Use std::swap instead of explicit swaps
[gcc.git] / gcc / lra-constraints.c
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
25
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
33
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
41
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
46
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
49
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
54
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
58
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
62
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
67
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
71
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
75
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
83
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
86
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
92
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
95
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
101
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
106
107 #undef REG_OK_STRICT
108
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "tm.h"
113 #include "hard-reg-set.h"
114 #include "rtl.h"
115 #include "tm_p.h"
116 #include "regs.h"
117 #include "insn-config.h"
118 #include "insn-codes.h"
119 #include "recog.h"
120 #include "output.h"
121 #include "addresses.h"
122 #include "target.h"
123 #include "hashtab.h"
124 #include "hash-set.h"
125 #include "vec.h"
126 #include "machmode.h"
127 #include "input.h"
128 #include "function.h"
129 #include "symtab.h"
130 #include "flags.h"
131 #include "statistics.h"
132 #include "double-int.h"
133 #include "real.h"
134 #include "fixed-value.h"
135 #include "alias.h"
136 #include "wide-int.h"
137 #include "inchash.h"
138 #include "tree.h"
139 #include "expmed.h"
140 #include "dojump.h"
141 #include "explow.h"
142 #include "calls.h"
143 #include "emit-rtl.h"
144 #include "varasm.h"
145 #include "stmt.h"
146 #include "expr.h"
147 #include "predict.h"
148 #include "dominance.h"
149 #include "cfg.h"
150 #include "cfgrtl.h"
151 #include "basic-block.h"
152 #include "except.h"
153 #include "optabs.h"
154 #include "df.h"
155 #include "ira.h"
156 #include "rtl-error.h"
157 #include "params.h"
158 #include "lra-int.h"
159
160 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
161 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
162 reload insns. */
163 static int bb_reload_num;
164
165 /* The current insn being processed and corresponding its single set
166 (NULL otherwise), its data (basic block, the insn data, the insn
167 static data, and the mode of each operand). */
168 static rtx_insn *curr_insn;
169 static rtx curr_insn_set;
170 static basic_block curr_bb;
171 static lra_insn_recog_data_t curr_id;
172 static struct lra_static_insn_data *curr_static_id;
173 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
174 /* Mode of the register substituted by its equivalence with VOIDmode
175 (e.g. constant) and whose subreg is given operand of the current
176 insn. VOIDmode in all other cases. */
177 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
178
179 \f
180
181 /* Start numbers for new registers and insns at the current constraints
182 pass start. */
183 static int new_regno_start;
184 static int new_insn_uid_start;
185
186 /* If LOC is nonnull, strip any outer subreg from it. */
187 static inline rtx *
188 strip_subreg (rtx *loc)
189 {
190 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
191 }
192
193 /* Return hard regno of REGNO or if it is was not assigned to a hard
194 register, use a hard register from its allocno class. */
195 static int
196 get_try_hard_regno (int regno)
197 {
198 int hard_regno;
199 enum reg_class rclass;
200
201 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
202 hard_regno = lra_get_regno_hard_regno (regno);
203 if (hard_regno >= 0)
204 return hard_regno;
205 rclass = lra_get_allocno_class (regno);
206 if (rclass == NO_REGS)
207 return -1;
208 return ira_class_hard_regs[rclass][0];
209 }
210
211 /* Return final hard regno (plus offset) which will be after
212 elimination. We do this for matching constraints because the final
213 hard regno could have a different class. */
214 static int
215 get_final_hard_regno (int hard_regno, int offset)
216 {
217 if (hard_regno < 0)
218 return hard_regno;
219 hard_regno = lra_get_elimination_hard_regno (hard_regno);
220 return hard_regno + offset;
221 }
222
223 /* Return hard regno of X after removing subreg and making
224 elimination. If X is not a register or subreg of register, return
225 -1. For pseudo use its assignment. */
226 static int
227 get_hard_regno (rtx x)
228 {
229 rtx reg;
230 int offset, hard_regno;
231
232 reg = x;
233 if (GET_CODE (x) == SUBREG)
234 reg = SUBREG_REG (x);
235 if (! REG_P (reg))
236 return -1;
237 if ((hard_regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
238 hard_regno = lra_get_regno_hard_regno (hard_regno);
239 if (hard_regno < 0)
240 return -1;
241 offset = 0;
242 if (GET_CODE (x) == SUBREG)
243 offset += subreg_regno_offset (hard_regno, GET_MODE (reg),
244 SUBREG_BYTE (x), GET_MODE (x));
245 return get_final_hard_regno (hard_regno, offset);
246 }
247
248 /* If REGNO is a hard register or has been allocated a hard register,
249 return the class of that register. If REGNO is a reload pseudo
250 created by the current constraints pass, return its allocno class.
251 Return NO_REGS otherwise. */
252 static enum reg_class
253 get_reg_class (int regno)
254 {
255 int hard_regno;
256
257 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
258 hard_regno = lra_get_regno_hard_regno (regno);
259 if (hard_regno >= 0)
260 {
261 hard_regno = get_final_hard_regno (hard_regno, 0);
262 return REGNO_REG_CLASS (hard_regno);
263 }
264 if (regno >= new_regno_start)
265 return lra_get_allocno_class (regno);
266 return NO_REGS;
267 }
268
269 /* Return true if REG satisfies (or will satisfy) reg class constraint
270 CL. Use elimination first if REG is a hard register. If REG is a
271 reload pseudo created by this constraints pass, assume that it will
272 be allocated a hard register from its allocno class, but allow that
273 class to be narrowed to CL if it is currently a superset of CL.
274
275 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
276 REGNO (reg), or NO_REGS if no change in its class was needed. */
277 static bool
278 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
279 {
280 enum reg_class rclass, common_class;
281 machine_mode reg_mode;
282 int class_size, hard_regno, nregs, i, j;
283 int regno = REGNO (reg);
284
285 if (new_class != NULL)
286 *new_class = NO_REGS;
287 if (regno < FIRST_PSEUDO_REGISTER)
288 {
289 rtx final_reg = reg;
290 rtx *final_loc = &final_reg;
291
292 lra_eliminate_reg_if_possible (final_loc);
293 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
294 }
295 reg_mode = GET_MODE (reg);
296 rclass = get_reg_class (regno);
297 if (regno < new_regno_start
298 /* Do not allow the constraints for reload instructions to
299 influence the classes of new pseudos. These reloads are
300 typically moves that have many alternatives, and restricting
301 reload pseudos for one alternative may lead to situations
302 where other reload pseudos are no longer allocatable. */
303 || (INSN_UID (curr_insn) >= new_insn_uid_start
304 && curr_insn_set != NULL
305 && ((OBJECT_P (SET_SRC (curr_insn_set))
306 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
307 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
308 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
309 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
310 /* When we don't know what class will be used finally for reload
311 pseudos, we use ALL_REGS. */
312 return ((regno >= new_regno_start && rclass == ALL_REGS)
313 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
314 && ! hard_reg_set_subset_p (reg_class_contents[cl],
315 lra_no_alloc_regs)));
316 else
317 {
318 common_class = ira_reg_class_subset[rclass][cl];
319 if (new_class != NULL)
320 *new_class = common_class;
321 if (hard_reg_set_subset_p (reg_class_contents[common_class],
322 lra_no_alloc_regs))
323 return false;
324 /* Check that there are enough allocatable regs. */
325 class_size = ira_class_hard_regs_num[common_class];
326 for (i = 0; i < class_size; i++)
327 {
328 hard_regno = ira_class_hard_regs[common_class][i];
329 nregs = hard_regno_nregs[hard_regno][reg_mode];
330 if (nregs == 1)
331 return true;
332 for (j = 0; j < nregs; j++)
333 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
334 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
335 hard_regno + j))
336 break;
337 if (j >= nregs)
338 return true;
339 }
340 return false;
341 }
342 }
343
344 /* Return true if REGNO satisfies a memory constraint. */
345 static bool
346 in_mem_p (int regno)
347 {
348 return get_reg_class (regno) == NO_REGS;
349 }
350
351 /* Return 1 if ADDR is a valid memory address for mode MODE in address
352 space AS, and check that each pseudo has the proper kind of hard
353 reg. */
354 static int
355 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
356 rtx addr, addr_space_t as)
357 {
358 #ifdef GO_IF_LEGITIMATE_ADDRESS
359 lra_assert (ADDR_SPACE_GENERIC_P (as));
360 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
361 return 0;
362
363 win:
364 return 1;
365 #else
366 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
367 #endif
368 }
369
370 namespace {
371 /* Temporarily eliminates registers in an address (for the lifetime of
372 the object). */
373 class address_eliminator {
374 public:
375 address_eliminator (struct address_info *ad);
376 ~address_eliminator ();
377
378 private:
379 struct address_info *m_ad;
380 rtx *m_base_loc;
381 rtx m_base_reg;
382 rtx *m_index_loc;
383 rtx m_index_reg;
384 };
385 }
386
387 address_eliminator::address_eliminator (struct address_info *ad)
388 : m_ad (ad),
389 m_base_loc (strip_subreg (ad->base_term)),
390 m_base_reg (NULL_RTX),
391 m_index_loc (strip_subreg (ad->index_term)),
392 m_index_reg (NULL_RTX)
393 {
394 if (m_base_loc != NULL)
395 {
396 m_base_reg = *m_base_loc;
397 lra_eliminate_reg_if_possible (m_base_loc);
398 if (m_ad->base_term2 != NULL)
399 *m_ad->base_term2 = *m_ad->base_term;
400 }
401 if (m_index_loc != NULL)
402 {
403 m_index_reg = *m_index_loc;
404 lra_eliminate_reg_if_possible (m_index_loc);
405 }
406 }
407
408 address_eliminator::~address_eliminator ()
409 {
410 if (m_base_loc && *m_base_loc != m_base_reg)
411 {
412 *m_base_loc = m_base_reg;
413 if (m_ad->base_term2 != NULL)
414 *m_ad->base_term2 = *m_ad->base_term;
415 }
416 if (m_index_loc && *m_index_loc != m_index_reg)
417 *m_index_loc = m_index_reg;
418 }
419
420 /* Return true if the eliminated form of AD is a legitimate target address. */
421 static bool
422 valid_address_p (struct address_info *ad)
423 {
424 address_eliminator eliminator (ad);
425 return valid_address_p (ad->mode, *ad->outer, ad->as);
426 }
427
428 /* Return true if the eliminated form of memory reference OP satisfies
429 extra memory constraint CONSTRAINT. */
430 static bool
431 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
432 {
433 struct address_info ad;
434
435 decompose_mem_address (&ad, op);
436 address_eliminator eliminator (&ad);
437 return constraint_satisfied_p (op, constraint);
438 }
439
440 /* Return true if the eliminated form of address AD satisfies extra
441 address constraint CONSTRAINT. */
442 static bool
443 satisfies_address_constraint_p (struct address_info *ad,
444 enum constraint_num constraint)
445 {
446 address_eliminator eliminator (ad);
447 return constraint_satisfied_p (*ad->outer, constraint);
448 }
449
450 /* Return true if the eliminated form of address OP satisfies extra
451 address constraint CONSTRAINT. */
452 static bool
453 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
454 {
455 struct address_info ad;
456
457 decompose_lea_address (&ad, &op);
458 return satisfies_address_constraint_p (&ad, constraint);
459 }
460
461 /* Initiate equivalences for LRA. As we keep original equivalences
462 before any elimination, we need to make copies otherwise any change
463 in insns might change the equivalences. */
464 void
465 lra_init_equiv (void)
466 {
467 ira_expand_reg_equiv ();
468 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
469 {
470 rtx res;
471
472 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
473 ira_reg_equiv[i].memory = copy_rtx (res);
474 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
475 ira_reg_equiv[i].invariant = copy_rtx (res);
476 }
477 }
478
479 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
480
481 /* Update equivalence for REGNO. We need to this as the equivalence
482 might contain other pseudos which are changed by their
483 equivalences. */
484 static void
485 update_equiv (int regno)
486 {
487 rtx x;
488
489 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
490 ira_reg_equiv[regno].memory
491 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
492 NULL_RTX);
493 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
494 ira_reg_equiv[regno].invariant
495 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
496 NULL_RTX);
497 }
498
499 /* If we have decided to substitute X with another value, return that
500 value, otherwise return X. */
501 static rtx
502 get_equiv (rtx x)
503 {
504 int regno;
505 rtx res;
506
507 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
508 || ! ira_reg_equiv[regno].defined_p
509 || ! ira_reg_equiv[regno].profitable_p
510 || lra_get_regno_hard_regno (regno) >= 0)
511 return x;
512 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
513 {
514 if (targetm.cannot_substitute_mem_equiv_p (res))
515 return x;
516 return res;
517 }
518 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
519 return res;
520 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
521 return res;
522 gcc_unreachable ();
523 }
524
525 /* If we have decided to substitute X with the equivalent value,
526 return that value after elimination for INSN, otherwise return
527 X. */
528 static rtx
529 get_equiv_with_elimination (rtx x, rtx_insn *insn)
530 {
531 rtx res = get_equiv (x);
532
533 if (x == res || CONSTANT_P (res))
534 return res;
535 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
536 false, false, 0, true);
537 }
538
539 /* Set up curr_operand_mode. */
540 static void
541 init_curr_operand_mode (void)
542 {
543 int nop = curr_static_id->n_operands;
544 for (int i = 0; i < nop; i++)
545 {
546 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
547 if (mode == VOIDmode)
548 {
549 /* The .md mode for address operands is the mode of the
550 addressed value rather than the mode of the address itself. */
551 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
552 mode = Pmode;
553 else
554 mode = curr_static_id->operand[i].mode;
555 }
556 curr_operand_mode[i] = mode;
557 }
558 }
559
560 \f
561
562 /* The page contains code to reuse input reloads. */
563
564 /* Structure describes input reload of the current insns. */
565 struct input_reload
566 {
567 /* Reloaded value. */
568 rtx input;
569 /* Reload pseudo used. */
570 rtx reg;
571 };
572
573 /* The number of elements in the following array. */
574 static int curr_insn_input_reloads_num;
575 /* Array containing info about input reloads. It is used to find the
576 same input reload and reuse the reload pseudo in this case. */
577 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
578
579 /* Initiate data concerning reuse of input reloads for the current
580 insn. */
581 static void
582 init_curr_insn_input_reloads (void)
583 {
584 curr_insn_input_reloads_num = 0;
585 }
586
587 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
588 created input reload pseudo (only if TYPE is not OP_OUT). Don't
589 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
590 wrapped up in SUBREG. The result pseudo is returned through
591 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
592 reused the already created input reload pseudo. Use TITLE to
593 describe new registers for debug purposes. */
594 static bool
595 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
596 enum reg_class rclass, bool in_subreg_p,
597 const char *title, rtx *result_reg)
598 {
599 int i, regno;
600 enum reg_class new_class;
601
602 if (type == OP_OUT)
603 {
604 *result_reg
605 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
606 return true;
607 }
608 /* Prevent reuse value of expression with side effects,
609 e.g. volatile memory. */
610 if (! side_effects_p (original))
611 for (i = 0; i < curr_insn_input_reloads_num; i++)
612 if (rtx_equal_p (curr_insn_input_reloads[i].input, original)
613 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
614 {
615 rtx reg = curr_insn_input_reloads[i].reg;
616 regno = REGNO (reg);
617 /* If input is equal to original and both are VOIDmode,
618 GET_MODE (reg) might be still different from mode.
619 Ensure we don't return *result_reg with wrong mode. */
620 if (GET_MODE (reg) != mode)
621 {
622 if (in_subreg_p)
623 continue;
624 if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
625 continue;
626 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
627 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
628 continue;
629 }
630 *result_reg = reg;
631 if (lra_dump_file != NULL)
632 {
633 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
634 dump_value_slim (lra_dump_file, original, 1);
635 }
636 if (new_class != lra_get_allocno_class (regno))
637 lra_change_class (regno, new_class, ", change to", false);
638 if (lra_dump_file != NULL)
639 fprintf (lra_dump_file, "\n");
640 return false;
641 }
642 *result_reg = lra_create_new_reg (mode, original, rclass, title);
643 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
644 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
645 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
646 return true;
647 }
648
649 \f
650
651 /* The page contains code to extract memory address parts. */
652
653 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
654 static inline bool
655 ok_for_index_p_nonstrict (rtx reg)
656 {
657 unsigned regno = REGNO (reg);
658
659 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
660 }
661
662 /* A version of regno_ok_for_base_p for use here, when all pseudos
663 should count as OK. Arguments as for regno_ok_for_base_p. */
664 static inline bool
665 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
666 enum rtx_code outer_code, enum rtx_code index_code)
667 {
668 unsigned regno = REGNO (reg);
669
670 if (regno >= FIRST_PSEUDO_REGISTER)
671 return true;
672 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
673 }
674
675 \f
676
677 /* The page contains major code to choose the current insn alternative
678 and generate reloads for it. */
679
680 /* Return the offset from REGNO of the least significant register
681 in (reg:MODE REGNO).
682
683 This function is used to tell whether two registers satisfy
684 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
685
686 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
687 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
688 int
689 lra_constraint_offset (int regno, machine_mode mode)
690 {
691 lra_assert (regno < FIRST_PSEUDO_REGISTER);
692 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
693 && SCALAR_INT_MODE_P (mode))
694 return hard_regno_nregs[regno][mode] - 1;
695 return 0;
696 }
697
698 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
699 if they are the same hard reg, and has special hacks for
700 auto-increment and auto-decrement. This is specifically intended for
701 process_alt_operands to use in determining whether two operands
702 match. X is the operand whose number is the lower of the two.
703
704 It is supposed that X is the output operand and Y is the input
705 operand. Y_HARD_REGNO is the final hard regno of register Y or
706 register in subreg Y as we know it now. Otherwise, it is a
707 negative value. */
708 static bool
709 operands_match_p (rtx x, rtx y, int y_hard_regno)
710 {
711 int i;
712 RTX_CODE code = GET_CODE (x);
713 const char *fmt;
714
715 if (x == y)
716 return true;
717 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
718 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
719 {
720 int j;
721
722 i = get_hard_regno (x);
723 if (i < 0)
724 goto slow;
725
726 if ((j = y_hard_regno) < 0)
727 goto slow;
728
729 i += lra_constraint_offset (i, GET_MODE (x));
730 j += lra_constraint_offset (j, GET_MODE (y));
731
732 return i == j;
733 }
734
735 /* If two operands must match, because they are really a single
736 operand of an assembler insn, then two post-increments are invalid
737 because the assembler insn would increment only once. On the
738 other hand, a post-increment matches ordinary indexing if the
739 post-increment is the output operand. */
740 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
741 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
742
743 /* Two pre-increments are invalid because the assembler insn would
744 increment only once. On the other hand, a pre-increment matches
745 ordinary indexing if the pre-increment is the input operand. */
746 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
747 || GET_CODE (y) == PRE_MODIFY)
748 return operands_match_p (x, XEXP (y, 0), -1);
749
750 slow:
751
752 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
753 && x == SUBREG_REG (y))
754 return true;
755 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
756 && SUBREG_REG (x) == y)
757 return true;
758
759 /* Now we have disposed of all the cases in which different rtx
760 codes can match. */
761 if (code != GET_CODE (y))
762 return false;
763
764 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
765 if (GET_MODE (x) != GET_MODE (y))
766 return false;
767
768 switch (code)
769 {
770 CASE_CONST_UNIQUE:
771 return false;
772
773 case LABEL_REF:
774 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
775 case SYMBOL_REF:
776 return XSTR (x, 0) == XSTR (y, 0);
777
778 default:
779 break;
780 }
781
782 /* Compare the elements. If any pair of corresponding elements fail
783 to match, return false for the whole things. */
784
785 fmt = GET_RTX_FORMAT (code);
786 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
787 {
788 int val, j;
789 switch (fmt[i])
790 {
791 case 'w':
792 if (XWINT (x, i) != XWINT (y, i))
793 return false;
794 break;
795
796 case 'i':
797 if (XINT (x, i) != XINT (y, i))
798 return false;
799 break;
800
801 case 'e':
802 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
803 if (val == 0)
804 return false;
805 break;
806
807 case '0':
808 break;
809
810 case 'E':
811 if (XVECLEN (x, i) != XVECLEN (y, i))
812 return false;
813 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
814 {
815 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
816 if (val == 0)
817 return false;
818 }
819 break;
820
821 /* It is believed that rtx's at this level will never
822 contain anything but integers and other rtx's, except for
823 within LABEL_REFs and SYMBOL_REFs. */
824 default:
825 gcc_unreachable ();
826 }
827 }
828 return true;
829 }
830
831 /* True if X is a constant that can be forced into the constant pool.
832 MODE is the mode of the operand, or VOIDmode if not known. */
833 #define CONST_POOL_OK_P(MODE, X) \
834 ((MODE) != VOIDmode \
835 && CONSTANT_P (X) \
836 && GET_CODE (X) != HIGH \
837 && !targetm.cannot_force_const_mem (MODE, X))
838
839 /* True if C is a non-empty register class that has too few registers
840 to be safely used as a reload target class. */
841 #define SMALL_REGISTER_CLASS_P(C) \
842 (ira_class_hard_regs_num [(C)] == 1 \
843 || (ira_class_hard_regs_num [(C)] >= 1 \
844 && targetm.class_likely_spilled_p (C)))
845
846 /* If REG is a reload pseudo, try to make its class satisfying CL. */
847 static void
848 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
849 {
850 enum reg_class rclass;
851
852 /* Do not make more accurate class from reloads generated. They are
853 mostly moves with a lot of constraints. Making more accurate
854 class may results in very narrow class and impossibility of find
855 registers for several reloads of one insn. */
856 if (INSN_UID (curr_insn) >= new_insn_uid_start)
857 return;
858 if (GET_CODE (reg) == SUBREG)
859 reg = SUBREG_REG (reg);
860 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
861 return;
862 if (in_class_p (reg, cl, &rclass) && rclass != cl)
863 lra_change_class (REGNO (reg), rclass, " Change to", true);
864 }
865
866 /* Generate reloads for matching OUT and INS (array of input operand
867 numbers with end marker -1) with reg class GOAL_CLASS. Add input
868 and output reloads correspondingly to the lists *BEFORE and *AFTER.
