BASE-VER: Set to 4.8.0.
[gcc.git] / gcc / lower-subreg.c
1 /* Decompose multiword subregs.
2 Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Richard Henderson <rth@redhat.com>
5 Ian Lance Taylor <iant@google.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "machmode.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "timevar.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "obstack.h"
34 #include "basic-block.h"
35 #include "recog.h"
36 #include "bitmap.h"
37 #include "dce.h"
38 #include "expr.h"
39 #include "except.h"
40 #include "regs.h"
41 #include "tree-pass.h"
42 #include "df.h"
43
44 #ifdef STACK_GROWS_DOWNWARD
45 # undef STACK_GROWS_DOWNWARD
46 # define STACK_GROWS_DOWNWARD 1
47 #else
48 # define STACK_GROWS_DOWNWARD 0
49 #endif
50
51 DEF_VEC_P (bitmap);
52 DEF_VEC_ALLOC_P (bitmap,heap);
53
54 /* Decompose multi-word pseudo-registers into individual
55 pseudo-registers when possible. This is possible when all the uses
56 of a multi-word register are via SUBREG, or are copies of the
57 register to another location. Breaking apart the register permits
58 more CSE and permits better register allocation. */
59
60 /* Bit N in this bitmap is set if regno N is used in a context in
61 which we can decompose it. */
62 static bitmap decomposable_context;
63
64 /* Bit N in this bitmap is set if regno N is used in a context in
65 which it can not be decomposed. */
66 static bitmap non_decomposable_context;
67
68 /* Bit N in this bitmap is set if regno N is used in a subreg
69 which changes the mode but not the size. This typically happens
70 when the register accessed as a floating-point value; we want to
71 avoid generating accesses to its subwords in integer modes. */
72 static bitmap subreg_context;
73
74 /* Bit N in the bitmap in element M of this array is set if there is a
75 copy from reg M to reg N. */
76 static VEC(bitmap,heap) *reg_copy_graph;
77
78 /* Return whether X is a simple object which we can take a word_mode
79 subreg of. */
80
81 static bool
82 simple_move_operand (rtx x)
83 {
84 if (GET_CODE (x) == SUBREG)
85 x = SUBREG_REG (x);
86
87 if (!OBJECT_P (x))
88 return false;
89
90 if (GET_CODE (x) == LABEL_REF
91 || GET_CODE (x) == SYMBOL_REF
92 || GET_CODE (x) == HIGH
93 || GET_CODE (x) == CONST)
94 return false;
95
96 if (MEM_P (x)
97 && (MEM_VOLATILE_P (x)
98 || mode_dependent_address_p (XEXP (x, 0))))
99 return false;
100
101 return true;
102 }
103
104 /* If INSN is a single set between two objects, return the single set.
105 Such an insn can always be decomposed. INSN should have been
106 passed to recog and extract_insn before this is called. */
107
108 static rtx
109 simple_move (rtx insn)
110 {
111 rtx x;
112 rtx set;
113 enum machine_mode mode;
114
115 if (recog_data.n_operands != 2)
116 return NULL_RTX;
117
118 set = single_set (insn);
119 if (!set)
120 return NULL_RTX;
121
122 x = SET_DEST (set);
123 if (x != recog_data.operand[0] && x != recog_data.operand[1])
124 return NULL_RTX;
125 if (!simple_move_operand (x))
126 return NULL_RTX;
127
128 x = SET_SRC (set);
129 if (x != recog_data.operand[0] && x != recog_data.operand[1])
130 return NULL_RTX;
131 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
132 things like x86 rdtsc which returns a DImode value. */
133 if (GET_CODE (x) != ASM_OPERANDS
134 && !simple_move_operand (x))
135 return NULL_RTX;
136
137 /* We try to decompose in integer modes, to avoid generating
138 inefficient code copying between integer and floating point
139 registers. That means that we can't decompose if this is a
140 non-integer mode for which there is no integer mode of the same
141 size. */
142 mode = GET_MODE (SET_SRC (set));
143 if (!SCALAR_INT_MODE_P (mode)
144 && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
145 == BLKmode))
146 return NULL_RTX;
147
148 /* Reject PARTIAL_INT modes. They are used for processor specific
149 purposes and it's probably best not to tamper with them. */
150 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
151 return NULL_RTX;
152
153 return set;
154 }
155
156 /* If SET is a copy from one multi-word pseudo-register to another,
157 record that in reg_copy_graph. Return whether it is such a
158 copy. */
159
160 static bool
161 find_pseudo_copy (rtx set)
162 {
163 rtx dest = SET_DEST (set);
164 rtx src = SET_SRC (set);
165 unsigned int rd, rs;
166 bitmap b;
167
168 if (!REG_P (dest) || !REG_P (src))
169 return false;
170
171 rd = REGNO (dest);
172 rs = REGNO (src);
173 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
