES (PREV_INSN (loop_end))
6135 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6136 REG_NOTES (PREV_INSN (loop_end)));
6137 bl->nonneg = 1;
6138
6139 return 1;
6140 }
6141
6142 /* If the decrement is 1 and the value was tested as >= 0 before
6143 the loop, then we can safely optimize. */
6144 for (p = loop_start; p; p = PREV_INSN (p))
6145 {
6146 if (GET_CODE (p) == CODE_LABEL)
6147 break;
6148 if (GET_CODE (p) != JUMP_INSN)
6149 continue;
6150
6151 before_comparison = get_condition_for_loop (p);
6152 if (before_comparison
6153 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6154 && GET_CODE (before_comparison) == LT
6155 && XEXP (before_comparison, 1) == const0_rtx
6156 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6157 && INTVAL (bl->biv->add_val) == -1)
6158 {
6159 REG_NOTES (PREV_INSN (loop_end))
6160 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6161 REG_NOTES (PREV_INSN (loop_end)));
6162 bl->nonneg = 1;
6163
6164 return 1;
6165 }
6166 }
6167 }
6168 else if (num_mem_sets <= 1)
6169 {
6170 /* Try to change inc to dec, so can apply above optimization. */
6171 /* Can do this if:
6172 all registers modified are induction variables or invariant,
6173 all memory references have non-overlapping addresses
6174 (obviously true if only one write)
6175 allow 2 insns for the compare/jump at the end of the loop. */
6176 /* Also, we must avoid any instructions which use both the reversed
6177 biv and another biv. Such instructions will fail if the loop is
6178 reversed. We meet this condition by requiring that either
6179 no_use_except_counting is true, or else that there is only
6180 one biv. */
6181 int num_nonfixed_reads = 0;
6182 /* 1 if the iteration var is used only to count iterations. */
6183 int no_use_except_counting = 0;
6184 /* 1 if the loop has no memory store, or it has a single memory store
6185 which is reversible. */
6186 int reversible_mem_store = 1;
6187
6188 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6189 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6190 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6191
6192 if (bl->giv_count == 0
6193 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6194 {
6195 rtx bivreg = regno_reg_rtx[bl->regno];
6196
6197 /* If there are no givs for this biv, and the only exit is the
6198 fall through at the end of the the loop, then
6199 see if perhaps there are no uses except to count. */
6200 no_use_except_counting = 1;
6201 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6202 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6203 {
6204 rtx set = single_set (p);
6205
6206 if (set && GET_CODE (SET_DEST (set)) == REG
6207 && REGNO (SET_DEST (set)) == bl->regno)
6208 /* An insn that sets the biv is okay. */
6209 ;
6210 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6211 || p == prev_nonnote_insn (loop_end))
6212 /* Don't bother about the end test. */
6213 ;
6214 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6215 /* Any other use of the biv is no good. */
6216 {
6217 no_use_except_counting = 0;
6218 break;
6219 }
6220 }
6221 }
6222
6223 /* If the loop has a single store, and the destination address is
6224 invariant, then we can't reverse the loop, because this address
6225 might then have the wrong value at loop exit.
6226 This would work if the source was invariant also, however, in that
6227 case, the insn should have been moved out of the loop. */
6228
6229 if (num_mem_sets == 1)
6230 reversible_mem_store
6231 = (! unknown_address_altered
6232 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6233
6234 /* This code only acts for innermost loops. Also it simplifies
6235 the memory address check by only reversing loops with
6236 zero or one memory access.
6237 Two memory accesses could involve parts of the same array,
6238 and that can't be reversed. */
6239
6240 if (num_nonfixed_reads <= 1
6241 && !loop_has_call
6242 && !loop_has_volatile
6243 && reversible_mem_store
6244 && (no_use_except_counting
6245 || ((bl->giv_count + bl->biv_count + num_mem_sets
6246 + num_movables + 2 == insn_count)
6247 && (bl == loop_iv_list && bl->next == 0))))
6248 {
6249 rtx tem;
6250
6251 /* Loop can be reversed. */
6252 if (loop_dump_stream)
6253 fprintf (loop_dump_stream, "Can reverse loop\n");
6254
6255 /* Now check other conditions:
6256
6257 The increment must be a constant, as must the initial value,
6258 and the comparison code must be LT.
6259
6260 This test can probably be improved since +/- 1 in the constant
6261 can be obtained by changing LT to LE and vice versa; this is
6262 confusing. */
6263
6264 if (comparison
6265 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6266 /* LE gets turned into LT */
6267 && GET_CODE (comparison) == LT
6268 && GET_CODE (bl->initial_value) == CONST_INT)
6269 {
6270 HOST_WIDE_INT add_val, comparison_val;
6271 rtx initial_value;
6272
6273 add_val = INTVAL (bl->biv->add_val);
6274 comparison_val = INTVAL (XEXP (comparison, 1));
6275 initial_value = bl->initial_value;
6276
6277 /* Normalize the initial value if it is an integer and
6278 has no other use except as a counter. This will allow
6279 a few more loops to be reversed. */
6280 if (no_use_except_counting
6281 && GET_CODE (initial_value) == CONST_INT)
6282 {
6283 comparison_val = comparison_val - INTVAL (bl->initial_value);
6284 initial_value = const0_rtx;
6285 }
6286
6287 /* If the initial value is not zero, or if the comparison
6288 value is not an exact multiple of the increment, then we
6289 can not reverse this loop. */
6290 if (initial_value != const0_rtx
6291 || (comparison_val % add_val) != 0)
6292 return 0;
6293
6294 /* Reset these in case we normalized the initial value
6295 and comparison value above. */
6296 bl->initial_value = initial_value;
6297 XEXP (comparison, 1) = GEN_INT (comparison_val);
6298
6299 /* Register will always be nonnegative, with value
6300 0 on last iteration if loop reversed */
6301
6302 /* Save some info needed to produce the new insns. */
6303 reg = bl->biv->dest_reg;
6304 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6305 if (jump_label == pc_rtx)
6306 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6307 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6308
6309 final_value = XEXP (comparison, 1);
6310 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6311 - INTVAL (bl->biv->add_val));
6312
6313 /* Initialize biv to start_value before loop start.
