lra: Canonicalize mult to shift in address reloads
[gcc.git] / gcc / lra-constraints.c
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2020 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
25
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
33
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
41
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
46
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
49
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
54
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
58
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
62
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
67
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
71
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
75
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
83
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
86
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
92
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
95
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
101
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
106
107 #undef REG_OK_STRICT
108
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "lra.h"
131 #include "lra-int.h"
132 #include "print-rtl.h"
133 #include "function-abi.h"
134 #include "rtl-iter.h"
135
136 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
137 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
138 reload insns. */
139 static int bb_reload_num;
140
141 /* The current insn being processed and corresponding its single set
142 (NULL otherwise), its data (basic block, the insn data, the insn
143 static data, and the mode of each operand). */
144 static rtx_insn *curr_insn;
145 static rtx curr_insn_set;
146 static basic_block curr_bb;
147 static lra_insn_recog_data_t curr_id;
148 static struct lra_static_insn_data *curr_static_id;
149 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
150 /* Mode of the register substituted by its equivalence with VOIDmode
151 (e.g. constant) and whose subreg is given operand of the current
152 insn. VOIDmode in all other cases. */
153 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
154
155 \f
156
157 /* Start numbers for new registers and insns at the current constraints
158 pass start. */
159 static int new_regno_start;
160 static int new_insn_uid_start;
161
162 /* If LOC is nonnull, strip any outer subreg from it. */
163 static inline rtx *
164 strip_subreg (rtx *loc)
165 {
166 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
167 }
168
169 /* Return hard regno of REGNO or if it is was not assigned to a hard
170 register, use a hard register from its allocno class. */
171 static int
172 get_try_hard_regno (int regno)
173 {
174 int hard_regno;
175 enum reg_class rclass;
176
177 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
178 hard_regno = lra_get_regno_hard_regno (regno);
179 if (hard_regno >= 0)
180 return hard_regno;
181 rclass = lra_get_allocno_class (regno);
182 if (rclass == NO_REGS)
183 return -1;
184 return ira_class_hard_regs[rclass][0];
185 }
186
187 /* Return the hard regno of X after removing its subreg. If X is not
188 a register or a subreg of a register, return -1. If X is a pseudo,
189 use its assignment. If FINAL_P return the final hard regno which will
190 be after elimination. */
191 static int
192 get_hard_regno (rtx x, bool final_p)
193 {
194 rtx reg;
195 int hard_regno;
196
197 reg = x;
198 if (SUBREG_P (x))
199 reg = SUBREG_REG (x);
200 if (! REG_P (reg))
201 return -1;
202 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
203 hard_regno = lra_get_regno_hard_regno (hard_regno);
204 if (hard_regno < 0)
205 return -1;
206 if (final_p)
207 hard_regno = lra_get_elimination_hard_regno (hard_regno);
208 if (SUBREG_P (x))
209 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
210 SUBREG_BYTE (x), GET_MODE (x));
211 return hard_regno;
212 }
213
214 /* If REGNO is a hard register or has been allocated a hard register,
215 return the class of that register. If REGNO is a reload pseudo
216 created by the current constraints pass, return its allocno class.
217 Return NO_REGS otherwise. */
218 static enum reg_class
219 get_reg_class (int regno)
220 {
221 int hard_regno;
222
223 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
224 hard_regno = lra_get_regno_hard_regno (regno);
225 if (hard_regno >= 0)
226 {
227 hard_regno = lra_get_elimination_hard_regno (hard_regno);
228 return REGNO_REG_CLASS (hard_regno);
229 }
230 if (regno >= new_regno_start)
231 return lra_get_allocno_class (regno);
232 return NO_REGS;
233 }
234
235 /* Return true if REG satisfies (or will satisfy) reg class constraint
236 CL. Use elimination first if REG is a hard register. If REG is a
237 reload pseudo created by this constraints pass, assume that it will
238 be allocated a hard register from its allocno class, but allow that
239 class to be narrowed to CL if it is currently a superset of CL.
240
241 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
242 REGNO (reg), or NO_REGS if no change in its class was needed. */
243 static bool
244 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 {
246 enum reg_class rclass, common_class;
247 machine_mode reg_mode;
248 int class_size, hard_regno, nregs, i, j;
249 int regno = REGNO (reg);
250
251 if (new_class != NULL)
252 *new_class = NO_REGS;
253 if (regno < FIRST_PSEUDO_REGISTER)
254 {
255 rtx final_reg = reg;
256 rtx *final_loc = &final_reg;
257
258 lra_eliminate_reg_if_possible (final_loc);
259 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 }
261 reg_mode = GET_MODE (reg);
262 rclass = get_reg_class (regno);
263 if (regno < new_regno_start
264 /* Do not allow the constraints for reload instructions to
265 influence the classes of new pseudos. These reloads are
266 typically moves that have many alternatives, and restricting
267 reload pseudos for one alternative may lead to situations
268 where other reload pseudos are no longer allocatable. */
269 || (INSN_UID (curr_insn) >= new_insn_uid_start
270 && curr_insn_set != NULL
271 && ((OBJECT_P (SET_SRC (curr_insn_set))
272 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
273 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
274 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
275 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
276 /* When we don't know what class will be used finally for reload
277 pseudos, we use ALL_REGS. */
278 return ((regno >= new_regno_start && rclass == ALL_REGS)
279 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
280 && ! hard_reg_set_subset_p (reg_class_contents[cl],
281 lra_no_alloc_regs)));
282 else
283 {
284 common_class = ira_reg_class_subset[rclass][cl];
285 if (new_class != NULL)
286 *new_class = common_class;
287 if (hard_reg_set_subset_p (reg_class_contents[common_class],
288 lra_no_alloc_regs))
289 return false;
290 /* Check that there are enough allocatable regs. */
291 class_size = ira_class_hard_regs_num[common_class];
292 for (i = 0; i < class_size; i++)
293 {
294 hard_regno = ira_class_hard_regs[common_class][i];
295 nregs = hard_regno_nregs (hard_regno, reg_mode);
296 if (nregs == 1)
297 return true;
298 for (j = 0; j < nregs; j++)
299 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
300 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
301 hard_regno + j))
302 break;
303 if (j >= nregs)
304 return true;
305 }
306 return false;
307 }
308 }
309
310 /* Return true if REGNO satisfies a memory constraint. */
311 static bool
312 in_mem_p (int regno)
313 {
314 return get_reg_class (regno) == NO_REGS;
315 }
316
317 /* Return 1 if ADDR is a valid memory address for mode MODE in address
318 space AS, and check that each pseudo has the proper kind of hard
319 reg. */
320 static int
321 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
322 rtx addr, addr_space_t as)
323 {
324 #ifdef GO_IF_LEGITIMATE_ADDRESS
325 lra_assert (ADDR_SPACE_GENERIC_P (as));
326 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
327 return 0;
328
329 win:
330 return 1;
331 #else
332 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
333 #endif
334 }
335
336 namespace {
337 /* Temporarily eliminates registers in an address (for the lifetime of
338 the object). */
339 class address_eliminator {
340 public:
341 address_eliminator (struct address_info *ad);
342 ~address_eliminator ();
343
344 private:
345 struct address_info *m_ad;
346 rtx *m_base_loc;
347 rtx m_base_reg;
348 rtx *m_index_loc;
349 rtx m_index_reg;
350 };
351 }
352
353 address_eliminator::address_eliminator (struct address_info *ad)
354 : m_ad (ad),
355 m_base_loc (strip_subreg (ad->base_term)),
356 m_base_reg (NULL_RTX),
357 m_index_loc (strip_subreg (ad->index_term)),
358 m_index_reg (NULL_RTX)
359 {
360 if (m_base_loc != NULL)
361 {
362 m_base_reg = *m_base_loc;
363 /* If we have non-legitimate address which is decomposed not in
364 the way we expected, don't do elimination here. In such case
365 the address will be reloaded and elimination will be done in
366 reload insn finally. */
367 if (REG_P (m_base_reg))
368 lra_eliminate_reg_if_possible (m_base_loc);
369 if (m_ad->base_term2 != NULL)
370 *m_ad->base_term2 = *m_ad->base_term;
371 }
372 if (m_index_loc != NULL)
373 {
374 m_index_reg = *m_index_loc;
375 if (REG_P (m_index_reg))
376 lra_eliminate_reg_if_possible (m_index_loc);
377 }
378 }
379
380 address_eliminator::~address_eliminator ()
381 {
382 if (m_base_loc && *m_base_loc != m_base_reg)
383 {
384 *m_base_loc = m_base_reg;
385 if (m_ad->base_term2 != NULL)
386 *m_ad->base_term2 = *m_ad->base_term;
387 }
388 if (m_index_loc && *m_index_loc != m_index_reg)
389 *m_index_loc = m_index_reg;
390 }
391
392 /* Return true if the eliminated form of AD is a legitimate target address.
393 If OP is a MEM, AD is the address within OP, otherwise OP should be
394 ignored. CONSTRAINT is one constraint that the operand may need
395 to meet. */
396 static bool
397 valid_address_p (rtx op, struct address_info *ad,
398 enum constraint_num constraint)
399 {
400 address_eliminator eliminator (ad);
401
402 /* Allow a memory OP if it matches CONSTRAINT, even if CONSTRAINT is more
403 forgiving than "m". */
404 if (MEM_P (op)
405 && (insn_extra_memory_constraint (constraint)
406 || insn_extra_special_memory_constraint (constraint))
407 && constraint_satisfied_p (op, constraint))
408 return true;
409
410 return valid_address_p (ad->mode, *ad->outer, ad->as);
411 }
412
413 /* Return true if the eliminated form of memory reference OP satisfies
414 extra (special) memory constraint CONSTRAINT. */
415 static bool
416 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
417 {
418 struct address_info ad;
419
420 decompose_mem_address (&ad, op);
421 address_eliminator eliminator (&ad);
422 return constraint_satisfied_p (op, constraint);
423 }
424
425 /* Return true if the eliminated form of address AD satisfies extra
426 address constraint CONSTRAINT. */
427 static bool
428 satisfies_address_constraint_p (struct address_info *ad,
429 enum constraint_num constraint)
430 {
431 address_eliminator eliminator (ad);
432 return constraint_satisfied_p (*ad->outer, constraint);
433 }
434
435 /* Return true if the eliminated form of address OP satisfies extra
436 address constraint CONSTRAINT. */
437 static bool
438 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
439 {
440 struct address_info ad;
441
442 decompose_lea_address (&ad, &op);
443 return satisfies_address_constraint_p (&ad, constraint);
444 }
445
446 /* Initiate equivalences for LRA. As we keep original equivalences
447 before any elimination, we need to make copies otherwise any change
448 in insns might change the equivalences. */
449 void
450 lra_init_equiv (void)
451 {
452 ira_expand_reg_equiv ();
453 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
454 {
455 rtx res;
456
457 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
458 ira_reg_equiv[i].memory = copy_rtx (res);
459 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
460 ira_reg_equiv[i].invariant = copy_rtx (res);
461 }
462 }
463
464 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
465
466 /* Update equivalence for REGNO. We need to this as the equivalence
467 might contain other pseudos which are changed by their
468 equivalences. */
469 static void
470 update_equiv (int regno)
471 {
472 rtx x;
473
474 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
475 ira_reg_equiv[regno].memory
476 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
477 NULL_RTX);
478 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
479 ira_reg_equiv[regno].invariant
480 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
481 NULL_RTX);
482 }
483
484 /* If we have decided to substitute X with another value, return that
485 value, otherwise return X. */
486 static rtx
487 get_equiv (rtx x)
488 {
489 int regno;
490 rtx res;
491
492 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
493 || ! ira_reg_equiv[regno].defined_p
494 || ! ira_reg_equiv[regno].profitable_p
495 || lra_get_regno_hard_regno (regno) >= 0)
496 return x;
497 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
498 {
499 if (targetm.cannot_substitute_mem_equiv_p (res))
500 return x;
501 return res;
502 }
503 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
504 return res;
505 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
506 return res;
507 gcc_unreachable ();
508 }
509
510 /* If we have decided to substitute X with the equivalent value,
511 return that value after elimination for INSN, otherwise return
512 X. */
513 static rtx
514 get_equiv_with_elimination (rtx x, rtx_insn *insn)
515 {
516 rtx res = get_equiv (x);
517
518 if (x == res || CONSTANT_P (res))
519 return res;
520 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
521 false, false, 0, true);
522 }
523
524 /* Set up curr_operand_mode. */
525 static void
526 init_curr_operand_mode (void)
527 {
528 int nop = curr_static_id->n_operands;
529 for (int i = 0; i < nop; i++)
530 {
531 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
532 if (mode == VOIDmode)
533 {
534 /* The .md mode for address operands is the mode of the
535 addressed value rather than the mode of the address itself. */
536 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
537 mode = Pmode;
538 else
539 mode = curr_static_id->operand[i].mode;
540 }
541 curr_operand_mode[i] = mode;
542 }
543 }
544
545 \f
546
547 /* The page contains code to reuse input reloads. */
548
549 /* Structure describes input reload of the current insns. */
550 struct input_reload
551 {
552 /* True for input reload of matched operands. */
553 bool match_p;
554 /* Reloaded value. */
555 rtx input;
556 /* Reload pseudo used. */
557 rtx reg;
558 };
559
560 /* The number of elements in the following array. */
561 static int curr_insn_input_reloads_num;
562 /* Array containing info about input reloads. It is used to find the
563 same input reload and reuse the reload pseudo in this case. */
564 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
565
566 /* Initiate data concerning reuse of input reloads for the current
567 insn. */
568 static void
569 init_curr_insn_input_reloads (void)
570 {
571 curr_insn_input_reloads_num = 0;
572 }
573
574 /* The canonical form of an rtx inside a MEM is not necessarily the same as the
575 canonical form of the rtx outside the MEM. Fix this up in the case that
576 we're reloading an address (and therefore pulling it outside a MEM). */
577 static rtx
578 canonicalize_reload_addr (rtx addr)
579 {
580 subrtx_var_iterator::array_type array;
581 FOR_EACH_SUBRTX_VAR (iter, array, addr, NONCONST)
582 {
583 rtx x = *iter;
584 if (GET_CODE (x) == MULT && CONST_INT_P (XEXP (x, 1)))
585 {
586 const HOST_WIDE_INT ci = INTVAL (XEXP (x, 1));
587 const int pwr2 = exact_log2 (ci);
588 if (pwr2 > 0)
589 {
590 /* Rewrite this to use a shift instead, which is canonical when
591 outside of a MEM. */
592 PUT_CODE (x, ASHIFT);
593 XEXP (x, 1) = GEN_INT (pwr2);
594 }
595 }
596 }
597
598 return addr;
599 }
600
601 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
602 created input reload pseudo (only if TYPE is not OP_OUT). Don't
603 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
604 wrapped up in SUBREG. The result pseudo is returned through
605 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
606 reused the already created input reload pseudo. Use TITLE to
607 describe new registers for debug purposes. */
608 static bool
609 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
610 enum reg_class rclass, bool in_subreg_p,
611 const char *title, rtx *result_reg)
612 {
613 int i, regno;
614 enum reg_class new_class;
615 bool unique_p = false;
616
617 if (type == OP_OUT)
618 {
619 *result_reg
620 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
621 return true;
622 }
623 /* Prevent reuse value of expression with side effects,
624 e.g. volatile memory. */
625 if (! side_effects_p (original))
626 for (i = 0; i < curr_insn_input_reloads_num; i++)
627 {
628 if (! curr_insn_input_reloads[i].match_p
629 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
630 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
631 {
632 rtx reg = curr_insn_input_reloads[i].reg;
633 regno = REGNO (reg);
634 /* If input is equal to original and both are VOIDmode,
635 GET_MODE (reg) might be still different from mode.
636 Ensure we don't return *result_reg with wrong mode. */
637 if (GET_MODE (reg) != mode)
638 {
639 if (in_subreg_p)
640 continue;
641 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
642 GET_MODE_SIZE (mode)))
643 continue;
644 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
645 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
646 continue;
647 }
648 *result_reg = reg;
649 if (lra_dump_file != NULL)
650 {
651 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
652 dump_value_slim (lra_dump_file, original, 1);
653 }
654 if (new_class != lra_get_allocno_class (regno))
655 lra_change_class (regno, new_class, ", change to", false);
656 if (lra_dump_file != NULL)
657 fprintf (lra_dump_file, "\n");
658 return false;
659 }
660 /* If we have an input reload with a different mode, make sure it
661 will get a different hard reg. */
662 else if (REG_P (original)
663 && REG_P (curr_insn_input_reloads[i].input)
664 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
665 && (GET_MODE (original)
666 != GET_MODE (curr_insn_input_reloads[i].input)))
667 unique_p = true;
668 }
669 *result_reg = (unique_p
670 ? lra_create_new_reg_with_unique_value
671 : lra_create_new_reg) (mode, original, rclass, title);
672 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
673 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
674 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
675 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
676 return true;
677 }
678
679 \f
680 /* The page contains major code to choose the current insn alternative
681 and generate reloads for it. */
682
683 /* Return the offset from REGNO of the least significant register
684 in (reg:MODE REGNO).
685
686 This function is used to tell whether two registers satisfy
687 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
688
689 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
690 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
691 int
692 lra_constraint_offset (int regno, machine_mode mode)
693 {
694 lra_assert (regno < FIRST_PSEUDO_REGISTER);
695
696 scalar_int_mode int_mode;
697 if (WORDS_BIG_ENDIAN
698 && is_a <scalar_int_mode> (mode, &int_mode)
699 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
700 return hard_regno_nregs (regno, mode) - 1;
701 return 0;
702 }
703
704 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
705 if they are the same hard reg, and has special hacks for
706 auto-increment and auto-decrement. This is specifically intended for
707 process_alt_operands to use in determining whether two operands
708 match. X is the operand whose number is the lower of the two.
709
710 It is supposed that X is the output operand and Y is the input
711 operand. Y_HARD_REGNO is the final hard regno of register Y or
712 register in subreg Y as we know it now. Otherwise, it is a
713 negative value. */
714 static bool
715 operands_match_p (rtx x, rtx y, int y_hard_regno)
716 {
717 int i;
718 RTX_CODE code = GET_CODE (x);
719 const char *fmt;
720
721 if (x == y)
722 return true;
723 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
724 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
725 {
726 int j;
727
728 i = get_hard_regno (x, false);
729 if (i < 0)
730 goto slow;
731
732 if ((j = y_hard_regno) < 0)
733 goto slow;
734
735 i += lra_constraint_offset (i, GET_MODE (x));
736 j += lra_constraint_offset (j, GET_MODE (y));
737
738 return i == j;
739 }
740
741 /* If two operands must match, because they are really a single
742 operand of an assembler insn, then two post-increments are invalid
743 because the assembler insn would increment only once. On the
744 other hand, a post-increment matches ordinary indexing if the
745 post-increment is the output operand. */
746 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
747 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
748
749 /* Two pre-increments are invalid because the assembler insn would
750 increment only once. On the other hand, a pre-increment matches
751 ordinary indexing if the pre-increment is the input operand. */
752 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
753 || GET_CODE (y) == PRE_MODIFY)
754 return operands_match_p (x, XEXP (y, 0), -1);
755
756 slow:
757
758 if (code == REG && REG_P (y))
759 return REGNO (x) == REGNO (y);
760
761 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
762 && x == SUBREG_REG (y))
763 return true;
764 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
765 && SUBREG_REG (x) == y)
766 return true;
767
768 /* Now we have disposed of all the cases in which different rtx
769 codes can match. */
770 if (code != GET_CODE (y))
771 return false;
772
773 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
774 if (GET_MODE (x) != GET_MODE (y))
775 return false;
776
777 switch (code)
778 {
779 CASE_CONST_UNIQUE:
780 return false;
781
782 case LABEL_REF:
783 return label_ref_label (x) == label_ref_label (y);
784 case SYMBOL_REF:
785 return XSTR (x, 0) == XSTR (y, 0);
786
787 default:
788 break;
789 }
790
791 /* Compare the elements. If any pair of corresponding elements fail
792 to match, return false for the whole things. */
793
794 fmt = GET_RTX_FORMAT (code);
795 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
796 {
797 int val, j;
798 switch (fmt[i])
799 {
800 case 'w':
801 if (XWINT (x, i) != XWINT (y, i))
802 return false;
803 break;
804
805 case 'i':
806 if (XINT (x, i) != XINT (y, i))
807 return false;
808 break;
809
810 case 'p':
811 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
812 return false;
813 break;
814
815 case 'e':
816 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
817 if (val == 0)
818 return false;
819 break;
820
821 case '0':
822 break;
823
824 case 'E':
825 if (XVECLEN (x, i) != XVECLEN (y, i))
826 return false;
827 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
828 {
829 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
830 if (val == 0)
831 return false;
832 }
833 break;
834
835 /* It is believed that rtx's at this level will never
836 contain anything but integers and other rtx's, except for
837 within LABEL_REFs and SYMBOL_REFs. */
838 default:
839 gcc_unreachable ();
840 }
841 }
842 return true;
843 }
844
845 /* True if X is a constant that can be forced into the constant pool.
846 MODE is the mode of the operand, or VOIDmode if not known. */
847 #define CONST_POOL_OK_P(MODE, X) \
848 ((MODE) != VOIDmode \
849 && CONSTANT_P (X) \
850 && GET_CODE (X) != HIGH \
851 && GET_MODE_SIZE (MODE).is_constant () \
852 && !targetm.cannot_force_const_mem (MODE, X))
853
854 /* True if C is a non-empty register class that has too few registers
855 to be safely used as a reload target class. */
856 #define SMALL_REGISTER_CLASS_P(C) \
857 (ira_class_hard_regs_num [(C)] == 1 \
858 || (ira_class_hard_regs_num [(C)] >= 1 \
859 && targetm.class_likely_spilled_p (C)))
860
861 /* If REG is a reload pseudo, try to make its class satisfying CL. */
862 static void
863 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
864 {
865 enum reg_class rclass;
866
867 /* Do not make more accurate class from reloads generated. They are
868 mostly moves with a lot of constraints. Making more accurate
869 class may results in very narrow class and impossibility of find
870 registers for several reloads of one insn. */
871 if (INSN_UID (curr_insn) >= new_insn_uid_start)
872 return;
873 if (GET_CODE (reg) == SUBREG)
874 reg = SUBREG_REG (reg);
875 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
876 return;
877 if (in_class_p (reg, cl, &rclass) && rclass != cl)
878 lra_change_class (REGNO (reg), rclass, " Change to", true);
879 }
880
881 /* Searches X for any reference to a reg with the same value as REGNO,
882 returning the rtx of the reference found if any. Otherwise,
883 returns NULL_RTX. */
884 static rtx
885 regno_val_use_in (unsigned int regno, rtx x)
886 {
887 const char *fmt;
888 int i, j;
889 rtx tem;
890
891 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
892 return x;
893
894 fmt = GET_RTX_FORMAT (GET_CODE (x));
895 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
896 {
897 if (fmt[i] == 'e')
898 {
899 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
900 return tem;
901 }
902 else if (fmt[i] == 'E')
903 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
904 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
905 return tem;
906 }
907
908 return NULL_RTX;
909 }
910
911 /* Return true if all current insn non-output operands except INS (it
912 has a negaitve end marker) do not use pseudos with the same value
913 as REGNO. */
914 static bool
915 check_conflict_input_operands (int regno, signed char *ins)
916 {
917 int in;
918 int n_operands = curr_static_id->n_operands;
919
920 for (int nop = 0; nop < n_operands; nop++)
921 if (! curr_static_id->operand[nop].is_operator
922 && curr_static_id->operand[nop].type != OP_OUT)
923 {
924 for (int i = 0; (in = ins[i]) >= 0; i++)
925 if (in == nop)
926 break;
927 if (in < 0
928 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
929 return false;
930 }
931 return true;
932 }
933
934 /* Generate reloads for matching OUT and INS (array of input operand
935 numbers with end marker -1) with reg class GOAL_CLASS, considering
936 output operands OUTS (similar array to INS) needing to be in different
937 registers. Add input and output reloads correspondingly to the lists
938 *BEFORE and *AFTER. OUT might be negative. In this case we generate
939 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
940 that the output operand is early clobbered for chosen alternative. */
941 static void
942 match_reload (signed char out, signed char *ins, signed char *outs,
943 enum reg_class goal_class, rtx_insn **before,
944 rtx_insn **after, bool early_clobber_p)
945 {
946 bool out_conflict;
947 int i, in;
948 rtx new_in_reg, new_out_reg, reg;
949 machine_mode inmode, outmode;
950 rtx in_rtx = *curr_id->operand_loc[ins[0]];
951 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
952
953 inmode = curr_operand_mode[ins[0]];
954 outmode = out < 0 ? inmode : curr_operand_mode[out];
955 push_to_sequence (*before);
956 if (inmode != outmode)
957 {
958 /* process_alt_operands has already checked that the mode sizes
959 are ordered. */
960 if (partial_subreg_p (outmode, inmode))
961 {
962 reg = new_in_reg
963 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
964 goal_class, "");
965 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
966 LRA_SUBREG_P (new_out_reg) = 1;
967 /* If the input reg is dying here, we can use the same hard
968 register for REG and IN_RTX. We do it only for original
969 pseudos as reload pseudos can die although original
970 pseudos still live where reload pseudos dies. */
971 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
972 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
973 && (!early_clobber_p
974 || check_conflict_input_operands(REGNO (in_rtx), ins)))
975 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
976 }
977 else
978 {
979 reg = new_out_reg
980 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
981 goal_class, "");
982 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
983 /* NEW_IN_REG is non-paradoxical subreg. We don't want
984 NEW_OUT_REG living above. We add clobber clause for
985 this. This is just a temporary clobber. We can remove
986 it at the end of LRA work. */
987 rtx_insn *clobber = emit_clobber (new_out_reg);
988 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
989 LRA_SUBREG_P (new_in_reg) = 1;
990 if (GET_CODE (in_rtx) == SUBREG)
991 {
992 rtx subreg_reg = SUBREG_REG (in_rtx);
993
994 /* If SUBREG_REG is dying here and sub-registers IN_RTX
995 and NEW_IN_REG are similar, we can use the same hard
996 register for REG and SUBREG_REG. */
997 if (REG_P (subreg_reg)
998 && (int) REGNO (subreg_reg) < lra_new_regno_start
999 && GET_MODE (subreg_reg) == outmode
1000 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
1001 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
1002 && (! early_clobber_p
1003 || check_conflict_input_operands (REGNO (subreg_reg),
1004 ins)))
1005 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
1006 }
1007 }
1008 }
1009 else
1010 {
1011 /* Pseudos have values -- see comments for lra_reg_info.
1012 Different pseudos with the same value do not conflict even if
1013 they live in the same place. When we create a pseudo we
1014 assign value of original pseudo (if any) from which we
1015 created the new pseudo. If we create the pseudo from the
1016 input pseudo, the new pseudo will have no conflict with the
1017 input pseudo which is wrong when the input pseudo lives after
1018 the insn and as the new pseudo value is changed by the insn
1019 output. Therefore we create the new pseudo from the output
1020 except the case when we have single matched dying input
1021 pseudo.
1022
1023 We cannot reuse the current output register because we might
1024 have a situation like "a <- a op b", where the constraints
1025 force the second input operand ("b") to match the output
1026 operand ("a"). "b" must then be copied into a new register
1027 so that it doesn't clobber the current value of "a".
1028
1029 We cannot use the same value if the output pseudo is
1030 early clobbered or the input pseudo is mentioned in the
1031 output, e.g. as an address part in memory, because
1032 output reload will actually extend the pseudo liveness.