174 return false;
175
176 if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
177 return false;
178
179 b = VEC_index (bitmap, reg_copy_graph, rs);
180 if (b == NULL)
181 {
182 b = BITMAP_ALLOC (NULL);
183 VEC_replace (bitmap, reg_copy_graph, rs, b);
184 }
185
186 bitmap_set_bit (b, rd);
187
188 return true;
189 }
190
191 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
192 where they are copied to another register, add the register to
193 which they are copied to DECOMPOSABLE_CONTEXT. Use
194 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
195 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
196
197 static void
198 propagate_pseudo_copies (void)
199 {
200 bitmap queue, propagate;
201
202 queue = BITMAP_ALLOC (NULL);
203 propagate = BITMAP_ALLOC (NULL);
204
205 bitmap_copy (queue, decomposable_context);
206 do
207 {
208 bitmap_iterator iter;
209 unsigned int i;
210
211 bitmap_clear (propagate);
212
213 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
214 {
215 bitmap b = VEC_index (bitmap, reg_copy_graph, i);
216 if (b)
217 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
218 }
219
220 bitmap_and_compl (queue, propagate, decomposable_context);
221 bitmap_ior_into (decomposable_context, propagate);
222 }
223 while (!bitmap_empty_p (queue));
224
225 BITMAP_FREE (queue);
226 BITMAP_FREE (propagate);
227 }
228
229 /* A pointer to one of these values is passed to
230 find_decomposable_subregs via for_each_rtx. */
231
232 enum classify_move_insn
233 {
234 /* Not a simple move from one location to another. */
235 NOT_SIMPLE_MOVE,
236 /* A simple move from one pseudo-register to another. */
237 SIMPLE_PSEUDO_REG_MOVE,
238 /* A simple move involving a non-pseudo-register. */
239 SIMPLE_MOVE
240 };
241
242 /* This is called via for_each_rtx. If we find a SUBREG which we
243 could use to decompose a pseudo-register, set a bit in
244 DECOMPOSABLE_CONTEXT. If we find an unadorned register which is
245 not a simple pseudo-register copy, DATA will point at the type of
246 move, and we set a bit in DECOMPOSABLE_CONTEXT or
247 NON_DECOMPOSABLE_CONTEXT as appropriate. */
248
249 static int
250 find_decomposable_subregs (rtx *px, void *data)
251 {
252 enum classify_move_insn *pcmi = (enum classify_move_insn *) data;
253 rtx x = *px;
254
255 if (x == NULL_RTX)
256 return 0;
257
258 if (GET_CODE (x) == SUBREG)
259 {
260 rtx inner = SUBREG_REG (x);
261 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
262
263 if (!REG_P (inner))
264 return 0;
265
266 regno = REGNO (inner);
267 if (HARD_REGISTER_NUM_P (regno))
268 return -1;
269
270 outer_size = GET_MODE_SIZE (GET_MODE (x));
271 inner_size = GET_MODE_SIZE (GET_MODE (inner));
272 outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
273 inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
274
275 /* We only try to decompose single word subregs of multi-word
276 registers. When we find one, we return -1 to avoid iterating
277 over the inner register.
278
279 ??? This doesn't allow, e.g., DImode subregs of TImode values
280 on 32-bit targets. We would need to record the way the
281 pseudo-register was used, and only decompose if all the uses
282 were the same number and size of pieces. Hopefully this
283 doesn't happen much. */
284
285 if (outer_words == 1 && inner_words > 1)
286 {
287 bitmap_set_bit (decomposable_context, regno);
288 return -1;
289 }
290
291 /* If this is a cast from one mode to another, where the modes
292 have the same size, and they are not tieable, then mark this
293 register as non-decomposable. If we decompose it we are
294 likely to mess up whatever the backend is trying to do. */
295 if (outer_words > 1
296 && outer_size == inner_size
297 && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
298 {
299 bitmap_set_bit (non_decomposable_context, regno);
300 bitmap_set_bit (subreg_context, regno);
301 return -1;
302 }
303 }
304 else if (REG_P (x))
305 {
306 unsigned int regno;
307
308 /* We will see an outer SUBREG before we see the inner REG, so
309 when we see a plain REG here it means a direct reference to
310 the register.
311
312 If this is not a simple copy from one location to another,
313 then we can not decompose this register. If this is a simple
314 copy from one pseudo-register to another, and the mode is right
315 then we mark the register as decomposable.
316 Otherwise we don't say anything about this register --
317 it could be decomposed, but whether that would be
318 profitable depends upon how it is used elsewhere.