6314 The old initializing insn will be deleted as a
6315 dead store by flow.c. */
6316 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6317
6318 /* Add insn to decrement register, and delete insn
6319 that incremented the register. */
6320 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6321 bl->biv->insn);
6322 delete_insn (bl->biv->insn);
6323
6324 /* Update biv info to reflect its new status. */
6325 bl->biv->insn = p;
6326 bl->initial_value = start_value;
6327 bl->biv->add_val = new_add_val;
6328
6329 /* Inc LABEL_NUSES so that delete_insn will
6330 not delete the label. */
6331 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6332
6333 /* Emit an insn after the end of the loop to set the biv's
6334 proper exit value if it is used anywhere outside the loop. */
6335 if ((REGNO_LAST_UID (bl->regno)
6336 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6337 || ! bl->init_insn
6338 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6339 emit_insn_after (gen_move_insn (reg, final_value),
6340 loop_end);
6341
6342 /* Delete compare/branch at end of loop. */
6343 delete_insn (PREV_INSN (loop_end));
6344 delete_insn (PREV_INSN (loop_end));
6345
6346 /* Add new compare/branch insn at end of loop. */
6347 start_sequence ();
6348 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6349 GET_MODE (reg), 0, 0);
6350 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6351 tem = gen_sequence ();
6352 end_sequence ();
6353 emit_jump_insn_before (tem, loop_end);
6354
6355 for (tem = PREV_INSN (loop_end);
6356 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6357 ;
6358 if (tem)
6359 {
6360 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6361
6362 /* Increment of LABEL_NUSES done above. */
6363 /* Register is now always nonnegative,
6364 so add REG_NONNEG note to the branch. */
6365 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
6366 REG_NOTES (tem));
6367 }
6368
6369 bl->nonneg = 1;
6370
6371 /* Mark that this biv has been reversed. Each giv which depends
6372 on this biv, and which is also live past the end of the loop
6373 will have to be fixed up. */
6374
6375 bl->reversed = 1;
6376
6377 if (loop_dump_stream)
6378 fprintf (loop_dump_stream,
6379 "Reversed loop and added reg_nonneg\n");
6380
6381 return 1;
6382 }
6383 }
6384 }
6385
6386 return 0;
6387 }
6388 \f
6389 /* Verify whether the biv BL appears to be eliminable,
6390 based on the insns in the loop that refer to it.
6391 LOOP_START is the first insn of the loop, and END is the end insn.
6392
6393 If ELIMINATE_P is non-zero, actually do the elimination.
6394
6395 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6396 determine whether invariant insns should be placed inside or at the
6397 start of the loop. */
6398
6399 static int
6400 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6401 struct iv_class *bl;
6402 rtx loop_start;
6403 rtx end;
6404 int eliminate_p;
6405 int threshold, insn_count;
6406 {
6407 rtx reg = bl->biv->dest_reg;
6408 rtx p;
6409
6410 /* Scan all insns in the loop, stopping if we find one that uses the
6411 biv in a way that we cannot eliminate. */
6412
6413 for (p = loop_start; p != end; p = NEXT_INSN (p))
6414 {
6415 enum rtx_code code = GET_CODE (p);
6416 rtx where = threshold >= insn_count ? loop_start : p;
6417
6418 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6419 && reg_mentioned_p (reg, PATTERN (p))
6420 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6421 {
6422 if (loop_dump_stream)
6423 fprintf (loop_dump_stream,
6424 "Cannot eliminate biv %d: biv used in insn %d.\n",
6425 bl->regno, INSN_UID (p));
6426 break;
6427 }
6428 }
6429
6430 if (p == end)
6431 {
6432 if (loop_dump_stream)
6433 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6434 bl->regno, eliminate_p ? "was" : "can be");
6435 return 1;
6436 }
6437
6438 return 0;
6439 }
6440 \f
6441 /* If BL appears in X (part of the pattern of INSN), see if we can
6442 eliminate its use. If so, return 1. If not, return 0.
6443
6444 If BIV does not appear in X, return 1.
6445
6446 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6447 where extra insns should be added. Depending on how many items have been
6448 moved out of the loop, it will either be before INSN or at the start of
6449 the loop. */
6450
6451 static int
6452 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6453 rtx x, insn;
6454 struct iv_class *bl;
6455 int eliminate_p;
6456 rtx where;
6457 {
6458 enum rtx_code code = GET_CODE (x);
6459 rtx reg = bl->biv->dest_reg;
6460 enum machine_mode mode = GET_MODE (reg);
6461 struct induction *v;
6462 rtx arg, tem;
6463 #ifdef HAVE_cc0
6464 rtx new;
6465 #endif
6466 int arg_operand;
6467 char *fmt;
6468 int i, j;
6469
6470 switch (code)
6471 {
6472 case REG:
6473 /* If we haven't already been able to do something with this BIV,
6474 we can't eliminate it. */
6475 if (x == reg)
6476 return 0;
6477 return 1;
6478
6479 case SET:
6480 /* If this sets the BIV, it is not a problem. */
6481 if (SET_DEST (x) == reg)
6482 return 1;
6483
6484 /* If this is an insn that defines a giv, it is also ok because
6485 it will go away when the giv is reduced. */
6486 for (v = bl->giv; v; v = v->next_iv)
6487 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6488 return 1;
6489
6490 #ifdef HAVE_cc0
6491 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6492 {
6493 /* Can replace with any giv that was reduced and
6494 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6495 Require a constant for MULT_VAL, so we know it's nonzero.
6496 ??? We disable this optimization to avoid potential
6497 overflows. */
6498
6499 for (v = bl->giv; v; v = v->next_iv)
6500 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6501 && v->add_val == const0_rtx
6502 && ! v->ignore && ! v->maybe_dead && v->always_computable
6503 && v->mode == mode
6504 && 0)
6505 {
6506 /* If the giv V had the auto-inc address optimization applied
6507 to it, and INSN occurs between the giv insn and the biv
6508 insn, then we must adjust the value used here.
6509 This is rare, so we don't bother to do so. */
6510 if (v->auto_inc_opt
6511 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6512 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6513 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6514 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6515 continue;
6516
6517 if (! eliminate_p)
6518 return 1;
6519
6520 /* If the giv has the opposite direction of change,
6521 then reverse the comparison. */
6522 if (INTVAL (v->mult_val) < 0)
6523 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
6524 const0_rtx, v->new_reg);
6525 else
6526 new = v->new_reg;
6527
6528 /* We can probably test that giv's reduced reg. */
6529 if (validate_change (insn, &SET_SRC (x), new, 0))
6530 return 1;
6531 }
6532
6533 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6534 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6535 Require a constant for MULT_VAL, so we know it's nonzero.
6536 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6537 overflow problem. */
6538
6539 for (v = bl->giv; v; v = v->next_iv)
6540 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6541 && ! v->ignore && ! v->maybe_dead && v->always_computable
6542 && v->mode == mode
6543 && (GET_CODE (v->add_val) == SYMBOL_REF
6544 || GET_CODE (v->add_val) == LABEL_REF
6545 || GET_CODE (v->add_val) == CONST
6546 || (GET_CODE (v->add_val) == REG
6547 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6548 {
6549 /* If the giv V had the auto-inc address optimization applied
6550 to it, and INSN occurs between the giv insn and the biv
6551 insn, then we must adjust the value used here.