1033 We don't care about eliminable hard regs here as we are
1034 interesting only in pseudos. */
1035
1036 /* Matching input's register value is the same as one of the other
1037 output operand. Output operands in a parallel insn must be in
1038 different registers. */
1039 out_conflict = false;
1040 if (REG_P (in_rtx))
1041 {
1042 for (i = 0; outs[i] >= 0; i++)
1043 {
1044 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1045 if (REG_P (other_out_rtx)
1046 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1047 != NULL_RTX))
1048 {
1049 out_conflict = true;
1050 break;
1051 }
1052 }
1053 }
1054
1055 new_in_reg = new_out_reg
1056 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1057 && (int) REGNO (in_rtx) < lra_new_regno_start
1058 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1059 && (! early_clobber_p
1060 || check_conflict_input_operands (REGNO (in_rtx), ins))
1061 && (out < 0
1062 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1063 && !out_conflict
1064 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1065 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1066 goal_class, ""));
1067 }
1068 /* In operand can be got from transformations before processing insn
1069 constraints. One example of such transformations is subreg
1070 reloading (see function simplify_operand_subreg). The new
1071 pseudos created by the transformations might have inaccurate
1072 class (ALL_REGS) and we should make their classes more
1073 accurate. */
1074 narrow_reload_pseudo_class (in_rtx, goal_class);
1075 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1076 *before = get_insns ();
1077 end_sequence ();
1078 /* Add the new pseudo to consider values of subsequent input reload
1079 pseudos. */
1080 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1081 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1082 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1083 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1084 for (i = 0; (in = ins[i]) >= 0; i++)
1085 if (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1086 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]))
1087 *curr_id->operand_loc[in] = new_in_reg;
1088 else
1089 {
1090 lra_assert
1091 (GET_MODE (new_out_reg) == GET_MODE (*curr_id->operand_loc[in]));
1092 *curr_id->operand_loc[in] = new_out_reg;
1093 }
1094 lra_update_dups (curr_id, ins);
1095 if (out < 0)
1096 return;
1097 /* See a comment for the input operand above. */
1098 narrow_reload_pseudo_class (out_rtx, goal_class);
1099 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1100 {
1101 start_sequence ();
1102 if (out >= 0 && curr_static_id->operand[out].strict_low)
1103 out_rtx = gen_rtx_STRICT_LOW_PART (VOIDmode, out_rtx);
1104 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1105 emit_insn (*after);
1106 *after = get_insns ();
1107 end_sequence ();
1108 }
1109 *curr_id->operand_loc[out] = new_out_reg;
1110 lra_update_dup (curr_id, out);
1111 }
1112
1113 /* Return register class which is union of all reg classes in insn
1114 constraint alternative string starting with P. */
1115 static enum reg_class
1116 reg_class_from_constraints (const char *p)
1117 {
1118 int c, len;
1119 enum reg_class op_class = NO_REGS;
1120
1121 do
1122 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1123 {
1124 case '#':
1125 case ',':
1126 return op_class;
1127
1128 case 'g':
1129 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1130 break;
1131
1132 default:
1133 enum constraint_num cn = lookup_constraint (p);
1134 enum reg_class cl = reg_class_for_constraint (cn);
1135 if (cl == NO_REGS)
1136 {
1137 if (insn_extra_address_constraint (cn))
1138 op_class
1139 = (reg_class_subunion
1140 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1141 ADDRESS, SCRATCH)]);
1142 break;
1143 }
1144
1145 op_class = reg_class_subunion[op_class][cl];
1146 break;
1147 }
1148 while ((p += len), c);
1149 return op_class;
1150 }
1151
1152 /* If OP is a register, return the class of the register as per
1153 get_reg_class, otherwise return NO_REGS. */
1154 static inline enum reg_class
1155 get_op_class (rtx op)
1156 {
1157 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1158 }
1159
1160 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1161 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1162 SUBREG for VAL to make them equal. */
1163 static rtx_insn *
1164 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1165 {
1166 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1167 {
1168 /* Usually size of mem_pseudo is greater than val size but in
1169 rare cases it can be less as it can be defined by target
1170 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1171 if (! MEM_P (val))
1172 {
1173 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1174 GET_CODE (val) == SUBREG
1175 ? SUBREG_REG (val) : val);
1176 LRA_SUBREG_P (val) = 1;
1177 }
1178 else
1179 {
1180 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1181 LRA_SUBREG_P (mem_pseudo) = 1;
1182 }
1183 }
1184 return to_p ? gen_move_insn (mem_pseudo, val)
1185 : gen_move_insn (val, mem_pseudo);
1186 }
1187
1188 /* Process a special case insn (register move), return true if we
1189 don't need to process it anymore. INSN should be a single set
1190 insn. Set up that RTL was changed through CHANGE_P and that hook
1191 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1192 SEC_MEM_P. */
1193 static bool
1194 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1195 {
1196 int sregno, dregno;
1197 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1198 rtx_insn *before;
1199 enum reg_class dclass, sclass, secondary_class;
1200 secondary_reload_info sri;
1201
1202 lra_assert (curr_insn_set != NULL_RTX);
1203 dreg = dest = SET_DEST (curr_insn_set);
1204 sreg = src = SET_SRC (curr_insn_set);
1205 if (GET_CODE (dest) == SUBREG)
1206 dreg = SUBREG_REG (dest);
1207 if (GET_CODE (src) == SUBREG)
1208 sreg = SUBREG_REG (src);
1209 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1210 return false;
1211 sclass = dclass = NO_REGS;
1212 if (REG_P (dreg))
1213 dclass = get_reg_class (REGNO (dreg));
1214 gcc_assert (dclass < LIM_REG_CLASSES);
1215 if (dclass == ALL_REGS)
1216 /* ALL_REGS is used for new pseudos created by transformations
1217 like reload of SUBREG_REG (see function
1218 simplify_operand_subreg). We don't know their class yet. We
1219 should figure out the class from processing the insn
1220 constraints not in this fast path function. Even if ALL_REGS
1221 were a right class for the pseudo, secondary_... hooks usually
1222 are not define for ALL_REGS. */
1223 return false;
1224 if (REG_P (sreg))
1225 sclass = get_reg_class (REGNO (sreg));
1226 gcc_assert (sclass < LIM_REG_CLASSES);
1227 if (sclass == ALL_REGS)
1228 /* See comments above. */
1229 return false;
1230 if (sclass == NO_REGS && dclass == NO_REGS)
1231 return false;
1232 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1233 && ((sclass != NO_REGS && dclass != NO_REGS)
1234 || (GET_MODE (src)
1235 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1236 {
1237 *sec_mem_p = true;
1238 return false;
1239 }
1240 if (! REG_P (dreg) || ! REG_P (sreg))
1241 return false;
1242 sri.prev_sri = NULL;
1243 sri.icode = CODE_FOR_nothing;
1244 sri.extra_cost = 0;
1245 secondary_class = NO_REGS;
1246 /* Set up hard register for a reload pseudo for hook
1247 secondary_reload because some targets just ignore unassigned
1248 pseudos in the hook. */
1249 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1250 {
1251 dregno = REGNO (dreg);
1252 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1253 }
1254 else
1255 dregno = -1;
1256 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1257 {
1258 sregno = REGNO (sreg);
1259 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1260 }
1261 else
1262 sregno = -1;
1263 if (sclass != NO_REGS)
1264 secondary_class
1265 = (enum reg_class) targetm.secondary_reload (false, dest,
1266 (reg_class_t) sclass,
1267 GET_MODE (src), &sri);
1268 if (sclass == NO_REGS
1269 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1270 && dclass != NO_REGS))
1271 {
1272 enum reg_class old_sclass = secondary_class;
1273 secondary_reload_info old_sri = sri;
1274
1275 sri.prev_sri = NULL;
1276 sri.icode = CODE_FOR_nothing;
1277 sri.extra_cost = 0;
1278 secondary_class
1279 = (enum reg_class) targetm.secondary_reload (true, src,
1280 (reg_class_t) dclass,
1281 GET_MODE (src), &sri);
1282 /* Check the target hook consistency. */
1283 lra_assert
1284 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1285 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1286 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1287 }
1288 if (sregno >= 0)
1289 reg_renumber [sregno] = -1;
1290 if (dregno >= 0)
1291 reg_renumber [dregno] = -1;
1292 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1293 return false;
1294 *change_p = true;
1295 new_reg = NULL_RTX;
1296 if (secondary_class != NO_REGS)
1297 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1298 secondary_class,
1299 "secondary");
1300 start_sequence ();
1301 if (sri.icode == CODE_FOR_nothing)
1302 lra_emit_move (new_reg, src);
1303 else
1304 {
1305 enum reg_class scratch_class;
1306
1307 scratch_class = (reg_class_from_constraints
1308 (insn_data[sri.icode].operand[2].constraint));
1309 scratch_reg = (lra_create_new_reg_with_unique_value
1310 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1311 scratch_class, "scratch"));
1312 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1313 src, scratch_reg));
1314 }
1315 before = get_insns ();
1316 end_sequence ();
1317 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1318 if (new_reg != NULL_RTX)
1319 SET_SRC (curr_insn_set) = new_reg;
1320 else
1321 {
1322 if (lra_dump_file != NULL)
1323 {
1324 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1325 dump_insn_slim (lra_dump_file, curr_insn);
1326 }
1327 lra_set_insn_deleted (curr_insn);
1328 return true;
1329 }
1330 return false;
1331 }
1332
1333 /* The following data describe the result of process_alt_operands.
1334 The data are used in curr_insn_transform to generate reloads. */
1335
1336 /* The chosen reg classes which should be used for the corresponding
1337 operands. */
1338 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1339 /* True if the operand should be the same as another operand and that
1340 other operand does not need a reload. */
1341 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1342 /* True if the operand does not need a reload. */
1343 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1344 /* True if the operand can be offsetable memory. */
1345 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1346 /* The number of an operand to which given operand can be matched to. */
1347 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1348 /* The number of elements in the following array. */
1349 static int goal_alt_dont_inherit_ops_num;
1350 /* Numbers of operands whose reload pseudos should not be inherited. */
1351 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1352 /* True if the insn commutative operands should be swapped. */
1353 static bool goal_alt_swapped;
1354 /* The chosen insn alternative. */
1355 static int goal_alt_number;
1356
1357 /* True if the corresponding operand is the result of an equivalence
1358 substitution. */
1359 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1360
1361 /* The following five variables are used to choose the best insn
1362 alternative. They reflect final characteristics of the best
1363 alternative. */
1364
1365 /* Number of necessary reloads and overall cost reflecting the
1366 previous value and other unpleasantness of the best alternative. */
1367 static int best_losers, best_overall;
1368 /* Overall number hard registers used for reloads. For example, on
1369 some targets we need 2 general registers to reload DFmode and only
1370 one floating point register. */
1371 static int best_reload_nregs;
1372 /* Overall number reflecting distances of previous reloading the same
1373 value. The distances are counted from the current BB start. It is
1374 used to improve inheritance chances. */
1375 static int best_reload_sum;
1376
1377 /* True if the current insn should have no correspondingly input or
1378 output reloads. */
1379 static bool no_input_reloads_p, no_output_reloads_p;
1380
1381 /* True if we swapped the commutative operands in the current
1382 insn. */
1383 static int curr_swapped;
1384
1385 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1386 register of class CL. Add any input reloads to list BEFORE. AFTER
1387 is nonnull if *LOC is an automodified value; handle that case by
1388 adding the required output reloads to list AFTER. Return true if
1389 the RTL was changed.
1390
1391 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1392 register. Return false if the address register is correct. */
1393 static bool
1394 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1395 enum reg_class cl)
1396 {
1397 int regno;
1398 enum reg_class rclass, new_class;
1399 rtx reg;
1400 rtx new_reg;
1401 machine_mode mode;
1402 bool subreg_p, before_p = false;
1403
1404 subreg_p = GET_CODE (*loc) == SUBREG;
1405 if (subreg_p)
1406 {
1407 reg = SUBREG_REG (*loc);
1408 mode = GET_MODE (reg);
1409
1410 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1411 between two registers with different classes, but there normally will
1412 be "mov" which transfers element of vector register into the general
1413 register, and this normally will be a subreg which should be reloaded
1414 as a whole. This is particularly likely to be triggered when
1415 -fno-split-wide-types specified. */
1416 if (!REG_P (reg)
1417 || in_class_p (reg, cl, &new_class)
1418 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1419 loc = &SUBREG_REG (*loc);
1420 }
1421
1422 reg = *loc;
1423 mode = GET_MODE (reg);
1424 if (! REG_P (reg))
1425 {
1426 if (check_only_p)
1427 return true;
1428 /* Always reload memory in an address even if the target supports
1429 such addresses. */
1430 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1431 before_p = true;
1432 }
1433 else
1434 {
1435 regno = REGNO (reg);
1436 rclass = get_reg_class (regno);
1437 if (! check_only_p
1438 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1439 {
1440 if (lra_dump_file != NULL)
1441 {
1442 fprintf (lra_dump_file,
1443 "Changing pseudo %d in address of insn %u on equiv ",
1444 REGNO (reg), INSN_UID (curr_insn));
1445 dump_value_slim (lra_dump_file, *loc, 1);
1446 fprintf (lra_dump_file, "\n");
1447 }
1448 *loc = copy_rtx (*loc);
1449 }
1450 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1451 {
1452 if (check_only_p)
1453 return true;
1454 reg = *loc;
1455 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1456 mode, reg, cl, subreg_p, "address", &new_reg))
1457 before_p = true;
1458 }
1459 else if (new_class != NO_REGS && rclass != new_class)
1460 {
1461 if (check_only_p)
1462 return true;
1463 lra_change_class (regno, new_class, " Change to", true);
1464 return false;
1465 }
1466 else
1467 return false;
1468 }
1469 if (before_p)
1470 {
1471 push_to_sequence (*before);
1472 lra_emit_move (new_reg, reg);
1473 *before = get_insns ();
1474 end_sequence ();
1475 }
1476 *loc = new_reg;
1477 if (after != NULL)
1478 {
1479 start_sequence ();
1480 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1481 emit_insn (*after);
1482 *after = get_insns ();
1483 end_sequence ();
1484 }
1485 return true;
1486 }
1487
1488 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1489 the insn to be inserted before curr insn. AFTER returns the
1490 the insn to be inserted after curr insn. ORIGREG and NEWREG
1491 are the original reg and new reg for reload. */
1492 static void
1493 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1494 rtx newreg)
1495 {
1496 if (before)
1497 {
1498 push_to_sequence (*before);
1499 lra_emit_move (newreg, origreg);
1500 *before = get_insns ();
1501 end_sequence ();
1502 }
1503 if (after)
1504 {
1505 start_sequence ();
1506 lra_emit_move (origreg, newreg);
1507 emit_insn (*after);
1508 *after = get_insns ();
1509 end_sequence ();
1510 }
1511 }
1512
1513 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1514 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1515
1516 /* Make reloads for subreg in operand NOP with internal subreg mode
1517 REG_MODE, add new reloads for further processing. Return true if
1518 any change was done. */
1519 static bool
1520 simplify_operand_subreg (int nop, machine_mode reg_mode)
1521 {
1522 int hard_regno, inner_hard_regno;
1523 rtx_insn *before, *after;
1524 machine_mode mode, innermode;
1525 rtx reg, new_reg;
1526 rtx operand = *curr_id->operand_loc[nop];
1527 enum reg_class regclass;
1528 enum op_type type;
1529
1530 before = after = NULL;
1531
1532 if (GET_CODE (operand) != SUBREG)
1533 return false;
1534
1535 mode = GET_MODE (operand);
1536 reg = SUBREG_REG (operand);
1537 innermode = GET_MODE (reg);
1538 type = curr_static_id->operand[nop].type;
1539 if (MEM_P (reg))
1540 {
1541 const bool addr_was_valid
1542 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1543 alter_subreg (curr_id->operand_loc[nop], false);
1544 rtx subst = *curr_id->operand_loc[nop];
1545 lra_assert (MEM_P (subst));
1546 const bool addr_is_valid = valid_address_p (GET_MODE (subst),
1547 XEXP (subst, 0),
1548 MEM_ADDR_SPACE (subst));
1549 if (!addr_was_valid
1550 || addr_is_valid
1551 || ((get_constraint_type (lookup_constraint
1552 (curr_static_id->operand[nop].constraint))
1553 != CT_SPECIAL_MEMORY)
1554 /* We still can reload address and if the address is
1555 valid, we can remove subreg without reloading its
1556 inner memory. */
1557 && valid_address_p (GET_MODE (subst),
1558 regno_reg_rtx
1559 [ira_class_hard_regs
1560 [base_reg_class (GET_MODE (subst),
1561 MEM_ADDR_SPACE (subst),
1562 ADDRESS, SCRATCH)][0]],
1563 MEM_ADDR_SPACE (subst))))
1564 {
1565 /* If we change the address for a paradoxical subreg of memory, the
1566 new address might violate the necessary alignment or the access
1567 might be slow; take this into consideration. We need not worry
1568 about accesses beyond allocated memory for paradoxical memory
1569 subregs as we don't substitute such equiv memory (see processing
1570 equivalences in function lra_constraints) and because for spilled
1571 pseudos we allocate stack memory enough for the biggest
1572 corresponding paradoxical subreg.
1573
1574 However, do not blindly simplify a (subreg (mem ...)) for
1575 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1576 data into a register when the inner is narrower than outer or
1577 missing important data from memory when the inner is wider than
1578 outer. This rule only applies to modes that are no wider than
1579 a word.
1580
1581 If valid memory becomes invalid after subreg elimination
1582 and address might be different we still have to reload
1583 memory.
1584 */
1585 if ((! addr_was_valid
1586 || addr_is_valid
1587 || known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (innermode)))
1588 && !(maybe_ne (GET_MODE_PRECISION (mode),
1589 GET_MODE_PRECISION (innermode))
1590 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1591 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1592 && WORD_REGISTER_OPERATIONS)
1593 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1594 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1595 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1596 && targetm.slow_unaligned_access (innermode,
1597 MEM_ALIGN (reg)))))
1598 return true;
1599
1600 *curr_id->operand_loc[nop] = operand;
1601
1602 /* But if the address was not valid, we cannot reload the MEM without
1603 reloading the address first. */
1604 if (!addr_was_valid)
1605 process_address (nop, false, &before, &after);
1606
1607 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1608 enum reg_class rclass
1609 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1610 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1611 reg, rclass, TRUE, "slow/invalid mem", &new_reg))
1612 {
1613 bool insert_before, insert_after;
1614 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1615
1616 insert_before = (type != OP_OUT
1617 || partial_subreg_p (mode, innermode));
1618 insert_after = type != OP_IN;
1619 insert_move_for_subreg (insert_before ? &before : NULL,
1620 insert_after ? &after : NULL,
1621 reg, new_reg);
1622 }
1623 SUBREG_REG (operand) = new_reg;
1624
1625 /* Convert to MODE. */
1626 reg = operand;
1627 rclass
1628 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1629 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1630 rclass, TRUE, "slow/invalid mem", &new_reg))
1631 {
1632 bool insert_before, insert_after;
1633 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1634
1635 insert_before = type != OP_OUT;
1636 insert_after = type != OP_IN;
1637 insert_move_for_subreg (insert_before ? &before : NULL,
1638 insert_after ? &after : NULL,
1639 reg, new_reg);
1640 }
1641 *curr_id->operand_loc[nop] = new_reg;
1642 lra_process_new_insns (curr_insn, before, after,
1643 "Inserting slow/invalid mem reload");
1644 return true;
1645 }
1646
1647 /* If the address was valid and became invalid, prefer to reload
1648 the memory. Typical case is when the index scale should
1649 correspond the memory. */
1650 *curr_id->operand_loc[nop] = operand;
1651 /* Do not return false here as the MEM_P (reg) will be processed
1652 later in this function. */
1653 }
1654 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1655 {
1656 alter_subreg (curr_id->operand_loc[nop], false);
1657 return true;
1658 }
1659 else if (CONSTANT_P (reg))
1660 {
1661 /* Try to simplify subreg of constant. It is usually result of
1662 equivalence substitution. */
1663 if (innermode == VOIDmode
1664 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1665 innermode = curr_static_id->operand[nop].mode;
1666 if ((new_reg = simplify_subreg (mode, reg, innermode,
1667 SUBREG_BYTE (operand))) != NULL_RTX)
1668 {
1669 *curr_id->operand_loc[nop] = new_reg;
1670 return true;
1671 }
1672 }
1673 /* Put constant into memory when we have mixed modes. It generates
1674 a better code in most cases as it does not need a secondary
1675 reload memory. It also prevents LRA looping when LRA is using
1676 secondary reload memory again and again. */
1677 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1678 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1679 {
1680 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1681 alter_subreg (curr_id->operand_loc[nop], false);
1682 return true;
1683 }
1684 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1685 if there may be a problem accessing OPERAND in the outer
1686 mode. */
1687 if ((REG_P (reg)
1688 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1689 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1690 /* Don't reload paradoxical subregs because we could be looping
1691 having repeatedly final regno out of hard regs range. */
1692 && (hard_regno_nregs (hard_regno, innermode)
1693 >= hard_regno_nregs (hard_regno, mode))
1694 && simplify_subreg_regno (hard_regno, innermode,
1695 SUBREG_BYTE (operand), mode) < 0
1696 /* Don't reload subreg for matching reload. It is actually
1697 valid subreg in LRA. */
1698 && ! LRA_SUBREG_P (operand))
1699 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1700 {
1701 enum reg_class rclass;
1702
1703 if (REG_P (reg))
1704 /* There is a big probability that we will get the same class
1705 for the new pseudo and we will get the same insn which
1706 means infinite looping. So spill the new pseudo. */
1707 rclass = NO_REGS;
1708 else
1709 /* The class will be defined later in curr_insn_transform. */
1710 rclass
1711 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1712
1713 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1714 rclass, TRUE, "subreg reg", &new_reg))
1715 {
1716 bool insert_before, insert_after;
1717 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1718
1719 insert_before = (type != OP_OUT
1720 || read_modify_subreg_p (operand));
1721 insert_after = (type != OP_IN);
1722 insert_move_for_subreg (insert_before ? &before : NULL,
1723 insert_after ? &after : NULL,
1724 reg, new_reg);
1725 }
1726 SUBREG_REG (operand) = new_reg;
1727 lra_process_new_insns (curr_insn, before, after,
1728 "Inserting subreg reload");
1729 return true;
1730 }
1731 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1732 IRA allocates hardreg to the inner pseudo reg according to its mode
1733 instead of the outermode, so the size of the hardreg may not be enough
1734 to contain the outermode operand, in that case we may need to insert
1735 reload for the reg. For the following two types of paradoxical subreg,
1736 we need to insert reload:
1737 1. If the op_type is OP_IN, and the hardreg could not be paired with
1738 other hardreg to contain the outermode operand
1739 (checked by in_hard_reg_set_p), we need to insert the reload.
1740 2. If the op_type is OP_OUT or OP_INOUT.
1741
1742 Here is a paradoxical subreg example showing how the reload is generated:
1743
1744 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1745 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1746
1747 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1748 here, if reg107 is assigned to hardreg R15, because R15 is the last
1749 hardreg, compiler cannot find another hardreg to pair with R15 to
1750 contain TImode data. So we insert a TImode reload reg180 for it.
1751 After reload is inserted:
1752
1753 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1754 (reg:DI 107 [ __comp ])) -1
1755 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1756 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1757
1758 Two reload hard registers will be allocated to reg180 to save TImode data
1759 in LRA_assign.
1760
1761 For LRA pseudos this should normally be handled by the biggest_mode
1762 mechanism. However, it's possible for new uses of an LRA pseudo
1763 to be introduced after we've allocated it, such as when undoing
1764 inheritance, and the allocated register might not then be appropriate
1765 for the new uses. */
1766 else if (REG_P (reg)
1767 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1768 && paradoxical_subreg_p (operand)
1769 && (inner_hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1770 && ((hard_regno
1771 = simplify_subreg_regno (inner_hard_regno, innermode,
1772 SUBREG_BYTE (operand), mode)) < 0
1773 || ((hard_regno_nregs (inner_hard_regno, innermode)
1774 < hard_regno_nregs (hard_regno, mode))
1775 && (regclass = lra_get_allocno_class (REGNO (reg)))
1776 && (type != OP_IN
1777 || !in_hard_reg_set_p (reg_class_contents[regclass],
1778 mode, hard_regno)
1779 || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1780 mode, hard_regno)))))
1781 {
1782 /* The class will be defined later in curr_insn_transform. */
1783 enum reg_class rclass
1784 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1785
1786 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1787 rclass, TRUE, "paradoxical subreg", &new_reg))
1788 {
1789 rtx subreg;
1790 bool insert_before, insert_after;
1791
1792 PUT_MODE (new_reg, mode);
1793 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1794 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1795
1796 insert_before = (type != OP_OUT);
1797 insert_after = (type != OP_IN);
1798 insert_move_for_subreg (insert_before ? &before : NULL,
1799 insert_after ? &after : NULL,
1800 reg, subreg);
1801 }
1802 SUBREG_REG (operand) = new_reg;
1803 lra_process_new_insns (curr_insn, before, after,
1804 "Inserting paradoxical subreg reload");
1805 return true;
1806 }
1807 return false;
1808 }
1809
1810 /* Return TRUE if X refers for a hard register from SET. */
1811 static bool
1812 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1813 {
1814 int i, j, x_hard_regno;
1815 machine_mode mode;
1816 const char *fmt;
1817 enum rtx_code code;
1818
1819 if (x == NULL_RTX)
1820 return false;
1821 code = GET_CODE (x);
1822 mode = GET_MODE (x);
1823
1824 if (code == SUBREG)
1825 {
1826 /* For all SUBREGs we want to check whether the full multi-register
1827 overlaps the set. For normal SUBREGs this means 'get_hard_regno' of
1828 the inner register, for paradoxical SUBREGs this means the
1829 'get_hard_regno' of the full SUBREG and for complete SUBREGs either is
1830 fine. Use the wider mode for all cases. */
1831 rtx subreg = SUBREG_REG (x);
1832 mode = wider_subreg_mode (x);
1833 if (mode == GET_MODE (subreg))
1834 {
1835 x = subreg;
1836 code = GET_CODE (x);
1837 }
1838 }
1839
1840 if (REG_P (x) || SUBREG_P (x))
1841 {
1842 x_hard_regno = get_hard_regno (x, true);
1843 return (x_hard_regno >= 0
1844 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1845 }
1846 if (MEM_P (x))
1847 {
1848 struct address_info ad;
1849
1850 decompose_mem_address (&ad, x);
1851 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1852 return true;
1853 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1854 return true;
1855 }
1856 fmt = GET_RTX_FORMAT (code);
1857 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1858 {
1859 if (fmt[i] == 'e')
1860 {
1861 if (uses_hard_regs_p (XEXP (x, i), set))
1862 return true;
1863 }
1864 else if (fmt[i] == 'E')
1865 {
1866 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1867 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1868 return true;
1869 }
1870 }
1871 return false;
1872 }
1873
1874 /* Return true if OP is a spilled pseudo. */
1875 static inline bool
1876 spilled_pseudo_p (rtx op)
1877 {
1878 return (REG_P (op)
1879 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1880 }
1881
1882 /* Return true if X is a general constant. */
1883 static inline bool
1884 general_constant_p (rtx x)
1885 {
1886 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1887 }
1888
1889 static bool
1890 reg_in_class_p (rtx reg, enum reg_class cl)
1891 {
1892 if (cl == NO_REGS)
1893 return get_reg_class (REGNO (reg)) == NO_REGS;
1894 return in_class_p (reg, cl, NULL);
1895 }
1896
1897 /* Return true if SET of RCLASS contains no hard regs which can be
1898 used in MODE. */
1899 static bool
1900 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1901 HARD_REG_SET &set,
1902 machine_mode mode)
1903 {
1904 HARD_REG_SET temp;
1905
1906 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1907 temp = set & ~lra_no_alloc_regs;
1908 return (hard_reg_set_subset_p
1909 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1910 }
1911
1912
1913 /* Used to check validity info about small class input operands. It
1914 should be incremented at start of processing an insn
1915 alternative. */
1916 static unsigned int curr_small_class_check = 0;
1917
1918 /* Update number of used inputs of class OP_CLASS for operand NOP
1919 of alternative NALT. Return true if we have more such class operands
1920 than the number of available regs. */
1921 static bool
1922 update_and_check_small_class_inputs (int nop, int nalt,
1923 enum reg_class op_class)
1924 {
1925 static unsigned int small_class_check[LIM_REG_CLASSES];
1926 static int small_class_input_nums[LIM_REG_CLASSES];
1927
1928 if (SMALL_REGISTER_CLASS_P (op_class)
1929 /* We are interesting in classes became small because of fixing
1930 some hard regs, e.g. by an user through GCC options. */
1931 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1932 ira_no_alloc_regs)
1933 && (curr_static_id->operand[nop].type != OP_OUT
1934 || TEST_BIT (curr_static_id->operand[nop].early_clobber_alts, nalt)))
1935 {
1936 if (small_class_check[op_class] == curr_small_class_check)
1937 small_class_input_nums[op_class]++;
1938 else
1939 {
1940 small_class_check[op_class] = curr_small_class_check;
1941 small_class_input_nums[op_class] = 1;
1942 }
1943 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1944 return true;
1945 }
1946 return false;
1947 }
1948
1949 /* Major function to choose the current insn alternative and what
1950 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1951 negative we should consider only this alternative. Return false if
1952 we cannot choose the alternative or find how to reload the
1953 operands. */
1954 static bool
1955 process_alt_operands (int only_alternative)
1956 {
1957 bool ok_p = false;
1958 int nop, overall, nalt;
1959 int n_alternatives = curr_static_id->n_alternatives;
1960 int n_operands = curr_static_id->n_operands;
1961 /* LOSERS counts the operands that don't fit this alternative and
1962 would require loading. */
1963 int losers;
1964 int addr_losers;
1965 /* REJECT is a count of how undesirable this alternative says it is
1966 if any reloading is required. If the alternative matches exactly
1967 then REJECT is ignored, but otherwise it gets this much counted
1968 against it in addition to the reloading needed. */
1969 int reject;
1970 /* This is defined by '!' or '?' alternative constraint and added to
1971 reject. But in some cases it can be ignored. */
1972 int static_reject;
1973 int op_reject;
1974 /* The number of elements in the following array. */
1975 int early_clobbered_regs_num;
1976 /* Numbers of operands which are early clobber registers. */
1977 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1978 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1979 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1980 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1981 bool curr_alt_win[MAX_RECOG_OPERANDS];
1982 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1983 int curr_alt_matches[MAX_RECOG_OPERANDS];
1984 /* The number of elements in the following array. */
1985 int curr_alt_dont_inherit_ops_num;
1986 /* Numbers of operands whose reload pseudos should not be inherited. */
1987 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1988 rtx op;
1989 /* The register when the operand is a subreg of register, otherwise the
1990 operand itself. */
1991 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1992 /* The register if the operand is a register or subreg of register,
1993 otherwise NULL. */
1994 rtx operand_reg[MAX_RECOG_OPERANDS];
1995 int hard_regno[MAX_RECOG_OPERANDS];
1996 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1997 int reload_nregs, reload_sum;
1998 bool costly_p;
1999 enum reg_class cl;
2000
2001 /* Calculate some data common for all alternatives to speed up the
2002 function. */
2003 for (nop = 0; nop < n_operands; nop++)
2004 {
2005 rtx reg;
2006
2007 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
2008 /* The real hard regno of the operand after the allocation. */
2009 hard_regno[nop] = get_hard_regno (op, true);
2010
2011 operand_reg[nop] = reg = op;
2012 biggest_mode[nop] = GET_MODE (op);
2013 if (GET_CODE (op) == SUBREG)
2014 {
2015 biggest_mode[nop] = wider_subreg_mode (op);
2016 operand_reg[nop] = reg = SUBREG_REG (op);
2017 }
2018 if (! REG_P (reg))
2019 operand_reg[nop] = NULL_RTX;
2020 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
2021 || ((int) REGNO (reg)
2022 == lra_get_elimination_hard_regno (REGNO (reg))))
2023 no_subreg_reg_operand[nop] = reg;
2024 else
2025 operand_reg[nop] = no_subreg_reg_operand[nop]
2026 /* Just use natural mode for elimination result. It should
2027 be enough for extra constraints hooks. */
2028 = regno_reg_rtx[hard_regno[nop]];
2029 }
2030
2031 /* The constraints are made of several alternatives. Each operand's
2032 constraint looks like foo,bar,... with commas separating the
2033 alternatives. The first alternatives for all operands go
2034 together, the second alternatives go together, etc.