869 OUT might be negative. In this case we generate input reloads for
870 matched input operands INS. */
871 static void
872 match_reload (signed char out, signed char *ins, enum reg_class goal_class,
873 rtx_insn **before, rtx_insn **after)
874 {
875 int i, in;
876 rtx new_in_reg, new_out_reg, reg, clobber;
877 machine_mode inmode, outmode;
878 rtx in_rtx = *curr_id->operand_loc[ins[0]];
879 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
880
881 inmode = curr_operand_mode[ins[0]];
882 outmode = out < 0 ? inmode : curr_operand_mode[out];
883 push_to_sequence (*before);
884 if (inmode != outmode)
885 {
886 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
887 {
888 reg = new_in_reg
889 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
890 goal_class, "");
891 if (SCALAR_INT_MODE_P (inmode))
892 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
893 else
894 new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
895 LRA_SUBREG_P (new_out_reg) = 1;
896 /* If the input reg is dying here, we can use the same hard
897 register for REG and IN_RTX. We do it only for original
898 pseudos as reload pseudos can die although original
899 pseudos still live where reload pseudos dies. */
900 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
901 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx)))
902 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
903 }
904 else
905 {
906 reg = new_out_reg
907 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
908 goal_class, "");
909 if (SCALAR_INT_MODE_P (outmode))
910 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
911 else
912 new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
913 /* NEW_IN_REG is non-paradoxical subreg. We don't want
914 NEW_OUT_REG living above. We add clobber clause for
915 this. This is just a temporary clobber. We can remove
916 it at the end of LRA work. */
917 clobber = emit_clobber (new_out_reg);
918 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
919 LRA_SUBREG_P (new_in_reg) = 1;
920 if (GET_CODE (in_rtx) == SUBREG)
921 {
922 rtx subreg_reg = SUBREG_REG (in_rtx);
923
924 /* If SUBREG_REG is dying here and sub-registers IN_RTX
925 and NEW_IN_REG are similar, we can use the same hard
926 register for REG and SUBREG_REG. */
927 if (REG_P (subreg_reg)
928 && (int) REGNO (subreg_reg) < lra_new_regno_start
929 && GET_MODE (subreg_reg) == outmode
930 && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
931 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg)))
932 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
933 }
934 }
935 }
936 else
937 {
938 /* Pseudos have values -- see comments for lra_reg_info.
939 Different pseudos with the same value do not conflict even if
940 they live in the same place. When we create a pseudo we
941 assign value of original pseudo (if any) from which we
942 created the new pseudo. If we create the pseudo from the
943 input pseudo, the new pseudo will no conflict with the input
944 pseudo which is wrong when the input pseudo lives after the
945 insn and as the new pseudo value is changed by the insn
946 output. Therefore we create the new pseudo from the output.
947
948 We cannot reuse the current output register because we might
949 have a situation like "a <- a op b", where the constraints
950 force the second input operand ("b") to match the output
951 operand ("a"). "b" must then be copied into a new register
952 so that it doesn't clobber the current value of "a". */
953
954 new_in_reg = new_out_reg
955 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
956 goal_class, "");
957 }
958 /* In operand can be got from transformations before processing insn
959 constraints. One example of such transformations is subreg
960 reloading (see function simplify_operand_subreg). The new
961 pseudos created by the transformations might have inaccurate
962 class (ALL_REGS) and we should make their classes more
963 accurate. */
964 narrow_reload_pseudo_class (in_rtx, goal_class);
965 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
966 *before = get_insns ();
967 end_sequence ();
968 for (i = 0; (in = ins[i]) >= 0; i++)
969 {
970 lra_assert
971 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
972 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
973 *curr_id->operand_loc[in] = new_in_reg;
974 }
975 lra_update_dups (curr_id, ins);
976 if (out < 0)
977 return;
978 /* See a comment for the input operand above. */
979 narrow_reload_pseudo_class (out_rtx, goal_class);
980 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
981 {
982 start_sequence ();
983 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
984 emit_insn (*after);
985 *after = get_insns ();
986 end_sequence ();
987 }
988 *curr_id->operand_loc[out] = new_out_reg;
989 lra_update_dup (curr_id, out);
990 }
991
992 /* Return register class which is union of all reg classes in insn
993 constraint alternative string starting with P. */
994 static enum reg_class
995 reg_class_from_constraints (const char *p)
996 {
997 int c, len;
998 enum reg_class op_class = NO_REGS;
999
1000 do
1001 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1002 {
1003 case '#':
1004 case ',':
1005 return op_class;
1006
1007 case 'g':
1008 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1009 break;
1010
1011 default:
1012 enum constraint_num cn = lookup_constraint (p);
1013 enum reg_class cl = reg_class_for_constraint (cn);
1014 if (cl == NO_REGS)
1015 {
1016 if (insn_extra_address_constraint (cn))
1017 op_class
1018 = (reg_class_subunion
1019 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1020 ADDRESS, SCRATCH)]);
1021 break;
1022 }
1023
1024 op_class = reg_class_subunion[op_class][cl];
1025 break;
1026 }
1027 while ((p += len), c);
1028 return op_class;
1029 }
1030
1031 /* If OP is a register, return the class of the register as per
1032 get_reg_class, otherwise return NO_REGS. */
1033 static inline enum reg_class
1034 get_op_class (rtx op)
1035 {
1036 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1037 }
1038
1039 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1040 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1041 SUBREG for VAL to make them equal. */
1042 static rtx_insn *
1043 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1044 {
1045 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1046 {
1047 /* Usually size of mem_pseudo is greater than val size but in
1048 rare cases it can be less as it can be defined by target
1049 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1050 if (! MEM_P (val))
1051 {
1052 val = gen_rtx_SUBREG (GET_MODE (mem_pseudo),
1053 GET_CODE (val) == SUBREG ? SUBREG_REG (val) : val,
1054 0);
1055 LRA_SUBREG_P (val) = 1;
1056 }
1057 else
1058 {
1059 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1060 LRA_SUBREG_P (mem_pseudo) = 1;
1061 }
1062 }
1063 return as_a <rtx_insn *> (to_p
1064 ? gen_move_insn (mem_pseudo, val)
1065 : gen_move_insn (val, mem_pseudo));
1066 }
1067
1068 /* Process a special case insn (register move), return true if we
1069 don't need to process it anymore. INSN should be a single set
1070 insn. Set up that RTL was changed through CHANGE_P and macro
1071 SECONDARY_MEMORY_NEEDED says to use secondary memory through
1072 SEC_MEM_P. */
1073 static bool
1074 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1075 {
1076 int sregno, dregno;
1077 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1078 rtx_insn *before;
1079 enum reg_class dclass, sclass, secondary_class;
1080 secondary_reload_info sri;
1081
1082 lra_assert (curr_insn_set != NULL_RTX);
1083 dreg = dest = SET_DEST (curr_insn_set);
1084 sreg = src = SET_SRC (curr_insn_set);
1085 if (GET_CODE (dest) == SUBREG)
1086 dreg = SUBREG_REG (dest);
1087 if (GET_CODE (src) == SUBREG)
1088 sreg = SUBREG_REG (src);
1089 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1090 return false;
1091 sclass = dclass = NO_REGS;
1092 if (REG_P (dreg))
1093 dclass = get_reg_class (REGNO (dreg));
1094 if (dclass == ALL_REGS)
1095 /* ALL_REGS is used for new pseudos created by transformations
1096 like reload of SUBREG_REG (see function
1097 simplify_operand_subreg). We don't know their class yet. We
1098 should figure out the class from processing the insn
1099 constraints not in this fast path function. Even if ALL_REGS
1100 were a right class for the pseudo, secondary_... hooks usually
1101 are not define for ALL_REGS. */
1102 return false;
1103 if (REG_P (sreg))
1104 sclass = get_reg_class (REGNO (sreg));
1105 if (sclass == ALL_REGS)
1106 /* See comments above. */
1107 return false;
1108 if (sclass == NO_REGS && dclass == NO_REGS)
1109 return false;
1110 #ifdef SECONDARY_MEMORY_NEEDED
1111 if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
1112 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1113 && ((sclass != NO_REGS && dclass != NO_REGS)
1114 || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
1115 #endif
1116 )
1117 {
1118 *sec_mem_p = true;
1119 return false;
1120 }
1121 #endif
1122 if (! REG_P (dreg) || ! REG_P (sreg))
1123 return false;
1124 sri.prev_sri = NULL;
1125 sri.icode = CODE_FOR_nothing;
1126 sri.extra_cost = 0;
1127 secondary_class = NO_REGS;
1128 /* Set up hard register for a reload pseudo for hook
1129 secondary_reload because some targets just ignore unassigned
1130 pseudos in the hook. */
1131 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1132 {
1133 dregno = REGNO (dreg);
1134 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1135 }
1136 else
1137 dregno = -1;
1138 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1139 {
1140 sregno = REGNO (sreg);
1141 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1142 }
1143 else
1144 sregno = -1;
1145 if (sclass != NO_REGS)
1146 secondary_class
1147 = (enum reg_class) targetm.secondary_reload (false, dest,
1148 (reg_class_t) sclass,
1149 GET_MODE (src), &sri);
1150 if (sclass == NO_REGS
1151 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1152 && dclass != NO_REGS))
1153 {
1154 enum reg_class old_sclass = secondary_class;
1155 secondary_reload_info old_sri = sri;
1156
1157 sri.prev_sri = NULL;
1158 sri.icode = CODE_FOR_nothing;
1159 sri.extra_cost = 0;
1160 secondary_class
1161 = (enum reg_class) targetm.secondary_reload (true, src,
1162 (reg_class_t) dclass,
1163 GET_MODE (src), &sri);
1164 /* Check the target hook consistency. */
1165 lra_assert
1166 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1167 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1168 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1169 }
1170 if (sregno >= 0)
1171 reg_renumber [sregno] = -1;
1172 if (dregno >= 0)
1173 reg_renumber [dregno] = -1;
1174 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1175 return false;
1176 *change_p = true;
1177 new_reg = NULL_RTX;
1178 if (secondary_class != NO_REGS)
1179 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1180 secondary_class,
1181 "secondary");
1182 start_sequence ();
1183 if (sri.icode == CODE_FOR_nothing)
1184 lra_emit_move (new_reg, src);
1185 else
1186 {
1187 enum reg_class scratch_class;
1188
1189 scratch_class = (reg_class_from_constraints
1190 (insn_data[sri.icode].operand[2].constraint));
1191 scratch_reg = (lra_create_new_reg_with_unique_value
1192 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1193 scratch_class, "scratch"));
1194 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1195 src, scratch_reg));
1196 }
1197 before = get_insns ();
1198 end_sequence ();
1199 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1200 if (new_reg != NULL_RTX)
1201 SET_SRC (curr_insn_set) = new_reg;
1202 else
1203 {
1204 if (lra_dump_file != NULL)
1205 {
1206 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1207 dump_insn_slim (lra_dump_file, curr_insn);
1208 }
1209 lra_set_insn_deleted (curr_insn);
1210 return true;
1211 }
1212 return false;
1213 }
1214
1215 /* The following data describe the result of process_alt_operands.
1216 The data are used in curr_insn_transform to generate reloads. */
1217
1218 /* The chosen reg classes which should be used for the corresponding
1219 operands. */
1220 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1221 /* True if the operand should be the same as another operand and that
1222 other operand does not need a reload. */
1223 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1224 /* True if the operand does not need a reload. */
1225 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1226 /* True if the operand can be offsetable memory. */
1227 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1228 /* The number of an operand to which given operand can be matched to. */
1229 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1230 /* The number of elements in the following array. */
1231 static int goal_alt_dont_inherit_ops_num;
1232 /* Numbers of operands whose reload pseudos should not be inherited. */
1233 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1234 /* True if the insn commutative operands should be swapped. */
1235 static bool goal_alt_swapped;
1236 /* The chosen insn alternative. */
1237 static int goal_alt_number;
1238
1239 /* The following five variables are used to choose the best insn
1240 alternative. They reflect final characteristics of the best
1241 alternative. */
1242
1243 /* Number of necessary reloads and overall cost reflecting the
1244 previous value and other unpleasantness of the best alternative. */
1245 static int best_losers, best_overall;
1246 /* Overall number hard registers used for reloads. For example, on
1247 some targets we need 2 general registers to reload DFmode and only
1248 one floating point register. */
1249 static int best_reload_nregs;
1250 /* Overall number reflecting distances of previous reloading the same
1251 value. The distances are counted from the current BB start. It is
1252 used to improve inheritance chances. */
1253 static int best_reload_sum;
1254
1255 /* True if the current insn should have no correspondingly input or
1256 output reloads. */
1257 static bool no_input_reloads_p, no_output_reloads_p;
1258
1259 /* True if we swapped the commutative operands in the current
1260 insn. */
1261 static int curr_swapped;
1262
1263 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1264 register of class CL. Add any input reloads to list BEFORE. AFTER
1265 is nonnull if *LOC is an automodified value; handle that case by
1266 adding the required output reloads to list AFTER. Return true if
1267 the RTL was changed.
1268
1269 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1270 register. Return false if the address register is correct. */
1271 static bool
1272 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1273 enum reg_class cl)
1274 {
1275 int regno;
1276 enum reg_class rclass, new_class;
1277 rtx reg;
1278 rtx new_reg;
1279 machine_mode mode;
1280 bool subreg_p, before_p = false;
1281
1282 subreg_p = GET_CODE (*loc) == SUBREG;
1283 if (subreg_p)
1284 loc = &SUBREG_REG (*loc);
1285 reg = *loc;
1286 mode = GET_MODE (reg);
1287 if (! REG_P (reg))
1288 {
1289 if (check_only_p)
1290 return true;
1291 /* Always reload memory in an address even if the target supports
1292 such addresses. */
1293 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1294 before_p = true;
1295 }
1296 else
1297 {
1298 regno = REGNO (reg);
1299 rclass = get_reg_class (regno);
1300 if (! check_only_p
1301 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1302 {
1303 if (lra_dump_file != NULL)
1304 {
1305 fprintf (lra_dump_file,
1306 "Changing pseudo %d in address of insn %u on equiv ",
1307 REGNO (reg), INSN_UID (curr_insn));
1308 dump_value_slim (lra_dump_file, *loc, 1);
1309 fprintf (lra_dump_file, "\n");
1310 }
1311 *loc = copy_rtx (*loc);
1312 }
1313 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1314 {
1315 if (check_only_p)
1316 return true;
1317 reg = *loc;
1318 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1319 mode, reg, cl, subreg_p, "address", &new_reg))
1320 before_p = true;
1321 }
1322 else if (new_class != NO_REGS && rclass != new_class)
1323 {
1324 if (check_only_p)
1325 return true;
1326 lra_change_class (regno, new_class, " Change to", true);
1327 return false;
1328 }
1329 else
1330 return false;
1331 }
1332 if (before_p)
1333 {
1334 push_to_sequence (*before);
1335 lra_emit_move (new_reg, reg);
1336 *before = get_insns ();
1337 end_sequence ();
1338 }
1339 *loc = new_reg;
1340 if (after != NULL)
1341 {
1342 start_sequence ();
1343 lra_emit_move (reg, new_reg);
1344 emit_insn (*after);
1345 *after = get_insns ();
1346 end_sequence ();
1347 }
1348 return true;
1349 }
1350
1351 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1352 the insn to be inserted before curr insn. AFTER returns the
1353 the insn to be inserted after curr insn. ORIGREG and NEWREG
1354 are the original reg and new reg for reload. */
1355 static void
1356 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1357 rtx newreg)
1358 {
1359 if (before)
1360 {
1361 push_to_sequence (*before);
1362 lra_emit_move (newreg, origreg);
1363 *before = get_insns ();
1364 end_sequence ();
1365 }
1366 if (after)
1367 {
1368 start_sequence ();
1369 lra_emit_move (origreg, newreg);
1370 emit_insn (*after);
1371 *after = get_insns ();
1372 end_sequence ();
1373 }
1374 }
1375
1376 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1377
1378 /* Make reloads for subreg in operand NOP with internal subreg mode
1379 REG_MODE, add new reloads for further processing. Return true if
1380 any change was done. */
1381 static bool
1382 simplify_operand_subreg (int nop, machine_mode reg_mode)
1383 {
1384 int hard_regno;
1385 rtx_insn *before, *after;
1386 machine_mode mode, innermode;
1387 rtx reg, new_reg;
1388 rtx operand = *curr_id->operand_loc[nop];
1389 enum reg_class regclass;
1390 enum op_type type;
1391
1392 before = after = NULL;
1393
1394 if (GET_CODE (operand) != SUBREG)
1395 return false;
1396
1397 mode = GET_MODE (operand);
1398 reg = SUBREG_REG (operand);
1399 innermode = GET_MODE (reg);
1400 type = curr_static_id->operand[nop].type;
1401 /* If we change address for paradoxical subreg of memory, the
1402 address might violate the necessary alignment or the access might
1403 be slow. So take this into consideration. We should not worry
1404 about access beyond allocated memory for paradoxical memory
1405 subregs as we don't substitute such equiv memory (see processing
1406 equivalences in function lra_constraints) and because for spilled
1407 pseudos we allocate stack memory enough for the biggest
1408 corresponding paradoxical subreg. */
1409 if (MEM_P (reg)
1410 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg))
1411 || MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode)))
1412 {
1413 rtx subst, old = *curr_id->operand_loc[nop];
1414
1415 alter_subreg (curr_id->operand_loc[nop], false);
1416 subst = *curr_id->operand_loc[nop];
1417 lra_assert (MEM_P (subst));
1418 if (! valid_address_p (innermode, XEXP (reg, 0),
1419 MEM_ADDR_SPACE (reg))
1420 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1421 MEM_ADDR_SPACE (subst)))
1422 return true;
1423 /* If the address was valid and became invalid, prefer to reload
1424 the memory. Typical case is when the index scale should
1425 correspond the memory. */
1426 *curr_id->operand_loc[nop] = old;
1427 }
1428 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1429 {
1430 alter_subreg (curr_id->operand_loc[nop], false);
1431 return true;
1432 }
1433 else if (CONSTANT_P (reg))
1434 {
1435 /* Try to simplify subreg of constant. It is usually result of
1436 equivalence substitution. */
1437 if (innermode == VOIDmode
1438 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1439 innermode = curr_static_id->operand[nop].mode;
1440 if ((new_reg = simplify_subreg (mode, reg, innermode,
1441 SUBREG_BYTE (operand))) != NULL_RTX)
1442 {
1443 *curr_id->operand_loc[nop] = new_reg;
1444 return true;
1445 }
1446 }
1447 /* Put constant into memory when we have mixed modes. It generates
1448 a better code in most cases as it does not need a secondary
1449 reload memory. It also prevents LRA looping when LRA is using
1450 secondary reload memory again and again. */
1451 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1452 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1453 {
1454 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1455 alter_subreg (curr_id->operand_loc[nop], false);
1456 return true;
1457 }
1458 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1459 if there may be a problem accessing OPERAND in the outer
1460 mode. */
1461 if ((REG_P (reg)
1462 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1463 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1464 /* Don't reload paradoxical subregs because we could be looping
1465 having repeatedly final regno out of hard regs range. */
1466 && (hard_regno_nregs[hard_regno][innermode]
1467 >= hard_regno_nregs[hard_regno][mode])
1468 && simplify_subreg_regno (hard_regno, innermode,
1469 SUBREG_BYTE (operand), mode) < 0
1470 /* Don't reload subreg for matching reload. It is actually
1471 valid subreg in LRA. */
1472 && ! LRA_SUBREG_P (operand))
1473 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1474 {
1475 enum reg_class rclass;
1476
1477 if (REG_P (reg))
1478 /* There is a big probability that we will get the same class
1479 for the new pseudo and we will get the same insn which
1480 means infinite looping. So spill the new pseudo. */
1481 rclass = NO_REGS;
1482 else
1483 /* The class will be defined later in curr_insn_transform. */
1484 rclass
1485 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1486
1487 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1488 rclass, TRUE, "subreg reg", &new_reg))
1489 {
1490 bool insert_before, insert_after;
1491 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1492
1493 insert_before = (type != OP_OUT
1494 || GET_MODE_SIZE (innermode) > GET_MODE_SIZE (mode));
1495 insert_after = (type != OP_IN);
1496 insert_move_for_subreg (insert_before ? &before : NULL,
1497 insert_after ? &after : NULL,
1498 reg, new_reg);
1499 }
1500 SUBREG_REG (operand) = new_reg;
1501 lra_process_new_insns (curr_insn, before, after,
1502 "Inserting subreg reload");
1503 return true;
1504 }
1505 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1506 IRA allocates hardreg to the inner pseudo reg according to its mode
1507 instead of the outermode, so the size of the hardreg may not be enough
1508 to contain the outermode operand, in that case we may need to insert
1509 reload for the reg. For the following two types of paradoxical subreg,
1510 we need to insert reload:
1511 1. If the op_type is OP_IN, and the hardreg could not be paired with
1512 other hardreg to contain the outermode operand
1513 (checked by in_hard_reg_set_p), we need to insert the reload.