6552 This is rare, so we don't bother to do so. */
6553 if (v->auto_inc_opt
6554 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6555 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6556 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6557 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6558 continue;
6559
6560 if (! eliminate_p)
6561 return 1;
6562
6563 /* If the giv has the opposite direction of change,
6564 then reverse the comparison. */
6565 if (INTVAL (v->mult_val) < 0)
6566 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
6567 v->new_reg);
6568 else
6569 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
6570 copy_rtx (v->add_val));
6571
6572 /* Replace biv with the giv's reduced register. */
6573 update_reg_last_use (v->add_val, insn);
6574 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6575 return 1;
6576
6577 /* Insn doesn't support that constant or invariant. Copy it
6578 into a register (it will be a loop invariant.) */
6579 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6580
6581 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6582 where);
6583
6584 /* Substitute the new register for its invariant value in
6585 the compare expression. */
6586 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6587 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6588 return 1;
6589 }
6590 }
6591 #endif
6592 break;
6593
6594 case COMPARE:
6595 case EQ: case NE:
6596 case GT: case GE: case GTU: case GEU:
6597 case LT: case LE: case LTU: case LEU:
6598 /* See if either argument is the biv. */
6599 if (XEXP (x, 0) == reg)
6600 arg = XEXP (x, 1), arg_operand = 1;
6601 else if (XEXP (x, 1) == reg)
6602 arg = XEXP (x, 0), arg_operand = 0;
6603 else
6604 break;
6605
6606 if (CONSTANT_P (arg))
6607 {
6608 /* First try to replace with any giv that has constant positive
6609 mult_val and constant add_val. We might be able to support
6610 negative mult_val, but it seems complex to do it in general. */
6611
6612 for (v = bl->giv; v; v = v->next_iv)
6613 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6614 && (GET_CODE (v->add_val) == SYMBOL_REF
6615 || GET_CODE (v->add_val) == LABEL_REF
6616 || GET_CODE (v->add_val) == CONST
6617 || (GET_CODE (v->add_val) == REG
6618 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6619 && ! v->ignore && ! v->maybe_dead && v->always_computable
6620 && v->mode == mode)
6621 {
6622 /* If the giv V had the auto-inc address optimization applied
6623 to it, and INSN occurs between the giv insn and the biv
6624 insn, then we must adjust the value used here.
6625 This is rare, so we don't bother to do so. */
6626 if (v->auto_inc_opt
6627 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6628 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6629 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6630 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6631 continue;
6632
6633 if (! eliminate_p)
6634 return 1;
6635
6636 /* Replace biv with the giv's reduced reg. */
6637 XEXP (x, 1-arg_operand) = v->new_reg;
6638
6639 /* If all constants are actually constant integers and
6640 the derived constant can be directly placed in the COMPARE,
6641 do so. */
6642 if (GET_CODE (arg) == CONST_INT
6643 && GET_CODE (v->mult_val) == CONST_INT
6644 && GET_CODE (v->add_val) == CONST_INT
6645 && validate_change (insn, &XEXP (x, arg_operand),
6646 GEN_INT (INTVAL (arg)
6647 * INTVAL (v->mult_val)
6648 + INTVAL (v->add_val)), 0))
6649 return 1;
6650
6651 /* Otherwise, load it into a register. */
6652 tem = gen_reg_rtx (mode);
6653 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6654 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6655 return 1;
6656
6657 /* If that failed, put back the change we made above. */
6658 XEXP (x, 1-arg_operand) = reg;
6659 }
6660
6661 /* Look for giv with positive constant mult_val and nonconst add_val.
6662 Insert insns to calculate new compare value.
6663 ??? Turn this off due to possible overflow. */
6664
6665 for (v = bl->giv; v; v = v->next_iv)
6666 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6667 && ! v->ignore && ! v->maybe_dead && v->always_computable
6668 && v->mode == mode
6669 && 0)
6670 {
6671 rtx tem;
6672
6673 /* If the giv V had the auto-inc address optimization applied
6674 to it, and INSN occurs between the giv insn and the biv
6675 insn, then we must adjust the value used here.
6676 This is rare, so we don't bother to do so. */
6677 if (v->auto_inc_opt
6678 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6679 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6680 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6681 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6682 continue;
6683
6684 if (! eliminate_p)
6685 return 1;
6686
6687 tem = gen_reg_rtx (mode);
6688
6689 /* Replace biv with giv's reduced register. */
6690 validate_change (insn, &XEXP (x, 1 - arg_operand),
6691 v->new_reg, 1);
6692
6693 /* Compute value to compare against. */
6694 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6695 /* Use it in this insn. */
6696 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6697 if (apply_change_group ())
6698 return 1;
6699 }
6700 }
6701 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6702 {
6703 if (invariant_p (arg) == 1)
6704 {
6705 /* Look for giv with constant positive mult_val and nonconst
6706 add_val. Insert insns to compute new compare value.
6707 ??? Turn this off due to possible overflow. */
6708
6709 for (v = bl->giv; v; v = v->next_iv)
6710 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6711 && ! v->ignore && ! v->maybe_dead && v->always_computable
6712 && v->mode == mode
6713 && 0)
6714 {
6715 rtx tem;
6716
6717 /* If the giv V had the auto-inc address optimization applied
6718 to it, and INSN occurs between the giv insn and the biv
6719 insn, then we must adjust the value used here.
6720 This is rare, so we don't bother to do so. */
6721 if (v->auto_inc_opt
6722 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6723 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6724 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6725 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6726 continue;
6727
6728 if (! eliminate_p)
6729 return 1;
6730
6731 tem = gen_reg_rtx (mode);
6732
6733 /* Replace biv with giv's reduced register. */
6734 validate_change (insn, &XEXP (x, 1 - arg_operand),
6735 v->new_reg, 1);
6736
6737 /* Compute value to compare against. */
6738 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6739 tem, where);
6740 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6741 if (apply_change_group ())
6742 return 1;
6743 }
6744 }
6745
6746 /* This code has problems. Basically, you can't know when
6747 seeing if we will eliminate BL, whether a particular giv
6748 of ARG will be reduced. If it isn't going to be reduced,
6749 we can't eliminate BL. We can try forcing it to be reduced,
6750 but that can generate poor code.
