flags.h (flag_move_all_movables): Declare.
[gcc.git] / gcc / loop.c
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
28
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
33
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
36
37 #include <stdio.h>
38 #include "config.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "expr.h"
42 #include "insn-config.h"
43 #include "insn-flags.h"
44 #include "regs.h"
45 #include "hard-reg-set.h"
46 #include "recog.h"
47 #include "flags.h"
48 #include "real.h"
49 #include "loop.h"
50 #include "except.h"
51
52 /* Vector mapping INSN_UIDs to luids.
53 The luids are like uids but increase monotonically always.
54 We use them to see whether a jump comes from outside a given loop. */
55
56 int *uid_luid;
57
58 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
59 number the insn is contained in. */
60
61 int *uid_loop_num;
62
63 /* 1 + largest uid of any insn. */
64
65 int max_uid_for_loop;
66
67 /* 1 + luid of last insn. */
68
69 static int max_luid;
70
71 /* Number of loops detected in current function. Used as index to the
72 next few tables. */
73
74 static int max_loop_num;
75
76 /* Indexed by loop number, contains the first and last insn of each loop. */
77
78 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
79
80 /* For each loop, gives the containing loop number, -1 if none. */
81
82 int *loop_outer_loop;
83
84 #ifdef HAIFA
85 /* The main output of analyze_loop_iterations is placed here */
86
87 int *loop_can_insert_bct;
88
89 /* For each loop, determines whether some of its inner loops has used
90 count register */
91
92 int *loop_used_count_register;
93
94 /* For each loop, remember its unrolling factor (if at all).
95 contents of the array:
96 0/1: not unrolled.
97 -1: completely unrolled - no further instrumentation is needed.
98 >1: holds the exact amount of unrolling. */
99
100 int *loop_unroll_factor;
101 int *loop_unroll_iter;
102
103 /* loop parameters for arithmetic loops. These loops have a loop variable
104 which is initialized to loop_start_value, incremented in each iteration
105 by "loop_increment". At the end of the iteration the loop variable is
106 compared to the loop_comparison_value (using loop_comparison_code). */
107
108 rtx *loop_increment;
109 rtx *loop_comparison_value;
110 rtx *loop_start_value;
111 enum rtx_code *loop_comparison_code;
112
113 /* for debugging: selects sub-range of loops for which the bct optimization
114 is invoked. The numbering is per compilation-unit. */
115 int dbg_bct_min = -1;
116 int dbg_bct_max = -1;
117 #endif /* HAIFA */
118
119
120 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
121 really a loop (an insn outside the loop branches into it). */
122
123 static char *loop_invalid;
124
125 /* Indexed by loop number, links together all LABEL_REFs which refer to
126 code labels outside the loop. Used by routines that need to know all
127 loop exits, such as final_biv_value and final_giv_value.
128
129 This does not include loop exits due to return instructions. This is
130 because all bivs and givs are pseudos, and hence must be dead after a
131 return, so the presense of a return does not affect any of the
132 optimizations that use this info. It is simpler to just not include return
133 instructions on this list. */
134
135 rtx *loop_number_exit_labels;
136
137 /* Indexed by loop number, counts the number of LABEL_REFs on
138 loop_number_exit_labels for this loop and all loops nested inside it. */
139
140 int *loop_number_exit_count;
141
142 /* Holds the number of loop iterations. It is zero if the number could not be
143 calculated. Must be unsigned since the number of iterations can
144 be as high as 2^wordsize-1. For loops with a wider iterator, this number
145 will will be zero if the number of loop iterations is too large for an
146 unsigned integer to hold. */
147
148 unsigned HOST_WIDE_INT loop_n_iterations;
149
150 /* Nonzero if there is a subroutine call in the current loop. */
151
152 static int loop_has_call;
153
154 /* Nonzero if there is a volatile memory reference in the current
155 loop. */
156
157 static int loop_has_volatile;
158
159 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
160 current loop. A continue statement will generate a branch to
161 NEXT_INSN (loop_continue). */
162
163 static rtx loop_continue;
164
165 /* Indexed by register number, contains the number of times the reg
166 is set during the loop being scanned.
167 During code motion, a negative value indicates a reg that has been
168 made a candidate; in particular -2 means that it is an candidate that
169 we know is equal to a constant and -1 means that it is an candidate
170 not known equal to a constant.
171 After code motion, regs moved have 0 (which is accurate now)
172 while the failed candidates have the original number of times set.
173
174 Therefore, at all times, == 0 indicates an invariant register;
175 < 0 a conditionally invariant one. */
176
177 static int *n_times_set;
178
179 /* Original value of n_times_set; same except that this value
180 is not set negative for a reg whose sets have been made candidates
181 and not set to 0 for a reg that is moved. */
182
183 static int *n_times_used;
184
185 /* Index by register number, 1 indicates that the register
186 cannot be moved or strength reduced. */
187
188 static char *may_not_optimize;
189
190 /* Nonzero means reg N has already been moved out of one loop.
191 This reduces the desire to move it out of another. */
192
193 static char *moved_once;
194
195 /* Array of MEMs that are stored in this loop. If there are too many to fit
196 here, we just turn on unknown_address_altered. */
197
198 #define NUM_STORES 30
199 static rtx loop_store_mems[NUM_STORES];
200
201 /* Index of first available slot in above array. */
202 static int loop_store_mems_idx;
203
204 /* Nonzero if we don't know what MEMs were changed in the current loop.
205 This happens if the loop contains a call (in which case `loop_has_call'
206 will also be set) or if we store into more than NUM_STORES MEMs. */
207
208 static int unknown_address_altered;
209
210 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
211 static int num_movables;
212
213 /* Count of memory write instructions discovered in the loop. */
214 static int num_mem_sets;
215
216 /* Number of loops contained within the current one, including itself. */
217 static int loops_enclosed;
218
219 /* Bound on pseudo register number before loop optimization.
220 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
221 int max_reg_before_loop;
222
223 /* This obstack is used in product_cheap_p to allocate its rtl. It
224 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
225 If we used the same obstack that it did, we would be deallocating
226 that array. */
227
228 static struct obstack temp_obstack;
229
230 /* This is where the pointer to the obstack being used for RTL is stored. */
231
232 extern struct obstack *rtl_obstack;
233
234 #define obstack_chunk_alloc xmalloc
235 #define obstack_chunk_free free
236
237 extern char *oballoc ();
238 \f
239 /* During the analysis of a loop, a chain of `struct movable's
240 is made to record all the movable insns found.
241 Then the entire chain can be scanned to decide which to move. */
242
243 struct movable
244 {
245 rtx insn; /* A movable insn */
246 rtx set_src; /* The expression this reg is set from. */
247 rtx set_dest; /* The destination of this SET. */
248 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
249 of any registers used within the LIBCALL. */
250 int consec; /* Number of consecutive following insns
251 that must be moved with this one. */
252 int regno; /* The register it sets */
253 short lifetime; /* lifetime of that register;
254 may be adjusted when matching movables
255 that load the same value are found. */
256 short savings; /* Number of insns we can move for this reg,
257 including other movables that force this
258 or match this one. */
259 unsigned int cond : 1; /* 1 if only conditionally movable */
260 unsigned int force : 1; /* 1 means MUST move this insn */
261 unsigned int global : 1; /* 1 means reg is live outside this loop */
262 /* If PARTIAL is 1, GLOBAL means something different:
263 that the reg is live outside the range from where it is set
264 to the following label. */
265 unsigned int done : 1; /* 1 inhibits further processing of this */
266
267 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
268 In particular, moving it does not make it
269 invariant. */
270 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
271 load SRC, rather than copying INSN. */
272 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
273 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
274 that we should avoid changing when clearing
275 the rest of the reg. */
276 struct movable *match; /* First entry for same value */
277 struct movable *forces; /* An insn that must be moved if this is */
278 struct movable *next;
279 };
280
281 FILE *loop_dump_stream;
282
283 /* Forward declarations. */
284
285 static void find_and_verify_loops ();
286 static void mark_loop_jump ();
287 static void prescan_loop ();
288 static int reg_in_basic_block_p ();
289 static int consec_sets_invariant_p ();
290 static rtx libcall_other_reg ();
291 static int labels_in_range_p ();
292 static void count_loop_regs_set ();
293 static void note_addr_stored ();
294 static int loop_reg_used_before_p ();
295 static void scan_loop ();
296 static void replace_call_address ();
297 static rtx skip_consec_insns ();
298 static int libcall_benefit ();
299 static void ignore_some_movables ();
300 static void force_movables ();
301 static void combine_movables ();
302 static int rtx_equal_for_loop_p ();
303 static void move_movables ();
304 static void strength_reduce ();
305 static int valid_initial_value_p ();
306 static void find_mem_givs ();
307 static void record_biv ();
308 static void check_final_value ();
309 static void record_giv ();
310 static void update_giv_derive ();
311 static int basic_induction_var ();
312 static rtx simplify_giv_expr ();
313 static int general_induction_var ();
314 static int consec_sets_giv ();
315 static int check_dbra_loop ();
316 static rtx express_from ();
317 static int combine_givs_p ();
318 static void combine_givs ();
319 static int product_cheap_p ();
320 static int maybe_eliminate_biv ();
321 static int maybe_eliminate_biv_1 ();
322 static int last_use_this_basic_block ();
323 static void record_initial ();
324 static void update_reg_last_use ();
325
326 #ifdef HAIFA
327 /* This is extern from unroll.c */
328 void iteration_info ();
329
330 /* Two main functions for implementing bct:
331 first - to be called before loop unrolling, and the second - after */
332 static void analyze_loop_iterations ();
333 static void insert_bct ();
334
335 /* Auxiliary function that inserts the bct pattern into the loop */
336 static void instrument_loop_bct ();
337
338 /* Indirect_jump_in_function is computed once per function. */
339 int indirect_jump_in_function = 0;
340 static int indirect_jump_in_function_p ();
341
342 int loop_number ();
343
344 /* Debugging functions. */
345 int fix_bct_param ();
346 static int check_bct_param ();
347 #endif /* HAIFA */
348
349 \f
350 /* Relative gain of eliminating various kinds of operations. */
351 int add_cost;
352 #if 0
353 int shift_cost;
354 int mult_cost;
355 #endif
356
357 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
358 copy the value of the strength reduced giv to its original register. */
359 int copy_cost;
360
361 void
362 init_loop ()
363 {
364 char *free_point = (char *) oballoc (1);
365 rtx reg = gen_rtx (REG, word_mode, LAST_VIRTUAL_REGISTER + 1);
366
367 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
368
369 /* We multiply by 2 to reconcile the difference in scale between
370 these two ways of computing costs. Otherwise the cost of a copy
371 will be far less than the cost of an add. */
372
373 copy_cost = 2 * 2;
374
375 /* Free the objects we just allocated. */
376 obfree (free_point);
377
378 /* Initialize the obstack used for rtl in product_cheap_p. */
379 gcc_obstack_init (&temp_obstack);
380 }
381 \f
382 /* Entry point of this file. Perform loop optimization
383 on the current function. F is the first insn of the function
384 and DUMPFILE is a stream for output of a trace of actions taken
385 (or 0 if none should be output). */
386
387 void
388 loop_optimize (f, dumpfile)
389 /* f is the first instruction of a chain of insns for one function */
390 rtx f;
391 FILE *dumpfile;
392 {
393 register rtx insn;
394 register int i;
395 rtx last_insn;
396
397 loop_dump_stream = dumpfile;
398
399 init_recog_no_volatile ();
400 init_alias_analysis ();
401
402 max_reg_before_loop = max_reg_num ();
403
404 moved_once = (char *) alloca (max_reg_before_loop);
405 bzero (moved_once, max_reg_before_loop);
406
407 regs_may_share = 0;
408
409 /* Count the number of loops. */
410
411 max_loop_num = 0;
412 for (insn = f; insn; insn = NEXT_INSN (insn))
413 {
414 if (GET_CODE (insn) == NOTE
415 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
416 max_loop_num++;
417 }
418
419 /* Don't waste time if no loops. */
420 if (max_loop_num == 0)
421 return;
422
423 /* Get size to use for tables indexed by uids.
424 Leave some space for labels allocated by find_and_verify_loops. */
425 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
426
427 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
428 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
429
430 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
431 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
432
433 /* Allocate tables for recording each loop. We set each entry, so they need
434 not be zeroed. */
435 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
436 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
437 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
438 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
439 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
440 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
441
442 #ifdef HAIFA
443 /* Allocate for BCT optimization */
444 loop_can_insert_bct = (int *) alloca (max_loop_num * sizeof (int));
445 bzero ((char *) loop_can_insert_bct, max_loop_num * sizeof (int));
446
447 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
448 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
449
450 loop_unroll_factor = (int *) alloca (max_loop_num *sizeof (int));
451 bzero ((char *) loop_unroll_factor, max_loop_num * sizeof (int));
452
453 loop_unroll_iter = (int *) alloca (max_loop_num *sizeof (int));
454 bzero ((char *) loop_unroll_iter, max_loop_num * sizeof (int));
455
456 loop_increment = (rtx *) alloca (max_loop_num * sizeof (rtx));
457 loop_comparison_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
458 loop_start_value = (rtx *) alloca (max_loop_num * sizeof (rtx));
459 bzero ((char *) loop_increment, max_loop_num * sizeof (rtx));
460 bzero ((char *) loop_comparison_value, max_loop_num * sizeof (rtx));
461 bzero ((char *) loop_start_value, max_loop_num * sizeof (rtx));
462
463 loop_comparison_code
464 = (enum rtx_code *) alloca (max_loop_num * sizeof (enum rtx_code));
465 bzero ((char *) loop_comparison_code, max_loop_num * sizeof (enum rtx_code));
466 #endif /* HAIFA */
467
468 /* Find and process each loop.
469 First, find them, and record them in order of their beginnings. */
470 find_and_verify_loops (f);
471
472 /* Now find all register lifetimes. This must be done after
473 find_and_verify_loops, because it might reorder the insns in the
474 function. */
475 reg_scan (f, max_reg_num (), 1);
476
477 /* See if we went too far. */
478 if (get_max_uid () > max_uid_for_loop)
479 abort ();
480
481 /* Compute the mapping from uids to luids.
482 LUIDs are numbers assigned to insns, like uids,
483 except that luids increase monotonically through the code.
484 Don't assign luids to line-number NOTEs, so that the distance in luids
485 between two insns is not affected by -g. */
486
487 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
488 {
489 last_insn = insn;
490 if (GET_CODE (insn) != NOTE
491 || NOTE_LINE_NUMBER (insn) <= 0)
492 uid_luid[INSN_UID (insn)] = ++i;
493 else
494 /* Give a line number note the same luid as preceding insn. */
495 uid_luid[INSN_UID (insn)] = i;
496 }
497
498 max_luid = i + 1;
499
500 /* Don't leave gaps in uid_luid for insns that have been
501 deleted. It is possible that the first or last insn
502 using some register has been deleted by cross-jumping.
503 Make sure that uid_luid for that former insn's uid
504 points to the general area where that insn used to be. */
505 for (i = 0; i < max_uid_for_loop; i++)
506 {
507 uid_luid[0] = uid_luid[i];
508 if (uid_luid[0] != 0)
509 break;
510 }
511 for (i = 0; i < max_uid_for_loop; i++)
512 if (uid_luid[i] == 0)
513 uid_luid[i] = uid_luid[i - 1];
514
515 /* Create a mapping from loops to BLOCK tree nodes. */
516 if (flag_unroll_loops && write_symbols != NO_DEBUG)
517 find_loop_tree_blocks ();
518
519 #ifdef HAIFA
520 /* determine if the function has indirect jump. If it does,
521 we cannot instrument loops in this function with bct */
522 indirect_jump_in_function = indirect_jump_in_function_p (f);
523 #endif /* HAIFA */
524
525 /* Now scan the loops, last ones first, since this means inner ones are done
526 before outer ones. */
527 for (i = max_loop_num-1; i >= 0; i--)
528 if (! loop_invalid[i] && loop_number_loop_ends[i])
529 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
530 max_reg_num ());
531
532 /* If debugging and unrolling loops, we must replicate the tree nodes
533 corresponding to the blocks inside the loop, so that the original one
534 to one mapping will remain. */
535 if (flag_unroll_loops && write_symbols != NO_DEBUG)
536 unroll_block_trees ();
537 }
538 \f
539 /* Optimize one loop whose start is LOOP_START and end is END.
540 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
541 NOTE_INSN_LOOP_END. */
542
543 /* ??? Could also move memory writes out of loops if the destination address
544 is invariant, the source is invariant, the memory write is not volatile,
545 and if we can prove that no read inside the loop can read this address
546 before the write occurs. If there is a read of this address after the
547 write, then we can also mark the memory read as invariant. */
548
549 static void
550 scan_loop (loop_start, end, nregs)
551 rtx loop_start, end;
552 int nregs;
553 {
554 register int i;
555 register rtx p;
556 /* 1 if we are scanning insns that could be executed zero times. */
557 int maybe_never = 0;
558 /* 1 if we are scanning insns that might never be executed
559 due to a subroutine call which might exit before they are reached. */
560 int call_passed = 0;
561 /* For a rotated loop that is entered near the bottom,
562 this is the label at the top. Otherwise it is zero. */
563 rtx loop_top = 0;
564 /* Jump insn that enters the loop, or 0 if control drops in. */
565 rtx loop_entry_jump = 0;
566 /* Place in the loop where control enters. */
567 rtx scan_start;
568 /* Number of insns in the loop. */
569 int insn_count;
570 int in_libcall = 0;
571 int tem;
572 rtx temp;
573 /* The SET from an insn, if it is the only SET in the insn. */
574 rtx set, set1;
575 /* Chain describing insns movable in current loop. */
576 struct movable *movables = 0;
577 /* Last element in `movables' -- so we can add elements at the end. */
578 struct movable *last_movable = 0;
579 /* Ratio of extra register life span we can justify
580 for saving an instruction. More if loop doesn't call subroutines
581 since in that case saving an insn makes more difference
582 and more registers are available. */
583 int threshold;
584 /* If we have calls, contains the insn in which a register was used
585 if it was used exactly once; contains const0_rtx if it was used more
586 than once. */
587 rtx *reg_single_usage = 0;
588 /* Nonzero if we are scanning instructions in a sub-loop. */
589 int loop_depth = 0;
590
591 n_times_set = (int *) alloca (nregs * sizeof (int));
592 n_times_used = (int *) alloca (nregs * sizeof (int));
593 may_not_optimize = (char *) alloca (nregs);
594
595 /* Determine whether this loop starts with a jump down to a test at
596 the end. This will occur for a small number of loops with a test
597 that is too complex to duplicate in front of the loop.
598
599 We search for the first insn or label in the loop, skipping NOTEs.
600 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
601 (because we might have a loop executed only once that contains a
602 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
603 (in case we have a degenerate loop).
604
605 Note that if we mistakenly think that a loop is entered at the top
606 when, in fact, it is entered at the exit test, the only effect will be
607 slightly poorer optimization. Making the opposite error can generate
608 incorrect code. Since very few loops now start with a jump to the
609 exit test, the code here to detect that case is very conservative. */
610
611 for (p = NEXT_INSN (loop_start);
612 p != end
613 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
614 && (GET_CODE (p) != NOTE
615 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
616 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
617 p = NEXT_INSN (p))
618 ;
619
620 scan_start = p;
621
622 /* Set up variables describing this loop. */
623 prescan_loop (loop_start, end);
624 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
625
626 /* If loop has a jump before the first label,
627 the true entry is the target of that jump.
628 Start scan from there.
629 But record in LOOP_TOP the place where the end-test jumps
630 back to so we can scan that after the end of the loop. */
631 if (GET_CODE (p) == JUMP_INSN)
632 {
633 loop_entry_jump = p;
634
635 /* Loop entry must be unconditional jump (and not a RETURN) */
636 if (simplejump_p (p)
637 && JUMP_LABEL (p) != 0
638 /* Check to see whether the jump actually
639 jumps out of the loop (meaning it's no loop).
640 This case can happen for things like
641 do {..} while (0). If this label was generated previously
642 by loop, we can't tell anything about it and have to reject
643 the loop. */
644 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
645 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
646 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
647 {
648 loop_top = next_label (scan_start);
649 scan_start = JUMP_LABEL (p);
650 }
651 }
652
653 /* If SCAN_START was an insn created by loop, we don't know its luid
654 as required by loop_reg_used_before_p. So skip such loops. (This
655 test may never be true, but it's best to play it safe.)
656
657 Also, skip loops where we do not start scanning at a label. This
658 test also rejects loops starting with a JUMP_INSN that failed the
659 test above. */
660
661 if (INSN_UID (scan_start) >= max_uid_for_loop
662 || GET_CODE (scan_start) != CODE_LABEL)
663 {
664 if (loop_dump_stream)
665 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
666 INSN_UID (loop_start), INSN_UID (end));
667 return;
668 }
669
670 /* Count number of times each reg is set during this loop.
671 Set may_not_optimize[I] if it is not safe to move out
672 the setting of register I. If this loop has calls, set
673 reg_single_usage[I]. */
674
675 bzero ((char *) n_times_set, nregs * sizeof (int));
676 bzero (may_not_optimize, nregs);
677
678 if (loop_has_call)
679 {
680 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
681 bzero ((char *) reg_single_usage, nregs * sizeof (rtx));
682 }
683
684 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
685 may_not_optimize, reg_single_usage, &insn_count, nregs);
686
687 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
688 may_not_optimize[i] = 1, n_times_set[i] = 1;
689 bcopy ((char *) n_times_set, (char *) n_times_used, nregs * sizeof (int));
690
691 if (loop_dump_stream)
692 {
693 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
694 INSN_UID (loop_start), INSN_UID (end), insn_count);
695 if (loop_continue)
696 fprintf (loop_dump_stream, "Continue at insn %d.\n",
697 INSN_UID (loop_continue));
698 }
699
700 /* Scan through the loop finding insns that are safe to move.
701 Set n_times_set negative for the reg being set, so that
702 this reg will be considered invariant for subsequent insns.
703 We consider whether subsequent insns use the reg
704 in deciding whether it is worth actually moving.
705
706 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
707 and therefore it is possible that the insns we are scanning
708 would never be executed. At such times, we must make sure
709 that it is safe to execute the insn once instead of zero times.
710 When MAYBE_NEVER is 0, all insns will be executed at least once
711 so that is not a problem. */
712
713 p = scan_start;
714 while (1)
715 {
716 p = NEXT_INSN (p);
717 /* At end of a straight-in loop, we are done.
718 At end of a loop entered at the bottom, scan the top. */
719 if (p == scan_start)
720 break;
721 if (p == end)
722 {
723 if (loop_top != 0)
724 p = loop_top;
725 else
726 break;
727 if (p == scan_start)
728 break;
729 }
730
731 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
732 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
733 in_libcall = 1;
734 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
735 && find_reg_note (p, REG_RETVAL, NULL_RTX))
736 in_libcall = 0;
737
738 if (GET_CODE (p) == INSN
739 && (set = single_set (p))
740 && GET_CODE (SET_DEST (set)) == REG
741 && ! may_not_optimize[REGNO (SET_DEST (set))])
742 {
743 int tem1 = 0;
744 int tem2 = 0;
745 int move_insn = 0;
746 rtx src = SET_SRC (set);
747 rtx dependencies = 0;
748
749 /* Figure out what to use as a source of this insn. If a REG_EQUIV
750 note is given or if a REG_EQUAL note with a constant operand is
751 specified, use it as the source and mark that we should move
752 this insn by calling emit_move_insn rather that duplicating the
753 insn.
754
755 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
756 is present. */
757 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
758 if (temp)
759 src = XEXP (temp, 0), move_insn = 1;
760 else
761 {
762 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
763 if (temp && CONSTANT_P (XEXP (temp, 0)))
764 src = XEXP (temp, 0), move_insn = 1;
765 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
766 {
767 src = XEXP (temp, 0);
768 /* A libcall block can use regs that don't appear in
769 the equivalent expression. To move the libcall,
770 we must move those regs too. */
771 dependencies = libcall_other_reg (p, src);
772 }
773 }
774
775 /* Don't try to optimize a register that was made
776 by loop-optimization for an inner loop.
777 We don't know its life-span, so we can't compute the benefit. */
778 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
779 ;
780 /* In order to move a register, we need to have one of three cases:
781 (1) it is used only in the same basic block as the set
782 (2) it is not a user variable and it is not used in the
783 exit test (this can cause the variable to be used
784 before it is set just like a user-variable).
785 (3) the set is guaranteed to be executed once the loop starts,
786 and the reg is not used until after that. */
787 else if (! ((! maybe_never
788 && ! loop_reg_used_before_p (set, p, loop_start,
789 scan_start, end))
790 || (! REG_USERVAR_P (SET_DEST (set))
791 && ! REG_LOOP_TEST_P (SET_DEST (set)))
792 || reg_in_basic_block_p (p, SET_DEST (set))))
793 ;
794 else if ((tem = invariant_p (src))
795 && (dependencies == 0
796 || (tem2 = invariant_p (dependencies)) != 0)
797 && (n_times_set[REGNO (SET_DEST (set))] == 1
798 || (tem1
799 = consec_sets_invariant_p (SET_DEST (set),
800 n_times_set[REGNO (SET_DEST (set))],
801 p)))
802 /* If the insn can cause a trap (such as divide by zero),
803 can't move it unless it's guaranteed to be executed
804 once loop is entered. Even a function call might
805 prevent the trap insn from being reached
806 (since it might exit!) */
807 && ! ((maybe_never || call_passed)
808 && may_trap_p (src)))
809 {
810 register struct movable *m;
811 register int regno = REGNO (SET_DEST (set));
812
813 /* A potential lossage is where we have a case where two insns
814 can be combined as long as they are both in the loop, but
815 we move one of them outside the loop. For large loops,
816 this can lose. The most common case of this is the address
817 of a function being called.
818
819 Therefore, if this register is marked as being used exactly
820 once if we are in a loop with calls (a "large loop"), see if
821 we can replace the usage of this register with the source
822 of this SET. If we can, delete this insn.
823
824 Don't do this if P has a REG_RETVAL note or if we have
825 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
826
827 if (reg_single_usage && reg_single_usage[regno] != 0
828 && reg_single_usage[regno] != const0_rtx
829 && REGNO_FIRST_UID (regno) == INSN_UID (p)
830 && (REGNO_LAST_UID (regno)
831 == INSN_UID (reg_single_usage[regno]))
832 && n_times_set[REGNO (SET_DEST (set))] == 1
833 && ! side_effects_p (SET_SRC (set))
834 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
835 #ifdef SMALL_REGISTER_CLASSES
836 && ! (SMALL_REGISTER_CLASSES
837 && GET_CODE (SET_SRC (set)) == REG
838 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
839 #endif
840 /* This test is not redundant; SET_SRC (set) might be
841 a call-clobbered register and the life of REGNO
842 might span a call. */
843 && ! modified_between_p (SET_SRC (set), p,
844 reg_single_usage[regno])
845 && no_labels_between_p (p, reg_single_usage[regno])
846 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
847 reg_single_usage[regno]))
848 {
849 /* Replace any usage in a REG_EQUAL note. Must copy the
850 new source, so that we don't get rtx sharing between the
851 SET_SOURCE and REG_NOTES of insn p. */
852 REG_NOTES (reg_single_usage[regno])
853 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
854 SET_DEST (set), copy_rtx (SET_SRC (set)));
855
856 PUT_CODE (p, NOTE);
857 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
858 NOTE_SOURCE_FILE (p) = 0;
859 n_times_set[regno] = 0;
860 continue;
861 }
862
863 m = (struct movable *) alloca (sizeof (struct movable));
864 m->next = 0;
865 m->insn = p;
866 m->set_src = src;
867 m->dependencies = dependencies;
868 m->set_dest = SET_DEST (set);
869 m->force = 0;
870 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
871 m->done = 0;
872 m->forces = 0;
873 m->partial = 0;
874 m->move_insn = move_insn;
875 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
876 m->savemode = VOIDmode;
877 m->regno = regno;
878 /* Set M->cond if either invariant_p or consec_sets_invariant_p
879 returned 2 (only conditionally invariant). */
880 m->cond = ((tem | tem1 | tem2) > 1);
881 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
882 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
883 m->match = 0;
884 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
885 - uid_luid[REGNO_FIRST_UID (regno)]);
886 m->savings = n_times_used[regno];
887 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
888 m->savings += libcall_benefit (p);
889 n_times_set[regno] = move_insn ? -2 : -1;
890 /* Add M to the end of the chain MOVABLES. */
891 if (movables == 0)
892 movables = m;
893 else
894 last_movable->next = m;
895 last_movable = m;
896
897 if (m->consec > 0)
898 {
899 /* Skip this insn, not checking REG_LIBCALL notes. */
900 p = next_nonnote_insn (p);
901 /* Skip the consecutive insns, if there are any. */
902 p = skip_consec_insns (p, m->consec);
903 /* Back up to the last insn of the consecutive group. */
904 p = prev_nonnote_insn (p);
905
906 /* We must now reset m->move_insn, m->is_equiv, and possibly
907 m->set_src to correspond to the effects of all the
908 insns. */
909 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
910 if (temp)
911 m->set_src = XEXP (temp, 0), m->move_insn = 1;
912 else
913 {
914 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
915 if (temp && CONSTANT_P (XEXP (temp, 0)))
916 m->set_src = XEXP (temp, 0), m->move_insn = 1;
917 else
918 m->move_insn = 0;
919
920 }
921 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
922 }
923 }
924 /* If this register is always set within a STRICT_LOW_PART
925 or set to zero, then its high bytes are constant.
926 So clear them outside the loop and within the loop
927 just load the low bytes.
928 We must check that the machine has an instruction to do so.
929 Also, if the value loaded into the register
930 depends on the same register, this cannot be done. */
931 else if (SET_SRC (set) == const0_rtx
932 && GET_CODE (NEXT_INSN (p)) == INSN
933 && (set1 = single_set (NEXT_INSN (p)))
934 && GET_CODE (set1) == SET
935 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
936 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
937 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
938 == SET_DEST (set))
939 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
940 {
941 register int regno = REGNO (SET_DEST (set));
942 if (n_times_set[regno] == 2)
943 {
944 register struct movable *m;
945 m = (struct movable *) alloca (sizeof (struct movable));
946 m->next = 0;
947 m->insn = p;
948 m->set_dest = SET_DEST (set);
949 m->dependencies = 0;
950 m->force = 0;
951 m->consec = 0;
952 m->done = 0;
953 m->forces = 0;
954 m->move_insn = 0;
955 m->partial = 1;
956 /* If the insn may not be executed on some cycles,
957 we can't clear the whole reg; clear just high part.
958 Not even if the reg is used only within this loop.
959 Consider this:
960 while (1)
961 while (s != t) {
962 if (foo ()) x = *s;
963 use (x);
964 }
965 Clearing x before the inner loop could clobber a value
966 being saved from the last time around the outer loop.