1514 2. If the op_type is OP_OUT or OP_INOUT.
1515
1516 Here is a paradoxical subreg example showing how the reload is generated:
1517
1518 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1519 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1520
1521 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1522 here, if reg107 is assigned to hardreg R15, because R15 is the last
1523 hardreg, compiler cannot find another hardreg to pair with R15 to
1524 contain TImode data. So we insert a TImode reload reg180 for it.
1525 After reload is inserted:
1526
1527 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1528 (reg:DI 107 [ __comp ])) -1
1529 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1530 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1531
1532 Two reload hard registers will be allocated to reg180 to save TImode data
1533 in LRA_assign. */
1534 else if (REG_P (reg)
1535 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1536 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1537 && (hard_regno_nregs[hard_regno][innermode]
1538 < hard_regno_nregs[hard_regno][mode])
1539 && (regclass = lra_get_allocno_class (REGNO (reg)))
1540 && (type != OP_IN
1541 || !in_hard_reg_set_p (reg_class_contents[regclass],
1542 mode, hard_regno)))
1543 {
1544 /* The class will be defined later in curr_insn_transform. */
1545 enum reg_class rclass
1546 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1547
1548 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1549 rclass, TRUE, "paradoxical subreg", &new_reg))
1550 {
1551 rtx subreg;
1552 bool insert_before, insert_after;
1553
1554 PUT_MODE (new_reg, mode);
1555 subreg = simplify_gen_subreg (innermode, new_reg, mode, 0);
1556 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1557
1558 insert_before = (type != OP_OUT);
1559 insert_after = (type != OP_IN);
1560 insert_move_for_subreg (insert_before ? &before : NULL,
1561 insert_after ? &after : NULL,
1562 reg, subreg);
1563 }
1564 SUBREG_REG (operand) = new_reg;
1565 lra_process_new_insns (curr_insn, before, after,
1566 "Inserting paradoxical subreg reload");
1567 return true;
1568 }
1569 return false;
1570 }
1571
1572 /* Return TRUE if X refers for a hard register from SET. */
1573 static bool
1574 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1575 {
1576 int i, j, x_hard_regno;
1577 machine_mode mode;
1578 const char *fmt;
1579 enum rtx_code code;
1580
1581 if (x == NULL_RTX)
1582 return false;
1583 code = GET_CODE (x);
1584 mode = GET_MODE (x);
1585 if (code == SUBREG)
1586 {
1587 x = SUBREG_REG (x);
1588 code = GET_CODE (x);
1589 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1590 mode = GET_MODE (x);
1591 }
1592
1593 if (REG_P (x))
1594 {
1595 x_hard_regno = get_hard_regno (x);
1596 return (x_hard_regno >= 0
1597 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1598 }
1599 if (MEM_P (x))
1600 {
1601 struct address_info ad;
1602
1603 decompose_mem_address (&ad, x);
1604 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1605 return true;
1606 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1607 return true;
1608 }
1609 fmt = GET_RTX_FORMAT (code);
1610 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1611 {
1612 if (fmt[i] == 'e')
1613 {
1614 if (uses_hard_regs_p (XEXP (x, i), set))
1615 return true;
1616 }
1617 else if (fmt[i] == 'E')
1618 {
1619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1620 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1621 return true;
1622 }
1623 }
1624 return false;
1625 }
1626
1627 /* Return true if OP is a spilled pseudo. */
1628 static inline bool
1629 spilled_pseudo_p (rtx op)
1630 {
1631 return (REG_P (op)
1632 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1633 }
1634
1635 /* Return true if X is a general constant. */
1636 static inline bool
1637 general_constant_p (rtx x)
1638 {
1639 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1640 }
1641
1642 static bool
1643 reg_in_class_p (rtx reg, enum reg_class cl)
1644 {
1645 if (cl == NO_REGS)
1646 return get_reg_class (REGNO (reg)) == NO_REGS;
1647 return in_class_p (reg, cl, NULL);
1648 }
1649
1650 /* Return true if SET of RCLASS contains no hard regs which can be
1651 used in MODE. */
1652 static bool
1653 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1654 HARD_REG_SET &set,
1655 enum machine_mode mode)
1656 {
1657 HARD_REG_SET temp;
1658
1659 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1660 COPY_HARD_REG_SET (temp, set);
1661 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1662 return (hard_reg_set_subset_p
1663 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1664 }
1665
1666 /* Major function to choose the current insn alternative and what
1667 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1668 negative we should consider only this alternative. Return false if
1669 we can not choose the alternative or find how to reload the
1670 operands. */
1671 static bool
1672 process_alt_operands (int only_alternative)
1673 {
1674 bool ok_p = false;
1675 int nop, overall, nalt;
1676 int n_alternatives = curr_static_id->n_alternatives;
1677 int n_operands = curr_static_id->n_operands;
1678 /* LOSERS counts the operands that don't fit this alternative and
1679 would require loading. */
1680 int losers;
1681 /* REJECT is a count of how undesirable this alternative says it is
1682 if any reloading is required. If the alternative matches exactly
1683 then REJECT is ignored, but otherwise it gets this much counted
1684 against it in addition to the reloading needed. */
1685 int reject;
1686 int op_reject;
1687 /* The number of elements in the following array. */
1688 int early_clobbered_regs_num;
1689 /* Numbers of operands which are early clobber registers. */
1690 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1691 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1692 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1693 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1694 bool curr_alt_win[MAX_RECOG_OPERANDS];
1695 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1696 int curr_alt_matches[MAX_RECOG_OPERANDS];
1697 /* The number of elements in the following array. */
1698 int curr_alt_dont_inherit_ops_num;
1699 /* Numbers of operands whose reload pseudos should not be inherited. */
1700 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1701 rtx op;
1702 /* The register when the operand is a subreg of register, otherwise the
1703 operand itself. */
1704 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1705 /* The register if the operand is a register or subreg of register,
1706 otherwise NULL. */
1707 rtx operand_reg[MAX_RECOG_OPERANDS];
1708 int hard_regno[MAX_RECOG_OPERANDS];
1709 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1710 int reload_nregs, reload_sum;
1711 bool costly_p;
1712 enum reg_class cl;
1713
1714 /* Calculate some data common for all alternatives to speed up the
1715 function. */
1716 for (nop = 0; nop < n_operands; nop++)
1717 {
1718 rtx reg;
1719
1720 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1721 /* The real hard regno of the operand after the allocation. */
1722 hard_regno[nop] = get_hard_regno (op);
1723
1724 operand_reg[nop] = reg = op;
1725 biggest_mode[nop] = GET_MODE (op);
1726 if (GET_CODE (op) == SUBREG)
1727 {
1728 operand_reg[nop] = reg = SUBREG_REG (op);
1729 if (GET_MODE_SIZE (biggest_mode[nop])
1730 < GET_MODE_SIZE (GET_MODE (reg)))
1731 biggest_mode[nop] = GET_MODE (reg);
1732 }
1733 if (! REG_P (reg))
1734 operand_reg[nop] = NULL_RTX;
1735 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1736 || ((int) REGNO (reg)
1737 == lra_get_elimination_hard_regno (REGNO (reg))))
1738 no_subreg_reg_operand[nop] = reg;
1739 else
1740 operand_reg[nop] = no_subreg_reg_operand[nop]
1741 /* Just use natural mode for elimination result. It should
1742 be enough for extra constraints hooks. */
1743 = regno_reg_rtx[hard_regno[nop]];
1744 }
1745
1746 /* The constraints are made of several alternatives. Each operand's
1747 constraint looks like foo,bar,... with commas separating the
1748 alternatives. The first alternatives for all operands go
1749 together, the second alternatives go together, etc.
1750
1751 First loop over alternatives. */
1752 alternative_mask preferred = curr_id->preferred_alternatives;
1753 if (only_alternative >= 0)
1754 preferred &= ALTERNATIVE_BIT (only_alternative);
1755
1756 for (nalt = 0; nalt < n_alternatives; nalt++)
1757 {
1758 /* Loop over operands for one constraint alternative. */
1759 if (!TEST_BIT (preferred, nalt))
1760 continue;
1761
1762 overall = losers = reject = reload_nregs = reload_sum = 0;
1763 for (nop = 0; nop < n_operands; nop++)
1764 {
1765 int inc = (curr_static_id
1766 ->operand_alternative[nalt * n_operands + nop].reject);
1767 if (lra_dump_file != NULL && inc != 0)
1768 fprintf (lra_dump_file,
1769 " Staticly defined alt reject+=%d\n", inc);
1770 reject += inc;
1771 }
1772 early_clobbered_regs_num = 0;
1773
1774 for (nop = 0; nop < n_operands; nop++)
1775 {
1776 const char *p;
1777 char *end;
1778 int len, c, m, i, opalt_num, this_alternative_matches;
1779 bool win, did_match, offmemok, early_clobber_p;
1780 /* false => this operand can be reloaded somehow for this
1781 alternative. */
1782 bool badop;
1783 /* true => this operand can be reloaded if the alternative
1784 allows regs. */
1785 bool winreg;
1786 /* True if a constant forced into memory would be OK for
1787 this operand. */
1788 bool constmemok;
1789 enum reg_class this_alternative, this_costly_alternative;
1790 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
1791 bool this_alternative_match_win, this_alternative_win;
1792 bool this_alternative_offmemok;
1793 bool scratch_p;
1794 machine_mode mode;
1795 enum constraint_num cn;
1796
1797 opalt_num = nalt * n_operands + nop;
1798 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
1799 {
1800 /* Fast track for no constraints at all. */
1801 curr_alt[nop] = NO_REGS;
1802 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
1803 curr_alt_win[nop] = true;
1804 curr_alt_match_win[nop] = false;
1805 curr_alt_offmemok[nop] = false;
1806 curr_alt_matches[nop] = -1;
1807 continue;
1808 }
1809
1810 op = no_subreg_reg_operand[nop];
1811 mode = curr_operand_mode[nop];
1812
1813 win = did_match = winreg = offmemok = constmemok = false;
1814 badop = true;
1815
1816 early_clobber_p = false;
1817 p = curr_static_id->operand_alternative[opalt_num].constraint;
1818
1819 this_costly_alternative = this_alternative = NO_REGS;
1820 /* We update set of possible hard regs besides its class
1821 because reg class might be inaccurate. For example,
1822 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
1823 is translated in HI_REGS because classes are merged by
1824 pairs and there is no accurate intermediate class. */
1825 CLEAR_HARD_REG_SET (this_alternative_set);
1826 CLEAR_HARD_REG_SET (this_costly_alternative_set);
1827 this_alternative_win = false;
1828 this_alternative_match_win = false;
1829 this_alternative_offmemok = false;
1830 this_alternative_matches = -1;
1831
1832 /* An empty constraint should be excluded by the fast
1833 track. */
1834 lra_assert (*p != 0 && *p != ',');
1835
1836 op_reject = 0;
1837 /* Scan this alternative's specs for this operand; set WIN
1838 if the operand fits any letter in this alternative.
1839 Otherwise, clear BADOP if this operand could fit some
1840 letter after reloads, or set WINREG if this operand could
1841 fit after reloads provided the constraint allows some
1842 registers. */
1843 costly_p = false;
1844 do
1845 {
1846 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1847 {
1848 case '\0':
1849 len = 0;
1850 break;
1851 case ',':
1852 c = '\0';
1853 break;
1854
1855 case '&':
1856 early_clobber_p = true;
1857 break;
1858
1859 case '$':
1860 op_reject += LRA_MAX_REJECT;
1861 break;
1862 case '^':
1863 op_reject += LRA_LOSER_COST_FACTOR;
1864 break;
1865
1866 case '#':
1867 /* Ignore rest of this alternative. */
1868 c = '\0';
1869 break;
1870
1871 case '0': case '1': case '2': case '3': case '4':
1872 case '5': case '6': case '7': case '8': case '9':
1873 {
1874 int m_hregno;
1875 bool match_p;
1876
1877 m = strtoul (p, &end, 10);
1878 p = end;
1879 len = 0;
1880 lra_assert (nop > m);
1881
1882 this_alternative_matches = m;
1883 m_hregno = get_hard_regno (*curr_id->operand_loc[m]);
1884 /* We are supposed to match a previous operand.
1885 If we do, we win if that one did. If we do
1886 not, count both of the operands as losers.
1887 (This is too conservative, since most of the
1888 time only a single reload insn will be needed
1889 to make the two operands win. As a result,
1890 this alternative may be rejected when it is
1891 actually desirable.) */
1892 match_p = false;
1893 if (operands_match_p (*curr_id->operand_loc[nop],
1894 *curr_id->operand_loc[m], m_hregno))
1895 {
1896 /* We should reject matching of an early
1897 clobber operand if the matching operand is
1898 not dying in the insn. */
1899 if (! curr_static_id->operand[m].early_clobber
1900 || operand_reg[nop] == NULL_RTX
1901 || (find_regno_note (curr_insn, REG_DEAD,
1902 REGNO (op))
1903 || REGNO (op) == REGNO (operand_reg[m])))
1904 match_p = true;
1905 }
1906 if (match_p)
1907 {
1908 /* If we are matching a non-offsettable
1909 address where an offsettable address was
1910 expected, then we must reject this
1911 combination, because we can't reload
1912 it. */
1913 if (curr_alt_offmemok[m]
1914 && MEM_P (*curr_id->operand_loc[m])
1915 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
1916 continue;
1917 }
1918 else
1919 {
1920 /* Operands don't match. Both operands must
1921 allow a reload register, otherwise we
1922 cannot make them match. */
1923 if (curr_alt[m] == NO_REGS)
1924 break;
1925 /* Retroactively mark the operand we had to
1926 match as a loser, if it wasn't already and
1927 it wasn't matched to a register constraint
1928 (e.g it might be matched by memory). */
1929 if (curr_alt_win[m]
1930 && (operand_reg[m] == NULL_RTX
1931 || hard_regno[m] < 0))
1932 {
1933 losers++;
1934 reload_nregs
1935 += (ira_reg_class_max_nregs[curr_alt[m]]
1936 [GET_MODE (*curr_id->operand_loc[m])]);
1937 }
1938
1939 /* Prefer matching earlyclobber alternative as
1940 it results in less hard regs required for
1941 the insn than a non-matching earlyclobber
1942 alternative. */
1943 if (curr_static_id->operand[m].early_clobber)
1944 {
1945 if (lra_dump_file != NULL)
1946 fprintf
1947 (lra_dump_file,
1948 " %d Matching earlyclobber alt:"
1949 " reject--\n",
1950 nop);
1951 reject--;
1952 }
1953 /* Otherwise we prefer no matching
1954 alternatives because it gives more freedom
1955 in RA. */
1956 else if (operand_reg[nop] == NULL_RTX
1957 || (find_regno_note (curr_insn, REG_DEAD,
1958 REGNO (operand_reg[nop]))
1959 == NULL_RTX))
1960 {
1961 if (lra_dump_file != NULL)
1962 fprintf
1963 (lra_dump_file,
1964 " %d Matching alt: reject+=2\n",
1965 nop);
1966 reject += 2;
1967 }
1968 }
1969 /* If we have to reload this operand and some
1970 previous operand also had to match the same
1971 thing as this operand, we don't know how to do
1972 that. */
1973 if (!match_p || !curr_alt_win[m])
1974 {
1975 for (i = 0; i < nop; i++)
1976 if (curr_alt_matches[i] == m)
1977 break;
1978 if (i < nop)
1979 break;
1980 }
1981 else
1982 did_match = true;
1983
1984 /* This can be fixed with reloads if the operand
1985 we are supposed to match can be fixed with
1986 reloads. */
1987 badop = false;
1988 this_alternative = curr_alt[m];
1989 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
1990 winreg = this_alternative != NO_REGS;
1991 break;
1992 }
1993
1994 case 'g':
1995 if (MEM_P (op)
1996 || general_constant_p (op)
1997 || spilled_pseudo_p (op))
1998 win = true;
1999 cl = GENERAL_REGS;
2000 goto reg;
2001
2002 default:
2003 cn = lookup_constraint (p);
2004 switch (get_constraint_type (cn))
2005 {
2006 case CT_REGISTER:
2007 cl = reg_class_for_constraint (cn);
2008 if (cl != NO_REGS)
2009 goto reg;
2010 break;
2011
2012 case CT_CONST_INT:
2013 if (CONST_INT_P (op)
2014 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2015 win = true;
2016 break;
2017
2018 case CT_MEMORY:
2019 if (MEM_P (op)
2020 && satisfies_memory_constraint_p (op, cn))
2021 win = true;
2022 else if (spilled_pseudo_p (op))
2023 win = true;
2024
2025 /* If we didn't already win, we can reload constants
2026 via force_const_mem or put the pseudo value into
2027 memory, or make other memory by reloading the
2028 address like for 'o'. */
2029 if (CONST_POOL_OK_P (mode, op)
2030 || MEM_P (op) || REG_P (op))
2031 badop = false;
2032 constmemok = true;
2033 offmemok = true;
2034 break;
2035
2036 case CT_ADDRESS:
2037 /* If we didn't already win, we can reload the address
2038 into a base register. */
2039 if (satisfies_address_constraint_p (op, cn))
2040 win = true;
2041 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2042 ADDRESS, SCRATCH);
2043 badop = false;
2044 goto reg;
2045
2046 case CT_FIXED_FORM:
2047 if (constraint_satisfied_p (op, cn))
2048 win = true;
2049 break;
2050 }
2051 break;
2052
2053 reg:
2054 this_alternative = reg_class_subunion[this_alternative][cl];
2055 IOR_HARD_REG_SET (this_alternative_set,
2056 reg_class_contents[cl]);
2057 if (costly_p)
2058 {
2059 this_costly_alternative
2060 = reg_class_subunion[this_costly_alternative][cl];
2061 IOR_HARD_REG_SET (this_costly_alternative_set,
2062 reg_class_contents[cl]);
2063 }
2064 if (mode == BLKmode)
2065 break;
2066 winreg = true;
2067 if (REG_P (op))
2068 {
2069 if (hard_regno[nop] >= 0
2070 && in_hard_reg_set_p (this_alternative_set,
2071 mode, hard_regno[nop]))
2072 win = true;
2073 else if (hard_regno[nop] < 0
2074 && in_class_p (op, this_alternative, NULL))
2075 win = true;
2076 }
2077 break;
2078 }
2079 if (c != ' ' && c != '\t')
2080 costly_p = c == '*';
2081 }
2082 while ((p += len), c);
2083
2084 scratch_p = (operand_reg[nop] != NULL_RTX
2085 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2086 /* Record which operands fit this alternative. */
2087 if (win)
2088 {
2089 this_alternative_win = true;
2090 if (operand_reg[nop] != NULL_RTX)
2091 {
2092 if (hard_regno[nop] >= 0)
2093 {
2094 if (in_hard_reg_set_p (this_costly_alternative_set,
2095 mode, hard_regno[nop]))
2096 {
2097 if (lra_dump_file != NULL)
2098 fprintf (lra_dump_file,
2099 " %d Costly set: reject++\n",
2100 nop);
2101 reject++;
2102 }
2103 }
2104 else
2105 {
2106 /* Prefer won reg to spilled pseudo under other
2107 equal conditions for possibe inheritance. */
2108 if (! scratch_p)
2109 {
2110 if (lra_dump_file != NULL)
2111 fprintf
2112 (lra_dump_file,
2113 " %d Non pseudo reload: reject++\n",
2114 nop);
2115 reject++;
2116 }
2117 if (in_class_p (operand_reg[nop],
2118 this_costly_alternative, NULL))
2119 {
2120 if (lra_dump_file != NULL)
2121 fprintf
2122 (lra_dump_file,
2123 " %d Non pseudo costly reload:"
2124 " reject++\n",
2125 nop);
2126 reject++;
2127 }
2128 }
2129 /* We simulate the behaviour of old reload here.