6751
6752 The problem is that the benefit of reducing TV, below should
6753 be increased if BL can actually be eliminated, but this means
6754 we might have to do a topological sort of the order in which
6755 we try to process biv. It doesn't seem worthwhile to do
6756 this sort of thing now. */
6757
6758 #if 0
6759 /* Otherwise the reg compared with had better be a biv. */
6760 if (GET_CODE (arg) != REG
6761 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6762 return 0;
6763
6764 /* Look for a pair of givs, one for each biv,
6765 with identical coefficients. */
6766 for (v = bl->giv; v; v = v->next_iv)
6767 {
6768 struct induction *tv;
6769
6770 if (v->ignore || v->maybe_dead || v->mode != mode)
6771 continue;
6772
6773 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6774 if (! tv->ignore && ! tv->maybe_dead
6775 && rtx_equal_p (tv->mult_val, v->mult_val)
6776 && rtx_equal_p (tv->add_val, v->add_val)
6777 && tv->mode == mode)
6778 {
6779 /* If the giv V had the auto-inc address optimization applied
6780 to it, and INSN occurs between the giv insn and the biv
6781 insn, then we must adjust the value used here.
6782 This is rare, so we don't bother to do so. */
6783 if (v->auto_inc_opt
6784 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6785 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6786 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6787 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6788 continue;
6789
6790 if (! eliminate_p)
6791 return 1;
6792
6793 /* Replace biv with its giv's reduced reg. */
6794 XEXP (x, 1-arg_operand) = v->new_reg;
6795 /* Replace other operand with the other giv's
6796 reduced reg. */
6797 XEXP (x, arg_operand) = tv->new_reg;
6798 return 1;
6799 }
6800 }
6801 #endif
6802 }
6803
6804 /* If we get here, the biv can't be eliminated. */
6805 return 0;
6806
6807 case MEM:
6808 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6809 biv is used in it, since it will be replaced. */
6810 for (v = bl->giv; v; v = v->next_iv)
6811 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6812 return 1;
6813 break;
6814
6815 default:
6816 break;
6817 }
6818
6819 /* See if any subexpression fails elimination. */
6820 fmt = GET_RTX_FORMAT (code);
6821 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6822 {
6823 switch (fmt[i])
6824 {
6825 case 'e':
6826 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6827 eliminate_p, where))
6828 return 0;
6829 break;
6830
6831 case 'E':
6832 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6833 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6834 eliminate_p, where))
6835 return 0;
6836 break;
6837 }
6838 }
6839
6840 return 1;
6841 }
6842 \f
6843 /* Return nonzero if the last use of REG
6844 is in an insn following INSN in the same basic block. */
6845
6846 static int
6847 last_use_this_basic_block (reg, insn)
6848 rtx reg;
6849 rtx insn;
6850 {
6851 rtx n;
6852 for (n = insn;
6853 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6854 n = NEXT_INSN (n))
6855 {
6856 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6857 return 1;
6858 }
6859 return 0;
6860 }
6861 \f
6862 /* Called via `note_stores' to record the initial value of a biv. Here we
6863 just record the location of the set and process it later. */
6864
6865 static void
6866 record_initial (dest, set)
6867 rtx dest;
6868 rtx set;
6869 {
6870 struct iv_class *bl;
6871
6872 if (GET_CODE (dest) != REG
6873 || REGNO (dest) >= max_reg_before_loop
6874 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6875 return;
6876
6877 bl = reg_biv_class[REGNO (dest)];
6878
6879 /* If this is the first set found, record it. */
6880 if (bl->init_insn == 0)
6881 {
6882 bl->init_insn = note_insn;
6883 bl->init_set = set;
6884 }
6885 }
6886 \f
6887 /* If any of the registers in X are "old" and currently have a last use earlier
6888 than INSN, update them to have a last use of INSN. Their actual last use
6889 will be the previous insn but it will not have a valid uid_luid so we can't
6890 use it. */
6891
6892 static void
6893 update_reg_last_use (x, insn)
6894 rtx x;
6895 rtx insn;
6896 {
6897 /* Check for the case where INSN does not have a valid luid. In this case,
6898 there is no need to modify the regno_last_uid, as this can only happen
6899 when code is inserted after the loop_end to set a pseudo's final value,
6900 and hence this insn will never be the last use of x. */
6901 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6902 && INSN_UID (insn) < max_uid_for_loop
6903 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6904 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6905 else
6906 {
6907 register int i, j;
6908 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6909 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6910 {
6911 if (fmt[i] == 'e')
6912 update_reg_last_use (XEXP (x, i), insn);
6913 else if (fmt[i] == 'E')
6914 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6915 update_reg_last_use (XVECEXP (x, i, j), insn);
6916 }
6917 }
6918 }
6919 \f
6920 /* Given a jump insn JUMP, return the condition that will cause it to branch
6921 to its JUMP_LABEL. If the condition cannot be understood, or is an
6922 inequality floating-point comparison which needs to be reversed, 0 will
6923 be returned.
6924
6925 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6926 insn used in locating the condition was found. If a replacement test
6927 of the condition is desired, it should be placed in front of that
6928 insn and we will be sure that the inputs are still valid.
6929
6930 The condition will be returned in a canonical form to simplify testing by
6931 callers. Specifically:
6932
6933 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6934 (2) Both operands will be machine operands; (cc0) will have been replaced.
6935 (3) If an operand is a constant, it will be the second operand.