967 However, if the reg is not used outside this loop
968 and all uses of the register are in the same
969 basic block as the store, there is no problem.
970
971 If this insn was made by loop, we don't know its
972 INSN_LUID and hence must make a conservative
973 assumption. */
974 m->global = (INSN_UID (p) >= max_uid_for_loop
975 || (uid_luid[REGNO_LAST_UID (regno)]
976 > INSN_LUID (end))
977 || (uid_luid[REGNO_FIRST_UID (regno)]
978 < INSN_LUID (p))
979 || (labels_in_range_p
980 (p, uid_luid[REGNO_FIRST_UID (regno)])));
981 if (maybe_never && m->global)
982 m->savemode = GET_MODE (SET_SRC (set1));
983 else
984 m->savemode = VOIDmode;
985 m->regno = regno;
986 m->cond = 0;
987 m->match = 0;
988 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
989 - uid_luid[REGNO_FIRST_UID (regno)]);
990 m->savings = 1;
991 n_times_set[regno] = -1;
992 /* Add M to the end of the chain MOVABLES. */
993 if (movables == 0)
994 movables = m;
995 else
996 last_movable->next = m;
997 last_movable = m;
998 }
999 }
1000 }
1001 /* Past a call insn, we get to insns which might not be executed
1002 because the call might exit. This matters for insns that trap.
1003 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1004 so they don't count. */
1005 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1006 call_passed = 1;
1007 /* Past a label or a jump, we get to insns for which we
1008 can't count on whether or how many times they will be
1009 executed during each iteration. Therefore, we can
1010 only move out sets of trivial variables
1011 (those not used after the loop). */
1012 /* Similar code appears twice in strength_reduce. */
1013 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1014 /* If we enter the loop in the middle, and scan around to the
1015 beginning, don't set maybe_never for that. This must be an
1016 unconditional jump, otherwise the code at the top of the
1017 loop might never be executed. Unconditional jumps are
1018 followed a by barrier then loop end. */
1019 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1020 && NEXT_INSN (NEXT_INSN (p)) == end
1021 && simplejump_p (p)))
1022 maybe_never = 1;
1023 else if (GET_CODE (p) == NOTE)
1024 {
1025 /* At the virtual top of a converted loop, insns are again known to
1026 be executed: logically, the loop begins here even though the exit
1027 code has been duplicated. */
1028 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1029 maybe_never = call_passed = 0;
1030 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1031 loop_depth++;
1032 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1033 loop_depth--;
1034 }
1035 }
1036
1037 /* If one movable subsumes another, ignore that other. */
1038
1039 ignore_some_movables (movables);
1040
1041 /* For each movable insn, see if the reg that it loads
1042 leads when it dies right into another conditionally movable insn.
1043 If so, record that the second insn "forces" the first one,
1044 since the second can be moved only if the first is. */
1045
1046 force_movables (movables);
1047
1048 /* See if there are multiple movable insns that load the same value.
1049 If there are, make all but the first point at the first one
1050 through the `match' field, and add the priorities of them
1051 all together as the priority of the first. */
1052
1053 combine_movables (movables, nregs);
1054
1055 /* Now consider each movable insn to decide whether it is worth moving.
1056 Store 0 in n_times_set for each reg that is moved. */
1057
1058 move_movables (movables, threshold,
1059 insn_count, loop_start, end, nregs);
1060
1061 /* Now candidates that still are negative are those not moved.
1062 Change n_times_set to indicate that those are not actually invariant. */
1063 for (i = 0; i < nregs; i++)
1064 if (n_times_set[i] < 0)
1065 n_times_set[i] = n_times_used[i];
1066
1067 if (flag_strength_reduce)
1068 strength_reduce (scan_start, end, loop_top,
1069 insn_count, loop_start, end);
1070 }
1071 \f
1072 /* Add elements to *OUTPUT to record all the pseudo-regs
1073 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1074
1075 void
1076 record_excess_regs (in_this, not_in_this, output)
1077 rtx in_this, not_in_this;
1078 rtx *output;
1079 {
1080 enum rtx_code code;
1081 char *fmt;
1082 int i;
1083
1084 code = GET_CODE (in_this);
1085
1086 switch (code)
1087 {
1088 case PC:
1089 case CC0:
1090 case CONST_INT:
1091 case CONST_DOUBLE:
1092 case CONST:
1093 case SYMBOL_REF:
1094 case LABEL_REF:
1095 return;
1096
1097 case REG:
1098 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1099 && ! reg_mentioned_p (in_this, not_in_this))
1100 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
1101 return;
1102 }
1103
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 {
1107 int j;
1108
1109 switch (fmt[i])
1110 {
1111 case 'E':
1112 for (j = 0; j < XVECLEN (in_this, i); j++)
1113 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1114 break;
1115
1116 case 'e':
1117 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1118 break;
1119 }
1120 }
1121 }
1122 \f
1123 /* Check what regs are referred to in the libcall block ending with INSN,
1124 aside from those mentioned in the equivalent value.
1125 If there are none, return 0.
1126 If there are one or more, return an EXPR_LIST containing all of them. */
1127
1128 static rtx
1129 libcall_other_reg (insn, equiv)
1130 rtx insn, equiv;
1131 {
1132 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1133 rtx p = XEXP (note, 0);
1134 rtx output = 0;
1135
1136 /* First, find all the regs used in the libcall block
1137 that are not mentioned as inputs to the result. */
1138
1139 while (p != insn)
1140 {
1141 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1142 || GET_CODE (p) == CALL_INSN)
1143 record_excess_regs (PATTERN (p), equiv, &output);
1144 p = NEXT_INSN (p);
1145 }
1146
1147 return output;
1148 }
1149 \f
1150 /* Return 1 if all uses of REG
1151 are between INSN and the end of the basic block. */
1152
1153 static int
1154 reg_in_basic_block_p (insn, reg)
1155 rtx insn, reg;
1156 {
1157 int regno = REGNO (reg);
1158 rtx p;
1159
1160 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1161 return 0;
1162
1163 /* Search this basic block for the already recorded last use of the reg. */
1164 for (p = insn; p; p = NEXT_INSN (p))
1165 {
1166 switch (GET_CODE (p))
1167 {
1168 case NOTE:
1169 break;
1170
1171 case INSN:
1172 case CALL_INSN:
1173 /* Ordinary insn: if this is the last use, we win. */
1174 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1175 return 1;
1176 break;
1177
1178 case JUMP_INSN:
1179 /* Jump insn: if this is the last use, we win. */
1180 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1181 return 1;
1182 /* Otherwise, it's the end of the basic block, so we lose. */
1183 return 0;
1184
1185 case CODE_LABEL:
1186 case BARRIER:
1187 /* It's the end of the basic block, so we lose. */
1188 return 0;
1189 }
1190 }
1191
1192 /* The "last use" doesn't follow the "first use"?? */
1193 abort ();
1194 }
1195 \f
1196 /* Compute the benefit of eliminating the insns in the block whose
1197 last insn is LAST. This may be a group of insns used to compute a
1198 value directly or can contain a library call. */
1199
1200 static int
1201 libcall_benefit (last)
1202 rtx last;
1203 {
1204 rtx insn;
1205 int benefit = 0;
1206
1207 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1208 insn != last; insn = NEXT_INSN (insn))
1209 {
1210 if (GET_CODE (insn) == CALL_INSN)
1211 benefit += 10; /* Assume at least this many insns in a library
1212 routine. */
1213 else if (GET_CODE (insn) == INSN
1214 && GET_CODE (PATTERN (insn)) != USE
1215 && GET_CODE (PATTERN (insn)) != CLOBBER)
1216 benefit++;
1217 }
1218
1219 return benefit;
1220 }
1221 \f
1222 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1223
1224 static rtx
1225 skip_consec_insns (insn, count)
1226 rtx insn;
1227 int count;
1228 {
1229 for (; count > 0; count--)
1230 {
1231 rtx temp;
1232
1233 /* If first insn of libcall sequence, skip to end. */
1234 /* Do this at start of loop, since INSN is guaranteed to
1235 be an insn here. */
1236 if (GET_CODE (insn) != NOTE
1237 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1238 insn = XEXP (temp, 0);
1239
1240 do insn = NEXT_INSN (insn);
1241 while (GET_CODE (insn) == NOTE);
1242 }
1243
1244 return insn;
1245 }
1246
1247 /* Ignore any movable whose insn falls within a libcall
1248 which is part of another movable.
1249 We make use of the fact that the movable for the libcall value
1250 was made later and so appears later on the chain. */
1251
1252 static void
1253 ignore_some_movables (movables)
1254 struct movable *movables;
1255 {
1256 register struct movable *m, *m1;
1257
1258 for (m = movables; m; m = m->next)
1259 {
1260 /* Is this a movable for the value of a libcall? */
1261 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1262 if (note)
1263 {
1264 rtx insn;
1265 /* Check for earlier movables inside that range,
1266 and mark them invalid. We cannot use LUIDs here because
1267 insns created by loop.c for prior loops don't have LUIDs.
1268 Rather than reject all such insns from movables, we just
1269 explicitly check each insn in the libcall (since invariant
1270 libcalls aren't that common). */
1271 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1272 for (m1 = movables; m1 != m; m1 = m1->next)
1273 if (m1->insn == insn)
1274 m1->done = 1;
1275 }
1276 }
1277 }
1278
1279 /* For each movable insn, see if the reg that it loads
1280 leads when it dies right into another conditionally movable insn.
1281 If so, record that the second insn "forces" the first one,
1282 since the second can be moved only if the first is. */
1283
1284 static void
1285 force_movables (movables)
1286 struct movable *movables;
1287 {
1288 register struct movable *m, *m1;
1289 for (m1 = movables; m1; m1 = m1->next)
1290 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1291 if (!m1->partial && !m1->done)
1292 {
1293 int regno = m1->regno;
1294 for (m = m1->next; m; m = m->next)
1295 /* ??? Could this be a bug? What if CSE caused the
1296 register of M1 to be used after this insn?
1297 Since CSE does not update regno_last_uid,
1298 this insn M->insn might not be where it dies.
1299 But very likely this doesn't matter; what matters is
1300 that M's reg is computed from M1's reg. */
1301 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1302 && !m->done)
1303 break;
1304 if (m != 0 && m->set_src == m1->set_dest
1305 /* If m->consec, m->set_src isn't valid. */
1306 && m->consec == 0)
1307 m = 0;
1308
1309 /* Increase the priority of the moving the first insn
1310 since it permits the second to be moved as well. */
1311 if (m != 0)
1312 {
1313 m->forces = m1;
1314 m1->lifetime += m->lifetime;
1315 m1->savings += m1->savings;
1316 }
1317 }
1318 }
1319 \f
1320 /* Find invariant expressions that are equal and can be combined into
1321 one register. */
1322
1323 static void
1324 combine_movables (movables, nregs)
1325 struct movable *movables;
1326 int nregs;
1327 {
1328 register struct movable *m;
1329 char *matched_regs = (char *) alloca (nregs);
1330 enum machine_mode mode;
1331
1332 /* Regs that are set more than once are not allowed to match
1333 or be matched. I'm no longer sure why not. */
1334 /* Perhaps testing m->consec_sets would be more appropriate here? */
1335
1336 for (m = movables; m; m = m->next)
1337 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1338 {
1339 register struct movable *m1;
1340 int regno = m->regno;
1341
1342 bzero (matched_regs, nregs);
1343 matched_regs[regno] = 1;
1344
1345 /* We want later insns to match the first one. Don't make the first
1346 one match any later ones. So start this loop at m->next. */
1347 for (m1 = m->next; m1; m1 = m1->next)
1348 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1349 /* A reg used outside the loop mustn't be eliminated. */
1350 && !m1->global
1351 /* A reg used for zero-extending mustn't be eliminated. */
1352 && !m1->partial
1353 && (matched_regs[m1->regno]
1354 ||
1355 (
1356 /* Can combine regs with different modes loaded from the
1357 same constant only if the modes are the same or
1358 if both are integer modes with M wider or the same
1359 width as M1. The check for integer is redundant, but
1360 safe, since the only case of differing destination
1361 modes with equal sources is when both sources are
1362 VOIDmode, i.e., CONST_INT. */
1363 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1364 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1365 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1366 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1367 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1368 /* See if the source of M1 says it matches M. */
1369 && ((GET_CODE (m1->set_src) == REG
1370 && matched_regs[REGNO (m1->set_src)])
1371 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1372 movables))))
1373 && ((m->dependencies == m1->dependencies)
1374 || rtx_equal_p (m->dependencies, m1->dependencies)))
1375 {
1376 m->lifetime += m1->lifetime;
1377 m->savings += m1->savings;
1378 m1->done = 1;
1379 m1->match = m;
1380 matched_regs[m1->regno] = 1;
1381 }
1382 }
1383
1384 /* Now combine the regs used for zero-extension.
1385 This can be done for those not marked `global'
1386 provided their lives don't overlap. */
1387
1388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1389 mode = GET_MODE_WIDER_MODE (mode))
1390 {
1391 register struct movable *m0 = 0;
1392
1393 /* Combine all the registers for extension from mode MODE.
1394 Don't combine any that are used outside this loop. */
1395 for (m = movables; m; m = m->next)
1396 if (m->partial && ! m->global
1397 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1398 {
1399 register struct movable *m1;
1400 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1401 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1402
1403 if (m0 == 0)
1404 {
1405 /* First one: don't check for overlap, just record it. */
1406 m0 = m;
1407 continue;
1408 }
1409
1410 /* Make sure they extend to the same mode.
1411 (Almost always true.) */
1412 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1413 continue;
1414
1415 /* We already have one: check for overlap with those
1416 already combined together. */
1417 for (m1 = movables; m1 != m; m1 = m1->next)
1418 if (m1 == m0 || (m1->partial && m1->match == m0))
1419 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1420 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1421 goto overlap;
1422
1423 /* No overlap: we can combine this with the others. */
1424 m0->lifetime += m->lifetime;
1425 m0->savings += m->savings;
1426 m->done = 1;
1427 m->match = m0;
1428
1429 overlap: ;
1430 }
1431 }
1432 }
1433 \f
1434 /* Return 1 if regs X and Y will become the same if moved. */
1435
1436 static int
1437 regs_match_p (x, y, movables)
1438 rtx x, y;
1439 struct movable *movables;
1440 {
1441 int xn = REGNO (x);
1442 int yn = REGNO (y);
1443 struct movable *mx, *my;
1444
1445 for (mx = movables; mx; mx = mx->next)
1446 if (mx->regno == xn)
1447 break;
1448
1449 for (my = movables; my; my = my->next)
1450 if (my->regno == yn)
1451 break;
1452
1453 return (mx && my
1454 && ((mx->match == my->match && mx->match != 0)
1455 || mx->match == my
1456 || mx == my->match));
1457 }
1458
1459 /* Return 1 if X and Y are identical-looking rtx's.
1460 This is the Lisp function EQUAL for rtx arguments.
1461
1462 If two registers are matching movables or a movable register and an
1463 equivalent constant, consider them equal. */
1464
1465 static int
1466 rtx_equal_for_loop_p (x, y, movables)
1467 rtx x, y;
1468 struct movable *movables;
1469 {
1470 register int i;
1471 register int j;
1472 register struct movable *m;
1473 register enum rtx_code code;
1474 register char *fmt;
1475
1476 if (x == y)
1477 return 1;
1478 if (x == 0 || y == 0)
1479 return 0;
1480
1481 code = GET_CODE (x);
1482
1483 /* If we have a register and a constant, they may sometimes be
1484 equal. */
1485 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1486 && CONSTANT_P (y))
1487 for (m = movables; m; m = m->next)
1488 if (m->move_insn && m->regno == REGNO (x)
1489 && rtx_equal_p (m->set_src, y))
1490 return 1;
1491
1492 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1493 && CONSTANT_P (x))
1494 for (m = movables; m; m = m->next)
1495 if (m->move_insn && m->regno == REGNO (y)
1496 && rtx_equal_p (m->set_src, x))
1497 return 1;
1498
1499 /* Otherwise, rtx's of different codes cannot be equal. */
1500 if (code != GET_CODE (y))
1501 return 0;
1502
1503 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1504 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1505
1506 if (GET_MODE (x) != GET_MODE (y))
1507 return 0;
1508
1509 /* These three types of rtx's can be compared nonrecursively. */
1510 if (code == REG)
1511 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1512
1513 if (code == LABEL_REF)
1514 return XEXP (x, 0) == XEXP (y, 0);
1515 if (code == SYMBOL_REF)
1516 return XSTR (x, 0) == XSTR (y, 0);
1517
1518 /* Compare the elements. If any pair of corresponding elements
1519 fail to match, return 0 for the whole things. */
1520
1521 fmt = GET_RTX_FORMAT (code);
1522 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1523 {
1524 switch (fmt[i])
1525 {
1526 case 'w':
1527 if (XWINT (x, i) != XWINT (y, i))
1528 return 0;
1529 break;
1530
1531 case 'i':
1532 if (XINT (x, i) != XINT (y, i))
1533 return 0;
1534 break;
1535
1536 case 'E':
1537 /* Two vectors must have the same length. */
1538 if (XVECLEN (x, i) != XVECLEN (y, i))
1539 return 0;
1540
1541 /* And the corresponding elements must match. */
1542 for (j = 0; j < XVECLEN (x, i); j++)
1543 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1544 return 0;
1545 break;
1546
1547 case 'e':
1548 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1549 return 0;
1550 break;
1551
1552 case 's':
1553 if (strcmp (XSTR (x, i), XSTR (y, i)))
1554 return 0;
1555 break;
1556
1557 case 'u':
1558 /* These are just backpointers, so they don't matter. */
1559 break;
1560
1561 case '0':
1562 break;
1563
1564 /* It is believed that rtx's at this level will never
1565 contain anything but integers and other rtx's,
1566 except for within LABEL_REFs and SYMBOL_REFs. */
1567 default:
1568 abort ();
1569 }
1570 }
1571 return 1;
1572 }
1573 \f
1574 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1575 insns in INSNS which use thet reference. */
1576
1577 static void
1578 add_label_notes (x, insns)
1579 rtx x;
1580 rtx insns;
1581 {
1582 enum rtx_code code = GET_CODE (x);
1583 int i, j;
1584 char *fmt;
1585 rtx insn;
1586
1587 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1588 {
1589 rtx next = next_real_insn (XEXP (x, 0));
1590
1591 /* Don't record labels that refer to dispatch tables.
1592 This is not necessary, since the tablejump references the same label.
1593 And if we did record them, flow.c would make worse code. */
1594 if (next == 0
1595 || ! (GET_CODE (next) == JUMP_INSN
1596 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1597 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1598 {
1599 for (insn = insns; insn; insn = NEXT_INSN (insn))
1600 if (reg_mentioned_p (XEXP (x, 0), insn))
1601 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1602 REG_NOTES (insn));
1603 }
1604 return;
1605 }
1606
1607 fmt = GET_RTX_FORMAT (code);
1608 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1609 {
1610 if (fmt[i] == 'e')
1611 add_label_notes (XEXP (x, i), insns);
1612 else if (fmt[i] == 'E')
1613 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1614 add_label_notes (XVECEXP (x, i, j), insns);
1615 }
1616 }
1617 \f
1618 /* Scan MOVABLES, and move the insns that deserve to be moved.
1619 If two matching movables are combined, replace one reg with the
1620 other throughout. */
1621
1622 static void
1623 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1624 struct movable *movables;
1625 int threshold;
1626 int insn_count;
1627 rtx loop_start;
1628 rtx end;
1629 int nregs;
1630 {
1631 rtx new_start = 0;
1632 register struct movable *m;
1633 register rtx p;
1634 /* Map of pseudo-register replacements to handle combining
1635 when we move several insns that load the same value
1636 into different pseudo-registers. */
1637 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1638 char *already_moved = (char *) alloca (nregs);
1639
1640 bzero (already_moved, nregs);
1641 bzero ((char *) reg_map, nregs * sizeof (rtx));
1642
1643 num_movables = 0;
1644
1645 for (m = movables; m; m = m->next)
1646 {
1647 /* Describe this movable insn. */
1648
1649 if (loop_dump_stream)
1650 {
1651 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1652 INSN_UID (m->insn), m->regno, m->lifetime);
1653 if (m->consec > 0)
1654 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1655 if (m->cond)
1656 fprintf (loop_dump_stream, "cond ");
1657 if (m->force)
1658 fprintf (loop_dump_stream, "force ");
1659 if (m->global)
1660 fprintf (loop_dump_stream, "global ");
1661 if (m->done)
1662 fprintf (loop_dump_stream, "done ");
1663 if (m->move_insn)
1664 fprintf (loop_dump_stream, "move-insn ");
1665 if (m->match)
1666 fprintf (loop_dump_stream, "matches %d ",
1667 INSN_UID (m->match->insn));
1668 if (m->forces)
1669 fprintf (loop_dump_stream, "forces %d ",
1670 INSN_UID (m->forces->insn));
1671 }
1672
1673 /* Count movables. Value used in heuristics in strength_reduce. */
1674 num_movables++;
1675
1676 /* Ignore the insn if it's already done (it matched something else).
1677 Otherwise, see if it is now safe to move. */
1678
1679 if (!m->done
1680 && (! m->cond
1681 || (1 == invariant_p (m->set_src)
1682 && (m->dependencies == 0
1683 || 1 == invariant_p (m->dependencies))
1684 && (m->consec == 0
1685 || 1 == consec_sets_invariant_p (m->set_dest,
1686 m->consec + 1,
1687 m->insn))))
1688 && (! m->forces || m->forces->done))
1689 {
1690 register int regno;
1691 register rtx p;
1692 int savings = m->savings;
1693
1694 /* We have an insn that is safe to move.
1695 Compute its desirability. */
1696
1697 p = m->insn;
1698 regno = m->regno;
1699
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, "savings %d ", savings);
1702
1703 if (moved_once[regno])
1704 {
1705 insn_count *= 2;
1706
1707 if (loop_dump_stream)
1708 fprintf (loop_dump_stream, "halved since already moved ");
1709 }
1710
1711 /* An insn MUST be moved if we already moved something else
1712 which is safe only if this one is moved too: that is,
1713 if already_moved[REGNO] is nonzero. */
1714
1715 /* An insn is desirable to move if the new lifetime of the
1716 register is no more than THRESHOLD times the old lifetime.
1717 If it's not desirable, it means the loop is so big
1718 that moving won't speed things up much,
1719 and it is liable to make register usage worse. */
1720
1721 /* It is also desirable to move if it can be moved at no
1722 extra cost because something else was already moved. */
1723
1724 if (already_moved[regno]
1725 || flag_move_all_movables
1726 || (threshold * savings * m->lifetime) >= insn_count
1727 || (m->forces && m->forces->done
1728 && n_times_used[m->forces->regno] == 1))
1729 {
1730 int count;
1731 register struct movable *m1;
1732 rtx first;
1733
1734 /* Now move the insns that set the reg. */
1735
1736 if (m->partial && m->match)
1737 {
1738 rtx newpat, i1;
1739 rtx r1, r2;
1740 /* Find the end of this chain of matching regs.
1741 Thus, we load each reg in the chain from that one reg.
1742 And that reg is loaded with 0 directly,
1743 since it has ->match == 0. */
1744 for (m1 = m; m1->match; m1 = m1->match);
1745 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1746 SET_DEST (PATTERN (m1->insn)));
1747 i1 = emit_insn_before (newpat, loop_start);
1748
1749 /* Mark the moved, invariant reg as being allowed to
1750 share a hard reg with the other matching invariant. */
1751 REG_NOTES (i1) = REG_NOTES (m->insn);
1752 r1 = SET_DEST (PATTERN (m->insn));
1753 r2 = SET_DEST (PATTERN (m1->insn));
1754 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1755 gen_rtx (EXPR_LIST, VOIDmode, r2,
1756 regs_may_share));
1757 delete_insn (m->insn);
1758
1759 if (new_start == 0)
1760 new_start = i1;
1761
1762 if (loop_dump_stream)
1763 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1764 }
1765 /* If we are to re-generate the item being moved with a
1766 new move insn, first delete what we have and then emit
1767 the move insn before the loop. */
1768 else if (m->move_insn)
1769 {
1770 rtx i1, temp;
1771
1772 for (count = m->consec; count >= 0; count--)
1773 {
1774 /* If this is the first insn of a library call sequence,
1775 skip to the end. */
1776 if (GET_CODE (p) != NOTE
1777 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1778 p = XEXP (temp, 0);
1779
1780 /* If this is the last insn of a libcall sequence, then
1781 delete every insn in the sequence except the last.
1782 The last insn is handled in the normal manner. */
1783 if (GET_CODE (p) != NOTE
1784 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1785 {
1786 temp = XEXP (temp, 0);
1787 while (temp != p)
1788 temp = delete_insn (temp);
1789 }
1790
1791 p = delete_insn (p);
1792 while (p && GET_CODE (p) == NOTE)
1793 p = NEXT_INSN (p);
1794 }
1795
1796 start_sequence ();
1797 emit_move_insn (m->set_dest, m->set_src);
1798 temp = get_insns ();
1799 end_sequence ();
1800
1801 add_label_notes (m->set_src, temp);
1802
1803 i1 = emit_insns_before (temp, loop_start);
1804 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1805 REG_NOTES (i1)
1806 = gen_rtx (EXPR_LIST,
1807 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1808 m->set_src, REG_NOTES (i1));
1809
1810 if (loop_dump_stream)
1811 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1812
1813 /* The more regs we move, the less we like moving them. */
1814 threshold -= 3;
1815 }
1816 else
1817 {
1818 for (count = m->consec; count >= 0; count--)
1819 {
1820 rtx i1, temp;
1821
1822 /* If first insn of libcall sequence, skip to end. */
1823 /* Do this at start of loop, since p is guaranteed to
1824 be an insn here. */
1825 if (GET_CODE (p) != NOTE
1826 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1827 p = XEXP (temp, 0);
1828
1829 /* If last insn of libcall sequence, move all
1830 insns except the last before the loop. The last
1831 insn is handled in the normal manner. */
1832 if (GET_CODE (p) != NOTE
1833 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1834 {
1835 rtx fn_address = 0;
1836 rtx fn_reg = 0;
1837 rtx fn_address_insn = 0;
1838
1839 first = 0;
1840 for (temp = XEXP (temp, 0); temp != p;
1841 temp = NEXT_INSN (temp))
1842 {
1843 rtx body;
1844 rtx n;
1845 rtx next;
1846
1847 if (GET_CODE (temp) == NOTE)
1848 continue;
1849
1850 body = PATTERN (temp);
1851
1852 /* Find the next insn after TEMP,
1853 not counting USE or NOTE insns. */
1854 for (next = NEXT_INSN (temp); next != p;
1855 next = NEXT_INSN (next))
1856 if (! (GET_CODE (next) == INSN
1857 && GET_CODE (PATTERN (next)) == USE)
1858 && GET_CODE (next) != NOTE)
1859 break;
1860
1861 /* If that is the call, this may be the insn
1862 that loads the function address.
1863
1864 Extract the function address from the insn
1865 that loads it into a register.
1866 If this insn was cse'd, we get incorrect code.
1867
1868 So emit a new move insn that copies the
1869 function address into the register that the
1870 call insn will use. flow.c will delete any
1871 redundant stores that we have created. */
1872 if (GET_CODE (next) == CALL_INSN
1873 && GET_CODE (body) == SET
1874 && GET_CODE (SET_DEST (body)) == REG
1875 && (n = find_reg_note (temp, REG_EQUAL,
1876 NULL_RTX)))
1877 {
1878 fn_reg = SET_SRC (body);
1879 if (GET_CODE (fn_reg) != REG)
1880 fn_reg = SET_DEST (body);
1881 fn_address = XEXP (n, 0);
1882 fn_address_insn = temp;
1883 }
1884 /* We have the call insn.
1885 If it uses the register we suspect it might,
1886 load it with the correct address directly. */
1887 if (GET_CODE (temp) == CALL_INSN
1888 && fn_address != 0
1889 && reg_referenced_p (fn_reg, body))
1890 emit_insn_after (gen_move_insn (fn_reg,
1891 fn_address),
1892 fn_address_insn);
1893
1894 if (GET_CODE (temp) == CALL_INSN)
1895 {
1896 i1 = emit_call_insn_before (body, loop_start);
1897 /* Because the USAGE information potentially
1898 contains objects other than hard registers
1899 we need to copy it. */
1900 if (CALL_INSN_FUNCTION_USAGE (temp))
1901 CALL_INSN_FUNCTION_USAGE (i1)
1902 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1903 }
1904 else
1905 i1 = emit_insn_before (body, loop_start);
1906 if (first == 0)
1907 first = i1;
1908 if (temp == fn_address_insn)
1909 fn_address_insn = i1;
1910 REG_NOTES (i1) = REG_NOTES (temp);
1911 delete_insn (temp);
1912 }
1913 }
1914 if (m->savemode != VOIDmode)
1915 {
1916 /* P sets REG to zero; but we should clear only
1917 the bits that are not covered by the mode
1918 m->savemode. */
1919 rtx reg = m->set_dest;
1920 rtx sequence;
1921 rtx tem;
1922
1923 start_sequence ();
1924 tem = expand_binop
1925 (GET_MODE (reg), and_optab, reg,
1926 GEN_INT ((((HOST_WIDE_INT) 1
1927 << GET_MODE_BITSIZE (m->savemode)))
1928 - 1),
1929 reg, 1, OPTAB_LIB_WIDEN);
1930 if (tem == 0)
1931 abort ();
1932 if (tem != reg)
1933 emit_move_insn (reg, tem);
1934 sequence = gen_sequence ();
1935 end_sequence ();
1936 i1 = emit_insn_before (sequence, loop_start);
1937 }
1938 else if (GET_CODE (p) == CALL_INSN)
1939 {
1940 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1941 /* Because the USAGE information potentially
1942 contains objects other than hard registers
1943 we need to copy it. */
1944 if (CALL_INSN_FUNCTION_USAGE (p))
1945 CALL_INSN_FUNCTION_USAGE (i1)
1946 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1947 }
1948 else
1949 i1 = emit_insn_before (PATTERN (p), loop_start);
1950
1951 REG_NOTES (i1) = REG_NOTES (p);
1952
1953 /* If there is a REG_EQUAL note present whose value is
1954 not loop invariant, then delete it, since it may
1955 cause problems with later optimization passes.