319
320 We only set bits in the bitmap for multi-word
321 pseudo-registers, since those are the only ones we care about
322 and it keeps the size of the bitmaps down. */
323
324 regno = REGNO (x);
325 if (!HARD_REGISTER_NUM_P (regno)
326 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
327 {
328 switch (*pcmi)
329 {
330 case NOT_SIMPLE_MOVE:
331 bitmap_set_bit (non_decomposable_context, regno);
332 break;
333 case SIMPLE_PSEUDO_REG_MOVE:
334 if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
335 bitmap_set_bit (decomposable_context, regno);
336 break;
337 case SIMPLE_MOVE:
338 break;
339 default:
340 gcc_unreachable ();
341 }
342 }
343 }
344 else if (MEM_P (x))
345 {
346 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
347
348 /* Any registers used in a MEM do not participate in a
349 SIMPLE_MOVE or SIMPLE_PSEUDO_REG_MOVE. Do our own recursion
350 here, and return -1 to block the parent's recursion. */
351 for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem);
352 return -1;
353 }
354
355 return 0;
356 }
357
358 /* Decompose REGNO into word-sized components. We smash the REG node
359 in place. This ensures that (1) something goes wrong quickly if we
360 fail to make some replacement, and (2) the debug information inside
361 the symbol table is automatically kept up to date. */
362
363 static void
364 decompose_register (unsigned int regno)
365 {
366 rtx reg;
367 unsigned int words, i;
368 rtvec v;
369
370 reg = regno_reg_rtx[regno];
371
372 regno_reg_rtx[regno] = NULL_RTX;
373
374 words = GET_MODE_SIZE (GET_MODE (reg));
375 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
376
377 v = rtvec_alloc (words);
378 for (i = 0; i < words; ++i)
379 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
380
381 PUT_CODE (reg, CONCATN);
382 XVEC (reg, 0) = v;
383
384 if (dump_file)
385 {
386 fprintf (dump_file, "; Splitting reg %u ->", regno);
387 for (i = 0; i < words; ++i)
388 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
389 fputc ('\n', dump_file);
390 }
391 }
392
393 /* Get a SUBREG of a CONCATN. */
394
395 static rtx
396 simplify_subreg_concatn (enum machine_mode outermode, rtx op,
397 unsigned int byte)
398 {
399 unsigned int inner_size;
400 enum machine_mode innermode, partmode;
401 rtx part;
402 unsigned int final_offset;
403
404 gcc_assert (GET_CODE (op) == CONCATN);
405 gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
406
407 innermode = GET_MODE (op);
408 gcc_assert (byte < GET_MODE_SIZE (innermode));
409 gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
410
411 inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
412 part = XVECEXP (op, 0, byte / inner_size);
413 partmode = GET_MODE (part);
414
415 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
416 regular CONST_VECTORs. They have vector or integer modes, depending
417 on the capabilities of the target. Cope with them. */
418 if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
419 partmode = GET_MODE_INNER (innermode);
420 else if (partmode == VOIDmode)
421 {
422 enum mode_class mclass = GET_MODE_CLASS (innermode);
423 partmode = mode_for_size (inner_size * BITS_PER_UNIT, mclass, 0);
424 }
425
426 final_offset = byte % inner_size;
427 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
428 return NULL_RTX;
429
430 return simplify_gen_subreg (outermode, part, partmode, final_offset);
431 }
432
433 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
434
435 static rtx
436 simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
437 enum machine_mode innermode, unsigned int byte)
438 {
439 rtx ret;
440
441 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
442 If OP is a SUBREG of a CONCATN, then it must be a simple mode
443 change with the same size and offset 0, or it must extract a
444 part. We shouldn't see anything else here. */
445 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
446 {
447 rtx op2;
448
449 if ((GET_MODE_SIZE (GET_MODE (op))
450 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
451 && SUBREG_BYTE (op) == 0)
452 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
453 GET_MODE (SUBREG_REG (op)), byte);
454
455 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
456 SUBREG_BYTE (op));
457 if (op2 == NULL_RTX)
458 {
459 /* We don't handle paradoxical subregs here. */
460 gcc_assert (GET_MODE_SIZE (outermode)
461 <= GET_MODE_SIZE (GET_MODE (op)));
462 gcc_assert (GET_MODE_SIZE (GET_MODE (op))
463 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
464 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
465 byte + SUBREG_BYTE (op));
466 gcc_assert (op2 != NULL_RTX);
467 return op2;
468 }
469
470 op = op2;
471 gcc_assert (op != NULL_RTX);
472 gcc_assert (innermode == GET_MODE (op));
473 }
474
475 if (GET_CODE (op) == CONCATN)
476 return simplify_subreg_concatn (outermode, op, byte);