2035
2036 First loop over alternatives. */
2037 alternative_mask preferred = curr_id->preferred_alternatives;
2038 if (only_alternative >= 0)
2039 preferred &= ALTERNATIVE_BIT (only_alternative);
2040
2041 for (nalt = 0; nalt < n_alternatives; nalt++)
2042 {
2043 /* Loop over operands for one constraint alternative. */
2044 if (!TEST_BIT (preferred, nalt))
2045 continue;
2046
2047 bool matching_early_clobber[MAX_RECOG_OPERANDS];
2048 curr_small_class_check++;
2049 overall = losers = addr_losers = 0;
2050 static_reject = reject = reload_nregs = reload_sum = 0;
2051 for (nop = 0; nop < n_operands; nop++)
2052 {
2053 int inc = (curr_static_id
2054 ->operand_alternative[nalt * n_operands + nop].reject);
2055 if (lra_dump_file != NULL && inc != 0)
2056 fprintf (lra_dump_file,
2057 " Staticly defined alt reject+=%d\n", inc);
2058 static_reject += inc;
2059 matching_early_clobber[nop] = 0;
2060 }
2061 reject += static_reject;
2062 early_clobbered_regs_num = 0;
2063
2064 for (nop = 0; nop < n_operands; nop++)
2065 {
2066 const char *p;
2067 char *end;
2068 int len, c, m, i, opalt_num, this_alternative_matches;
2069 bool win, did_match, offmemok, early_clobber_p;
2070 /* false => this operand can be reloaded somehow for this
2071 alternative. */
2072 bool badop;
2073 /* true => this operand can be reloaded if the alternative
2074 allows regs. */
2075 bool winreg;
2076 /* True if a constant forced into memory would be OK for
2077 this operand. */
2078 bool constmemok;
2079 enum reg_class this_alternative, this_costly_alternative;
2080 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2081 bool this_alternative_match_win, this_alternative_win;
2082 bool this_alternative_offmemok;
2083 bool scratch_p;
2084 machine_mode mode;
2085 enum constraint_num cn;
2086
2087 opalt_num = nalt * n_operands + nop;
2088 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2089 {
2090 /* Fast track for no constraints at all. */
2091 curr_alt[nop] = NO_REGS;
2092 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2093 curr_alt_win[nop] = true;
2094 curr_alt_match_win[nop] = false;
2095 curr_alt_offmemok[nop] = false;
2096 curr_alt_matches[nop] = -1;
2097 continue;
2098 }
2099
2100 op = no_subreg_reg_operand[nop];
2101 mode = curr_operand_mode[nop];
2102
2103 win = did_match = winreg = offmemok = constmemok = false;
2104 badop = true;
2105
2106 early_clobber_p = false;
2107 p = curr_static_id->operand_alternative[opalt_num].constraint;
2108
2109 this_costly_alternative = this_alternative = NO_REGS;
2110 /* We update set of possible hard regs besides its class
2111 because reg class might be inaccurate. For example,
2112 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2113 is translated in HI_REGS because classes are merged by
2114 pairs and there is no accurate intermediate class. */
2115 CLEAR_HARD_REG_SET (this_alternative_set);
2116 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2117 this_alternative_win = false;
2118 this_alternative_match_win = false;
2119 this_alternative_offmemok = false;
2120 this_alternative_matches = -1;
2121
2122 /* An empty constraint should be excluded by the fast
2123 track. */
2124 lra_assert (*p != 0 && *p != ',');
2125
2126 op_reject = 0;
2127 /* Scan this alternative's specs for this operand; set WIN
2128 if the operand fits any letter in this alternative.
2129 Otherwise, clear BADOP if this operand could fit some
2130 letter after reloads, or set WINREG if this operand could
2131 fit after reloads provided the constraint allows some
2132 registers. */
2133 costly_p = false;
2134 do
2135 {
2136 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2137 {
2138 case '\0':
2139 len = 0;
2140 break;
2141 case ',':
2142 c = '\0';
2143 break;
2144
2145 case '&':
2146 early_clobber_p = true;
2147 break;
2148
2149 case '$':
2150 op_reject += LRA_MAX_REJECT;
2151 break;
2152 case '^':
2153 op_reject += LRA_LOSER_COST_FACTOR;
2154 break;
2155
2156 case '#':
2157 /* Ignore rest of this alternative. */
2158 c = '\0';
2159 break;
2160
2161 case '0': case '1': case '2': case '3': case '4':
2162 case '5': case '6': case '7': case '8': case '9':
2163 {
2164 int m_hregno;
2165 bool match_p;
2166
2167 m = strtoul (p, &end, 10);
2168 p = end;
2169 len = 0;
2170 lra_assert (nop > m);
2171
2172 /* Reject matches if we don't know which operand is
2173 bigger. This situation would arguably be a bug in
2174 an .md pattern, but could also occur in a user asm. */
2175 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2176 GET_MODE_SIZE (biggest_mode[nop])))
2177 break;
2178
2179 /* Don't match wrong asm insn operands for proper
2180 diagnostic later. */
2181 if (INSN_CODE (curr_insn) < 0
2182 && (curr_operand_mode[m] == BLKmode
2183 || curr_operand_mode[nop] == BLKmode)
2184 && curr_operand_mode[m] != curr_operand_mode[nop])
2185 break;
2186
2187 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2188 /* We are supposed to match a previous operand.
2189 If we do, we win if that one did. If we do
2190 not, count both of the operands as losers.
2191 (This is too conservative, since most of the
2192 time only a single reload insn will be needed
2193 to make the two operands win. As a result,
2194 this alternative may be rejected when it is
2195 actually desirable.) */
2196 match_p = false;
2197 if (operands_match_p (*curr_id->operand_loc[nop],
2198 *curr_id->operand_loc[m], m_hregno))
2199 {
2200 /* We should reject matching of an early
2201 clobber operand if the matching operand is
2202 not dying in the insn. */
2203 if (!TEST_BIT (curr_static_id->operand[m]
2204 .early_clobber_alts, nalt)
2205 || operand_reg[nop] == NULL_RTX
2206 || (find_regno_note (curr_insn, REG_DEAD,
2207 REGNO (op))
2208 || REGNO (op) == REGNO (operand_reg[m])))
2209 match_p = true;
2210 }
2211 if (match_p)
2212 {
2213 /* If we are matching a non-offsettable
2214 address where an offsettable address was
2215 expected, then we must reject this
2216 combination, because we can't reload
2217 it. */
2218 if (curr_alt_offmemok[m]
2219 && MEM_P (*curr_id->operand_loc[m])
2220 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2221 continue;
2222 }
2223 else
2224 {
2225 /* If the operands do not match and one
2226 operand is INOUT, we can not match them.
2227 Try other possibilities, e.g. other
2228 alternatives or commutative operand
2229 exchange. */
2230 if (curr_static_id->operand[nop].type == OP_INOUT
2231 || curr_static_id->operand[m].type == OP_INOUT)
2232 break;
2233 /* Operands don't match. If the operands are
2234 different user defined explicit hard
2235 registers, then we cannot make them match
2236 when one is early clobber operand. */
2237 if ((REG_P (*curr_id->operand_loc[nop])
2238 || SUBREG_P (*curr_id->operand_loc[nop]))
2239 && (REG_P (*curr_id->operand_loc[m])
2240 || SUBREG_P (*curr_id->operand_loc[m])))
2241 {
2242 rtx nop_reg = *curr_id->operand_loc[nop];
2243 if (SUBREG_P (nop_reg))
2244 nop_reg = SUBREG_REG (nop_reg);
2245 rtx m_reg = *curr_id->operand_loc[m];
2246 if (SUBREG_P (m_reg))
2247 m_reg = SUBREG_REG (m_reg);
2248
2249 if (REG_P (nop_reg)
2250 && HARD_REGISTER_P (nop_reg)
2251 && REG_USERVAR_P (nop_reg)
2252 && REG_P (m_reg)
2253 && HARD_REGISTER_P (m_reg)
2254 && REG_USERVAR_P (m_reg))
2255 {
2256 int i;
2257
2258 for (i = 0; i < early_clobbered_regs_num; i++)
2259 if (m == early_clobbered_nops[i])
2260 break;
2261 if (i < early_clobbered_regs_num
2262 || early_clobber_p)
2263 break;
2264 }
2265 }
2266 /* Both operands must allow a reload register,
2267 otherwise we cannot make them match. */
2268 if (curr_alt[m] == NO_REGS)
2269 break;
2270 /* Retroactively mark the operand we had to
2271 match as a loser, if it wasn't already and
2272 it wasn't matched to a register constraint
2273 (e.g it might be matched by memory). */
2274 if (curr_alt_win[m]
2275 && (operand_reg[m] == NULL_RTX
2276 || hard_regno[m] < 0))
2277 {
2278 losers++;
2279 reload_nregs
2280 += (ira_reg_class_max_nregs[curr_alt[m]]
2281 [GET_MODE (*curr_id->operand_loc[m])]);
2282 }
2283
2284 /* Prefer matching earlyclobber alternative as
2285 it results in less hard regs required for
2286 the insn than a non-matching earlyclobber
2287 alternative. */
2288 if (TEST_BIT (curr_static_id->operand[m]
2289 .early_clobber_alts, nalt))
2290 {
2291 if (lra_dump_file != NULL)
2292 fprintf
2293 (lra_dump_file,
2294 " %d Matching earlyclobber alt:"
2295 " reject--\n",
2296 nop);
2297 if (!matching_early_clobber[m])
2298 {
2299 reject--;
2300 matching_early_clobber[m] = 1;
2301 }
2302 }
2303 /* Otherwise we prefer no matching
2304 alternatives because it gives more freedom
2305 in RA. */
2306 else if (operand_reg[nop] == NULL_RTX
2307 || (find_regno_note (curr_insn, REG_DEAD,
2308 REGNO (operand_reg[nop]))
2309 == NULL_RTX))
2310 {
2311 if (lra_dump_file != NULL)
2312 fprintf
2313 (lra_dump_file,
2314 " %d Matching alt: reject+=2\n",
2315 nop);
2316 reject += 2;
2317 }
2318 }
2319 /* If we have to reload this operand and some
2320 previous operand also had to match the same
2321 thing as this operand, we don't know how to do
2322 that. */
2323 if (!match_p || !curr_alt_win[m])
2324 {
2325 for (i = 0; i < nop; i++)
2326 if (curr_alt_matches[i] == m)
2327 break;
2328 if (i < nop)
2329 break;
2330 }
2331 else
2332 did_match = true;
2333
2334 this_alternative_matches = m;
2335 /* This can be fixed with reloads if the operand
2336 we are supposed to match can be fixed with
2337 reloads. */
2338 badop = false;
2339 this_alternative = curr_alt[m];
2340 this_alternative_set = curr_alt_set[m];
2341 winreg = this_alternative != NO_REGS;
2342 break;
2343 }
2344
2345 case 'g':
2346 if (MEM_P (op)
2347 || general_constant_p (op)
2348 || spilled_pseudo_p (op))
2349 win = true;
2350 cl = GENERAL_REGS;
2351 goto reg;
2352
2353 default:
2354 cn = lookup_constraint (p);
2355 switch (get_constraint_type (cn))
2356 {
2357 case CT_REGISTER:
2358 cl = reg_class_for_constraint (cn);
2359 if (cl != NO_REGS)
2360 goto reg;
2361 break;
2362
2363 case CT_CONST_INT:
2364 if (CONST_INT_P (op)
2365 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2366 win = true;
2367 break;
2368
2369 case CT_MEMORY:
2370 if (MEM_P (op)
2371 && satisfies_memory_constraint_p (op, cn))
2372 win = true;
2373 else if (spilled_pseudo_p (op))
2374 win = true;
2375
2376 /* If we didn't already win, we can reload constants
2377 via force_const_mem or put the pseudo value into
2378 memory, or make other memory by reloading the
2379 address like for 'o'. */
2380 if (CONST_POOL_OK_P (mode, op)
2381 || MEM_P (op) || REG_P (op)
2382 /* We can restore the equiv insn by a
2383 reload. */
2384 || equiv_substition_p[nop])
2385 badop = false;
2386 constmemok = true;
2387 offmemok = true;
2388 break;
2389
2390 case CT_ADDRESS:
2391 /* An asm operand with an address constraint
2392 that doesn't satisfy address_operand has
2393 is_address cleared, so that we don't try to
2394 make a non-address fit. */
2395 if (!curr_static_id->operand[nop].is_address)
2396 break;
2397 /* If we didn't already win, we can reload the address
2398 into a base register. */
2399 if (satisfies_address_constraint_p (op, cn))
2400 win = true;
2401 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2402 ADDRESS, SCRATCH);
2403 badop = false;
2404 goto reg;
2405
2406 case CT_FIXED_FORM:
2407 if (constraint_satisfied_p (op, cn))
2408 win = true;
2409 break;
2410
2411 case CT_SPECIAL_MEMORY:
2412 if (MEM_P (op)
2413 && satisfies_memory_constraint_p (op, cn))
2414 win = true;
2415 else if (spilled_pseudo_p (op))
2416 win = true;
2417 break;
2418 }
2419 break;
2420
2421 reg:
2422 if (mode == BLKmode)
2423 break;
2424 this_alternative = reg_class_subunion[this_alternative][cl];
2425 this_alternative_set |= reg_class_contents[cl];
2426 if (costly_p)
2427 {
2428 this_costly_alternative
2429 = reg_class_subunion[this_costly_alternative][cl];
2430 this_costly_alternative_set |= reg_class_contents[cl];
2431 }
2432 winreg = true;
2433 if (REG_P (op))
2434 {
2435 if (hard_regno[nop] >= 0
2436 && in_hard_reg_set_p (this_alternative_set,
2437 mode, hard_regno[nop]))
2438 win = true;
2439 else if (hard_regno[nop] < 0
2440 && in_class_p (op, this_alternative, NULL))
2441 win = true;
2442 }
2443 break;
2444 }
2445 if (c != ' ' && c != '\t')
2446 costly_p = c == '*';
2447 }
2448 while ((p += len), c);
2449
2450 scratch_p = (operand_reg[nop] != NULL_RTX
2451 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2452 /* Record which operands fit this alternative. */
2453 if (win)
2454 {
2455 this_alternative_win = true;
2456 if (operand_reg[nop] != NULL_RTX)
2457 {
2458 if (hard_regno[nop] >= 0)
2459 {
2460 if (in_hard_reg_set_p (this_costly_alternative_set,
2461 mode, hard_regno[nop]))
2462 {
2463 if (lra_dump_file != NULL)
2464 fprintf (lra_dump_file,
2465 " %d Costly set: reject++\n",
2466 nop);
2467 reject++;
2468 }
2469 }
2470 else
2471 {
2472 /* Prefer won reg to spilled pseudo under other
2473 equal conditions for possibe inheritance. */
2474 if (! scratch_p)
2475 {
2476 if (lra_dump_file != NULL)
2477 fprintf
2478 (lra_dump_file,
2479 " %d Non pseudo reload: reject++\n",
2480 nop);
2481 reject++;
2482 }
2483 if (in_class_p (operand_reg[nop],
2484 this_costly_alternative, NULL))
2485 {
2486 if (lra_dump_file != NULL)
2487 fprintf
2488 (lra_dump_file,
2489 " %d Non pseudo costly reload:"
2490 " reject++\n",
2491 nop);
2492 reject++;
2493 }
2494 }
2495 /* We simulate the behavior of old reload here.
2496 Although scratches need hard registers and it
2497 might result in spilling other pseudos, no reload
2498 insns are generated for the scratches. So it
2499 might cost something but probably less than old
2500 reload pass believes. */
2501 if (scratch_p)
2502 {
2503 if (lra_dump_file != NULL)
2504 fprintf (lra_dump_file,
2505 " %d Scratch win: reject+=2\n",
2506 nop);
2507 reject += 2;
2508 }
2509 }
2510 }
2511 else if (did_match)
2512 this_alternative_match_win = true;
2513 else
2514 {
2515 int const_to_mem = 0;
2516 bool no_regs_p;
2517
2518 reject += op_reject;
2519 /* Never do output reload of stack pointer. It makes
2520 impossible to do elimination when SP is changed in
2521 RTL. */
2522 if (op == stack_pointer_rtx && ! frame_pointer_needed
2523 && curr_static_id->operand[nop].type != OP_IN)
2524 goto fail;
2525
2526 /* If this alternative asks for a specific reg class, see if there
2527 is at least one allocatable register in that class. */
2528 no_regs_p
2529 = (this_alternative == NO_REGS
2530 || (hard_reg_set_subset_p
2531 (reg_class_contents[this_alternative],
2532 lra_no_alloc_regs)));
2533
2534 /* For asms, verify that the class for this alternative is possible
2535 for the mode that is specified. */
2536 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2537 {
2538 int i;
2539 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2540 if (targetm.hard_regno_mode_ok (i, mode)
2541 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2542 mode, i))
2543 break;
2544 if (i == FIRST_PSEUDO_REGISTER)
2545 winreg = false;
2546 }
2547
2548 /* If this operand accepts a register, and if the
2549 register class has at least one allocatable register,
2550 then this operand can be reloaded. */
2551 if (winreg && !no_regs_p)
2552 badop = false;
2553
2554 if (badop)
2555 {
2556 if (lra_dump_file != NULL)
2557 fprintf (lra_dump_file,
2558 " alt=%d: Bad operand -- refuse\n",
2559 nalt);
2560 goto fail;
2561 }
2562
2563 if (this_alternative != NO_REGS)
2564 {
2565 HARD_REG_SET available_regs
2566 = (reg_class_contents[this_alternative]
2567 & ~((ira_prohibited_class_mode_regs
2568 [this_alternative][mode])
2569 | lra_no_alloc_regs));
2570 if (hard_reg_set_empty_p (available_regs))
2571 {
2572 /* There are no hard regs holding a value of given
2573 mode. */
2574 if (offmemok)
2575 {
2576 this_alternative = NO_REGS;
2577 if (lra_dump_file != NULL)
2578 fprintf (lra_dump_file,
2579 " %d Using memory because of"
2580 " a bad mode: reject+=2\n",
2581 nop);
2582 reject += 2;
2583 }
2584 else
2585 {
2586 if (lra_dump_file != NULL)
2587 fprintf (lra_dump_file,
2588 " alt=%d: Wrong mode -- refuse\n",
2589 nalt);
2590 goto fail;
2591 }
2592 }
2593 }
2594
2595 /* If not assigned pseudo has a class which a subset of
2596 required reg class, it is a less costly alternative
2597 as the pseudo still can get a hard reg of necessary
2598 class. */
2599 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2600 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2601 && ira_class_subset_p[this_alternative][cl])
2602 {
2603 if (lra_dump_file != NULL)
2604 fprintf
2605 (lra_dump_file,
2606 " %d Super set class reg: reject-=3\n", nop);
2607 reject -= 3;
2608 }
2609
2610 this_alternative_offmemok = offmemok;
2611 if (this_costly_alternative != NO_REGS)
2612 {
2613 if (lra_dump_file != NULL)
2614 fprintf (lra_dump_file,
2615 " %d Costly loser: reject++\n", nop);
2616 reject++;
2617 }
2618 /* If the operand is dying, has a matching constraint,
2619 and satisfies constraints of the matched operand
2620 which failed to satisfy the own constraints, most probably
2621 the reload for this operand will be gone. */
2622 if (this_alternative_matches >= 0
2623 && !curr_alt_win[this_alternative_matches]
2624 && REG_P (op)
2625 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2626 && (hard_regno[nop] >= 0
2627 ? in_hard_reg_set_p (this_alternative_set,
2628 mode, hard_regno[nop])
2629 : in_class_p (op, this_alternative, NULL)))
2630 {
2631 if (lra_dump_file != NULL)
2632 fprintf
2633 (lra_dump_file,
2634 " %d Dying matched operand reload: reject++\n",
2635 nop);
2636 reject++;
2637 }
2638 else
2639 {
2640 /* Strict_low_part requires to reload the register
2641 not the sub-register. In this case we should
2642 check that a final reload hard reg can hold the
2643 value mode. */
2644 if (curr_static_id->operand[nop].strict_low
2645 && REG_P (op)
2646 && hard_regno[nop] < 0
2647 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2648 && ira_class_hard_regs_num[this_alternative] > 0
2649 && (!targetm.hard_regno_mode_ok
2650 (ira_class_hard_regs[this_alternative][0],
2651 GET_MODE (*curr_id->operand_loc[nop]))))
2652 {
2653 if (lra_dump_file != NULL)
2654 fprintf
2655 (lra_dump_file,
2656 " alt=%d: Strict low subreg reload -- refuse\n",
2657 nalt);
2658 goto fail;
2659 }
2660 losers++;
2661 }
2662 if (operand_reg[nop] != NULL_RTX
2663 /* Output operands and matched input operands are
2664 not inherited. The following conditions do not
2665 exactly describe the previous statement but they
2666 are pretty close. */
2667 && curr_static_id->operand[nop].type != OP_OUT
2668 && (this_alternative_matches < 0
2669 || curr_static_id->operand[nop].type != OP_IN))
2670 {
2671 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2672 (operand_reg[nop])]
2673 .last_reload);
2674
2675 /* The value of reload_sum has sense only if we
2676 process insns in their order. It happens only on
2677 the first constraints sub-pass when we do most of
2678 reload work. */
2679 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2680 reload_sum += last_reload - bb_reload_num;
2681 }
2682 /* If this is a constant that is reloaded into the
2683 desired class by copying it to memory first, count
2684 that as another reload. This is consistent with
2685 other code and is required to avoid choosing another
2686 alternative when the constant is moved into memory.
2687 Note that the test here is precisely the same as in
2688 the code below that calls force_const_mem. */
2689 if (CONST_POOL_OK_P (mode, op)
2690 && ((targetm.preferred_reload_class
2691 (op, this_alternative) == NO_REGS)
2692 || no_input_reloads_p))
2693 {
2694 const_to_mem = 1;
2695 if (! no_regs_p)
2696 losers++;
2697 }
2698
2699 /* Alternative loses if it requires a type of reload not
2700 permitted for this insn. We can always reload
2701 objects with a REG_UNUSED note. */
2702 if ((curr_static_id->operand[nop].type != OP_IN
2703 && no_output_reloads_p
2704 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2705 || (curr_static_id->operand[nop].type != OP_OUT
2706 && no_input_reloads_p && ! const_to_mem)
2707 || (this_alternative_matches >= 0
2708 && (no_input_reloads_p
2709 || (no_output_reloads_p
2710 && (curr_static_id->operand
2711 [this_alternative_matches].type != OP_IN)
2712 && ! find_reg_note (curr_insn, REG_UNUSED,
2713 no_subreg_reg_operand
2714 [this_alternative_matches])))))
2715 {
2716 if (lra_dump_file != NULL)
2717 fprintf
2718 (lra_dump_file,
2719 " alt=%d: No input/otput reload -- refuse\n",
2720 nalt);
2721 goto fail;
2722 }
2723
2724 /* Alternative loses if it required class pseudo cannot
2725 hold value of required mode. Such insns can be
2726 described by insn definitions with mode iterators. */
2727 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2728 && ! hard_reg_set_empty_p (this_alternative_set)
2729 /* It is common practice for constraints to use a
2730 class which does not have actually enough regs to
2731 hold the value (e.g. x86 AREG for mode requiring
2732 more one general reg). Therefore we have 2
2733 conditions to check that the reload pseudo cannot
2734 hold the mode value. */
2735 && (!targetm.hard_regno_mode_ok
2736 (ira_class_hard_regs[this_alternative][0],
2737 GET_MODE (*curr_id->operand_loc[nop])))
2738 /* The above condition is not enough as the first
2739 reg in ira_class_hard_regs can be not aligned for
2740 multi-words mode values. */
2741 && (prohibited_class_reg_set_mode_p
2742 (this_alternative, this_alternative_set,
2743 GET_MODE (*curr_id->operand_loc[nop]))))
2744 {
2745 if (lra_dump_file != NULL)
2746 fprintf (lra_dump_file,
2747 " alt=%d: reload pseudo for op %d "
2748 "cannot hold the mode value -- refuse\n",
2749 nalt, nop);
2750 goto fail;
2751 }
2752
2753 /* Check strong discouragement of reload of non-constant
2754 into class THIS_ALTERNATIVE. */
2755 if (! CONSTANT_P (op) && ! no_regs_p
2756 && (targetm.preferred_reload_class
2757 (op, this_alternative) == NO_REGS
2758 || (curr_static_id->operand[nop].type == OP_OUT
2759 && (targetm.preferred_output_reload_class
2760 (op, this_alternative) == NO_REGS))))
2761 {
2762 if (offmemok && REG_P (op))
2763 {
2764 if (lra_dump_file != NULL)
2765 fprintf
2766 (lra_dump_file,
2767 " %d Spill pseudo into memory: reject+=3\n",
2768 nop);
2769 reject += 3;
2770 }
2771 else
2772 {
2773 if (lra_dump_file != NULL)
2774 fprintf
2775 (lra_dump_file,
2776 " %d Non-prefered reload: reject+=%d\n",
2777 nop, LRA_MAX_REJECT);
2778 reject += LRA_MAX_REJECT;
2779 }
2780 }
2781
2782 if (! (MEM_P (op) && offmemok)
2783 && ! (const_to_mem && constmemok))
2784 {
2785 /* We prefer to reload pseudos over reloading other
2786 things, since such reloads may be able to be
2787 eliminated later. So bump REJECT in other cases.
2788 Don't do this in the case where we are forcing a
2789 constant into memory and it will then win since
2790 we don't want to have a different alternative
2791 match then. */
2792 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2793 {
2794 if (lra_dump_file != NULL)
2795 fprintf
2796 (lra_dump_file,
2797 " %d Non-pseudo reload: reject+=2\n",
2798 nop);
2799 reject += 2;
2800 }
2801
2802 if (! no_regs_p)
2803 reload_nregs
2804 += ira_reg_class_max_nregs[this_alternative][mode];
2805
2806 if (SMALL_REGISTER_CLASS_P (this_alternative))
2807 {
2808 if (lra_dump_file != NULL)
2809 fprintf
2810 (lra_dump_file,
2811 " %d Small class reload: reject+=%d\n",
2812 nop, LRA_LOSER_COST_FACTOR / 2);
2813 reject += LRA_LOSER_COST_FACTOR / 2;
2814 }
2815 }
2816
2817 /* We are trying to spill pseudo into memory. It is
2818 usually more costly than moving to a hard register
2819 although it might takes the same number of
2820 reloads.
2821
2822 Non-pseudo spill may happen also. Suppose a target allows both
2823 register and memory in the operand constraint alternatives,
2824 then it's typical that an eliminable register has a substition
2825 of "base + offset" which can either be reloaded by a simple
2826 "new_reg <= base + offset" which will match the register
2827 constraint, or a similar reg addition followed by further spill
2828 to and reload from memory which will match the memory
2829 constraint, but this memory spill will be much more costly
2830 usually.
2831
2832 Code below increases the reject for both pseudo and non-pseudo
2833 spill. */
2834 if (no_regs_p
2835 && !(MEM_P (op) && offmemok)
2836 && !(REG_P (op) && hard_regno[nop] < 0))
2837 {
2838 if (lra_dump_file != NULL)
2839 fprintf
2840 (lra_dump_file,
2841 " %d Spill %spseudo into memory: reject+=3\n",
2842 nop, REG_P (op) ? "" : "Non-");
2843 reject += 3;
2844 if (VECTOR_MODE_P (mode))
2845 {
2846 /* Spilling vectors into memory is usually more
2847 costly as they contain big values. */
2848 if (lra_dump_file != NULL)
2849 fprintf
2850 (lra_dump_file,
2851 " %d Spill vector pseudo: reject+=2\n",
2852 nop);
2853 reject += 2;
2854 }
2855 }
2856
2857 /* When we use an operand requiring memory in given
2858 alternative, the insn should write *and* read the
2859 value to/from memory it is costly in comparison with
2860 an insn alternative which does not use memory
2861 (e.g. register or immediate operand). We exclude
2862 memory operand for such case as we can satisfy the
2863 memory constraints by reloading address. */
2864 if (no_regs_p && offmemok && !MEM_P (op))
2865 {
2866 if (lra_dump_file != NULL)
2867 fprintf
2868 (lra_dump_file,
2869 " Using memory insn operand %d: reject+=3\n",
2870 nop);
2871 reject += 3;
2872 }
2873
2874 /* If reload requires moving value through secondary
2875 memory, it will need one more insn at least. */
2876 if (this_alternative != NO_REGS
2877 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2878 && ((curr_static_id->operand[nop].type != OP_OUT
2879 && targetm.secondary_memory_needed (GET_MODE (op), cl,
2880 this_alternative))
2881 || (curr_static_id->operand[nop].type != OP_IN
2882 && (targetm.secondary_memory_needed
2883 (GET_MODE (op), this_alternative, cl)))))
2884 losers++;
2885
2886 if (MEM_P (op) && offmemok)
2887 addr_losers++;
2888 else
2889 {
2890 /* Input reloads can be inherited more often than
2891 output reloads can be removed, so penalize output
2892 reloads. */
2893 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2894 {
2895 if (lra_dump_file != NULL)
2896 fprintf
2897 (lra_dump_file,
2898 " %d Non input pseudo reload: reject++\n",
2899 nop);
2900 reject++;
2901 }
2902
2903 if (curr_static_id->operand[nop].type == OP_INOUT)
2904 {
2905 if (lra_dump_file != NULL)
2906 fprintf
2907 (lra_dump_file,
2908 " %d Input/Output reload: reject+=%d\n",
2909 nop, LRA_LOSER_COST_FACTOR);
2910 reject += LRA_LOSER_COST_FACTOR;
2911 }
2912 }
2913 }
2914
2915 if (early_clobber_p && ! scratch_p)
2916 {
2917 if (lra_dump_file != NULL)
2918 fprintf (lra_dump_file,
2919 " %d Early clobber: reject++\n", nop);
2920 reject++;
2921 }
2922 /* ??? We check early clobbers after processing all operands
2923 (see loop below) and there we update the costs more.