1956 It is possible for cse to create such notes
1957 like this as a result of record_jump_cond. */
1958
1959 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1960 && ! invariant_p (XEXP (temp, 0)))
1961 remove_note (i1, temp);
1962
1963 if (new_start == 0)
1964 new_start = i1;
1965
1966 if (loop_dump_stream)
1967 fprintf (loop_dump_stream, " moved to %d",
1968 INSN_UID (i1));
1969
1970 #if 0
1971 /* This isn't needed because REG_NOTES is copied
1972 below and is wrong since P might be a PARALLEL. */
1973 if (REG_NOTES (i1) == 0
1974 && ! m->partial /* But not if it's a zero-extend clr. */
1975 && ! m->global /* and not if used outside the loop
1976 (since it might get set outside). */
1977 && CONSTANT_P (SET_SRC (PATTERN (p))))
1978 REG_NOTES (i1)
1979 = gen_rtx (EXPR_LIST, REG_EQUAL,
1980 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1981 #endif
1982
1983 /* If library call, now fix the REG_NOTES that contain
1984 insn pointers, namely REG_LIBCALL on FIRST
1985 and REG_RETVAL on I1. */
1986 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1987 {
1988 XEXP (temp, 0) = first;
1989 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1990 XEXP (temp, 0) = i1;
1991 }
1992
1993 delete_insn (p);
1994 do p = NEXT_INSN (p);
1995 while (p && GET_CODE (p) == NOTE);
1996 }
1997
1998 /* The more regs we move, the less we like moving them. */
1999 threshold -= 3;
2000 }
2001
2002 /* Any other movable that loads the same register
2003 MUST be moved. */
2004 already_moved[regno] = 1;
2005
2006 /* This reg has been moved out of one loop. */
2007 moved_once[regno] = 1;
2008
2009 /* The reg set here is now invariant. */
2010 if (! m->partial)
2011 n_times_set[regno] = 0;
2012
2013 m->done = 1;
2014
2015 /* Change the length-of-life info for the register
2016 to say it lives at least the full length of this loop.
2017 This will help guide optimizations in outer loops. */
2018
2019 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2020 /* This is the old insn before all the moved insns.
2021 We can't use the moved insn because it is out of range
2022 in uid_luid. Only the old insns have luids. */
2023 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2024 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2025 REGNO_LAST_UID (regno) = INSN_UID (end);
2026
2027 /* Combine with this moved insn any other matching movables. */
2028
2029 if (! m->partial)
2030 for (m1 = movables; m1; m1 = m1->next)
2031 if (m1->match == m)
2032 {
2033 rtx temp;
2034
2035 /* Schedule the reg loaded by M1
2036 for replacement so that shares the reg of M.
2037 If the modes differ (only possible in restricted
2038 circumstances, make a SUBREG. */
2039 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2040 reg_map[m1->regno] = m->set_dest;
2041 else
2042 reg_map[m1->regno]
2043 = gen_lowpart_common (GET_MODE (m1->set_dest),
2044 m->set_dest);
2045
2046 /* Get rid of the matching insn
2047 and prevent further processing of it. */
2048 m1->done = 1;
2049
2050 /* if library call, delete all insn except last, which
2051 is deleted below */
2052 if (temp = find_reg_note (m1->insn, REG_RETVAL,
2053 NULL_RTX))
2054 {
2055 for (temp = XEXP (temp, 0); temp != m1->insn;
2056 temp = NEXT_INSN (temp))
2057 delete_insn (temp);
2058 }
2059 delete_insn (m1->insn);
2060
2061 /* Any other movable that loads the same register
2062 MUST be moved. */
2063 already_moved[m1->regno] = 1;
2064
2065 /* The reg merged here is now invariant,
2066 if the reg it matches is invariant. */
2067 if (! m->partial)
2068 n_times_set[m1->regno] = 0;
2069 }
2070 }
2071 else if (loop_dump_stream)
2072 fprintf (loop_dump_stream, "not desirable");
2073 }
2074 else if (loop_dump_stream && !m->match)
2075 fprintf (loop_dump_stream, "not safe");
2076
2077 if (loop_dump_stream)
2078 fprintf (loop_dump_stream, "\n");
2079 }
2080
2081 if (new_start == 0)
2082 new_start = loop_start;
2083
2084 /* Go through all the instructions in the loop, making
2085 all the register substitutions scheduled in REG_MAP. */
2086 for (p = new_start; p != end; p = NEXT_INSN (p))
2087 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2088 || GET_CODE (p) == CALL_INSN)
2089 {
2090 replace_regs (PATTERN (p), reg_map, nregs, 0);
2091 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2092 INSN_CODE (p) = -1;
2093 }
2094 }
2095 \f
2096 #if 0
2097 /* Scan X and replace the address of any MEM in it with ADDR.
2098 REG is the address that MEM should have before the replacement. */
2099
2100 static void
2101 replace_call_address (x, reg, addr)
2102 rtx x, reg, addr;
2103 {
2104 register enum rtx_code code;
2105 register int i;
2106 register char *fmt;
2107
2108 if (x == 0)
2109 return;
2110 code = GET_CODE (x);
2111 switch (code)
2112 {
2113 case PC:
2114 case CC0:
2115 case CONST_INT:
2116 case CONST_DOUBLE:
2117 case CONST:
2118 case SYMBOL_REF:
2119 case LABEL_REF:
2120 case REG:
2121 return;
2122
2123 case SET:
2124 /* Short cut for very common case. */
2125 replace_call_address (XEXP (x, 1), reg, addr);
2126 return;
2127
2128 case CALL:
2129 /* Short cut for very common case. */
2130 replace_call_address (XEXP (x, 0), reg, addr);
2131 return;
2132
2133 case MEM:
2134 /* If this MEM uses a reg other than the one we expected,
2135 something is wrong. */
2136 if (XEXP (x, 0) != reg)
2137 abort ();
2138 XEXP (x, 0) = addr;
2139 return;
2140 }
2141
2142 fmt = GET_RTX_FORMAT (code);
2143 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2144 {
2145 if (fmt[i] == 'e')
2146 replace_call_address (XEXP (x, i), reg, addr);
2147 if (fmt[i] == 'E')
2148 {
2149 register int j;
2150 for (j = 0; j < XVECLEN (x, i); j++)
2151 replace_call_address (XVECEXP (x, i, j), reg, addr);
2152 }
2153 }
2154 }
2155 #endif
2156 \f
2157 /* Return the number of memory refs to addresses that vary
2158 in the rtx X. */
2159
2160 static int
2161 count_nonfixed_reads (x)
2162 rtx x;
2163 {
2164 register enum rtx_code code;
2165 register int i;
2166 register char *fmt;
2167 int value;
2168
2169 if (x == 0)
2170 return 0;
2171
2172 code = GET_CODE (x);
2173 switch (code)
2174 {
2175 case PC:
2176 case CC0:
2177 case CONST_INT:
2178 case CONST_DOUBLE:
2179 case CONST:
2180 case SYMBOL_REF:
2181 case LABEL_REF:
2182 case REG:
2183 return 0;
2184
2185 case MEM:
2186 return ((invariant_p (XEXP (x, 0)) != 1)
2187 + count_nonfixed_reads (XEXP (x, 0)));
2188 }
2189
2190 value = 0;
2191 fmt = GET_RTX_FORMAT (code);
2192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2193 {
2194 if (fmt[i] == 'e')
2195 value += count_nonfixed_reads (XEXP (x, i));
2196 if (fmt[i] == 'E')
2197 {
2198 register int j;
2199 for (j = 0; j < XVECLEN (x, i); j++)
2200 value += count_nonfixed_reads (XVECEXP (x, i, j));
2201 }
2202 }
2203 return value;
2204 }
2205
2206 \f
2207 #if 0
2208 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2209 Replace it with an instruction to load just the low bytes
2210 if the machine supports such an instruction,
2211 and insert above LOOP_START an instruction to clear the register. */
2212
2213 static void
2214 constant_high_bytes (p, loop_start)
2215 rtx p, loop_start;
2216 {
2217 register rtx new;
2218 register int insn_code_number;
2219
2220 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2221 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2222
2223 new = gen_rtx (SET, VOIDmode,
2224 gen_rtx (STRICT_LOW_PART, VOIDmode,
2225 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2226 SET_DEST (PATTERN (p)),
2227 0)),
2228 XEXP (SET_SRC (PATTERN (p)), 0));
2229 insn_code_number = recog (new, p);
2230
2231 if (insn_code_number)
2232 {
2233 register int i;
2234
2235 /* Clear destination register before the loop. */
2236 emit_insn_before (gen_rtx (SET, VOIDmode,
2237 SET_DEST (PATTERN (p)),
2238 const0_rtx),
2239 loop_start);
2240
2241 /* Inside the loop, just load the low part. */
2242 PATTERN (p) = new;
2243 }
2244 }
2245 #endif
2246 \f
2247 /* Scan a loop setting the variables `unknown_address_altered',
2248 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2249 and `loop_has_volatile'.
2250 Also, fill in the array `loop_store_mems'. */
2251
2252 static void
2253 prescan_loop (start, end)
2254 rtx start, end;
2255 {
2256 register int level = 1;
2257 register rtx insn;
2258
2259 unknown_address_altered = 0;
2260 loop_has_call = 0;
2261 loop_has_volatile = 0;
2262 loop_store_mems_idx = 0;
2263
2264 num_mem_sets = 0;
2265 loops_enclosed = 1;
2266 loop_continue = 0;
2267
2268 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2269 insn = NEXT_INSN (insn))
2270 {
2271 if (GET_CODE (insn) == NOTE)
2272 {
2273 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2274 {
2275 ++level;
2276 /* Count number of loops contained in this one. */
2277 loops_enclosed++;
2278 }
2279 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2280 {
2281 --level;
2282 if (level == 0)
2283 {
2284 end = insn;
2285 break;
2286 }
2287 }
2288 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2289 {
2290 if (level == 1)
2291 loop_continue = insn;
2292 }
2293 }
2294 else if (GET_CODE (insn) == CALL_INSN)
2295 {
2296 if (! CONST_CALL_P (insn))
2297 unknown_address_altered = 1;
2298 loop_has_call = 1;
2299 }
2300 else
2301 {
2302 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2303 {
2304 if (volatile_refs_p (PATTERN (insn)))
2305 loop_has_volatile = 1;
2306
2307 note_stores (PATTERN (insn), note_addr_stored);
2308 }
2309 }
2310 }
2311 }
2312 \f
2313 /* Scan the function looking for loops. Record the start and end of each loop.
2314 Also mark as invalid loops any loops that contain a setjmp or are branched
2315 to from outside the loop. */
2316
2317 static void
2318 find_and_verify_loops (f)
2319 rtx f;
2320 {
2321 rtx insn, label;
2322 int current_loop = -1;
2323 int next_loop = -1;
2324 int loop;
2325
2326 /* If there are jumps to undefined labels,
2327 treat them as jumps out of any/all loops.
2328 This also avoids writing past end of tables when there are no loops. */
2329 uid_loop_num[0] = -1;
2330
2331 /* Find boundaries of loops, mark which loops are contained within
2332 loops, and invalidate loops that have setjmp. */
2333
2334 for (insn = f; insn; insn = NEXT_INSN (insn))
2335 {
2336 if (GET_CODE (insn) == NOTE)
2337 switch (NOTE_LINE_NUMBER (insn))
2338 {
2339 case NOTE_INSN_LOOP_BEG:
2340 loop_number_loop_starts[++next_loop] = insn;
2341 loop_number_loop_ends[next_loop] = 0;
2342 loop_outer_loop[next_loop] = current_loop;
2343 loop_invalid[next_loop] = 0;
2344 loop_number_exit_labels[next_loop] = 0;
2345 loop_number_exit_count[next_loop] = 0;
2346 current_loop = next_loop;
2347 break;
2348
2349 case NOTE_INSN_SETJMP:
2350 /* In this case, we must invalidate our current loop and any
2351 enclosing loop. */
2352 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2353 {
2354 loop_invalid[loop] = 1;
2355 if (loop_dump_stream)
2356 fprintf (loop_dump_stream,
2357 "\nLoop at %d ignored due to setjmp.\n",
2358 INSN_UID (loop_number_loop_starts[loop]));
2359 }
2360 break;
2361
2362 case NOTE_INSN_LOOP_END:
2363 if (current_loop == -1)
2364 abort ();
2365
2366 loop_number_loop_ends[current_loop] = insn;
2367 current_loop = loop_outer_loop[current_loop];
2368 break;
2369
2370 }
2371
2372 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2373 enclosing loop, but this doesn't matter. */
2374 uid_loop_num[INSN_UID (insn)] = current_loop;
2375 }
2376
2377 /* Any loop containing a label used in an initializer must be invalidated,
2378 because it can be jumped into from anywhere. */
2379
2380 for (label = forced_labels; label; label = XEXP (label, 1))
2381 {
2382 int loop_num;
2383
2384 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2385 loop_num != -1;
2386 loop_num = loop_outer_loop[loop_num])
2387 loop_invalid[loop_num] = 1;
2388 }
2389
2390 /* Any loop containing a label used for an exception handler must be
2391 invalidated, because it can be jumped into from anywhere. */
2392
2393 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2394 {
2395 int loop_num;
2396
2397 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2398 loop_num != -1;
2399 loop_num = loop_outer_loop[loop_num])
2400 loop_invalid[loop_num] = 1;
2401 }
2402
2403 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2404 loop that it is not contained within, that loop is marked invalid.
2405 If any INSN or CALL_INSN uses a label's address, then the loop containing
2406 that label is marked invalid, because it could be jumped into from
2407 anywhere.
2408
2409 Also look for blocks of code ending in an unconditional branch that
2410 exits the loop. If such a block is surrounded by a conditional
2411 branch around the block, move the block elsewhere (see below) and
2412 invert the jump to point to the code block. This may eliminate a
2413 label in our loop and will simplify processing by both us and a
2414 possible second cse pass. */
2415
2416 for (insn = f; insn; insn = NEXT_INSN (insn))
2417 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2418 {
2419 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2420
2421 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2422 {
2423 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2424 if (note)
2425 {
2426 int loop_num;
2427
2428 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2429 loop_num != -1;
2430 loop_num = loop_outer_loop[loop_num])
2431 loop_invalid[loop_num] = 1;
2432 }
2433 }
2434
2435 if (GET_CODE (insn) != JUMP_INSN)
2436 continue;
2437
2438 mark_loop_jump (PATTERN (insn), this_loop_num);
2439
2440 /* See if this is an unconditional branch outside the loop. */
2441 if (this_loop_num != -1
2442 && (GET_CODE (PATTERN (insn)) == RETURN
2443 || (simplejump_p (insn)
2444 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2445 != this_loop_num)))
2446 && get_max_uid () < max_uid_for_loop)
2447 {
2448 rtx p;
2449 rtx our_next = next_real_insn (insn);
2450 int dest_loop;
2451 int outer_loop = -1;
2452
2453 /* Go backwards until we reach the start of the loop, a label,
2454 or a JUMP_INSN. */
2455 for (p = PREV_INSN (insn);
2456 GET_CODE (p) != CODE_LABEL
2457 && ! (GET_CODE (p) == NOTE
2458 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2459 && GET_CODE (p) != JUMP_INSN;
2460 p = PREV_INSN (p))
2461 ;
2462
2463 /* Check for the case where we have a jump to an inner nested
2464 loop, and do not perform the optimization in that case. */
2465
2466 if (JUMP_LABEL (insn))
2467 {
2468 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2469 if (dest_loop != -1)
2470 {
2471 for (outer_loop = dest_loop; outer_loop != -1;
2472 outer_loop = loop_outer_loop[outer_loop])
2473 if (outer_loop == this_loop_num)
2474 break;
2475 }
2476 }
2477
2478 /* Make sure that the target of P is within the current loop. */
2479
2480 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2481 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2482 outer_loop = this_loop_num;
2483
2484 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2485 we have a block of code to try to move.
2486
2487 We look backward and then forward from the target of INSN
2488 to find a BARRIER at the same loop depth as the target.
2489 If we find such a BARRIER, we make a new label for the start
2490 of the block, invert the jump in P and point it to that label,
2491 and move the block of code to the spot we found. */
2492
2493 if (outer_loop == -1
2494 && GET_CODE (p) == JUMP_INSN
2495 && JUMP_LABEL (p) != 0
2496 /* Just ignore jumps to labels that were never emitted.
2497 These always indicate compilation errors. */
2498 && INSN_UID (JUMP_LABEL (p)) != 0
2499 && condjump_p (p)
2500 && ! simplejump_p (p)
2501 && next_real_insn (JUMP_LABEL (p)) == our_next)
2502 {
2503 rtx target
2504 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2505 int target_loop_num = uid_loop_num[INSN_UID (target)];
2506 rtx loc;
2507
2508 for (loc = target; loc; loc = PREV_INSN (loc))
2509 if (GET_CODE (loc) == BARRIER
2510 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2511 break;
2512
2513 if (loc == 0)
2514 for (loc = target; loc; loc = NEXT_INSN (loc))
2515 if (GET_CODE (loc) == BARRIER
2516 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2517 break;
2518
2519 if (loc)
2520 {
2521 rtx cond_label = JUMP_LABEL (p);
2522 rtx new_label = get_label_after (p);
2523
2524 /* Ensure our label doesn't go away. */
2525 LABEL_NUSES (cond_label)++;
2526
2527 /* Verify that uid_loop_num is large enough and that
2528 we can invert P. */
2529 if (invert_jump (p, new_label))
2530 {
2531 rtx q, r;
2532
2533 /* Include the BARRIER after INSN and copy the
2534 block after LOC. */
2535 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2536 reorder_insns (new_label, NEXT_INSN (insn), loc);
2537
2538 /* All those insns are now in TARGET_LOOP_NUM. */
2539 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2540 q = NEXT_INSN (q))
2541 uid_loop_num[INSN_UID (q)] = target_loop_num;
2542
2543 /* The label jumped to by INSN is no longer a loop exit.
2544 Unless INSN does not have a label (e.g., it is a
2545 RETURN insn), search loop_number_exit_labels to find
2546 its label_ref, and remove it. Also turn off
2547 LABEL_OUTSIDE_LOOP_P bit. */
2548 if (JUMP_LABEL (insn))
2549 {
2550 int loop_num;
2551
2552 for (q = 0,
2553 r = loop_number_exit_labels[this_loop_num];
2554 r; q = r, r = LABEL_NEXTREF (r))
2555 if (XEXP (r, 0) == JUMP_LABEL (insn))
2556 {
2557 LABEL_OUTSIDE_LOOP_P (r) = 0;
2558 if (q)
2559 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2560 else
2561 loop_number_exit_labels[this_loop_num]
2562 = LABEL_NEXTREF (r);
2563 break;
2564 }
2565
2566 for (loop_num = this_loop_num;
2567 loop_num != -1 && loop_num != target_loop_num;
2568 loop_num = loop_outer_loop[loop_num])
2569 loop_number_exit_count[loop_num]--;
2570
2571 /* If we didn't find it, then something is wrong. */
2572 if (! r)
2573 abort ();
2574 }
2575
2576 /* P is now a jump outside the loop, so it must be put
2577 in loop_number_exit_labels, and marked as such.
2578 The easiest way to do this is to just call
2579 mark_loop_jump again for P. */
2580 mark_loop_jump (PATTERN (p), this_loop_num);
2581
2582 /* If INSN now jumps to the insn after it,
2583 delete INSN. */
2584 if (JUMP_LABEL (insn) != 0
2585 && (next_real_insn (JUMP_LABEL (insn))
2586 == next_real_insn (insn)))
2587 delete_insn (insn);
2588 }
2589
2590 /* Continue the loop after where the conditional
2591 branch used to jump, since the only branch insn
2592 in the block (if it still remains) is an inter-loop
2593 branch and hence needs no processing. */
2594 insn = NEXT_INSN (cond_label);
2595
2596 if (--LABEL_NUSES (cond_label) == 0)
2597 delete_insn (cond_label);
2598
2599 /* This loop will be continued with NEXT_INSN (insn). */
2600 insn = PREV_INSN (insn);
2601 }
2602 }
2603 }
2604 }
2605 }
2606
2607 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2608 loops it is contained in, mark the target loop invalid.
2609
2610 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2611
2612 static void
2613 mark_loop_jump (x, loop_num)
2614 rtx x;
2615 int loop_num;
2616 {
2617 int dest_loop;
2618 int outer_loop;
2619 int i;
2620
2621 switch (GET_CODE (x))
2622 {
2623 case PC:
2624 case USE:
2625 case CLOBBER:
2626 case REG:
2627 case MEM:
2628 case CONST_INT:
2629 case CONST_DOUBLE:
2630 case RETURN:
2631 return;
2632
2633 case CONST:
2634 /* There could be a label reference in here. */
2635 mark_loop_jump (XEXP (x, 0), loop_num);
2636 return;
2637
2638 case PLUS:
2639 case MINUS:
2640 case MULT:
2641 mark_loop_jump (XEXP (x, 0), loop_num);
2642 mark_loop_jump (XEXP (x, 1), loop_num);
2643 return;
2644
2645 case SIGN_EXTEND:
2646 case ZERO_EXTEND:
2647 mark_loop_jump (XEXP (x, 0), loop_num);
2648 return;
2649
2650 case LABEL_REF:
2651 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2652
2653 /* Link together all labels that branch outside the loop. This
2654 is used by final_[bg]iv_value and the loop unrolling code. Also
2655 mark this LABEL_REF so we know that this branch should predict
2656 false. */
2657
2658 /* A check to make sure the label is not in an inner nested loop,
2659 since this does not count as a loop exit. */
2660 if (dest_loop != -1)
2661 {
2662 for (outer_loop = dest_loop; outer_loop != -1;
2663 outer_loop = loop_outer_loop[outer_loop])
2664 if (outer_loop == loop_num)
2665 break;
2666 }
2667 else
2668 outer_loop = -1;
2669
2670 if (loop_num != -1 && outer_loop == -1)
2671 {
2672 LABEL_OUTSIDE_LOOP_P (x) = 1;
2673 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2674 loop_number_exit_labels[loop_num] = x;
2675
2676 for (outer_loop = loop_num;
2677 outer_loop != -1 && outer_loop != dest_loop;
2678 outer_loop = loop_outer_loop[outer_loop])
2679 loop_number_exit_count[outer_loop]++;
2680 }
2681
2682 /* If this is inside a loop, but not in the current loop or one enclosed
2683 by it, it invalidates at least one loop. */
2684
2685 if (dest_loop == -1)
2686 return;
2687
2688 /* We must invalidate every nested loop containing the target of this
2689 label, except those that also contain the jump insn. */
2690
2691 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2692 {
2693 /* Stop when we reach a loop that also contains the jump insn. */
2694 for (outer_loop = loop_num; outer_loop != -1;
2695 outer_loop = loop_outer_loop[outer_loop])
2696 if (dest_loop == outer_loop)
2697 return;
2698
2699 /* If we get here, we know we need to invalidate a loop. */
2700 if (loop_dump_stream && ! loop_invalid[dest_loop])
2701 fprintf (loop_dump_stream,
2702 "\nLoop at %d ignored due to multiple entry points.\n",
2703 INSN_UID (loop_number_loop_starts[dest_loop]));
2704
2705 loop_invalid[dest_loop] = 1;
2706 }
2707 return;
2708
2709 case SET:
2710 /* If this is not setting pc, ignore. */
2711 if (SET_DEST (x) == pc_rtx)
2712 mark_loop_jump (SET_SRC (x), loop_num);
2713 return;
2714
2715 case IF_THEN_ELSE:
2716 mark_loop_jump (XEXP (x, 1), loop_num);
2717 mark_loop_jump (XEXP (x, 2), loop_num);
2718 return;
2719
2720 case PARALLEL:
2721 case ADDR_VEC:
2722 for (i = 0; i < XVECLEN (x, 0); i++)
2723 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2724 return;
2725
2726 case ADDR_DIFF_VEC:
2727 for (i = 0; i < XVECLEN (x, 1); i++)
2728 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2729 return;
2730
2731 default:
2732 /* Treat anything else (such as a symbol_ref)
2733 as a branch out of this loop, but not into any loop. */
2734
2735 if (loop_num != -1)
2736 {
2737 #ifdef HAIFA
2738 LABEL_OUTSIDE_LOOP_P (x) = 1;
2739 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2740 #endif /* HAIFA */
2741
2742 loop_number_exit_labels[loop_num] = x;
2743
2744 for (outer_loop = loop_num; outer_loop != -1;
2745 outer_loop = loop_outer_loop[outer_loop])
2746 loop_number_exit_count[outer_loop]++;
2747 }
2748 return;
2749 }
2750 }
2751 \f
2752 /* Return nonzero if there is a label in the range from
2753 insn INSN to and including the insn whose luid is END
2754 INSN must have an assigned luid (i.e., it must not have
2755 been previously created by loop.c). */
2756
2757 static int
2758 labels_in_range_p (insn, end)
2759 rtx insn;
2760 int end;
2761 {
2762 while (insn && INSN_LUID (insn) <= end)
2763 {
2764 if (GET_CODE (insn) == CODE_LABEL)
2765 return 1;
2766 insn = NEXT_INSN (insn);
2767 }
2768
2769 return 0;
2770 }
2771
2772 /* Record that a memory reference X is being set. */
2773
2774 static void
2775 note_addr_stored (x)
2776 rtx x;
2777 {
2778 register int i;
2779
2780 if (x == 0 || GET_CODE (x) != MEM)
2781 return;
2782
2783 /* Count number of memory writes.
2784 This affects heuristics in strength_reduce. */
2785 num_mem_sets++;
2786
2787 /* BLKmode MEM means all memory is clobbered. */
2788 if (GET_MODE (x) == BLKmode)
2789 unknown_address_altered = 1;
2790
2791 if (unknown_address_altered)
2792 return;
2793
2794 for (i = 0; i < loop_store_mems_idx; i++)
2795 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2796 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2797 {
2798 /* We are storing at the same address as previously noted. Save the
2799 wider reference. */
2800 if (GET_MODE_SIZE (GET_MODE (x))
2801 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i])))
2802 loop_store_mems[i] = x;
2803 break;
2804 }
2805
2806 if (i == NUM_STORES)
2807 unknown_address_altered = 1;
2808
2809 else if (i == loop_store_mems_idx)
2810 loop_store_mems[loop_store_mems_idx++] = x;
2811 }
2812 \f
2813 /* Return nonzero if the rtx X is invariant over the current loop.
2814
2815 The value is 2 if we refer to something only conditionally invariant.
2816
2817 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2818 Otherwise, a memory ref is invariant if it does not conflict with
2819 anything stored in `loop_store_mems'. */
2820
2821 int
2822 invariant_p (x)
2823 register rtx x;
2824 {
2825 register int i;
2826 register enum rtx_code code;
2827 register char *fmt;
2828 int conditional = 0;
2829
2830 if (x == 0)
2831 return 1;
2832 code = GET_CODE (x);
2833 switch (code)
2834 {
2835 case CONST_INT:
2836 case CONST_DOUBLE:
2837 case SYMBOL_REF:
2838 case CONST:
2839 return 1;
2840
2841 case LABEL_REF:
2842 /* A LABEL_REF is normally invariant, however, if we are unrolling
2843 loops, and this label is inside the loop, then it isn't invariant.
2844 This is because each unrolled copy of the loop body will have
2845 a copy of this label. If this was invariant, then an insn loading
2846 the address of this label into a register might get moved outside
2847 the loop, and then each loop body would end up using the same label.
2848
2849 We don't know the loop bounds here though, so just fail for all
2850 labels. */
2851 if (flag_unroll_loops)
2852 return 0;
2853 else
2854 return 1;
2855
2856 case PC:
2857 case CC0:
2858 case UNSPEC_VOLATILE:
2859 return 0;
2860
2861 case REG:
2862 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2863 since the reg might be set by initialization within the loop. */
2864
2865 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
2866 || x == arg_pointer_rtx)
2867 && ! current_function_has_nonlocal_goto)
2868 return 1;
2869
2870 if (loop_has_call
2871 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2872 return 0;
2873
2874 if (n_times_set[REGNO (x)] < 0)
2875 return 2;
2876
2877 return n_times_set[REGNO (x)] == 0;
2878
2879 case MEM:
2880 /* Volatile memory references must be rejected. Do this before
2881 checking for read-only items, so that volatile read-only items
2882 will be rejected also. */
2883 if (MEM_VOLATILE_P (x))
2884 return 0;
2885
2886 /* Read-only items (such as constants in a constant pool) are
2887 invariant if their address is. */
2888 if (RTX_UNCHANGING_P (x))
2889 break;
2890
2891 /* If we filled the table (or had a subroutine call), any location
2892 in memory could have been clobbered. */
2893 if (unknown_address_altered)
2894 return 0;
2895
2896 /* See if there is any dependence between a store and this load. */
2897 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2898 if (true_dependence (loop_store_mems[i], VOIDmode, x, rtx_varies_p))
2899 return 0;
2900
2901 /* It's not invalidated by a store in memory
2902 but we must still verify the address is invariant. */
2903 break;
2904
2905 case ASM_OPERANDS:
2906 /* Don't mess with insns declared volatile. */
2907 if (MEM_VOLATILE_P (x))
2908 return 0;
2909 }
2910
2911 fmt = GET_RTX_FORMAT (code);
2912 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2913 {
2914 if (fmt[i] == 'e')
2915 {
2916 int tem = invariant_p (XEXP (x, i));
2917 if (tem == 0)
2918 return 0;
2919 if (tem == 2)
2920 conditional = 1;
2921 }
2922 else if (fmt[i] == 'E')
2923 {
2924 register int j;
2925 for (j = 0; j < XVECLEN (x, i); j++)
2926 {
2927 int tem = invariant_p (XVECEXP (x, i, j));
2928 if (tem == 0)
2929 return 0;
2930 if (tem == 2)
2931 conditional = 1;
2932 }
2933
2934 }
2935 }
2936
2937 return 1 + conditional;
2938 }
2939
2940 \f
2941 /* Return nonzero if all the insns in the loop that set REG
2942 are INSN and the immediately following insns,
2943 and if each of those insns sets REG in an invariant way
2944 (not counting uses of REG in them).