477
478 ret = simplify_gen_subreg (outermode, op, innermode, byte);
479
480 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
481 resolve_simple_move will ask for the high part of the paradoxical
482 subreg, which does not have a value. Just return a zero. */
483 if (ret == NULL_RTX
484 && GET_CODE (op) == SUBREG
485 && SUBREG_BYTE (op) == 0
486 && (GET_MODE_SIZE (innermode)
487 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
488 return CONST0_RTX (outermode);
489
490 gcc_assert (ret != NULL_RTX);
491 return ret;
492 }
493
494 /* Return whether we should resolve X into the registers into which it
495 was decomposed. */
496
497 static bool
498 resolve_reg_p (rtx x)
499 {
500 return GET_CODE (x) == CONCATN;
501 }
502
503 /* Return whether X is a SUBREG of a register which we need to
504 resolve. */
505
506 static bool
507 resolve_subreg_p (rtx x)
508 {
509 if (GET_CODE (x) != SUBREG)
510 return false;
511 return resolve_reg_p (SUBREG_REG (x));
512 }
513
514 /* This is called via for_each_rtx. Look for SUBREGs which need to be
515 decomposed. */
516
517 static int
518 resolve_subreg_use (rtx *px, void *data)
519 {
520 rtx insn = (rtx) data;
521 rtx x = *px;
522
523 if (x == NULL_RTX)
524 return 0;
525
526 if (resolve_subreg_p (x))
527 {
528 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
529 SUBREG_BYTE (x));
530
531 /* It is possible for a note to contain a reference which we can
532 decompose. In this case, return 1 to the caller to indicate
533 that the note must be removed. */
534 if (!x)
535 {
536 gcc_assert (!insn);
537 return 1;
538 }
539
540 validate_change (insn, px, x, 1);
541 return -1;
542 }
543
544 if (resolve_reg_p (x))
545 {
546 /* Return 1 to the caller to indicate that we found a direct
547 reference to a register which is being decomposed. This can
548 happen inside notes, multiword shift or zero-extend
549 instructions. */
550 return 1;
551 }
552
553 return 0;
554 }
555
556 /* This is called via for_each_rtx. Look for SUBREGs which can be
557 decomposed and decomposed REGs that need copying. */
558
559 static int
560 adjust_decomposed_uses (rtx *px, void *data ATTRIBUTE_UNUSED)
561 {
562 rtx x = *px;
563
564 if (x == NULL_RTX)
565 return 0;
566
567 if (resolve_subreg_p (x))
568 {
569 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
570 SUBREG_BYTE (x));
571
572 if (x)
573 *px = x;
574 else
575 x = copy_rtx (*px);
576 }
577
578 if (resolve_reg_p (x))
579 *px = copy_rtx (x);
580
581 return 0;
582 }
583
584 /* Resolve any decomposed registers which appear in register notes on
585 INSN. */
586
587 static void
588 resolve_reg_notes (rtx insn)
589 {
590 rtx *pnote, note;
591
592 note = find_reg_equal_equiv_note (insn);
593 if (note)
594 {
595 int old_count = num_validated_changes ();
596 if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL))
597 remove_note (insn, note);
598 else
599 if (old_count != num_validated_changes ())
600 df_notes_rescan (insn);
601 }
602
603 pnote = &REG_NOTES (insn);
604 while (*pnote != NULL_RTX)
605 {
606 bool del = false;
607
608 note = *pnote;
609 switch (REG_NOTE_KIND (note))
610 {
611 case REG_DEAD:
612 case REG_UNUSED:
613 if (resolve_reg_p (XEXP (note, 0)))
614 del = true;
615 break;
616
617 default:
618 break;
619 }
620
621 if (del)
622 *pnote = XEXP (note, 1);
623 else
624 pnote = &XEXP (note, 1);
625 }
626 }
627
628 /* Return whether X can be decomposed into subwords. */
629
630 static bool
631 can_decompose_p (rtx x)
632 {
633 if (REG_P (x))
634 {
635 unsigned int regno = REGNO (x);
636
637 if (HARD_REGISTER_NUM_P (regno))
638 {
639 unsigned int byte, num_bytes;
640
641 num_bytes = GET_MODE_SIZE (GET_MODE (x));
642 for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
643 if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
644 return false;
645 return true;
646 }
647 else
648 return !bitmap_bit_p (subreg_context, regno);
649 }
650
651 return true;
652 }
653
654 /* Decompose the registers used in a simple move SET within INSN. If
655 we don't change anything, return INSN, otherwise return the start
656 of the sequence of moves. */
657
658 static rtx
659 resolve_simple_move (rtx set, rtx insn)
660 {
661 rtx src, dest, real_dest, insns;
662 enum machine_mode orig_mode, dest_mode;
663 unsigned int words;
664 bool pushing;
665
666 src = SET_SRC (set);
667 dest = SET_DEST (set);
668 orig_mode = GET_MODE (dest);
669
670 words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
671 if (words <= 1)
672 return insn;
673
674 start_sequence ();
675
676 /* We have to handle copying from a SUBREG of a decomposed reg where
677 the SUBREG is larger than word size. Rather than assume that we
678 can take a word_mode SUBREG of the destination, we copy to a new
679 register and then copy that to the destination. */
680