2130 Although scratches need hard registers and it
2131 might result in spilling other pseudos, no reload
2132 insns are generated for the scratches. So it
2133 might cost something but probably less than old
2134 reload pass believes. */
2135 if (scratch_p)
2136 {
2137 if (lra_dump_file != NULL)
2138 fprintf (lra_dump_file,
2139 " %d Scratch win: reject+=2\n",
2140 nop);
2141 reject += 2;
2142 }
2143 }
2144 }
2145 else if (did_match)
2146 this_alternative_match_win = true;
2147 else
2148 {
2149 int const_to_mem = 0;
2150 bool no_regs_p;
2151
2152 reject += op_reject;
2153 /* Never do output reload of stack pointer. It makes
2154 impossible to do elimination when SP is changed in
2155 RTL. */
2156 if (op == stack_pointer_rtx && ! frame_pointer_needed
2157 && curr_static_id->operand[nop].type != OP_IN)
2158 goto fail;
2159
2160 /* If this alternative asks for a specific reg class, see if there
2161 is at least one allocatable register in that class. */
2162 no_regs_p
2163 = (this_alternative == NO_REGS
2164 || (hard_reg_set_subset_p
2165 (reg_class_contents[this_alternative],
2166 lra_no_alloc_regs)));
2167
2168 /* For asms, verify that the class for this alternative is possible
2169 for the mode that is specified. */
2170 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2171 {
2172 int i;
2173 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2174 if (HARD_REGNO_MODE_OK (i, mode)
2175 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2176 mode, i))
2177 break;
2178 if (i == FIRST_PSEUDO_REGISTER)
2179 winreg = false;
2180 }
2181
2182 /* If this operand accepts a register, and if the
2183 register class has at least one allocatable register,
2184 then this operand can be reloaded. */
2185 if (winreg && !no_regs_p)
2186 badop = false;
2187
2188 if (badop)
2189 {
2190 if (lra_dump_file != NULL)
2191 fprintf (lra_dump_file,
2192 " alt=%d: Bad operand -- refuse\n",
2193 nalt);
2194 goto fail;
2195 }
2196
2197 /* If not assigned pseudo has a class which a subset of
2198 required reg class, it is a less costly alternative
2199 as the pseudo still can get a hard reg of necessary
2200 class. */
2201 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2202 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2203 && ira_class_subset_p[this_alternative][cl])
2204 {
2205 if (lra_dump_file != NULL)
2206 fprintf
2207 (lra_dump_file,
2208 " %d Super set class reg: reject-=3\n", nop);
2209 reject -= 3;
2210 }
2211
2212 this_alternative_offmemok = offmemok;
2213 if (this_costly_alternative != NO_REGS)
2214 {
2215 if (lra_dump_file != NULL)
2216 fprintf (lra_dump_file,
2217 " %d Costly loser: reject++\n", nop);
2218 reject++;
2219 }
2220 /* If the operand is dying, has a matching constraint,
2221 and satisfies constraints of the matched operand
2222 which failed to satisfy the own constraints, most probably
2223 the reload for this operand will be gone. */
2224 if (this_alternative_matches >= 0
2225 && !curr_alt_win[this_alternative_matches]
2226 && REG_P (op)
2227 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2228 && (hard_regno[nop] >= 0
2229 ? in_hard_reg_set_p (this_alternative_set,
2230 mode, hard_regno[nop])
2231 : in_class_p (op, this_alternative, NULL)))
2232 {
2233 if (lra_dump_file != NULL)
2234 fprintf
2235 (lra_dump_file,
2236 " %d Dying matched operand reload: reject++\n",
2237 nop);
2238 reject++;
2239 }
2240 else
2241 {
2242 /* Strict_low_part requires to reload the register
2243 not the sub-register. In this case we should
2244 check that a final reload hard reg can hold the
2245 value mode. */
2246 if (curr_static_id->operand[nop].strict_low
2247 && REG_P (op)
2248 && hard_regno[nop] < 0
2249 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2250 && ira_class_hard_regs_num[this_alternative] > 0
2251 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2252 [this_alternative][0],
2253 GET_MODE
2254 (*curr_id->operand_loc[nop])))
2255 {
2256 if (lra_dump_file != NULL)
2257 fprintf
2258 (lra_dump_file,
2259 " alt=%d: Strict low subreg reload -- refuse\n",
2260 nalt);
2261 goto fail;
2262 }
2263 losers++;
2264 }
2265 if (operand_reg[nop] != NULL_RTX
2266 /* Output operands and matched input operands are
2267 not inherited. The following conditions do not
2268 exactly describe the previous statement but they
2269 are pretty close. */
2270 && curr_static_id->operand[nop].type != OP_OUT
2271 && (this_alternative_matches < 0
2272 || curr_static_id->operand[nop].type != OP_IN))
2273 {
2274 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2275 (operand_reg[nop])]
2276 .last_reload);
2277
2278 /* The value of reload_sum has sense only if we
2279 process insns in their order. It happens only on
2280 the first constraints sub-pass when we do most of
2281 reload work. */
2282 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2283 reload_sum += last_reload - bb_reload_num;
2284 }
2285 /* If this is a constant that is reloaded into the
2286 desired class by copying it to memory first, count
2287 that as another reload. This is consistent with
2288 other code and is required to avoid choosing another
2289 alternative when the constant is moved into memory.
2290 Note that the test here is precisely the same as in
2291 the code below that calls force_const_mem. */
2292 if (CONST_POOL_OK_P (mode, op)
2293 && ((targetm.preferred_reload_class
2294 (op, this_alternative) == NO_REGS)
2295 || no_input_reloads_p))
2296 {
2297 const_to_mem = 1;
2298 if (! no_regs_p)
2299 losers++;
2300 }
2301
2302 /* Alternative loses if it requires a type of reload not
2303 permitted for this insn. We can always reload
2304 objects with a REG_UNUSED note. */
2305 if ((curr_static_id->operand[nop].type != OP_IN
2306 && no_output_reloads_p
2307 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2308 || (curr_static_id->operand[nop].type != OP_OUT
2309 && no_input_reloads_p && ! const_to_mem)
2310 || (this_alternative_matches >= 0
2311 && (no_input_reloads_p
2312 || (no_output_reloads_p
2313 && (curr_static_id->operand
2314 [this_alternative_matches].type != OP_IN)
2315 && ! find_reg_note (curr_insn, REG_UNUSED,
2316 no_subreg_reg_operand
2317 [this_alternative_matches])))))
2318 {
2319 if (lra_dump_file != NULL)
2320 fprintf
2321 (lra_dump_file,
2322 " alt=%d: No input/otput reload -- refuse\n",
2323 nalt);
2324 goto fail;
2325 }
2326
2327 /* Alternative loses if it required class pseudo can not
2328 hold value of required mode. Such insns can be
2329 described by insn definitions with mode iterators. */
2330 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2331 && ! hard_reg_set_empty_p (this_alternative_set)
2332 /* It is common practice for constraints to use a
2333 class which does not have actually enough regs to
2334 hold the value (e.g. x86 AREG for mode requiring
2335 more one general reg). Therefore we have 2
2336 conditions to check that the reload pseudo can
2337 not hold the mode value. */
2338 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2339 [this_alternative][0],
2340 GET_MODE (*curr_id->operand_loc[nop]))
2341 /* The above condition is not enough as the first
2342 reg in ira_class_hard_regs can be not aligned for
2343 multi-words mode values. */
2344 && (prohibited_class_reg_set_mode_p
2345 (this_alternative, this_alternative_set,
2346 GET_MODE (*curr_id->operand_loc[nop]))))
2347 {
2348 if (lra_dump_file != NULL)
2349 fprintf (lra_dump_file,
2350 " alt=%d: reload pseudo for op %d "
2351 " can not hold the mode value -- refuse\n",
2352 nalt, nop);
2353 goto fail;
2354 }
2355
2356 /* Check strong discouragement of reload of non-constant
2357 into class THIS_ALTERNATIVE. */
2358 if (! CONSTANT_P (op) && ! no_regs_p
2359 && (targetm.preferred_reload_class
2360 (op, this_alternative) == NO_REGS
2361 || (curr_static_id->operand[nop].type == OP_OUT
2362 && (targetm.preferred_output_reload_class
2363 (op, this_alternative) == NO_REGS))))
2364 {
2365 if (lra_dump_file != NULL)
2366 fprintf (lra_dump_file,
2367 " %d Non-prefered reload: reject+=%d\n",
2368 nop, LRA_MAX_REJECT);
2369 reject += LRA_MAX_REJECT;
2370 }
2371
2372 if (! (MEM_P (op) && offmemok)
2373 && ! (const_to_mem && constmemok))
2374 {
2375 /* We prefer to reload pseudos over reloading other
2376 things, since such reloads may be able to be
2377 eliminated later. So bump REJECT in other cases.
2378 Don't do this in the case where we are forcing a
2379 constant into memory and it will then win since
2380 we don't want to have a different alternative
2381 match then. */
2382 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2383 {
2384 if (lra_dump_file != NULL)
2385 fprintf
2386 (lra_dump_file,
2387 " %d Non-pseudo reload: reject+=2\n",
2388 nop);
2389 reject += 2;
2390 }
2391
2392 if (! no_regs_p)
2393 reload_nregs
2394 += ira_reg_class_max_nregs[this_alternative][mode];
2395
2396 if (SMALL_REGISTER_CLASS_P (this_alternative))
2397 {
2398 if (lra_dump_file != NULL)
2399 fprintf
2400 (lra_dump_file,
2401 " %d Small class reload: reject+=%d\n",
2402 nop, LRA_LOSER_COST_FACTOR / 2);
2403 reject += LRA_LOSER_COST_FACTOR / 2;
2404 }
2405 }
2406
2407 /* We are trying to spill pseudo into memory. It is
2408 usually more costly than moving to a hard register
2409 although it might takes the same number of
2410 reloads. */
2411 if (no_regs_p && REG_P (op) && hard_regno[nop] >= 0)
2412 {
2413 if (lra_dump_file != NULL)
2414 fprintf
2415 (lra_dump_file,
2416 " %d Spill pseudo into memory: reject+=3\n",
2417 nop);
2418 reject += 3;
2419 if (VECTOR_MODE_P (mode))
2420 {
2421 /* Spilling vectors into memory is usually more
2422 costly as they contain big values. */
2423 if (lra_dump_file != NULL)
2424 fprintf
2425 (lra_dump_file,
2426 " %d Spill vector pseudo: reject+=2\n",
2427 nop);
2428 reject += 2;
2429 }
2430 }
2431
2432 #ifdef SECONDARY_MEMORY_NEEDED
2433 /* If reload requires moving value through secondary
2434 memory, it will need one more insn at least. */
2435 if (this_alternative != NO_REGS
2436 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2437 && ((curr_static_id->operand[nop].type != OP_OUT
2438 && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2439 GET_MODE (op)))
2440 || (curr_static_id->operand[nop].type != OP_IN
2441 && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2442 GET_MODE (op)))))
2443 losers++;
2444 #endif
2445 /* Input reloads can be inherited more often than output
2446 reloads can be removed, so penalize output
2447 reloads. */
2448 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2449 {
2450 if (lra_dump_file != NULL)
2451 fprintf
2452 (lra_dump_file,
2453 " %d Non input pseudo reload: reject++\n",
2454 nop);
2455 reject++;
2456 }
2457 }
2458
2459 if (early_clobber_p && ! scratch_p)
2460 {
2461 if (lra_dump_file != NULL)
2462 fprintf (lra_dump_file,
2463 " %d Early clobber: reject++\n", nop);
2464 reject++;
2465 }
2466 /* ??? We check early clobbers after processing all operands
2467 (see loop below) and there we update the costs more.
2468 Should we update the cost (may be approximately) here
2469 because of early clobber register reloads or it is a rare
2470 or non-important thing to be worth to do it. */
2471 overall = losers * LRA_LOSER_COST_FACTOR + reject;
2472 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2473 {
2474 if (lra_dump_file != NULL)
2475 fprintf (lra_dump_file,
2476 " alt=%d,overall=%d,losers=%d -- refuse\n",
2477 nalt, overall, losers);
2478 goto fail;
2479 }
2480
2481 curr_alt[nop] = this_alternative;
2482 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2483 curr_alt_win[nop] = this_alternative_win;
2484 curr_alt_match_win[nop] = this_alternative_match_win;
2485 curr_alt_offmemok[nop] = this_alternative_offmemok;
2486 curr_alt_matches[nop] = this_alternative_matches;
2487
2488 if (this_alternative_matches >= 0
2489 && !did_match && !this_alternative_win)
2490 curr_alt_win[this_alternative_matches] = false;
2491
2492 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2493 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2494 }
2495 if (curr_insn_set != NULL_RTX && n_operands == 2
2496 /* Prevent processing non-move insns. */
2497 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2498 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2499 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2500 && REG_P (no_subreg_reg_operand[0])
2501 && REG_P (no_subreg_reg_operand[1])
2502 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2503 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2504 || (! curr_alt_win[0] && curr_alt_win[1]
2505 && REG_P (no_subreg_reg_operand[1])
2506 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2507 || (curr_alt_win[0] && ! curr_alt_win[1]
2508 && REG_P (no_subreg_reg_operand[0])
2509 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2510 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2511 no_subreg_reg_operand[1])
2512 || (targetm.preferred_reload_class
2513 (no_subreg_reg_operand[1],
2514 (enum reg_class) curr_alt[1]) != NO_REGS))
2515 /* If it is a result of recent elimination in move
2516 insn we can transform it into an add still by
2517 using this alternative. */
2518 && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2519 {
2520 /* We have a move insn and a new reload insn will be similar
2521 to the current insn. We should avoid such situation as it
2522 results in LRA cycling. */
2523 overall += LRA_MAX_REJECT;
2524 }
2525 ok_p = true;
2526 curr_alt_dont_inherit_ops_num = 0;
2527 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2528 {
2529 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2530 HARD_REG_SET temp_set;
2531
2532 i = early_clobbered_nops[nop];
2533 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2534 || hard_regno[i] < 0)
2535 continue;
2536 lra_assert (operand_reg[i] != NULL_RTX);
2537 clobbered_hard_regno = hard_regno[i];
2538 CLEAR_HARD_REG_SET (temp_set);
2539 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2540 first_conflict_j = last_conflict_j = -1;
2541 for (j = 0; j < n_operands; j++)
2542 if (j == i
2543 /* We don't want process insides of match_operator and
2544 match_parallel because otherwise we would process
2545 their operands once again generating a wrong
2546 code. */
2547 || curr_static_id->operand[j].is_operator)
2548 continue;
2549 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2550 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2551 continue;
2552 /* If we don't reload j-th operand, check conflicts. */
2553 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2554 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2555 {
2556 if (first_conflict_j < 0)
2557 first_conflict_j = j;
2558 last_conflict_j = j;
2559 }
2560 if (last_conflict_j < 0)
2561 continue;
2562 /* If earlyclobber operand conflicts with another
2563 non-matching operand which is actually the same register
2564 as the earlyclobber operand, it is better to reload the
2565 another operand as an operand matching the earlyclobber
2566 operand can be also the same. */
2567 if (first_conflict_j == last_conflict_j
2568 && operand_reg[last_conflict_j]
2569 != NULL_RTX && ! curr_alt_match_win[last_conflict_j]
2570 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2571 {
2572 curr_alt_win[last_conflict_j] = false;
2573 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2574 = last_conflict_j;
2575 losers++;
2576 /* Early clobber was already reflected in REJECT. */
2577 lra_assert (reject > 0);
2578 if (lra_dump_file != NULL)
2579 fprintf
2580 (lra_dump_file,
2581 " %d Conflict early clobber reload: reject--\n",
2582 i);
2583 reject--;
2584 overall += LRA_LOSER_COST_FACTOR - 1;
2585 }
2586 else
2587 {
2588 /* We need to reload early clobbered register and the
2589 matched registers. */
2590 for (j = 0; j < n_operands; j++)
2591 if (curr_alt_matches[j] == i)
2592 {
2593 curr_alt_match_win[j] = false;
2594 losers++;
2595 overall += LRA_LOSER_COST_FACTOR;
2596 }
2597 if (! curr_alt_match_win[i])
2598 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2599 else
2600 {
2601 /* Remember pseudos used for match reloads are never
2602 inherited. */
2603 lra_assert (curr_alt_matches[i] >= 0);
2604 curr_alt_win[curr_alt_matches[i]] = false;
2605 }
2606 curr_alt_win[i] = curr_alt_match_win[i] = false;
2607 losers++;
2608 /* Early clobber was already reflected in REJECT. */
2609 lra_assert (reject > 0);
2610 if (lra_dump_file != NULL)
2611 fprintf
2612 (lra_dump_file,
2613 " %d Matched conflict early clobber reloads:"
2614 "reject--\n",
2615 i);
2616 reject--;
2617 overall += LRA_LOSER_COST_FACTOR - 1;
2618 }
2619 }
2620 if (lra_dump_file != NULL)
2621 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2622 nalt, overall, losers, reload_nregs);
2623
2624 /* If this alternative can be made to work by reloading, and it
2625 needs less reloading than the others checked so far, record
2626 it as the chosen goal for reloading. */
2627 if ((best_losers != 0 && losers == 0)
2628 || (((best_losers == 0 && losers == 0)
2629 || (best_losers != 0 && losers != 0))
2630 && (best_overall > overall
2631 || (best_overall == overall
2632 /* If the cost of the reloads is the same,
2633 prefer alternative which requires minimal
2634 number of reload regs. */
2635 && (reload_nregs < best_reload_nregs
2636 || (reload_nregs == best_reload_nregs
2637 && (best_reload_sum < reload_sum
2638 || (best_reload_sum == reload_sum
2639 && nalt < goal_alt_number))))))))
2640 {
2641 for (nop = 0; nop < n_operands; nop++)
2642 {
2643 goal_alt_win[nop] = curr_alt_win[nop];
2644 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2645 goal_alt_matches[nop] = curr_alt_matches[nop];
2646 goal_alt[nop] = curr_alt[nop];
2647 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2648 }
2649 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2650 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2651 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2652 goal_alt_swapped = curr_swapped;
2653 best_overall = overall;
2654 best_losers = losers;
2655 best_reload_nregs = reload_nregs;
2656 best_reload_sum = reload_sum;
2657 goal_alt_number = nalt;
2658 }
2659 if (losers == 0)
2660 /* Everything is satisfied. Do not process alternatives
2661 anymore. */
2662 break;
2663 fail:
2664 ;
2665 }
2666 return ok_p;
2667 }
2668
2669 /* Make reload base reg from address AD. */
2670 static rtx
2671 base_to_reg (struct address_info *ad)
2672 {
2673 enum reg_class cl;
2674 int code = -1;
2675 rtx new_inner = NULL_RTX;
2676 rtx new_reg = NULL_RTX;
2677 rtx_insn *insn;
2678 rtx_insn *last_insn = get_last_insn();
2679
2680 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
2681 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
2682 get_index_code (ad));
2683 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
2684 cl, "base");
2685 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
2686 ad->disp_term == NULL
2687 ? gen_int_mode (0, ad->mode)
2688 : *ad->disp_term);
2689 if (!valid_address_p (ad->mode, new_inner, ad->as))
2690 return NULL_RTX;
2691 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base_term));
2692 code = recog_memoized (insn);
2693 if (code < 0)
2694 {
2695 delete_insns_since (last_insn);
2696 return NULL_RTX;
2697 }
2698
2699 return new_inner;
2700 }
2701
2702 /* Make reload base reg + disp from address AD. Return the new pseudo. */
2703 static rtx
2704 base_plus_disp_to_reg (struct address_info *ad)
2705 {
2706 enum reg_class cl;
2707 rtx new_reg;
2708
2709 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
2710 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
2711 get_index_code (ad));
2712 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
2713 cl, "base + disp");
2714 lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
2715 return new_reg;
2716 }
2717
2718 /* Make reload of index part of address AD. Return the new
2719 pseudo. */
2720 static rtx
2721 index_part_to_reg (struct address_info *ad)
2722 {
2723 rtx new_reg;
2724
2725 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
2726 INDEX_REG_CLASS, "index term");
2727 expand_mult (GET_MODE (*ad->index), *ad->index_term,
2728 GEN_INT (get_index_scale (ad)), new_reg, 1);
2729 return new_reg;
2730 }
2731
2732 /* Return true if we can add a displacement to address AD, even if that
2733 makes the address invalid. The fix-up code requires any new address
2734 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
2735 static bool
2736 can_add_disp_p (struct address_info *ad)
2737 {
2738 return (!ad->autoinc_p
2739 && ad->segment == NULL
2740 && ad->base == ad->base_term
2741 && ad->disp == ad->disp_term);
2742 }
2743
2744 /* Make equiv substitution in address AD. Return true if a substitution
2745 was made. */
2746 static bool
2747 equiv_address_substitution (struct address_info *ad)
2748 {
2749 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
2750 HOST_WIDE_INT disp, scale;
2751 bool change_p;
2752
2753 base_term = strip_subreg (ad->base_term);
2754 if (base_term == NULL)
2755 base_reg = new_base_reg = NULL_RTX;
2756 else
2757 {
2758 base_reg = *base_term;
2759 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
2760 }
2761 index_term = strip_subreg (ad->index_term);
2762 if (index_term == NULL)
2763 index_reg = new_index_reg = NULL_RTX;
2764 else
2765 {
2766 index_reg = *index_term;
2767 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
2768 }
2769 if (base_reg == new_base_reg && index_reg == new_index_reg)
2770 return false;
2771 disp = 0;
2772 change_p = false;
2773 if (lra_dump_file != NULL)
2774 {
2775 fprintf (lra_dump_file, "Changing address in insn %d ",
2776 INSN_UID (curr_insn));
2777 dump_value_slim (lra_dump_file, *ad->outer, 1);
2778 }
2779 if (base_reg != new_base_reg)
2780 {
2781 if (REG_P (new_base_reg))
2782 {
2783 *base_term = new_base_reg;
2784 change_p = true;
2785 }
2786 else if (GET_CODE (new_base_reg) == PLUS
2787 && REG_P (XEXP (new_base_reg, 0))
2788 && CONST_INT_P (XEXP (new_base_reg, 1))
2789 && can_add_disp_p (ad))
2790 {
2791 disp += INTVAL (XEXP (new_base_reg, 1));
2792 *base_term = XEXP (new_base_reg, 0);
2793 change_p = true;
2794 }
2795 if (ad->base_term2 != NULL)
2796 *ad->base_term2 = *ad->base_term;
2797 }
2798 if (index_reg != new_index_reg)
2799 {
2800 if (REG_P (new_index_reg))
2801 {
2802 *index_term = new_index_reg;
2803 change_p = true;
2804 }
2805 else if (GET_CODE (new_index_reg) == PLUS
2806 && REG_P (XEXP (new_index_reg, 0))
2807 && CONST_INT_P (XEXP (new_index_reg, 1))
2808 && can_add_disp_p (ad)
2809 && (scale = get_index_scale (ad)))
2810 {
2811 disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
2812 *index_term = XEXP (new_index_reg, 0);
2813 change_p = true;
2814 }
2815 }
2816 if (disp != 0)
2817 {
2818 if (ad->disp != NULL)
2819 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
2820 else
2821 {
2822 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
2823 update_address (ad);
2824 }
2825 change_p = true;
2826 }
2827 if (lra_dump_file != NULL)
2828 {
2829 if (! change_p)
2830 fprintf (lra_dump_file, " -- no change\n");
2831 else
2832 {
2833 fprintf (lra_dump_file, " on equiv ");
2834 dump_value_slim (lra_dump_file, *ad->outer, 1);
2835 fprintf (lra_dump_file, "\n");
2836 }
2837 }
2838 return change_p;
2839 }
2840
2841 /* Major function to make reloads for an address in operand NOP or
2842 check its correctness (If CHECK_ONLY_P is true). The supported
2843 cases are:
2844
2845 1) an address that existed before LRA started, at which point it
2846 must have been valid. These addresses are subject to elimination
2847 and may have become invalid due to the elimination offset being out
2848 of range.