2945
2946 The value is 2 if some of these insns are only conditionally invariant.
2947
2948 We assume that INSN itself is the first set of REG
2949 and that its source is invariant. */
2950
2951 static int
2952 consec_sets_invariant_p (reg, n_sets, insn)
2953 int n_sets;
2954 rtx reg, insn;
2955 {
2956 register rtx p = insn;
2957 register int regno = REGNO (reg);
2958 rtx temp;
2959 /* Number of sets we have to insist on finding after INSN. */
2960 int count = n_sets - 1;
2961 int old = n_times_set[regno];
2962 int value = 0;
2963 int this;
2964
2965 /* If N_SETS hit the limit, we can't rely on its value. */
2966 if (n_sets == 127)
2967 return 0;
2968
2969 n_times_set[regno] = 0;
2970
2971 while (count > 0)
2972 {
2973 register enum rtx_code code;
2974 rtx set;
2975
2976 p = NEXT_INSN (p);
2977 code = GET_CODE (p);
2978
2979 /* If library call, skip to end of of it. */
2980 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2981 p = XEXP (temp, 0);
2982
2983 this = 0;
2984 if (code == INSN
2985 && (set = single_set (p))
2986 && GET_CODE (SET_DEST (set)) == REG
2987 && REGNO (SET_DEST (set)) == regno)
2988 {
2989 this = invariant_p (SET_SRC (set));
2990 if (this != 0)
2991 value |= this;
2992 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2993 {
2994 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2995 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2996 notes are OK. */
2997 this = (CONSTANT_P (XEXP (temp, 0))
2998 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2999 && invariant_p (XEXP (temp, 0))));
3000 if (this != 0)
3001 value |= this;
3002 }
3003 }
3004 if (this != 0)
3005 count--;
3006 else if (code != NOTE)
3007 {
3008 n_times_set[regno] = old;
3009 return 0;
3010 }
3011 }
3012
3013 n_times_set[regno] = old;
3014 /* If invariant_p ever returned 2, we return 2. */
3015 return 1 + (value & 2);
3016 }
3017
3018 #if 0
3019 /* I don't think this condition is sufficient to allow INSN
3020 to be moved, so we no longer test it. */
3021
3022 /* Return 1 if all insns in the basic block of INSN and following INSN
3023 that set REG are invariant according to TABLE. */
3024
3025 static int
3026 all_sets_invariant_p (reg, insn, table)
3027 rtx reg, insn;
3028 short *table;
3029 {
3030 register rtx p = insn;
3031 register int regno = REGNO (reg);
3032
3033 while (1)
3034 {
3035 register enum rtx_code code;
3036 p = NEXT_INSN (p);
3037 code = GET_CODE (p);
3038 if (code == CODE_LABEL || code == JUMP_INSN)
3039 return 1;
3040 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3041 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3042 && REGNO (SET_DEST (PATTERN (p))) == regno)
3043 {
3044 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3045 return 0;
3046 }
3047 }
3048 }
3049 #endif /* 0 */
3050 \f
3051 /* Look at all uses (not sets) of registers in X. For each, if it is
3052 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3053 a different insn, set USAGE[REGNO] to const0_rtx. */
3054
3055 static void
3056 find_single_use_in_loop (insn, x, usage)
3057 rtx insn;
3058 rtx x;
3059 rtx *usage;
3060 {
3061 enum rtx_code code = GET_CODE (x);
3062 char *fmt = GET_RTX_FORMAT (code);
3063 int i, j;
3064
3065 if (code == REG)
3066 usage[REGNO (x)]
3067 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
3068 ? const0_rtx : insn;
3069
3070 else if (code == SET)
3071 {
3072 /* Don't count SET_DEST if it is a REG; otherwise count things
3073 in SET_DEST because if a register is partially modified, it won't
3074 show up as a potential movable so we don't care how USAGE is set
3075 for it. */
3076 if (GET_CODE (SET_DEST (x)) != REG)
3077 find_single_use_in_loop (insn, SET_DEST (x), usage);
3078 find_single_use_in_loop (insn, SET_SRC (x), usage);
3079 }
3080 else
3081 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3082 {
3083 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3084 find_single_use_in_loop (insn, XEXP (x, i), usage);
3085 else if (fmt[i] == 'E')
3086 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3087 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3088 }
3089 }
3090 \f
3091 /* Increment N_TIMES_SET at the index of each register
3092 that is modified by an insn between FROM and TO.
3093 If the value of an element of N_TIMES_SET becomes 127 or more,
3094 stop incrementing it, to avoid overflow.
3095
3096 Store in SINGLE_USAGE[I] the single insn in which register I is
3097 used, if it is only used once. Otherwise, it is set to 0 (for no
3098 uses) or const0_rtx for more than one use. This parameter may be zero,
3099 in which case this processing is not done.
3100
3101 Store in *COUNT_PTR the number of actual instruction
3102 in the loop. We use this to decide what is worth moving out. */
3103
3104 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3105 In that case, it is the insn that last set reg n. */
3106
3107 static void
3108 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3109 register rtx from, to;
3110 char *may_not_move;
3111 rtx *single_usage;
3112 int *count_ptr;
3113 int nregs;
3114 {
3115 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3116 register rtx insn;
3117 register int count = 0;
3118 register rtx dest;
3119
3120 bzero ((char *) last_set, nregs * sizeof (rtx));
3121 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3122 {
3123 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3124 {
3125 ++count;
3126
3127 /* If requested, record registers that have exactly one use. */
3128 if (single_usage)
3129 {
3130 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3131
3132 /* Include uses in REG_EQUAL notes. */
3133 if (REG_NOTES (insn))
3134 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3135 }
3136
3137 if (GET_CODE (PATTERN (insn)) == CLOBBER
3138 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
3139 /* Don't move a reg that has an explicit clobber.
3140 We might do so sometimes, but it's not worth the pain. */
3141 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
3142
3143 if (GET_CODE (PATTERN (insn)) == SET
3144 || GET_CODE (PATTERN (insn)) == CLOBBER)
3145 {
3146 dest = SET_DEST (PATTERN (insn));
3147 while (GET_CODE (dest) == SUBREG
3148 || GET_CODE (dest) == ZERO_EXTRACT
3149 || GET_CODE (dest) == SIGN_EXTRACT
3150 || GET_CODE (dest) == STRICT_LOW_PART)
3151 dest = XEXP (dest, 0);
3152 if (GET_CODE (dest) == REG)
3153 {
3154 register int regno = REGNO (dest);
3155 /* If this is the first setting of this reg
3156 in current basic block, and it was set before,
3157 it must be set in two basic blocks, so it cannot
3158 be moved out of the loop. */
3159 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3160 may_not_move[regno] = 1;
3161 /* If this is not first setting in current basic block,
3162 see if reg was used in between previous one and this.
3163 If so, neither one can be moved. */
3164 if (last_set[regno] != 0
3165 && reg_used_between_p (dest, last_set[regno], insn))
3166 may_not_move[regno] = 1;
3167 if (n_times_set[regno] < 127)
3168 ++n_times_set[regno];
3169 last_set[regno] = insn;
3170 }
3171 }
3172 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3173 {
3174 register int i;
3175 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3176 {
3177 register rtx x = XVECEXP (PATTERN (insn), 0, i);
3178 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3179 /* Don't move a reg that has an explicit clobber.
3180 It's not worth the pain to try to do it correctly. */
3181 may_not_move[REGNO (XEXP (x, 0))] = 1;
3182
3183 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3184 {
3185 dest = SET_DEST (x);
3186 while (GET_CODE (dest) == SUBREG
3187 || GET_CODE (dest) == ZERO_EXTRACT
3188 || GET_CODE (dest) == SIGN_EXTRACT
3189 || GET_CODE (dest) == STRICT_LOW_PART)
3190 dest = XEXP (dest, 0);
3191 if (GET_CODE (dest) == REG)
3192 {
3193 register int regno = REGNO (dest);
3194 if (n_times_set[regno] > 0 && last_set[regno] == 0)
3195 may_not_move[regno] = 1;
3196 if (last_set[regno] != 0
3197 && reg_used_between_p (dest, last_set[regno], insn))
3198 may_not_move[regno] = 1;
3199 if (n_times_set[regno] < 127)
3200 ++n_times_set[regno];
3201 last_set[regno] = insn;
3202 }
3203 }
3204 }
3205 }
3206 }
3207
3208 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3209 bzero ((char *) last_set, nregs * sizeof (rtx));
3210 }
3211 *count_ptr = count;
3212 }
3213 \f
3214 /* Given a loop that is bounded by LOOP_START and LOOP_END
3215 and that is entered at SCAN_START,
3216 return 1 if the register set in SET contained in insn INSN is used by
3217 any insn that precedes INSN in cyclic order starting
3218 from the loop entry point.
3219
3220 We don't want to use INSN_LUID here because if we restrict INSN to those
3221 that have a valid INSN_LUID, it means we cannot move an invariant out
3222 from an inner loop past two loops. */
3223
3224 static int
3225 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3226 rtx set, insn, loop_start, scan_start, loop_end;
3227 {
3228 rtx reg = SET_DEST (set);
3229 rtx p;
3230
3231 /* Scan forward checking for register usage. If we hit INSN, we
3232 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3233 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3234 {
3235 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3236 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3237 return 1;
3238
3239 if (p == loop_end)
3240 p = loop_start;
3241 }
3242
3243 return 0;
3244 }
3245 \f
3246 /* A "basic induction variable" or biv is a pseudo reg that is set
3247 (within this loop) only by incrementing or decrementing it. */
3248 /* A "general induction variable" or giv is a pseudo reg whose
3249 value is a linear function of a biv. */
3250
3251 /* Bivs are recognized by `basic_induction_var';
3252 Givs by `general_induct_var'. */
3253
3254 /* Indexed by register number, indicates whether or not register is an
3255 induction variable, and if so what type. */
3256
3257 enum iv_mode *reg_iv_type;
3258
3259 /* Indexed by register number, contains pointer to `struct induction'
3260 if register is an induction variable. This holds general info for
3261 all induction variables. */
3262
3263 struct induction **reg_iv_info;
3264
3265 /* Indexed by register number, contains pointer to `struct iv_class'
3266 if register is a basic induction variable. This holds info describing
3267 the class (a related group) of induction variables that the biv belongs
3268 to. */
3269
3270 struct iv_class **reg_biv_class;
3271
3272 /* The head of a list which links together (via the next field)
3273 every iv class for the current loop. */
3274
3275 struct iv_class *loop_iv_list;
3276
3277 /* Communication with routines called via `note_stores'. */
3278
3279 static rtx note_insn;
3280
3281 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3282
3283 static rtx addr_placeholder;
3284
3285 /* ??? Unfinished optimizations, and possible future optimizations,
3286 for the strength reduction code. */
3287
3288 /* ??? There is one more optimization you might be interested in doing: to
3289 allocate pseudo registers for frequently-accessed memory locations.
3290 If the same memory location is referenced each time around, it might
3291 be possible to copy it into a register before and out after.
3292 This is especially useful when the memory location is a variable which
3293 is in a stack slot because somewhere its address is taken. If the
3294 loop doesn't contain a function call and the variable isn't volatile,
3295 it is safe to keep the value in a register for the duration of the
3296 loop. One tricky thing is that the copying of the value back from the
3297 register has to be done on all exits from the loop. You need to check that
3298 all the exits from the loop go to the same place. */
3299
3300 /* ??? The interaction of biv elimination, and recognition of 'constant'
3301 bivs, may cause problems. */
3302
3303 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3304 performance problems.
3305
3306 Perhaps don't eliminate things that can be combined with an addressing
3307 mode. Find all givs that have the same biv, mult_val, and add_val;
3308 then for each giv, check to see if its only use dies in a following
3309 memory address. If so, generate a new memory address and check to see
3310 if it is valid. If it is valid, then store the modified memory address,
3311 otherwise, mark the giv as not done so that it will get its own iv. */
3312
3313 /* ??? Could try to optimize branches when it is known that a biv is always
3314 positive. */
3315
3316 /* ??? When replace a biv in a compare insn, we should replace with closest
3317 giv so that an optimized branch can still be recognized by the combiner,
3318 e.g. the VAX acb insn. */
3319
3320 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3321 was rerun in loop_optimize whenever a register was added or moved.
3322 Also, some of the optimizations could be a little less conservative. */
3323 \f
3324 /* Perform strength reduction and induction variable elimination. */
3325
3326 /* Pseudo registers created during this function will be beyond the last
3327 valid index in several tables including n_times_set and regno_last_uid.
3328 This does not cause a problem here, because the added registers cannot be
3329 givs outside of their loop, and hence will never be reconsidered.
3330 But scan_loop must check regnos to make sure they are in bounds. */
3331
3332 static void
3333 strength_reduce (scan_start, end, loop_top, insn_count,
3334 loop_start, loop_end)
3335 rtx scan_start;
3336 rtx end;
3337 rtx loop_top;
3338 int insn_count;
3339 rtx loop_start;
3340 rtx loop_end;
3341 {
3342 rtx p;
3343 rtx set;
3344 rtx inc_val;
3345 rtx mult_val;
3346 rtx dest_reg;
3347 /* This is 1 if current insn is not executed at least once for every loop
3348 iteration. */
3349 int not_every_iteration = 0;
3350 /* This is 1 if current insn may be executed more than once for every
3351 loop iteration. */
3352 int maybe_multiple = 0;
3353 /* Temporary list pointers for traversing loop_iv_list. */
3354 struct iv_class *bl, **backbl;
3355 /* Ratio of extra register life span we can justify
3356 for saving an instruction. More if loop doesn't call subroutines
3357 since in that case saving an insn makes more difference
3358 and more registers are available. */
3359 /* ??? could set this to last value of threshold in move_movables */
3360 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3361 /* Map of pseudo-register replacements. */
3362 rtx *reg_map;
3363 int call_seen;
3364 rtx test;
3365 rtx end_insert_before;
3366 int loop_depth = 0;
3367
3368 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3369 * sizeof (enum iv_mode *));
3370 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3371 reg_iv_info = (struct induction **)
3372 alloca (max_reg_before_loop * sizeof (struct induction *));
3373 bzero ((char *) reg_iv_info, (max_reg_before_loop
3374 * sizeof (struct induction *)));
3375 reg_biv_class = (struct iv_class **)
3376 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3377 bzero ((char *) reg_biv_class, (max_reg_before_loop
3378 * sizeof (struct iv_class *)));
3379
3380 loop_iv_list = 0;
3381 addr_placeholder = gen_reg_rtx (Pmode);
3382
3383 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3384 must be put before this insn, so that they will appear in the right
3385 order (i.e. loop order).
3386
3387 If loop_end is the end of the current function, then emit a
3388 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3389 dummy note insn. */
3390 if (NEXT_INSN (loop_end) != 0)
3391 end_insert_before = NEXT_INSN (loop_end);
3392 else
3393 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3394
3395 /* Scan through loop to find all possible bivs. */
3396
3397 p = scan_start;
3398 while (1)
3399 {
3400 p = NEXT_INSN (p);
3401 /* At end of a straight-in loop, we are done.
3402 At end of a loop entered at the bottom, scan the top. */
3403 if (p == scan_start)
3404 break;
3405 if (p == end)
3406 {
3407 if (loop_top != 0)
3408 p = loop_top;
3409 else
3410 break;
3411 if (p == scan_start)
3412 break;
3413 }
3414
3415 if (GET_CODE (p) == INSN
3416 && (set = single_set (p))
3417 && GET_CODE (SET_DEST (set)) == REG)
3418 {
3419 dest_reg = SET_DEST (set);
3420 if (REGNO (dest_reg) < max_reg_before_loop
3421 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3422 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3423 {
3424 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3425 dest_reg, p, &inc_val, &mult_val))
3426 {
3427 /* It is a possible basic induction variable.
3428 Create and initialize an induction structure for it. */
3429
3430 struct induction *v
3431 = (struct induction *) alloca (sizeof (struct induction));
3432
3433 record_biv (v, p, dest_reg, inc_val, mult_val,
3434 not_every_iteration, maybe_multiple);
3435 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3436 }
3437 else if (REGNO (dest_reg) < max_reg_before_loop)
3438 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3439 }
3440 }
3441
3442 /* Past CODE_LABEL, we get to insns that may be executed multiple
3443 times. The only way we can be sure that they can't is if every
3444 every jump insn between here and the end of the loop either
3445 returns, exits the loop, is a forward jump, or is a jump
3446 to the loop start. */
3447
3448 if (GET_CODE (p) == CODE_LABEL)
3449 {
3450 rtx insn = p;
3451
3452 maybe_multiple = 0;
3453
3454 while (1)
3455 {
3456 insn = NEXT_INSN (insn);
3457 if (insn == scan_start)
3458 break;
3459 if (insn == end)
3460 {
3461 if (loop_top != 0)
3462 insn = loop_top;
3463 else
3464 break;
3465 if (insn == scan_start)
3466 break;
3467 }
3468
3469 if (GET_CODE (insn) == JUMP_INSN
3470 && GET_CODE (PATTERN (insn)) != RETURN
3471 && (! condjump_p (insn)
3472 || (JUMP_LABEL (insn) != 0
3473 && JUMP_LABEL (insn) != scan_start
3474 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3475 || INSN_UID (insn) >= max_uid_for_loop
3476 || (INSN_LUID (JUMP_LABEL (insn))
3477 < INSN_LUID (insn))))))
3478 {
3479 maybe_multiple = 1;
3480 break;
3481 }
3482 }
3483 }
3484
3485 /* Past a jump, we get to insns for which we can't count
3486 on whether they will be executed during each iteration. */
3487 /* This code appears twice in strength_reduce. There is also similar
3488 code in scan_loop. */
3489 if (GET_CODE (p) == JUMP_INSN
3490 /* If we enter the loop in the middle, and scan around to the
3491 beginning, don't set not_every_iteration for that.
3492 This can be any kind of jump, since we want to know if insns
3493 will be executed if the loop is executed. */
3494 && ! (JUMP_LABEL (p) == loop_top
3495 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3496 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3497 {
3498 rtx label = 0;
3499
3500 /* If this is a jump outside the loop, then it also doesn't
3501 matter. Check to see if the target of this branch is on the
3502 loop_number_exits_labels list. */
3503
3504 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3505 label;
3506 label = LABEL_NEXTREF (label))
3507 if (XEXP (label, 0) == JUMP_LABEL (p))
3508 break;
3509
3510 if (! label)
3511 not_every_iteration = 1;
3512 }
3513
3514 else if (GET_CODE (p) == NOTE)
3515 {
3516 /* At the virtual top of a converted loop, insns are again known to
3517 be executed each iteration: logically, the loop begins here
3518 even though the exit code has been duplicated. */
3519 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3520 not_every_iteration = 0;
3521 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3522 loop_depth++;
3523 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3524 loop_depth--;
3525 }
3526
3527 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3528 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3529 or not an insn is known to be executed each iteration of the
3530 loop, whether or not any iterations are known to occur.
3531
3532 Therefore, if we have just passed a label and have no more labels
3533 between here and the test insn of the loop, we know these insns
3534 will be executed each iteration. */
3535
3536 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3537 && no_labels_between_p (p, loop_end))
3538 not_every_iteration = 0;
3539 }
3540
3541 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3542 Make a sanity check against n_times_set. */
3543 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3544 {
3545 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3546 /* Above happens if register modified by subreg, etc. */
3547 /* Make sure it is not recognized as a basic induction var: */
3548 || n_times_set[bl->regno] != bl->biv_count
3549 /* If never incremented, it is invariant that we decided not to
3550 move. So leave it alone. */
3551 || ! bl->incremented)
3552 {
3553 if (loop_dump_stream)
3554 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3555 bl->regno,
3556 (reg_iv_type[bl->regno] != BASIC_INDUCT
3557 ? "not induction variable"
3558 : (! bl->incremented ? "never incremented"
3559 : "count error")));
3560
3561 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3562 *backbl = bl->next;
3563 }
3564 else
3565 {
3566 backbl = &bl->next;
3567
3568 if (loop_dump_stream)
3569 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3570 }
3571 }
3572
3573 /* Exit if there are no bivs. */
3574 if (! loop_iv_list)
3575 {
3576 /* Can still unroll the loop anyways, but indicate that there is no
3577 strength reduction info available. */
3578 if (flag_unroll_loops)
3579 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3580
3581 return;
3582 }
3583
3584 /* Find initial value for each biv by searching backwards from loop_start,
3585 halting at first label. Also record any test condition. */
3586
3587 call_seen = 0;
3588 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3589 {
3590 note_insn = p;
3591
3592 if (GET_CODE (p) == CALL_INSN)
3593 call_seen = 1;
3594
3595 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3596 || GET_CODE (p) == CALL_INSN)
3597 note_stores (PATTERN (p), record_initial);
3598
3599 /* Record any test of a biv that branches around the loop if no store
3600 between it and the start of loop. We only care about tests with
3601 constants and registers and only certain of those. */
3602 if (GET_CODE (p) == JUMP_INSN
3603 && JUMP_LABEL (p) != 0
3604 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3605 && (test = get_condition_for_loop (p)) != 0
3606 && GET_CODE (XEXP (test, 0)) == REG
3607 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3608 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3609 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3610 && bl->init_insn == 0)
3611 {
3612 /* If an NE test, we have an initial value! */
3613 if (GET_CODE (test) == NE)
3614 {
3615 bl->init_insn = p;
3616 bl->init_set = gen_rtx (SET, VOIDmode,
3617 XEXP (test, 0), XEXP (test, 1));
3618 }
3619 else
3620 bl->initial_test = test;
3621 }
3622 }
3623
3624 /* Look at the each biv and see if we can say anything better about its
3625 initial value from any initializing insns set up above. (This is done
3626 in two passes to avoid missing SETs in a PARALLEL.) */
3627 for (bl = loop_iv_list; bl; bl = bl->next)
3628 {
3629 rtx src;
3630
3631 if (! bl->init_insn)
3632 continue;
3633
3634 src = SET_SRC (bl->init_set);
3635
3636 if (loop_dump_stream)
3637 fprintf (loop_dump_stream,
3638 "Biv %d initialized at insn %d: initial value ",
3639 bl->regno, INSN_UID (bl->init_insn));
3640
3641 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3642 || GET_MODE (src) == VOIDmode)
3643 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3644 {
3645 bl->initial_value = src;
3646
3647 if (loop_dump_stream)
3648 {
3649 if (GET_CODE (src) == CONST_INT)
3650 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3651 else
3652 {
3653 print_rtl (loop_dump_stream, src);
3654 fprintf (loop_dump_stream, "\n");
3655 }
3656 }
3657 }
3658 else
3659 {
3660 /* Biv initial value is not simple move,
3661 so let it keep initial value of "itself". */
3662
3663 if (loop_dump_stream)
3664 fprintf (loop_dump_stream, "is complex\n");
3665 }
3666 }
3667
3668 /* Search the loop for general induction variables. */
3669
3670 /* A register is a giv if: it is only set once, it is a function of a
3671 biv and a constant (or invariant), and it is not a biv. */
3672
3673 not_every_iteration = 0;
3674 loop_depth = 0;
3675 p = scan_start;
3676 while (1)
3677 {
3678 p = NEXT_INSN (p);
3679 /* At end of a straight-in loop, we are done.
3680 At end of a loop entered at the bottom, scan the top. */
3681 if (p == scan_start)
3682 break;
3683 if (p == end)
3684 {
3685 if (loop_top != 0)
3686 p = loop_top;
3687 else
3688 break;
3689 if (p == scan_start)
3690 break;
3691 }
3692
3693 /* Look for a general induction variable in a register. */
3694 if (GET_CODE (p) == INSN
3695 && (set = single_set (p))
3696 && GET_CODE (SET_DEST (set)) == REG
3697 && ! may_not_optimize[REGNO (SET_DEST (set))])
3698 {
3699 rtx src_reg;
3700 rtx add_val;
3701 rtx mult_val;
3702 int benefit;
3703 rtx regnote = 0;
3704
3705 dest_reg = SET_DEST (set);
3706 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3707 continue;
3708
3709 if (/* SET_SRC is a giv. */
3710 ((benefit = general_induction_var (SET_SRC (set),
3711 &src_reg, &add_val,
3712 &mult_val))
3713 /* Equivalent expression is a giv. */
3714 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3715 && (benefit = general_induction_var (XEXP (regnote, 0),
3716 &src_reg,
3717 &add_val, &mult_val))))
3718 /* Don't try to handle any regs made by loop optimization.
3719 We have nothing on them in regno_first_uid, etc. */
3720 && REGNO (dest_reg) < max_reg_before_loop
3721 /* Don't recognize a BASIC_INDUCT_VAR here. */
3722 && dest_reg != src_reg
3723 /* This must be the only place where the register is set. */
3724 && (n_times_set[REGNO (dest_reg)] == 1
3725 /* or all sets must be consecutive and make a giv. */
3726 || (benefit = consec_sets_giv (benefit, p,
3727 src_reg, dest_reg,
3728 &add_val, &mult_val))))
3729 {
3730 int count;
3731 struct induction *v
3732 = (struct induction *) alloca (sizeof (struct induction));
3733 rtx temp;
3734
3735 /* If this is a library call, increase benefit. */
3736 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3737 benefit += libcall_benefit (p);
3738
3739 /* Skip the consecutive insns, if there are any. */
3740 for (count = n_times_set[REGNO (dest_reg)] - 1;
3741 count > 0; count--)
3742 {
3743 /* If first insn of libcall sequence, skip to end.
3744 Do this at start of loop, since INSN is guaranteed to
3745 be an insn here. */
3746 if (GET_CODE (p) != NOTE
3747 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3748 p = XEXP (temp, 0);
3749
3750 do p = NEXT_INSN (p);
3751 while (GET_CODE (p) == NOTE);
3752 }
3753
3754 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3755 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3756 loop_end);
3757
3758 }
3759 }
3760
3761 #ifndef DONT_REDUCE_ADDR
3762 /* Look for givs which are memory addresses. */
3763 /* This resulted in worse code on a VAX 8600. I wonder if it
3764 still does. */
3765 if (GET_CODE (p) == INSN)
3766 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3767 loop_end);
3768 #endif
3769
3770 /* Update the status of whether giv can derive other givs. This can
3771 change when we pass a label or an insn that updates a biv. */
3772 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3773 || GET_CODE (p) == CODE_LABEL)
3774 update_giv_derive (p);
3775
3776 /* Past a jump, we get to insns for which we can't count
3777 on whether they will be executed during each iteration. */
3778 /* This code appears twice in strength_reduce. There is also similar
3779 code in scan_loop. */
3780 if (GET_CODE (p) == JUMP_INSN
3781 /* If we enter the loop in the middle, and scan around to the
3782 beginning, don't set not_every_iteration for that.
3783 This can be any kind of jump, since we want to know if insns
3784 will be executed if the loop is executed. */
3785 && ! (JUMP_LABEL (p) == loop_top
3786 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3787 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3788 {
3789 rtx label = 0;
3790
3791 /* If this is a jump outside the loop, then it also doesn't
3792 matter. Check to see if the target of this branch is on the
3793 loop_number_exits_labels list. */
3794
3795 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3796 label;
3797 label = LABEL_NEXTREF (label))
3798 if (XEXP (label, 0) == JUMP_LABEL (p))
3799 break;
3800
3801 if (! label)
3802 not_every_iteration = 1;
3803 }
3804
3805 else if (GET_CODE (p) == NOTE)
3806 {
3807 /* At the virtual top of a converted loop, insns are again known to
3808 be executed each iteration: logically, the loop begins here
3809 even though the exit code has been duplicated. */
3810 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
3811 not_every_iteration = 0;
3812 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3813 loop_depth++;
3814 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3815 loop_depth--;
3816 }
3817
3818 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3819 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3820 or not an insn is known to be executed each iteration of the
3821 loop, whether or not any iterations are known to occur.
3822
3823 Therefore, if we have just passed a label and have no more labels
3824 between here and the test insn of the loop, we know these insns
3825 will be executed each iteration. */
3826
3827 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3828 && no_labels_between_p (p, loop_end))
3829 not_every_iteration = 0;
3830 }
3831
3832 /* Try to calculate and save the number of loop iterations. This is
3833 set to zero if the actual number can not be calculated. This must
3834 be called after all giv's have been identified, since otherwise it may
3835 fail if the iteration variable is a giv. */
3836
3837 loop_n_iterations = loop_iterations (loop_start, loop_end);
3838
3839 /* Now for each giv for which we still don't know whether or not it is
3840 replaceable, check to see if it is replaceable because its final value
3841 can be calculated. This must be done after loop_iterations is called,
3842 so that final_giv_value will work correctly. */
3843
3844 for (bl = loop_iv_list; bl; bl = bl->next)
3845 {
3846 struct induction *v;
3847
3848 for (v = bl->giv; v; v = v->next_iv)
3849 if (! v->replaceable && ! v->not_replaceable)
3850 check_final_value (v, loop_start, loop_end);
3851 }
3852
3853 /* Try to prove that the loop counter variable (if any) is always
3854 nonnegative; if so, record that fact with a REG_NONNEG note
3855 so that "decrement and branch until zero" insn can be used. */
3856 check_dbra_loop (loop_end, insn_count, loop_start);
3857
3858 #ifdef HAIFA
3859 /* record loop-variables relevant for BCT optimization before unrolling
3860 the loop. Unrolling may update part of this information, and the
3861 correct data will be used for generating the BCT. */
3862 #ifdef HAVE_decrement_and_branch_on_count
3863 if (HAVE_decrement_and_branch_on_count)
3864 analyze_loop_iterations (loop_start, loop_end);
3865 #endif
3866 #endif /* HAIFA */
3867
3868 /* Create reg_map to hold substitutions for replaceable giv regs. */
3869 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3870 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3871
3872 /* Examine each iv class for feasibility of strength reduction/induction
3873 variable elimination. */
3874
3875 for (bl = loop_iv_list; bl; bl = bl->next)
3876 {
3877 struct induction *v;
3878 int benefit;
3879 int all_reduced;
3880 rtx final_value = 0;
3881
3882 /* Test whether it will be possible to eliminate this biv
3883 provided all givs are reduced. This is possible if either
3884 the reg is not used outside the loop, or we can compute
3885 what its final value will be.
3886
3887 For architectures with a decrement_and_branch_until_zero insn,
3888 don't do this if we put a REG_NONNEG note on the endtest for
3889 this biv. */
3890
3891 /* Compare against bl->init_insn rather than loop_start.
3892 We aren't concerned with any uses of the biv between
3893 init_insn and loop_start since these won't be affected
3894 by the value of the biv elsewhere in the function, so
3895 long as init_insn doesn't use the biv itself.
3896 March 14, 1989 -- self@bayes.arc.nasa.gov */
3897
3898 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
3899 && bl->init_insn
3900 && INSN_UID (bl->init_insn) < max_uid_for_loop
3901 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
3902 #ifdef HAVE_decrement_and_branch_until_zero
3903 && ! bl->nonneg
3904 #endif
3905 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3906 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3907 #ifdef HAVE_decrement_and_branch_until_zero
3908 && ! bl->nonneg
3909 #endif
3910 ))
3911 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3912 threshold, insn_count);
3913 else
3914 {
3915 if (loop_dump_stream)
3916 {
3917 fprintf (loop_dump_stream,
3918 "Cannot eliminate biv %d.\n",
3919 bl->regno);
3920 fprintf (loop_dump_stream,
3921 "First use: insn %d, last use: insn %d.\n",
3922 REGNO_FIRST_UID (bl->regno),
3923 REGNO_LAST_UID (bl->regno));
3924 }
3925 }
3926
3927 /* Combine all giv's for this iv_class. */
3928 combine_givs (bl);
3929
3930 /* This will be true at the end, if all givs which depend on this
3931 biv have been strength reduced.
3932 We can't (currently) eliminate the biv unless this is so. */
3933 all_reduced = 1;
3934
3935 /* Check each giv in this class to see if we will benefit by reducing
3936 it. Skip giv's combined with others. */
3937 for (v = bl->giv; v; v = v->next_iv)
3938 {
3939 struct induction *tv;
3940
3941 if (v->ignore || v->same)
3942 continue;
3943
3944 benefit = v->benefit;
3945
3946 /* Reduce benefit if not replaceable, since we will insert
3947 a move-insn to replace the insn that calculates this giv.