681 real_dest = NULL_RTX;
682
683 if (GET_CODE (src) == SUBREG
684 && resolve_reg_p (SUBREG_REG (src))
685 && (SUBREG_BYTE (src) != 0
686 || (GET_MODE_SIZE (orig_mode)
687 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
688 {
689 real_dest = dest;
690 dest = gen_reg_rtx (orig_mode);
691 if (REG_P (real_dest))
692 REG_ATTRS (dest) = REG_ATTRS (real_dest);
693 }
694
695 /* Similarly if we are copying to a SUBREG of a decomposed reg where
696 the SUBREG is larger than word size. */
697
698 if (GET_CODE (dest) == SUBREG
699 && resolve_reg_p (SUBREG_REG (dest))
700 && (SUBREG_BYTE (dest) != 0
701 || (GET_MODE_SIZE (orig_mode)
702 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
703 {
704 rtx reg, minsn, smove;
705
706 reg = gen_reg_rtx (orig_mode);
707 minsn = emit_move_insn (reg, src);
708 smove = single_set (minsn);
709 gcc_assert (smove != NULL_RTX);
710 resolve_simple_move (smove, minsn);
711 src = reg;
712 }
713
714 /* If we didn't have any big SUBREGS of decomposed registers, and
715 neither side of the move is a register we are decomposing, then
716 we don't have to do anything here. */
717
718 if (src == SET_SRC (set)
719 && dest == SET_DEST (set)
720 && !resolve_reg_p (src)
721 && !resolve_subreg_p (src)
722 && !resolve_reg_p (dest)
723 && !resolve_subreg_p (dest))
724 {
725 end_sequence ();
726 return insn;
727 }
728
729 /* It's possible for the code to use a subreg of a decomposed
730 register while forming an address. We need to handle that before
731 passing the address to emit_move_insn. We pass NULL_RTX as the
732 insn parameter to resolve_subreg_use because we can not validate
733 the insn yet. */
734 if (MEM_P (src) || MEM_P (dest))
735 {
736 int acg;
737
738 if (MEM_P (src))
739 for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX);
740 if (MEM_P (dest))
741 for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX);
742 acg = apply_change_group ();
743 gcc_assert (acg);
744 }
745
746 /* If SRC is a register which we can't decompose, or has side
747 effects, we need to move via a temporary register. */
748
749 if (!can_decompose_p (src)
750 || side_effects_p (src)
751 || GET_CODE (src) == ASM_OPERANDS)
752 {
753 rtx reg;
754
755 reg = gen_reg_rtx (orig_mode);
756 emit_move_insn (reg, src);
757 src = reg;
758 }
759
760 /* If DEST is a register which we can't decompose, or has side
761 effects, we need to first move to a temporary register. We
762 handle the common case of pushing an operand directly. We also
763 go through a temporary register if it holds a floating point
764 value. This gives us better code on systems which can't move
765 data easily between integer and floating point registers. */
766
767 dest_mode = orig_mode;
768 pushing = push_operand (dest, dest_mode);
769 if (!can_decompose_p (dest)
770 || (side_effects_p (dest) && !pushing)
771 || (!SCALAR_INT_MODE_P (dest_mode)
772 && !resolve_reg_p (dest)
773 && !resolve_subreg_p (dest)))
774 {
775 if (real_dest == NULL_RTX)
776 real_dest = dest;
777 if (!SCALAR_INT_MODE_P (dest_mode))
778 {
779 dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
780 MODE_INT, 0);
781 gcc_assert (dest_mode != BLKmode);
782 }
783 dest = gen_reg_rtx (dest_mode);
784 if (REG_P (real_dest))
785 REG_ATTRS (dest) = REG_ATTRS (real_dest);
786 }
787
788 if (pushing)
789 {
790 unsigned int i, j, jinc;
791
792 gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
793 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
794 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
795
796 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
797 {
798 j = 0;
799 jinc = 1;
800 }
801 else
802 {
803 j = words - 1;
804 jinc = -1;
805 }
806
807 for (i = 0; i < words; ++i, j += jinc)
808 {
809 rtx temp;
810
811 temp = copy_rtx (XEXP (dest, 0));
812 temp = adjust_automodify_address_nv (dest, word_mode, temp,
813 j * UNITS_PER_WORD);
814 emit_move_insn (temp,
815 simplify_gen_subreg_concatn (word_mode, src,
816 orig_mode,
817 j * UNITS_PER_WORD));
818 }
819 }
820 else
821 {
822 unsigned int i;
823
824 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
825 emit_clobber (dest);
826
827 for (i = 0; i < words; ++i)
828 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
829 dest_mode,
830 i * UNITS_PER_WORD),
831 simplify_gen_subreg_concatn (word_mode, src,
832 orig_mode,
833 i * UNITS_PER_WORD));
834 }
835
836 if (real_dest != NULL_RTX)
837 {
838 rtx mdest, minsn, smove;
839
840 if (dest_mode == orig_mode)
841 mdest = dest;
842 else
843 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
844 minsn = emit_move_insn (real_dest, mdest);
845
846 smove = single_set (minsn);
847 gcc_assert (smove != NULL_RTX);
848
849 resolve_simple_move (smove, minsn);
850 }
851
852 insns = get_insns ();
853 end_sequence ();
854
855 copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