2849
2850 2) an address created by forcing a constant to memory
2851 (force_const_to_mem). The initial form of these addresses might
2852 not be valid, and it is this function's job to make them valid.
2853
2854 3) a frame address formed from a register and a (possibly zero)
2855 constant offset. As above, these addresses might not be valid and
2856 this function must make them so.
2857
2858 Add reloads to the lists *BEFORE and *AFTER. We might need to add
2859 reloads to *AFTER because of inc/dec, {pre, post} modify in the
2860 address. Return true for any RTL change.
2861
2862 The function is a helper function which does not produce all
2863 transformations (when CHECK_ONLY_P is false) which can be
2864 necessary. It does just basic steps. To do all necessary
2865 transformations use function process_address. */
2866 static bool
2867 process_address_1 (int nop, bool check_only_p,
2868 rtx_insn **before, rtx_insn **after)
2869 {
2870 struct address_info ad;
2871 rtx new_reg;
2872 rtx op = *curr_id->operand_loc[nop];
2873 const char *constraint = curr_static_id->operand[nop].constraint;
2874 enum constraint_num cn = lookup_constraint (constraint);
2875 bool change_p = false;
2876
2877 if (insn_extra_address_constraint (cn))
2878 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
2879 else if (MEM_P (op))
2880 decompose_mem_address (&ad, op);
2881 else if (GET_CODE (op) == SUBREG
2882 && MEM_P (SUBREG_REG (op)))
2883 decompose_mem_address (&ad, SUBREG_REG (op));
2884 else
2885 return false;
2886 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
2887 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
2888 when INDEX_REG_CLASS is a single register class. */
2889 if (ad.base_term != NULL
2890 && ad.index_term != NULL
2891 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
2892 && REG_P (*ad.base_term)
2893 && REG_P (*ad.index_term)
2894 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
2895 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
2896 {
2897 std::swap (ad.base, ad.index);
2898 std::swap (ad.base_term, ad.index_term);
2899 }
2900 if (! check_only_p)
2901 change_p = equiv_address_substitution (&ad);
2902 if (ad.base_term != NULL
2903 && (process_addr_reg
2904 (ad.base_term, check_only_p, before,
2905 (ad.autoinc_p
2906 && !(REG_P (*ad.base_term)
2907 && find_regno_note (curr_insn, REG_DEAD,
2908 REGNO (*ad.base_term)) != NULL_RTX)
2909 ? after : NULL),
2910 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
2911 get_index_code (&ad)))))
2912 {
2913 change_p = true;
2914 if (ad.base_term2 != NULL)
2915 *ad.base_term2 = *ad.base_term;
2916 }
2917 if (ad.index_term != NULL
2918 && process_addr_reg (ad.index_term, check_only_p,
2919 before, NULL, INDEX_REG_CLASS))
2920 change_p = true;
2921
2922 /* Target hooks sometimes don't treat extra-constraint addresses as
2923 legitimate address_operands, so handle them specially. */
2924 if (insn_extra_address_constraint (cn)
2925 && satisfies_address_constraint_p (&ad, cn))
2926 return change_p;
2927
2928 if (check_only_p)
2929 return change_p;
2930
2931 /* There are three cases where the shape of *AD.INNER may now be invalid:
2932
2933 1) the original address was valid, but either elimination or
2934 equiv_address_substitution was applied and that made
2935 the address invalid.
2936
2937 2) the address is an invalid symbolic address created by
2938 force_const_to_mem.
2939
2940 3) the address is a frame address with an invalid offset.
2941
2942 4) the address is a frame address with an invalid base.
2943
2944 All these cases involve a non-autoinc address, so there is no
2945 point revalidating other types. */
2946 if (ad.autoinc_p || valid_address_p (&ad))
2947 return change_p;
2948
2949 /* Any index existed before LRA started, so we can assume that the
2950 presence and shape of the index is valid. */
2951 push_to_sequence (*before);
2952 lra_assert (ad.disp == ad.disp_term);
2953 if (ad.base == NULL)
2954 {
2955 if (ad.index == NULL)
2956 {
2957 int code = -1;
2958 enum reg_class cl = base_reg_class (ad.mode, ad.as,
2959 SCRATCH, SCRATCH);
2960 rtx addr = *ad.inner;
2961
2962 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
2963 #ifdef HAVE_lo_sum
2964 {
2965 rtx_insn *insn;
2966 rtx_insn *last = get_last_insn ();
2967
2968 /* addr => lo_sum (new_base, addr), case (2) above. */
2969 insn = emit_insn (gen_rtx_SET
2970 (new_reg,
2971 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
2972 code = recog_memoized (insn);
2973 if (code >= 0)
2974 {
2975 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
2976 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2977 {
2978 /* Try to put lo_sum into register. */
2979 insn = emit_insn (gen_rtx_SET
2980 (new_reg,
2981 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
2982 code = recog_memoized (insn);
2983 if (code >= 0)
2984 {
2985 *ad.inner = new_reg;
2986 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2987 {
2988 *ad.inner = addr;
2989 code = -1;
2990 }
2991 }
2992
2993 }
2994 }
2995 if (code < 0)
2996 delete_insns_since (last);
2997 }
2998 #endif
2999 if (code < 0)
3000 {
3001 /* addr => new_base, case (2) above. */
3002 lra_emit_move (new_reg, addr);
3003 *ad.inner = new_reg;
3004 }
3005 }
3006 else
3007 {
3008 /* index * scale + disp => new base + index * scale,
3009 case (1) above. */
3010 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3011 GET_CODE (*ad.index));
3012
3013 lra_assert (INDEX_REG_CLASS != NO_REGS);
3014 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3015 lra_emit_move (new_reg, *ad.disp);
3016 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3017 new_reg, *ad.index);
3018 }
3019 }
3020 else if (ad.index == NULL)
3021 {
3022 int regno;
3023 enum reg_class cl;
3024 rtx set;
3025 rtx_insn *insns, *last_insn;
3026 /* Try to reload base into register only if the base is invalid
3027 for the address but with valid offset, case (4) above. */
3028 start_sequence ();
3029 new_reg = base_to_reg (&ad);
3030
3031 /* base + disp => new base, cases (1) and (3) above. */
3032 /* Another option would be to reload the displacement into an
3033 index register. However, postreload has code to optimize
3034 address reloads that have the same base and different
3035 displacements, so reloading into an index register would
3036 not necessarily be a win. */
3037 if (new_reg == NULL_RTX)
3038 new_reg = base_plus_disp_to_reg (&ad);
3039 insns = get_insns ();
3040 last_insn = get_last_insn ();
3041 /* If we generated at least two insns, try last insn source as
3042 an address. If we succeed, we generate one less insn. */
3043 if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
3044 && GET_CODE (SET_SRC (set)) == PLUS
3045 && REG_P (XEXP (SET_SRC (set), 0))
3046 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3047 {
3048 *ad.inner = SET_SRC (set);
3049 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3050 {
3051 *ad.base_term = XEXP (SET_SRC (set), 0);
3052 *ad.disp_term = XEXP (SET_SRC (set), 1);
3053 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3054 get_index_code (&ad));
3055 regno = REGNO (*ad.base_term);
3056 if (regno >= FIRST_PSEUDO_REGISTER
3057 && cl != lra_get_allocno_class (regno))
3058 lra_change_class (regno, cl, " Change to", true);
3059 new_reg = SET_SRC (set);
3060 delete_insns_since (PREV_INSN (last_insn));
3061 }
3062 }
3063 /* Try if target can split displacement into legitimite new disp
3064 and offset. If it's the case, we replace the last insn with
3065 insns for base + offset => new_reg and set new_reg + new disp
3066 to *ad.inner. */
3067 last_insn = get_last_insn ();
3068 if ((set = single_set (last_insn)) != NULL_RTX
3069 && GET_CODE (SET_SRC (set)) == PLUS
3070 && REG_P (XEXP (SET_SRC (set), 0))
3071 && REGNO (XEXP (SET_SRC (set), 0)) < FIRST_PSEUDO_REGISTER
3072 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3073 {
3074 rtx addend, disp = XEXP (SET_SRC (set), 1);
3075 if (targetm.legitimize_address_displacement (&disp, &addend,
3076 ad.mode))
3077 {
3078 rtx_insn *new_insns;
3079 start_sequence ();
3080 lra_emit_add (new_reg, XEXP (SET_SRC (set), 0), addend);
3081 new_insns = get_insns ();
3082 end_sequence ();
3083 new_reg = gen_rtx_PLUS (Pmode, new_reg, disp);
3084 delete_insns_since (PREV_INSN (last_insn));
3085 add_insn (new_insns);
3086 insns = get_insns ();
3087 }
3088 }
3089 end_sequence ();
3090 emit_insn (insns);
3091 *ad.inner = new_reg;
3092 }
3093 else if (ad.disp_term != NULL)
3094 {
3095 /* base + scale * index + disp => new base + scale * index,
3096 case (1) above. */
3097 new_reg = base_plus_disp_to_reg (&ad);
3098 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3099 new_reg, *ad.index);
3100 }
3101 else if (get_index_scale (&ad) == 1)
3102 {
3103 /* The last transformation to one reg will be made in
3104 curr_insn_transform function. */
3105 end_sequence ();
3106 return false;
3107 }
3108 else
3109 {
3110 /* base + scale * index => base + new_reg,
3111 case (1) above.
3112 Index part of address may become invalid. For example, we
3113 changed pseudo on the equivalent memory and a subreg of the
3114 pseudo onto the memory of different mode for which the scale is
3115 prohibitted. */
3116 new_reg = index_part_to_reg (&ad);
3117 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3118 *ad.base_term, new_reg);
3119 }
3120 *before = get_insns ();
3121 end_sequence ();
3122 return true;
3123 }
3124
3125 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3126 Use process_address_1 as a helper function. Return true for any
3127 RTL changes.
3128
3129 If CHECK_ONLY_P is true, just check address correctness. Return
3130 false if the address correct. */
3131 static bool
3132 process_address (int nop, bool check_only_p,
3133 rtx_insn **before, rtx_insn **after)
3134 {
3135 bool res = false;
3136
3137 while (process_address_1 (nop, check_only_p, before, after))
3138 {
3139 if (check_only_p)
3140 return true;
3141 res = true;
3142 }
3143 return res;
3144 }
3145
3146 /* Emit insns to reload VALUE into a new register. VALUE is an
3147 auto-increment or auto-decrement RTX whose operand is a register or
3148 memory location; so reloading involves incrementing that location.
3149 IN is either identical to VALUE, or some cheaper place to reload
3150 value being incremented/decremented from.
3151
3152 INC_AMOUNT is the number to increment or decrement by (always
3153 positive and ignored for POST_MODIFY/PRE_MODIFY).
3154
3155 Return pseudo containing the result. */
3156 static rtx
3157 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
3158 {
3159 /* REG or MEM to be copied and incremented. */
3160 rtx incloc = XEXP (value, 0);
3161 /* Nonzero if increment after copying. */
3162 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3163 || GET_CODE (value) == POST_MODIFY);
3164 rtx_insn *last;
3165 rtx inc;
3166 rtx_insn *add_insn;
3167 int code;
3168 rtx real_in = in == value ? incloc : in;
3169 rtx result;
3170 bool plus_p = true;
3171
3172 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3173 {
3174 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3175 || GET_CODE (XEXP (value, 1)) == MINUS);
3176 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3177 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3178 inc = XEXP (XEXP (value, 1), 1);
3179 }
3180 else
3181 {
3182 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3183 inc_amount = -inc_amount;
3184
3185 inc = GEN_INT (inc_amount);
3186 }
3187
3188 if (! post && REG_P (incloc))
3189 result = incloc;
3190 else
3191 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3192 "INC/DEC result");
3193
3194 if (real_in != result)
3195 {
3196 /* First copy the location to the result register. */
3197 lra_assert (REG_P (result));
3198 emit_insn (gen_move_insn (result, real_in));
3199 }
3200
3201 /* We suppose that there are insns to add/sub with the constant
3202 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3203 old reload worked with this assumption. If the assumption
3204 becomes wrong, we should use approach in function
3205 base_plus_disp_to_reg. */
3206 if (in == value)
3207 {
3208 /* See if we can directly increment INCLOC. */
3209 last = get_last_insn ();
3210 add_insn = emit_insn (plus_p
3211 ? gen_add2_insn (incloc, inc)
3212 : gen_sub2_insn (incloc, inc));
3213
3214 code = recog_memoized (add_insn);
3215 if (code >= 0)
3216 {
3217 if (! post && result != incloc)
3218 emit_insn (gen_move_insn (result, incloc));
3219 return result;
3220 }
3221 delete_insns_since (last);
3222 }
3223
3224 /* If couldn't do the increment directly, must increment in RESULT.
3225 The way we do this depends on whether this is pre- or
3226 post-increment. For pre-increment, copy INCLOC to the reload
3227 register, increment it there, then save back. */
3228 if (! post)
3229 {
3230 if (real_in != result)
3231 emit_insn (gen_move_insn (result, real_in));
3232 if (plus_p)
3233 emit_insn (gen_add2_insn (result, inc));
3234 else
3235 emit_insn (gen_sub2_insn (result, inc));
3236 if (result != incloc)
3237 emit_insn (gen_move_insn (incloc, result));
3238 }
3239 else
3240 {
3241 /* Post-increment.
3242
3243 Because this might be a jump insn or a compare, and because
3244 RESULT may not be available after the insn in an input
3245 reload, we must do the incrementing before the insn being
3246 reloaded for.
3247
3248 We have already copied IN to RESULT. Increment the copy in
3249 RESULT, save that back, then decrement RESULT so it has
3250 the original value. */
3251 if (plus_p)
3252 emit_insn (gen_add2_insn (result, inc));
3253 else
3254 emit_insn (gen_sub2_insn (result, inc));
3255 emit_insn (gen_move_insn (incloc, result));
3256 /* Restore non-modified value for the result. We prefer this
3257 way because it does not require an additional hard
3258 register. */
3259 if (plus_p)
3260 {
3261 if (CONST_INT_P (inc))
3262 emit_insn (gen_add2_insn (result,
3263 gen_int_mode (-INTVAL (inc),
3264 GET_MODE (result))));
3265 else
3266 emit_insn (gen_sub2_insn (result, inc));
3267 }
3268 else
3269 emit_insn (gen_add2_insn (result, inc));
3270 }
3271 return result;
3272 }
3273
3274 /* Return true if the current move insn does not need processing as we
3275 already know that it satisfies its constraints. */
3276 static bool
3277 simple_move_p (void)
3278 {
3279 rtx dest, src;
3280 enum reg_class dclass, sclass;
3281
3282 lra_assert (curr_insn_set != NULL_RTX);
3283 dest = SET_DEST (curr_insn_set);
3284 src = SET_SRC (curr_insn_set);
3285 return ((dclass = get_op_class (dest)) != NO_REGS
3286 && (sclass = get_op_class (src)) != NO_REGS
3287 /* The backend guarantees that register moves of cost 2
3288 never need reloads. */
3289 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3290 }
3291
3292 /* Swap operands NOP and NOP + 1. */
3293 static inline void
3294 swap_operands (int nop)
3295 {
3296 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3297 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3298 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3299 /* Swap the duplicates too. */
3300 lra_update_dup (curr_id, nop);
3301 lra_update_dup (curr_id, nop + 1);
3302 }
3303
3304 /* Main entry point of the constraint code: search the body of the
3305 current insn to choose the best alternative. It is mimicking insn
3306 alternative cost calculation model of former reload pass. That is
3307 because machine descriptions were written to use this model. This
3308 model can be changed in future. Make commutative operand exchange
3309 if it is chosen.
3310
3311 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3312 constraints. Return true if any change happened during function
3313 call.
3314
3315 If CHECK_ONLY_P is true then don't do any transformation. Just
3316 check that the insn satisfies all constraints. If the insn does
3317 not satisfy any constraint, return true. */
3318 static bool
3319 curr_insn_transform (bool check_only_p)
3320 {
3321 int i, j, k;
3322 int n_operands;
3323 int n_alternatives;
3324 int commutative;
3325 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3326 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3327 rtx_insn *before, *after;
3328 bool alt_p = false;
3329 /* Flag that the insn has been changed through a transformation. */
3330 bool change_p;
3331 bool sec_mem_p;
3332 #ifdef SECONDARY_MEMORY_NEEDED
3333 bool use_sec_mem_p;
3334 #endif
3335 int max_regno_before;
3336 int reused_alternative_num;
3337
3338 curr_insn_set = single_set (curr_insn);
3339 if (curr_insn_set != NULL_RTX && simple_move_p ())
3340 return false;
3341
3342 no_input_reloads_p = no_output_reloads_p = false;
3343 goal_alt_number = -1;
3344 change_p = sec_mem_p = false;
3345 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3346 reloads; neither are insns that SET cc0. Insns that use CC0 are
3347 not allowed to have any input reloads. */
3348 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3349 no_output_reloads_p = true;
3350
3351 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3352 no_input_reloads_p = true;
3353 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3354 no_output_reloads_p = true;
3355
3356 n_operands = curr_static_id->n_operands;
3357 n_alternatives = curr_static_id->n_alternatives;
3358
3359 /* Just return "no reloads" if insn has no operands with
3360 constraints. */
3361 if (n_operands == 0 || n_alternatives == 0)
3362 return false;
3363
3364 max_regno_before = max_reg_num ();
3365
3366 for (i = 0; i < n_operands; i++)
3367 {
3368 goal_alt_matched[i][0] = -1;
3369 goal_alt_matches[i] = -1;
3370 }
3371
3372 commutative = curr_static_id->commutative;
3373
3374 /* Now see what we need for pseudos that didn't get hard regs or got
3375 the wrong kind of hard reg. For this, we must consider all the
3376 operands together against the register constraints. */
3377
3378 best_losers = best_overall = INT_MAX;
3379 best_reload_sum = 0;
3380
3381 curr_swapped = false;
3382 goal_alt_swapped = false;
3383
3384 if (! check_only_p)
3385 /* Make equivalence substitution and memory subreg elimination
3386 before address processing because an address legitimacy can
3387 depend on memory mode. */
3388 for (i = 0; i < n_operands; i++)
3389 {
3390 rtx op = *curr_id->operand_loc[i];
3391 rtx subst, old = op;
3392 bool op_change_p = false;
3393
3394 if (GET_CODE (old) == SUBREG)
3395 old = SUBREG_REG (old);
3396 subst = get_equiv_with_elimination (old, curr_insn);
3397 original_subreg_reg_mode[i] = VOIDmode;
3398 if (subst != old)
3399 {
3400 subst = copy_rtx (subst);
3401 lra_assert (REG_P (old));
3402 if (GET_CODE (op) != SUBREG)
3403 *curr_id->operand_loc[i] = subst;
3404 else
3405 {
3406 SUBREG_REG (op) = subst;
3407 if (GET_MODE (subst) == VOIDmode)
3408 original_subreg_reg_mode[i] = GET_MODE (old);
3409 }
3410 if (lra_dump_file != NULL)
3411 {
3412 fprintf (lra_dump_file,
3413 "Changing pseudo %d in operand %i of insn %u on equiv ",
3414 REGNO (old), i, INSN_UID (curr_insn));
3415 dump_value_slim (lra_dump_file, subst, 1);
3416 fprintf (lra_dump_file, "\n");
3417 }
3418 op_change_p = change_p = true;
3419 }
3420 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3421 {
3422 change_p = true;
3423 lra_update_dup (curr_id, i);
3424 }
3425 }
3426
3427 /* Reload address registers and displacements. We do it before
3428 finding an alternative because of memory constraints. */
3429 before = after = NULL;
3430 for (i = 0; i < n_operands; i++)
3431 if (! curr_static_id->operand[i].is_operator
3432 && process_address (i, check_only_p, &before, &after))
3433 {
3434 if (check_only_p)
3435 return true;
3436 change_p = true;
3437 lra_update_dup (curr_id, i);
3438 }
3439
3440 if (change_p)
3441 /* If we've changed the instruction then any alternative that
3442 we chose previously may no longer be valid. */
3443 lra_set_used_insn_alternative (curr_insn, -1);
3444
3445 if (! check_only_p && curr_insn_set != NULL_RTX
3446 && check_and_process_move (&change_p, &sec_mem_p))
3447 return change_p;
3448
3449 try_swapped:
3450
3451 reused_alternative_num = check_only_p ? -1 : curr_id->used_insn_alternative;
3452 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3453 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3454 reused_alternative_num, INSN_UID (curr_insn));
3455
3456 if (process_alt_operands (reused_alternative_num))
3457 alt_p = true;
3458
3459 if (check_only_p)
3460 return ! alt_p || best_losers != 0;
3461
3462 /* If insn is commutative (it's safe to exchange a certain pair of
3463 operands) then we need to try each alternative twice, the second
3464 time matching those two operands as if we had exchanged them. To
3465 do this, really exchange them in operands.