3948 Don't do this unless the giv is a user variable, since it
3949 will often be marked non-replaceable because of the duplication
3950 of the exit code outside the loop. In such a case, the copies
3951 we insert are dead and will be deleted. So they don't have
3952 a cost. Similar situations exist. */
3953 /* ??? The new final_[bg]iv_value code does a much better job
3954 of finding replaceable giv's, and hence this code may no longer
3955 be necessary. */
3956 if (! v->replaceable && ! bl->eliminable
3957 && REG_USERVAR_P (v->dest_reg))
3958 benefit -= copy_cost;
3959
3960 /* Decrease the benefit to count the add-insns that we will
3961 insert to increment the reduced reg for the giv. */
3962 benefit -= add_cost * bl->biv_count;
3963
3964 /* Decide whether to strength-reduce this giv or to leave the code
3965 unchanged (recompute it from the biv each time it is used).
3966 This decision can be made independently for each giv. */
3967
3968 #ifdef AUTO_INC_DEC
3969 /* Attempt to guess whether autoincrement will handle some of the
3970 new add insns; if so, increase BENEFIT (undo the subtraction of
3971 add_cost that was done above). */
3972 if (v->giv_type == DEST_ADDR
3973 && GET_CODE (v->mult_val) == CONST_INT)
3974 {
3975 #if defined (HAVE_POST_INCREMENT) || defined (HAVE_PRE_INCREMENT)
3976 if (INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3977 benefit += add_cost * bl->biv_count;
3978 #endif
3979 #if defined (HAVE_POST_DECREMENT) || defined (HAVE_PRE_DECREMENT)
3980 if (-INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
3981 benefit += add_cost * bl->biv_count;
3982 #endif
3983 }
3984 #endif
3985
3986 /* If an insn is not to be strength reduced, then set its ignore
3987 flag, and clear all_reduced. */
3988
3989 /* A giv that depends on a reversed biv must be reduced if it is
3990 used after the loop exit, otherwise, it would have the wrong
3991 value after the loop exit. To make it simple, just reduce all
3992 of such giv's whether or not we know they are used after the loop
3993 exit. */
3994
3995 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
3996 && ! bl->reversed )
3997 {
3998 if (loop_dump_stream)
3999 fprintf (loop_dump_stream,
4000 "giv of insn %d not worth while, %d vs %d.\n",
4001 INSN_UID (v->insn),
4002 v->lifetime * threshold * benefit, insn_count);
4003 v->ignore = 1;
4004 all_reduced = 0;
4005 }
4006 else
4007 {
4008 /* Check that we can increment the reduced giv without a
4009 multiply insn. If not, reject it. */
4010
4011 for (tv = bl->biv; tv; tv = tv->next_iv)
4012 if (tv->mult_val == const1_rtx
4013 && ! product_cheap_p (tv->add_val, v->mult_val))
4014 {
4015 if (loop_dump_stream)
4016 fprintf (loop_dump_stream,
4017 "giv of insn %d: would need a multiply.\n",
4018 INSN_UID (v->insn));
4019 v->ignore = 1;
4020 all_reduced = 0;
4021 break;
4022 }
4023 }
4024 }
4025
4026 /* Reduce each giv that we decided to reduce. */
4027
4028 for (v = bl->giv; v; v = v->next_iv)
4029 {
4030 struct induction *tv;
4031 if (! v->ignore && v->same == 0)
4032 {
4033 int auto_inc_opt = 0;
4034
4035 v->new_reg = gen_reg_rtx (v->mode);
4036
4037 #ifdef AUTO_INC_DEC
4038 /* If the target has auto-increment addressing modes, and
4039 this is an address giv, then try to put the increment
4040 immediately after its use, so that flow can create an
4041 auto-increment addressing mode. */
4042 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4043 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4044 /* We don't handle reversed biv's because bl->biv->insn
4045 does not have a valid INSN_LUID. */
4046 && ! bl->reversed
4047 && v->always_executed && ! v->maybe_multiple)
4048 {
4049 /* If other giv's have been combined with this one, then
4050 this will work only if all uses of the other giv's occur
4051 before this giv's insn. This is difficult to check.
4052
4053 We simplify this by looking for the common case where
4054 there is one DEST_REG giv, and this giv's insn is the
4055 last use of the dest_reg of that DEST_REG giv. If the
4056 the increment occurs after the address giv, then we can
4057 perform the optimization. (Otherwise, the increment
4058 would have to go before other_giv, and we would not be
4059 able to combine it with the address giv to get an
4060 auto-inc address.) */
4061 if (v->combined_with)
4062 {
4063 struct induction *other_giv = 0;
4064
4065 for (tv = bl->giv; tv; tv = tv->next_iv)
4066 if (tv->same == v)
4067 {
4068 if (other_giv)
4069 break;
4070 else
4071 other_giv = tv;
4072 }
4073 if (! tv && other_giv
4074 && REGNO (other_giv->dest_reg) <= max_reg_before_loop
4075 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4076 == INSN_UID (v->insn))
4077 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4078 auto_inc_opt = 1;
4079 }
4080 /* Check for case where increment is before the the address
4081 giv. */
4082 else if (INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn))
4083 auto_inc_opt = -1;
4084 else
4085 auto_inc_opt = 1;
4086
4087 #ifdef HAVE_cc0
4088 {
4089 rtx prev;
4090
4091 /* We can't put an insn immediately after one setting
4092 cc0, or immediately before one using cc0. */
4093 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4094 || (auto_inc_opt == -1
4095 && (prev = prev_nonnote_insn (v->insn)) != 0
4096 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4097 && sets_cc0_p (PATTERN (prev))))
4098 auto_inc_opt = 0;
4099 }
4100 #endif
4101
4102 if (auto_inc_opt)
4103 v->auto_inc_opt = 1;
4104 }
4105 #endif
4106
4107 /* For each place where the biv is incremented, add an insn
4108 to increment the new, reduced reg for the giv. */
4109 for (tv = bl->biv; tv; tv = tv->next_iv)
4110 {
4111 rtx insert_before;
4112
4113 if (! auto_inc_opt)
4114 insert_before = tv->insn;
4115 else if (auto_inc_opt == 1)
4116 insert_before = NEXT_INSN (v->insn);
4117 else
4118 insert_before = v->insn;
4119
4120 if (tv->mult_val == const1_rtx)
4121 emit_iv_add_mult (tv->add_val, v->mult_val,
4122 v->new_reg, v->new_reg, insert_before);
4123 else /* tv->mult_val == const0_rtx */
4124 /* A multiply is acceptable here
4125 since this is presumed to be seldom executed. */
4126 emit_iv_add_mult (tv->add_val, v->mult_val,
4127 v->add_val, v->new_reg, insert_before);
4128 }
4129
4130 /* Add code at loop start to initialize giv's reduced reg. */
4131
4132 emit_iv_add_mult (bl->initial_value, v->mult_val,
4133 v->add_val, v->new_reg, loop_start);
4134 }
4135 }
4136
4137 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4138 as not reduced.
4139
4140 For each giv register that can be reduced now: if replaceable,
4141 substitute reduced reg wherever the old giv occurs;
4142 else add new move insn "giv_reg = reduced_reg".
4143
4144 Also check for givs whose first use is their definition and whose
4145 last use is the definition of another giv. If so, it is likely
4146 dead and should not be used to eliminate a biv. */
4147 for (v = bl->giv; v; v = v->next_iv)
4148 {
4149 if (v->same && v->same->ignore)
4150 v->ignore = 1;
4151
4152 if (v->ignore)
4153 continue;
4154
4155 if (v->giv_type == DEST_REG
4156 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4157 {
4158 struct induction *v1;
4159
4160 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4161 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4162 v->maybe_dead = 1;
4163 }
4164
4165 /* Update expression if this was combined, in case other giv was
4166 replaced. */
4167 if (v->same)
4168 v->new_reg = replace_rtx (v->new_reg,
4169 v->same->dest_reg, v->same->new_reg);
4170
4171 if (v->giv_type == DEST_ADDR)
4172 /* Store reduced reg as the address in the memref where we found
4173 this giv. */
4174 validate_change (v->insn, v->location, v->new_reg, 0);
4175 else if (v->replaceable)
4176 {
4177 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4178
4179 #if 0
4180 /* I can no longer duplicate the original problem. Perhaps
4181 this is unnecessary now? */
4182
4183 /* Replaceable; it isn't strictly necessary to delete the old
4184 insn and emit a new one, because v->dest_reg is now dead.
4185
4186 However, especially when unrolling loops, the special
4187 handling for (set REG0 REG1) in the second cse pass may
4188 make v->dest_reg live again. To avoid this problem, emit
4189 an insn to set the original giv reg from the reduced giv.
4190 We can not delete the original insn, since it may be part
4191 of a LIBCALL, and the code in flow that eliminates dead
4192 libcalls will fail if it is deleted. */
4193 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4194 v->insn);
4195 #endif
4196 }
4197 else
4198 {
4199 /* Not replaceable; emit an insn to set the original giv reg from
4200 the reduced giv, same as above. */
4201 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4202 v->insn);
4203 }
4204
4205 /* When a loop is reversed, givs which depend on the reversed
4206 biv, and which are live outside the loop, must be set to their
4207 correct final value. This insn is only needed if the giv is
4208 not replaceable. The correct final value is the same as the
4209 value that the giv starts the reversed loop with. */
4210 if (bl->reversed && ! v->replaceable)
4211 emit_iv_add_mult (bl->initial_value, v->mult_val,
4212 v->add_val, v->dest_reg, end_insert_before);
4213 else if (v->final_value)
4214 {
4215 rtx insert_before;
4216
4217 /* If the loop has multiple exits, emit the insn before the
4218 loop to ensure that it will always be executed no matter
4219 how the loop exits. Otherwise, emit the insn after the loop,
4220 since this is slightly more efficient. */
4221 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4222 insert_before = loop_start;
4223 else
4224 insert_before = end_insert_before;
4225 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4226 insert_before);
4227
4228 #if 0
4229 /* If the insn to set the final value of the giv was emitted
4230 before the loop, then we must delete the insn inside the loop
4231 that sets it. If this is a LIBCALL, then we must delete
4232 every insn in the libcall. Note, however, that
4233 final_giv_value will only succeed when there are multiple
4234 exits if the giv is dead at each exit, hence it does not
4235 matter that the original insn remains because it is dead
4236 anyways. */
4237 /* Delete the insn inside the loop that sets the giv since
4238 the giv is now set before (or after) the loop. */
4239 delete_insn (v->insn);
4240 #endif
4241 }
4242
4243 if (loop_dump_stream)
4244 {
4245 fprintf (loop_dump_stream, "giv at %d reduced to ",
4246 INSN_UID (v->insn));
4247 print_rtl (loop_dump_stream, v->new_reg);
4248 fprintf (loop_dump_stream, "\n");
4249 }
4250 }
4251
4252 /* All the givs based on the biv bl have been reduced if they
4253 merit it. */
4254
4255 /* For each giv not marked as maybe dead that has been combined with a
4256 second giv, clear any "maybe dead" mark on that second giv.
4257 v->new_reg will either be or refer to the register of the giv it
4258 combined with.
4259
4260 Doing this clearing avoids problems in biv elimination where a
4261 giv's new_reg is a complex value that can't be put in the insn but
4262 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4263 Since the register will be used in either case, we'd prefer it be
4264 used from the simpler giv. */
4265
4266 for (v = bl->giv; v; v = v->next_iv)
4267 if (! v->maybe_dead && v->same)
4268 v->same->maybe_dead = 0;
4269
4270 /* Try to eliminate the biv, if it is a candidate.
4271 This won't work if ! all_reduced,
4272 since the givs we planned to use might not have been reduced.
4273
4274 We have to be careful that we didn't initially think we could eliminate
4275 this biv because of a giv that we now think may be dead and shouldn't
4276 be used as a biv replacement.
4277
4278 Also, there is the possibility that we may have a giv that looks
4279 like it can be used to eliminate a biv, but the resulting insn
4280 isn't valid. This can happen, for example, on the 88k, where a
4281 JUMP_INSN can compare a register only with zero. Attempts to
4282 replace it with a compare with a constant will fail.
4283
4284 Note that in cases where this call fails, we may have replaced some
4285 of the occurrences of the biv with a giv, but no harm was done in
4286 doing so in the rare cases where it can occur. */
4287
4288 if (all_reduced == 1 && bl->eliminable
4289 && maybe_eliminate_biv (bl, loop_start, end, 1,
4290 threshold, insn_count))
4291
4292 {
4293 /* ?? If we created a new test to bypass the loop entirely,
4294 or otherwise drop straight in, based on this test, then
4295 we might want to rewrite it also. This way some later
4296 pass has more hope of removing the initialization of this
4297 biv entirely. */
4298
4299 /* If final_value != 0, then the biv may be used after loop end
4300 and we must emit an insn to set it just in case.
4301
4302 Reversed bivs already have an insn after the loop setting their
4303 value, so we don't need another one. We can't calculate the
4304 proper final value for such a biv here anyways. */
4305 if (final_value != 0 && ! bl->reversed)
4306 {
4307 rtx insert_before;
4308
4309 /* If the loop has multiple exits, emit the insn before the
4310 loop to ensure that it will always be executed no matter
4311 how the loop exits. Otherwise, emit the insn after the
4312 loop, since this is slightly more efficient. */
4313 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
4314 insert_before = loop_start;
4315 else
4316 insert_before = end_insert_before;
4317
4318 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4319 end_insert_before);
4320 }
4321
4322 #if 0
4323 /* Delete all of the instructions inside the loop which set
4324 the biv, as they are all dead. If is safe to delete them,
4325 because an insn setting a biv will never be part of a libcall. */
4326 /* However, deleting them will invalidate the regno_last_uid info,
4327 so keeping them around is more convenient. Final_biv_value
4328 will only succeed when there are multiple exits if the biv
4329 is dead at each exit, hence it does not matter that the original
4330 insn remains, because it is dead anyways. */
4331 for (v = bl->biv; v; v = v->next_iv)
4332 delete_insn (v->insn);
4333 #endif
4334
4335 if (loop_dump_stream)
4336 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4337 bl->regno);
4338 }
4339 }
4340
4341 /* Go through all the instructions in the loop, making all the
4342 register substitutions scheduled in REG_MAP. */
4343
4344 for (p = loop_start; p != end; p = NEXT_INSN (p))
4345 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4346 || GET_CODE (p) == CALL_INSN)
4347 {
4348 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
4349 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
4350 INSN_CODE (p) = -1;
4351 }
4352
4353 /* Unroll loops from within strength reduction so that we can use the
4354 induction variable information that strength_reduce has already
4355 collected. */
4356
4357 if (flag_unroll_loops)
4358 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4359
4360 #ifdef HAIFA
4361 /* instrument the loop with bct insn */
4362 #ifdef HAVE_decrement_and_branch_on_count
4363 if (HAVE_decrement_and_branch_on_count)
4364 insert_bct (loop_start, loop_end);
4365 #endif
4366 #endif /* HAIFA */
4367
4368 if (loop_dump_stream)
4369 fprintf (loop_dump_stream, "\n");
4370 }
4371 \f
4372 /* Return 1 if X is a valid source for an initial value (or as value being
4373 compared against in an initial test).
4374
4375 X must be either a register or constant and must not be clobbered between
4376 the current insn and the start of the loop.
4377
4378 INSN is the insn containing X. */
4379
4380 static int
4381 valid_initial_value_p (x, insn, call_seen, loop_start)
4382 rtx x;
4383 rtx insn;
4384 int call_seen;
4385 rtx loop_start;
4386 {
4387 if (CONSTANT_P (x))
4388 return 1;
4389
4390 /* Only consider pseudos we know about initialized in insns whose luids
4391 we know. */
4392 if (GET_CODE (x) != REG
4393 || REGNO (x) >= max_reg_before_loop)
4394 return 0;
4395
4396 /* Don't use call-clobbered registers across a call which clobbers it. On
4397 some machines, don't use any hard registers at all. */
4398 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4399 && (
4400 #ifdef SMALL_REGISTER_CLASSES
4401 SMALL_REGISTER_CLASSES
4402 #else
4403 0
4404 #endif
4405 || (call_used_regs[REGNO (x)] && call_seen))
4406 )
4407 return 0;
4408
4409 /* Don't use registers that have been clobbered before the start of the
4410 loop. */
4411 if (reg_set_between_p (x, insn, loop_start))
4412 return 0;
4413
4414 return 1;
4415 }
4416 \f
4417 /* Scan X for memory refs and check each memory address
4418 as a possible giv. INSN is the insn whose pattern X comes from.
4419 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4420 every loop iteration. */
4421
4422 static void
4423 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4424 rtx x;
4425 rtx insn;
4426 int not_every_iteration;
4427 rtx loop_start, loop_end;
4428 {
4429 register int i, j;
4430 register enum rtx_code code;
4431 register char *fmt;
4432
4433 if (x == 0)
4434 return;
4435
4436 code = GET_CODE (x);
4437 switch (code)
4438 {
4439 case REG:
4440 case CONST_INT:
4441 case CONST:
4442 case CONST_DOUBLE:
4443 case SYMBOL_REF:
4444 case LABEL_REF:
4445 case PC:
4446 case CC0:
4447 case ADDR_VEC:
4448 case ADDR_DIFF_VEC:
4449 case USE:
4450 case CLOBBER:
4451 return;
4452
4453 case MEM:
4454 {
4455 rtx src_reg;
4456 rtx add_val;
4457 rtx mult_val;
4458 int benefit;
4459
4460 benefit = general_induction_var (XEXP (x, 0),
4461 &src_reg, &add_val, &mult_val);
4462
4463 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4464 Such a giv isn't useful. */
4465 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4466 {
4467 /* Found one; record it. */
4468 struct induction *v
4469 = (struct induction *) oballoc (sizeof (struct induction));
4470
4471 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4472 add_val, benefit, DEST_ADDR, not_every_iteration,
4473 &XEXP (x, 0), loop_start, loop_end);
4474
4475 v->mem_mode = GET_MODE (x);
4476 }
4477 return;
4478 }
4479 }
4480
4481 /* Recursively scan the subexpressions for other mem refs. */
4482
4483 fmt = GET_RTX_FORMAT (code);
4484 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4485 if (fmt[i] == 'e')
4486 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4487 loop_end);
4488 else if (fmt[i] == 'E')
4489 for (j = 0; j < XVECLEN (x, i); j++)
4490 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4491 loop_start, loop_end);
4492 }
4493 \f
4494 /* Fill in the data about one biv update.
4495 V is the `struct induction' in which we record the biv. (It is
4496 allocated by the caller, with alloca.)
4497 INSN is the insn that sets it.
4498 DEST_REG is the biv's reg.
4499
4500 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4501 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4502 being set to INC_VAL.
4503
4504 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4505 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4506 can be executed more than once per iteration. If MAYBE_MULTIPLE
4507 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4508 executed exactly once per iteration. */
4509
4510 static void
4511 record_biv (v, insn, dest_reg, inc_val, mult_val,
4512 not_every_iteration, maybe_multiple)
4513 struct induction *v;
4514 rtx insn;
4515 rtx dest_reg;
4516 rtx inc_val;
4517 rtx mult_val;
4518 int not_every_iteration;
4519 int maybe_multiple;
4520 {
4521 struct iv_class *bl;
4522
4523 v->insn = insn;
4524 v->src_reg = dest_reg;
4525 v->dest_reg = dest_reg;
4526 v->mult_val = mult_val;
4527 v->add_val = inc_val;
4528 v->mode = GET_MODE (dest_reg);
4529 v->always_computable = ! not_every_iteration;
4530 v->always_executed = ! not_every_iteration;
4531 v->maybe_multiple = maybe_multiple;
4532
4533 /* Add this to the reg's iv_class, creating a class
4534 if this is the first incrementation of the reg. */
4535
4536 bl = reg_biv_class[REGNO (dest_reg)];
4537 if (bl == 0)
4538 {
4539 /* Create and initialize new iv_class. */
4540
4541 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4542
4543 bl->regno = REGNO (dest_reg);
4544 bl->biv = 0;
4545 bl->giv = 0;
4546 bl->biv_count = 0;
4547 bl->giv_count = 0;
4548
4549 /* Set initial value to the reg itself. */
4550 bl->initial_value = dest_reg;
4551 /* We haven't seen the initializing insn yet */
4552 bl->init_insn = 0;
4553 bl->init_set = 0;
4554 bl->initial_test = 0;
4555 bl->incremented = 0;
4556 bl->eliminable = 0;
4557 bl->nonneg = 0;
4558 bl->reversed = 0;
4559 bl->total_benefit = 0;
4560
4561 /* Add this class to loop_iv_list. */
4562 bl->next = loop_iv_list;
4563 loop_iv_list = bl;
4564
4565 /* Put it in the array of biv register classes. */
4566 reg_biv_class[REGNO (dest_reg)] = bl;
4567 }
4568
4569 /* Update IV_CLASS entry for this biv. */
4570 v->next_iv = bl->biv;
4571 bl->biv = v;
4572 bl->biv_count++;
4573 if (mult_val == const1_rtx)
4574 bl->incremented = 1;
4575
4576 if (loop_dump_stream)
4577 {
4578 fprintf (loop_dump_stream,
4579 "Insn %d: possible biv, reg %d,",
4580 INSN_UID (insn), REGNO (dest_reg));
4581 if (GET_CODE (inc_val) == CONST_INT)
4582 fprintf (loop_dump_stream, " const = %d\n",
4583 INTVAL (inc_val));
4584 else
4585 {
4586 fprintf (loop_dump_stream, " const = ");
4587 print_rtl (loop_dump_stream, inc_val);
4588 fprintf (loop_dump_stream, "\n");
4589 }
4590 }
4591 }
4592 \f
4593 /* Fill in the data about one giv.
4594 V is the `struct induction' in which we record the giv. (It is
4595 allocated by the caller, with alloca.)
4596 INSN is the insn that sets it.
4597 BENEFIT estimates the savings from deleting this insn.
4598 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4599 into a register or is used as a memory address.
4600
4601 SRC_REG is the biv reg which the giv is computed from.
4602 DEST_REG is the giv's reg (if the giv is stored in a reg).
4603 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4604 LOCATION points to the place where this giv's value appears in INSN. */
4605
4606 static void
4607 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4608 type, not_every_iteration, location, loop_start, loop_end)
4609 struct induction *v;
4610 rtx insn;
4611 rtx src_reg;
4612 rtx dest_reg;
4613 rtx mult_val, add_val;
4614 int benefit;
4615 enum g_types type;
4616 int not_every_iteration;
4617 rtx *location;
4618 rtx loop_start, loop_end;
4619 {
4620 struct induction *b;
4621 struct iv_class *bl;
4622 rtx set = single_set (insn);
4623 rtx p;
4624
4625 v->insn = insn;
4626 v->src_reg = src_reg;
4627 v->giv_type = type;
4628 v->dest_reg = dest_reg;
4629 v->mult_val = mult_val;
4630 v->add_val = add_val;
4631 v->benefit = benefit;
4632 v->location = location;
4633 v->cant_derive = 0;
4634 v->combined_with = 0;
4635 v->maybe_multiple = 0;
4636 v->maybe_dead = 0;
4637 v->derive_adjustment = 0;
4638 v->same = 0;
4639 v->ignore = 0;
4640 v->new_reg = 0;
4641 v->final_value = 0;
4642 v->same_insn = 0;
4643 v->auto_inc_opt = 0;
4644 v->unrolled = 0;
4645 v->shared = 0;
4646
4647 /* The v->always_computable field is used in update_giv_derive, to
4648 determine whether a giv can be used to derive another giv. For a
4649 DEST_REG giv, INSN computes a new value for the giv, so its value
4650 isn't computable if INSN insn't executed every iteration.
4651 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4652 it does not compute a new value. Hence the value is always computable
4653 regardless of whether INSN is executed each iteration. */
4654
4655 if (type == DEST_ADDR)
4656 v->always_computable = 1;
4657 else
4658 v->always_computable = ! not_every_iteration;
4659
4660 v->always_executed = ! not_every_iteration;
4661
4662 if (type == DEST_ADDR)
4663 {
4664 v->mode = GET_MODE (*location);
4665 v->lifetime = 1;
4666 v->times_used = 1;
4667 }
4668 else /* type == DEST_REG */
4669 {
4670 v->mode = GET_MODE (SET_DEST (set));
4671
4672 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
4673 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
4674
4675 v->times_used = n_times_used[REGNO (dest_reg)];
4676
4677 /* If the lifetime is zero, it means that this register is
4678 really a dead store. So mark this as a giv that can be
4679 ignored. This will not prevent the biv from being eliminated. */
4680 if (v->lifetime == 0)
4681 v->ignore = 1;
4682
4683 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4684 reg_iv_info[REGNO (dest_reg)] = v;
4685 }
4686
4687 /* Add the giv to the class of givs computed from one biv. */
4688
4689 bl = reg_biv_class[REGNO (src_reg)];
4690 if (bl)
4691 {
4692 v->next_iv = bl->giv;
4693 bl->giv = v;
4694 /* Don't count DEST_ADDR. This is supposed to count the number of
4695 insns that calculate givs. */
4696 if (type == DEST_REG)
4697 bl->giv_count++;
4698 bl->total_benefit += benefit;
4699 }
4700 else
4701 /* Fatal error, biv missing for this giv? */
4702 abort ();
4703
4704 if (type == DEST_ADDR)
4705 v->replaceable = 1;
4706 else
4707 {
4708 /* The giv can be replaced outright by the reduced register only if all
4709 of the following conditions are true:
4710 - the insn that sets the giv is always executed on any iteration
4711 on which the giv is used at all
4712 (there are two ways to deduce this:
4713 either the insn is executed on every iteration,
4714 or all uses follow that insn in the same basic block),
4715 - the giv is not used outside the loop
4716 - no assignments to the biv occur during the giv's lifetime. */
4717
4718 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
4719 /* Previous line always fails if INSN was moved by loop opt. */
4720 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
4721 && (! not_every_iteration
4722 || last_use_this_basic_block (dest_reg, insn)))
4723 {
4724 /* Now check that there are no assignments to the biv within the
4725 giv's lifetime. This requires two separate checks. */
4726
4727 /* Check each biv update, and fail if any are between the first
4728 and last use of the giv.
4729
4730 If this loop contains an inner loop that was unrolled, then
4731 the insn modifying the biv may have been emitted by the loop
4732 unrolling code, and hence does not have a valid luid. Just
4733 mark the biv as not replaceable in this case. It is not very
4734 useful as a biv, because it is used in two different loops.
4735 It is very unlikely that we would be able to optimize the giv
4736 using this biv anyways. */
4737
4738 v->replaceable = 1;
4739 for (b = bl->biv; b; b = b->next_iv)
4740 {
4741 if (INSN_UID (b->insn) >= max_uid_for_loop
4742 || ((uid_luid[INSN_UID (b->insn)]
4743 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
4744 && (uid_luid[INSN_UID (b->insn)]
4745 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
4746 {
4747 v->replaceable = 0;
4748 v->not_replaceable = 1;
4749 break;
4750 }
4751 }
4752
4753 /* If there are any backwards branches that go from after the
4754 biv update to before it, then this giv is not replaceable. */
4755 if (v->replaceable)
4756 for (b = bl->biv; b; b = b->next_iv)
4757 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
4758 {
4759 v->replaceable = 0;
4760 v->not_replaceable = 1;
4761 break;
4762 }
4763 }
4764 else
4765 {
4766 /* May still be replaceable, we don't have enough info here to
4767 decide. */
4768 v->replaceable = 0;
4769 v->not_replaceable = 0;
4770 }
4771 }
4772
4773 if (loop_dump_stream)
4774 {
4775 if (type == DEST_REG)
4776 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4777 INSN_UID (insn), REGNO (dest_reg));
4778 else
4779 fprintf (loop_dump_stream, "Insn %d: dest address",
4780 INSN_UID (insn));
4781
4782 fprintf (loop_dump_stream, " src reg %d benefit %d",
4783 REGNO (src_reg), v->benefit);
4784 fprintf (loop_dump_stream, " used %d lifetime %d",
4785 v->times_used, v->lifetime);
4786
4787 if (v->replaceable)
4788 fprintf (loop_dump_stream, " replaceable");
4789
4790 if (GET_CODE (mult_val) == CONST_INT)
4791 fprintf (loop_dump_stream, " mult %d",
4792 INTVAL (mult_val));
4793 else
4794 {
4795 fprintf (loop_dump_stream, " mult ");
4796 print_rtl (loop_dump_stream, mult_val);
4797 }
4798
4799 if (GET_CODE (add_val) == CONST_INT)
4800 fprintf (loop_dump_stream, " add %d",
4801 INTVAL (add_val));
4802 else
4803 {
4804 fprintf (loop_dump_stream, " add ");
4805 print_rtl (loop_dump_stream, add_val);
4806 }
4807 }
4808
4809 if (loop_dump_stream)
4810 fprintf (loop_dump_stream, "\n");
4811
4812 }
4813
4814
4815 /* All this does is determine whether a giv can be made replaceable because
4816 its final value can be calculated. This code can not be part of record_giv
4817 above, because final_giv_value requires that the number of loop iterations
4818 be known, and that can not be accurately calculated until after all givs
4819 have been identified. */
4820
4821 static void
4822 check_final_value (v, loop_start, loop_end)
4823 struct induction *v;
4824 rtx loop_start, loop_end;
4825 {
4826 struct iv_class *bl;
4827 rtx final_value = 0;
4828
4829 bl = reg_biv_class[REGNO (v->src_reg)];
4830
4831 /* DEST_ADDR givs will never reach here, because they are always marked
4832 replaceable above in record_giv. */
4833
4834 /* The giv can be replaced outright by the reduced register only if all
4835 of the following conditions are true:
4836 - the insn that sets the giv is always executed on any iteration
4837 on which the giv is used at all
4838 (there are two ways to deduce this:
4839 either the insn is executed on every iteration,
4840 or all uses follow that insn in the same basic block),
4841 - its final value can be calculated (this condition is different
4842 than the one above in record_giv)
4843 - no assignments to the biv occur during the giv's lifetime. */
4844
4845 #if 0
4846 /* This is only called now when replaceable is known to be false. */
4847 /* Clear replaceable, so that it won't confuse final_giv_value. */
4848 v->replaceable = 0;
4849 #endif
4850
4851 if ((final_value = final_giv_value (v, loop_start, loop_end))
4852 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4853 {
4854 int biv_increment_seen = 0;
4855 rtx p = v->insn;
4856 rtx last_giv_use;
4857
4858 v->replaceable = 1;
4859
4860 /* When trying to determine whether or not a biv increment occurs
4861 during the lifetime of the giv, we can ignore uses of the variable
4862 outside the loop because final_value is true. Hence we can not
4863 use regno_last_uid and regno_first_uid as above in record_giv. */
4864
4865 /* Search the loop to determine whether any assignments to the
4866 biv occur during the giv's lifetime. Start with the insn
4867 that sets the giv, and search around the loop until we come
4868 back to that insn again.