6936 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6937 for GE, GEU, and LEU. */
6938
6939 rtx
6940 get_condition (jump, earliest)
6941 rtx jump;
6942 rtx *earliest;
6943 {
6944 enum rtx_code code;
6945 rtx prev = jump;
6946 rtx set;
6947 rtx tem;
6948 rtx op0, op1;
6949 int reverse_code = 0;
6950 int did_reverse_condition = 0;
6951
6952 /* If this is not a standard conditional jump, we can't parse it. */
6953 if (GET_CODE (jump) != JUMP_INSN
6954 || ! condjump_p (jump) || simplejump_p (jump))
6955 return 0;
6956
6957 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6958 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6959 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6960
6961 if (earliest)
6962 *earliest = jump;
6963
6964 /* If this branches to JUMP_LABEL when the condition is false, reverse
6965 the condition. */
6966 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6967 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6968 code = reverse_condition (code), did_reverse_condition ^= 1;
6969
6970 /* If we are comparing a register with zero, see if the register is set
6971 in the previous insn to a COMPARE or a comparison operation. Perform
6972 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6973 in cse.c */
6974
6975 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6976 {
6977 /* Set non-zero when we find something of interest. */
6978 rtx x = 0;
6979
6980 #ifdef HAVE_cc0
6981 /* If comparison with cc0, import actual comparison from compare
6982 insn. */
6983 if (op0 == cc0_rtx)
6984 {
6985 if ((prev = prev_nonnote_insn (prev)) == 0
6986 || GET_CODE (prev) != INSN
6987 || (set = single_set (prev)) == 0
6988 || SET_DEST (set) != cc0_rtx)
6989 return 0;
6990
6991 op0 = SET_SRC (set);
6992 op1 = CONST0_RTX (GET_MODE (op0));
6993 if (earliest)
6994 *earliest = prev;
6995 }
6996 #endif
6997
6998 /* If this is a COMPARE, pick up the two things being compared. */
6999 if (GET_CODE (op0) == COMPARE)
7000 {
7001 op1 = XEXP (op0, 1);
7002 op0 = XEXP (op0, 0);
7003 continue;
7004 }
7005 else if (GET_CODE (op0) != REG)
7006 break;
7007
7008 /* Go back to the previous insn. Stop if it is not an INSN. We also
7009 stop if it isn't a single set or if it has a REG_INC note because
7010 we don't want to bother dealing with it. */
7011
7012 if ((prev = prev_nonnote_insn (prev)) == 0
7013 || GET_CODE (prev) != INSN
7014 || FIND_REG_INC_NOTE (prev, 0)
7015 || (set = single_set (prev)) == 0)
7016 break;
7017
7018 /* If this is setting OP0, get what it sets it to if it looks
7019 relevant. */
7020 if (rtx_equal_p (SET_DEST (set), op0))
7021 {
7022 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
7023
7024 if ((GET_CODE (SET_SRC (set)) == COMPARE
7025 || (((code == NE
7026 || (code == LT
7027 && GET_MODE_CLASS (inner_mode) == MODE_INT
7028 && (GET_MODE_BITSIZE (inner_mode)
7029 <= HOST_BITS_PER_WIDE_INT)
7030 && (STORE_FLAG_VALUE
7031 & ((HOST_WIDE_INT) 1
7032 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7033 #ifdef FLOAT_STORE_FLAG_VALUE
7034 || (code == LT
7035 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7036 && FLOAT_STORE_FLAG_VALUE < 0)
7037 #endif
7038 ))
7039 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
7040 x = SET_SRC (set);
7041 else if (((code == EQ
7042 || (code == GE
7043 && (GET_MODE_BITSIZE (inner_mode)
7044 <= HOST_BITS_PER_WIDE_INT)
7045 && GET_MODE_CLASS (inner_mode) == MODE_INT
7046 && (STORE_FLAG_VALUE
7047 & ((HOST_WIDE_INT) 1
7048 << (GET_MODE_BITSIZE (inner_mode) - 1))))
7049 #ifdef FLOAT_STORE_FLAG_VALUE
7050 || (code == GE
7051 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
7052 && FLOAT_STORE_FLAG_VALUE < 0)
7053 #endif
7054 ))
7055 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
7056 {
7057 /* We might have reversed a LT to get a GE here. But this wasn't
7058 actually the comparison of data, so we don't flag that we
7059 have had to reverse the condition. */
7060 did_reverse_condition ^= 1;
7061 reverse_code = 1;
7062 x = SET_SRC (set);
7063 }
7064 else
7065 break;
7066 }
7067
7068 else if (reg_set_p (op0, prev))
7069 /* If this sets OP0, but not directly, we have to give up. */
7070 break;
7071
7072 if (x)
7073 {
7074 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
7075 code = GET_CODE (x);
7076 if (reverse_code)
7077 {
7078 code = reverse_condition (code);
7079 did_reverse_condition ^= 1;
7080 reverse_code = 0;
7081 }
7082
7083 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
7084 if (earliest)
7085 *earliest = prev;
7086 }
7087 }
7088
7089 /* If constant is first, put it last. */
7090 if (CONSTANT_P (op0))
7091 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
7092
7093 /* If OP0 is the result of a comparison, we weren't able to find what
7094 was really being compared, so fail. */
7095 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
7096 return 0;
7097
7098 /* Canonicalize any ordered comparison with integers involving equality
7099 if we can do computations in the relevant mode and we do not
7100 overflow. */
7101
7102 if (GET_CODE (op1) == CONST_INT
7103 && GET_MODE (op0) != VOIDmode
7104 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
7105 {
7106 HOST_WIDE_INT const_val = INTVAL (op1);
7107 unsigned HOST_WIDE_INT uconst_val = const_val;
7108 unsigned HOST_WIDE_INT max_val
7109 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
7110
7111 switch (code)
7112 {
7113 case LE:
7114 if (const_val != max_val >> 1)
7115 code = LT, op1 = GEN_INT (const_val + 1);
7116 break;
7117
7118 /* When cross-compiling, const_val might be sign-extended from
7119 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
7120 case GE:
7121 if ((const_val & max_val)
7122 != (((HOST_WIDE_INT) 1
7123 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7124 code = GT, op1 = GEN_INT (const_val - 1);
7125 break;
7126
7127 case LEU:
7128 if (uconst_val < max_val)
7129 code = LTU, op1 = GEN_INT (uconst_val + 1);
7130 break;
7131
7132 case GEU:
7133 if (uconst_val != 0)
7134 code = GTU, op1 = GEN_INT (uconst_val - 1);
7135 break;
7136
7137 default:
7138 break;
7139 }
7140 }
7141
7142 /* If this was floating-point and we reversed anything other than an
7143 EQ or NE, return zero. */
7144 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7145 && did_reverse_condition && code != NE && code != EQ
7146 && ! flag_fast_math
7147 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7148 return 0;
7149
7150 #ifdef HAVE_cc0
7151 /* Never return CC0; return zero instead. */
7152 if (op0 == cc0_rtx)
7153 return 0;
7154 #endif
7155
7156 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
7157 }
7158
7159 /* Similar to above routine, except that we also put an invariant last
7160 unless both operands are invariants. */
7161
7162 rtx
7163 get_condition_for_loop (x)
7164 rtx x;
7165 {
7166 rtx comparison = get_condition (x, NULL_PTR);
7167
7168 if (comparison == 0
7169 || ! invariant_p (XEXP (comparison, 0))
7170 || invariant_p (XEXP (comparison, 1)))
7171 return comparison;
7172
7173 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
7174 XEXP (comparison, 1), XEXP (comparison, 0));
7175 }
7176
7177 #ifdef HAIFA
7178 /* Analyze a loop in order to instrument it with the use of count register.
7179 loop_start and loop_end are the first and last insns of the loop.