3466
3467 If we have just tried the alternatives the second time, return
3468 operands to normal and drop through. */
3469
3470 if (reused_alternative_num < 0 && commutative >= 0)
3471 {
3472 curr_swapped = !curr_swapped;
3473 if (curr_swapped)
3474 {
3475 swap_operands (commutative);
3476 goto try_swapped;
3477 }
3478 else
3479 swap_operands (commutative);
3480 }
3481
3482 if (! alt_p && ! sec_mem_p)
3483 {
3484 /* No alternative works with reloads?? */
3485 if (INSN_CODE (curr_insn) >= 0)
3486 fatal_insn ("unable to generate reloads for:", curr_insn);
3487 error_for_asm (curr_insn,
3488 "inconsistent operand constraints in an %<asm%>");
3489 /* Avoid further trouble with this insn. */
3490 PATTERN (curr_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3491 lra_invalidate_insn_data (curr_insn);
3492 return true;
3493 }
3494
3495 /* If the best alternative is with operands 1 and 2 swapped, swap
3496 them. Update the operand numbers of any reloads already
3497 pushed. */
3498
3499 if (goal_alt_swapped)
3500 {
3501 if (lra_dump_file != NULL)
3502 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3503 INSN_UID (curr_insn));
3504
3505 /* Swap the duplicates too. */
3506 swap_operands (commutative);
3507 change_p = true;
3508 }
3509
3510 #ifdef SECONDARY_MEMORY_NEEDED
3511 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3512 too conservatively. So we use the secondary memory only if there
3513 is no any alternative without reloads. */
3514 use_sec_mem_p = false;
3515 if (! alt_p)
3516 use_sec_mem_p = true;
3517 else if (sec_mem_p)
3518 {
3519 for (i = 0; i < n_operands; i++)
3520 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3521 break;
3522 use_sec_mem_p = i < n_operands;
3523 }
3524
3525 if (use_sec_mem_p)
3526 {
3527 rtx new_reg, src, dest, rld;
3528 machine_mode sec_mode, rld_mode;
3529
3530 lra_assert (sec_mem_p);
3531 lra_assert (curr_static_id->operand[0].type == OP_OUT
3532 && curr_static_id->operand[1].type == OP_IN);
3533 dest = *curr_id->operand_loc[0];
3534 src = *curr_id->operand_loc[1];
3535 rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3536 ? dest : src);
3537 rld_mode = GET_MODE (rld);
3538 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3539 sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3540 #else
3541 sec_mode = rld_mode;
3542 #endif
3543 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3544 NO_REGS, "secondary");
3545 /* If the mode is changed, it should be wider. */
3546 lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3547 if (sec_mode != rld_mode)
3548 {
3549 /* If the target says specifically to use another mode for
3550 secondary memory moves we can not reuse the original
3551 insn. */
3552 after = emit_spill_move (false, new_reg, dest);
3553 lra_process_new_insns (curr_insn, NULL, after,
3554 "Inserting the sec. move");
3555 /* We may have non null BEFORE here (e.g. after address
3556 processing. */
3557 push_to_sequence (before);
3558 before = emit_spill_move (true, new_reg, src);
3559 emit_insn (before);
3560 before = get_insns ();
3561 end_sequence ();
3562 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3563 lra_set_insn_deleted (curr_insn);
3564 }
3565 else if (dest == rld)
3566 {
3567 *curr_id->operand_loc[0] = new_reg;
3568 after = emit_spill_move (false, new_reg, dest);
3569 lra_process_new_insns (curr_insn, NULL, after,
3570 "Inserting the sec. move");
3571 }
3572 else
3573 {
3574 *curr_id->operand_loc[1] = new_reg;
3575 /* See comments above. */
3576 push_to_sequence (before);
3577 before = emit_spill_move (true, new_reg, src);
3578 emit_insn (before);
3579 before = get_insns ();
3580 end_sequence ();
3581 lra_process_new_insns (curr_insn, before, NULL,
3582 "Inserting the sec. move");
3583 }
3584 lra_update_insn_regno_info (curr_insn);
3585 return true;
3586 }
3587 #endif
3588
3589 lra_assert (goal_alt_number >= 0);
3590 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
3591
3592 if (lra_dump_file != NULL)
3593 {
3594 const char *p;
3595
3596 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
3597 goal_alt_number, INSN_UID (curr_insn));
3598 for (i = 0; i < n_operands; i++)
3599 {
3600 p = (curr_static_id->operand_alternative
3601 [goal_alt_number * n_operands + i].constraint);
3602 if (*p == '\0')
3603 continue;
3604 fprintf (lra_dump_file, " (%d) ", i);
3605 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
3606 fputc (*p, lra_dump_file);
3607 }
3608 if (INSN_CODE (curr_insn) >= 0
3609 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
3610 fprintf (lra_dump_file, " {%s}", p);
3611 if (curr_id->sp_offset != 0)
3612 fprintf (lra_dump_file, " (sp_off=%" HOST_WIDE_INT_PRINT "d)",
3613 curr_id->sp_offset);
3614 fprintf (lra_dump_file, "\n");
3615 }
3616
3617 /* Right now, for any pair of operands I and J that are required to
3618 match, with J < I, goal_alt_matches[I] is J. Add I to
3619 goal_alt_matched[J]. */
3620
3621 for (i = 0; i < n_operands; i++)
3622 if ((j = goal_alt_matches[i]) >= 0)
3623 {
3624 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
3625 ;
3626 /* We allow matching one output operand and several input
3627 operands. */
3628 lra_assert (k == 0
3629 || (curr_static_id->operand[j].type == OP_OUT
3630 && curr_static_id->operand[i].type == OP_IN
3631 && (curr_static_id->operand
3632 [goal_alt_matched[j][0]].type == OP_IN)));
3633 goal_alt_matched[j][k] = i;
3634 goal_alt_matched[j][k + 1] = -1;
3635 }
3636
3637 for (i = 0; i < n_operands; i++)
3638 goal_alt_win[i] |= goal_alt_match_win[i];
3639
3640 /* Any constants that aren't allowed and can't be reloaded into
3641 registers are here changed into memory references. */
3642 for (i = 0; i < n_operands; i++)
3643 if (goal_alt_win[i])
3644 {
3645 int regno;
3646 enum reg_class new_class;
3647 rtx reg = *curr_id->operand_loc[i];
3648
3649 if (GET_CODE (reg) == SUBREG)
3650 reg = SUBREG_REG (reg);
3651
3652 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
3653 {
3654 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
3655
3656 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
3657 {
3658 lra_assert (ok_p);
3659 lra_change_class (regno, new_class, " Change to", true);
3660 }
3661 }
3662 }
3663 else
3664 {
3665 const char *constraint;
3666 char c;
3667 rtx op = *curr_id->operand_loc[i];
3668 rtx subreg = NULL_RTX;
3669 machine_mode mode = curr_operand_mode[i];
3670
3671 if (GET_CODE (op) == SUBREG)
3672 {
3673 subreg = op;
3674 op = SUBREG_REG (op);
3675 mode = GET_MODE (op);
3676 }
3677
3678 if (CONST_POOL_OK_P (mode, op)
3679 && ((targetm.preferred_reload_class
3680 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
3681 || no_input_reloads_p))
3682 {
3683 rtx tem = force_const_mem (mode, op);
3684
3685 change_p = true;
3686 if (subreg != NULL_RTX)
3687 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
3688
3689 *curr_id->operand_loc[i] = tem;
3690 lra_update_dup (curr_id, i);
3691 process_address (i, false, &before, &after);
3692
3693 /* If the alternative accepts constant pool refs directly
3694 there will be no reload needed at all. */
3695 if (subreg != NULL_RTX)
3696 continue;
3697 /* Skip alternatives before the one requested. */
3698 constraint = (curr_static_id->operand_alternative
3699 [goal_alt_number * n_operands + i].constraint);
3700 for (;
3701 (c = *constraint) && c != ',' && c != '#';
3702 constraint += CONSTRAINT_LEN (c, constraint))
3703 {
3704 enum constraint_num cn = lookup_constraint (constraint);
3705 if (insn_extra_memory_constraint (cn)
3706 && satisfies_memory_constraint_p (tem, cn))
3707 break;
3708 }
3709 if (c == '\0' || c == ',' || c == '#')
3710 continue;
3711
3712 goal_alt_win[i] = true;
3713 }
3714 }
3715
3716 for (i = 0; i < n_operands; i++)
3717 {
3718 int regno;
3719 bool optional_p = false;
3720 rtx old, new_reg;
3721 rtx op = *curr_id->operand_loc[i];
3722
3723 if (goal_alt_win[i])
3724 {
3725 if (goal_alt[i] == NO_REGS
3726 && REG_P (op)
3727 /* When we assign NO_REGS it means that we will not
3728 assign a hard register to the scratch pseudo by
3729 assigment pass and the scratch pseudo will be
3730 spilled. Spilled scratch pseudos are transformed
3731 back to scratches at the LRA end. */
3732 && lra_former_scratch_operand_p (curr_insn, i))
3733 {
3734 int regno = REGNO (op);
3735 lra_change_class (regno, NO_REGS, " Change to", true);
3736 if (lra_get_regno_hard_regno (regno) >= 0)
3737 /* We don't have to mark all insn affected by the
3738 spilled pseudo as there is only one such insn, the
3739 current one. */
3740 reg_renumber[regno] = -1;
3741 }
3742 /* We can do an optional reload. If the pseudo got a hard
3743 reg, we might improve the code through inheritance. If
3744 it does not get a hard register we coalesce memory/memory
3745 moves later. Ignore move insns to avoid cycling. */
3746 if (! lra_simple_p
3747 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
3748 && goal_alt[i] != NO_REGS && REG_P (op)
3749 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
3750 && regno < new_regno_start
3751 && ! lra_former_scratch_p (regno)
3752 && reg_renumber[regno] < 0
3753 /* Check that the optional reload pseudo will be able to
3754 hold given mode value. */
3755 && ! (prohibited_class_reg_set_mode_p
3756 (goal_alt[i], reg_class_contents[goal_alt[i]],
3757 PSEUDO_REGNO_MODE (regno)))
3758 && (curr_insn_set == NULL_RTX
3759 || !((REG_P (SET_SRC (curr_insn_set))
3760 || MEM_P (SET_SRC (curr_insn_set))
3761 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
3762 && (REG_P (SET_DEST (curr_insn_set))
3763 || MEM_P (SET_DEST (curr_insn_set))
3764 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
3765 optional_p = true;
3766 else
3767 continue;
3768 }
3769
3770 /* Operands that match previous ones have already been handled. */
3771 if (goal_alt_matches[i] >= 0)
3772 continue;
3773
3774 /* We should not have an operand with a non-offsettable address
3775 appearing where an offsettable address will do. It also may
3776 be a case when the address should be special in other words
3777 not a general one (e.g. it needs no index reg). */
3778 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
3779 {
3780 enum reg_class rclass;
3781 rtx *loc = &XEXP (op, 0);
3782 enum rtx_code code = GET_CODE (*loc);
3783
3784 push_to_sequence (before);
3785 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
3786 MEM, SCRATCH);
3787 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
3788 new_reg = emit_inc (rclass, *loc, *loc,
3789 /* This value does not matter for MODIFY. */
3790 GET_MODE_SIZE (GET_MODE (op)));
3791 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
3792 "offsetable address", &new_reg))
3793 lra_emit_move (new_reg, *loc);
3794 before = get_insns ();
3795 end_sequence ();
3796 *loc = new_reg;
3797 lra_update_dup (curr_id, i);
3798 }
3799 else if (goal_alt_matched[i][0] == -1)
3800 {
3801 machine_mode mode;
3802 rtx reg, *loc;
3803 int hard_regno, byte;
3804 enum op_type type = curr_static_id->operand[i].type;
3805
3806 loc = curr_id->operand_loc[i];
3807 mode = curr_operand_mode[i];
3808 if (GET_CODE (*loc) == SUBREG)
3809 {
3810 reg = SUBREG_REG (*loc);
3811 byte = SUBREG_BYTE (*loc);
3812 if (REG_P (reg)
3813 /* Strict_low_part requires reload the register not
3814 the sub-register. */
3815 && (curr_static_id->operand[i].strict_low
3816 || (GET_MODE_SIZE (mode)
3817 <= GET_MODE_SIZE (GET_MODE (reg))
3818 && (hard_regno
3819 = get_try_hard_regno (REGNO (reg))) >= 0
3820 && (simplify_subreg_regno
3821 (hard_regno,
3822 GET_MODE (reg), byte, mode) < 0)
3823 && (goal_alt[i] == NO_REGS
3824 || (simplify_subreg_regno
3825 (ira_class_hard_regs[goal_alt[i]][0],
3826 GET_MODE (reg), byte, mode) >= 0)))))
3827 {
3828 if (type == OP_OUT)
3829 type = OP_INOUT;
3830 loc = &SUBREG_REG (*loc);
3831 mode = GET_MODE (*loc);
3832 }
3833 }
3834 old = *loc;
3835 if (get_reload_reg (type, mode, old, goal_alt[i],
3836 loc != curr_id->operand_loc[i], "", &new_reg)
3837 && type != OP_OUT)
3838 {
3839 push_to_sequence (before);
3840 lra_emit_move (new_reg, old);
3841 before = get_insns ();
3842 end_sequence ();
3843 }
3844 *loc = new_reg;
3845 if (type != OP_IN
3846 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
3847 {
3848 start_sequence ();
3849 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
3850 emit_insn (after);
3851 after = get_insns ();
3852 end_sequence ();
3853 *loc = new_reg;
3854 }
3855 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
3856 if (goal_alt_dont_inherit_ops[j] == i)
3857 {
3858 lra_set_regno_unique_value (REGNO (new_reg));
3859 break;
3860 }
3861 lra_update_dup (curr_id, i);
3862 }
3863 else if (curr_static_id->operand[i].type == OP_IN
3864 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3865 == OP_OUT))
3866 {
3867 /* generate reloads for input and matched outputs. */
3868 match_inputs[0] = i;
3869 match_inputs[1] = -1;
3870 match_reload (goal_alt_matched[i][0], match_inputs,
3871 goal_alt[i], &before, &after);
3872 }
3873 else if (curr_static_id->operand[i].type == OP_OUT
3874 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3875 == OP_IN))
3876 /* Generate reloads for output and matched inputs. */
3877 match_reload (i, goal_alt_matched[i], goal_alt[i], &before, &after);
3878 else if (curr_static_id->operand[i].type == OP_IN
3879 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3880 == OP_IN))
3881 {
3882 /* Generate reloads for matched inputs. */
3883 match_inputs[0] = i;
3884 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
3885 match_inputs[j + 1] = k;
3886 match_inputs[j + 1] = -1;
3887 match_reload (-1, match_inputs, goal_alt[i], &before, &after);
3888 }
3889 else
3890 /* We must generate code in any case when function
3891 process_alt_operands decides that it is possible. */
3892 gcc_unreachable ();
3893 if (optional_p)
3894 {
3895 lra_assert (REG_P (op));
3896 regno = REGNO (op);
3897 op = *curr_id->operand_loc[i]; /* Substitution. */
3898 if (GET_CODE (op) == SUBREG)
3899 op = SUBREG_REG (op);
3900 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
3901 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
3902 lra_reg_info[REGNO (op)].restore_regno = regno;
3903 if (lra_dump_file != NULL)
3904 fprintf (lra_dump_file,
3905 " Making reload reg %d for reg %d optional\n",
3906 REGNO (op), regno);
3907 }
3908 }
3909 if (before != NULL_RTX || after != NULL_RTX
3910 || max_regno_before != max_reg_num ())
3911 change_p = true;
3912 if (change_p)
3913 {
3914 lra_update_operator_dups (curr_id);
3915 /* Something changes -- process the insn. */
3916 lra_update_insn_regno_info (curr_insn);
3917 }
3918 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
3919 return change_p;
3920 }
3921
3922 /* Return true if INSN satisfies all constraints. In other words, no
3923 reload insns are needed. */
3924 bool
3925 lra_constrain_insn (rtx_insn *insn)
3926 {
3927 int saved_new_regno_start = new_regno_start;
3928 int saved_new_insn_uid_start = new_insn_uid_start;
3929 bool change_p;
3930
3931 curr_insn = insn;
3932 curr_id = lra_get_insn_recog_data (curr_insn);
3933 curr_static_id = curr_id->insn_static_data;
3934 new_insn_uid_start = get_max_uid ();
3935 new_regno_start = max_reg_num ();
3936 change_p = curr_insn_transform (true);
3937 new_regno_start = saved_new_regno_start;
3938 new_insn_uid_start = saved_new_insn_uid_start;
3939 return ! change_p;
3940 }
3941
3942 /* Return true if X is in LIST. */
3943 static bool
3944 in_list_p (rtx x, rtx list)
3945 {
3946 for (; list != NULL_RTX; list = XEXP (list, 1))
3947 if (XEXP (list, 0) == x)
3948 return true;
3949 return false;
3950 }
3951
3952 /* Return true if X contains an allocatable hard register (if
3953 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
3954 static bool
3955 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
3956 {
3957 int i, j;
3958 const char *fmt;
3959 enum rtx_code code;
3960
3961 code = GET_CODE (x);
3962 if (REG_P (x))
3963 {
3964 int regno = REGNO (x);
3965 HARD_REG_SET alloc_regs;
3966
3967 if (hard_reg_p)
3968 {
3969 if (regno >= FIRST_PSEUDO_REGISTER)
3970 regno = lra_get_regno_hard_regno (regno);
3971 if (regno < 0)
3972 return false;
3973 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
3974 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
3975 }
3976 else
3977 {
3978 if (regno < FIRST_PSEUDO_REGISTER)
3979 return false;
3980 if (! spilled_p)
3981 return true;
3982 return lra_get_regno_hard_regno (regno) < 0;
3983 }
3984 }
3985 fmt = GET_RTX_FORMAT (code);
3986 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3987 {
3988 if (fmt[i] == 'e')
3989 {
3990 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
3991 return true;
3992 }
3993 else if (fmt[i] == 'E')
3994 {
3995 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3996 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
3997 return true;
3998 }
3999 }
4000 return false;
4001 }
4002
4003 /* Return true if X contains a symbol reg. */
4004 static bool
4005 contains_symbol_ref_p (rtx x)
4006 {
4007 int i, j;
4008 const char *fmt;
4009 enum rtx_code code;
4010
4011 code = GET_CODE (x);
4012 if (code == SYMBOL_REF)
4013 return true;
4014 fmt = GET_RTX_FORMAT (code);
4015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4016 {
4017 if (fmt[i] == 'e')
4018 {
4019 if (contains_symbol_ref_p (XEXP (x, i)))
4020 return true;
4021 }
4022 else if (fmt[i] == 'E')
4023 {
4024 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4025 if (contains_symbol_ref_p (XVECEXP (x, i, j)))
4026 return true;
4027 }
4028 }
4029 return false;
4030 }
4031
4032 /* Process all regs in location *LOC and change them on equivalent
4033 substitution. Return true if any change was done. */
4034 static bool
4035 loc_equivalence_change_p (rtx *loc)
4036 {
4037 rtx subst, reg, x = *loc;
4038 bool result = false;
4039 enum rtx_code code = GET_CODE (x);
4040 const char *fmt;
4041 int i, j;
4042
4043 if (code == SUBREG)
4044 {
4045 reg = SUBREG_REG (x);
4046 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4047 && GET_MODE (subst) == VOIDmode)
4048 {
4049 /* We cannot reload debug location. Simplify subreg here
4050 while we know the inner mode. */
4051 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4052 GET_MODE (reg), SUBREG_BYTE (x));
4053 return true;
4054 }
4055 }
4056 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4057 {
4058 *loc = subst;
4059 return true;
4060 }
4061
4062 /* Scan all the operand sub-expressions. */
4063 fmt = GET_RTX_FORMAT (code);
4064 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4065 {
4066 if (fmt[i] == 'e')
4067 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4068 else if (fmt[i] == 'E')
4069 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4070 result
4071 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4072 }
4073 return result;
4074 }
4075
4076 /* Similar to loc_equivalence_change_p, but for use as
4077 simplify_replace_fn_rtx callback. DATA is insn for which the
4078 elimination is done. If it null we don't do the elimination. */
4079 static rtx
4080 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4081 {
4082 if (!REG_P (loc))
4083 return NULL_RTX;
4084
4085 rtx subst = (data == NULL
4086 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4087 if (subst != loc)
4088 return subst;
4089
4090 return NULL_RTX;
4091 }
4092
4093 /* Maximum number of generated reload insns per an insn. It is for
4094 preventing this pass cycling in a bug case. */
4095 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4096
4097 /* The current iteration number of this LRA pass. */
4098 int lra_constraint_iter;
4099
4100 /* True if we substituted equiv which needs checking register
4101 allocation correctness because the equivalent value contains
4102 allocatable hard registers or when we restore multi-register
4103 pseudo. */
4104 bool lra_risky_transformations_p;
4105
4106 /* Return true if REGNO is referenced in more than one block. */
4107 static bool
4108 multi_block_pseudo_p (int regno)
4109 {
4110 basic_block bb = NULL;
4111 unsigned int uid;
4112 bitmap_iterator bi;
4113
4114 if (regno < FIRST_PSEUDO_REGISTER)
4115 return false;
4116
4117 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4118 if (bb == NULL)
4119 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4120 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4121 return true;
4122 return false;
4123 }
4124
4125 /* Return true if LIST contains a deleted insn. */
4126 static bool
4127 contains_deleted_insn_p (rtx_insn_list *list)
4128 {
4129 for (; list != NULL_RTX; list = list->next ())
4130 if (NOTE_P (list->insn ())
4131 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4132 return true;
4133 return false;
4134 }
4135
4136 /* Return true if X contains a pseudo dying in INSN. */
4137 static bool
4138 dead_pseudo_p (rtx x, rtx_insn *insn)
4139 {
4140 int i, j;
4141 const char *fmt;
4142 enum rtx_code code;
4143
4144 if (REG_P (x))
4145 return (insn != NULL_RTX
4146 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4147 code = GET_CODE (x);
4148 fmt = GET_RTX_FORMAT (code);
4149 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4150 {
4151 if (fmt[i] == 'e')
4152 {
4153 if (dead_pseudo_p (XEXP (x, i), insn))
4154 return true;
4155 }
4156 else if (fmt[i] == 'E')
4157 {
4158 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4159 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4160 return true;
4161 }
4162 }
4163 return false;
4164 }
4165
4166 /* Return true if INSN contains a dying pseudo in INSN right hand
4167 side. */
4168 static bool
4169 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4170 {
4171 rtx set = single_set (insn);
4172
4173 gcc_assert (set != NULL);
4174 return dead_pseudo_p (SET_SRC (set), insn);
4175 }
4176
4177 /* Return true if any init insn of REGNO contains a dying pseudo in
4178 insn right hand side. */
4179 static bool
4180 init_insn_rhs_dead_pseudo_p (int regno)
4181 {
4182 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4183
4184 if (insns == NULL)
4185 return false;
4186 for (; insns != NULL_RTX; insns = insns->next ())
4187 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4188 return true;
4189 return false;
4190 }
4191
4192 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4193 reverse only if we have one init insn with given REGNO as a
4194 source. */
4195 static bool
4196 reverse_equiv_p (int regno)
4197 {
4198 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4199 rtx set;
4200
4201 if (insns == NULL)
4202 return false;
4203 if (! INSN_P (insns->insn ())
4204 || insns->next () != NULL)
4205 return false;
4206 if ((set = single_set (insns->insn ())) == NULL_RTX)
4207 return false;
4208 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4209 }
4210
4211 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4212 call this function only for non-reverse equivalence. */
4213 static bool
4214 contains_reloaded_insn_p (int regno)
4215 {
4216 rtx set;
4217 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4218
4219 for (; list != NULL; list = list->next ())
4220 if ((set = single_set (list->insn ())) == NULL_RTX
4221 || ! REG_P (SET_DEST (set))
4222 || (int) REGNO (SET_DEST (set)) != regno)
4223 return true;
4224 return false;
4225 }
4226
4227 /* Entry function of LRA constraint pass. Return true if the
4228 constraint pass did change the code. */
4229 bool
4230 lra_constraints (bool first_p)
4231 {
4232 bool changed_p;
4233 int i, hard_regno, new_insns_num;
4234 unsigned int min_len, new_min_len, uid;
4235 rtx set, x, reg, dest_reg;
4236 basic_block last_bb;
4237 bitmap_head equiv_insn_bitmap;
4238 bitmap_iterator bi;
4239
4240 lra_constraint_iter++;
4241 if (lra_dump_file != NULL)
4242 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4243 lra_constraint_iter);
4244 changed_p = false;
4245 if (pic_offset_table_rtx
4246 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4247 lra_risky_transformations_p = true;
4248 else
4249 lra_risky_transformations_p = false;
4250 new_insn_uid_start = get_max_uid ();
4251 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4252 /* Mark used hard regs for target stack size calulations. */
4253 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4254 if (lra_reg_info[i].nrefs != 0
4255 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4256 {
4257 int j, nregs;
4258
4259 nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
4260 for (j = 0; j < nregs; j++)
4261 df_set_regs_ever_live (hard_regno + j, true);
4262 }
4263 /* Do elimination before the equivalence processing as we can spill
4264 some pseudos during elimination. */
4265 lra_eliminate (false, first_p);
4266 bitmap_initialize (&equiv_insn_bitmap, &reg_obstack);
4267 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4268 if (lra_reg_info[i].nrefs != 0)
4269 {
4270 ira_reg_equiv[i].profitable_p = true;
4271 reg = regno_reg_rtx[i];
4272 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4273 {
4274 bool pseudo_p = contains_reg_p (x, false, false);
4275
4276 /* After RTL transformation, we can not guarantee that
4277 pseudo in the substitution was not reloaded which might
4278 make equivalence invalid. For example, in reverse
4279 equiv of p0
4280
4281 p0 <- ...