2924 Should we update the cost (may be approximately) here
2925 because of early clobber register reloads or it is a rare
2926 or non-important thing to be worth to do it. */
2927 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2928 - (addr_losers == losers ? static_reject : 0));
2929 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2930 {
2931 if (lra_dump_file != NULL)
2932 fprintf (lra_dump_file,
2933 " alt=%d,overall=%d,losers=%d -- refuse\n",
2934 nalt, overall, losers);
2935 goto fail;
2936 }
2937
2938 if (update_and_check_small_class_inputs (nop, nalt,
2939 this_alternative))
2940 {
2941 if (lra_dump_file != NULL)
2942 fprintf (lra_dump_file,
2943 " alt=%d, not enough small class regs -- refuse\n",
2944 nalt);
2945 goto fail;
2946 }
2947 curr_alt[nop] = this_alternative;
2948 curr_alt_set[nop] = this_alternative_set;
2949 curr_alt_win[nop] = this_alternative_win;
2950 curr_alt_match_win[nop] = this_alternative_match_win;
2951 curr_alt_offmemok[nop] = this_alternative_offmemok;
2952 curr_alt_matches[nop] = this_alternative_matches;
2953
2954 if (this_alternative_matches >= 0
2955 && !did_match && !this_alternative_win)
2956 curr_alt_win[this_alternative_matches] = false;
2957
2958 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2959 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2960 }
2961
2962 if (curr_insn_set != NULL_RTX && n_operands == 2
2963 /* Prevent processing non-move insns. */
2964 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2965 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2966 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2967 && REG_P (no_subreg_reg_operand[0])
2968 && REG_P (no_subreg_reg_operand[1])
2969 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2970 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2971 || (! curr_alt_win[0] && curr_alt_win[1]
2972 && REG_P (no_subreg_reg_operand[1])
2973 /* Check that we reload memory not the memory
2974 address. */
2975 && ! (curr_alt_offmemok[0]
2976 && MEM_P (no_subreg_reg_operand[0]))
2977 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2978 || (curr_alt_win[0] && ! curr_alt_win[1]
2979 && REG_P (no_subreg_reg_operand[0])
2980 /* Check that we reload memory not the memory
2981 address. */
2982 && ! (curr_alt_offmemok[1]
2983 && MEM_P (no_subreg_reg_operand[1]))
2984 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2985 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2986 no_subreg_reg_operand[1])
2987 || (targetm.preferred_reload_class
2988 (no_subreg_reg_operand[1],
2989 (enum reg_class) curr_alt[1]) != NO_REGS))
2990 /* If it is a result of recent elimination in move
2991 insn we can transform it into an add still by
2992 using this alternative. */
2993 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
2994 /* Likewise if the source has been replaced with an
2995 equivalent value. This only happens once -- the reload
2996 will use the equivalent value instead of the register it
2997 replaces -- so there should be no danger of cycling. */
2998 && !equiv_substition_p[1])))
2999 {
3000 /* We have a move insn and a new reload insn will be similar
3001 to the current insn. We should avoid such situation as
3002 it results in LRA cycling. */
3003 if (lra_dump_file != NULL)
3004 fprintf (lra_dump_file,
3005 " Cycle danger: overall += LRA_MAX_REJECT\n");
3006 overall += LRA_MAX_REJECT;
3007 }
3008 ok_p = true;
3009 curr_alt_dont_inherit_ops_num = 0;
3010 for (nop = 0; nop < early_clobbered_regs_num; nop++)
3011 {
3012 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
3013 HARD_REG_SET temp_set;
3014
3015 i = early_clobbered_nops[nop];
3016 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
3017 || hard_regno[i] < 0)
3018 continue;
3019 lra_assert (operand_reg[i] != NULL_RTX);
3020 clobbered_hard_regno = hard_regno[i];
3021 CLEAR_HARD_REG_SET (temp_set);
3022 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
3023 first_conflict_j = last_conflict_j = -1;
3024 for (j = 0; j < n_operands; j++)
3025 if (j == i
3026 /* We don't want process insides of match_operator and
3027 match_parallel because otherwise we would process
3028 their operands once again generating a wrong
3029 code. */
3030 || curr_static_id->operand[j].is_operator)
3031 continue;
3032 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
3033 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
3034 continue;
3035 /* If we don't reload j-th operand, check conflicts. */
3036 else if ((curr_alt_win[j] || curr_alt_match_win[j])
3037 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
3038 {
3039 if (first_conflict_j < 0)
3040 first_conflict_j = j;
3041 last_conflict_j = j;
3042 /* Both the earlyclobber operand and conflicting operand
3043 cannot both be user defined hard registers. */
3044 if (HARD_REGISTER_P (operand_reg[i])
3045 && REG_USERVAR_P (operand_reg[i])
3046 && operand_reg[j] != NULL_RTX
3047 && HARD_REGISTER_P (operand_reg[j])
3048 && REG_USERVAR_P (operand_reg[j]))
3049 fatal_insn ("unable to generate reloads for "
3050 "impossible constraints:", curr_insn);
3051 }
3052 if (last_conflict_j < 0)
3053 continue;
3054
3055 /* If an earlyclobber operand conflicts with another non-matching
3056 operand (ie, they have been assigned the same hard register),
3057 then it is better to reload the other operand, as there may
3058 exist yet another operand with a matching constraint associated
3059 with the earlyclobber operand. However, if one of the operands
3060 is an explicit use of a hard register, then we must reload the
3061 other non-hard register operand. */
3062 if (HARD_REGISTER_P (operand_reg[i])
3063 || (first_conflict_j == last_conflict_j
3064 && operand_reg[last_conflict_j] != NULL_RTX
3065 && !curr_alt_match_win[last_conflict_j]
3066 && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
3067 {
3068 curr_alt_win[last_conflict_j] = false;
3069 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
3070 = last_conflict_j;
3071 losers++;
3072 if (lra_dump_file != NULL)
3073 fprintf
3074 (lra_dump_file,
3075 " %d Conflict early clobber reload: reject--\n",
3076 i);
3077 }
3078 else
3079 {
3080 /* We need to reload early clobbered register and the
3081 matched registers. */
3082 for (j = 0; j < n_operands; j++)
3083 if (curr_alt_matches[j] == i)
3084 {
3085 curr_alt_match_win[j] = false;
3086 losers++;
3087 overall += LRA_LOSER_COST_FACTOR;
3088 }
3089 if (! curr_alt_match_win[i])
3090 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
3091 else
3092 {
3093 /* Remember pseudos used for match reloads are never
3094 inherited. */
3095 lra_assert (curr_alt_matches[i] >= 0);
3096 curr_alt_win[curr_alt_matches[i]] = false;
3097 }
3098 curr_alt_win[i] = curr_alt_match_win[i] = false;
3099 losers++;
3100 if (lra_dump_file != NULL)
3101 fprintf
3102 (lra_dump_file,
3103 " %d Matched conflict early clobber reloads: "
3104 "reject--\n",
3105 i);
3106 }
3107 /* Early clobber was already reflected in REJECT. */
3108 if (!matching_early_clobber[i])
3109 {
3110 lra_assert (reject > 0);
3111 reject--;
3112 matching_early_clobber[i] = 1;
3113 }
3114 overall += LRA_LOSER_COST_FACTOR - 1;
3115 }
3116 if (lra_dump_file != NULL)
3117 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
3118 nalt, overall, losers, reload_nregs);
3119
3120 /* If this alternative can be made to work by reloading, and it
3121 needs less reloading than the others checked so far, record
3122 it as the chosen goal for reloading. */
3123 if ((best_losers != 0 && losers == 0)
3124 || (((best_losers == 0 && losers == 0)
3125 || (best_losers != 0 && losers != 0))
3126 && (best_overall > overall
3127 || (best_overall == overall
3128 /* If the cost of the reloads is the same,
3129 prefer alternative which requires minimal
3130 number of reload regs. */
3131 && (reload_nregs < best_reload_nregs
3132 || (reload_nregs == best_reload_nregs
3133 && (best_reload_sum < reload_sum
3134 || (best_reload_sum == reload_sum
3135 && nalt < goal_alt_number))))))))
3136 {
3137 for (nop = 0; nop < n_operands; nop++)
3138 {
3139 goal_alt_win[nop] = curr_alt_win[nop];
3140 goal_alt_match_win[nop] = curr_alt_match_win[nop];
3141 goal_alt_matches[nop] = curr_alt_matches[nop];
3142 goal_alt[nop] = curr_alt[nop];
3143 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3144 }
3145 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3146 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3147 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3148 goal_alt_swapped = curr_swapped;
3149 best_overall = overall;
3150 best_losers = losers;
3151 best_reload_nregs = reload_nregs;
3152 best_reload_sum = reload_sum;
3153 goal_alt_number = nalt;
3154 }
3155 if (losers == 0)
3156 /* Everything is satisfied. Do not process alternatives
3157 anymore. */
3158 break;
3159 fail:
3160 ;
3161 }
3162 return ok_p;
3163 }
3164
3165 /* Make reload base reg from address AD. */
3166 static rtx
3167 base_to_reg (struct address_info *ad)
3168 {
3169 enum reg_class cl;
3170 int code = -1;
3171 rtx new_inner = NULL_RTX;
3172 rtx new_reg = NULL_RTX;
3173 rtx_insn *insn;
3174 rtx_insn *last_insn = get_last_insn();
3175
3176 lra_assert (ad->disp == ad->disp_term);
3177 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3178 get_index_code (ad));
3179 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3180 cl, "base");
3181 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3182 ad->disp_term == NULL
3183 ? const0_rtx
3184 : *ad->disp_term);
3185 if (!valid_address_p (ad->mode, new_inner, ad->as))
3186 return NULL_RTX;
3187 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3188 code = recog_memoized (insn);
3189 if (code < 0)
3190 {
3191 delete_insns_since (last_insn);
3192 return NULL_RTX;
3193 }
3194
3195 return new_inner;
3196 }
3197
3198 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3199 static rtx
3200 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3201 {
3202 enum reg_class cl;
3203 rtx new_reg;
3204
3205 lra_assert (ad->base == ad->base_term);
3206 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3207 get_index_code (ad));
3208 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3209 cl, "base + disp");
3210 lra_emit_add (new_reg, *ad->base_term, disp);
3211 return new_reg;
3212 }
3213
3214 /* Make reload of index part of address AD. Return the new
3215 pseudo. */
3216 static rtx
3217 index_part_to_reg (struct address_info *ad)
3218 {
3219 rtx new_reg;
3220
3221 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3222 INDEX_REG_CLASS, "index term");
3223 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3224 GEN_INT (get_index_scale (ad)), new_reg, 1);
3225 return new_reg;
3226 }
3227
3228 /* Return true if we can add a displacement to address AD, even if that
3229 makes the address invalid. The fix-up code requires any new address
3230 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3231 static bool
3232 can_add_disp_p (struct address_info *ad)
3233 {
3234 return (!ad->autoinc_p
3235 && ad->segment == NULL
3236 && ad->base == ad->base_term
3237 && ad->disp == ad->disp_term);
3238 }
3239
3240 /* Make equiv substitution in address AD. Return true if a substitution
3241 was made. */
3242 static bool
3243 equiv_address_substitution (struct address_info *ad)
3244 {
3245 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3246 poly_int64 disp;
3247 HOST_WIDE_INT scale;
3248 bool change_p;
3249
3250 base_term = strip_subreg (ad->base_term);
3251 if (base_term == NULL)
3252 base_reg = new_base_reg = NULL_RTX;
3253 else
3254 {
3255 base_reg = *base_term;
3256 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3257 }
3258 index_term = strip_subreg (ad->index_term);
3259 if (index_term == NULL)
3260 index_reg = new_index_reg = NULL_RTX;
3261 else
3262 {
3263 index_reg = *index_term;
3264 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3265 }
3266 if (base_reg == new_base_reg && index_reg == new_index_reg)
3267 return false;
3268 disp = 0;
3269 change_p = false;
3270 if (lra_dump_file != NULL)
3271 {
3272 fprintf (lra_dump_file, "Changing address in insn %d ",
3273 INSN_UID (curr_insn));
3274 dump_value_slim (lra_dump_file, *ad->outer, 1);
3275 }
3276 if (base_reg != new_base_reg)
3277 {
3278 poly_int64 offset;
3279 if (REG_P (new_base_reg))
3280 {
3281 *base_term = new_base_reg;
3282 change_p = true;
3283 }
3284 else if (GET_CODE (new_base_reg) == PLUS
3285 && REG_P (XEXP (new_base_reg, 0))
3286 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3287 && can_add_disp_p (ad))
3288 {
3289 disp += offset;
3290 *base_term = XEXP (new_base_reg, 0);
3291 change_p = true;
3292 }
3293 if (ad->base_term2 != NULL)
3294 *ad->base_term2 = *ad->base_term;
3295 }
3296 if (index_reg != new_index_reg)
3297 {
3298 poly_int64 offset;
3299 if (REG_P (new_index_reg))
3300 {
3301 *index_term = new_index_reg;
3302 change_p = true;
3303 }
3304 else if (GET_CODE (new_index_reg) == PLUS
3305 && REG_P (XEXP (new_index_reg, 0))
3306 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3307 && can_add_disp_p (ad)
3308 && (scale = get_index_scale (ad)))
3309 {
3310 disp += offset * scale;
3311 *index_term = XEXP (new_index_reg, 0);
3312 change_p = true;
3313 }
3314 }
3315 if (maybe_ne (disp, 0))
3316 {
3317 if (ad->disp != NULL)
3318 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3319 else
3320 {
3321 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3322 update_address (ad);
3323 }
3324 change_p = true;
3325 }
3326 if (lra_dump_file != NULL)
3327 {
3328 if (! change_p)
3329 fprintf (lra_dump_file, " -- no change\n");
3330 else
3331 {
3332 fprintf (lra_dump_file, " on equiv ");
3333 dump_value_slim (lra_dump_file, *ad->outer, 1);
3334 fprintf (lra_dump_file, "\n");
3335 }
3336 }
3337 return change_p;
3338 }
3339
3340 /* Major function to make reloads for an address in operand NOP or
3341 check its correctness (If CHECK_ONLY_P is true). The supported
3342 cases are:
3343
3344 1) an address that existed before LRA started, at which point it
3345 must have been valid. These addresses are subject to elimination
3346 and may have become invalid due to the elimination offset being out
3347 of range.
3348
3349 2) an address created by forcing a constant to memory
3350 (force_const_to_mem). The initial form of these addresses might
3351 not be valid, and it is this function's job to make them valid.
3352
3353 3) a frame address formed from a register and a (possibly zero)
3354 constant offset. As above, these addresses might not be valid and
3355 this function must make them so.
3356
3357 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3358 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3359 address. Return true for any RTL change.
3360
3361 The function is a helper function which does not produce all
3362 transformations (when CHECK_ONLY_P is false) which can be
3363 necessary. It does just basic steps. To do all necessary
3364 transformations use function process_address. */
3365 static bool
3366 process_address_1 (int nop, bool check_only_p,
3367 rtx_insn **before, rtx_insn **after)
3368 {
3369 struct address_info ad;
3370 rtx new_reg;
3371 HOST_WIDE_INT scale;
3372 rtx op = *curr_id->operand_loc[nop];
3373 const char *constraint = curr_static_id->operand[nop].constraint;
3374 enum constraint_num cn = lookup_constraint (constraint);
3375 bool change_p = false;
3376
3377 if (MEM_P (op)
3378 && GET_MODE (op) == BLKmode
3379 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3380 return false;
3381
3382 if (insn_extra_address_constraint (cn)
3383 /* When we find an asm operand with an address constraint that
3384 doesn't satisfy address_operand to begin with, we clear
3385 is_address, so that we don't try to make a non-address fit.
3386 If the asm statement got this far, it's because other
3387 constraints are available, and we'll use them, disregarding
3388 the unsatisfiable address ones. */
3389 && curr_static_id->operand[nop].is_address)
3390 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3391 /* Do not attempt to decompose arbitrary addresses generated by combine
3392 for asm operands with loose constraints, e.g 'X'. */
3393 else if (MEM_P (op)
3394 && !(INSN_CODE (curr_insn) < 0
3395 && get_constraint_type (cn) == CT_FIXED_FORM
3396 && constraint_satisfied_p (op, cn)))
3397 decompose_mem_address (&ad, op);
3398 else if (GET_CODE (op) == SUBREG
3399 && MEM_P (SUBREG_REG (op)))
3400 decompose_mem_address (&ad, SUBREG_REG (op));
3401 else
3402 return false;
3403 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3404 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3405 when INDEX_REG_CLASS is a single register class. */
3406 if (ad.base_term != NULL
3407 && ad.index_term != NULL
3408 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3409 && REG_P (*ad.base_term)
3410 && REG_P (*ad.index_term)
3411 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3412 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3413 {
3414 std::swap (ad.base, ad.index);
3415 std::swap (ad.base_term, ad.index_term);
3416 }
3417 if (! check_only_p)
3418 change_p = equiv_address_substitution (&ad);
3419 if (ad.base_term != NULL
3420 && (process_addr_reg
3421 (ad.base_term, check_only_p, before,
3422 (ad.autoinc_p
3423 && !(REG_P (*ad.base_term)
3424 && find_regno_note (curr_insn, REG_DEAD,
3425 REGNO (*ad.base_term)) != NULL_RTX)
3426 ? after : NULL),
3427 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3428 get_index_code (&ad)))))
3429 {
3430 change_p = true;
3431 if (ad.base_term2 != NULL)
3432 *ad.base_term2 = *ad.base_term;
3433 }
3434 if (ad.index_term != NULL
3435 && process_addr_reg (ad.index_term, check_only_p,
3436 before, NULL, INDEX_REG_CLASS))
3437 change_p = true;
3438
3439 /* Target hooks sometimes don't treat extra-constraint addresses as
3440 legitimate address_operands, so handle them specially. */
3441 if (insn_extra_address_constraint (cn)
3442 && satisfies_address_constraint_p (&ad, cn))
3443 return change_p;
3444
3445 if (check_only_p)
3446 return change_p;
3447
3448 /* There are three cases where the shape of *AD.INNER may now be invalid:
3449
3450 1) the original address was valid, but either elimination or
3451 equiv_address_substitution was applied and that made
3452 the address invalid.
3453
3454 2) the address is an invalid symbolic address created by
3455 force_const_to_mem.
3456
3457 3) the address is a frame address with an invalid offset.
3458
3459 4) the address is a frame address with an invalid base.
3460
3461 All these cases involve a non-autoinc address, so there is no
3462 point revalidating other types. */
3463 if (ad.autoinc_p || valid_address_p (op, &ad, cn))
3464 return change_p;
3465
3466 /* Any index existed before LRA started, so we can assume that the
3467 presence and shape of the index is valid. */
3468 push_to_sequence (*before);
3469 lra_assert (ad.disp == ad.disp_term);
3470 if (ad.base == NULL)
3471 {
3472 if (ad.index == NULL)
3473 {
3474 rtx_insn *insn;
3475 rtx_insn *last = get_last_insn ();
3476 int code = -1;
3477 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3478 SCRATCH, SCRATCH);
3479 rtx addr = *ad.inner;
3480
3481 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3482 if (HAVE_lo_sum)
3483 {
3484 /* addr => lo_sum (new_base, addr), case (2) above. */
3485 insn = emit_insn (gen_rtx_SET
3486 (new_reg,
3487 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3488 code = recog_memoized (insn);
3489 if (code >= 0)
3490 {
3491 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3492 if (!valid_address_p (op, &ad, cn))
3493 {
3494 /* Try to put lo_sum into register. */
3495 insn = emit_insn (gen_rtx_SET
3496 (new_reg,
3497 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3498 code = recog_memoized (insn);
3499 if (code >= 0)
3500 {
3501 *ad.inner = new_reg;
3502 if (!valid_address_p (op, &ad, cn))
3503 {
3504 *ad.inner = addr;
3505 code = -1;
3506 }
3507 }
3508
3509 }
3510 }
3511 if (code < 0)
3512 delete_insns_since (last);
3513 }
3514
3515 if (code < 0)
3516 {
3517 /* addr => new_base, case (2) above. */
3518 lra_emit_move (new_reg, addr);
3519
3520 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3521 insn != NULL_RTX;
3522 insn = NEXT_INSN (insn))
3523 if (recog_memoized (insn) < 0)
3524 break;
3525 if (insn != NULL_RTX)
3526 {
3527 /* Do nothing if we cannot generate right insns.
3528 This is analogous to reload pass behavior. */
3529 delete_insns_since (last);
3530 end_sequence ();
3531 return false;
3532 }
3533 *ad.inner = new_reg;
3534 }
3535 }
3536 else
3537 {
3538 /* index * scale + disp => new base + index * scale,
3539 case (1) above. */
3540 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3541 GET_CODE (*ad.index));
3542
3543 lra_assert (INDEX_REG_CLASS != NO_REGS);
3544 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3545 lra_emit_move (new_reg, *ad.disp);
3546 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3547 new_reg, *ad.index);
3548 }
3549 }
3550 else if (ad.index == NULL)
3551 {
3552 int regno;
3553 enum reg_class cl;
3554 rtx set;
3555 rtx_insn *insns, *last_insn;
3556 /* Try to reload base into register only if the base is invalid
3557 for the address but with valid offset, case (4) above. */
3558 start_sequence ();
3559 new_reg = base_to_reg (&ad);
3560
3561 /* base + disp => new base, cases (1) and (3) above. */
3562 /* Another option would be to reload the displacement into an
3563 index register. However, postreload has code to optimize
3564 address reloads that have the same base and different
3565 displacements, so reloading into an index register would
3566 not necessarily be a win. */
3567 if (new_reg == NULL_RTX)
3568 {
3569 /* See if the target can split the displacement into a
3570 legitimate new displacement from a local anchor. */
3571 gcc_assert (ad.disp == ad.disp_term);
3572 poly_int64 orig_offset;
3573 rtx offset1, offset2;
3574 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3575 && targetm.legitimize_address_displacement (&offset1, &offset2,
3576 orig_offset,
3577 ad.mode))
3578 {
3579 new_reg = base_plus_disp_to_reg (&ad, offset1);
3580 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3581 }
3582 else
3583 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3584 }
3585 insns = get_insns ();
3586 last_insn = get_last_insn ();
3587 /* If we generated at least two insns, try last insn source as
3588 an address. If we succeed, we generate one less insn. */
3589 if (REG_P (new_reg)
3590 && last_insn != insns
3591 && (set = single_set (last_insn)) != NULL_RTX
3592 && GET_CODE (SET_SRC (set)) == PLUS
3593 && REG_P (XEXP (SET_SRC (set), 0))
3594 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3595 {
3596 *ad.inner = SET_SRC (set);
3597 if (valid_address_p (op, &ad, cn))
3598 {
3599 *ad.base_term = XEXP (SET_SRC (set), 0);
3600 *ad.disp_term = XEXP (SET_SRC (set), 1);
3601 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3602 get_index_code (&ad));
3603 regno = REGNO (*ad.base_term);
3604 if (regno >= FIRST_PSEUDO_REGISTER
3605 && cl != lra_get_allocno_class (regno))
3606 lra_change_class (regno, cl, " Change to", true);
3607 new_reg = SET_SRC (set);
3608 delete_insns_since (PREV_INSN (last_insn));
3609 }
3610 }
3611 end_sequence ();
3612 emit_insn (insns);
3613 *ad.inner = new_reg;
3614 }
3615 else if (ad.disp_term != NULL)
3616 {
3617 /* base + scale * index + disp => new base + scale * index,
3618 case (1) above. */
3619 gcc_assert (ad.disp == ad.disp_term);
3620 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3621 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3622 new_reg, *ad.index);
3623 }
3624 else if ((scale = get_index_scale (&ad)) == 1)
3625 {
3626 /* The last transformation to one reg will be made in
3627 curr_insn_transform function. */
3628 end_sequence ();
3629 return false;
3630 }
3631 else if (scale != 0)
3632 {
3633 /* base + scale * index => base + new_reg,
3634 case (1) above.
3635 Index part of address may become invalid. For example, we
3636 changed pseudo on the equivalent memory and a subreg of the
3637 pseudo onto the memory of different mode for which the scale is
3638 prohibitted. */
3639 new_reg = index_part_to_reg (&ad);
3640 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3641 *ad.base_term, new_reg);
3642 }
3643 else
3644 {
3645 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3646 SCRATCH, SCRATCH);
3647 rtx addr = *ad.inner;
3648
3649 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3650 /* addr => new_base. */
3651 lra_emit_move (new_reg, addr);
3652 *ad.inner = new_reg;
3653 }
3654 *before = get_insns ();
3655 end_sequence ();
3656 return true;
3657 }
3658
3659 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3660 Use process_address_1 as a helper function. Return true for any
3661 RTL changes.
3662
3663 If CHECK_ONLY_P is true, just check address correctness. Return
3664 false if the address correct. */
3665 static bool
3666 process_address (int nop, bool check_only_p,
3667 rtx_insn **before, rtx_insn **after)
3668 {
3669 bool res = false;
3670
3671 while (process_address_1 (nop, check_only_p, before, after))
3672 {
3673 if (check_only_p)
3674 return true;
3675 res = true;
3676 }
3677 return res;
3678 }
3679
3680 /* Emit insns to reload VALUE into a new register. VALUE is an
3681 auto-increment or auto-decrement RTX whose operand is a register or
3682 memory location; so reloading involves incrementing that location.
3683 IN is either identical to VALUE, or some cheaper place to reload
3684 value being incremented/decremented from.
3685
3686 INC_AMOUNT is the number to increment or decrement by (always
3687 positive and ignored for POST_MODIFY/PRE_MODIFY).
3688
3689 Return pseudo containing the result. */
3690 static rtx
3691 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3692 {
3693 /* REG or MEM to be copied and incremented. */
3694 rtx incloc = XEXP (value, 0);
3695 /* Nonzero if increment after copying. */
3696 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3697 || GET_CODE (value) == POST_MODIFY);
3698 rtx_insn *last;
3699 rtx inc;
3700 rtx_insn *add_insn;
3701 int code;
3702 rtx real_in = in == value ? incloc : in;
3703 rtx result;
3704 bool plus_p = true;
3705
3706 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3707 {
3708 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3709 || GET_CODE (XEXP (value, 1)) == MINUS);
3710 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3711 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3712 inc = XEXP (XEXP (value, 1), 1);
3713 }
3714 else
3715 {
3716 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3717 inc_amount = -inc_amount;
3718
3719 inc = gen_int_mode (inc_amount, GET_MODE (value));
3720 }
3721
3722 if (! post && REG_P (incloc))
3723 result = incloc;
3724 else
3725 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3726 "INC/DEC result");
3727
3728 if (real_in != result)
3729 {
3730 /* First copy the location to the result register. */
3731 lra_assert (REG_P (result));
3732 emit_insn (gen_move_insn (result, real_in));
3733 }
3734
3735 /* We suppose that there are insns to add/sub with the constant
3736 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3737 old reload worked with this assumption. If the assumption
3738 becomes wrong, we should use approach in function
3739 base_plus_disp_to_reg. */
3740 if (in == value)
3741 {
3742 /* See if we can directly increment INCLOC. */
3743 last = get_last_insn ();
3744 add_insn = emit_insn (plus_p
3745 ? gen_add2_insn (incloc, inc)
3746 : gen_sub2_insn (incloc, inc));
3747
3748 code = recog_memoized (add_insn);
3749 if (code >= 0)
3750 {
3751 if (! post && result != incloc)
3752 emit_insn (gen_move_insn (result, incloc));
3753 return result;
3754 }
3755 delete_insns_since (last);
3756 }
3757
3758 /* If couldn't do the increment directly, must increment in RESULT.
3759 The way we do this depends on whether this is pre- or
3760 post-increment. For pre-increment, copy INCLOC to the reload
3761 register, increment it there, then save back. */
3762 if (! post)
3763 {
3764 if (real_in != result)
3765 emit_insn (gen_move_insn (result, real_in));
3766 if (plus_p)
3767 emit_insn (gen_add2_insn (result, inc));
3768 else
3769 emit_insn (gen_sub2_insn (result, inc));
3770 if (result != incloc)
3771 emit_insn (gen_move_insn (incloc, result));
3772 }
3773 else
3774 {
3775 /* Post-increment.