7180 This function works in cooperation with insert_bct ().
7181 loop_can_insert_bct[loop_num] is set according to whether the optimization
7182 is applicable to the loop. When it is applicable, the following variables
7183 are also set:
7184 loop_start_value[loop_num]
7185 loop_comparison_value[loop_num]
7186 loop_increment[loop_num]
7187 loop_comparison_code[loop_num] */
7188
7189 #ifdef HAVE_decrement_and_branch_on_count
7190 static
7191 void analyze_loop_iterations (loop_start, loop_end)
7192 rtx loop_start, loop_end;
7193 {
7194 rtx comparison, comparison_value;
7195 rtx iteration_var, initial_value, increment;
7196 enum rtx_code comparison_code;
7197
7198 rtx last_loop_insn;
7199 rtx insn;
7200 int i;
7201
7202 /* loop_variable mode */
7203 enum machine_mode original_mode;
7204
7205 /* find the number of the loop */
7206 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7207
7208 /* we change our mind only when we are sure that loop will be instrumented */
7209 loop_can_insert_bct[loop_num] = 0;
7210
7211 /* is the optimization suppressed. */
7212 if ( !flag_branch_on_count_reg )
7213 return;
7214
7215 /* make sure that count-reg is not in use */
7216 if (loop_used_count_register[loop_num]){
7217 if (loop_dump_stream)
7218 fprintf (loop_dump_stream,
7219 "analyze_loop_iterations %d: BCT instrumentation failed: count register already in use\n",
7220 loop_num);
7221 return;
7222 }
7223
7224 /* make sure that the function has no indirect jumps. */
7225 if (indirect_jump_in_function){
7226 if (loop_dump_stream)
7227 fprintf (loop_dump_stream,
7228 "analyze_loop_iterations %d: BCT instrumentation failed: indirect jump in function\n",
7229 loop_num);
7230 return;
7231 }
7232
7233 /* make sure that the last loop insn is a conditional jump */
7234 last_loop_insn = PREV_INSN (loop_end);
7235 if (GET_CODE (last_loop_insn) != JUMP_INSN || !condjump_p (last_loop_insn)) {
7236 if (loop_dump_stream)
7237 fprintf (loop_dump_stream,
7238 "analyze_loop_iterations %d: BCT instrumentation failed: invalid jump at loop end\n",
7239 loop_num);
7240 return;
7241 }
7242
7243 /* First find the iteration variable. If the last insn is a conditional
7244 branch, and the insn preceding it tests a register value, make that
7245 register the iteration variable. */
7246
7247 /* We used to use prev_nonnote_insn here, but that fails because it might
7248 accidentally get the branch for a contained loop if the branch for this
7249 loop was deleted. We can only trust branches immediately before the
7250 loop_end. */
7251
7252 comparison = get_condition_for_loop (last_loop_insn);
7253 /* ??? Get_condition may switch position of induction variable and
7254 invariant register when it canonicalizes the comparison. */
7255
7256 if (comparison == 0) {
7257 if (loop_dump_stream)
7258 fprintf (loop_dump_stream,
7259 "analyze_loop_iterations %d: BCT instrumentation failed: comparison not found\n",
7260 loop_num);
7261 return;
7262 }
7263
7264 comparison_code = GET_CODE (comparison);
7265 iteration_var = XEXP (comparison, 0);
7266 comparison_value = XEXP (comparison, 1);
7267
7268 original_mode = GET_MODE (iteration_var);
7269 if (GET_MODE_CLASS (original_mode) != MODE_INT
7270 || GET_MODE_SIZE (original_mode) != UNITS_PER_WORD) {
7271 if (loop_dump_stream)
7272 fprintf (loop_dump_stream,
7273 "analyze_loop_iterations %d: BCT Instrumentation failed: loop variable not integer\n",
7274 loop_num);
7275 return;
7276 }
7277
7278 /* get info about loop bounds and increment */
7279 iteration_info (iteration_var, &initial_value, &increment,
7280 loop_start, loop_end);
7281
7282 /* make sure that all required loop data were found */
7283 if (!(initial_value && increment && comparison_value
7284 && invariant_p (comparison_value) && invariant_p (increment)
7285 && ! indirect_jump_in_function))
7286 {
7287 if (loop_dump_stream) {
7288 fprintf (loop_dump_stream,
7289 "analyze_loop_iterations %d: BCT instrumentation failed because of wrong loop: ", loop_num);
7290 if (!(initial_value && increment && comparison_value)) {
7291 fprintf (loop_dump_stream, "\tbounds not available: ");
7292 if ( ! initial_value )
7293 fprintf (loop_dump_stream, "initial ");
7294 if ( ! increment )
7295 fprintf (loop_dump_stream, "increment ");
7296 if ( ! comparison_value )
7297 fprintf (loop_dump_stream, "comparison ");
7298 fprintf (loop_dump_stream, "\n");
7299 }
7300 if (!invariant_p (comparison_value) || !invariant_p (increment))
7301 fprintf (loop_dump_stream, "\tloop bounds not invariant\n");
7302 }
7303 return;
7304 }
7305
7306 /* make sure that the increment is constant */
7307 if (GET_CODE (increment) != CONST_INT) {
7308 if (loop_dump_stream)
7309 fprintf (loop_dump_stream,
7310 "analyze_loop_iterations %d: instrumentation failed: not arithmetic loop\n",
7311 loop_num);
7312 return;
7313 }
7314
7315 /* make sure that the loop contains neither function call, nor jump on table.
7316 (the count register might be altered by the called function, and might
7317 be used for a branch on table). */
7318 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn)) {
7319 if (GET_CODE (insn) == CALL_INSN){
7320 if (loop_dump_stream)
7321 fprintf (loop_dump_stream,
7322 "analyze_loop_iterations %d: BCT instrumentation failed: function call in the loop\n",
7323 loop_num);
7324 return;
7325 }
7326
7327 if (GET_CODE (insn) == JUMP_INSN
7328 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
7329 || GET_CODE (PATTERN (insn)) == ADDR_VEC)){
7330 if (loop_dump_stream)
7331 fprintf (loop_dump_stream,
7332 "analyze_loop_iterations %d: BCT instrumentation failed: computed branch in the loop\n",
7333 loop_num);
7334 return;
7335 }
7336 }
7337
7338 /* At this point, we are sure that the loop can be instrumented with BCT.
7339 Some of the loops, however, will not be instrumented - the final decision
7340 is taken by insert_bct () */
7341 if (loop_dump_stream)
7342 fprintf (loop_dump_stream,
7343 "analyze_loop_iterations: loop (luid =%d) can be BCT instrumented.\n",
7344 loop_num);
7345
7346 /* mark all enclosing loops that they cannot use count register */
7347 /* ???: In fact, since insert_bct may decide not to instrument this loop,
7348 marking here may prevent instrumenting an enclosing loop that could
7349 actually be instrumented. But since this is rare, it is safer to mark
7350 here in case the order of calling (analyze/insert)_bct would be changed. */
7351 for (i=loop_num; i != -1; i = loop_outer_loop[i])
7352 loop_used_count_register[i] = 1;
7353
7354 /* Set data structures which will be used by the instrumentation phase */
7355 loop_start_value[loop_num] = initial_value;
7356 loop_comparison_value[loop_num] = comparison_value;
7357 loop_increment[loop_num] = increment;
7358 loop_comparison_code[loop_num] = comparison_code;
7359 loop_can_insert_bct[loop_num] = 1;
7360 }
7361
7362
7363 /* instrument loop for insertion of bct instruction. We distinguish between
7364 loops with compile-time bounds, to those with run-time bounds. The loop
7365 behaviour is analized according to the following characteristics/variables:
7366 ; Input variables:
7367 ; comparison-value: the value to which the iteration counter is compared.