4282 ...
4283 equiv_mem <- p0
4284
4285 the memory address register was reloaded before the 2nd
4286 insn. */
4287 if ((! first_p && pseudo_p)
4288 /* We don't use DF for compilation speed sake. So it
4289 is problematic to update live info when we use an
4290 equivalence containing pseudos in more than one
4291 BB. */
4292 || (pseudo_p && multi_block_pseudo_p (i))
4293 /* If an init insn was deleted for some reason, cancel
4294 the equiv. We could update the equiv insns after
4295 transformations including an equiv insn deletion
4296 but it is not worthy as such cases are extremely
4297 rare. */
4298 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4299 /* If it is not a reverse equivalence, we check that a
4300 pseudo in rhs of the init insn is not dying in the
4301 insn. Otherwise, the live info at the beginning of
4302 the corresponding BB might be wrong after we
4303 removed the insn. When the equiv can be a
4304 constant, the right hand side of the init insn can
4305 be a pseudo. */
4306 || (! reverse_equiv_p (i)
4307 && (init_insn_rhs_dead_pseudo_p (i)
4308 /* If we reloaded the pseudo in an equivalence
4309 init insn, we can not remove the equiv init
4310 insns and the init insns might write into
4311 const memory in this case. */
4312 || contains_reloaded_insn_p (i)))
4313 /* Prevent access beyond equivalent memory for
4314 paradoxical subregs. */
4315 || (MEM_P (x)
4316 && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
4317 > GET_MODE_SIZE (GET_MODE (x))))
4318 || (pic_offset_table_rtx
4319 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4320 && (targetm.preferred_reload_class
4321 (x, lra_get_allocno_class (i)) == NO_REGS))
4322 || contains_symbol_ref_p (x))))
4323 ira_reg_equiv[i].defined_p = false;
4324 if (contains_reg_p (x, false, true))
4325 ira_reg_equiv[i].profitable_p = false;
4326 if (get_equiv (reg) != reg)
4327 bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4328 }
4329 }
4330 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4331 update_equiv (i);
4332 /* We should add all insns containing pseudos which should be
4333 substituted by their equivalences. */
4334 EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi)
4335 lra_push_insn_by_uid (uid);
4336 min_len = lra_insn_stack_length ();
4337 new_insns_num = 0;
4338 last_bb = NULL;
4339 changed_p = false;
4340 while ((new_min_len = lra_insn_stack_length ()) != 0)
4341 {
4342 curr_insn = lra_pop_insn ();
4343 --new_min_len;
4344 curr_bb = BLOCK_FOR_INSN (curr_insn);
4345 if (curr_bb != last_bb)
4346 {
4347 last_bb = curr_bb;
4348 bb_reload_num = lra_curr_reload_num;
4349 }
4350 if (min_len > new_min_len)
4351 {
4352 min_len = new_min_len;
4353 new_insns_num = 0;
4354 }
4355 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4356 internal_error
4357 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4358 MAX_RELOAD_INSNS_NUMBER);
4359 new_insns_num++;
4360 if (DEBUG_INSN_P (curr_insn))
4361 {
4362 /* We need to check equivalence in debug insn and change
4363 pseudo to the equivalent value if necessary. */
4364 curr_id = lra_get_insn_recog_data (curr_insn);
4365 if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)))
4366 {
4367 rtx old = *curr_id->operand_loc[0];
4368 *curr_id->operand_loc[0]
4369 = simplify_replace_fn_rtx (old, NULL_RTX,
4370 loc_equivalence_callback, curr_insn);
4371 if (old != *curr_id->operand_loc[0])
4372 {
4373 lra_update_insn_regno_info (curr_insn);
4374 changed_p = true;
4375 }
4376 }
4377 }
4378 else if (INSN_P (curr_insn))
4379 {
4380 if ((set = single_set (curr_insn)) != NULL_RTX)
4381 {
4382 dest_reg = SET_DEST (set);
4383 /* The equivalence pseudo could be set up as SUBREG in a
4384 case when it is a call restore insn in a mode
4385 different from the pseudo mode. */
4386 if (GET_CODE (dest_reg) == SUBREG)
4387 dest_reg = SUBREG_REG (dest_reg);
4388 if ((REG_P (dest_reg)
4389 && (x = get_equiv (dest_reg)) != dest_reg
4390 /* Remove insns which set up a pseudo whose value
4391 can not be changed. Such insns might be not in
4392 init_insns because we don't update equiv data
4393 during insn transformations.
4394
4395 As an example, let suppose that a pseudo got
4396 hard register and on the 1st pass was not
4397 changed to equivalent constant. We generate an
4398 additional insn setting up the pseudo because of
4399 secondary memory movement. Then the pseudo is
4400 spilled and we use the equiv constant. In this
4401 case we should remove the additional insn and
4402 this insn is not init_insns list. */
4403 && (! MEM_P (x) || MEM_READONLY_P (x)
4404 /* Check that this is actually an insn setting
4405 up the equivalence. */
4406 || in_list_p (curr_insn,
4407 ira_reg_equiv
4408 [REGNO (dest_reg)].init_insns)))
4409 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4410 && in_list_p (curr_insn,
4411 ira_reg_equiv
4412 [REGNO (SET_SRC (set))].init_insns)))
4413 {
4414 /* This is equiv init insn of pseudo which did not get a
4415 hard register -- remove the insn. */
4416 if (lra_dump_file != NULL)
4417 {
4418 fprintf (lra_dump_file,
4419 " Removing equiv init insn %i (freq=%d)\n",
4420 INSN_UID (curr_insn),
4421 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4422 dump_insn_slim (lra_dump_file, curr_insn);
4423 }
4424 if (contains_reg_p (x, true, false))
4425 lra_risky_transformations_p = true;
4426 lra_set_insn_deleted (curr_insn);
4427 continue;
4428 }
4429 }
4430 curr_id = lra_get_insn_recog_data (curr_insn);
4431 curr_static_id = curr_id->insn_static_data;
4432 init_curr_insn_input_reloads ();
4433 init_curr_operand_mode ();
4434 if (curr_insn_transform (false))
4435 changed_p = true;
4436 /* Check non-transformed insns too for equiv change as USE
4437 or CLOBBER don't need reloads but can contain pseudos
4438 being changed on their equivalences. */
4439 else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))
4440 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4441 {
4442 lra_update_insn_regno_info (curr_insn);
4443 changed_p = true;
4444 }
4445 }
4446 }
4447 bitmap_clear (&equiv_insn_bitmap);
4448 /* If we used a new hard regno, changed_p should be true because the
4449 hard reg is assigned to a new pseudo. */
4450 #ifdef ENABLE_CHECKING
4451 if (! changed_p)
4452 {
4453 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4454 if (lra_reg_info[i].nrefs != 0
4455 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4456 {
4457 int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
4458
4459 for (j = 0; j < nregs; j++)
4460 lra_assert (df_regs_ever_live_p (hard_regno + j));
4461 }
4462 }
4463 #endif
4464 return changed_p;
4465 }
4466
4467 /* Initiate the LRA constraint pass. It is done once per
4468 function. */
4469 void
4470 lra_constraints_init (void)
4471 {
4472 }
4473
4474 /* Finalize the LRA constraint pass. It is done once per
4475 function. */
4476 void
4477 lra_constraints_finish (void)
4478 {
4479 }
4480
4481 \f
4482
4483 /* This page contains code to do inheritance/split
4484 transformations. */
4485
4486 /* Number of reloads passed so far in current EBB. */
4487 static int reloads_num;
4488
4489 /* Number of calls passed so far in current EBB. */
4490 static int calls_num;
4491
4492 /* Current reload pseudo check for validity of elements in
4493 USAGE_INSNS. */
4494 static int curr_usage_insns_check;
4495
4496 /* Info about last usage of registers in EBB to do inheritance/split
4497 transformation. Inheritance transformation is done from a spilled
4498 pseudo and split transformations from a hard register or a pseudo
4499 assigned to a hard register. */
4500 struct usage_insns
4501 {
4502 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
4503 value INSNS is valid. The insns is chain of optional debug insns
4504 and a finishing non-debug insn using the corresponding reg. The
4505 value is also used to mark the registers which are set up in the
4506 current insn. The negated insn uid is used for this. */
4507 int check;
4508 /* Value of global reloads_num at the last insn in INSNS. */
4509 int reloads_num;
4510 /* Value of global reloads_nums at the last insn in INSNS. */
4511 int calls_num;
4512 /* It can be true only for splitting. And it means that the restore
4513 insn should be put after insn given by the following member. */
4514 bool after_p;
4515 /* Next insns in the current EBB which use the original reg and the
4516 original reg value is not changed between the current insn and
4517 the next insns. In order words, e.g. for inheritance, if we need
4518 to use the original reg value again in the next insns we can try
4519 to use the value in a hard register from a reload insn of the
4520 current insn. */
4521 rtx insns;
4522 };
4523
4524 /* Map: regno -> corresponding pseudo usage insns. */
4525 static struct usage_insns *usage_insns;
4526
4527 static void
4528 setup_next_usage_insn (int regno, rtx_insn *insn, int reloads_num, bool after_p)
4529 {
4530 usage_insns[regno].check = curr_usage_insns_check;
4531 usage_insns[regno].insns = insn;
4532 usage_insns[regno].reloads_num = reloads_num;
4533 usage_insns[regno].calls_num = calls_num;
4534 usage_insns[regno].after_p = after_p;
4535 }
4536
4537 /* The function is used to form list REGNO usages which consists of
4538 optional debug insns finished by a non-debug insn using REGNO.
4539 RELOADS_NUM is current number of reload insns processed so far. */
4540 static void
4541 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
4542 {
4543 rtx next_usage_insns;
4544
4545 if (usage_insns[regno].check == curr_usage_insns_check
4546 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
4547 && DEBUG_INSN_P (insn))
4548 {
4549 /* Check that we did not add the debug insn yet. */
4550 if (next_usage_insns != insn
4551 && (GET_CODE (next_usage_insns) != INSN_LIST
4552 || XEXP (next_usage_insns, 0) != insn))
4553 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
4554 next_usage_insns);
4555 }
4556 else if (NONDEBUG_INSN_P (insn))
4557 setup_next_usage_insn (regno, insn, reloads_num, false);
4558 else
4559 usage_insns[regno].check = 0;
4560 }
4561
4562 /* Return first non-debug insn in list USAGE_INSNS. */
4563 static rtx_insn *
4564 skip_usage_debug_insns (rtx usage_insns)
4565 {
4566 rtx insn;
4567
4568 /* Skip debug insns. */
4569 for (insn = usage_insns;
4570 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
4571 insn = XEXP (insn, 1))
4572 ;
4573 return safe_as_a <rtx_insn *> (insn);
4574 }
4575
4576 /* Return true if we need secondary memory moves for insn in
4577 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
4578 into the insn. */
4579 static bool
4580 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
4581 rtx usage_insns ATTRIBUTE_UNUSED)
4582 {
4583 #ifndef SECONDARY_MEMORY_NEEDED
4584 return false;
4585 #else
4586 rtx_insn *insn;
4587 rtx set, dest;
4588 enum reg_class cl;
4589
4590 if (inher_cl == ALL_REGS
4591 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
4592 return false;
4593 lra_assert (INSN_P (insn));
4594 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
4595 return false;
4596 dest = SET_DEST (set);
4597 if (! REG_P (dest))
4598 return false;
4599 lra_assert (inher_cl != NO_REGS);
4600 cl = get_reg_class (REGNO (dest));
4601 return (cl != NO_REGS && cl != ALL_REGS
4602 && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
4603 #endif
4604 }
4605
4606 /* Registers involved in inheritance/split in the current EBB
4607 (inheritance/split pseudos and original registers). */
4608 static bitmap_head check_only_regs;
4609
4610 /* Do inheritance transformations for insn INSN, which defines (if
4611 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
4612 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
4613 form as the "insns" field of usage_insns. Return true if we
4614 succeed in such transformation.
4615
4616 The transformations look like:
4617
4618 p <- ... i <- ...
4619 ... p <- i (new insn)
4620 ... =>
4621 <- ... p ... <- ... i ...
4622 or
4623 ... i <- p (new insn)
4624 <- ... p ... <- ... i ...
4625 ... =>
4626 <- ... p ... <- ... i ...
4627 where p is a spilled original pseudo and i is a new inheritance pseudo.
4628
4629
4630 The inheritance pseudo has the smallest class of two classes CL and
4631 class of ORIGINAL REGNO. */
4632 static bool
4633 inherit_reload_reg (bool def_p, int original_regno,
4634 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
4635 {
4636 if (optimize_function_for_size_p (cfun))
4637 return false;
4638
4639 enum reg_class rclass = lra_get_allocno_class (original_regno);
4640 rtx original_reg = regno_reg_rtx[original_regno];
4641 rtx new_reg, usage_insn;
4642 rtx_insn *new_insns;
4643
4644 lra_assert (! usage_insns[original_regno].after_p);
4645 if (lra_dump_file != NULL)
4646 fprintf (lra_dump_file,
4647 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
4648 if (! ira_reg_classes_intersect_p[cl][rclass])
4649 {
4650 if (lra_dump_file != NULL)
4651 {
4652 fprintf (lra_dump_file,
4653 " Rejecting inheritance for %d "
4654 "because of disjoint classes %s and %s\n",
4655 original_regno, reg_class_names[cl],
4656 reg_class_names[rclass]);
4657 fprintf (lra_dump_file,
4658 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4659 }
4660 return false;
4661 }
4662 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
4663 /* We don't use a subset of two classes because it can be
4664 NO_REGS. This transformation is still profitable in most
4665 cases even if the classes are not intersected as register
4666 move is probably cheaper than a memory load. */
4667 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
4668 {
4669 if (lra_dump_file != NULL)
4670 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
4671 reg_class_names[cl], reg_class_names[rclass]);
4672
4673 rclass = cl;
4674 }
4675 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
4676 {
4677 /* Reject inheritance resulting in secondary memory moves.