4869
4870 Also fail if there is a jump within the giv's lifetime that jumps
4871 to somewhere outside the lifetime but still within the loop. This
4872 catches spaghetti code where the execution order is not linear, and
4873 hence the above test fails. Here we assume that the giv lifetime
4874 does not extend from one iteration of the loop to the next, so as
4875 to make the test easier. Since the lifetime isn't known yet,
4876 this requires two loops. See also record_giv above. */
4877
4878 last_giv_use = v->insn;
4879
4880 while (1)
4881 {
4882 p = NEXT_INSN (p);
4883 if (p == loop_end)
4884 p = NEXT_INSN (loop_start);
4885 if (p == v->insn)
4886 break;
4887
4888 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4889 || GET_CODE (p) == CALL_INSN)
4890 {
4891 if (biv_increment_seen)
4892 {
4893 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4894 {
4895 v->replaceable = 0;
4896 v->not_replaceable = 1;
4897 break;
4898 }
4899 }
4900 else if (reg_set_p (v->src_reg, PATTERN (p)))
4901 biv_increment_seen = 1;
4902 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4903 last_giv_use = p;
4904 }
4905 }
4906
4907 /* Now that the lifetime of the giv is known, check for branches
4908 from within the lifetime to outside the lifetime if it is still
4909 replaceable. */
4910
4911 if (v->replaceable)
4912 {
4913 p = v->insn;
4914 while (1)
4915 {
4916 p = NEXT_INSN (p);
4917 if (p == loop_end)
4918 p = NEXT_INSN (loop_start);
4919 if (p == last_giv_use)
4920 break;
4921
4922 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4923 && LABEL_NAME (JUMP_LABEL (p))
4924 && ((INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop)
4925 || (INSN_UID (v->insn) >= max_uid_for_loop)
4926 || (INSN_UID (last_giv_use) >= max_uid_for_loop)
4927 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4928 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4929 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4930 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4931 {
4932 v->replaceable = 0;
4933 v->not_replaceable = 1;
4934
4935 if (loop_dump_stream)
4936 fprintf (loop_dump_stream,
4937 "Found branch outside giv lifetime.\n");
4938
4939 break;
4940 }
4941 }
4942 }
4943
4944 /* If it is replaceable, then save the final value. */
4945 if (v->replaceable)
4946 v->final_value = final_value;
4947 }
4948
4949 if (loop_dump_stream && v->replaceable)
4950 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4951 INSN_UID (v->insn), REGNO (v->dest_reg));
4952 }
4953 \f
4954 /* Update the status of whether a giv can derive other givs.
4955
4956 We need to do something special if there is or may be an update to the biv
4957 between the time the giv is defined and the time it is used to derive
4958 another giv.
4959
4960 In addition, a giv that is only conditionally set is not allowed to
4961 derive another giv once a label has been passed.
4962
4963 The cases we look at are when a label or an update to a biv is passed. */
4964
4965 static void
4966 update_giv_derive (p)
4967 rtx p;
4968 {
4969 struct iv_class *bl;
4970 struct induction *biv, *giv;
4971 rtx tem;
4972 int dummy;
4973
4974 /* Search all IV classes, then all bivs, and finally all givs.
4975
4976 There are three cases we are concerned with. First we have the situation
4977 of a giv that is only updated conditionally. In that case, it may not
4978 derive any givs after a label is passed.
4979
4980 The second case is when a biv update occurs, or may occur, after the
4981 definition of a giv. For certain biv updates (see below) that are
4982 known to occur between the giv definition and use, we can adjust the
4983 giv definition. For others, or when the biv update is conditional,
4984 we must prevent the giv from deriving any other givs. There are two
4985 sub-cases within this case.
4986
4987 If this is a label, we are concerned with any biv update that is done
4988 conditionally, since it may be done after the giv is defined followed by
4989 a branch here (actually, we need to pass both a jump and a label, but
4990 this extra tracking doesn't seem worth it).
4991
4992 If this is a jump, we are concerned about any biv update that may be
4993 executed multiple times. We are actually only concerned about
4994 backward jumps, but it is probably not worth performing the test
4995 on the jump again here.
4996
4997 If this is a biv update, we must adjust the giv status to show that a
4998 subsequent biv update was performed. If this adjustment cannot be done,
4999 the giv cannot derive further givs. */
5000
5001 for (bl = loop_iv_list; bl; bl = bl->next)
5002 for (biv = bl->biv; biv; biv = biv->next_iv)
5003 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5004 || biv->insn == p)
5005 {
5006 for (giv = bl->giv; giv; giv = giv->next_iv)
5007 {
5008 /* If cant_derive is already true, there is no point in
5009 checking all of these conditions again. */
5010 if (giv->cant_derive)
5011 continue;
5012
5013 /* If this giv is conditionally set and we have passed a label,
5014 it cannot derive anything. */
5015 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5016 giv->cant_derive = 1;
5017
5018 /* Skip givs that have mult_val == 0, since
5019 they are really invariants. Also skip those that are
5020 replaceable, since we know their lifetime doesn't contain
5021 any biv update. */
5022 else if (giv->mult_val == const0_rtx || giv->replaceable)
5023 continue;
5024
5025 /* The only way we can allow this giv to derive another
5026 is if this is a biv increment and we can form the product
5027 of biv->add_val and giv->mult_val. In this case, we will
5028 be able to compute a compensation. */
5029 else if (biv->insn == p)
5030 {
5031 tem = 0;
5032
5033 if (biv->mult_val == const1_rtx)
5034 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
5035 biv->add_val,
5036 giv->mult_val),
5037 &dummy);
5038
5039 if (tem && giv->derive_adjustment)
5040 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
5041 giv->derive_adjustment),
5042 &dummy);
5043 if (tem)
5044 giv->derive_adjustment = tem;
5045 else
5046 giv->cant_derive = 1;
5047 }
5048 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5049 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5050 giv->cant_derive = 1;
5051 }
5052 }
5053 }
5054 \f
5055 /* Check whether an insn is an increment legitimate for a basic induction var.
5056 X is the source of insn P, or a part of it.
5057 MODE is the mode in which X should be interpreted.
5058
5059 DEST_REG is the putative biv, also the destination of the insn.
5060 We accept patterns of these forms:
5061 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5062 REG = INVARIANT + REG
5063
5064 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5065 and store the additive term into *INC_VAL.
5066
5067 If X is an assignment of an invariant into DEST_REG, we set
5068 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5069
5070 We also want to detect a BIV when it corresponds to a variable
5071 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5072 of the variable may be a PLUS that adds a SUBREG of that variable to
5073 an invariant and then sign- or zero-extends the result of the PLUS
5074 into the variable.
5075
5076 Most GIVs in such cases will be in the promoted mode, since that is the
5077 probably the natural computation mode (and almost certainly the mode
5078 used for addresses) on the machine. So we view the pseudo-reg containing
5079 the variable as the BIV, as if it were simply incremented.
5080
5081 Note that treating the entire pseudo as a BIV will result in making
5082 simple increments to any GIVs based on it. However, if the variable
5083 overflows in its declared mode but not its promoted mode, the result will
5084 be incorrect. This is acceptable if the variable is signed, since
5085 overflows in such cases are undefined, but not if it is unsigned, since
5086 those overflows are defined. So we only check for SIGN_EXTEND and
5087 not ZERO_EXTEND.
5088
5089 If we cannot find a biv, we return 0. */
5090
5091 static int
5092 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val)
5093 register rtx x;
5094 enum machine_mode mode;
5095 rtx p;
5096 rtx dest_reg;
5097 rtx *inc_val;
5098 rtx *mult_val;
5099 {
5100 register enum rtx_code code;
5101 rtx arg;
5102 rtx insn, set = 0;
5103
5104 code = GET_CODE (x);
5105 switch (code)
5106 {
5107 case PLUS:
5108 if (XEXP (x, 0) == dest_reg
5109 || (GET_CODE (XEXP (x, 0)) == SUBREG
5110 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5111 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5112 arg = XEXP (x, 1);
5113 else if (XEXP (x, 1) == dest_reg
5114 || (GET_CODE (XEXP (x, 1)) == SUBREG
5115 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5116 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5117 arg = XEXP (x, 0);
5118 else
5119 return 0;
5120
5121 if (invariant_p (arg) != 1)
5122 return 0;
5123
5124 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5125 *mult_val = const1_rtx;
5126 return 1;
5127
5128 case SUBREG:
5129 /* If this is a SUBREG for a promoted variable, check the inner
5130 value. */
5131 if (SUBREG_PROMOTED_VAR_P (x))
5132 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
5133 dest_reg, p, inc_val, mult_val);
5134 return 0;
5135
5136 case REG:
5137 /* If this register is assigned in the previous insn, look at its
5138 source, but don't go outside the loop or past a label. */
5139
5140 for (insn = PREV_INSN (p);
5141 (insn && GET_CODE (insn) == NOTE
5142 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5143 insn = PREV_INSN (insn))
5144 ;
5145
5146 if (insn)
5147 set = single_set (insn);
5148
5149 if (set != 0
5150 && (SET_DEST (set) == x
5151 || (GET_CODE (SET_DEST (set)) == SUBREG
5152 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
5153 <= UNITS_PER_WORD)
5154 && SUBREG_REG (SET_DEST (set)) == x)))
5155 return basic_induction_var (SET_SRC (set),
5156 (GET_MODE (SET_SRC (set)) == VOIDmode
5157 ? GET_MODE (x)
5158 : GET_MODE (SET_SRC (set))),
5159 dest_reg, insn,
5160 inc_val, mult_val);
5161 /* ... fall through ... */
5162
5163 /* Can accept constant setting of biv only when inside inner most loop.
5164 Otherwise, a biv of an inner loop may be incorrectly recognized
5165 as a biv of the outer loop,
5166 causing code to be moved INTO the inner loop. */
5167 case MEM:
5168 if (invariant_p (x) != 1)
5169 return 0;
5170 case CONST_INT:
5171 case SYMBOL_REF:
5172 case CONST:
5173 if (loops_enclosed == 1)
5174 {
5175 /* Possible bug here? Perhaps we don't know the mode of X. */
5176 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5177 *mult_val = const0_rtx;
5178 return 1;
5179 }
5180 else
5181 return 0;
5182
5183 case SIGN_EXTEND:
5184 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5185 dest_reg, p, inc_val, mult_val);
5186 case ASHIFTRT:
5187 /* Similar, since this can be a sign extension. */
5188 for (insn = PREV_INSN (p);
5189 (insn && GET_CODE (insn) == NOTE
5190 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5191 insn = PREV_INSN (insn))
5192 ;
5193
5194 if (insn)
5195 set = single_set (insn);
5196
5197 if (set && SET_DEST (set) == XEXP (x, 0)
5198 && GET_CODE (XEXP (x, 1)) == CONST_INT
5199 && INTVAL (XEXP (x, 1)) >= 0
5200 && GET_CODE (SET_SRC (set)) == ASHIFT
5201 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5202 return basic_induction_var (XEXP (SET_SRC (set), 0),
5203 GET_MODE (XEXP (x, 0)),
5204 dest_reg, insn, inc_val, mult_val);
5205 return 0;
5206
5207 default:
5208 return 0;
5209 }
5210 }
5211 \f
5212 /* A general induction variable (giv) is any quantity that is a linear
5213 function of a basic induction variable,
5214 i.e. giv = biv * mult_val + add_val.
5215 The coefficients can be any loop invariant quantity.
5216 A giv need not be computed directly from the biv;
5217 it can be computed by way of other givs. */
5218
5219 /* Determine whether X computes a giv.
5220 If it does, return a nonzero value
5221 which is the benefit from eliminating the computation of X;
5222 set *SRC_REG to the register of the biv that it is computed from;
5223 set *ADD_VAL and *MULT_VAL to the coefficients,
5224 such that the value of X is biv * mult + add; */
5225
5226 static int
5227 general_induction_var (x, src_reg, add_val, mult_val)
5228 rtx x;
5229 rtx *src_reg;
5230 rtx *add_val;
5231 rtx *mult_val;
5232 {
5233 rtx orig_x = x;
5234 int benefit = 0;
5235 char *storage;
5236
5237 /* If this is an invariant, forget it, it isn't a giv. */
5238 if (invariant_p (x) == 1)
5239 return 0;
5240
5241 /* See if the expression could be a giv and get its form.
5242 Mark our place on the obstack in case we don't find a giv. */
5243 storage = (char *) oballoc (0);
5244 x = simplify_giv_expr (x, &benefit);
5245 if (x == 0)
5246 {
5247 obfree (storage);
5248 return 0;
5249 }
5250
5251 switch (GET_CODE (x))
5252 {
5253 case USE:
5254 case CONST_INT:
5255 /* Since this is now an invariant and wasn't before, it must be a giv
5256 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5257 with. */
5258 *src_reg = loop_iv_list->biv->dest_reg;
5259 *mult_val = const0_rtx;
5260 *add_val = x;
5261 break;
5262
5263 case REG:
5264 /* This is equivalent to a BIV. */
5265 *src_reg = x;
5266 *mult_val = const1_rtx;
5267 *add_val = const0_rtx;
5268 break;
5269
5270 case PLUS:
5271 /* Either (plus (biv) (invar)) or
5272 (plus (mult (biv) (invar_1)) (invar_2)). */
5273 if (GET_CODE (XEXP (x, 0)) == MULT)
5274 {
5275 *src_reg = XEXP (XEXP (x, 0), 0);
5276 *mult_val = XEXP (XEXP (x, 0), 1);
5277 }
5278 else
5279 {
5280 *src_reg = XEXP (x, 0);
5281 *mult_val = const1_rtx;
5282 }
5283 *add_val = XEXP (x, 1);
5284 break;
5285
5286 case MULT:
5287 /* ADD_VAL is zero. */
5288 *src_reg = XEXP (x, 0);
5289 *mult_val = XEXP (x, 1);
5290 *add_val = const0_rtx;
5291 break;
5292
5293 default:
5294 abort ();
5295 }
5296
5297 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5298 unless they are CONST_INT). */
5299 if (GET_CODE (*add_val) == USE)
5300 *add_val = XEXP (*add_val, 0);
5301 if (GET_CODE (*mult_val) == USE)
5302 *mult_val = XEXP (*mult_val, 0);
5303
5304 benefit += rtx_cost (orig_x, SET);
5305
5306 /* Always return some benefit if this is a giv so it will be detected
5307 as such. This allows elimination of bivs that might otherwise
5308 not be eliminated. */
5309 return benefit == 0 ? 1 : benefit;
5310 }
5311 \f
5312 /* Given an expression, X, try to form it as a linear function of a biv.
5313 We will canonicalize it to be of the form
5314 (plus (mult (BIV) (invar_1))
5315 (invar_2))
5316 with possible degeneracies.
5317
5318 The invariant expressions must each be of a form that can be used as a
5319 machine operand. We surround then with a USE rtx (a hack, but localized
5320 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5321 routine; it is the caller's responsibility to strip them.
5322
5323 If no such canonicalization is possible (i.e., two biv's are used or an
5324 expression that is neither invariant nor a biv or giv), this routine
5325 returns 0.
5326
5327 For a non-zero return, the result will have a code of CONST_INT, USE,
5328 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5329
5330 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5331
5332 static rtx
5333 simplify_giv_expr (x, benefit)
5334 rtx x;
5335 int *benefit;
5336 {
5337 enum machine_mode mode = GET_MODE (x);
5338 rtx arg0, arg1;
5339 rtx tem;
5340
5341 /* If this is not an integer mode, or if we cannot do arithmetic in this
5342 mode, this can't be a giv. */
5343 if (mode != VOIDmode
5344 && (GET_MODE_CLASS (mode) != MODE_INT
5345 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5346 return 0;
5347
5348 switch (GET_CODE (x))
5349 {
5350 case PLUS:
5351 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5352 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5353 if (arg0 == 0 || arg1 == 0)
5354 return 0;
5355
5356 /* Put constant last, CONST_INT last if both constant. */
5357 if ((GET_CODE (arg0) == USE
5358 || GET_CODE (arg0) == CONST_INT)
5359 && GET_CODE (arg1) != CONST_INT)
5360 tem = arg0, arg0 = arg1, arg1 = tem;
5361
5362 /* Handle addition of zero, then addition of an invariant. */
5363 if (arg1 == const0_rtx)
5364 return arg0;
5365 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5366 switch (GET_CODE (arg0))
5367 {
5368 case CONST_INT:
5369 case USE:
5370 /* Both invariant. Only valid if sum is machine operand.
5371 First strip off possible USE on first operand. */
5372 if (GET_CODE (arg0) == USE)
5373 arg0 = XEXP (arg0, 0);
5374
5375 tem = 0;
5376 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5377 {
5378 tem = plus_constant (arg0, INTVAL (arg1));
5379 if (GET_CODE (tem) != CONST_INT)
5380 tem = gen_rtx (USE, mode, tem);
5381 }
5382
5383 return tem;
5384
5385 case REG:
5386 case MULT:
5387 /* biv + invar or mult + invar. Return sum. */
5388 return gen_rtx (PLUS, mode, arg0, arg1);
5389
5390 case PLUS:
5391 /* (a + invar_1) + invar_2. Associate. */
5392 return simplify_giv_expr (gen_rtx (PLUS, mode,
5393 XEXP (arg0, 0),
5394 gen_rtx (PLUS, mode,
5395 XEXP (arg0, 1), arg1)),
5396 benefit);
5397
5398 default:
5399 abort ();
5400 }
5401
5402 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5403 MULT to reduce cases. */
5404 if (GET_CODE (arg0) == REG)
5405 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5406 if (GET_CODE (arg1) == REG)
5407 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5408
5409 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5410 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5411 Recurse to associate the second PLUS. */
5412 if (GET_CODE (arg1) == MULT)
5413 tem = arg0, arg0 = arg1, arg1 = tem;
5414
5415 if (GET_CODE (arg1) == PLUS)
5416 return simplify_giv_expr (gen_rtx (PLUS, mode,
5417 gen_rtx (PLUS, mode,
5418 arg0, XEXP (arg1, 0)),
5419 XEXP (arg1, 1)),
5420 benefit);
5421
5422 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5423 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5424 abort ();
5425
5426 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5427 return 0;
5428
5429 return simplify_giv_expr (gen_rtx (MULT, mode,
5430 XEXP (arg0, 0),
5431 gen_rtx (PLUS, mode,
5432 XEXP (arg0, 1),
5433 XEXP (arg1, 1))),
5434 benefit);
5435
5436 case MINUS:
5437 /* Handle "a - b" as "a + b * (-1)". */
5438 return simplify_giv_expr (gen_rtx (PLUS, mode,
5439 XEXP (x, 0),
5440 gen_rtx (MULT, mode,
5441 XEXP (x, 1), constm1_rtx)),
5442 benefit);
5443
5444 case MULT:
5445 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5446 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5447 if (arg0 == 0 || arg1 == 0)
5448 return 0;
5449
5450 /* Put constant last, CONST_INT last if both constant. */
5451 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5452 && GET_CODE (arg1) != CONST_INT)
5453 tem = arg0, arg0 = arg1, arg1 = tem;
5454
5455 /* If second argument is not now constant, not giv. */
5456 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5457 return 0;
5458
5459 /* Handle multiply by 0 or 1. */
5460 if (arg1 == const0_rtx)
5461 return const0_rtx;
5462
5463 else if (arg1 == const1_rtx)
5464 return arg0;
5465
5466 switch (GET_CODE (arg0))
5467 {
5468 case REG:
5469 /* biv * invar. Done. */
5470 return gen_rtx (MULT, mode, arg0, arg1);
5471
5472 case CONST_INT:
5473 /* Product of two constants. */
5474 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5475
5476 case USE:
5477 /* invar * invar. Not giv. */
5478 return 0;
5479
5480 case MULT:
5481 /* (a * invar_1) * invar_2. Associate. */
5482 return simplify_giv_expr (gen_rtx (MULT, mode,
5483 XEXP (arg0, 0),
5484 gen_rtx (MULT, mode,
5485 XEXP (arg0, 1), arg1)),
5486 benefit);
5487
5488 case PLUS:
5489 /* (a + invar_1) * invar_2. Distribute. */
5490 return simplify_giv_expr (gen_rtx (PLUS, mode,
5491 gen_rtx (MULT, mode,
5492 XEXP (arg0, 0), arg1),
5493 gen_rtx (MULT, mode,
5494 XEXP (arg0, 1), arg1)),
5495 benefit);
5496
5497 default:
5498 abort ();
5499 }
5500
5501 case ASHIFT:
5502 /* Shift by constant is multiply by power of two. */
5503 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5504 return 0;
5505
5506 return simplify_giv_expr (gen_rtx (MULT, mode,
5507 XEXP (x, 0),
5508 GEN_INT ((HOST_WIDE_INT) 1
5509 << INTVAL (XEXP (x, 1)))),
5510 benefit);
5511
5512 case NEG:
5513 /* "-a" is "a * (-1)" */
5514 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5515 benefit);
5516
5517 case NOT:
5518 /* "~a" is "-a - 1". Silly, but easy. */
5519 return simplify_giv_expr (gen_rtx (MINUS, mode,
5520 gen_rtx (NEG, mode, XEXP (x, 0)),
5521 const1_rtx),
5522 benefit);
5523
5524 case USE:
5525 /* Already in proper form for invariant. */
5526 return x;
5527
5528 case REG:
5529 /* If this is a new register, we can't deal with it. */
5530 if (REGNO (x) >= max_reg_before_loop)
5531 return 0;
5532
5533 /* Check for biv or giv. */
5534 switch (reg_iv_type[REGNO (x)])
5535 {
5536 case BASIC_INDUCT:
5537 return x;
5538 case GENERAL_INDUCT:
5539 {
5540 struct induction *v = reg_iv_info[REGNO (x)];
5541
5542 /* Form expression from giv and add benefit. Ensure this giv
5543 can derive another and subtract any needed adjustment if so. */
5544 *benefit += v->benefit;
5545 if (v->cant_derive)
5546 return 0;
5547
5548 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5549 v->src_reg, v->mult_val),
5550 v->add_val);
5551 if (v->derive_adjustment)
5552 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5553 return simplify_giv_expr (tem, benefit);
5554 }
5555 }
5556
5557 /* Fall through to general case. */
5558 default:
5559 /* If invariant, return as USE (unless CONST_INT).
5560 Otherwise, not giv. */
5561 if (GET_CODE (x) == USE)
5562 x = XEXP (x, 0);
5563
5564 if (invariant_p (x) == 1)
5565 {
5566 if (GET_CODE (x) == CONST_INT)
5567 return x;
5568 else
5569 return gen_rtx (USE, mode, x);
5570 }
5571 else
5572 return 0;
5573 }
5574 }
5575 \f
5576 /* Help detect a giv that is calculated by several consecutive insns;
5577 for example,
5578 giv = biv * M
5579 giv = giv + A
5580 The caller has already identified the first insn P as having a giv as dest;
5581 we check that all other insns that set the same register follow
5582 immediately after P, that they alter nothing else,
5583 and that the result of the last is still a giv.
5584
5585 The value is 0 if the reg set in P is not really a giv.
5586 Otherwise, the value is the amount gained by eliminating
5587 all the consecutive insns that compute the value.
5588
5589 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5590 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5591
5592 The coefficients of the ultimate giv value are stored in
5593 *MULT_VAL and *ADD_VAL. */
5594
5595 static int
5596 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5597 add_val, mult_val)
5598 int first_benefit;
5599 rtx p;
5600 rtx src_reg;
5601 rtx dest_reg;
5602 rtx *add_val;
5603 rtx *mult_val;
5604 {
5605 int count;
5606 enum rtx_code code;
5607 int benefit;
5608 rtx temp;
5609 rtx set;
5610
5611 /* Indicate that this is a giv so that we can update the value produced in
5612 each insn of the multi-insn sequence.
5613
5614 This induction structure will be used only by the call to
5615 general_induction_var below, so we can allocate it on our stack.
5616 If this is a giv, our caller will replace the induct var entry with
5617 a new induction structure. */
5618 struct induction *v
5619 = (struct induction *) alloca (sizeof (struct induction));
5620 v->src_reg = src_reg;
5621 v->mult_val = *mult_val;
5622 v->add_val = *add_val;
5623 v->benefit = first_benefit;
5624 v->cant_derive = 0;
5625 v->derive_adjustment = 0;
5626
5627 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5628 reg_iv_info[REGNO (dest_reg)] = v;
5629
5630 count = n_times_set[REGNO (dest_reg)] - 1;
5631
5632 while (count > 0)
5633 {
5634 p = NEXT_INSN (p);
5635 code = GET_CODE (p);
5636
5637 /* If libcall, skip to end of call sequence. */
5638 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5639 p = XEXP (temp, 0);
5640
5641 if (code == INSN
5642 && (set = single_set (p))
5643 && GET_CODE (SET_DEST (set)) == REG
5644 && SET_DEST (set) == dest_reg
5645 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5646 add_val, mult_val))
5647 /* Giv created by equivalent expression. */
5648 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5649 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5650 add_val, mult_val))))
5651 && src_reg == v->src_reg)
5652 {
5653 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5654 benefit += libcall_benefit (p);
5655
5656 count--;
5657 v->mult_val = *mult_val;
5658 v->add_val = *add_val;
5659 v->benefit = benefit;
5660 }
5661 else if (code != NOTE)
5662 {
5663 /* Allow insns that set something other than this giv to a
5664 constant. Such insns are needed on machines which cannot
5665 include long constants and should not disqualify a giv. */
5666 if (code == INSN
5667 && (set = single_set (p))
5668 && SET_DEST (set) != dest_reg
5669 && CONSTANT_P (SET_SRC (set)))
5670 continue;
5671
5672 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5673 return 0;
5674 }
5675 }
5676
5677 return v->benefit;
5678 }
5679 \f
5680 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5681 represented by G1. If no such expression can be found, or it is clear that
5682 it cannot possibly be a valid address, 0 is returned.
5683
5684 To perform the computation, we note that
5685 G1 = a * v + b and
5686 G2 = c * v + d
5687 where `v' is the biv.
5688
5689 So G2 = (c/a) * G1 + (d - b*c/a) */
5690
5691 #ifdef ADDRESS_COST
5692 static rtx
5693 express_from (g1, g2)
5694 struct induction *g1, *g2;
5695 {
5696 rtx mult, add;
5697
5698 /* The value that G1 will be multiplied by must be a constant integer. Also,
5699 the only chance we have of getting a valid address is if b*c/a (see above
5700 for notation) is also an integer. */
5701 if (GET_CODE (g1->mult_val) != CONST_INT
5702 || GET_CODE (g2->mult_val) != CONST_INT
5703 || GET_CODE (g1->add_val) != CONST_INT
5704 || g1->mult_val == const0_rtx
5705 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5706 return 0;
5707
5708 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5709 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5710
5711 /* Form simplified final result. */
5712 if (mult == const0_rtx)
5713 return add;
5714 else if (mult == const1_rtx)
5715 mult = g1->dest_reg;
5716 else
5717 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5718
5719 if (add == const0_rtx)
5720 return mult;
5721 else
5722 return gen_rtx (PLUS, g2->mode, mult, add);
5723 }
5724 #endif
5725 \f
5726 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5727 (either directly or via an address expression) a register used to represent
5728 G1. Set g2->new_reg to a represtation of G1 (normally just
5729 g1->dest_reg). */
5730
5731 static int
5732 combine_givs_p (g1, g2)
5733 struct induction *g1, *g2;
5734 {
5735 rtx tem;
5736
5737 /* If these givs are identical, they can be combined. */
5738 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5739 && rtx_equal_p (g1->add_val, g2->add_val))
5740 {
5741 g2->new_reg = g1->dest_reg;
5742 return 1;
5743 }
5744
5745 #ifdef ADDRESS_COST
5746 /* If G2 can be expressed as a function of G1 and that function is valid
5747 as an address and no more expensive than using a register for G2,
5748 the expression of G2 in terms of G1 can be used. */
5749 if (g2->giv_type == DEST_ADDR
5750 && (tem = express_from (g1, g2)) != 0
5751 && memory_address_p (g2->mem_mode, tem)
5752 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5753 {
5754 g2->new_reg = tem;
5755 return 1;
5756 }
5757 #endif
5758
5759 return 0;
5760 }
5761 \f
5762 #ifdef GIV_SORT_CRITERION
5763 /* Compare two givs and sort the most desirable one for combinations first.
5764 This is used only in one qsort call below. */
5765
5766 static int
5767 giv_sort (x, y)
5768 struct induction **x, **y;
5769 {
5770 GIV_SORT_CRITERION (*x, *y);
5771
5772 return 0;
5773 }
5774 #endif
5775
5776 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5777 any other. If so, point SAME to the giv combined with and set NEW_REG to
5778 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5779 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5780
5781 static void
5782 combine_givs (bl)
5783 struct iv_class *bl;
5784 {
5785 struct induction *g1, *g2, **giv_array, *temp_iv;
5786 int i, j, giv_count, pass;
5787
5788 /* Count givs, because bl->giv_count is incorrect here. */
5789 giv_count = 0;
5790 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5791 giv_count++;
5792
5793 giv_array
5794 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
5795 i = 0;
5796 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5797 giv_array[i++] = g1;
5798
5799 #ifdef GIV_SORT_CRITERION
5800 /* Sort the givs if GIV_SORT_CRITERION is defined.
5801 This is usually defined for processors which lack
5802 negative register offsets so more givs may be combined. */
5803
5804 if (loop_dump_stream)
5805 fprintf (loop_dump_stream, "%d givs counted, sorting...\n", giv_count);
5806
5807 qsort (giv_array, giv_count, sizeof (struct induction *), giv_sort);
5808 #endif
5809
5810 for (i = 0; i < giv_count; i++)
5811 {
5812 g1 = giv_array[i];
5813 for (pass = 0; pass <= 1; pass++)
5814 for (j = 0; j < giv_count; j++)
5815 {
5816 g2 = giv_array[j];
5817 if (g1 != g2
5818 /* First try to combine with replaceable givs, then all givs. */
5819 && (g1->replaceable || pass == 1)
5820 /* If either has already been combined or is to be ignored, can't
5821 combine. */
5822 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5823 /* If something has been based on G2, G2 cannot itself be based
5824 on something else. */
5825 && ! g2->combined_with
5826 && combine_givs_p (g1, g2))
5827 {
5828 /* g2->new_reg set by `combine_givs_p' */
5829 g2->same = g1;
5830 g1->combined_with = 1;
5831
5832 /* If one of these givs is a DEST_REG that was only used
5833 once, by the other giv, this is actually a single use.