3776
3777 Because this might be a jump insn or a compare, and because
3778 RESULT may not be available after the insn in an input
3779 reload, we must do the incrementing before the insn being
3780 reloaded for.
3781
3782 We have already copied IN to RESULT. Increment the copy in
3783 RESULT, save that back, then decrement RESULT so it has
3784 the original value. */
3785 if (plus_p)
3786 emit_insn (gen_add2_insn (result, inc));
3787 else
3788 emit_insn (gen_sub2_insn (result, inc));
3789 emit_insn (gen_move_insn (incloc, result));
3790 /* Restore non-modified value for the result. We prefer this
3791 way because it does not require an additional hard
3792 register. */
3793 if (plus_p)
3794 {
3795 poly_int64 offset;
3796 if (poly_int_rtx_p (inc, &offset))
3797 emit_insn (gen_add2_insn (result,
3798 gen_int_mode (-offset,
3799 GET_MODE (result))));
3800 else
3801 emit_insn (gen_sub2_insn (result, inc));
3802 }
3803 else
3804 emit_insn (gen_add2_insn (result, inc));
3805 }
3806 return result;
3807 }
3808
3809 /* Return true if the current move insn does not need processing as we
3810 already know that it satisfies its constraints. */
3811 static bool
3812 simple_move_p (void)
3813 {
3814 rtx dest, src;
3815 enum reg_class dclass, sclass;
3816
3817 lra_assert (curr_insn_set != NULL_RTX);
3818 dest = SET_DEST (curr_insn_set);
3819 src = SET_SRC (curr_insn_set);
3820
3821 /* If the instruction has multiple sets we need to process it even if it
3822 is single_set. This can happen if one or more of the SETs are dead.
3823 See PR73650. */
3824 if (multiple_sets (curr_insn))
3825 return false;
3826
3827 return ((dclass = get_op_class (dest)) != NO_REGS
3828 && (sclass = get_op_class (src)) != NO_REGS
3829 /* The backend guarantees that register moves of cost 2
3830 never need reloads. */
3831 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3832 }
3833
3834 /* Swap operands NOP and NOP + 1. */
3835 static inline void
3836 swap_operands (int nop)
3837 {
3838 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3839 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3840 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3841 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3842 /* Swap the duplicates too. */
3843 lra_update_dup (curr_id, nop);
3844 lra_update_dup (curr_id, nop + 1);
3845 }
3846
3847 /* Main entry point of the constraint code: search the body of the
3848 current insn to choose the best alternative. It is mimicking insn
3849 alternative cost calculation model of former reload pass. That is
3850 because machine descriptions were written to use this model. This
3851 model can be changed in future. Make commutative operand exchange
3852 if it is chosen.
3853
3854 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3855 constraints. Return true if any change happened during function
3856 call.
3857
3858 If CHECK_ONLY_P is true then don't do any transformation. Just
3859 check that the insn satisfies all constraints. If the insn does
3860 not satisfy any constraint, return true. */
3861 static bool
3862 curr_insn_transform (bool check_only_p)
3863 {
3864 int i, j, k;
3865 int n_operands;
3866 int n_alternatives;
3867 int n_outputs;
3868 int commutative;
3869 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3870 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3871 signed char outputs[MAX_RECOG_OPERANDS + 1];
3872 rtx_insn *before, *after;
3873 bool alt_p = false;
3874 /* Flag that the insn has been changed through a transformation. */
3875 bool change_p;
3876 bool sec_mem_p;
3877 bool use_sec_mem_p;
3878 int max_regno_before;
3879 int reused_alternative_num;
3880
3881 curr_insn_set = single_set (curr_insn);
3882 if (curr_insn_set != NULL_RTX && simple_move_p ())
3883 {
3884 /* We assume that the corresponding insn alternative has no
3885 earlier clobbers. If it is not the case, don't define move
3886 cost equal to 2 for the corresponding register classes. */
3887 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3888 return false;
3889 }
3890
3891 no_input_reloads_p = no_output_reloads_p = false;
3892 goal_alt_number = -1;
3893 change_p = sec_mem_p = false;
3894 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3895 reloads; neither are insns that SET cc0. Insns that use CC0 are
3896 not allowed to have any input reloads. */
3897 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3898 no_output_reloads_p = true;
3899
3900 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3901 no_input_reloads_p = true;
3902 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3903 no_output_reloads_p = true;
3904
3905 n_operands = curr_static_id->n_operands;
3906 n_alternatives = curr_static_id->n_alternatives;
3907
3908 /* Just return "no reloads" if insn has no operands with
3909 constraints. */
3910 if (n_operands == 0 || n_alternatives == 0)
3911 return false;
3912
3913 max_regno_before = max_reg_num ();
3914
3915 for (i = 0; i < n_operands; i++)
3916 {
3917 goal_alt_matched[i][0] = -1;
3918 goal_alt_matches[i] = -1;
3919 }
3920
3921 commutative = curr_static_id->commutative;
3922
3923 /* Now see what we need for pseudos that didn't get hard regs or got
3924 the wrong kind of hard reg. For this, we must consider all the
3925 operands together against the register constraints. */
3926
3927 best_losers = best_overall = INT_MAX;
3928 best_reload_sum = 0;
3929
3930 curr_swapped = false;
3931 goal_alt_swapped = false;
3932
3933 if (! check_only_p)
3934 /* Make equivalence substitution and memory subreg elimination
3935 before address processing because an address legitimacy can
3936 depend on memory mode. */
3937 for (i = 0; i < n_operands; i++)
3938 {
3939 rtx op, subst, old;
3940 bool op_change_p = false;
3941
3942 if (curr_static_id->operand[i].is_operator)
3943 continue;
3944
3945 old = op = *curr_id->operand_loc[i];
3946 if (GET_CODE (old) == SUBREG)
3947 old = SUBREG_REG (old);
3948 subst = get_equiv_with_elimination (old, curr_insn);
3949 original_subreg_reg_mode[i] = VOIDmode;
3950 equiv_substition_p[i] = false;
3951 if (subst != old)
3952 {
3953 equiv_substition_p[i] = true;
3954 subst = copy_rtx (subst);
3955 lra_assert (REG_P (old));
3956 if (GET_CODE (op) != SUBREG)
3957 *curr_id->operand_loc[i] = subst;
3958 else
3959 {
3960 SUBREG_REG (op) = subst;
3961 if (GET_MODE (subst) == VOIDmode)
3962 original_subreg_reg_mode[i] = GET_MODE (old);
3963 }
3964 if (lra_dump_file != NULL)
3965 {
3966 fprintf (lra_dump_file,
3967 "Changing pseudo %d in operand %i of insn %u on equiv ",
3968 REGNO (old), i, INSN_UID (curr_insn));
3969 dump_value_slim (lra_dump_file, subst, 1);
3970 fprintf (lra_dump_file, "\n");
3971 }
3972 op_change_p = change_p = true;
3973 }
3974 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3975 {
3976 change_p = true;
3977 lra_update_dup (curr_id, i);
3978 }
3979 }
3980
3981 /* Reload address registers and displacements. We do it before
3982 finding an alternative because of memory constraints. */
3983 before = after = NULL;
3984 for (i = 0; i < n_operands; i++)
3985 if (! curr_static_id->operand[i].is_operator
3986 && process_address (i, check_only_p, &before, &after))
3987 {
3988 if (check_only_p)
3989 return true;
3990 change_p = true;
3991 lra_update_dup (curr_id, i);
3992 }
3993
3994 if (change_p)
3995 /* If we've changed the instruction then any alternative that
3996 we chose previously may no longer be valid. */
3997 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3998
3999 if (! check_only_p && curr_insn_set != NULL_RTX
4000 && check_and_process_move (&change_p, &sec_mem_p))
4001 return change_p;
4002
4003 try_swapped:
4004
4005 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
4006 if (lra_dump_file != NULL && reused_alternative_num >= 0)
4007 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
4008 reused_alternative_num, INSN_UID (curr_insn));
4009
4010 if (process_alt_operands (reused_alternative_num))
4011 alt_p = true;
4012
4013 if (check_only_p)
4014 return ! alt_p || best_losers != 0;
4015
4016 /* If insn is commutative (it's safe to exchange a certain pair of
4017 operands) then we need to try each alternative twice, the second
4018 time matching those two operands as if we had exchanged them. To
4019 do this, really exchange them in operands.
4020
4021 If we have just tried the alternatives the second time, return
4022 operands to normal and drop through. */
4023
4024 if (reused_alternative_num < 0 && commutative >= 0)
4025 {
4026 curr_swapped = !curr_swapped;
4027 if (curr_swapped)
4028 {
4029 swap_operands (commutative);
4030 goto try_swapped;
4031 }
4032 else
4033 swap_operands (commutative);
4034 }
4035
4036 if (! alt_p && ! sec_mem_p)
4037 {
4038 /* No alternative works with reloads?? */
4039 if (INSN_CODE (curr_insn) >= 0)
4040 fatal_insn ("unable to generate reloads for:", curr_insn);
4041 error_for_asm (curr_insn,
4042 "inconsistent operand constraints in an %<asm%>");
4043 lra_asm_error_p = true;
4044 /* Avoid further trouble with this insn. Don't generate use
4045 pattern here as we could use the insn SP offset. */
4046 lra_set_insn_deleted (curr_insn);
4047 return true;
4048 }
4049
4050 /* If the best alternative is with operands 1 and 2 swapped, swap
4051 them. Update the operand numbers of any reloads already
4052 pushed. */
4053
4054 if (goal_alt_swapped)
4055 {
4056 if (lra_dump_file != NULL)
4057 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
4058 INSN_UID (curr_insn));
4059
4060 /* Swap the duplicates too. */
4061 swap_operands (commutative);
4062 change_p = true;
4063 }
4064
4065 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
4066 too conservatively. So we use the secondary memory only if there
4067 is no any alternative without reloads. */
4068 use_sec_mem_p = false;
4069 if (! alt_p)
4070 use_sec_mem_p = true;
4071 else if (sec_mem_p)
4072 {
4073 for (i = 0; i < n_operands; i++)
4074 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
4075 break;
4076 use_sec_mem_p = i < n_operands;
4077 }
4078
4079 if (use_sec_mem_p)
4080 {
4081 int in = -1, out = -1;
4082 rtx new_reg, src, dest, rld;
4083 machine_mode sec_mode, rld_mode;
4084
4085 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
4086 dest = SET_DEST (curr_insn_set);
4087 src = SET_SRC (curr_insn_set);
4088 for (i = 0; i < n_operands; i++)
4089 if (*curr_id->operand_loc[i] == dest)
4090 out = i;
4091 else if (*curr_id->operand_loc[i] == src)
4092 in = i;
4093 for (i = 0; i < curr_static_id->n_dups; i++)
4094 if (out < 0 && *curr_id->dup_loc[i] == dest)
4095 out = curr_static_id->dup_num[i];
4096 else if (in < 0 && *curr_id->dup_loc[i] == src)
4097 in = curr_static_id->dup_num[i];
4098 lra_assert (out >= 0 && in >= 0
4099 && curr_static_id->operand[out].type == OP_OUT
4100 && curr_static_id->operand[in].type == OP_IN);
4101 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
4102 rld_mode = GET_MODE (rld);
4103 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
4104 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
4105 NO_REGS, "secondary");
4106 /* If the mode is changed, it should be wider. */
4107 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4108 if (sec_mode != rld_mode)
4109 {
4110 /* If the target says specifically to use another mode for
4111 secondary memory moves we cannot reuse the original
4112 insn. */
4113 after = emit_spill_move (false, new_reg, dest);
4114 lra_process_new_insns (curr_insn, NULL, after,
4115 "Inserting the sec. move");
4116 /* We may have non null BEFORE here (e.g. after address
4117 processing. */
4118 push_to_sequence (before);
4119 before = emit_spill_move (true, new_reg, src);
4120 emit_insn (before);
4121 before = get_insns ();
4122 end_sequence ();
4123 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4124 lra_set_insn_deleted (curr_insn);
4125 }
4126 else if (dest == rld)
4127 {
4128 *curr_id->operand_loc[out] = new_reg;
4129 lra_update_dup (curr_id, out);
4130 after = emit_spill_move (false, new_reg, dest);
4131 lra_process_new_insns (curr_insn, NULL, after,
4132 "Inserting the sec. move");
4133 }
4134 else
4135 {
4136 *curr_id->operand_loc[in] = new_reg;
4137 lra_update_dup (curr_id, in);
4138 /* See comments above. */
4139 push_to_sequence (before);
4140 before = emit_spill_move (true, new_reg, src);
4141 emit_insn (before);
4142 before = get_insns ();
4143 end_sequence ();
4144 lra_process_new_insns (curr_insn, before, NULL,
4145 "Inserting the sec. move");
4146 }
4147 lra_update_insn_regno_info (curr_insn);
4148 return true;
4149 }
4150
4151 lra_assert (goal_alt_number >= 0);
4152 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4153
4154 if (lra_dump_file != NULL)
4155 {
4156 const char *p;
4157
4158 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4159 goal_alt_number, INSN_UID (curr_insn));
4160 for (i = 0; i < n_operands; i++)
4161 {
4162 p = (curr_static_id->operand_alternative
4163 [goal_alt_number * n_operands + i].constraint);
4164 if (*p == '\0')
4165 continue;
4166 fprintf (lra_dump_file, " (%d) ", i);
4167 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4168 fputc (*p, lra_dump_file);
4169 }
4170 if (INSN_CODE (curr_insn) >= 0
4171 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4172 fprintf (lra_dump_file, " {%s}", p);
4173 if (maybe_ne (curr_id->sp_offset, 0))
4174 {
4175 fprintf (lra_dump_file, " (sp_off=");
4176 print_dec (curr_id->sp_offset, lra_dump_file);
4177 fprintf (lra_dump_file, ")");
4178 }
4179 fprintf (lra_dump_file, "\n");
4180 }
4181
4182 /* Right now, for any pair of operands I and J that are required to
4183 match, with J < I, goal_alt_matches[I] is J. Add I to
4184 goal_alt_matched[J]. */
4185
4186 for (i = 0; i < n_operands; i++)
4187 if ((j = goal_alt_matches[i]) >= 0)
4188 {
4189 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4190 ;
4191 /* We allow matching one output operand and several input
4192 operands. */
4193 lra_assert (k == 0
4194 || (curr_static_id->operand[j].type == OP_OUT
4195 && curr_static_id->operand[i].type == OP_IN
4196 && (curr_static_id->operand
4197 [goal_alt_matched[j][0]].type == OP_IN)));
4198 goal_alt_matched[j][k] = i;
4199 goal_alt_matched[j][k + 1] = -1;
4200 }
4201
4202 for (i = 0; i < n_operands; i++)
4203 goal_alt_win[i] |= goal_alt_match_win[i];
4204
4205 /* Any constants that aren't allowed and can't be reloaded into
4206 registers are here changed into memory references. */
4207 for (i = 0; i < n_operands; i++)
4208 if (goal_alt_win[i])
4209 {
4210 int regno;
4211 enum reg_class new_class;
4212 rtx reg = *curr_id->operand_loc[i];
4213
4214 if (GET_CODE (reg) == SUBREG)
4215 reg = SUBREG_REG (reg);
4216
4217 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4218 {
4219 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4220
4221 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4222 {
4223 lra_assert (ok_p);
4224 lra_change_class (regno, new_class, " Change to", true);
4225 }
4226 }
4227 }
4228 else
4229 {
4230 const char *constraint;
4231 char c;
4232 rtx op = *curr_id->operand_loc[i];
4233 rtx subreg = NULL_RTX;
4234 machine_mode mode = curr_operand_mode[i];
4235
4236 if (GET_CODE (op) == SUBREG)
4237 {
4238 subreg = op;
4239 op = SUBREG_REG (op);
4240 mode = GET_MODE (op);
4241 }
4242
4243 if (CONST_POOL_OK_P (mode, op)
4244 && ((targetm.preferred_reload_class
4245 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4246 || no_input_reloads_p))
4247 {
4248 rtx tem = force_const_mem (mode, op);
4249
4250 change_p = true;
4251 if (subreg != NULL_RTX)
4252 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4253
4254 *curr_id->operand_loc[i] = tem;
4255 lra_update_dup (curr_id, i);
4256 process_address (i, false, &before, &after);
4257
4258 /* If the alternative accepts constant pool refs directly
4259 there will be no reload needed at all. */
4260 if (subreg != NULL_RTX)
4261 continue;
4262 /* Skip alternatives before the one requested. */
4263 constraint = (curr_static_id->operand_alternative
4264 [goal_alt_number * n_operands + i].constraint);
4265 for (;
4266 (c = *constraint) && c != ',' && c != '#';
4267 constraint += CONSTRAINT_LEN (c, constraint))
4268 {
4269 enum constraint_num cn = lookup_constraint (constraint);
4270 if ((insn_extra_memory_constraint (cn)
4271 || insn_extra_special_memory_constraint (cn))
4272 && satisfies_memory_constraint_p (tem, cn))
4273 break;
4274 }
4275 if (c == '\0' || c == ',' || c == '#')
4276 continue;
4277
4278 goal_alt_win[i] = true;
4279 }
4280 }
4281
4282 n_outputs = 0;
4283 outputs[0] = -1;
4284 for (i = 0; i < n_operands; i++)
4285 {
4286 int regno;
4287 bool optional_p = false;
4288 rtx old, new_reg;
4289 rtx op = *curr_id->operand_loc[i];
4290
4291 if (goal_alt_win[i])
4292 {
4293 if (goal_alt[i] == NO_REGS
4294 && REG_P (op)
4295 /* When we assign NO_REGS it means that we will not
4296 assign a hard register to the scratch pseudo by
4297 assigment pass and the scratch pseudo will be
4298 spilled. Spilled scratch pseudos are transformed
4299 back to scratches at the LRA end. */
4300 && lra_former_scratch_operand_p (curr_insn, i)
4301 && lra_former_scratch_p (REGNO (op)))
4302 {
4303 int regno = REGNO (op);
4304 lra_change_class (regno, NO_REGS, " Change to", true);
4305 if (lra_get_regno_hard_regno (regno) >= 0)
4306 /* We don't have to mark all insn affected by the
4307 spilled pseudo as there is only one such insn, the
4308 current one. */
4309 reg_renumber[regno] = -1;
4310 lra_assert (bitmap_single_bit_set_p
4311 (&lra_reg_info[REGNO (op)].insn_bitmap));
4312 }
4313 /* We can do an optional reload. If the pseudo got a hard
4314 reg, we might improve the code through inheritance. If
4315 it does not get a hard register we coalesce memory/memory
4316 moves later. Ignore move insns to avoid cycling. */
4317 if (! lra_simple_p
4318 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4319 && goal_alt[i] != NO_REGS && REG_P (op)
4320 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4321 && regno < new_regno_start
4322 && ! lra_former_scratch_p (regno)
4323 && reg_renumber[regno] < 0
4324 /* Check that the optional reload pseudo will be able to
4325 hold given mode value. */
4326 && ! (prohibited_class_reg_set_mode_p
4327 (goal_alt[i], reg_class_contents[goal_alt[i]],
4328 PSEUDO_REGNO_MODE (regno)))
4329 && (curr_insn_set == NULL_RTX
4330 || !((REG_P (SET_SRC (curr_insn_set))
4331 || MEM_P (SET_SRC (curr_insn_set))
4332 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4333 && (REG_P (SET_DEST (curr_insn_set))
4334 || MEM_P (SET_DEST (curr_insn_set))
4335 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4336 optional_p = true;
4337 else if (goal_alt_matched[i][0] != -1
4338 && curr_static_id->operand[i].type == OP_OUT
4339 && (curr_static_id->operand_alternative
4340 [goal_alt_number * n_operands + i].earlyclobber)
4341 && REG_P (op))
4342 {
4343 for (j = 0; goal_alt_matched[i][j] != -1; j++)
4344 {
4345 rtx op2 = *curr_id->operand_loc[goal_alt_matched[i][j]];
4346
4347 if (REG_P (op2) && REGNO (op) != REGNO (op2))
4348 break;
4349 }
4350 if (goal_alt_matched[i][j] != -1)
4351 {
4352 /* Generate reloads for different output and matched
4353 input registers. This is the easiest way to avoid
4354 creation of non-existing register conflicts in
4355 lra-lives.c. */
4356 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4357 &after, TRUE);
4358 outputs[n_outputs++] = i;
4359 outputs[n_outputs] = -1;
4360 }
4361 continue;
4362 }
4363 else
4364 continue;
4365 }
4366
4367 /* Operands that match previous ones have already been handled. */
4368 if (goal_alt_matches[i] >= 0)
4369 continue;
4370
4371 /* We should not have an operand with a non-offsettable address
4372 appearing where an offsettable address will do. It also may
4373 be a case when the address should be special in other words
4374 not a general one (e.g. it needs no index reg). */
4375 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4376 {
4377 enum reg_class rclass;
4378 rtx *loc = &XEXP (op, 0);
4379 enum rtx_code code = GET_CODE (*loc);
4380
4381 push_to_sequence (before);
4382 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4383 MEM, SCRATCH);
4384 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4385 new_reg = emit_inc (rclass, *loc, *loc,
4386 /* This value does not matter for MODIFY. */
4387 GET_MODE_SIZE (GET_MODE (op)));
4388 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4389 "offsetable address", &new_reg))
4390 {
4391 rtx addr = *loc;
4392 enum rtx_code code = GET_CODE (addr);
4393 bool align_p = false;
4394
4395 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4396 {
4397 /* (and ... (const_int -X)) is used to align to X bytes. */
4398 align_p = true;
4399 addr = XEXP (*loc, 0);
4400 }
4401 else
4402 addr = canonicalize_reload_addr (addr);
4403
4404 lra_emit_move (new_reg, addr);
4405 if (align_p)
4406 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4407 }
4408 before = get_insns ();
4409 end_sequence ();
4410 *loc = new_reg;
4411 lra_update_dup (curr_id, i);
4412 }
4413 else if (goal_alt_matched[i][0] == -1)
4414 {
4415 machine_mode mode;
4416 rtx reg, *loc;
4417 int hard_regno;
4418 enum op_type type = curr_static_id->operand[i].type;
4419
4420 loc = curr_id->operand_loc[i];
4421 mode = curr_operand_mode[i];
4422 if (GET_CODE (*loc) == SUBREG)
4423 {
4424 reg = SUBREG_REG (*loc);
4425 poly_int64 byte = SUBREG_BYTE (*loc);
4426 if (REG_P (reg)
4427 /* Strict_low_part requires reloading the register and not
4428 just the subreg. Likewise for a strict subreg no wider
4429 than a word for WORD_REGISTER_OPERATIONS targets. */
4430 && (curr_static_id->operand[i].strict_low
4431 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4432 && (hard_regno
4433 = get_try_hard_regno (REGNO (reg))) >= 0
4434 && (simplify_subreg_regno
4435 (hard_regno,
4436 GET_MODE (reg), byte, mode) < 0)
4437 && (goal_alt[i] == NO_REGS
4438 || (simplify_subreg_regno
4439 (ira_class_hard_regs[goal_alt[i]][0],
4440 GET_MODE (reg), byte, mode) >= 0)))
4441 || (partial_subreg_p (mode, GET_MODE (reg))
4442 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4443 UNITS_PER_WORD)
4444 && WORD_REGISTER_OPERATIONS)))
4445 {
4446 /* An OP_INOUT is required when reloading a subreg of a
4447 mode wider than a word to ensure that data beyond the
4448 word being reloaded is preserved. Also automatically
4449 ensure that strict_low_part reloads are made into
4450 OP_INOUT which should already be true from the backend
4451 constraints. */
4452 if (type == OP_OUT
4453 && (curr_static_id->operand[i].strict_low
4454 || read_modify_subreg_p (*loc)))
4455 type = OP_INOUT;
4456 loc = &SUBREG_REG (*loc);
4457 mode = GET_MODE (*loc);
4458 }
4459 }
4460 old = *loc;
4461 if (get_reload_reg (type, mode, old, goal_alt[i],
4462 loc != curr_id->operand_loc[i], "", &new_reg)
4463 && type != OP_OUT)
4464 {
4465 push_to_sequence (before);
4466 lra_emit_move (new_reg, old);
4467 before = get_insns ();
4468 end_sequence ();
4469 }
4470 *loc = new_reg;
4471 if (type != OP_IN
4472 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4473 {
4474 start_sequence ();
4475 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4476 emit_insn (after);
4477 after = get_insns ();
4478 end_sequence ();
4479 *loc = new_reg;
4480 }
4481 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4482 if (goal_alt_dont_inherit_ops[j] == i)
4483 {
4484 lra_set_regno_unique_value (REGNO (new_reg));
4485 break;
4486 }
4487 lra_update_dup (curr_id, i);
4488 }
4489 else if (curr_static_id->operand[i].type == OP_IN
4490 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4491 == OP_OUT
4492 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4493 == OP_INOUT
4494 && (operands_match_p
4495 (*curr_id->operand_loc[i],
4496 *curr_id->operand_loc[goal_alt_matched[i][0]],
4497 -1)))))
4498 {
4499 /* generate reloads for input and matched outputs. */
4500 match_inputs[0] = i;
4501 match_inputs[1] = -1;
4502 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4503 goal_alt[i], &before, &after,
4504 curr_static_id->operand_alternative
4505 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4506 .earlyclobber);
4507 }
4508 else if ((curr_static_id->operand[i].type == OP_OUT
4509 || (curr_static_id->operand[i].type == OP_INOUT
4510 && (operands_match_p
4511 (*curr_id->operand_loc[i],
4512 *curr_id->operand_loc[goal_alt_matched[i][0]],
4513 -1))))
4514 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4515 == OP_IN))
4516 /* Generate reloads for output and matched inputs. */
4517 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4518 &after, curr_static_id->operand_alternative
4519 [goal_alt_number * n_operands + i].earlyclobber);
4520 else if (curr_static_id->operand[i].type == OP_IN
4521 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4522 == OP_IN))
4523 {
4524 /* Generate reloads for matched inputs. */
4525 match_inputs[0] = i;
4526 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4527 match_inputs[j + 1] = k;
4528 match_inputs[j + 1] = -1;
4529 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4530 &after, false);
4531 }
4532 else
4533 /* We must generate code in any case when function
4534 process_alt_operands decides that it is possible. */
4535 gcc_unreachable ();
4536
4537 /* Memorise processed outputs so that output remaining to be processed
4538 can avoid using the same register value (see match_reload). */
4539 if (curr_static_id->operand[i].type == OP_OUT)
4540 {
4541 outputs[n_outputs++] = i;
4542 outputs[n_outputs] = -1;
4543 }
4544
4545 if (optional_p)
4546 {
4547 rtx reg = op;
4548
4549 lra_assert (REG_P (reg));
4550 regno = REGNO (reg);
4551 op = *curr_id->operand_loc[i]; /* Substitution. */
4552 if (GET_CODE (op) == SUBREG)
4553 op = SUBREG_REG (op);
4554 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4555 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4556 lra_reg_info[REGNO (op)].restore_rtx = reg;
4557 if (lra_dump_file != NULL)
4558 fprintf (lra_dump_file,
4559 " Making reload reg %d for reg %d optional\n",
4560 REGNO (op), regno);
4561 }
4562 }
4563 if (before != NULL_RTX || after != NULL_RTX
4564 || max_regno_before != max_reg_num ())
4565 change_p = true;
4566 if (change_p)
4567 {
4568 lra_update_operator_dups (curr_id);
4569 /* Something changes -- process the insn. */
4570 lra_update_insn_regno_info (curr_insn);
4571 }
4572 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4573 return change_p;
4574 }
4575
4576 /* Return true if INSN satisfies all constraints. In other words, no
4577 reload insns are needed. */
4578 bool
4579 lra_constrain_insn (rtx_insn *insn)
4580 {
4581 int saved_new_regno_start = new_regno_start;
4582 int saved_new_insn_uid_start = new_insn_uid_start;
4583 bool change_p;
4584
4585 curr_insn = insn;
4586 curr_id = lra_get_insn_recog_data (curr_insn);
4587 curr_static_id = curr_id->insn_static_data;
4588 new_insn_uid_start = get_max_uid ();
4589 new_regno_start = max_reg_num ();
4590 change_p = curr_insn_transform (true);
4591 new_regno_start = saved_new_regno_start;
4592 new_insn_uid_start = saved_new_insn_uid_start;
4593 return ! change_p;
4594 }
4595
4596 /* Return true if X is in LIST. */
4597 static bool
4598 in_list_p (rtx x, rtx list)
4599 {
4600 for (; list != NULL_RTX; list = XEXP (list, 1))
4601 if (XEXP (list, 0) == x)
4602 return true;
4603 return false;
4604 }
4605
4606 /* Return true if X contains an allocatable hard register (if
4607 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4608 static bool
4609 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4610 {
4611 int i, j;
4612 const char *fmt;
4613 enum rtx_code code;
4614
4615 code = GET_CODE (x);
4616 if (REG_P (x))
4617 {
4618 int regno = REGNO (x);
4619 HARD_REG_SET alloc_regs;
4620
4621 if (hard_reg_p)
4622 {
4623 if (regno >= FIRST_PSEUDO_REGISTER)
4624 regno = lra_get_regno_hard_regno (regno);
4625 if (regno < 0)
4626 return false;
4627 alloc_regs = ~lra_no_alloc_regs;
4628 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4629 }
4630 else
4631 {
4632 if (regno < FIRST_PSEUDO_REGISTER)
4633 return false;
4634 if (! spilled_p)
4635 return true;
4636 return lra_get_regno_hard_regno (regno) < 0;
4637 }
4638 }
4639 fmt = GET_RTX_FORMAT (code);
4640 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4641 {
4642 if (fmt[i] == 'e')
4643 {
4644 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4645 return true;
4646 }
4647 else if (fmt[i] == 'E')
4648 {
4649 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4650 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4651 return true;
4652 }
4653 }
4654 return false;
4655 }
4656
4657 /* Process all regs in location *LOC and change them on equivalent
4658 substitution. Return true if any change was done. */
4659 static bool
4660 loc_equivalence_change_p (rtx *loc)
4661 {
4662 rtx subst, reg, x = *loc;
4663 bool result = false;
4664 enum rtx_code code = GET_CODE (x);
4665 const char *fmt;
4666 int i, j;
4667
4668 if (code == SUBREG)
4669 {
4670 reg = SUBREG_REG (x);
4671 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4672 && GET_MODE (subst) == VOIDmode)
4673 {
4674 /* We cannot reload debug location. Simplify subreg here
4675 while we know the inner mode. */
4676 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4677 GET_MODE (reg), SUBREG_BYTE (x));
4678 return true;
4679 }
4680 }
4681 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4682 {
4683 *loc = subst;
4684 return true;
4685 }
4686
4687 /* Scan all the operand sub-expressions. */
4688 fmt = GET_RTX_FORMAT (code);
4689 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4690 {
4691 if (fmt[i] == 'e')
4692 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4693 else if (fmt[i] == 'E')
4694 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4695 result
4696 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4697 }
4698 return result;
4699 }
4700
4701 /* Similar to loc_equivalence_change_p, but for use as
4702 simplify_replace_fn_rtx callback. DATA is insn for which the
4703 elimination is done. If it null we don't do the elimination. */
4704 static rtx
4705 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4706 {
4707 if (!REG_P (loc))
4708 return NULL_RTX;
4709
4710 rtx subst = (data == NULL
4711 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4712 if (subst != loc)
4713 return subst;
4714
4715 return NULL_RTX;
4716 }
4717
4718 /* Maximum number of generated reload insns per an insn. It is for
4719 preventing this pass cycling in a bug case. */
4720 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4721
4722 /* The current iteration number of this LRA pass. */
4723 int lra_constraint_iter;
4724
4725 /* True if we should during assignment sub-pass check assignment
4726 correctness for all pseudos and spill some of them to correct
4727 conflicts. It can be necessary when we substitute equiv which
4728 needs checking register allocation correctness because the
4729 equivalent value contains allocatable hard registers, or when we
4730 restore multi-register pseudo, or when we change the insn code and
4731 its operand became INOUT operand when it was IN one before. */
4732 bool check_and_force_assignment_correctness_p;
4733
4734 /* Return true if REGNO is referenced in more than one block. */
4735 static bool
4736 multi_block_pseudo_p (int regno)
4737 {
4738 basic_block bb = NULL;
4739 unsigned int uid;
4740 bitmap_iterator bi;
4741
4742 if (regno < FIRST_PSEUDO_REGISTER)
4743 return false;
4744
4745 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4746 if (bb == NULL)
4747 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4748 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4749 return true;
4750 return false;
4751 }
4752
4753 /* Return true if LIST contains a deleted insn. */
4754 static bool
4755 contains_deleted_insn_p (rtx_insn_list *list)
4756 {
4757 for (; list != NULL_RTX; list = list->next ())
4758 if (NOTE_P (list->insn ())
4759 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4760 return true;
4761 return false;
4762 }
4763
4764 /* Return true if X contains a pseudo dying in INSN. */
4765 static bool
4766 dead_pseudo_p (rtx x, rtx_insn *insn)
4767 {
4768 int i, j;
4769 const char *fmt;
4770 enum rtx_code code;
4771
4772 if (REG_P (x))
4773 return (insn != NULL_RTX
4774 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4775 code = GET_CODE (x);
4776 fmt = GET_RTX_FORMAT (code);
4777 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4778 {
4779 if (fmt[i] == 'e')
4780 {
4781 if (dead_pseudo_p (XEXP (x, i), insn))
4782 return true;
4783 }
4784 else if (fmt[i] == 'E')
4785 {
4786 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4787 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4788 return true;
4789 }
4790 }
4791 return false;
4792 }
4793
4794 /* Return true if INSN contains a dying pseudo in INSN right hand
4795 side. */
4796 static bool
4797 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4798 {
4799 rtx set = single_set (insn);
4800
4801 gcc_assert (set != NULL);
4802 return dead_pseudo_p (SET_SRC (set), insn);
4803 }
4804
4805 /* Return true if any init insn of REGNO contains a dying pseudo in
4806 insn right hand side. */
4807 static bool
4808 init_insn_rhs_dead_pseudo_p (int regno)
4809 {
4810 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4811
4812 if (insns == NULL)
4813 return false;
4814 for (; insns != NULL_RTX; insns = insns->next ())
4815 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4816 return true;
4817 return false;
4818 }
4819
4820 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4821 reverse only if we have one init insn with given REGNO as a
4822 source. */
4823 static bool
4824 reverse_equiv_p (int regno)
4825 {
4826 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4827 rtx set;
4828
4829 if (insns == NULL)
4830 return false;
4831 if (! INSN_P (insns->insn ())
4832 || insns->next () != NULL)
4833 return false;
4834 if ((set = single_set (insns->insn ())) == NULL_RTX)
4835 return false;
4836 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4837 }
4838
4839 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4840 call this function only for non-reverse equivalence. */
4841 static bool
4842 contains_reloaded_insn_p (int regno)
4843 {
4844 rtx set;
4845 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4846
4847 for (; list != NULL; list = list->next ())
4848 if ((set = single_set (list->insn ())) == NULL_RTX
4849 || ! REG_P (SET_DEST (set))
4850 || (int) REGNO (SET_DEST (set)) != regno)
4851 return true;
4852 return false;
4853 }
4854
4855 /* Entry function of LRA constraint pass. Return true if the
4856 constraint pass did change the code. */
4857 bool
4858 lra_constraints (bool first_p)
4859 {
4860 bool changed_p;
4861 int i, hard_regno, new_insns_num;
4862 unsigned int min_len, new_min_len, uid;
4863 rtx set, x, reg, dest_reg;
4864 basic_block last_bb;
4865 bitmap_iterator bi;
4866
4867 lra_constraint_iter++;
4868 if (lra_dump_file != NULL)
4869 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4870 lra_constraint_iter);
4871 changed_p = false;
4872 if (pic_offset_table_rtx
4873 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4874 check_and_force_assignment_correctness_p = true;
4875 else if (first_p)
4876 /* On the first iteration we should check IRA assignment
4877 correctness. In rare cases, the assignments can be wrong as
4878 early clobbers operands are ignored in IRA or usages of
4879 paradoxical sub-registers are not taken into account by
4880 IRA. */
4881 check_and_force_assignment_correctness_p = true;
4882 new_insn_uid_start = get_max_uid ();
4883 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4884 /* Mark used hard regs for target stack size calulations. */
4885 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4886 if (lra_reg_info[i].nrefs != 0
4887 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4888 {
4889 int j, nregs;
4890
4891 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
4892 for (j = 0; j < nregs; j++)
4893 df_set_regs_ever_live (hard_regno + j, true);
4894 }
4895 /* Do elimination before the equivalence processing as we can spill
4896 some pseudos during elimination. */
4897 lra_eliminate (false, first_p);
4898 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4899 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4900 if (lra_reg_info[i].nrefs != 0)
4901 {
4902 ira_reg_equiv[i].profitable_p = true;
4903 reg = regno_reg_rtx[i];
4904 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4905 {
4906 bool pseudo_p = contains_reg_p (x, false, false);
4907
4908 /* After RTL transformation, we cannot guarantee that
4909 pseudo in the substitution was not reloaded which might
4910 make equivalence invalid. For example, in reverse
4911 equiv of p0
4912
4913 p0 <- ...