856
857 emit_insn_before (insns, insn);
858
859 delete_insn (insn);
860
861 return insns;
862 }
863
864 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
865 component registers. Return whether we changed something. */
866
867 static bool
868 resolve_clobber (rtx pat, rtx insn)
869 {
870 rtx reg;
871 enum machine_mode orig_mode;
872 unsigned int words, i;
873 int ret;
874
875 reg = XEXP (pat, 0);
876 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
877 return false;
878
879 orig_mode = GET_MODE (reg);
880 words = GET_MODE_SIZE (orig_mode);
881 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
882
883 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
884 simplify_gen_subreg_concatn (word_mode, reg,
885 orig_mode, 0),
886 0);
887 df_insn_rescan (insn);
888 gcc_assert (ret != 0);
889
890 for (i = words - 1; i > 0; --i)
891 {
892 rtx x;
893
894 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
895 i * UNITS_PER_WORD);
896 x = gen_rtx_CLOBBER (VOIDmode, x);
897 emit_insn_after (x, insn);
898 }
899
900 resolve_reg_notes (insn);
901
902 return true;
903 }
904
905 /* A USE of a decomposed register is no longer meaningful. Return
906 whether we changed something. */
907
908 static bool
909 resolve_use (rtx pat, rtx insn)
910 {
911 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
912 {
913 delete_insn (insn);
914 return true;
915 }
916
917 resolve_reg_notes (insn);
918
919 return false;
920 }
921
922 /* A VAR_LOCATION can be simplified. */
923
924 static void
925 resolve_debug (rtx insn)
926 {
927 for_each_rtx (&PATTERN (insn), adjust_decomposed_uses, NULL_RTX);
928
929 df_insn_rescan (insn);
930
931 resolve_reg_notes (insn);
932 }
933
934 /* Checks if INSN is a decomposable multiword-shift or zero-extend and
935 sets the decomposable_context bitmap accordingly. A non-zero value
936 is returned if a decomposable insn has been found. */
937
938 static int
939 find_decomposable_shift_zext (rtx insn)
940 {
941 rtx set;
942 rtx op;
943 rtx op_operand;
944
945 set = single_set (insn);
946 if (!set)
947 return 0;
948
949 op = SET_SRC (set);
950 if (GET_CODE (op) != ASHIFT
951 && GET_CODE (op) != LSHIFTRT
952 && GET_CODE (op) != ZERO_EXTEND)
953 return 0;
954
955 op_operand = XEXP (op, 0);
956 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
957 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
958 || HARD_REGISTER_NUM_P (REGNO (op_operand))
959 || !SCALAR_INT_MODE_P (GET_MODE (op)))
960 return 0;
961
962 if (GET_CODE (op) == ZERO_EXTEND)
963 {
964 if (GET_MODE (op_operand) != word_mode
965 || GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD)
966 return 0;
967 }
968 else /* left or right shift */
969 {
970 if (!CONST_INT_P (XEXP (op, 1))
971 || INTVAL (XEXP (op, 1)) < BITS_PER_WORD
972 || GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD)
973 return 0;
974 }
975
976 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
977
978 if (GET_CODE (op) != ZERO_EXTEND)
979 bitmap_set_bit (decomposable_context, REGNO (op_operand));
980
981 return 1;
982 }
983
984 /* Decompose a more than word wide shift (in INSN) of a multiword
985 pseudo or a multiword zero-extend of a wordmode pseudo into a move
986 and 'set to zero' insn. Return a pointer to the new insn when a
987 replacement was done. */
988
989 static rtx
990 resolve_shift_zext (rtx insn)
991 {
992 rtx set;
993 rtx op;
994 rtx op_operand;
995 rtx insns;
996 rtx src_reg, dest_reg, dest_zero;
997 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
998
999 set = single_set (insn);
1000 if (!set)
1001 return NULL_RTX;
1002
1003 op = SET_SRC (set);
1004 if (GET_CODE (op) != ASHIFT
1005 && GET_CODE (op) != LSHIFTRT
1006 && GET_CODE (op) != ZERO_EXTEND)
1007 return NULL_RTX;
1008
1009 op_operand = XEXP (op, 0);
1010
1011 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
1012 return NULL_RTX;
1013
1014 /* src_reg_num is the number of the word mode register which we
1015 are operating on. For a left shift and a zero_extend on little
1016 endian machines this is register 0. */
1017 src_reg_num = GET_CODE (op) == LSHIFTRT ? 1 : 0;
1018
1019 if (WORDS_BIG_ENDIAN
1020 && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
1021 src_reg_num = 1 - src_reg_num;
1022
1023 if (GET_CODE (op) == ZERO_EXTEND)
1024 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
1025 else
1026 dest_reg_num = 1 - src_reg_num;
1027
1028 offset1 = UNITS_PER_WORD * dest_reg_num;
1029 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1030 src_offset = UNITS_PER_WORD * src_reg_num;
1031
1032 start_sequence ();
1033
1034 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1035 GET_MODE (SET_DEST (set)),
1036 offset1);
1037 dest_zero = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1038 GET_MODE (SET_DEST (set)),
1039 offset2);