5834 The DEST_REG has the correct cost, while the other giv
5835 counts the REG use too often. */
5836 if (g2->giv_type == DEST_REG
5837 && n_times_used[REGNO (g2->dest_reg)] == 1
5838 && reg_mentioned_p (g2->dest_reg, PATTERN (g1->insn)))
5839 g1->benefit = g2->benefit;
5840 else if (g1->giv_type != DEST_REG
5841 || n_times_used[REGNO (g1->dest_reg)] != 1
5842 || ! reg_mentioned_p (g1->dest_reg,
5843 PATTERN (g2->insn)))
5844 {
5845 g1->benefit += g2->benefit;
5846 g1->times_used += g2->times_used;
5847 }
5848 /* ??? The new final_[bg]iv_value code does a much better job
5849 of finding replaceable giv's, and hence this code may no
5850 longer be necessary. */
5851 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5852 g1->benefit -= copy_cost;
5853 g1->lifetime += g2->lifetime;
5854
5855 if (loop_dump_stream)
5856 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5857 INSN_UID (g2->insn), INSN_UID (g1->insn));
5858 }
5859 }
5860 }
5861 }
5862 \f
5863 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5864
5865 void
5866 emit_iv_add_mult (b, m, a, reg, insert_before)
5867 rtx b; /* initial value of basic induction variable */
5868 rtx m; /* multiplicative constant */
5869 rtx a; /* additive constant */
5870 rtx reg; /* destination register */
5871 rtx insert_before;
5872 {
5873 rtx seq;
5874 rtx result;
5875
5876 /* Prevent unexpected sharing of these rtx. */
5877 a = copy_rtx (a);
5878 b = copy_rtx (b);
5879
5880 /* Increase the lifetime of any invariants moved further in code. */
5881 update_reg_last_use (a, insert_before);
5882 update_reg_last_use (b, insert_before);
5883 update_reg_last_use (m, insert_before);
5884
5885 start_sequence ();
5886 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5887 if (reg != result)
5888 emit_move_insn (reg, result);
5889 seq = gen_sequence ();
5890 end_sequence ();
5891
5892 emit_insn_before (seq, insert_before);
5893
5894 record_base_value (REGNO (reg), b);
5895 }
5896 \f
5897 /* Test whether A * B can be computed without
5898 an actual multiply insn. Value is 1 if so. */
5899
5900 static int
5901 product_cheap_p (a, b)
5902 rtx a;
5903 rtx b;
5904 {
5905 int i;
5906 rtx tmp;
5907 struct obstack *old_rtl_obstack = rtl_obstack;
5908 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5909 int win = 1;
5910
5911 /* If only one is constant, make it B. */
5912 if (GET_CODE (a) == CONST_INT)
5913 tmp = a, a = b, b = tmp;
5914
5915 /* If first constant, both constant, so don't need multiply. */
5916 if (GET_CODE (a) == CONST_INT)
5917 return 1;
5918
5919 /* If second not constant, neither is constant, so would need multiply. */
5920 if (GET_CODE (b) != CONST_INT)
5921 return 0;
5922
5923 /* One operand is constant, so might not need multiply insn. Generate the
5924 code for the multiply and see if a call or multiply, or long sequence
5925 of insns is generated. */
5926
5927 rtl_obstack = &temp_obstack;
5928 start_sequence ();
5929 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5930 tmp = gen_sequence ();
5931 end_sequence ();
5932
5933 if (GET_CODE (tmp) == SEQUENCE)
5934 {
5935 if (XVEC (tmp, 0) == 0)
5936 win = 1;
5937 else if (XVECLEN (tmp, 0) > 3)
5938 win = 0;
5939 else
5940 for (i = 0; i < XVECLEN (tmp, 0); i++)
5941 {
5942 rtx insn = XVECEXP (tmp, 0, i);
5943
5944 if (GET_CODE (insn) != INSN
5945 || (GET_CODE (PATTERN (insn)) == SET
5946 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5947 || (GET_CODE (PATTERN (insn)) == PARALLEL
5948 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5949 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5950 {
5951 win = 0;
5952 break;
5953 }
5954 }
5955 }
5956 else if (GET_CODE (tmp) == SET
5957 && GET_CODE (SET_SRC (tmp)) == MULT)
5958 win = 0;
5959 else if (GET_CODE (tmp) == PARALLEL
5960 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5961 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5962 win = 0;
5963
5964 /* Free any storage we obtained in generating this multiply and restore rtl
5965 allocation to its normal obstack. */
5966 obstack_free (&temp_obstack, storage);
5967 rtl_obstack = old_rtl_obstack;
5968
5969 return win;
5970 }
5971 \f
5972 /* Check to see if loop can be terminated by a "decrement and branch until
5973 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5974 Also try reversing an increment loop to a decrement loop
5975 to see if the optimization can be performed.
5976 Value is nonzero if optimization was performed. */
5977
5978 /* This is useful even if the architecture doesn't have such an insn,
5979 because it might change a loops which increments from 0 to n to a loop
5980 which decrements from n to 0. A loop that decrements to zero is usually
5981 faster than one that increments from zero. */
5982
5983 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5984 such as approx_final_value, biv_total_increment, loop_iterations, and
5985 final_[bg]iv_value. */
5986
5987 static int
5988 check_dbra_loop (loop_end, insn_count, loop_start)
5989 rtx loop_end;
5990 int insn_count;
5991 rtx loop_start;
5992 {
5993 struct iv_class *bl;
5994 rtx reg;
5995 rtx jump_label;
5996 rtx final_value;
5997 rtx start_value;
5998 rtx new_add_val;
5999 rtx comparison;
6000 rtx before_comparison;
6001 rtx p;
6002
6003 /* If last insn is a conditional branch, and the insn before tests a
6004 register value, try to optimize it. Otherwise, we can't do anything. */
6005
6006 comparison = get_condition_for_loop (PREV_INSN (loop_end));
6007 if (comparison == 0)
6008 return 0;
6009
6010 /* Check all of the bivs to see if the compare uses one of them.
6011 Skip biv's set more than once because we can't guarantee that
6012 it will be zero on the last iteration. Also skip if the biv is
6013 used between its update and the test insn. */
6014
6015 for (bl = loop_iv_list; bl; bl = bl->next)
6016 {
6017 if (bl->biv_count == 1
6018 && bl->biv->dest_reg == XEXP (comparison, 0)
6019 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
6020 PREV_INSN (PREV_INSN (loop_end))))
6021 break;
6022 }
6023
6024 if (! bl)
6025 return 0;
6026
6027 /* Look for the case where the basic induction variable is always
6028 nonnegative, and equals zero on the last iteration.
6029 In this case, add a reg_note REG_NONNEG, which allows the
6030 m68k DBRA instruction to be used. */
6031
6032 if (((GET_CODE (comparison) == GT
6033 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6034 && INTVAL (XEXP (comparison, 1)) == -1)
6035 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
6036 && GET_CODE (bl->biv->add_val) == CONST_INT
6037 && INTVAL (bl->biv->add_val) < 0)
6038 {
6039 /* Initial value must be greater than 0,
6040 init_val % -dec_value == 0 to ensure that it equals zero on
6041 the last iteration */
6042
6043 if (GET_CODE (bl->initial_value) == CONST_INT
6044 && INTVAL (bl->initial_value) > 0
6045 && (INTVAL (bl->initial_value)
6046 % (-INTVAL (bl->biv->add_val))) == 0)
6047 {
6048 /* register always nonnegative, add REG_NOTE to branch */
6049 REG_NOTES (PREV_INSN (loop_end))
6050 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6051 REG_NOTES (PREV_INSN (loop_end)));
6052 bl->nonneg = 1;
6053
6054 return 1;
6055 }
6056
6057 /* If the decrement is 1 and the value was tested as >= 0 before
6058 the loop, then we can safely optimize. */
6059 for (p = loop_start; p; p = PREV_INSN (p))
6060 {
6061 if (GET_CODE (p) == CODE_LABEL)
6062 break;
6063 if (GET_CODE (p) != JUMP_INSN)
6064 continue;
6065
6066 before_comparison = get_condition_for_loop (p);
6067 if (before_comparison
6068 && XEXP (before_comparison, 0) == bl->biv->dest_reg
6069 && GET_CODE (before_comparison) == LT
6070 && XEXP (before_comparison, 1) == const0_rtx
6071 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
6072 && INTVAL (bl->biv->add_val) == -1)
6073 {
6074 REG_NOTES (PREV_INSN (loop_end))
6075 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6076 REG_NOTES (PREV_INSN (loop_end)));
6077 bl->nonneg = 1;
6078
6079 return 1;
6080 }
6081 }
6082 }
6083 else if (num_mem_sets <= 1)
6084 {
6085 /* Try to change inc to dec, so can apply above optimization. */
6086 /* Can do this if:
6087 all registers modified are induction variables or invariant,
6088 all memory references have non-overlapping addresses
6089 (obviously true if only one write)
6090 allow 2 insns for the compare/jump at the end of the loop. */
6091 /* Also, we must avoid any instructions which use both the reversed
6092 biv and another biv. Such instructions will fail if the loop is
6093 reversed. We meet this condition by requiring that either
6094 no_use_except_counting is true, or else that there is only
6095 one biv. */
6096 int num_nonfixed_reads = 0;
6097 /* 1 if the iteration var is used only to count iterations. */
6098 int no_use_except_counting = 0;
6099 /* 1 if the loop has no memory store, or it has a single memory store
6100 which is reversible. */
6101 int reversible_mem_store = 1;
6102
6103 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6104 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6105 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
6106
6107 if (bl->giv_count == 0
6108 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
6109 {
6110 rtx bivreg = regno_reg_rtx[bl->regno];
6111
6112 /* If there are no givs for this biv, and the only exit is the
6113 fall through at the end of the the loop, then
6114 see if perhaps there are no uses except to count. */
6115 no_use_except_counting = 1;
6116 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
6117 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6118 {
6119 rtx set = single_set (p);
6120
6121 if (set && GET_CODE (SET_DEST (set)) == REG
6122 && REGNO (SET_DEST (set)) == bl->regno)
6123 /* An insn that sets the biv is okay. */
6124 ;
6125 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
6126 || p == prev_nonnote_insn (loop_end))
6127 /* Don't bother about the end test. */
6128 ;
6129 else if (reg_mentioned_p (bivreg, PATTERN (p)))
6130 /* Any other use of the biv is no good. */
6131 {
6132 no_use_except_counting = 0;
6133 break;
6134 }
6135 }
6136 }
6137
6138 /* If the loop has a single store, and the destination address is
6139 invariant, then we can't reverse the loop, because this address
6140 might then have the wrong value at loop exit.
6141 This would work if the source was invariant also, however, in that
6142 case, the insn should have been moved out of the loop. */
6143
6144 if (num_mem_sets == 1)
6145 reversible_mem_store
6146 = (! unknown_address_altered
6147 && ! invariant_p (XEXP (loop_store_mems[0], 0)));
6148
6149 /* This code only acts for innermost loops. Also it simplifies
6150 the memory address check by only reversing loops with
6151 zero or one memory access.
6152 Two memory accesses could involve parts of the same array,
6153 and that can't be reversed. */
6154
6155 if (num_nonfixed_reads <= 1
6156 && !loop_has_call
6157 && !loop_has_volatile
6158 && reversible_mem_store
6159 && (no_use_except_counting
6160 || ((bl->giv_count + bl->biv_count + num_mem_sets
6161 + num_movables + 2 == insn_count)
6162 && (bl == loop_iv_list && bl->next == 0))))
6163 {
6164 rtx tem;
6165
6166 /* Loop can be reversed. */
6167 if (loop_dump_stream)
6168 fprintf (loop_dump_stream, "Can reverse loop\n");
6169
6170 /* Now check other conditions:
6171 initial_value must be zero,
6172 final_value % add_val == 0, so that when reversed, the
6173 biv will be zero on the last iteration.
6174
6175 This test can probably be improved since +/- 1 in the constant
6176 can be obtained by changing LT to LE and vice versa; this is
6177 confusing. */
6178
6179 if (comparison && bl->initial_value == const0_rtx
6180 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
6181 /* LE gets turned into LT */
6182 && GET_CODE (comparison) == LT
6183 && (INTVAL (XEXP (comparison, 1))
6184 % INTVAL (bl->biv->add_val)) == 0)
6185 {
6186 /* Register will always be nonnegative, with value
6187 0 on last iteration if loop reversed */
6188
6189 /* Save some info needed to produce the new insns. */
6190 reg = bl->biv->dest_reg;
6191 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
6192 if (jump_label == pc_rtx)
6193 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
6194 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
6195
6196 final_value = XEXP (comparison, 1);
6197 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
6198 - INTVAL (bl->biv->add_val));
6199
6200 /* Initialize biv to start_value before loop start.
6201 The old initializing insn will be deleted as a
6202 dead store by flow.c. */
6203 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
6204
6205 /* Add insn to decrement register, and delete insn
6206 that incremented the register. */
6207 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
6208 bl->biv->insn);
6209 delete_insn (bl->biv->insn);
6210
6211 /* Update biv info to reflect its new status. */
6212 bl->biv->insn = p;
6213 bl->initial_value = start_value;
6214 bl->biv->add_val = new_add_val;
6215
6216 /* Inc LABEL_NUSES so that delete_insn will
6217 not delete the label. */
6218 LABEL_NUSES (XEXP (jump_label, 0)) ++;
6219
6220 /* Emit an insn after the end of the loop to set the biv's
6221 proper exit value if it is used anywhere outside the loop. */
6222 if ((REGNO_LAST_UID (bl->regno)
6223 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
6224 || ! bl->init_insn
6225 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
6226 emit_insn_after (gen_move_insn (reg, final_value),
6227 loop_end);
6228
6229 /* Delete compare/branch at end of loop. */
6230 delete_insn (PREV_INSN (loop_end));
6231 delete_insn (PREV_INSN (loop_end));
6232
6233 /* Add new compare/branch insn at end of loop. */
6234 start_sequence ();
6235 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
6236 GET_MODE (reg), 0, 0);
6237 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
6238 tem = gen_sequence ();
6239 end_sequence ();
6240 emit_jump_insn_before (tem, loop_end);
6241
6242 for (tem = PREV_INSN (loop_end);
6243 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
6244 ;
6245 if (tem)
6246 {
6247 JUMP_LABEL (tem) = XEXP (jump_label, 0);
6248
6249 /* Increment of LABEL_NUSES done above. */
6250 /* Register is now always nonnegative,
6251 so add REG_NONNEG note to the branch. */
6252 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
6253 REG_NOTES (tem));
6254 }
6255
6256 bl->nonneg = 1;
6257
6258 /* Mark that this biv has been reversed. Each giv which depends
6259 on this biv, and which is also live past the end of the loop
6260 will have to be fixed up. */
6261
6262 bl->reversed = 1;
6263
6264 if (loop_dump_stream)
6265 fprintf (loop_dump_stream,
6266 "Reversed loop and added reg_nonneg\n");
6267
6268 return 1;
6269 }
6270 }
6271 }
6272
6273 return 0;
6274 }
6275 \f
6276 /* Verify whether the biv BL appears to be eliminable,
6277 based on the insns in the loop that refer to it.
6278 LOOP_START is the first insn of the loop, and END is the end insn.
6279
6280 If ELIMINATE_P is non-zero, actually do the elimination.
6281
6282 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
6283 determine whether invariant insns should be placed inside or at the
6284 start of the loop. */
6285
6286 static int
6287 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
6288 struct iv_class *bl;
6289 rtx loop_start;
6290 rtx end;
6291 int eliminate_p;
6292 int threshold, insn_count;
6293 {
6294 rtx reg = bl->biv->dest_reg;
6295 rtx p;
6296
6297 /* Scan all insns in the loop, stopping if we find one that uses the
6298 biv in a way that we cannot eliminate. */
6299
6300 for (p = loop_start; p != end; p = NEXT_INSN (p))
6301 {
6302 enum rtx_code code = GET_CODE (p);
6303 rtx where = threshold >= insn_count ? loop_start : p;
6304
6305 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
6306 && reg_mentioned_p (reg, PATTERN (p))
6307 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
6308 {
6309 if (loop_dump_stream)
6310 fprintf (loop_dump_stream,
6311 "Cannot eliminate biv %d: biv used in insn %d.\n",
6312 bl->regno, INSN_UID (p));
6313 break;
6314 }
6315 }
6316
6317 if (p == end)
6318 {
6319 if (loop_dump_stream)
6320 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
6321 bl->regno, eliminate_p ? "was" : "can be");
6322 return 1;
6323 }
6324
6325 return 0;
6326 }
6327 \f
6328 /* If BL appears in X (part of the pattern of INSN), see if we can
6329 eliminate its use. If so, return 1. If not, return 0.
6330
6331 If BIV does not appear in X, return 1.
6332
6333 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
6334 where extra insns should be added. Depending on how many items have been
6335 moved out of the loop, it will either be before INSN or at the start of
6336 the loop. */
6337
6338 static int
6339 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
6340 rtx x, insn;
6341 struct iv_class *bl;
6342 int eliminate_p;
6343 rtx where;
6344 {
6345 enum rtx_code code = GET_CODE (x);
6346 rtx reg = bl->biv->dest_reg;
6347 enum machine_mode mode = GET_MODE (reg);
6348 struct induction *v;
6349 rtx arg, new, tem;
6350 int arg_operand;
6351 char *fmt;
6352 int i, j;
6353
6354 switch (code)
6355 {
6356 case REG:
6357 /* If we haven't already been able to do something with this BIV,
6358 we can't eliminate it. */
6359 if (x == reg)
6360 return 0;
6361 return 1;
6362
6363 case SET:
6364 /* If this sets the BIV, it is not a problem. */
6365 if (SET_DEST (x) == reg)
6366 return 1;
6367
6368 /* If this is an insn that defines a giv, it is also ok because
6369 it will go away when the giv is reduced. */
6370 for (v = bl->giv; v; v = v->next_iv)
6371 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
6372 return 1;
6373
6374 #ifdef HAVE_cc0
6375 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
6376 {
6377 /* Can replace with any giv that was reduced and
6378 that has (MULT_VAL != 0) and (ADD_VAL == 0).
6379 Require a constant for MULT_VAL, so we know it's nonzero.
6380 ??? We disable this optimization to avoid potential
6381 overflows. */
6382
6383 for (v = bl->giv; v; v = v->next_iv)
6384 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6385 && v->add_val == const0_rtx
6386 && ! v->ignore && ! v->maybe_dead && v->always_computable
6387 && v->mode == mode
6388 && 0)
6389 {
6390 /* If the giv V had the auto-inc address optimization applied
6391 to it, and INSN occurs between the giv insn and the biv
6392 insn, then we must adjust the value used here.
6393 This is rare, so we don't bother to do so. */
6394 if (v->auto_inc_opt
6395 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6396 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6397 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6398 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6399 continue;
6400
6401 if (! eliminate_p)
6402 return 1;
6403
6404 /* If the giv has the opposite direction of change,
6405 then reverse the comparison. */
6406 if (INTVAL (v->mult_val) < 0)
6407 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
6408 const0_rtx, v->new_reg);
6409 else
6410 new = v->new_reg;
6411
6412 /* We can probably test that giv's reduced reg. */
6413 if (validate_change (insn, &SET_SRC (x), new, 0))
6414 return 1;
6415 }
6416
6417 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
6418 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
6419 Require a constant for MULT_VAL, so we know it's nonzero.
6420 ??? Do this only if ADD_VAL is a pointer to avoid a potential
6421 overflow problem. */
6422
6423 for (v = bl->giv; v; v = v->next_iv)
6424 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
6425 && ! v->ignore && ! v->maybe_dead && v->always_computable
6426 && v->mode == mode
6427 && (GET_CODE (v->add_val) == SYMBOL_REF
6428 || GET_CODE (v->add_val) == LABEL_REF
6429 || GET_CODE (v->add_val) == CONST
6430 || (GET_CODE (v->add_val) == REG
6431 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
6432 {
6433 /* If the giv V had the auto-inc address optimization applied
6434 to it, and INSN occurs between the giv insn and the biv
6435 insn, then we must adjust the value used here.
6436 This is rare, so we don't bother to do so. */
6437 if (v->auto_inc_opt
6438 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6439 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6440 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6441 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6442 continue;
6443
6444 if (! eliminate_p)
6445 return 1;
6446
6447 /* If the giv has the opposite direction of change,
6448 then reverse the comparison. */
6449 if (INTVAL (v->mult_val) < 0)
6450 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
6451 v->new_reg);
6452 else
6453 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
6454 copy_rtx (v->add_val));
6455
6456 /* Replace biv with the giv's reduced register. */
6457 update_reg_last_use (v->add_val, insn);
6458 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6459 return 1;
6460
6461 /* Insn doesn't support that constant or invariant. Copy it
6462 into a register (it will be a loop invariant.) */
6463 tem = gen_reg_rtx (GET_MODE (v->new_reg));
6464
6465 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
6466 where);
6467
6468 /* Substitute the new register for its invariant value in
6469 the compare expression. */
6470 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
6471 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
6472 return 1;
6473 }
6474 }
6475 #endif
6476 break;
6477
6478 case COMPARE:
6479 case EQ: case NE:
6480 case GT: case GE: case GTU: case GEU:
6481 case LT: case LE: case LTU: case LEU:
6482 /* See if either argument is the biv. */
6483 if (XEXP (x, 0) == reg)
6484 arg = XEXP (x, 1), arg_operand = 1;
6485 else if (XEXP (x, 1) == reg)
6486 arg = XEXP (x, 0), arg_operand = 0;
6487 else
6488 break;
6489
6490 if (CONSTANT_P (arg))
6491 {
6492 /* First try to replace with any giv that has constant positive
6493 mult_val and constant add_val. We might be able to support
6494 negative mult_val, but it seems complex to do it in general. */
6495
6496 for (v = bl->giv; v; v = v->next_iv)
6497 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6498 && (GET_CODE (v->add_val) == SYMBOL_REF
6499 || GET_CODE (v->add_val) == LABEL_REF
6500 || GET_CODE (v->add_val) == CONST
6501 || (GET_CODE (v->add_val) == REG
6502 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
6503 && ! v->ignore && ! v->maybe_dead && v->always_computable
6504 && v->mode == mode)
6505 {
6506 /* If the giv V had the auto-inc address optimization applied
6507 to it, and INSN occurs between the giv insn and the biv
6508 insn, then we must adjust the value used here.
6509 This is rare, so we don't bother to do so. */
6510 if (v->auto_inc_opt
6511 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6512 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6513 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6514 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6515 continue;
6516
6517 if (! eliminate_p)
6518 return 1;
6519
6520 /* Replace biv with the giv's reduced reg. */
6521 XEXP (x, 1-arg_operand) = v->new_reg;
6522
6523 /* If all constants are actually constant integers and
6524 the derived constant can be directly placed in the COMPARE,
6525 do so. */
6526 if (GET_CODE (arg) == CONST_INT
6527 && GET_CODE (v->mult_val) == CONST_INT
6528 && GET_CODE (v->add_val) == CONST_INT
6529 && validate_change (insn, &XEXP (x, arg_operand),
6530 GEN_INT (INTVAL (arg)
6531 * INTVAL (v->mult_val)
6532 + INTVAL (v->add_val)), 0))
6533 return 1;
6534
6535 /* Otherwise, load it into a register. */
6536 tem = gen_reg_rtx (mode);
6537 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6538 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6539 return 1;
6540
6541 /* If that failed, put back the change we made above. */
6542 XEXP (x, 1-arg_operand) = reg;
6543 }
6544
6545 /* Look for giv with positive constant mult_val and nonconst add_val.
6546 Insert insns to calculate new compare value.
6547 ??? Turn this off due to possible overflow. */
6548
6549 for (v = bl->giv; v; v = v->next_iv)
6550 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6551 && ! v->ignore && ! v->maybe_dead && v->always_computable
6552 && v->mode == mode
6553 && 0)
6554 {
6555 rtx tem;
6556
6557 /* If the giv V had the auto-inc address optimization applied
6558 to it, and INSN occurs between the giv insn and the biv
6559 insn, then we must adjust the value used here.
6560 This is rare, so we don't bother to do so. */
6561 if (v->auto_inc_opt
6562 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6563 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6564 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6565 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6566 continue;
6567
6568 if (! eliminate_p)
6569 return 1;
6570
6571 tem = gen_reg_rtx (mode);
6572
6573 /* Replace biv with giv's reduced register. */
6574 validate_change (insn, &XEXP (x, 1 - arg_operand),
6575 v->new_reg, 1);
6576
6577 /* Compute value to compare against. */
6578 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6579 /* Use it in this insn. */
6580 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6581 if (apply_change_group ())
6582 return 1;
6583 }
6584 }
6585 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6586 {
6587 if (invariant_p (arg) == 1)
6588 {
6589 /* Look for giv with constant positive mult_val and nonconst
6590 add_val. Insert insns to compute new compare value.
6591 ??? Turn this off due to possible overflow. */
6592
6593 for (v = bl->giv; v; v = v->next_iv)
6594 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6595 && ! v->ignore && ! v->maybe_dead && v->always_computable
6596 && v->mode == mode
6597 && 0)
6598 {
6599 rtx tem;
6600
6601 /* If the giv V had the auto-inc address optimization applied
6602 to it, and INSN occurs between the giv insn and the biv
6603 insn, then we must adjust the value used here.
6604 This is rare, so we don't bother to do so. */
6605 if (v->auto_inc_opt
6606 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6607 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6608 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6609 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6610 continue;
6611
6612 if (! eliminate_p)
6613 return 1;
6614
6615 tem = gen_reg_rtx (mode);
6616
6617 /* Replace biv with giv's reduced register. */
6618 validate_change (insn, &XEXP (x, 1 - arg_operand),
6619 v->new_reg, 1);
6620
6621 /* Compute value to compare against. */
6622 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6623 tem, where);
6624 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6625 if (apply_change_group ())
6626 return 1;
6627 }
6628 }
6629
6630 /* This code has problems. Basically, you can't know when
6631 seeing if we will eliminate BL, whether a particular giv
6632 of ARG will be reduced. If it isn't going to be reduced,
6633 we can't eliminate BL. We can try forcing it to be reduced,
6634 but that can generate poor code.
6635
6636 The problem is that the benefit of reducing TV, below should
6637 be increased if BL can actually be eliminated, but this means
6638 we might have to do a topological sort of the order in which
6639 we try to process biv. It doesn't seem worthwhile to do
6640 this sort of thing now. */
6641
6642 #if 0
6643 /* Otherwise the reg compared with had better be a biv. */
6644 if (GET_CODE (arg) != REG
6645 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6646 return 0;
6647
6648 /* Look for a pair of givs, one for each biv,
6649 with identical coefficients. */
6650 for (v = bl->giv; v; v = v->next_iv)
6651 {
6652 struct induction *tv;
6653
6654 if (v->ignore || v->maybe_dead || v->mode != mode)
6655 continue;
6656
6657 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6658 if (! tv->ignore && ! tv->maybe_dead
6659 && rtx_equal_p (tv->mult_val, v->mult_val)
6660 && rtx_equal_p (tv->add_val, v->add_val)
6661 && tv->mode == mode)
6662 {
6663 /* If the giv V had the auto-inc address optimization applied
6664 to it, and INSN occurs between the giv insn and the biv
6665 insn, then we must adjust the value used here.
6666 This is rare, so we don't bother to do so. */
6667 if (v->auto_inc_opt
6668 && ((INSN_LUID (v->insn) < INSN_LUID (insn)
6669 && INSN_LUID (insn) < INSN_LUID (bl->biv->insn))
6670 || (INSN_LUID (v->insn) > INSN_LUID (insn)
6671 && INSN_LUID (insn) > INSN_LUID (bl->biv->insn))))
6672 continue;
6673
6674 if (! eliminate_p)
6675 return 1;
6676
6677 /* Replace biv with its giv's reduced reg. */
6678 XEXP (x, 1-arg_operand) = v->new_reg;
6679 /* Replace other operand with the other giv's
6680 reduced reg. */
6681 XEXP (x, arg_operand) = tv->new_reg;
6682 return 1;
6683 }
6684 }
6685 #endif
6686 }
6687
6688 /* If we get here, the biv can't be eliminated. */
6689 return 0;
6690
6691 case MEM:
6692 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6693 biv is used in it, since it will be replaced. */
6694 for (v = bl->giv; v; v = v->next_iv)
6695 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6696 return 1;
6697 break;
6698 }
6699
6700 /* See if any subexpression fails elimination. */
6701 fmt = GET_RTX_FORMAT (code);
6702 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6703 {
6704 switch (fmt[i])
6705 {
6706 case 'e':
6707 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6708 eliminate_p, where))
6709 return 0;
6710 break;
6711
6712 case 'E':
6713 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6714 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6715 eliminate_p, where))
6716 return 0;
6717 break;
6718 }
6719 }
6720
6721 return 1;
6722 }
6723 \f
6724 /* Return nonzero if the last use of REG
6725 is in an insn following INSN in the same basic block. */
6726
6727 static int
6728 last_use_this_basic_block (reg, insn)
6729 rtx reg;
6730 rtx insn;
6731 {
6732 rtx n;
6733 for (n = insn;
6734 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6735 n = NEXT_INSN (n))
6736 {
6737 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
6738 return 1;
6739 }
6740 return 0;
6741 }
6742 \f
6743 /* Called via `note_stores' to record the initial value of a biv. Here we
6744 just record the location of the set and process it later. */
6745
6746 static void
6747 record_initial (dest, set)
6748 rtx dest;
6749 rtx set;
6750 {
6751 struct iv_class *bl;
6752
6753 if (GET_CODE (dest) != REG
6754 || REGNO (dest) >= max_reg_before_loop
6755 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT)
6756 return;
6757
6758 bl = reg_biv_class[REGNO (dest)];
6759
6760 /* If this is the first set found, record it. */
6761 if (bl->init_insn == 0)
6762 {
6763 bl->init_insn = note_insn;
6764 bl->init_set = set;
6765 }
6766 }
6767 \f
6768 /* If any of the registers in X are "old" and currently have a last use earlier
6769 than INSN, update them to have a last use of INSN. Their actual last use
6770 will be the previous insn but it will not have a valid uid_luid so we can't
6771 use it. */
6772
6773 static void
6774 update_reg_last_use (x, insn)
6775 rtx x;
6776 rtx insn;
6777 {
6778 /* Check for the case where INSN does not have a valid luid. In this case,
6779 there is no need to modify the regno_last_uid, as this can only happen
6780 when code is inserted after the loop_end to set a pseudo's final value,
6781 and hence this insn will never be the last use of x. */
6782 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6783 && INSN_UID (insn) < max_uid_for_loop
6784 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
6785 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
6786 else
6787 {
6788 register int i, j;
6789 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6790 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6791 {
6792 if (fmt[i] == 'e')
6793 update_reg_last_use (XEXP (x, i), insn);
6794 else if (fmt[i] == 'E')
6795 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6796 update_reg_last_use (XVECEXP (x, i, j), insn);
6797 }
6798 }
6799 }
6800 \f
6801 /* Given a jump insn JUMP, return the condition that will cause it to branch
6802 to its JUMP_LABEL. If the condition cannot be understood, or is an
6803 inequality floating-point comparison which needs to be reversed, 0 will
6804 be returned.
6805
6806 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6807 insn used in locating the condition was found. If a replacement test
6808 of the condition is desired, it should be placed in front of that
6809 insn and we will be sure that the inputs are still valid.
6810
6811 The condition will be returned in a canonical form to simplify testing by
6812 callers. Specifically:
6813
6814 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6815 (2) Both operands will be machine operands; (cc0) will have been replaced.