4914 ...
4915 equiv_mem <- p0
4916
4917 the memory address register was reloaded before the 2nd
4918 insn. */
4919 if ((! first_p && pseudo_p)
4920 /* We don't use DF for compilation speed sake. So it
4921 is problematic to update live info when we use an
4922 equivalence containing pseudos in more than one
4923 BB. */
4924 || (pseudo_p && multi_block_pseudo_p (i))
4925 /* If an init insn was deleted for some reason, cancel
4926 the equiv. We could update the equiv insns after
4927 transformations including an equiv insn deletion
4928 but it is not worthy as such cases are extremely
4929 rare. */
4930 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4931 /* If it is not a reverse equivalence, we check that a
4932 pseudo in rhs of the init insn is not dying in the
4933 insn. Otherwise, the live info at the beginning of
4934 the corresponding BB might be wrong after we
4935 removed the insn. When the equiv can be a
4936 constant, the right hand side of the init insn can
4937 be a pseudo. */
4938 || (! reverse_equiv_p (i)
4939 && (init_insn_rhs_dead_pseudo_p (i)
4940 /* If we reloaded the pseudo in an equivalence
4941 init insn, we cannot remove the equiv init
4942 insns and the init insns might write into
4943 const memory in this case. */
4944 || contains_reloaded_insn_p (i)))
4945 /* Prevent access beyond equivalent memory for
4946 paradoxical subregs. */
4947 || (MEM_P (x)
4948 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
4949 GET_MODE_SIZE (GET_MODE (x))))
4950 || (pic_offset_table_rtx
4951 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4952 && (targetm.preferred_reload_class
4953 (x, lra_get_allocno_class (i)) == NO_REGS))
4954 || contains_symbol_ref_p (x))))
4955 ira_reg_equiv[i].defined_p = false;
4956 if (contains_reg_p (x, false, true))
4957 ira_reg_equiv[i].profitable_p = false;
4958 if (get_equiv (reg) != reg)
4959 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4960 }
4961 }
4962 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4963 update_equiv (i);
4964 /* We should add all insns containing pseudos which should be
4965 substituted by their equivalences. */
4966 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4967 lra_push_insn_by_uid (uid);
4968 min_len = lra_insn_stack_length ();
4969 new_insns_num = 0;
4970 last_bb = NULL;
4971 changed_p = false;
4972 while ((new_min_len = lra_insn_stack_length ()) != 0)
4973 {
4974 curr_insn = lra_pop_insn ();
4975 --new_min_len;
4976 curr_bb = BLOCK_FOR_INSN (curr_insn);
4977 if (curr_bb != last_bb)
4978 {
4979 last_bb = curr_bb;
4980 bb_reload_num = lra_curr_reload_num;
4981 }
4982 if (min_len > new_min_len)
4983 {
4984 min_len = new_min_len;
4985 new_insns_num = 0;
4986 }
4987 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4988 internal_error
4989 ("maximum number of generated reload insns per insn achieved (%d)",
4990 MAX_RELOAD_INSNS_NUMBER);
4991 new_insns_num++;
4992 if (DEBUG_INSN_P (curr_insn))
4993 {
4994 /* We need to check equivalence in debug insn and change
4995 pseudo to the equivalent value if necessary. */
4996 curr_id = lra_get_insn_recog_data (curr_insn);
4997 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4998 {
4999 rtx old = *curr_id->operand_loc[0];
5000 *curr_id->operand_loc[0]
5001 = simplify_replace_fn_rtx (old, NULL_RTX,
5002 loc_equivalence_callback, curr_insn);
5003 if (old != *curr_id->operand_loc[0])
5004 {
5005 lra_update_insn_regno_info (curr_insn);
5006 changed_p = true;
5007 }
5008 }
5009 }
5010 else if (INSN_P (curr_insn))
5011 {
5012 if ((set = single_set (curr_insn)) != NULL_RTX)
5013 {
5014 dest_reg = SET_DEST (set);
5015 /* The equivalence pseudo could be set up as SUBREG in a
5016 case when it is a call restore insn in a mode
5017 different from the pseudo mode. */
5018 if (GET_CODE (dest_reg) == SUBREG)
5019 dest_reg = SUBREG_REG (dest_reg);
5020 if ((REG_P (dest_reg)
5021 && (x = get_equiv (dest_reg)) != dest_reg
5022 /* Remove insns which set up a pseudo whose value
5023 cannot be changed. Such insns might be not in
5024 init_insns because we don't update equiv data
5025 during insn transformations.
5026
5027 As an example, let suppose that a pseudo got
5028 hard register and on the 1st pass was not
5029 changed to equivalent constant. We generate an
5030 additional insn setting up the pseudo because of
5031 secondary memory movement. Then the pseudo is
5032 spilled and we use the equiv constant. In this
5033 case we should remove the additional insn and
5034 this insn is not init_insns list. */
5035 && (! MEM_P (x) || MEM_READONLY_P (x)
5036 /* Check that this is actually an insn setting
5037 up the equivalence. */
5038 || in_list_p (curr_insn,
5039 ira_reg_equiv
5040 [REGNO (dest_reg)].init_insns)))
5041 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
5042 && in_list_p (curr_insn,
5043 ira_reg_equiv
5044 [REGNO (SET_SRC (set))].init_insns)))
5045 {
5046 /* This is equiv init insn of pseudo which did not get a
5047 hard register -- remove the insn. */
5048 if (lra_dump_file != NULL)
5049 {
5050 fprintf (lra_dump_file,
5051 " Removing equiv init insn %i (freq=%d)\n",
5052 INSN_UID (curr_insn),
5053 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
5054 dump_insn_slim (lra_dump_file, curr_insn);
5055 }
5056 if (contains_reg_p (x, true, false))
5057 check_and_force_assignment_correctness_p = true;
5058 lra_set_insn_deleted (curr_insn);
5059 continue;
5060 }
5061 }
5062 curr_id = lra_get_insn_recog_data (curr_insn);
5063 curr_static_id = curr_id->insn_static_data;
5064 init_curr_insn_input_reloads ();
5065 init_curr_operand_mode ();
5066 if (curr_insn_transform (false))
5067 changed_p = true;
5068 /* Check non-transformed insns too for equiv change as USE
5069 or CLOBBER don't need reloads but can contain pseudos
5070 being changed on their equivalences. */
5071 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
5072 && loc_equivalence_change_p (&PATTERN (curr_insn)))
5073 {
5074 lra_update_insn_regno_info (curr_insn);
5075 changed_p = true;
5076 }
5077 }
5078 }
5079
5080 /* If we used a new hard regno, changed_p should be true because the
5081 hard reg is assigned to a new pseudo. */
5082 if (flag_checking && !changed_p)
5083 {
5084 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5085 if (lra_reg_info[i].nrefs != 0
5086 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
5087 {
5088 int j, nregs = hard_regno_nregs (hard_regno,
5089 PSEUDO_REGNO_MODE (i));
5090
5091 for (j = 0; j < nregs; j++)
5092 lra_assert (df_regs_ever_live_p (hard_regno + j));
5093 }
5094 }
5095 return changed_p;
5096 }
5097
5098 static void initiate_invariants (void);
5099 static void finish_invariants (void);
5100
5101 /* Initiate the LRA constraint pass. It is done once per
5102 function. */
5103 void
5104 lra_constraints_init (void)
5105 {
5106 initiate_invariants ();
5107 }
5108
5109 /* Finalize the LRA constraint pass. It is done once per
5110 function. */
5111 void
5112 lra_constraints_finish (void)
5113 {
5114 finish_invariants ();
5115 }
5116
5117 \f
5118
5119 /* Structure describes invariants for ineheritance. */
5120 struct lra_invariant
5121 {
5122 /* The order number of the invariant. */
5123 int num;
5124 /* The invariant RTX. */
5125 rtx invariant_rtx;
5126 /* The origin insn of the invariant. */
5127 rtx_insn *insn;
5128 };
5129
5130 typedef lra_invariant invariant_t;
5131 typedef invariant_t *invariant_ptr_t;
5132 typedef const invariant_t *const_invariant_ptr_t;
5133
5134 /* Pointer to the inheritance invariants. */
5135 static vec<invariant_ptr_t> invariants;
5136
5137 /* Allocation pool for the invariants. */
5138 static object_allocator<lra_invariant> *invariants_pool;
5139
5140 /* Hash table for the invariants. */
5141 static htab_t invariant_table;
5142
5143 /* Hash function for INVARIANT. */
5144 static hashval_t
5145 invariant_hash (const void *invariant)
5146 {
5147 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5148 return lra_rtx_hash (inv);
5149 }
5150
5151 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
5152 static int
5153 invariant_eq_p (const void *invariant1, const void *invariant2)
5154 {
5155 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5156 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5157
5158 return rtx_equal_p (inv1, inv2);
5159 }
5160
5161 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
5162 invariant which is in the table. */
5163 static invariant_ptr_t
5164 insert_invariant (rtx invariant_rtx)
5165 {
5166 void **entry_ptr;
5167 invariant_t invariant;
5168 invariant_ptr_t invariant_ptr;
5169
5170 invariant.invariant_rtx = invariant_rtx;
5171 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5172 if (*entry_ptr == NULL)
5173 {
5174 invariant_ptr = invariants_pool->allocate ();
5175 invariant_ptr->invariant_rtx = invariant_rtx;
5176 invariant_ptr->insn = NULL;
5177 invariants.safe_push (invariant_ptr);
5178 *entry_ptr = (void *) invariant_ptr;
5179 }
5180 return (invariant_ptr_t) *entry_ptr;
5181 }
5182
5183 /* Initiate the invariant table. */
5184 static void
5185 initiate_invariants (void)
5186 {
5187 invariants.create (100);
5188 invariants_pool
5189 = new object_allocator<lra_invariant> ("Inheritance invariants");
5190 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5191 }
5192
5193 /* Finish the invariant table. */
5194 static void
5195 finish_invariants (void)
5196 {
5197 htab_delete (invariant_table);
5198 delete invariants_pool;
5199 invariants.release ();
5200 }
5201
5202 /* Make the invariant table empty. */
5203 static void
5204 clear_invariants (void)
5205 {
5206 htab_empty (invariant_table);
5207 invariants_pool->release ();
5208 invariants.truncate (0);
5209 }
5210
5211 \f
5212
5213 /* This page contains code to do inheritance/split
5214 transformations. */
5215
5216 /* Number of reloads passed so far in current EBB. */
5217 static int reloads_num;
5218
5219 /* Number of calls passed so far in current EBB. */
5220 static int calls_num;
5221
5222 /* Index ID is the CALLS_NUM associated the last call we saw with
5223 ABI identifier ID. */
5224 static int last_call_for_abi[NUM_ABI_IDS];
5225
5226 /* Which registers have been fully or partially clobbered by a call
5227 since they were last used. */
5228 static HARD_REG_SET full_and_partial_call_clobbers;
5229
5230 /* Current reload pseudo check for validity of elements in
5231 USAGE_INSNS. */
5232 static int curr_usage_insns_check;
5233
5234 /* Info about last usage of registers in EBB to do inheritance/split
5235 transformation. Inheritance transformation is done from a spilled
5236 pseudo and split transformations from a hard register or a pseudo
5237 assigned to a hard register. */
5238 struct usage_insns
5239 {
5240 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5241 value INSNS is valid. The insns is chain of optional debug insns
5242 and a finishing non-debug insn using the corresponding reg. The
5243 value is also used to mark the registers which are set up in the
5244 current insn. The negated insn uid is used for this. */
5245 int check;
5246 /* Value of global reloads_num at the last insn in INSNS. */
5247 int reloads_num;
5248 /* Value of global reloads_nums at the last insn in INSNS. */
5249 int calls_num;
5250 /* It can be true only for splitting. And it means that the restore
5251 insn should be put after insn given by the following member. */
5252 bool after_p;
5253 /* Next insns in the current EBB which use the original reg and the
5254 original reg value is not changed between the current insn and
5255 the next insns. In order words, e.g. for inheritance, if we need
5256 to use the original reg value again in the next insns we can try
5257 to use the value in a hard register from a reload insn of the
5258 current insn. */
5259 rtx insns;
5260 };
5261
5262 /* Map: regno -> corresponding pseudo usage insns. */
5263 static struct usage_insns *usage_insns;
5264
5265 static void
5266 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5267 {
5268 usage_insns[regno].check = curr_usage_insns_check;
5269 usage_insns[regno].insns = insn;
5270 usage_insns[regno].reloads_num = reloads_num;
5271 usage_insns[regno].calls_num = calls_num;
5272 usage_insns[regno].after_p = after_p;
5273 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0)
5274 remove_from_hard_reg_set (&full_and_partial_call_clobbers,
5275 PSEUDO_REGNO_MODE (regno),
5276 reg_renumber[regno]);
5277 }
5278
5279 /* The function is used to form list REGNO usages which consists of
5280 optional debug insns finished by a non-debug insn using REGNO.
5281 RELOADS_NUM is current number of reload insns processed so far. */
5282 static void
5283 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5284 {
5285 rtx next_usage_insns;
5286
5287 if (usage_insns[regno].check == curr_usage_insns_check
5288 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5289 && DEBUG_INSN_P (insn))
5290 {
5291 /* Check that we did not add the debug insn yet. */
5292 if (next_usage_insns != insn
5293 && (GET_CODE (next_usage_insns) != INSN_LIST
5294 || XEXP (next_usage_insns, 0) != insn))
5295 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5296 next_usage_insns);
5297 }
5298 else if (NONDEBUG_INSN_P (insn))
5299 setup_next_usage_insn (regno, insn, reloads_num, false);
5300 else
5301 usage_insns[regno].check = 0;
5302 }
5303
5304 /* Return first non-debug insn in list USAGE_INSNS. */
5305 static rtx_insn *
5306 skip_usage_debug_insns (rtx usage_insns)
5307 {
5308 rtx insn;
5309
5310 /* Skip debug insns. */
5311 for (insn = usage_insns;
5312 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5313 insn = XEXP (insn, 1))
5314 ;
5315 return safe_as_a <rtx_insn *> (insn);
5316 }
5317
5318 /* Return true if we need secondary memory moves for insn in
5319 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5320 into the insn. */
5321 static bool
5322 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5323 rtx usage_insns ATTRIBUTE_UNUSED)
5324 {
5325 rtx_insn *insn;
5326 rtx set, dest;
5327 enum reg_class cl;
5328
5329 if (inher_cl == ALL_REGS
5330 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5331 return false;
5332 lra_assert (INSN_P (insn));
5333 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5334 return false;
5335 dest = SET_DEST (set);
5336 if (! REG_P (dest))
5337 return false;
5338 lra_assert (inher_cl != NO_REGS);
5339 cl = get_reg_class (REGNO (dest));
5340 return (cl != NO_REGS && cl != ALL_REGS
5341 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5342 }
5343
5344 /* Registers involved in inheritance/split in the current EBB
5345 (inheritance/split pseudos and original registers). */
5346 static bitmap_head check_only_regs;
5347
5348 /* Reload pseudos cannot be involded in invariant inheritance in the
5349 current EBB. */
5350 static bitmap_head invalid_invariant_regs;
5351
5352 /* Do inheritance transformations for insn INSN, which defines (if
5353 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5354 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5355 form as the "insns" field of usage_insns. Return true if we
5356 succeed in such transformation.
5357
5358 The transformations look like:
5359
5360 p <- ... i <- ...
5361 ... p <- i (new insn)
5362 ... =>
5363 <- ... p ... <- ... i ...
5364 or
5365 ... i <- p (new insn)
5366 <- ... p ... <- ... i ...
5367 ... =>
5368 <- ... p ... <- ... i ...
5369 where p is a spilled original pseudo and i is a new inheritance pseudo.
5370
5371
5372 The inheritance pseudo has the smallest class of two classes CL and
5373 class of ORIGINAL REGNO. */
5374 static bool
5375 inherit_reload_reg (bool def_p, int original_regno,
5376 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5377 {
5378 if (optimize_function_for_size_p (cfun))
5379 return false;
5380
5381 enum reg_class rclass = lra_get_allocno_class (original_regno);
5382 rtx original_reg = regno_reg_rtx[original_regno];
5383 rtx new_reg, usage_insn;
5384 rtx_insn *new_insns;
5385
5386 lra_assert (! usage_insns[original_regno].after_p);
5387 if (lra_dump_file != NULL)
5388 fprintf (lra_dump_file,
5389 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5390 if (! ira_reg_classes_intersect_p[cl][rclass])
5391 {
5392 if (lra_dump_file != NULL)
5393 {
5394 fprintf (lra_dump_file,
5395 " Rejecting inheritance for %d "
5396 "because of disjoint classes %s and %s\n",
5397 original_regno, reg_class_names[cl],
5398 reg_class_names[rclass]);
5399 fprintf (lra_dump_file,
5400 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5401 }
5402 return false;
5403 }
5404 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5405 /* We don't use a subset of two classes because it can be
5406 NO_REGS. This transformation is still profitable in most
5407 cases even if the classes are not intersected as register
5408 move is probably cheaper than a memory load. */
5409 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5410 {
5411 if (lra_dump_file != NULL)
5412 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5413 reg_class_names[cl], reg_class_names[rclass]);
5414
5415 rclass = cl;
5416 }
5417 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5418 {
5419 /* Reject inheritance resulting in secondary memory moves.
5420 Otherwise, there is a danger in LRA cycling. Also such
5421 transformation will be unprofitable. */
5422 if (lra_dump_file != NULL)
5423 {
5424 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5425 rtx set = single_set (insn);
5426
5427 lra_assert (set != NULL_RTX);
5428
5429 rtx dest = SET_DEST (set);
5430
5431 lra_assert (REG_P (dest));
5432 fprintf (lra_dump_file,
5433 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5434 "as secondary mem is needed\n",
5435 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5436 original_regno, reg_class_names[rclass]);
5437 fprintf (lra_dump_file,
5438 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5439 }
5440 return false;
5441 }
5442 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5443 rclass, "inheritance");
5444 start_sequence ();
5445 if (def_p)
5446 lra_emit_move (original_reg, new_reg);
5447 else
5448 lra_emit_move (new_reg, original_reg);
5449 new_insns = get_insns ();
5450 end_sequence ();
5451 if (NEXT_INSN (new_insns) != NULL_RTX)
5452 {
5453 if (lra_dump_file != NULL)
5454 {
5455 fprintf (lra_dump_file,
5456 " Rejecting inheritance %d->%d "
5457 "as it results in 2 or more insns:\n",
5458 original_regno, REGNO (new_reg));
5459 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5460 fprintf (lra_dump_file,
5461 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5462 }
5463 return false;
5464 }
5465 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5466 lra_update_insn_regno_info (insn);
5467 if (! def_p)
5468 /* We now have a new usage insn for original regno. */
5469 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5470 if (lra_dump_file != NULL)
5471 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5472 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5473 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5474 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5475 bitmap_set_bit (&check_only_regs, original_regno);
5476 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5477 if (def_p)
5478 lra_process_new_insns (insn, NULL, new_insns,
5479 "Add original<-inheritance");
5480 else
5481 lra_process_new_insns (insn, new_insns, NULL,
5482 "Add inheritance<-original");
5483 while (next_usage_insns != NULL_RTX)
5484 {
5485 if (GET_CODE (next_usage_insns) != INSN_LIST)
5486 {
5487 usage_insn = next_usage_insns;
5488 lra_assert (NONDEBUG_INSN_P (usage_insn));
5489 next_usage_insns = NULL;
5490 }
5491 else
5492 {
5493 usage_insn = XEXP (next_usage_insns, 0);
5494 lra_assert (DEBUG_INSN_P (usage_insn));
5495 next_usage_insns = XEXP (next_usage_insns, 1);
5496 }
5497 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5498 DEBUG_INSN_P (usage_insn));
5499 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5500 if (lra_dump_file != NULL)
5501 {
5502 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5503 fprintf (lra_dump_file,
5504 " Inheritance reuse change %d->%d (bb%d):\n",
5505 original_regno, REGNO (new_reg),
5506 bb ? bb->index : -1);
5507 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5508 }
5509 }
5510 if (lra_dump_file != NULL)
5511 fprintf (lra_dump_file,
5512 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5513 return true;
5514 }
5515
5516 /* Return true if we need a caller save/restore for pseudo REGNO which
5517 was assigned to a hard register. */
5518 static inline bool
5519 need_for_call_save_p (int regno)
5520 {
5521 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5522 if (usage_insns[regno].calls_num < calls_num)
5523 {
5524 unsigned int abis = 0;
5525 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
5526 if (last_call_for_abi[i] > usage_insns[regno].calls_num)
5527 abis |= 1 << i;
5528 gcc_assert (abis);
5529 if (call_clobbered_in_region_p (abis, full_and_partial_call_clobbers,
5530 PSEUDO_REGNO_MODE (regno),
5531 reg_renumber[regno]))
5532 return true;
5533 }
5534 return false;
5535 }
5536
5537 /* Global registers occurring in the current EBB. */
5538 static bitmap_head ebb_global_regs;
5539
5540 /* Return true if we need a split for hard register REGNO or pseudo
5541 REGNO which was assigned to a hard register.
5542 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5543 used for reloads since the EBB end. It is an approximation of the
5544 used hard registers in the split range. The exact value would
5545 require expensive calculations. If we were aggressive with
5546 splitting because of the approximation, the split pseudo will save
5547 the same hard register assignment and will be removed in the undo
5548 pass. We still need the approximation because too aggressive
5549 splitting would result in too inaccurate cost calculation in the
5550 assignment pass because of too many generated moves which will be
5551 probably removed in the undo pass. */
5552 static inline bool
5553 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5554 {
5555 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5556
5557 lra_assert (hard_regno >= 0);
5558 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5559 /* Don't split eliminable hard registers, otherwise we can
5560 split hard registers like hard frame pointer, which
5561 lives on BB start/end according to DF-infrastructure,
5562 when there is a pseudo assigned to the register and
5563 living in the same BB. */
5564 && (regno >= FIRST_PSEUDO_REGISTER
5565 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5566 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5567 /* Don't split call clobbered hard regs living through
5568 calls, otherwise we might have a check problem in the
5569 assign sub-pass as in the most cases (exception is a
5570 situation when check_and_force_assignment_correctness_p value is
5571 true) the assign pass assumes that all pseudos living
5572 through calls are assigned to call saved hard regs. */
5573 && (regno >= FIRST_PSEUDO_REGISTER
5574 || !TEST_HARD_REG_BIT (full_and_partial_call_clobbers, regno))
5575 /* We need at least 2 reloads to make pseudo splitting
5576 profitable. We should provide hard regno splitting in
5577 any case to solve 1st insn scheduling problem when
5578 moving hard register definition up might result in
5579 impossibility to find hard register for reload pseudo of
5580 small register class. */
5581 && (usage_insns[regno].reloads_num
5582 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5583 && (regno < FIRST_PSEUDO_REGISTER
5584 /* For short living pseudos, spilling + inheritance can
5585 be considered a substitution for splitting.