7368 ; initial-value: iteration-counter initial value.
7369 ; increment: iteration-counter increment.
7370 ; Computed variables:
7371 ; increment-direction: the sign of the increment.
7372 ; compare-direction: '1' for GT, GTE, '-1' for LT, LTE, '0' for NE.
7373 ; range-direction: sign (comparison-value - initial-value)
7374 We give up on the following cases:
7375 ; loop variable overflow.
7376 ; run-time loop bounds with comparison code NE.
7377 */
7378
7379 static void
7380 insert_bct (loop_start, loop_end)
7381 rtx loop_start, loop_end;
7382 {
7383 rtx initial_value, comparison_value, increment;
7384 enum rtx_code comparison_code;
7385
7386 int increment_direction, compare_direction;
7387 int unsigned_p = 0;
7388
7389 /* if the loop condition is <= or >=, the number of iteration
7390 is 1 more than the range of the bounds of the loop */
7391 int add_iteration = 0;
7392
7393 /* the only machine mode we work with - is the integer of the size that the
7394 machine has */
7395 enum machine_mode loop_var_mode = SImode;
7396
7397 int loop_num = uid_loop_num [INSN_UID (loop_start)];
7398
7399 /* get loop-variables. No need to check that these are valid - already
7400 checked in analyze_loop_iterations (). */
7401 comparison_code = loop_comparison_code[loop_num];
7402 initial_value = loop_start_value[loop_num];
7403 comparison_value = loop_comparison_value[loop_num];
7404 increment = loop_increment[loop_num];
7405
7406 /* check analyze_loop_iterations decision for this loop. */
7407 if (! loop_can_insert_bct[loop_num]){
7408 if (loop_dump_stream)
7409 fprintf (loop_dump_stream,
7410 "insert_bct: [%d] - was decided not to instrument by analyze_loop_iterations ()\n",
7411 loop_num);
7412 return;
7413 }
7414
7415 /* It's impossible to instrument a competely unrolled loop. */
7416 if (loop_unroll_factor [loop_num] == -1)
7417 return;
7418
7419 /* make sure that the last loop insn is a conditional jump .
7420 This check is repeated from analyze_loop_iterations (),
7421 because unrolling might have changed that. */
7422 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7423 || !condjump_p (PREV_INSN (loop_end))) {
7424 if (loop_dump_stream)
7425 fprintf (loop_dump_stream,
7426 "insert_bct: not instrumenting BCT because of invalid branch\n");
7427 return;
7428 }
7429
7430 /* fix increment in case loop was unrolled. */
7431 if (loop_unroll_factor [loop_num] > 1)
7432 increment = GEN_INT ( INTVAL (increment) * loop_unroll_factor [loop_num] );
7433
7434 /* determine properties and directions of the loop */
7435 increment_direction = (INTVAL (increment) > 0) ? 1:-1;
7436 switch ( comparison_code ) {
7437 case LEU:
7438 unsigned_p = 1;
7439 /* fallthrough */
7440 case LE:
7441 compare_direction = 1;
7442 add_iteration = 1;
7443 break;
7444 case GEU:
7445 unsigned_p = 1;
7446 /* fallthrough */
7447 case GE:
7448 compare_direction = -1;
7449 add_iteration = 1;
7450 break;
7451 case EQ:
7452 /* in this case we cannot know the number of iterations */
7453 if (loop_dump_stream)
7454 fprintf (loop_dump_stream,
7455 "insert_bct: %d: loop cannot be instrumented: == in condition\n",
7456 loop_num);
7457 return;
7458 case LTU:
7459 unsigned_p = 1;
7460 /* fallthrough */
7461 case LT:
7462 compare_direction = 1;
7463 break;
7464 case GTU:
7465 unsigned_p = 1;
7466 /* fallthrough */
7467 case GT:
7468 compare_direction = -1;
7469 break;
7470 case NE:
7471 compare_direction = 0;
7472 break;
7473 default:
7474 abort ();
7475 }
7476
7477
7478 /* make sure that the loop does not end by an overflow */
7479 if (compare_direction != increment_direction) {
7480 if (loop_dump_stream)
7481 fprintf (loop_dump_stream,
7482 "insert_bct: %d: loop cannot be instrumented: terminated by overflow\n",
7483 loop_num);
7484 return;
7485 }
7486
7487 /* try to instrument the loop. */
7488
7489 /* Handle the simpler case, where the bounds are known at compile time. */
7490 if (GET_CODE (initial_value) == CONST_INT && GET_CODE (comparison_value) == CONST_INT)
7491 {
7492 int n_iterations;
7493 int increment_value_abs = INTVAL (increment) * increment_direction;
7494
7495 /* check the relation between compare-val and initial-val */
7496 int difference = INTVAL (comparison_value) - INTVAL (initial_value);
7497 int range_direction = (difference > 0) ? 1 : -1;
7498
7499 /* make sure the loop executes enough iterations to gain from BCT */
7500 if (difference > -3 && difference < 3) {
7501 if (loop_dump_stream)
7502 fprintf (loop_dump_stream,
7503 "insert_bct: loop %d not BCT instrumented: too small iteration count.\n",
7504 loop_num);
7505 return;
7506 }
7507
7508 /* make sure that the loop executes at least once */
7509 if ((range_direction == 1 && compare_direction == -1)
7510 || (range_direction == -1 && compare_direction == 1))
7511 {
7512 if (loop_dump_stream)
7513 fprintf (loop_dump_stream,
7514 "insert_bct: loop %d: does not iterate even once. Not instrumenting.\n",
7515 loop_num);
7516 return;
7517 }
7518
7519 /* make sure that the loop does not end by an overflow (in compile time
7520 bounds we must have an additional check for overflow, because here
7521 we also support the compare code of 'NE'. */
7522 if (comparison_code == NE
7523 && increment_direction != range_direction) {
7524 if (loop_dump_stream)
7525 fprintf (loop_dump_stream,
7526 "insert_bct (compile time bounds): %d: loop not instrumented: terminated by overflow\n",
7527 loop_num);
7528 return;
7529 }
7530
7531 /* Determine the number of iterations by:
7532 ;
7533 ; compare-val - initial-val + (increment -1) + additional-iteration
7534 ; num_iterations = -----------------------------------------------------------------
7535 ; increment
7536 */
7537 difference = (range_direction > 0) ? difference : -difference;
7538 #if 0
7539 fprintf (stderr, "difference is: %d\n", difference); /* @*/
7540 fprintf (stderr, "increment_value_abs is: %d\n", increment_value_abs); /* @*/
7541 fprintf (stderr, "add_iteration is: %d\n", add_iteration); /* @*/
7542 fprintf (stderr, "INTVAL (comparison_value) is: %d\n", INTVAL (comparison_value)); /* @*/
7543 fprintf (stderr, "INTVAL (initial_value) is: %d\n", INTVAL (initial_value)); /* @*/
7544 #endif
7545
7546 if (increment_value_abs == 0) {
7547 fprintf (stderr, "insert_bct: error: increment == 0 !!!\n");
7548 abort ();
7549 }