6816 (3) If an operand is a constant, it will be the second operand.
6817 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6818 for GE, GEU, and LEU. */
6819
6820 rtx
6821 get_condition (jump, earliest)
6822 rtx jump;
6823 rtx *earliest;
6824 {
6825 enum rtx_code code;
6826 rtx prev = jump;
6827 rtx set;
6828 rtx tem;
6829 rtx op0, op1;
6830 int reverse_code = 0;
6831 int did_reverse_condition = 0;
6832
6833 /* If this is not a standard conditional jump, we can't parse it. */
6834 if (GET_CODE (jump) != JUMP_INSN
6835 || ! condjump_p (jump) || simplejump_p (jump))
6836 return 0;
6837
6838 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6839 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6840 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6841
6842 if (earliest)
6843 *earliest = jump;
6844
6845 /* If this branches to JUMP_LABEL when the condition is false, reverse
6846 the condition. */
6847 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6848 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6849 code = reverse_condition (code), did_reverse_condition ^= 1;
6850
6851 /* If we are comparing a register with zero, see if the register is set
6852 in the previous insn to a COMPARE or a comparison operation. Perform
6853 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6854 in cse.c */
6855
6856 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
6857 {
6858 /* Set non-zero when we find something of interest. */
6859 rtx x = 0;
6860
6861 #ifdef HAVE_cc0
6862 /* If comparison with cc0, import actual comparison from compare
6863 insn. */
6864 if (op0 == cc0_rtx)
6865 {
6866 if ((prev = prev_nonnote_insn (prev)) == 0
6867 || GET_CODE (prev) != INSN
6868 || (set = single_set (prev)) == 0
6869 || SET_DEST (set) != cc0_rtx)
6870 return 0;
6871
6872 op0 = SET_SRC (set);
6873 op1 = CONST0_RTX (GET_MODE (op0));
6874 if (earliest)
6875 *earliest = prev;
6876 }
6877 #endif
6878
6879 /* If this is a COMPARE, pick up the two things being compared. */
6880 if (GET_CODE (op0) == COMPARE)
6881 {
6882 op1 = XEXP (op0, 1);
6883 op0 = XEXP (op0, 0);
6884 continue;
6885 }
6886 else if (GET_CODE (op0) != REG)
6887 break;
6888
6889 /* Go back to the previous insn. Stop if it is not an INSN. We also
6890 stop if it isn't a single set or if it has a REG_INC note because
6891 we don't want to bother dealing with it. */
6892
6893 if ((prev = prev_nonnote_insn (prev)) == 0
6894 || GET_CODE (prev) != INSN
6895 || FIND_REG_INC_NOTE (prev, 0)
6896 || (set = single_set (prev)) == 0)
6897 break;
6898
6899 /* If this is setting OP0, get what it sets it to if it looks
6900 relevant. */
6901 if (rtx_equal_p (SET_DEST (set), op0))
6902 {
6903 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6904
6905 if ((GET_CODE (SET_SRC (set)) == COMPARE
6906 || (((code == NE
6907 || (code == LT
6908 && GET_MODE_CLASS (inner_mode) == MODE_INT
6909 && (GET_MODE_BITSIZE (inner_mode)
6910 <= HOST_BITS_PER_WIDE_INT)
6911 && (STORE_FLAG_VALUE
6912 & ((HOST_WIDE_INT) 1
6913 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6914 #ifdef FLOAT_STORE_FLAG_VALUE
6915 || (code == LT
6916 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6917 && FLOAT_STORE_FLAG_VALUE < 0)
6918 #endif
6919 ))
6920 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6921 x = SET_SRC (set);
6922 else if (((code == EQ
6923 || (code == GE
6924 && (GET_MODE_BITSIZE (inner_mode)
6925 <= HOST_BITS_PER_WIDE_INT)
6926 && GET_MODE_CLASS (inner_mode) == MODE_INT
6927 && (STORE_FLAG_VALUE
6928 & ((HOST_WIDE_INT) 1
6929 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6930 #ifdef FLOAT_STORE_FLAG_VALUE
6931 || (code == GE
6932 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6933 && FLOAT_STORE_FLAG_VALUE < 0)
6934 #endif
6935 ))
6936 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6937 {
6938 /* We might have reversed a LT to get a GE here. But this wasn't
6939 actually the comparison of data, so we don't flag that we
6940 have had to reverse the condition. */
6941 did_reverse_condition ^= 1;
6942 reverse_code = 1;
6943 x = SET_SRC (set);
6944 }
6945 else
6946 break;
6947 }
6948
6949 else if (reg_set_p (op0, prev))
6950 /* If this sets OP0, but not directly, we have to give up. */
6951 break;
6952
6953 if (x)
6954 {
6955 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6956 code = GET_CODE (x);
6957 if (reverse_code)
6958 {
6959 code = reverse_condition (code);
6960 did_reverse_condition ^= 1;
6961 reverse_code = 0;
6962 }
6963
6964 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6965 if (earliest)
6966 *earliest = prev;
6967 }
6968 }
6969
6970 /* If constant is first, put it last. */
6971 if (CONSTANT_P (op0))
6972 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6973
6974 /* If OP0 is the result of a comparison, we weren't able to find what
6975 was really being compared, so fail. */
6976 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6977 return 0;
6978
6979 /* Canonicalize any ordered comparison with integers involving equality
6980 if we can do computations in the relevant mode and we do not
6981 overflow. */
6982
6983 if (GET_CODE (op1) == CONST_INT
6984 && GET_MODE (op0) != VOIDmode
6985 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6986 {
6987 HOST_WIDE_INT const_val = INTVAL (op1);
6988 unsigned HOST_WIDE_INT uconst_val = const_val;
6989 unsigned HOST_WIDE_INT max_val
6990 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6991
6992 switch (code)
6993 {
6994 case LE:
6995 if (const_val != max_val >> 1)
6996 code = LT, op1 = GEN_INT (const_val + 1);
6997 break;
6998
6999 case GE:
7000 if (const_val
7001 != (((HOST_WIDE_INT) 1
7002 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
7003 code = GT, op1 = GEN_INT (const_val - 1);
7004 break;
7005
7006 case LEU:
7007 if (uconst_val != max_val)
7008 code = LTU, op1 = GEN_INT (uconst_val + 1);
7009 break;
7010
7011 case GEU:
7012 if (uconst_val != 0)
7013 code = GTU, op1 = GEN_INT (uconst_val - 1);
7014 break;
7015 }
7016 }
7017
7018 /* If this was floating-point and we reversed anything other than an
7019 EQ or NE, return zero. */
7020 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
7021 && did_reverse_condition && code != NE && code != EQ
7022 && ! flag_fast_math
7023 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
7024 return 0;
7025
7026 #ifdef HAVE_cc0
7027 /* Never return CC0; return zero instead. */
7028 if (op0 == cc0_rtx)
7029 return 0;
7030 #endif
7031
7032 return gen_rtx (code, VOIDmode, op0, op1);
7033 }
7034
7035 /* Similar to above routine, except that we also put an invariant last
7036 unless both operands are invariants. */
7037
7038 rtx
7039 get_condition_for_loop (x)
7040 rtx x;
7041 {
7042 rtx comparison = get_condition (x, NULL_PTR);
7043
7044 if (comparison == 0
7045 || ! invariant_p (XEXP (comparison, 0))
7046 || invariant_p (XEXP (comparison, 1)))
7047 return comparison;
7048
7049 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
7050 XEXP (comparison, 1), XEXP (comparison, 0));
7051 }
7052
7053 #ifdef HAIFA
7054 /* Analyze a loop in order to instrument it with the use of count register.
7055 loop_start and loop_end are the first and last insns of the loop.
7056 This function works in cooperation with insert_bct ().
7057 loop_can_insert_bct[loop_num] is set according to whether the optimization
7058 is applicable to the loop. When it is applicable, the following variables
7059 are also set:
7060 loop_start_value[loop_num]
7061 loop_comparison_value[loop_num]
7062 loop_increment[loop_num]
7063 loop_comparison_code[loop_num] */
7064
7065 static
7066 void analyze_loop_iterations (loop_start, loop_end)
7067 rtx loop_start, loop_end;
7068 {
7069 rtx comparison, comparison_value;
7070 rtx iteration_var, initial_value, increment;
7071 enum rtx_code comparison_code;
7072
7073 rtx last_loop_insn;
7074 rtx insn;
7075 int i;
7076
7077 /* loop_variable mode */
7078 enum machine_mode original_mode;
7079
7080 /* find the number of the loop */
7081 int loop_num = loop_number (loop_start, loop_end);
7082
7083 /* we change our mind only when we are sure that loop will be instrumented */
7084 loop_can_insert_bct[loop_num] = 0;
7085
7086 /* debugging: do we wish to instrument this loop? */
7087 if ( !check_bct_param () )
7088 return;
7089
7090 /* is the optimization suppressed. */
7091 if ( !flag_branch_on_count_reg )
7092 return;
7093
7094 /* make sure that count-reg is not in use */
7095 if (loop_used_count_register[loop_num]){
7096 if (loop_dump_stream)
7097 fprintf (loop_dump_stream,
7098 "analyze_loop_iterations %d: BCT instrumentation failed: count register already in use\n",
7099 loop_num);
7100 return;
7101 }
7102
7103 /* make sure that the function has no indirect jumps. */
7104 if (indirect_jump_in_function){
7105 if (loop_dump_stream)
7106 fprintf (loop_dump_stream,
7107 "analyze_loop_iterations %d: BCT instrumentation failed: indirect jump in function\n",
7108 loop_num);
7109 return;
7110 }
7111
7112 /* make sure that the last loop insn is a conditional jump */
7113 last_loop_insn = PREV_INSN (loop_end);
7114 if (GET_CODE (last_loop_insn) != JUMP_INSN || !condjump_p (last_loop_insn)) {
7115 if (loop_dump_stream)
7116 fprintf (loop_dump_stream,
7117 "analyze_loop_iterations %d: BCT instrumentation failed: invalid jump at loop end\n",
7118 loop_num);
7119 return;
7120 }
7121
7122 /* First find the iteration variable. If the last insn is a conditional
7123 branch, and the insn preceding it tests a register value, make that
7124 register the iteration variable. */
7125
7126 /* We used to use prev_nonnote_insn here, but that fails because it might
7127 accidentally get the branch for a contained loop if the branch for this
7128 loop was deleted. We can only trust branches immediately before the
7129 loop_end. */
7130
7131 comparison = get_condition_for_loop (last_loop_insn);
7132 /* ??? Get_condition may switch position of induction variable and
7133 invariant register when it canonicalizes the comparison. */
7134
7135 if (comparison == 0) {
7136 if (loop_dump_stream)
7137 fprintf (loop_dump_stream,
7138 "analyze_loop_iterations %d: BCT instrumentation failed: comparison not found\n",
7139 loop_num);
7140 return;
7141 }
7142
7143 comparison_code = GET_CODE (comparison);
7144 iteration_var = XEXP (comparison, 0);
7145 comparison_value = XEXP (comparison, 1);
7146
7147 original_mode = GET_MODE (iteration_var);
7148 if (GET_MODE_CLASS (original_mode) != MODE_INT
7149 || GET_MODE_SIZE (original_mode) != UNITS_PER_WORD) {
7150 if (loop_dump_stream)
7151 fprintf (loop_dump_stream,
7152 "analyze_loop_iterations %d: BCT Instrumentation failed: loop variable not integer\n",
7153 loop_num);
7154 return;
7155 }
7156
7157 /* get info about loop bounds and increment */
7158 iteration_info (iteration_var, &initial_value, &increment,
7159 loop_start, loop_end);
7160
7161 /* make sure that all required loop data were found */
7162 if (!(initial_value && increment && comparison_value
7163 && invariant_p (comparison_value) && invariant_p (increment)
7164 && ! indirect_jump_in_function))
7165 {
7166 if (loop_dump_stream) {
7167 fprintf (loop_dump_stream,
7168 "analyze_loop_iterations %d: BCT instrumentation failed because of wrong loop: ", loop_num);
7169 if (!(initial_value && increment && comparison_value)) {
7170 fprintf (loop_dump_stream, "\tbounds not available: ");
7171 if ( ! initial_value )
7172 fprintf (loop_dump_stream, "initial ");
7173 if ( ! increment )
7174 fprintf (loop_dump_stream, "increment ");
7175 if ( ! comparison_value )
7176 fprintf (loop_dump_stream, "comparison ");
7177 fprintf (loop_dump_stream, "\n");
7178 }
7179 if (!invariant_p (comparison_value) || !invariant_p (increment))
7180 fprintf (loop_dump_stream, "\tloop bounds not invariant\n");
7181 }
7182 return;
7183 }
7184
7185 /* make sure that the increment is constant */
7186 if (GET_CODE (increment) != CONST_INT) {
7187 if (loop_dump_stream)
7188 fprintf (loop_dump_stream,
7189 "analyze_loop_iterations %d: instrumentation failed: not arithmetic loop\n",
7190 loop_num);
7191 return;
7192 }
7193
7194 /* make sure that the loop contains neither function call, nor jump on table.
7195 (the count register might be altered by the called function, and might
7196 be used for a branch on table). */
7197 for (insn = loop_start; insn && insn != loop_end; insn = NEXT_INSN (insn)) {
7198 if (GET_CODE (insn) == CALL_INSN){
7199 if (loop_dump_stream)
7200 fprintf (loop_dump_stream,
7201 "analyze_loop_iterations %d: BCT instrumentation failed: function call in the loop\n",
7202 loop_num);
7203 return;
7204 }
7205
7206 if (GET_CODE (insn) == JUMP_INSN
7207 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
7208 || GET_CODE (PATTERN (insn)) == ADDR_VEC)){
7209 if (loop_dump_stream)
7210 fprintf (loop_dump_stream,
7211 "analyze_loop_iterations %d: BCT instrumentation failed: computed branch in the loop\n",
7212 loop_num);
7213 return;
7214 }
7215 }
7216
7217 /* At this point, we are sure that the loop can be instrumented with BCT.
7218 Some of the loops, however, will not be instrumented - the final decision
7219 is taken by insert_bct () */
7220 if (loop_dump_stream)
7221 fprintf (loop_dump_stream,
7222 "analyze_loop_iterations: loop (luid =%d) can be BCT instrumented.\n",
7223 loop_num);
7224
7225 /* mark all enclosing loops that they cannot use count register */
7226 /* ???: In fact, since insert_bct may decide not to instrument this loop,
7227 marking here may prevent instrumenting an enclosing loop that could
7228 actually be instrumented. But since this is rare, it is safer to mark
7229 here in case the order of calling (analyze/insert)_bct would be changed. */
7230 for (i=loop_num; i != -1; i = loop_outer_loop[i])
7231 loop_used_count_register[i] = 1;
7232
7233 /* Set data structures which will be used by the instrumentation phase */
7234 loop_start_value[loop_num] = initial_value;
7235 loop_comparison_value[loop_num] = comparison_value;
7236 loop_increment[loop_num] = increment;
7237 loop_comparison_code[loop_num] = comparison_code;
7238 loop_can_insert_bct[loop_num] = 1;
7239 }
7240
7241
7242 /* instrument loop for insertion of bct instruction. We distinguish between
7243 loops with compile-time bounds, to those with run-time bounds. The loop
7244 behaviour is analized according to the following characteristics/variables:
7245 ; Input variables:
7246 ; comparison-value: the value to which the iteration counter is compared.
7247 ; initial-value: iteration-counter initial value.
7248 ; increment: iteration-counter increment.
7249 ; Computed variables:
7250 ; increment-direction: the sign of the increment.
7251 ; compare-direction: '1' for GT, GTE, '-1' for LT, LTE, '0' for NE.
7252 ; range-direction: sign (comparison-value - initial-value)
7253 We give up on the following cases:
7254 ; loop variable overflow.
7255 ; run-time loop bounds with comparison code NE.
7256 */
7257
7258 static void
7259 insert_bct (loop_start, loop_end)
7260 rtx loop_start, loop_end;
7261 {
7262 rtx initial_value, comparison_value, increment;
7263 enum rtx_code comparison_code;
7264
7265 int increment_direction, compare_direction;
7266 int unsigned_p = 0;
7267
7268 /* if the loop condition is <= or >=, the number of iteration
7269 is 1 more than the range of the bounds of the loop */
7270 int add_iteration = 0;
7271
7272 /* the only machine mode we work with - is the integer of the size that the
7273 machine has */
7274 enum machine_mode loop_var_mode = SImode;
7275
7276 int loop_num = loop_number (loop_start, loop_end);
7277
7278 /* get loop-variables. No need to check that these are valid - already
7279 checked in analyze_loop_iterations (). */
7280 comparison_code = loop_comparison_code[loop_num];
7281 initial_value = loop_start_value[loop_num];
7282 comparison_value = loop_comparison_value[loop_num];
7283 increment = loop_increment[loop_num];
7284
7285 /* check analyze_loop_iterations decision for this loop. */
7286 if (! loop_can_insert_bct[loop_num]){
7287 if (loop_dump_stream)
7288 fprintf (loop_dump_stream,
7289 "insert_bct: [%d] - was decided not to instrument by analyze_loop_iterations ()\n",
7290 loop_num);
7291 return;
7292 }
7293
7294 /* make sure that the loop was not fully unrolled. */
7295 if (loop_unroll_factor[loop_num] == -1){
7296 if (loop_dump_stream)
7297 fprintf (loop_dump_stream, "insert_bct %d: was completely unrolled\n", loop_num);
7298 return;
7299 }
7300
7301 /* make sure that the last loop insn is a conditional jump .
7302 This check is repeated from analyze_loop_iterations (),
7303 because unrolling might have changed that. */
7304 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
7305 || !condjump_p (PREV_INSN (loop_end))) {
7306 if (loop_dump_stream)
7307 fprintf (loop_dump_stream,
7308 "insert_bct: not instrumenting BCT because of invalid branch\n");
7309 return;
7310 }
7311
7312 /* fix increment in case loop was unrolled. */
7313 if (loop_unroll_factor[loop_num] > 1)
7314 increment = GEN_INT ( INTVAL (increment) * loop_unroll_factor[loop_num] );
7315
7316 /* determine properties and directions of the loop */
7317 increment_direction = (INTVAL (increment) > 0) ? 1:-1;
7318 switch ( comparison_code ) {
7319 case LEU:
7320 unsigned_p = 1;
7321 /* fallthrough */
7322 case LE:
7323 compare_direction = 1;
7324 add_iteration = 1;
7325 break;
7326 case GEU:
7327 unsigned_p = 1;
7328 /* fallthrough */
7329 case GE:
7330 compare_direction = -1;
7331 add_iteration = 1;
7332 break;
7333 case EQ:
7334 /* in this case we cannot know the number of iterations */
7335 if (loop_dump_stream)
7336 fprintf (loop_dump_stream,
7337 "insert_bct: %d: loop cannot be instrumented: == in condition\n",
7338 loop_num);
7339 return;
7340 case LTU:
7341 unsigned_p = 1;
7342 /* fallthrough */
7343 case LT:
7344 compare_direction = 1;
7345 break;
7346 case GTU:
7347 unsigned_p = 1;
7348 /* fallthrough */
7349 case GT:
7350 compare_direction = -1;
7351 break;
7352 case NE:
7353 compare_direction = 0;
7354 break;
7355 default:
7356 abort ();
7357 }
7358
7359
7360 /* make sure that the loop does not end by an overflow */
7361 if (compare_direction != increment_direction) {
7362 if (loop_dump_stream)
7363 fprintf (loop_dump_stream,
7364 "insert_bct: %d: loop cannot be instrumented: terminated by overflow\n",
7365 loop_num);
7366 return;
7367 }
7368
7369 /* try to instrument the loop. */
7370
7371 /* Handle the simpler case, where the bounds are known at compile time. */
7372 if (GET_CODE (initial_value) == CONST_INT && GET_CODE (comparison_value) == CONST_INT)
7373 {
7374 int n_iterations;
7375 int increment_value_abs = INTVAL (increment) * increment_direction;
7376
7377 /* check the relation between compare-val and initial-val */
7378 int difference = INTVAL (comparison_value) - INTVAL (initial_value);
7379 int range_direction = (difference > 0) ? 1 : -1;
7380
7381 /* make sure the loop executes enough iterations to gain from BCT */
7382 if (difference > -3 && difference < 3) {
7383 if (loop_dump_stream)
7384 fprintf (loop_dump_stream,
7385 "insert_bct: loop %d not BCT instrumented: too small iteration count.\n",
7386 loop_num);
7387 return;
7388 }
7389
7390 /* make sure that the loop executes at least once */
7391 if ((range_direction == 1 && compare_direction == -1)
7392 || (range_direction == -1 && compare_direction == 1))
7393 {
7394 if (loop_dump_stream)
7395 fprintf (loop_dump_stream,
7396 "insert_bct: loop %d: does not iterate even once. Not instrumenting.\n",
7397 loop_num);
7398 return;
7399 }
7400
7401 /* make sure that the loop does not end by an overflow (in compile time
7402 bounds we must have an additional check for overflow, because here
7403 we also support the compare code of 'NE'. */
7404 if (comparison_code == NE
7405 && increment_direction != range_direction) {
7406 if (loop_dump_stream)
7407 fprintf (loop_dump_stream,
7408 "insert_bct (compile time bounds): %d: loop not instrumented: terminated by overflow\n",
7409 loop_num);
7410 return;
7411 }
7412
7413 /* Determine the number of iterations by:
7414 ;
7415 ; compare-val - initial-val + (increment -1) + additional-iteration
7416 ; num_iterations = -----------------------------------------------------------------
7417 ; increment
7418 */
7419 difference = (range_direction > 0) ? difference : -difference;
7420 #if 0
7421 fprintf (stderr, "difference is: %d\n", difference); /* @*/
7422 fprintf (stderr, "increment_value_abs is: %d\n", increment_value_abs); /* @*/
7423 fprintf (stderr, "add_iteration is: %d\n", add_iteration); /* @*/
7424 fprintf (stderr, "INTVAL (comparison_value) is: %d\n", INTVAL (comparison_value)); /* @*/
7425 fprintf (stderr, "INTVAL (initial_value) is: %d\n", INTVAL (initial_value)); /* @*/
7426 #endif
7427
7428 if (increment_value_abs == 0) {
7429 fprintf (stderr, "insert_bct: error: increment == 0 !!!\n");
7430 abort ();
7431 }
7432 n_iterations = (difference + increment_value_abs - 1 + add_iteration)
7433 / increment_value_abs;
7434
7435 #if 0
7436 fprintf (stderr, "number of iterations is: %d\n", n_iterations); /* @*/
7437 #endif
7438 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
7439
7440 /* Done with this loop. */
7441 return;
7442 }
7443
7444 /* Handle the more complex case, that the bounds are NOT known at compile time. */
7445 /* In this case we generate run_time calculation of the number of iterations */
7446
7447 /* With runtime bounds, if the compare is of the form '!=' we give up */
7448 if (comparison_code == NE) {
7449 if (loop_dump_stream)
7450 fprintf (loop_dump_stream,
7451 "insert_bct: fail for loop %d: runtime bounds with != comparison\n",
7452 loop_num);
7453 return;
7454 }
7455
7456 else {
7457 /* We rely on the existence of run-time guard to ensure that the
7458 loop executes at least once. */
7459 rtx sequence;
7460 rtx iterations_num_reg;
7461
7462 int increment_value_abs = INTVAL (increment) * increment_direction;
7463
7464 /* make sure that the increment is a power of two, otherwise (an
7465 expensive) divide is needed. */
7466 if (exact_log2 (increment_value_abs) == -1)
7467 {
7468 if (loop_dump_stream)
7469 fprintf (loop_dump_stream,
7470 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
7471 return;
7472 }
7473
7474 /* compute the number of iterations */
7475 start_sequence ();
7476 {
7477 /* CYGNUS LOCAL: HAIFA bug fix */
7478 rtx temp_reg;
7479
7480 /* Again, the number of iterations is calculated by:
7481 ;
7482 ; compare-val - initial-val + (increment -1) + additional-iteration
7483 ; num_iterations = -----------------------------------------------------------------
7484 ; increment
7485 */
7486 /* ??? Do we have to call copy_rtx here before passing rtx to
7487 expand_binop? */
7488 if (compare_direction > 0) {
7489 /* <, <= :the loop variable is increasing */
7490 temp_reg = expand_binop (loop_var_mode, sub_optab, comparison_value,
7491 initial_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7492 }
7493 else {
7494 temp_reg = expand_binop (loop_var_mode, sub_optab, initial_value,
7495 comparison_value, NULL_RTX, 0, OPTAB_LIB_WIDEN);
7496 }
7497
7498 if (increment_value_abs - 1 + add_iteration != 0)
7499 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
7500 GEN_INT (increment_value_abs - 1 + add_iteration),
7501 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7502
7503 if (increment_value_abs != 1)
7504 {
7505 /* ??? This will generate an expensive divide instruction for
7506 most targets. The original authors apparently expected this
7507 to be a shift, since they test for power-of-2 divisors above,
7508 but just naively generating a divide instruction will not give
7509 a shift. It happens to work for the PowerPC target because
7510 the rs6000.md file has a divide pattern that emits shifts.
7511 It will probably not work for any other target. */
7512 iterations_num_reg = expand_binop (loop_var_mode, sdiv_optab,
7513 temp_reg,
7514 GEN_INT (increment_value_abs),
7515 NULL_RTX, 0, OPTAB_LIB_WIDEN);
7516 }
7517 else
7518 iterations_num_reg = temp_reg;
7519 /* END CYGNUS LOCAL: HAIFA bug fix */
7520 }
7521 sequence = gen_sequence ();
7522 end_sequence ();
7523 emit_insn_before (sequence, loop_start);
7524 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
7525 }
7526 }
7527
7528 /* instrument loop by inserting a bct in it. This is done in the following way:
7529 1. A new register is created and assigned the hard register number of the count
7530 register.
7531 2. In the head of the loop the new variable is initialized by the value passed in the
7532 loop_num_iterations parameter.
7533 3. At the end of the loop, comparison of the register with 0 is generated.
7534 The created comparison follows the pattern defined for the
7535 decrement_and_branch_on_count insn, so this insn will be generated in assembly
7536 generation phase.
7537 4. The compare&branch on the old variable is deleted. So, if the loop-variable was
7538 not used elsewhere, it will be eliminated by data-flow analisys. */
7539
7540 static void
7541 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
7542 rtx loop_start, loop_end;
7543 rtx loop_num_iterations;
7544 {
7545 rtx temp_reg1, temp_reg2;
7546 rtx start_label;
7547
7548 rtx sequence;
7549 enum machine_mode loop_var_mode = SImode;
7550
7551 #ifdef HAVE_decrement_and_branch_on_count
7552 if (HAVE_decrement_and_branch_on_count)
7553 {
7554 if (loop_dump_stream)
7555 fprintf (loop_dump_stream, "Loop: Inserting BCT\n");
7556
7557 /* eliminate the check on the old variable */
7558 delete_insn (PREV_INSN (loop_end));
7559 delete_insn (PREV_INSN (loop_end));
7560
7561 /* insert the label which will delimit the start of the loop */
7562 start_label = gen_label_rtx ();
7563 emit_label_after (start_label, loop_start);
7564
7565 /* insert initialization of the count register into the loop header */
7566 start_sequence ();
7567 temp_reg1 = gen_reg_rtx (loop_var_mode);
7568 emit_insn (gen_move_insn (temp_reg1, loop_num_iterations));
7569
7570 /* this will be count register */
7571 temp_reg2 = gen_rtx (REG, loop_var_mode, COUNT_REGISTER_REGNUM);
7572 /* we have to move the value to the count register from an GPR
7573 because rtx pointed to by loop_num_iterations could contain
7574 expression which cannot be moved into count register */
7575 emit_insn (gen_move_insn (temp_reg2, temp_reg1));
7576
7577 sequence = gen_sequence ();
7578 end_sequence ();
7579 emit_insn_after (sequence, loop_start);
7580
7581 /* insert new comparison on the count register instead of the
7582 old one, generating the needed BCT pattern (that will be
7583 later recognized by assembly generation phase). */
7584 emit_jump_insn_before (gen_decrement_and_branch_on_count (temp_reg2, start_label),
7585 loop_end);
7586 LABEL_NUSES (start_label)++;
7587 }
7588
7589 #endif /* HAVE_decrement_and_branch_on_count */
7590 }
7591
7592 /* calculate the uid of the given loop */
7593 int
7594 loop_number (loop_start, loop_end)
7595 rtx loop_start, loop_end;
7596 {
7597 int loop_num = -1;
7598
7599 /* assume that this insn contains the LOOP_START
7600 note, so it will not be changed by the loop unrolling */
7601 loop_num = uid_loop_num[INSN_UID (loop_start)];
7602 /* sanity check - should never happen */
7603 if (loop_num == -1)
7604 abort ();
7605
7606 return loop_num;
7607 }
7608
7609 /* scan the function and determine whether it has indirect (computed) jump */
7610 static int
7611 indirect_jump_in_function_p (start)
7612 rtx start;
7613 {
7614 rtx insn;
7615 int is_indirect_jump = 0;
7616
7617 for (insn = start; insn; insn = NEXT_INSN (insn)) {
7618 if (GET_CODE (insn) == JUMP_INSN) {
7619 if (GET_CODE (PATTERN (insn)) == SET) {
7620 rtx insn_work_code = XEXP (PATTERN (insn), 1);
7621
7622 if (GET_CODE (insn_work_code) == LABEL_REF)
7623 continue;
7624 if (GET_CODE (insn_work_code) == IF_THEN_ELSE) {
7625 rtx jump_target = XEXP (insn_work_code, 1);
7626
7627 if (jump_target == pc_rtx
7628 || (GET_CODE (jump_target) == (enum rtx_code)LABEL_REF))
7629 continue;
7630 }
7631 }
7632 is_indirect_jump = 1;
7633 }
7634 }
7635 return is_indirect_jump;
7636 }
7637
7638 /* debugging: fix_bct_param () is called from toplev.c upon detection
7639 of the -fbct-***-N options. */
7640 int
7641 fix_bct_param (param, val)
7642 char *param, *val;
7643 {
7644 if ( !strcmp (param, "max") )
7645 dbg_bct_max = atoi (val);
7646 else if ( !strcmp (param, "min") )
7647 dbg_bct_min = atoi (val);
7648 }
7649
7650 /* debugging: return 1 if the loop should be instrumented,
7651 according to bct-min/max. */
7652 static int
7653 check_bct_param ()
7654 {
7655 static int dbg_bct_num = 0;
7656
7657 dbg_bct_num++;
7658 if (dbg_bct_num > dbg_bct_min || dbg_bct_min == -1)
7659 if (dbg_bct_num <= dbg_bct_max || dbg_bct_max == -1)
7660 return 1;
7661 return 0;
7662 }
7663 #endif /* HAIFA */
7664 /* END CYGNUS LOCAL haifa */