5586 Therefore we do not splitting for local pseudos. It
5587 decreases also aggressiveness of splitting. The
5588 minimal number of references is chosen taking into
5589 account that for 2 references splitting has no sense
5590 as we can just spill the pseudo. */
5591 || (regno >= FIRST_PSEUDO_REGISTER
5592 && lra_reg_info[regno].nrefs > 3
5593 && bitmap_bit_p (&ebb_global_regs, regno))))
5594 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5595 }
5596
5597 /* Return class for the split pseudo created from original pseudo with
5598 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5599 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5600 results in no secondary memory movements. */
5601 static enum reg_class
5602 choose_split_class (enum reg_class allocno_class,
5603 int hard_regno ATTRIBUTE_UNUSED,
5604 machine_mode mode ATTRIBUTE_UNUSED)
5605 {
5606 int i;
5607 enum reg_class cl, best_cl = NO_REGS;
5608 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5609 = REGNO_REG_CLASS (hard_regno);
5610
5611 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5612 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5613 return allocno_class;
5614 for (i = 0;
5615 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5616 i++)
5617 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5618 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5619 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5620 && (best_cl == NO_REGS
5621 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5622 best_cl = cl;
5623 return best_cl;
5624 }
5625
5626 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5627 It only makes sense to call this function if NEW_REGNO is always
5628 equal to ORIGINAL_REGNO. */
5629
5630 static void
5631 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5632 {
5633 if (!ira_reg_equiv[original_regno].defined_p)
5634 return;
5635
5636 ira_expand_reg_equiv ();
5637 ira_reg_equiv[new_regno].defined_p = true;
5638 if (ira_reg_equiv[original_regno].memory)
5639 ira_reg_equiv[new_regno].memory
5640 = copy_rtx (ira_reg_equiv[original_regno].memory);
5641 if (ira_reg_equiv[original_regno].constant)
5642 ira_reg_equiv[new_regno].constant
5643 = copy_rtx (ira_reg_equiv[original_regno].constant);
5644 if (ira_reg_equiv[original_regno].invariant)
5645 ira_reg_equiv[new_regno].invariant
5646 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5647 }
5648
5649 /* Do split transformations for insn INSN, which defines or uses
5650 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5651 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5652 "insns" field of usage_insns. If TO is not NULL, we don't use
5653 usage_insns, we put restore insns after TO insn. It is a case when
5654 we call it from lra_split_hard_reg_for, outside the inheritance
5655 pass.
5656
5657 The transformations look like:
5658
5659 p <- ... p <- ...
5660 ... s <- p (new insn -- save)
5661 ... =>
5662 ... p <- s (new insn -- restore)
5663 <- ... p ... <- ... p ...
5664 or
5665 <- ... p ... <- ... p ...
5666 ... s <- p (new insn -- save)
5667 ... =>
5668 ... p <- s (new insn -- restore)
5669 <- ... p ... <- ... p ...
5670
5671 where p is an original pseudo got a hard register or a hard
5672 register and s is a new split pseudo. The save is put before INSN
5673 if BEFORE_P is true. Return true if we succeed in such
5674 transformation. */
5675 static bool
5676 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5677 rtx next_usage_insns, rtx_insn *to)
5678 {
5679 enum reg_class rclass;
5680 rtx original_reg;
5681 int hard_regno, nregs;
5682 rtx new_reg, usage_insn;
5683 rtx_insn *restore, *save;
5684 bool after_p;
5685 bool call_save_p;
5686 machine_mode mode;
5687
5688 if (original_regno < FIRST_PSEUDO_REGISTER)
5689 {
5690 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5691 hard_regno = original_regno;
5692 call_save_p = false;
5693 nregs = 1;
5694 mode = lra_reg_info[hard_regno].biggest_mode;
5695 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5696 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5697 as part of a multi-word register. In that case, or if the biggest
5698 mode was larger than a register, just use the reg_rtx. Otherwise,
5699 limit the size to that of the biggest access in the function. */
5700 if (mode == VOIDmode
5701 || paradoxical_subreg_p (mode, reg_rtx_mode))
5702 {
5703 original_reg = regno_reg_rtx[hard_regno];
5704 mode = reg_rtx_mode;
5705 }
5706 else
5707 original_reg = gen_rtx_REG (mode, hard_regno);
5708 }
5709 else
5710 {
5711 mode = PSEUDO_REGNO_MODE (original_regno);
5712 hard_regno = reg_renumber[original_regno];
5713 nregs = hard_regno_nregs (hard_regno, mode);
5714 rclass = lra_get_allocno_class (original_regno);
5715 original_reg = regno_reg_rtx[original_regno];
5716 call_save_p = need_for_call_save_p (original_regno);
5717 }
5718 lra_assert (hard_regno >= 0);
5719 if (lra_dump_file != NULL)
5720 fprintf (lra_dump_file,
5721 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5722
5723 if (call_save_p)
5724 {
5725 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5726 hard_regno_nregs (hard_regno, mode),
5727 mode);
5728 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5729 }
5730 else
5731 {
5732 rclass = choose_split_class (rclass, hard_regno, mode);
5733 if (rclass == NO_REGS)
5734 {
5735 if (lra_dump_file != NULL)
5736 {
5737 fprintf (lra_dump_file,
5738 " Rejecting split of %d(%s): "
5739 "no good reg class for %d(%s)\n",
5740 original_regno,
5741 reg_class_names[lra_get_allocno_class (original_regno)],
5742 hard_regno,
5743 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5744 fprintf
5745 (lra_dump_file,
5746 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5747 }
5748 return false;
5749 }
5750 /* Split_if_necessary can split hard registers used as part of a
5751 multi-register mode but splits each register individually. The
5752 mode used for each independent register may not be supported
5753 so reject the split. Splitting the wider mode should theoretically
5754 be possible but is not implemented. */
5755 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
5756 {
5757 if (lra_dump_file != NULL)
5758 {
5759 fprintf (lra_dump_file,
5760 " Rejecting split of %d(%s): unsuitable mode %s\n",
5761 original_regno,
5762 reg_class_names[lra_get_allocno_class (original_regno)],
5763 GET_MODE_NAME (mode));
5764 fprintf
5765 (lra_dump_file,
5766 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5767 }
5768 return false;
5769 }
5770 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5771 reg_renumber[REGNO (new_reg)] = hard_regno;
5772 }
5773 int new_regno = REGNO (new_reg);
5774 save = emit_spill_move (true, new_reg, original_reg);
5775 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5776 {
5777 if (lra_dump_file != NULL)
5778 {
5779 fprintf
5780 (lra_dump_file,
5781 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5782 original_regno, new_regno);
5783 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5784 fprintf (lra_dump_file,
5785 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5786 }
5787 return false;
5788 }
5789 restore = emit_spill_move (false, new_reg, original_reg);
5790 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5791 {
5792 if (lra_dump_file != NULL)
5793 {
5794 fprintf (lra_dump_file,
5795 " Rejecting split %d->%d "
5796 "resulting in > 2 restore insns:\n",
5797 original_regno, new_regno);
5798 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5799 fprintf (lra_dump_file,
5800 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5801 }
5802 return false;
5803 }
5804 /* Transfer equivalence information to the spill register, so that
5805 if we fail to allocate the spill register, we have the option of
5806 rematerializing the original value instead of spilling to the stack. */
5807 if (!HARD_REGISTER_NUM_P (original_regno)
5808 && mode == PSEUDO_REGNO_MODE (original_regno))
5809 lra_copy_reg_equiv (new_regno, original_regno);
5810 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5811 bitmap_set_bit (&lra_split_regs, new_regno);
5812 if (to != NULL)
5813 {
5814 lra_assert (next_usage_insns == NULL);
5815 usage_insn = to;
5816 after_p = TRUE;
5817 }
5818 else
5819 {
5820 /* We need check_only_regs only inside the inheritance pass. */
5821 bitmap_set_bit (&check_only_regs, new_regno);
5822 bitmap_set_bit (&check_only_regs, original_regno);
5823 after_p = usage_insns[original_regno].after_p;
5824 for (;;)
5825 {
5826 if (GET_CODE (next_usage_insns) != INSN_LIST)
5827 {
5828 usage_insn = next_usage_insns;
5829 break;
5830 }
5831 usage_insn = XEXP (next_usage_insns, 0);
5832 lra_assert (DEBUG_INSN_P (usage_insn));
5833 next_usage_insns = XEXP (next_usage_insns, 1);
5834 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5835 true);
5836 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5837 if (lra_dump_file != NULL)
5838 {
5839 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5840 original_regno, new_regno);
5841 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5842 }
5843 }
5844 }
5845 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5846 lra_assert (usage_insn != insn || (after_p && before_p));
5847 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5848 after_p ? NULL : restore,
5849 after_p ? restore : NULL,
5850 call_save_p
5851 ? "Add reg<-save" : "Add reg<-split");
5852 lra_process_new_insns (insn, before_p ? save : NULL,
5853 before_p ? NULL : save,
5854 call_save_p
5855 ? "Add save<-reg" : "Add split<-reg");
5856 if (nregs > 1)
5857 /* If we are trying to split multi-register. We should check
5858 conflicts on the next assignment sub-pass. IRA can allocate on
5859 sub-register levels, LRA do this on pseudos level right now and
5860 this discrepancy may create allocation conflicts after
5861 splitting. */
5862 check_and_force_assignment_correctness_p = true;
5863 if (lra_dump_file != NULL)
5864 fprintf (lra_dump_file,
5865 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5866 return true;
5867 }
5868
5869 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5870 in the range [FROM, TO]. Return true if did a split. Otherwise,
5871 return false. */
5872 bool
5873 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
5874 {
5875 int i, hard_regno;
5876 int rclass_size;
5877 rtx_insn *insn;
5878 unsigned int uid;
5879 bitmap_iterator bi;
5880 HARD_REG_SET ignore;
5881
5882 lra_assert (from != NULL && to != NULL);
5883 CLEAR_HARD_REG_SET (ignore);
5884 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5885 {
5886 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
5887 struct lra_static_insn_data *static_id = id->insn_static_data;
5888 struct lra_insn_reg *reg;
5889
5890 for (reg = id->regs; reg != NULL; reg = reg->next)
5891 if (reg->regno < FIRST_PSEUDO_REGISTER)
5892 SET_HARD_REG_BIT (ignore, reg->regno);
5893 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5894 SET_HARD_REG_BIT (ignore, reg->regno);
5895 }
5896 rclass_size = ira_class_hard_regs_num[rclass];
5897 for (i = 0; i < rclass_size; i++)
5898 {
5899 hard_regno = ira_class_hard_regs[rclass][i];
5900 if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
5901 || TEST_HARD_REG_BIT (ignore, hard_regno))
5902 continue;
5903 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
5904 {
5905 struct lra_static_insn_data *static_id;
5906 struct lra_insn_reg *reg;
5907
5908 if (!INSN_P (insn))
5909 continue;
5910 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
5911 INSN_UID (insn)))
5912 break;
5913 static_id = lra_get_insn_recog_data (insn)->insn_static_data;
5914 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5915 if (reg->regno == hard_regno)
5916 break;
5917 if (reg != NULL)
5918 break;
5919 }
5920 if (insn != NEXT_INSN (to))
5921 continue;
5922 if (split_reg (TRUE, hard_regno, from, NULL, to))
5923 return true;
5924 }
5925 return false;
5926 }
5927
5928 /* Recognize that we need a split transformation for insn INSN, which
5929 defines or uses REGNO in its insn biggest MODE (we use it only if
5930 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5931 hard registers which might be used for reloads since the EBB end.
5932 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5933 uid before starting INSN processing. Return true if we succeed in
5934 such transformation. */
5935 static bool
5936 split_if_necessary (int regno, machine_mode mode,
5937 HARD_REG_SET potential_reload_hard_regs,
5938 bool before_p, rtx_insn *insn, int max_uid)
5939 {
5940 bool res = false;
5941 int i, nregs = 1;
5942 rtx next_usage_insns;
5943
5944 if (regno < FIRST_PSEUDO_REGISTER)
5945 nregs = hard_regno_nregs (regno, mode);
5946 for (i = 0; i < nregs; i++)
5947 if (usage_insns[regno + i].check == curr_usage_insns_check
5948 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5949 /* To avoid processing the register twice or more. */
5950 && ((GET_CODE (next_usage_insns) != INSN_LIST
5951 && INSN_UID (next_usage_insns) < max_uid)
5952 || (GET_CODE (next_usage_insns) == INSN_LIST
5953 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5954 && need_for_split_p (potential_reload_hard_regs, regno + i)
5955 && split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
5956 res = true;
5957 return res;
5958 }
5959
5960 /* Return TRUE if rtx X is considered as an invariant for
5961 inheritance. */
5962 static bool
5963 invariant_p (const_rtx x)
5964 {
5965 machine_mode mode;
5966 const char *fmt;
5967 enum rtx_code code;
5968 int i, j;
5969
5970 if (side_effects_p (x))
5971 return false;
5972
5973 code = GET_CODE (x);
5974 mode = GET_MODE (x);
5975 if (code == SUBREG)
5976 {
5977 x = SUBREG_REG (x);
5978 code = GET_CODE (x);
5979 mode = wider_subreg_mode (mode, GET_MODE (x));
5980 }
5981
5982 if (MEM_P (x))
5983 return false;
5984
5985 if (REG_P (x))
5986 {
5987 int i, nregs, regno = REGNO (x);
5988
5989 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5990 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5991 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5992 return false;
5993 nregs = hard_regno_nregs (regno, mode);
5994 for (i = 0; i < nregs; i++)
5995 if (! fixed_regs[regno + i]
5996 /* A hard register may be clobbered in the current insn
5997 but we can ignore this case because if the hard
5998 register is used it should be set somewhere after the
5999 clobber. */
6000 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
6001 return false;
6002 }
6003 fmt = GET_RTX_FORMAT (code);
6004 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6005 {
6006 if (fmt[i] == 'e')
6007 {
6008 if (! invariant_p (XEXP (x, i)))
6009 return false;
6010 }
6011 else if (fmt[i] == 'E')
6012 {
6013 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6014 if (! invariant_p (XVECEXP (x, i, j)))
6015 return false;
6016 }
6017 }
6018 return true;
6019 }
6020
6021 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
6022 inheritance transformation (using dest_reg instead invariant in a
6023 subsequent insn). */
6024 static bool
6025 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
6026 {
6027 invariant_ptr_t invariant_ptr;
6028 rtx_insn *insn, *new_insns;
6029 rtx insn_set, insn_reg, new_reg;
6030 int insn_regno;
6031 bool succ_p = false;
6032 int dst_regno = REGNO (dst_reg);
6033 machine_mode dst_mode = GET_MODE (dst_reg);
6034 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
6035
6036 invariant_ptr = insert_invariant (invariant_rtx);
6037 if ((insn = invariant_ptr->insn) != NULL_RTX)
6038 {
6039 /* We have a subsequent insn using the invariant. */
6040 insn_set = single_set (insn);
6041 lra_assert (insn_set != NULL);
6042 insn_reg = SET_DEST (insn_set);
6043 lra_assert (REG_P (insn_reg));
6044 insn_regno = REGNO (insn_reg);
6045 insn_reg_cl = lra_get_allocno_class (insn_regno);
6046
6047 if (dst_mode == GET_MODE (insn_reg)
6048 /* We should consider only result move reg insns which are
6049 cheap. */
6050 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
6051 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
6052 {
6053 if (lra_dump_file != NULL)
6054 fprintf (lra_dump_file,
6055 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
6056 new_reg = lra_create_new_reg (dst_mode, dst_reg,
6057 cl, "invariant inheritance");
6058 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
6059 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
6060 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
6061 start_sequence ();
6062 lra_emit_move (new_reg, dst_reg);
6063 new_insns = get_insns ();
6064 end_sequence ();
6065 lra_process_new_insns (curr_insn, NULL, new_insns,
6066 "Add invariant inheritance<-original");
6067 start_sequence ();
6068 lra_emit_move (SET_DEST (insn_set), new_reg);
6069 new_insns = get_insns ();
6070 end_sequence ();
6071 lra_process_new_insns (insn, NULL, new_insns,
6072 "Changing reload<-inheritance");
6073 lra_set_insn_deleted (insn);
6074 succ_p = true;
6075 if (lra_dump_file != NULL)
6076 {
6077 fprintf (lra_dump_file,
6078 " Invariant inheritance reuse change %d (bb%d):\n",
6079 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
6080 dump_insn_slim (lra_dump_file, insn);
6081 fprintf (lra_dump_file,
6082 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
6083 }
6084 }
6085 }
6086 invariant_ptr->insn = curr_insn;
6087 return succ_p;
6088 }
6089
6090 /* Check only registers living at the current program point in the
6091 current EBB. */
6092 static bitmap_head live_regs;
6093
6094 /* Update live info in EBB given by its HEAD and TAIL insns after
6095 inheritance/split transformation. The function removes dead moves
6096 too. */
6097 static void
6098 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
6099 {
6100 unsigned int j;
6101 int i, regno;
6102 bool live_p;
6103 rtx_insn *prev_insn;
6104 rtx set;
6105 bool remove_p;
6106 basic_block last_bb, prev_bb, curr_bb;
6107 bitmap_iterator bi;
6108 struct lra_insn_reg *reg;
6109 edge e;
6110 edge_iterator ei;
6111
6112 last_bb = BLOCK_FOR_INSN (tail);
6113 prev_bb = NULL;
6114 for (curr_insn = tail;
6115 curr_insn != PREV_INSN (head);
6116 curr_insn = prev_insn)
6117 {
6118 prev_insn = PREV_INSN (curr_insn);
6119 /* We need to process empty blocks too. They contain
6120 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
6121 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
6122 continue;
6123 curr_bb = BLOCK_FOR_INSN (curr_insn);
6124 if (curr_bb != prev_bb)
6125 {
6126 if (prev_bb != NULL)
6127 {
6128 /* Update df_get_live_in (prev_bb): */
6129 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6130 if (bitmap_bit_p (&live_regs, j))
6131 bitmap_set_bit (df_get_live_in (prev_bb), j);
6132 else
6133 bitmap_clear_bit (df_get_live_in (prev_bb), j);
6134 }
6135 if (curr_bb != last_bb)
6136 {
6137 /* Update df_get_live_out (curr_bb): */
6138 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6139 {
6140 live_p = bitmap_bit_p (&live_regs, j);
6141 if (! live_p)
6142 FOR_EACH_EDGE (e, ei, curr_bb->succs)
6143 if (bitmap_bit_p (df_get_live_in (e->dest), j))
6144 {
6145 live_p = true;
6146 break;
6147 }
6148 if (live_p)
6149 bitmap_set_bit (df_get_live_out (curr_bb), j);
6150 else
6151 bitmap_clear_bit (df_get_live_out (curr_bb), j);
6152 }
6153 }
6154 prev_bb = curr_bb;
6155 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
6156 }
6157 if (! NONDEBUG_INSN_P (curr_insn))
6158 continue;
6159 curr_id = lra_get_insn_recog_data (curr_insn);
6160 curr_static_id = curr_id->insn_static_data;
6161 remove_p = false;
6162 if ((set = single_set (curr_insn)) != NULL_RTX
6163 && REG_P (SET_DEST (set))
6164 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
6165 && SET_DEST (set) != pic_offset_table_rtx
6166 && bitmap_bit_p (&check_only_regs, regno)
6167 && ! bitmap_bit_p (&live_regs, regno))
6168 remove_p = true;
6169 /* See which defined values die here. */
6170 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6171 if (reg->type == OP_OUT && ! reg->subreg_p)
6172 bitmap_clear_bit (&live_regs, reg->regno);
6173 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6174 if (reg->type == OP_OUT && ! reg->subreg_p)
6175 bitmap_clear_bit (&live_regs, reg->regno);
6176 if (curr_id->arg_hard_regs != NULL)
6177 /* Make clobbered argument hard registers die. */
6178 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6179 if (regno >= FIRST_PSEUDO_REGISTER)
6180 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6181 /* Mark each used value as live. */
6182 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6183 if (reg->type != OP_OUT
6184 && bitmap_bit_p (&check_only_regs, reg->regno))
6185 bitmap_set_bit (&live_regs, reg->regno);
6186 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6187 if (reg->type != OP_OUT
6188 && bitmap_bit_p (&check_only_regs, reg->regno))
6189 bitmap_set_bit (&live_regs, reg->regno);
6190 if (curr_id->arg_hard_regs != NULL)
6191 /* Make used argument hard registers live. */
6192 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6193 if (regno < FIRST_PSEUDO_REGISTER
6194 && bitmap_bit_p (&check_only_regs, regno))
6195 bitmap_set_bit (&live_regs, regno);
6196 /* It is quite important to remove dead move insns because it
6197 means removing dead store. We don't need to process them for
6198 constraints. */
6199 if (remove_p)
6200 {
6201 if (lra_dump_file != NULL)
6202 {
6203 fprintf (lra_dump_file, " Removing dead insn:\n ");
6204 dump_insn_slim (lra_dump_file, curr_insn);
6205 }
6206 lra_set_insn_deleted (curr_insn);
6207 }
6208 }
6209 }
6210
6211 /* The structure describes info to do an inheritance for the current
6212 insn. We need to collect such info first before doing the
6213 transformations because the transformations change the insn
6214 internal representation. */
6215 struct to_inherit
6216 {
6217 /* Original regno. */
6218 int regno;
6219 /* Subsequent insns which can inherit original reg value. */
6220 rtx insns;
6221 };
6222
6223 /* Array containing all info for doing inheritance from the current
6224 insn. */
6225 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6226
6227 /* Number elements in the previous array. */
6228 static int to_inherit_num;
6229
6230 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6231 structure to_inherit. */
6232 static void
6233 add_to_inherit (int regno, rtx insns)
6234 {
6235 int i;
6236
6237 for (i = 0; i < to_inherit_num; i++)
6238 if (to_inherit[i].regno == regno)
6239 return;
6240 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6241 to_inherit[to_inherit_num].regno = regno;
6242 to_inherit[to_inherit_num++].insns = insns;
6243 }
6244
6245 /* Return the last non-debug insn in basic block BB, or the block begin
6246 note if none. */
6247 static rtx_insn *
6248 get_last_insertion_point (basic_block bb)
6249 {
6250 rtx_insn *insn;
6251
6252 FOR_BB_INSNS_REVERSE (bb, insn)
6253 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6254 return insn;
6255 gcc_unreachable ();
6256 }
6257
6258 /* Set up RES by registers living on edges FROM except the edge (FROM,
6259 TO) or by registers set up in a jump insn in BB FROM. */
6260 static void
6261 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6262 {
6263 rtx_insn *last;
6264 struct lra_insn_reg *reg;
6265 edge e;
6266 edge_iterator ei;
6267
6268 lra_assert (to != NULL);
6269 bitmap_clear (res);
6270 FOR_EACH_EDGE (e, ei, from->succs)
6271 if (e->dest != to)
6272 bitmap_ior_into (res, df_get_live_in (e->dest));
6273 last = get_last_insertion_point (from);
6274 if (! JUMP_P (last))
6275 return;
6276 curr_id = lra_get_insn_recog_data (last);
6277 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6278 if (reg->type != OP_IN)
6279 bitmap_set_bit (res, reg->regno);
6280 }
6281
6282 /* Used as a temporary results of some bitmap calculations. */
6283 static bitmap_head temp_bitmap;
6284
6285 /* We split for reloads of small class of hard regs. The following
6286 defines how many hard regs the class should have to be qualified as
6287 small. The code is mostly oriented to x86/x86-64 architecture
6288 where some insns need to use only specific register or pair of
6289 registers and these register can live in RTL explicitly, e.g. for
6290 parameter passing. */
6291 static const int max_small_class_regs_num = 2;
6292
6293 /* Do inheritance/split transformations in EBB starting with HEAD and
6294 finishing on TAIL. We process EBB insns in the reverse order.