7550 n_iterations = (difference + increment_value_abs - 1 + add_iteration)
7551 / increment_value_abs;
7552
7553 #if 0
7554 fprintf (stderr, "number of iterations is: %d\n", n_iterations); /* @*/
7555 #endif
7556 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
7557
7558 /* Done with this loop. */
7559 return;
7560 }
7561
7562 /* Handle the more complex case, that the bounds are NOT known at compile time. */
7563 /* In this case we generate run_time calculation of the number of iterations */
7564
7565 /* With runtime bounds, if the compare is of the form '!=' we give up */
7566 if (comparison_code == NE) {
7567 if (loop_dump_stream)
7568 fprintf (loop_dump_stream,
7569 "insert_bct: fail for loop %d: runtime bounds with != comparison\n",
7570 loop_num);
7571 return;
7572 }
7573
7574 else {
7575 /* We rely on the existence of run-time guard to ensure that the
7576 loop executes at least once. */
7577 rtx sequence;
7578 rtx iterations_num_reg;
7579
7580 int increment_value_abs = INTVAL (increment) * increment_direction;
7581
7582 /* make sure that the increment is a power of two, otherwise (an
7583 expensive) divide is needed. */
7584 if (exact_log2 (increment_value_abs) == -1)
7585 {
7586 if (loop_dump_stream)
7587 fprintf (loop_dump_stream,
7588 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
7589 return;
7590 }
7591
7592 /* compute the number of iterations */
7593 start_sequence ();
7594 {
7595 rtx temp_reg;
7596
7597 /* Again, the number of iterations is calculated by:
7598 ;
7599 ; compare-val - initial-val + (increment -1) + additional-iteration
7600 ; num_iterations = -----------------------------------------------------------------
7601 ; increment
7602 */
7603 /* ??? Do we have to call copy_rtx here before passing rtx to
7604 expand_binop? */
7605 if (compare_direction > 0) {
7606 /* <, <= :the loop variable is increasing */
7607 temp_reg = expand_binop (loop_var_mode, sub_optab, comparison_value,
7608 initial_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7609 }
7610 else {
7611 temp_reg = expand_binop (loop_var_mode, sub_optab, initial_value,
7612 comparison_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7613 }
7614
7615 if (increment_value_abs - 1 + add_iteration != 0)
7616 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
7617 GEN_INT (increment_value_abs - 1 + add_iteration),
7618 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7619
7620 if (increment_value_abs != 1)
7621 {
7622 /* ??? This will generate an expensive divide instruction for
7623 most targets. The original authors apparently expected this
7624 to be a shift, since they test for power-of-2 divisors above,
7625 but just naively generating a divide instruction will not give
7626 a shift. It happens to work for the PowerPC target because
7627 the rs6000.md file has a divide pattern that emits shifts.
7628 It will probably not work for any other target. */
7629 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
7630 temp_reg,
7631 GEN_INT (increment_value_abs),
7632 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7633 }
7634 else
7635 iterations_num_reg = temp_reg;
7636 }
7637 sequence = gen_sequence ();
7638 end_sequence ();
7639 emit_insn_before (sequence, loop_start);
7640 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
7641 }
7642 }
7643
7644 /* instrument loop by inserting a bct in it. This is done in the following way:
7645 1. A new register is created and assigned the hard register number of the count
7646 register.
7647 2. In the head of the loop the new variable is initialized by the value passed in the
7648 loop_num_iterations parameter.
7649 3. At the end of the loop, comparison of the register with 0 is generated.
7650 The created comparison follows the pattern defined for the
7651 decrement_and_branch_on_count insn, so this insn will be generated in assembly
7652 generation phase.
7653 4. The compare&branch on the old variable is deleted. So, if the loop-variable was
7654 not used elsewhere, it will be eliminated by data-flow analisys. */
7655
7656 static void
7657 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
7658 rtx loop_start, loop_end;
7659 rtx loop_num_iterations;
7660 {
7661 rtx temp_reg1, temp_reg2;
7662 rtx start_label;
7663
7664 rtx sequence;
7665 enum machine_mode loop_var_mode = SImode;
7666
7667 if (HAVE_decrement_and_branch_on_count)
7668 {
7669 if (loop_dump_stream)
7670 fprintf (loop_dump_stream, "Loop: Inserting BCT\n");
7671
7672 /* eliminate the check on the old variable */
7673 delete_insn (PREV_INSN (loop_end));
7674 delete_insn (PREV_INSN (loop_end));
7675
7676 /* insert the label which will delimit the start of the loop */
7677 start_label = gen_label_rtx ();
7678 emit_label_after (start_label, loop_start);
7679
7680 /* insert initialization of the count register into the loop header */
7681 start_sequence ();
7682 temp_reg1 = gen_reg_rtx (loop_var_mode);
7683 emit_insn (gen_move_insn (temp_reg1, loop_num_iterations));
7684
7685 /* this will be count register */
7686 temp_reg2 = gen_rtx_REG (loop_var_mode, COUNT_REGISTER_REGNUM);
7687 /* we have to move the value to the count register from an GPR
7688 because rtx pointed to by loop_num_iterations could contain
7689 expression which cannot be moved into count register */
7690 emit_insn (gen_move_insn (temp_reg2, temp_reg1));
7691
7692 sequence = gen_sequence ();
7693 end_sequence ();
7694 emit_insn_after (sequence, loop_start);
7695
7696 /* insert new comparison on the count register instead of the
7697 old one, generating the needed BCT pattern (that will be
7698 later recognized by assembly generation phase). */
7699 emit_jump_insn_before (gen_decrement_and_branch_on_count (temp_reg2, start_label),
7700 loop_end);
7701 LABEL_NUSES (start_label)++;
7702 }
7703
7704 }
7705 #endif /* HAVE_decrement_and_branch_on_count */
7706
7707 #endif /* HAIFA */
7708
7709 /* Scan the function and determine whether it has indirect (computed) jumps.
7710
7711 This is taken mostly from flow.c; similar code exists elsewhere
7712 in the compiler. It may be useful to put this into rtlanal.c. */
7713 static int
7714 indirect_jump_in_function_p (start)
7715 rtx start;
7716 {
7717 rtx insn;
7718
7719 for (insn = start; insn; insn = NEXT_INSN (insn))
7720 if (computed_jump_p (insn))
7721 return 1;
7722
7723 return 0;
7724 }