1040 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1041 GET_MODE (op_operand),
1042 src_offset);
1043 if (GET_CODE (op) != ZERO_EXTEND)
1044 {
1045 int shift_count = INTVAL (XEXP (op, 1));
1046 if (shift_count > BITS_PER_WORD)
1047 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1048 LSHIFT_EXPR : RSHIFT_EXPR,
1049 word_mode, src_reg,
1050 shift_count - BITS_PER_WORD,
1051 dest_reg, 1);
1052 }
1053
1054 if (dest_reg != src_reg)
1055 emit_move_insn (dest_reg, src_reg);
1056 emit_move_insn (dest_zero, CONST0_RTX (word_mode));
1057 insns = get_insns ();
1058
1059 end_sequence ();
1060
1061 emit_insn_before (insns, insn);
1062
1063 if (dump_file)
1064 {
1065 rtx in;
1066 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1067 for (in = insns; in != insn; in = NEXT_INSN (in))
1068 fprintf (dump_file, "%d ", INSN_UID (in));
1069 fprintf (dump_file, "\n");
1070 }
1071
1072 delete_insn (insn);
1073 return insns;
1074 }
1075
1076 /* Look for registers which are always accessed via word-sized SUBREGs
1077 or via copies. Decompose these registers into several word-sized
1078 pseudo-registers. */
1079
1080 static void
1081 decompose_multiword_subregs (void)
1082 {
1083 unsigned int max;
1084 basic_block bb;
1085
1086 if (df)
1087 df_set_flags (DF_DEFER_INSN_RESCAN);
1088
1089 max = max_reg_num ();
1090
1091 /* First see if there are any multi-word pseudo-registers. If there
1092 aren't, there is nothing we can do. This should speed up this
1093 pass in the normal case, since it should be faster than scanning
1094 all the insns. */
1095 {
1096 unsigned int i;
1097
1098 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1099 {
1100 if (regno_reg_rtx[i] != NULL
1101 && GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD)
1102 break;
1103 }
1104 if (i == max)
1105 return;
1106 }
1107
1108 if (df)
1109 run_word_dce ();
1110
1111 /* FIXME: When the dataflow branch is merged, we can change this
1112 code to look for each multi-word pseudo-register and to find each
1113 insn which sets or uses that register. That should be faster
1114 than scanning all the insns. */
1115
1116 decomposable_context = BITMAP_ALLOC (NULL);
1117 non_decomposable_context = BITMAP_ALLOC (NULL);
1118 subreg_context = BITMAP_ALLOC (NULL);
1119
1120 reg_copy_graph = VEC_alloc (bitmap, heap, max);
1121 VEC_safe_grow (bitmap, heap, reg_copy_graph, max);
1122 memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max);
1123
1124 FOR_EACH_BB (bb)
1125 {
1126 rtx insn;
1127
1128 FOR_BB_INSNS (bb, insn)
1129 {
1130 rtx set;
1131 enum classify_move_insn cmi;
1132 int i, n;
1133
1134 if (!INSN_P (insn)
1135 || GET_CODE (PATTERN (insn)) == CLOBBER
1136 || GET_CODE (PATTERN (insn)) == USE)
1137 continue;
1138
1139 recog_memoized (insn);
1140
1141 if (find_decomposable_shift_zext (insn))
1142 continue;
1143
1144 extract_insn (insn);
1145
1146 set = simple_move (insn);
1147
1148 if (!set)
1149 cmi = NOT_SIMPLE_MOVE;
1150 else
1151 {
1152 if (find_pseudo_copy (set))
1153 cmi = SIMPLE_PSEUDO_REG_MOVE;
1154 else
1155 cmi = SIMPLE_MOVE;
1156 }
1157
1158 n = recog_data.n_operands;
1159 for (i = 0; i < n; ++i)
1160 {
1161 for_each_rtx (&recog_data.operand[i],
1162 find_decomposable_subregs,
1163 &cmi);
1164
1165 /* We handle ASM_OPERANDS as a special case to support
1166 things like x86 rdtsc which returns a DImode value.
1167 We can decompose the output, which will certainly be
1168 operand 0, but not the inputs. */
1169
1170 if (cmi == SIMPLE_MOVE
1171 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1172 {
1173 gcc_assert (i == 0);
1174 cmi = NOT_SIMPLE_MOVE;
1175 }
1176 }
1177 }
1178 }
1179
1180 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1181 if (!bitmap_empty_p (decomposable_context))
1182 {
1183 sbitmap sub_blocks;
1184 unsigned int i;
1185 sbitmap_iterator sbi;
1186 bitmap_iterator iter;
1187 unsigned int regno;
1188
1189 propagate_pseudo_copies ();
1190
1191 sub_blocks = sbitmap_alloc (last_basic_block);
1192 sbitmap_zero (sub_blocks);
1193
1194 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1195 decompose_register (regno);
1196
1197 FOR_EACH_BB (bb)
1198 {
1199 rtx insn;
1200
1201 FOR_BB_INSNS (bb, insn)
1202 {
1203 rtx pat;
1204
1205 if (!INSN_P (insn))
1206 continue;
1207
1208 pat = PATTERN (insn);
1209 if (GET_CODE (pat) == CLOBBER)
1210 resolve_clobber (pat, insn);
1211 else if (GET_CODE (pat) == USE)
1212 resolve_use (pat, insn);
1213 else if (DEBUG_INSN_P (insn))
1214 resolve_debug (insn);
1215 else
1216 {
1217 rtx set;
1218 int i;
1219
1220 recog_memoized (insn);
1221 extract_insn (insn);
1222
1223 set = simple_move (insn);
1224 if (set)
1225 {
1226 rtx orig_insn = insn;
1227 bool cfi = control_flow_insn_p (insn);
1228
1229 /* We can end up splitting loads to multi-word pseudos
1230 into separate loads to machine word size pseudos.