6295 Return true if we did any inheritance/split transformation in the
6296 EBB.
6297
6298 We should avoid excessive splitting which results in worse code
6299 because of inaccurate cost calculations for spilling new split
6300 pseudos in such case. To achieve this we do splitting only if
6301 register pressure is high in given basic block and there are reload
6302 pseudos requiring hard registers. We could do more register
6303 pressure calculations at any given program point to avoid necessary
6304 splitting even more but it is to expensive and the current approach
6305 works well enough. */
6306 static bool
6307 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6308 {
6309 int i, src_regno, dst_regno, nregs;
6310 bool change_p, succ_p, update_reloads_num_p;
6311 rtx_insn *prev_insn, *last_insn;
6312 rtx next_usage_insns, curr_set;
6313 enum reg_class cl;
6314 struct lra_insn_reg *reg;
6315 basic_block last_processed_bb, curr_bb = NULL;
6316 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6317 bitmap to_process;
6318 unsigned int j;
6319 bitmap_iterator bi;
6320 bool head_p, after_p;
6321
6322 change_p = false;
6323 curr_usage_insns_check++;
6324 clear_invariants ();
6325 reloads_num = calls_num = 0;
6326 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
6327 last_call_for_abi[i] = 0;
6328 CLEAR_HARD_REG_SET (full_and_partial_call_clobbers);
6329 bitmap_clear (&check_only_regs);
6330 bitmap_clear (&invalid_invariant_regs);
6331 last_processed_bb = NULL;
6332 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6333 live_hard_regs = eliminable_regset | lra_no_alloc_regs;
6334 /* We don't process new insns generated in the loop. */
6335 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6336 {
6337 prev_insn = PREV_INSN (curr_insn);
6338 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6339 curr_bb = BLOCK_FOR_INSN (curr_insn);
6340 if (last_processed_bb != curr_bb)
6341 {
6342 /* We are at the end of BB. Add qualified living
6343 pseudos for potential splitting. */
6344 to_process = df_get_live_out (curr_bb);
6345 if (last_processed_bb != NULL)
6346 {
6347 /* We are somewhere in the middle of EBB. */
6348 get_live_on_other_edges (curr_bb, last_processed_bb,
6349 &temp_bitmap);
6350 to_process = &temp_bitmap;
6351 }
6352 last_processed_bb = curr_bb;
6353 last_insn = get_last_insertion_point (curr_bb);
6354 after_p = (! JUMP_P (last_insn)
6355 && (! CALL_P (last_insn)
6356 || (find_reg_note (last_insn,
6357 REG_NORETURN, NULL_RTX) == NULL_RTX
6358 && ! SIBLING_CALL_P (last_insn))));
6359 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6360 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6361 {
6362 if ((int) j >= lra_constraint_new_regno_start)
6363 break;
6364 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6365 {
6366 if (j < FIRST_PSEUDO_REGISTER)
6367 SET_HARD_REG_BIT (live_hard_regs, j);
6368 else
6369 add_to_hard_reg_set (&live_hard_regs,
6370 PSEUDO_REGNO_MODE (j),
6371 reg_renumber[j]);
6372 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6373 }
6374 }
6375 }
6376 src_regno = dst_regno = -1;
6377 curr_set = single_set (curr_insn);
6378 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6379 dst_regno = REGNO (SET_DEST (curr_set));
6380 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6381 src_regno = REGNO (SET_SRC (curr_set));
6382 update_reloads_num_p = true;
6383 if (src_regno < lra_constraint_new_regno_start
6384 && src_regno >= FIRST_PSEUDO_REGISTER
6385 && reg_renumber[src_regno] < 0
6386 && dst_regno >= lra_constraint_new_regno_start
6387 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6388 {
6389 /* 'reload_pseudo <- original_pseudo'. */
6390 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6391 reloads_num++;
6392 update_reloads_num_p = false;
6393 succ_p = false;
6394 if (usage_insns[src_regno].check == curr_usage_insns_check
6395 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6396 succ_p = inherit_reload_reg (false, src_regno, cl,
6397 curr_insn, next_usage_insns);
6398 if (succ_p)
6399 change_p = true;
6400 else
6401 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6402 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6403 potential_reload_hard_regs |= reg_class_contents[cl];
6404 }
6405 else if (src_regno < 0
6406 && dst_regno >= lra_constraint_new_regno_start
6407 && invariant_p (SET_SRC (curr_set))
6408 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6409 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6410 && ! bitmap_bit_p (&invalid_invariant_regs,
6411 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6412 {
6413 /* 'reload_pseudo <- invariant'. */
6414 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6415 reloads_num++;
6416 update_reloads_num_p = false;
6417 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6418 change_p = true;
6419 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6420 potential_reload_hard_regs |= reg_class_contents[cl];
6421 }
6422 else if (src_regno >= lra_constraint_new_regno_start
6423 && dst_regno < lra_constraint_new_regno_start
6424 && dst_regno >= FIRST_PSEUDO_REGISTER
6425 && reg_renumber[dst_regno] < 0
6426 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6427 && usage_insns[dst_regno].check == curr_usage_insns_check
6428 && (next_usage_insns
6429 = usage_insns[dst_regno].insns) != NULL_RTX)
6430 {
6431 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6432 reloads_num++;
6433 update_reloads_num_p = false;
6434 /* 'original_pseudo <- reload_pseudo'. */
6435 if (! JUMP_P (curr_insn)
6436 && inherit_reload_reg (true, dst_regno, cl,
6437 curr_insn, next_usage_insns))
6438 change_p = true;
6439 /* Invalidate. */
6440 usage_insns[dst_regno].check = 0;
6441 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6442 potential_reload_hard_regs |= reg_class_contents[cl];
6443 }
6444 else if (INSN_P (curr_insn))
6445 {
6446 int iter;
6447 int max_uid = get_max_uid ();
6448
6449 curr_id = lra_get_insn_recog_data (curr_insn);
6450 curr_static_id = curr_id->insn_static_data;
6451 to_inherit_num = 0;
6452 /* Process insn definitions. */
6453 for (iter = 0; iter < 2; iter++)
6454 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6455 reg != NULL;
6456 reg = reg->next)
6457 if (reg->type != OP_IN
6458 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6459 {
6460 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6461 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6462 && usage_insns[dst_regno].check == curr_usage_insns_check
6463 && (next_usage_insns
6464 = usage_insns[dst_regno].insns) != NULL_RTX)
6465 {
6466 struct lra_insn_reg *r;
6467
6468 for (r = curr_id->regs; r != NULL; r = r->next)
6469 if (r->type != OP_OUT && r->regno == dst_regno)
6470 break;
6471 /* Don't do inheritance if the pseudo is also
6472 used in the insn. */
6473 if (r == NULL)
6474 /* We cannot do inheritance right now
6475 because the current insn reg info (chain
6476 regs) can change after that. */
6477 add_to_inherit (dst_regno, next_usage_insns);
6478 }
6479 /* We cannot process one reg twice here because of
6480 usage_insns invalidation. */
6481 if ((dst_regno < FIRST_PSEUDO_REGISTER
6482 || reg_renumber[dst_regno] >= 0)
6483 && ! reg->subreg_p && reg->type != OP_IN)
6484 {
6485 HARD_REG_SET s;
6486
6487 if (split_if_necessary (dst_regno, reg->biggest_mode,
6488 potential_reload_hard_regs,
6489 false, curr_insn, max_uid))
6490 change_p = true;
6491 CLEAR_HARD_REG_SET (s);
6492 if (dst_regno < FIRST_PSEUDO_REGISTER)
6493 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6494 else
6495 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6496 reg_renumber[dst_regno]);
6497 live_hard_regs &= ~s;
6498 potential_reload_hard_regs &= ~s;
6499 }
6500 /* We should invalidate potential inheritance or
6501 splitting for the current insn usages to the next
6502 usage insns (see code below) as the output pseudo
6503 prevents this. */
6504 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6505 && reg_renumber[dst_regno] < 0)
6506 || (reg->type == OP_OUT && ! reg->subreg_p
6507 && (dst_regno < FIRST_PSEUDO_REGISTER
6508 || reg_renumber[dst_regno] >= 0)))
6509 {
6510 /* Invalidate and mark definitions. */
6511 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6512 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6513 else
6514 {
6515 nregs = hard_regno_nregs (dst_regno,
6516 reg->biggest_mode);
6517 for (i = 0; i < nregs; i++)
6518 usage_insns[dst_regno + i].check
6519 = -(int) INSN_UID (curr_insn);
6520 }
6521 }
6522 }
6523 /* Process clobbered call regs. */
6524 if (curr_id->arg_hard_regs != NULL)
6525 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6526 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6527 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6528 = -(int) INSN_UID (curr_insn);
6529 if (! JUMP_P (curr_insn))
6530 for (i = 0; i < to_inherit_num; i++)
6531 if (inherit_reload_reg (true, to_inherit[i].regno,
6532 ALL_REGS, curr_insn,
6533 to_inherit[i].insns))
6534 change_p = true;
6535 if (CALL_P (curr_insn))
6536 {
6537 rtx cheap, pat, dest;
6538 rtx_insn *restore;
6539 int regno, hard_regno;
6540
6541 calls_num++;
6542 function_abi callee_abi = insn_callee_abi (curr_insn);
6543 last_call_for_abi[callee_abi.id ()] = calls_num;
6544 full_and_partial_call_clobbers
6545 |= callee_abi.full_and_partial_reg_clobbers ();
6546 if ((cheap = find_reg_note (curr_insn,
6547 REG_RETURNED, NULL_RTX)) != NULL_RTX
6548 && ((cheap = XEXP (cheap, 0)), true)
6549 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6550 && (hard_regno = reg_renumber[regno]) >= 0
6551 && usage_insns[regno].check == curr_usage_insns_check
6552 /* If there are pending saves/restores, the
6553 optimization is not worth. */
6554 && usage_insns[regno].calls_num == calls_num - 1
6555 && callee_abi.clobbers_reg_p (GET_MODE (cheap), hard_regno))
6556 {
6557 /* Restore the pseudo from the call result as
6558 REG_RETURNED note says that the pseudo value is
6559 in the call result and the pseudo is an argument
6560 of the call. */
6561 pat = PATTERN (curr_insn);
6562 if (GET_CODE (pat) == PARALLEL)
6563 pat = XVECEXP (pat, 0, 0);
6564 dest = SET_DEST (pat);
6565 /* For multiple return values dest is PARALLEL.
6566 Currently we handle only single return value case. */
6567 if (REG_P (dest))
6568 {
6569 start_sequence ();
6570 emit_move_insn (cheap, copy_rtx (dest));
6571 restore = get_insns ();
6572 end_sequence ();
6573 lra_process_new_insns (curr_insn, NULL, restore,
6574 "Inserting call parameter restore");
6575 /* We don't need to save/restore of the pseudo from
6576 this call. */
6577 usage_insns[regno].calls_num = calls_num;
6578 remove_from_hard_reg_set
6579 (&full_and_partial_call_clobbers,
6580 GET_MODE (cheap), hard_regno);
6581 bitmap_set_bit (&check_only_regs, regno);
6582 }
6583 }
6584 }
6585 to_inherit_num = 0;
6586 /* Process insn usages. */
6587 for (iter = 0; iter < 2; iter++)
6588 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6589 reg != NULL;
6590 reg = reg->next)
6591 if ((reg->type != OP_OUT
6592 || (reg->type == OP_OUT && reg->subreg_p))
6593 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6594 {
6595 if (src_regno >= FIRST_PSEUDO_REGISTER
6596 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6597 {
6598 if (usage_insns[src_regno].check == curr_usage_insns_check
6599 && (next_usage_insns
6600 = usage_insns[src_regno].insns) != NULL_RTX
6601 && NONDEBUG_INSN_P (curr_insn))
6602 add_to_inherit (src_regno, next_usage_insns);
6603 else if (usage_insns[src_regno].check
6604 != -(int) INSN_UID (curr_insn))
6605 /* Add usages but only if the reg is not set up
6606 in the same insn. */
6607 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6608 }
6609 else if (src_regno < FIRST_PSEUDO_REGISTER
6610 || reg_renumber[src_regno] >= 0)
6611 {
6612 bool before_p;
6613 rtx_insn *use_insn = curr_insn;
6614
6615 before_p = (JUMP_P (curr_insn)
6616 || (CALL_P (curr_insn) && reg->type == OP_IN));
6617 if (NONDEBUG_INSN_P (curr_insn)
6618 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6619 && split_if_necessary (src_regno, reg->biggest_mode,
6620 potential_reload_hard_regs,
6621 before_p, curr_insn, max_uid))
6622 {
6623 if (reg->subreg_p)
6624 check_and_force_assignment_correctness_p = true;
6625 change_p = true;
6626 /* Invalidate. */
6627 usage_insns[src_regno].check = 0;
6628 if (before_p)
6629 use_insn = PREV_INSN (curr_insn);
6630 }
6631 if (NONDEBUG_INSN_P (curr_insn))
6632 {
6633 if (src_regno < FIRST_PSEUDO_REGISTER)
6634 add_to_hard_reg_set (&live_hard_regs,
6635 reg->biggest_mode, src_regno);
6636 else
6637 add_to_hard_reg_set (&live_hard_regs,
6638 PSEUDO_REGNO_MODE (src_regno),
6639 reg_renumber[src_regno]);
6640 }
6641 if (src_regno >= FIRST_PSEUDO_REGISTER)
6642 add_next_usage_insn (src_regno, use_insn, reloads_num);
6643 else
6644 {
6645 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
6646 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
6647 }
6648 }
6649 }
6650 /* Process used call regs. */
6651 if (curr_id->arg_hard_regs != NULL)
6652 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6653 if (src_regno < FIRST_PSEUDO_REGISTER)
6654 {
6655 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6656 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6657 }
6658 for (i = 0; i < to_inherit_num; i++)
6659 {
6660 src_regno = to_inherit[i].regno;
6661 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6662 curr_insn, to_inherit[i].insns))
6663 change_p = true;
6664 else
6665 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6666 }
6667 }
6668 if (update_reloads_num_p
6669 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6670 {
6671 int regno = -1;
6672 if ((REG_P (SET_DEST (curr_set))
6673 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6674 && reg_renumber[regno] < 0
6675 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6676 || (REG_P (SET_SRC (curr_set))
6677 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6678 && reg_renumber[regno] < 0
6679 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6680 {
6681 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6682 reloads_num++;
6683 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6684 potential_reload_hard_regs |= reg_class_contents[cl];
6685 }
6686 }
6687 if (NONDEBUG_INSN_P (curr_insn))
6688 {
6689 int regno;
6690
6691 /* Invalidate invariants with changed regs. */
6692 curr_id = lra_get_insn_recog_data (curr_insn);
6693 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6694 if (reg->type != OP_IN)
6695 {
6696 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6697 bitmap_set_bit (&invalid_invariant_regs,
6698 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6699 }
6700 curr_static_id = curr_id->insn_static_data;
6701 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6702 if (reg->type != OP_IN)
6703 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6704 if (curr_id->arg_hard_regs != NULL)
6705 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6706 if (regno >= FIRST_PSEUDO_REGISTER)
6707 bitmap_set_bit (&invalid_invariant_regs,
6708 regno - FIRST_PSEUDO_REGISTER);
6709 }
6710 /* We reached the start of the current basic block. */
6711 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6712 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6713 {
6714 /* We reached the beginning of the current block -- do
6715 rest of spliting in the current BB. */
6716 to_process = df_get_live_in (curr_bb);
6717 if (BLOCK_FOR_INSN (head) != curr_bb)
6718 {
6719 /* We are somewhere in the middle of EBB. */
6720 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6721 curr_bb, &temp_bitmap);
6722 to_process = &temp_bitmap;
6723 }
6724 head_p = true;
6725 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6726 {
6727 if ((int) j >= lra_constraint_new_regno_start)
6728 break;
6729 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6730 && usage_insns[j].check == curr_usage_insns_check
6731 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6732 {
6733 if (need_for_split_p (potential_reload_hard_regs, j))
6734 {
6735 if (lra_dump_file != NULL && head_p)
6736 {
6737 fprintf (lra_dump_file,
6738 " ----------------------------------\n");
6739 head_p = false;
6740 }
6741 if (split_reg (false, j, bb_note (curr_bb),
6742 next_usage_insns, NULL))
6743 change_p = true;
6744 }
6745 usage_insns[j].check = 0;
6746 }
6747 }
6748 }
6749 }
6750 return change_p;
6751 }
6752
6753 /* This value affects EBB forming. If probability of edge from EBB to
6754 a BB is not greater than the following value, we don't add the BB
6755 to EBB. */
6756 #define EBB_PROBABILITY_CUTOFF \
6757 ((REG_BR_PROB_BASE * param_lra_inheritance_ebb_probability_cutoff) / 100)
6758
6759 /* Current number of inheritance/split iteration. */
6760 int lra_inheritance_iter;
6761
6762 /* Entry function for inheritance/split pass. */
6763 void
6764 lra_inheritance (void)
6765 {
6766 int i;
6767 basic_block bb, start_bb;
6768 edge e;
6769
6770 lra_inheritance_iter++;
6771 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6772 return;
6773 timevar_push (TV_LRA_INHERITANCE);
6774 if (lra_dump_file != NULL)
6775 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6776 lra_inheritance_iter);
6777 curr_usage_insns_check = 0;
6778 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6779 for (i = 0; i < lra_constraint_new_regno_start; i++)
6780 usage_insns[i].check = 0;
6781 bitmap_initialize (&check_only_regs, &reg_obstack);
6782 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6783 bitmap_initialize (&live_regs, &reg_obstack);
6784 bitmap_initialize (&temp_bitmap, &reg_obstack);
6785 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6786 FOR_EACH_BB_FN (bb, cfun)
6787 {
6788 start_bb = bb;
6789 if (lra_dump_file != NULL)
6790 fprintf (lra_dump_file, "EBB");
6791 /* Form a EBB starting with BB. */
6792 bitmap_clear (&ebb_global_regs);
6793 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6794 for (;;)
6795 {
6796 if (lra_dump_file != NULL)
6797 fprintf (lra_dump_file, " %d", bb->index);
6798 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6799 || LABEL_P (BB_HEAD (bb->next_bb)))
6800 break;
6801 e = find_fallthru_edge (bb->succs);
6802 if (! e)
6803 break;
6804 if (e->probability.initialized_p ()
6805 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6806 break;
6807 bb = bb->next_bb;
6808 }
6809 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6810 if (lra_dump_file != NULL)
6811 fprintf (lra_dump_file, "\n");
6812 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6813 /* Remember that the EBB head and tail can change in
6814 inherit_in_ebb. */
6815 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6816 }
6817 bitmap_release (&ebb_global_regs);
6818 bitmap_release (&temp_bitmap);
6819 bitmap_release (&live_regs);
6820 bitmap_release (&invalid_invariant_regs);
6821 bitmap_release (&check_only_regs);
6822 free (usage_insns);
6823
6824 timevar_pop (TV_LRA_INHERITANCE);
6825 }
6826
6827 \f
6828
6829 /* This page contains code to undo failed inheritance/split
6830 transformations. */
6831
6832 /* Current number of iteration undoing inheritance/split. */
6833 int lra_undo_inheritance_iter;
6834
6835 /* Fix BB live info LIVE after removing pseudos created on pass doing
6836 inheritance/split which are REMOVED_PSEUDOS. */
6837 static void
6838 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6839 {
6840 unsigned int regno;
6841 bitmap_iterator bi;
6842
6843 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6844 if (bitmap_clear_bit (live, regno)
6845 && REG_P (lra_reg_info[regno].restore_rtx))
6846 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6847 }
6848
6849 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6850 number. */
6851 static int
6852 get_regno (rtx reg)
6853 {
6854 if (GET_CODE (reg) == SUBREG)
6855 reg = SUBREG_REG (reg);
6856 if (REG_P (reg))
6857 return REGNO (reg);
6858 return -1;
6859 }
6860
6861 /* Delete a move INSN with destination reg DREGNO and a previous
6862 clobber insn with the same regno. The inheritance/split code can
6863 generate moves with preceding clobber and when we delete such moves
6864 we should delete the clobber insn too to keep the correct life
6865 info. */
6866 static void
6867 delete_move_and_clobber (rtx_insn *insn, int dregno)
6868 {
6869 rtx_insn *prev_insn = PREV_INSN (insn);
6870
6871 lra_set_insn_deleted (insn);
6872 lra_assert (dregno >= 0);
6873 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6874 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6875 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6876 lra_set_insn_deleted (prev_insn);
6877 }
6878
6879 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6880 return true if we did any change. The undo transformations for
6881 inheritance looks like
6882 i <- i2
6883 p <- i => p <- i2
6884 or removing
6885 p <- i, i <- p, and i <- i3
6886 where p is original pseudo from which inheritance pseudo i was
6887 created, i and i3 are removed inheritance pseudos, i2 is another
6888 not removed inheritance pseudo. All split pseudos or other
6889 occurrences of removed inheritance pseudos are changed on the
6890 corresponding original pseudos.
6891
6892 The function also schedules insns changed and created during
6893 inheritance/split pass for processing by the subsequent constraint
6894 pass. */
6895 static bool
6896 remove_inheritance_pseudos (bitmap remove_pseudos)
6897 {
6898 basic_block bb;
6899 int regno, sregno, prev_sregno, dregno;
6900 rtx restore_rtx;
6901 rtx set, prev_set;
6902 rtx_insn *prev_insn;
6903 bool change_p, done_p;
6904
6905 change_p = ! bitmap_empty_p (remove_pseudos);
6906 /* We cannot finish the function right away if CHANGE_P is true
6907 because we need to marks insns affected by previous
6908 inheritance/split pass for processing by the subsequent
6909 constraint pass. */
6910 FOR_EACH_BB_FN (bb, cfun)
6911 {
6912 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6913 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6914 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6915 {
6916 if (! INSN_P (curr_insn))
6917 continue;
6918 done_p = false;
6919 sregno = dregno = -1;
6920 if (change_p && NONDEBUG_INSN_P (curr_insn)
6921 && (set = single_set (curr_insn)) != NULL_RTX)
6922 {
6923 dregno = get_regno (SET_DEST (set));
6924 sregno = get_regno (SET_SRC (set));
6925 }
6926
6927 if (sregno >= 0 && dregno >= 0)
6928 {
6929 if (bitmap_bit_p (remove_pseudos, dregno)
6930 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6931 {
6932 /* invariant inheritance pseudo <- original pseudo */
6933 if (lra_dump_file != NULL)
6934 {
6935 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6936 dump_insn_slim (lra_dump_file, curr_insn);
6937 fprintf (lra_dump_file, "\n");
6938 }
6939 delete_move_and_clobber (curr_insn, dregno);
6940 done_p = true;
6941 }
6942 else if (bitmap_bit_p (remove_pseudos, sregno)
6943 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6944 {
6945 /* reload pseudo <- invariant inheritance pseudo */
6946 start_sequence ();
6947 /* We cannot just change the source. It might be
6948 an insn different from the move. */
6949 emit_insn (lra_reg_info[sregno].restore_rtx);
6950 rtx_insn *new_insns = get_insns ();
6951 end_sequence ();
6952 lra_assert (single_set (new_insns) != NULL
6953 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6954 lra_process_new_insns (curr_insn, NULL, new_insns,
6955 "Changing reload<-invariant inheritance");
6956 delete_move_and_clobber (curr_insn, dregno);
6957 done_p = true;
6958 }
6959 else if ((bitmap_bit_p (remove_pseudos, sregno)
6960 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6961 || (bitmap_bit_p (remove_pseudos, dregno)
6962 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6963 && (get_regno (lra_reg_info[sregno].restore_rtx)
6964 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6965 || (bitmap_bit_p (remove_pseudos, dregno)
6966 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6967 /* One of the following cases:
6968 original <- removed inheritance pseudo
6969 removed inherit pseudo <- another removed inherit pseudo
6970 removed inherit pseudo <- original pseudo
6971 Or
6972 removed_split_pseudo <- original_reg
6973 original_reg <- removed_split_pseudo */
6974 {
6975 if (lra_dump_file != NULL)
6976 {
6977 fprintf (lra_dump_file, " Removing %s:\n",
6978 bitmap_bit_p (&lra_split_regs, sregno)
6979 || bitmap_bit_p (&lra_split_regs, dregno)
6980 ? "split" : "inheritance");
6981 dump_insn_slim (lra_dump_file, curr_insn);
6982 }
6983 delete_move_and_clobber (curr_insn, dregno);
6984 done_p = true;
6985 }
6986 else if (bitmap_bit_p (remove_pseudos, sregno)
6987 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6988 {
6989 /* Search the following pattern:
6990 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6991 original_pseudo <- inherit_or_split_pseudo1
6992 where the 2nd insn is the current insn and
6993 inherit_or_split_pseudo2 is not removed. If it is found,
6994 change the current insn onto:
6995 original_pseudo <- inherit_or_split_pseudo2. */
6996 for (prev_insn = PREV_INSN (curr_insn);
6997 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6998 prev_insn = PREV_INSN (prev_insn))
6999 ;
7000 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
7001 && (prev_set = single_set (prev_insn)) != NULL_RTX
7002 /* There should be no subregs in insn we are
7003 searching because only the original reg might
7004 be in subreg when we changed the mode of
7005 load/store for splitting. */
7006 && REG_P (SET_DEST (prev_set))
7007 && REG_P (SET_SRC (prev_set))
7008 && (int) REGNO (SET_DEST (prev_set)) == sregno
7009 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
7010 >= FIRST_PSEUDO_REGISTER)
7011 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
7012 ||
7013 /* As we consider chain of inheritance or
7014 splitting described in above comment we should
7015 check that sregno and prev_sregno were
7016 inheritance/split pseudos created from the
7017 same original regno. */
7018 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
7019 && (get_regno (lra_reg_info[sregno].restore_rtx)
7020 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
7021 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
7022 {
7023 lra_assert (GET_MODE (SET_SRC (prev_set))
7024 == GET_MODE (regno_reg_rtx[sregno]));
7025 /* Although we have a single set, the insn can
7026 contain more one sregno register occurrence
7027 as a source. Change all occurrences. */
7028 lra_substitute_pseudo_within_insn (curr_insn, sregno,
7029 SET_SRC (prev_set),
7030 false);
7031 /* As we are finishing with processing the insn
7032 here, check the destination too as it might
7033 inheritance pseudo for another pseudo. */
7034 if (bitmap_bit_p (remove_pseudos, dregno)
7035 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
7036 && (restore_rtx
7037 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
7038 {
7039 if (GET_CODE (SET_DEST (set)) == SUBREG)
7040 SUBREG_REG (SET_DEST (set)) = restore_rtx;
7041 else
7042 SET_DEST (set) = restore_rtx;
7043 }
7044 lra_push_insn_and_update_insn_regno_info (curr_insn);
7045 lra_set_used_insn_alternative_by_uid
7046 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
7047 done_p = true;
7048 if (lra_dump_file != NULL)
7049 {
7050 fprintf (lra_dump_file, " Change reload insn:\n");
7051 dump_insn_slim (lra_dump_file, curr_insn);
7052 }
7053 }
7054 }
7055 }
7056 if (! done_p)
7057 {
7058 struct lra_insn_reg *reg;
7059 bool restored_regs_p = false;
7060 bool kept_regs_p = false;
7061
7062 curr_id = lra_get_insn_recog_data (curr_insn);
7063 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
7064 {
7065 regno = reg->regno;
7066 restore_rtx = lra_reg_info[regno].restore_rtx;
7067 if (restore_rtx != NULL_RTX)
7068 {
7069 if (change_p && bitmap_bit_p (remove_pseudos, regno))
7070 {
7071 lra_substitute_pseudo_within_insn
7072 (curr_insn, regno, restore_rtx, false);
7073 restored_regs_p = true;
7074 }
7075 else
7076 kept_regs_p = true;
7077 }
7078 }
7079 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
7080 {
7081 /* The instruction has changed since the previous
7082 constraints pass. */
7083 lra_push_insn_and_update_insn_regno_info (curr_insn);
7084 lra_set_used_insn_alternative_by_uid
7085 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
7086 }
7087 else if (restored_regs_p)
7088 /* The instruction has been restored to the form that
7089 it had during the previous constraints pass. */
7090 lra_update_insn_regno_info (curr_insn);
7091 if (restored_regs_p && lra_dump_file != NULL)
7092 {
7093 fprintf (lra_dump_file, " Insn after restoring regs:\n");
7094 dump_insn_slim (lra_dump_file, curr_insn);
7095 }
7096 }
7097 }
7098 }
7099 return change_p;
7100 }
7101
7102 /* If optional reload pseudos failed to get a hard register or was not
7103 inherited, it is better to remove optional reloads. We do this
7104 transformation after undoing inheritance to figure out necessity to
7105 remove optional reloads easier. Return true if we do any
7106 change. */
7107 static bool
7108 undo_optional_reloads (void)
7109 {
7110 bool change_p, keep_p;
7111 unsigned int regno, uid;
7112 bitmap_iterator bi, bi2;
7113 rtx_insn *insn;
7114 rtx set, src, dest;
7115 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
7116
7117 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
7118 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7119 {
7120 keep_p = false;
7121 /* Keep optional reloads from previous subpasses. */
7122 if (lra_reg_info[regno].restore_rtx == NULL_RTX
7123 /* If the original pseudo changed its allocation, just
7124 removing the optional pseudo is dangerous as the original
7125 pseudo will have longer live range. */
7126 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
7127 keep_p = true;
7128 else if (reg_renumber[regno] >= 0)
7129 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
7130 {
7131 insn = lra_insn_recog_data[uid]->insn;
7132 if ((set = single_set (insn)) == NULL_RTX)
7133 continue;
7134 src = SET_SRC (set);
7135 dest = SET_DEST (set);
7136 if (! REG_P (src) || ! REG_P (dest))
7137 continue;
7138 if (REGNO (dest) == regno
7139 /* Ignore insn for optional reloads itself. */
7140 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
7141 /* Check only inheritance on last inheritance pass. */
7142 && (int) REGNO (src) >= new_regno_start
7143 /* Check that the optional reload was inherited. */
7144 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
7145 {
7146 keep_p = true;
7147 break;
7148 }
7149 }
7150 if (keep_p)
7151 {
7152 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
7153 if (lra_dump_file != NULL)
7154 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
7155 }
7156 }
7157 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
7158 auto_bitmap insn_bitmap (&reg_obstack);
7159 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
7160 {
7161 if (lra_dump_file != NULL)
7162 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
7163 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
7164 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
7165 {
7166 insn = lra_insn_recog_data[uid]->insn;
7167 if ((set = single_set (insn)) != NULL_RTX)
7168 {
7169 src = SET_SRC (set);
7170 dest = SET_DEST (set);
7171 if (REG_P (src) && REG_P (dest)
7172 && ((REGNO (src) == regno
7173 && (REGNO (lra_reg_info[regno].restore_rtx)
7174 == REGNO (dest)))
7175 || (REGNO (dest) == regno
7176 && (REGNO (lra_reg_info[regno].restore_rtx)
7177 == REGNO (src)))))
7178 {
7179 if (lra_dump_file != NULL)
7180 {
7181 fprintf (lra_dump_file, " Deleting move %u\n",
7182 INSN_UID (insn));
7183 dump_insn_slim (lra_dump_file, insn);
7184 }
7185 delete_move_and_clobber (insn, REGNO (dest));
7186 continue;
7187 }
7188 /* We should not worry about generation memory-memory
7189 moves here as if the corresponding inheritance did
7190 not work (inheritance pseudo did not get a hard reg),
7191 we remove the inheritance pseudo and the optional
7192 reload. */
7193 }
7194 lra_substitute_pseudo_within_insn
7195 (insn, regno, lra_reg_info[regno].restore_rtx, false);
7196 lra_update_insn_regno_info (insn);
7197 if (lra_dump_file != NULL)
7198 {
7199 fprintf (lra_dump_file,
7200 " Restoring original insn:\n");
7201 dump_insn_slim (lra_dump_file, insn);
7202 }
7203 }
7204 }
7205 /* Clear restore_regnos. */
7206 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7207 lra_reg_info[regno].restore_rtx = NULL_RTX;
7208 return change_p;
7209 }
7210
7211 /* Entry function for undoing inheritance/split transformation. Return true
7212 if we did any RTL change in this pass. */
7213 bool
7214 lra_undo_inheritance (void)
7215 {
7216 unsigned int regno;
7217 int hard_regno;
7218 int n_all_inherit, n_inherit, n_all_split, n_split;
7219 rtx restore_rtx;
7220 bitmap_iterator bi;
7221 bool change_p;
7222
7223 lra_undo_inheritance_iter++;
7224 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7225 return false;
7226 if (lra_dump_file != NULL)
7227 fprintf (lra_dump_file,
7228 "\n********** Undoing inheritance #%d: **********\n\n",
7229 lra_undo_inheritance_iter);
7230 auto_bitmap remove_pseudos (&reg_obstack);
7231 n_inherit = n_all_inherit = 0;
7232 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7233 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7234 {
7235 n_all_inherit++;
7236 if (reg_renumber[regno] < 0
7237 /* If the original pseudo changed its allocation, just
7238 removing inheritance is dangerous as for changing
7239 allocation we used shorter live-ranges. */
7240 && (! REG_P (lra_reg_info[regno].restore_rtx)
7241 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7242 bitmap_set_bit (remove_pseudos, regno);
7243 else
7244 n_inherit++;
7245 }
7246 if (lra_dump_file != NULL && n_all_inherit != 0)
7247 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7248 n_inherit, n_all_inherit,
7249 (double) n_inherit / n_all_inherit * 100);
7250 n_split = n_all_split = 0;
7251 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7252 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7253 {
7254 int restore_regno = REGNO (restore_rtx);
7255
7256 n_all_split++;
7257 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7258 ? reg_renumber[restore_regno] : restore_regno);
7259 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7260 bitmap_set_bit (remove_pseudos, regno);
7261 else
7262 {
7263 n_split++;
7264 if (lra_dump_file != NULL)
7265 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
7266 regno, restore_regno);
7267 }
7268 }
7269 if (lra_dump_file != NULL && n_all_split != 0)
7270 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7271 n_split, n_all_split,
7272 (double) n_split / n_all_split * 100);
7273 change_p = remove_inheritance_pseudos (remove_pseudos);
7274 /* Clear restore_regnos. */
7275 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7276 lra_reg_info[regno].restore_rtx = NULL_RTX;
7277 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7278 lra_reg_info[regno].restore_rtx = NULL_RTX;
7279 change_p = undo_optional_reloads () || change_p;
7280 return change_p;
7281 }