1231 When this happens, we first had one load that can
1232 throw, and after resolve_simple_move we'll have a
1233 bunch of loads (at least two). All those loads may
1234 trap if we can have non-call exceptions, so they
1235 all will end the current basic block. We split the
1236 block after the outer loop over all insns, but we
1237 make sure here that we will be able to split the
1238 basic block and still produce the correct control
1239 flow graph for it. */
1240 gcc_assert (!cfi
1241 || (cfun->can_throw_non_call_exceptions
1242 && can_throw_internal (insn)));
1243
1244 insn = resolve_simple_move (set, insn);
1245 if (insn != orig_insn)
1246 {
1247 recog_memoized (insn);
1248 extract_insn (insn);
1249
1250 if (cfi)
1251 SET_BIT (sub_blocks, bb->index);
1252 }
1253 }
1254 else
1255 {
1256 rtx decomposed_shift;
1257
1258 decomposed_shift = resolve_shift_zext (insn);
1259 if (decomposed_shift != NULL_RTX)
1260 {
1261 insn = decomposed_shift;
1262 recog_memoized (insn);
1263 extract_insn (insn);
1264 }
1265 }
1266
1267 for (i = recog_data.n_operands - 1; i >= 0; --i)
1268 for_each_rtx (recog_data.operand_loc[i],
1269 resolve_subreg_use,
1270 insn);
1271
1272 resolve_reg_notes (insn);
1273
1274 if (num_validated_changes () > 0)
1275 {
1276 for (i = recog_data.n_dups - 1; i >= 0; --i)
1277 {
1278 rtx *pl = recog_data.dup_loc[i];
1279 int dup_num = recog_data.dup_num[i];
1280 rtx *px = recog_data.operand_loc[dup_num];
1281
1282 validate_unshare_change (insn, pl, *px, 1);
1283 }
1284
1285 i = apply_change_group ();
1286 gcc_assert (i);
1287 }
1288 }
1289 }
1290 }
1291
1292 /* If we had insns to split that caused control flow insns in the middle
1293 of a basic block, split those blocks now. Note that we only handle
1294 the case where splitting a load has caused multiple possibly trapping
1295 loads to appear. */
1296 EXECUTE_IF_SET_IN_SBITMAP (sub_blocks, 0, i, sbi)
1297 {
1298 rtx insn, end;
1299 edge fallthru;
1300
1301 bb = BASIC_BLOCK (i);
1302 insn = BB_HEAD (bb);
1303 end = BB_END (bb);
1304
1305 while (insn != end)
1306 {
1307 if (control_flow_insn_p (insn))
1308 {
1309 /* Split the block after insn. There will be a fallthru
1310 edge, which is OK so we keep it. We have to create the
1311 exception edges ourselves. */
1312 fallthru = split_block (bb, insn);
1313 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1314 bb = fallthru->dest;
1315 insn = BB_HEAD (bb);
1316 }
1317 else
1318 insn = NEXT_INSN (insn);
1319 }
1320 }
1321
1322 sbitmap_free (sub_blocks);
1323 }
1324
1325 {
1326 unsigned int i;
1327 bitmap b;
1328
1329 FOR_EACH_VEC_ELT (bitmap, reg_copy_graph, i, b)
1330 if (b)
1331 BITMAP_FREE (b);
1332 }
1333
1334 VEC_free (bitmap, heap, reg_copy_graph);
1335
1336 BITMAP_FREE (decomposable_context);
1337 BITMAP_FREE (non_decomposable_context);
1338 BITMAP_FREE (subreg_context);
1339 }
1340 \f
1341 /* Gate function for lower subreg pass. */
1342
1343 static bool
1344 gate_handle_lower_subreg (void)
1345 {
1346 return flag_split_wide_types != 0;
1347 }
1348
1349 /* Implement first lower subreg pass. */
1350
1351 static unsigned int
1352 rest_of_handle_lower_subreg (void)
1353 {
1354 decompose_multiword_subregs ();
1355 return 0;
1356 }
1357
1358 /* Implement second lower subreg pass. */
1359
1360 static unsigned int
1361 rest_of_handle_lower_subreg2 (void)
1362 {
1363 decompose_multiword_subregs ();
1364 return 0;
1365 }
1366
1367 struct rtl_opt_pass pass_lower_subreg =
1368 {
1369 {
1370 RTL_PASS,
1371 "subreg1", /* name */
1372 gate_handle_lower_subreg, /* gate */
1373 rest_of_handle_lower_subreg, /* execute */
1374 NULL, /* sub */
1375 NULL, /* next */
1376 0, /* static_pass_number */
1377 TV_LOWER_SUBREG, /* tv_id */
1378 0, /* properties_required */
1379 0, /* properties_provided */
1380 0, /* properties_destroyed */
1381 0, /* todo_flags_start */
1382 TODO_ggc_collect |
1383 TODO_verify_flow /* todo_flags_finish */
1384 }
1385 };
1386
1387 struct rtl_opt_pass pass_lower_subreg2 =
1388 {
1389 {
1390 RTL_PASS,
1391 "subreg2", /* name */
1392 gate_handle_lower_subreg, /* gate */
1393 rest_of_handle_lower_subreg2, /* execute */
1394 NULL, /* sub */
1395 NULL, /* next */
1396 0, /* static_pass_number */
1397 TV_LOWER_SUBREG, /* tv_id */
1398 0, /* properties_required */
1399 0, /* properties_provided */
1400 0, /* properties_destroyed */
1401 0, /* todo_flags_start */
1402 TODO_df_finish | TODO_verify_rtl_sharing |
1403 TODO_ggc_collect |
1404 TODO_verify_flow /* todo_flags_finish */
1405 }
1406 };