4678 Otherwise, there is a danger in LRA cycling. Also such
4679 transformation will be unprofitable. */
4680 if (lra_dump_file != NULL)
4681 {
4682 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
4683 rtx set = single_set (insn);
4684
4685 lra_assert (set != NULL_RTX);
4686
4687 rtx dest = SET_DEST (set);
4688
4689 lra_assert (REG_P (dest));
4690 fprintf (lra_dump_file,
4691 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
4692 "as secondary mem is needed\n",
4693 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
4694 original_regno, reg_class_names[rclass]);
4695 fprintf (lra_dump_file,
4696 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4697 }
4698 return false;
4699 }
4700 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4701 rclass, "inheritance");
4702 start_sequence ();
4703 if (def_p)
4704 lra_emit_move (original_reg, new_reg);
4705 else
4706 lra_emit_move (new_reg, original_reg);
4707 new_insns = get_insns ();
4708 end_sequence ();
4709 if (NEXT_INSN (new_insns) != NULL_RTX)
4710 {
4711 if (lra_dump_file != NULL)
4712 {
4713 fprintf (lra_dump_file,
4714 " Rejecting inheritance %d->%d "
4715 "as it results in 2 or more insns:\n",
4716 original_regno, REGNO (new_reg));
4717 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
4718 fprintf (lra_dump_file,
4719 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4720 }
4721 return false;
4722 }
4723 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg);
4724 lra_update_insn_regno_info (insn);
4725 if (! def_p)
4726 /* We now have a new usage insn for original regno. */
4727 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
4728 if (lra_dump_file != NULL)
4729 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
4730 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
4731 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
4732 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
4733 bitmap_set_bit (&check_only_regs, original_regno);
4734 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
4735 if (def_p)
4736 lra_process_new_insns (insn, NULL, new_insns,
4737 "Add original<-inheritance");
4738 else
4739 lra_process_new_insns (insn, new_insns, NULL,
4740 "Add inheritance<-original");
4741 while (next_usage_insns != NULL_RTX)
4742 {
4743 if (GET_CODE (next_usage_insns) != INSN_LIST)
4744 {
4745 usage_insn = next_usage_insns;
4746 lra_assert (NONDEBUG_INSN_P (usage_insn));
4747 next_usage_insns = NULL;
4748 }
4749 else
4750 {
4751 usage_insn = XEXP (next_usage_insns, 0);
4752 lra_assert (DEBUG_INSN_P (usage_insn));
4753 next_usage_insns = XEXP (next_usage_insns, 1);
4754 }
4755 lra_substitute_pseudo (&usage_insn, original_regno, new_reg);
4756 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
4757 if (lra_dump_file != NULL)
4758 {
4759 fprintf (lra_dump_file,
4760 " Inheritance reuse change %d->%d (bb%d):\n",
4761 original_regno, REGNO (new_reg),
4762 BLOCK_FOR_INSN (usage_insn)->index);
4763 dump_insn_slim (lra_dump_file, usage_insn);
4764 }
4765 }
4766 if (lra_dump_file != NULL)
4767 fprintf (lra_dump_file,
4768 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4769 return true;
4770 }
4771
4772 /* Return true if we need a caller save/restore for pseudo REGNO which
4773 was assigned to a hard register. */
4774 static inline bool
4775 need_for_call_save_p (int regno)
4776 {
4777 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
4778 return (usage_insns[regno].calls_num < calls_num
4779 && (overlaps_hard_reg_set_p
4780 ((flag_ipa_ra &&
4781 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
4782 ? lra_reg_info[regno].actual_call_used_reg_set
4783 : call_used_reg_set,
4784 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
4785 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber[regno],
4786 PSEUDO_REGNO_MODE (regno))));
4787 }
4788
4789 /* Global registers occurring in the current EBB. */
4790 static bitmap_head ebb_global_regs;
4791
4792 /* Return true if we need a split for hard register REGNO or pseudo
4793 REGNO which was assigned to a hard register.
4794 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
4795 used for reloads since the EBB end. It is an approximation of the
4796 used hard registers in the split range. The exact value would
4797 require expensive calculations. If we were aggressive with
4798 splitting because of the approximation, the split pseudo will save
4799 the same hard register assignment and will be removed in the undo
4800 pass. We still need the approximation because too aggressive
4801 splitting would result in too inaccurate cost calculation in the
4802 assignment pass because of too many generated moves which will be
4803 probably removed in the undo pass. */
4804 static inline bool
4805 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
4806 {
4807 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
4808
4809 lra_assert (hard_regno >= 0);
4810 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
4811 /* Don't split eliminable hard registers, otherwise we can
4812 split hard registers like hard frame pointer, which
4813 lives on BB start/end according to DF-infrastructure,
4814 when there is a pseudo assigned to the register and
4815 living in the same BB. */
4816 && (regno >= FIRST_PSEUDO_REGISTER
4817 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
4818 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
4819 /* Don't split call clobbered hard regs living through
4820 calls, otherwise we might have a check problem in the
4821 assign sub-pass as in the most cases (exception is a
4822 situation when lra_risky_transformations_p value is
4823 true) the assign pass assumes that all pseudos living
4824 through calls are assigned to call saved hard regs. */
4825 && (regno >= FIRST_PSEUDO_REGISTER
4826 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
4827 || usage_insns[regno].calls_num == calls_num)
4828 /* We need at least 2 reloads to make pseudo splitting
4829 profitable. We should provide hard regno splitting in
4830 any case to solve 1st insn scheduling problem when
4831 moving hard register definition up might result in
4832 impossibility to find hard register for reload pseudo of
4833 small register class. */
4834 && (usage_insns[regno].reloads_num
4835 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
4836 && (regno < FIRST_PSEUDO_REGISTER
4837 /* For short living pseudos, spilling + inheritance can
4838 be considered a substitution for splitting.
4839 Therefore we do not splitting for local pseudos. It
4840 decreases also aggressiveness of splitting. The
4841 minimal number of references is chosen taking into
4842 account that for 2 references splitting has no sense
4843 as we can just spill the pseudo. */
4844 || (regno >= FIRST_PSEUDO_REGISTER
4845 && lra_reg_info[regno].nrefs > 3
4846 && bitmap_bit_p (&ebb_global_regs, regno))))
4847 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
4848 }
4849
4850 /* Return class for the split pseudo created from original pseudo with
4851 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
4852 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
4853 results in no secondary memory movements. */
4854 static enum reg_class
4855 choose_split_class (enum reg_class allocno_class,
4856 int hard_regno ATTRIBUTE_UNUSED,
4857 machine_mode mode ATTRIBUTE_UNUSED)
4858 {
4859 #ifndef SECONDARY_MEMORY_NEEDED
4860 return allocno_class;
4861 #else
4862 int i;
4863 enum reg_class cl, best_cl = NO_REGS;
4864 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
4865 = REGNO_REG_CLASS (hard_regno);
4866
4867 if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
4868 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
4869 return allocno_class;
4870 for (i = 0;
4871 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
4872 i++)
4873 if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
4874 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
4875 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
4876 && (best_cl == NO_REGS
4877 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
4878 best_cl = cl;
4879 return best_cl;
4880 #endif
4881 }
4882
4883 /* Do split transformations for insn INSN, which defines or uses
4884 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
4885 the EBB next uses ORIGINAL_REGNO; it has the same form as the
4886 "insns" field of usage_insns.
4887
4888 The transformations look like:
4889
4890 p <- ... p <- ...
4891 ... s <- p (new insn -- save)
4892 ... =>
4893 ... p <- s (new insn -- restore)
4894 <- ... p ... <- ... p ...
4895 or
4896 <- ... p ... <- ... p ...
4897 ... s <- p (new insn -- save)
4898 ... =>
4899 ... p <- s (new insn -- restore)
4900 <- ... p ... <- ... p ...
4901
4902 where p is an original pseudo got a hard register or a hard
4903 register and s is a new split pseudo. The save is put before INSN
4904 if BEFORE_P is true. Return true if we succeed in such
4905 transformation. */
4906 static bool
4907 split_reg (bool before_p, int original_regno, rtx_insn *insn,
4908 rtx next_usage_insns)
4909 {
4910 enum reg_class rclass;
4911 rtx original_reg;
4912 int hard_regno, nregs;
4913 rtx new_reg, usage_insn;
4914 rtx_insn *restore, *save;
4915 bool after_p;
4916 bool call_save_p;
4917
4918 if (original_regno < FIRST_PSEUDO_REGISTER)
4919 {
4920 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
4921 hard_regno = original_regno;
4922 call_save_p = false;
4923 nregs = 1;
4924 }
4925 else
4926 {
4927 hard_regno = reg_renumber[original_regno];
4928 nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (original_regno)];
4929 rclass = lra_get_allocno_class (original_regno);
4930 original_reg = regno_reg_rtx[original_regno];
4931 call_save_p = need_for_call_save_p (original_regno);
4932 }
4933 original_reg = regno_reg_rtx[original_regno];
4934 lra_assert (hard_regno >= 0);
4935 if (lra_dump_file != NULL)
4936 fprintf (lra_dump_file,
4937 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
4938 if (call_save_p)
4939 {
4940 machine_mode mode = GET_MODE (original_reg);
4941
4942 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
4943 hard_regno_nregs[hard_regno][mode],
4944 mode);
4945 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
4946 }
4947 else
4948 {
4949 rclass = choose_split_class (rclass, hard_regno,
4950 GET_MODE (original_reg));
4951 if (rclass == NO_REGS)
4952 {
4953 if (lra_dump_file != NULL)
4954 {
4955 fprintf (lra_dump_file,
4956 " Rejecting split of %d(%s): "
4957 "no good reg class for %d(%s)\n",
4958 original_regno,
4959 reg_class_names[lra_get_allocno_class (original_regno)],
4960 hard_regno,
4961 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
4962 fprintf
4963 (lra_dump_file,
4964 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4965 }
4966 return false;
4967 }
4968 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4969 rclass, "split");
4970 reg_renumber[REGNO (new_reg)] = hard_regno;
4971 }
4972 save = emit_spill_move (true, new_reg, original_reg);
4973 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
4974 {
4975 if (lra_dump_file != NULL)
4976 {
4977 fprintf
4978 (lra_dump_file,
4979 " Rejecting split %d->%d resulting in > 2 save insns:\n",
4980 original_regno, REGNO (new_reg));
4981 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
4982 fprintf (lra_dump_file,
4983 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4984 }
4985 return false;
4986 }
4987 restore = emit_spill_move (false, new_reg, original_reg);
4988 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
4989 {
4990 if (lra_dump_file != NULL)
4991 {
4992 fprintf (lra_dump_file,
4993 " Rejecting split %d->%d "
4994 "resulting in > 2 restore insns:\n",
4995 original_regno, REGNO (new_reg));
4996 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
4997 fprintf (lra_dump_file,
4998 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4999 }
5000 return false;
5001 }
5002 after_p = usage_insns[original_regno].after_p;
5003 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
5004 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5005 bitmap_set_bit (&check_only_regs, original_regno);
5006 bitmap_set_bit (&lra_split_regs, REGNO (new_reg));
5007 for (;;)
5008 {
5009 if (GET_CODE (next_usage_insns) != INSN_LIST)
5010 {
5011 usage_insn = next_usage_insns;
5012 break;
5013 }
5014 usage_insn = XEXP (next_usage_insns, 0);
5015 lra_assert (DEBUG_INSN_P (usage_insn));
5016 next_usage_insns = XEXP (next_usage_insns, 1);
5017 lra_substitute_pseudo (&usage_insn, original_regno, new_reg);
5018 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5019 if (lra_dump_file != NULL)
5020 {
5021 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5022 original_regno, REGNO (new_reg));
5023 dump_insn_slim (lra_dump_file, usage_insn);
5024 }
5025 }
5026 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5027 lra_assert (usage_insn != insn || (after_p && before_p));
5028 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5029 after_p ? NULL : restore,
5030 after_p ? restore : NULL,
5031 call_save_p
5032 ? "Add reg<-save" : "Add reg<-split");
5033 lra_process_new_insns (insn, before_p ? save : NULL,
5034 before_p ? NULL : save,
5035 call_save_p
5036 ? "Add save<-reg" : "Add split<-reg");
5037 if (nregs > 1)
5038 /* If we are trying to split multi-register. We should check
5039 conflicts on the next assignment sub-pass. IRA can allocate on
5040 sub-register levels, LRA do this on pseudos level right now and
5041 this discrepancy may create allocation conflicts after
5042 splitting. */
5043 lra_risky_transformations_p = true;
5044 if (lra_dump_file != NULL)
5045 fprintf (lra_dump_file,
5046 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5047 return true;
5048 }
5049
5050 /* Recognize that we need a split transformation for insn INSN, which
5051 defines or uses REGNO in its insn biggest MODE (we use it only if
5052 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5053 hard registers which might be used for reloads since the EBB end.
5054 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5055 uid before starting INSN processing. Return true if we succeed in
5056 such transformation. */
5057 static bool
5058 split_if_necessary (int regno, machine_mode mode,
5059 HARD_REG_SET potential_reload_hard_regs,
5060 bool before_p, rtx_insn *insn, int max_uid)
5061 {
5062 bool res = false;
5063 int i, nregs = 1;
5064 rtx next_usage_insns;
5065
5066 if (regno < FIRST_PSEUDO_REGISTER)
5067 nregs = hard_regno_nregs[regno][mode];
5068 for (i = 0; i < nregs; i++)
5069 if (usage_insns[regno + i].check == curr_usage_insns_check
5070 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5071 /* To avoid processing the register twice or more. */
5072 && ((GET_CODE (next_usage_insns) != INSN_LIST
5073 && INSN_UID (next_usage_insns) < max_uid)
5074 || (GET_CODE (next_usage_insns) == INSN_LIST
5075 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5076 && need_for_split_p (potential_reload_hard_regs, regno + i)
5077 && split_reg (before_p, regno + i, insn, next_usage_insns))
5078 res = true;
5079 return res;
5080 }
5081
5082 /* Check only registers living at the current program point in the
5083 current EBB. */
5084 static bitmap_head live_regs;
5085
5086 /* Update live info in EBB given by its HEAD and TAIL insns after
5087 inheritance/split transformation. The function removes dead moves
5088 too. */
5089 static void
5090 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5091 {
5092 unsigned int j;
5093 int i, regno;
5094 bool live_p;
5095 rtx_insn *prev_insn;
5096 rtx set;
5097 bool remove_p;
5098 basic_block last_bb, prev_bb, curr_bb;
5099 bitmap_iterator bi;
5100 struct lra_insn_reg *reg;
5101 edge e;
5102 edge_iterator ei;
5103
5104 last_bb = BLOCK_FOR_INSN (tail);
5105 prev_bb = NULL;
5106 for (curr_insn = tail;
5107 curr_insn != PREV_INSN (head);
5108 curr_insn = prev_insn)
5109 {
5110 prev_insn = PREV_INSN (curr_insn);
5111 /* We need to process empty blocks too. They contain
5112 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5113 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5114 continue;
5115 curr_bb = BLOCK_FOR_INSN (curr_insn);
5116 if (curr_bb != prev_bb)
5117 {
5118 if (prev_bb != NULL)
5119 {
5120 /* Update df_get_live_in (prev_bb): */
5121 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5122 if (bitmap_bit_p (&live_regs, j))
5123 bitmap_set_bit (df_get_live_in (prev_bb), j);
5124 else
5125 bitmap_clear_bit (df_get_live_in (prev_bb), j);
5126 }
5127 if (curr_bb != last_bb)
5128 {
5129 /* Update df_get_live_out (curr_bb): */
5130 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5131 {
5132 live_p = bitmap_bit_p (&live_regs, j);
5133 if (! live_p)
5134 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5135 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5136 {
5137 live_p = true;
5138 break;
5139 }
5140 if (live_p)
5141 bitmap_set_bit (df_get_live_out (curr_bb), j);
5142 else
5143 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5144 }
5145 }
5146 prev_bb = curr_bb;
5147 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5148 }
5149 if (! NONDEBUG_INSN_P (curr_insn))
5150 continue;
5151 curr_id = lra_get_insn_recog_data (curr_insn);
5152 curr_static_id = curr_id->insn_static_data;
5153 remove_p = false;
5154 if ((set = single_set (curr_insn)) != NULL_RTX && REG_P (SET_DEST (set))
5155 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5156 && bitmap_bit_p (&check_only_regs, regno)
5157 && ! bitmap_bit_p (&live_regs, regno))
5158 remove_p = true;
5159 /* See which defined values die here. */
5160 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5161 if (reg->type == OP_OUT && ! reg->subreg_p)
5162 bitmap_clear_bit (&live_regs, reg->regno);
5163 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5164 if (reg->type == OP_OUT && ! reg->subreg_p)
5165 bitmap_clear_bit (&live_regs, reg->regno);
5166 /* Mark each used value as live. */
5167 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5168 if (reg->type != OP_OUT
5169 && bitmap_bit_p (&check_only_regs, reg->regno))
5170 bitmap_set_bit (&live_regs, reg->regno);
5171 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5172 if (reg->type != OP_OUT
5173 && bitmap_bit_p (&check_only_regs, reg->regno))
5174 bitmap_set_bit (&live_regs, reg->regno);
5175 if (curr_id->arg_hard_regs != NULL)
5176 /* Make argument hard registers live. */
5177 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5178 if (bitmap_bit_p (&check_only_regs, regno))
5179 bitmap_set_bit (&live_regs, regno);
5180 /* It is quite important to remove dead move insns because it
5181 means removing dead store. We don't need to process them for
5182 constraints. */
5183 if (remove_p)
5184 {
5185 if (lra_dump_file != NULL)
5186 {
5187 fprintf (lra_dump_file, " Removing dead insn:\n ");
5188 dump_insn_slim (lra_dump_file, curr_insn);
5189 }
5190 lra_set_insn_deleted (curr_insn);
5191 }
5192 }
5193 }
5194
5195 /* The structure describes info to do an inheritance for the current
5196 insn. We need to collect such info first before doing the
5197 transformations because the transformations change the insn
5198 internal representation. */
5199 struct to_inherit
5200 {
5201 /* Original regno. */
5202 int regno;
5203 /* Subsequent insns which can inherit original reg value. */
5204 rtx insns;
5205 };
5206
5207 /* Array containing all info for doing inheritance from the current
5208 insn. */
5209 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5210
5211 /* Number elements in the previous array. */
5212 static int to_inherit_num;
5213
5214 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5215 structure to_inherit. */
5216 static void
5217 add_to_inherit (int regno, rtx insns)
5218 {
5219 int i;
5220
5221 for (i = 0; i < to_inherit_num; i++)
5222 if (to_inherit[i].regno == regno)
5223 return;
5224 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5225 to_inherit[to_inherit_num].regno = regno;
5226 to_inherit[to_inherit_num++].insns = insns;
5227 }
5228
5229 /* Return the last non-debug insn in basic block BB, or the block begin
5230 note if none. */
5231 static rtx_insn *
5232 get_last_insertion_point (basic_block bb)
5233 {
5234 rtx_insn *insn;
5235
5236 FOR_BB_INSNS_REVERSE (bb, insn)
5237 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5238 return insn;
5239 gcc_unreachable ();
5240 }
5241
5242 /* Set up RES by registers living on edges FROM except the edge (FROM,
5243 TO) or by registers set up in a jump insn in BB FROM. */
5244 static void
5245 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5246 {
5247 rtx_insn *last;
5248 struct lra_insn_reg *reg;
5249 edge e;
5250 edge_iterator ei;
5251
5252 lra_assert (to != NULL);
5253 bitmap_clear (res);
5254 FOR_EACH_EDGE (e, ei, from->succs)
5255 if (e->dest != to)
5256 bitmap_ior_into (res, df_get_live_in (e->dest));
5257 last = get_last_insertion_point (from);
5258 if (! JUMP_P (last))
5259 return;
5260 curr_id = lra_get_insn_recog_data (last);
5261 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5262 if (reg->type != OP_IN)
5263 bitmap_set_bit (res, reg->regno);
5264 }
5265
5266 /* Used as a temporary results of some bitmap calculations. */
5267 static bitmap_head temp_bitmap;
5268
5269 /* We split for reloads of small class of hard regs. The following
5270 defines how many hard regs the class should have to be qualified as
5271 small. The code is mostly oriented to x86/x86-64 architecture
5272 where some insns need to use only specific register or pair of
5273 registers and these register can live in RTL explicitly, e.g. for
5274 parameter passing. */
5275 static const int max_small_class_regs_num = 2;
5276
5277 /* Do inheritance/split transformations in EBB starting with HEAD and
5278 finishing on TAIL. We process EBB insns in the reverse order.
5279 Return true if we did any inheritance/split transformation in the
5280 EBB.
5281
5282 We should avoid excessive splitting which results in worse code
5283 because of inaccurate cost calculations for spilling new split
5284 pseudos in such case. To achieve this we do splitting only if
5285 register pressure is high in given basic block and there are reload
5286 pseudos requiring hard registers. We could do more register
5287 pressure calculations at any given program point to avoid necessary
5288 splitting even more but it is to expensive and the current approach
5289 works well enough. */
5290 static bool
5291 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
5292 {
5293 int i, src_regno, dst_regno, nregs;
5294 bool change_p, succ_p, update_reloads_num_p;
5295 rtx_insn *prev_insn, *last_insn;
5296 rtx next_usage_insns, set;
5297 enum reg_class cl;
5298 struct lra_insn_reg *reg;
5299 basic_block last_processed_bb, curr_bb = NULL;
5300 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
5301 bitmap to_process;
5302 unsigned int j;
5303 bitmap_iterator bi;
5304 bool head_p, after_p;
5305
5306 change_p = false;
5307 curr_usage_insns_check++;
5308 reloads_num = calls_num = 0;
5309 bitmap_clear (&check_only_regs);
5310 last_processed_bb = NULL;
5311 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
5312 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
5313 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
5314 /* We don't process new insns generated in the loop. */
5315 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
5316 {
5317 prev_insn = PREV_INSN (curr_insn);
5318 if (BLOCK_FOR_INSN (curr_insn) != NULL)
5319 curr_bb = BLOCK_FOR_INSN (curr_insn);
5320 if (last_processed_bb != curr_bb)
5321 {
5322 /* We are at the end of BB. Add qualified living
5323 pseudos for potential splitting. */
5324 to_process = df_get_live_out (curr_bb);
5325 if (last_processed_bb != NULL)
5326 {
5327 /* We are somewhere in the middle of EBB. */
5328 get_live_on_other_edges (curr_bb, last_processed_bb,
5329 &temp_bitmap);
5330 to_process = &temp_bitmap;
5331 }
5332 last_processed_bb = curr_bb;
5333 last_insn = get_last_insertion_point (curr_bb);
5334 after_p = (! JUMP_P (last_insn)
5335 && (! CALL_P (last_insn)
5336 || (find_reg_note (last_insn,
5337 REG_NORETURN, NULL_RTX) == NULL_RTX
5338 && ! SIBLING_CALL_P (last_insn))));
5339 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
5340 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
5341 {
5342 if ((int) j >= lra_constraint_new_regno_start)
5343 break;
5344 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
5345 {
5346 if (j < FIRST_PSEUDO_REGISTER)
5347 SET_HARD_REG_BIT (live_hard_regs, j);
5348 else
5349 add_to_hard_reg_set (&live_hard_regs,
5350 PSEUDO_REGNO_MODE (j),
5351 reg_renumber[j]);
5352 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
5353 }
5354 }
5355 }
5356 src_regno = dst_regno = -1;
5357 if (NONDEBUG_INSN_P (curr_insn)
5358 && (set = single_set (curr_insn)) != NULL_RTX
5359 && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
5360 {
5361 src_regno = REGNO (SET_SRC (set));
5362 dst_regno = REGNO (SET_DEST (set));
5363 }
5364 update_reloads_num_p = true;
5365 if (src_regno < lra_constraint_new_regno_start
5366 && src_regno >= FIRST_PSEUDO_REGISTER
5367 && reg_renumber[src_regno] < 0
5368 && dst_regno >= lra_constraint_new_regno_start
5369 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
5370 {
5371 /* 'reload_pseudo <- original_pseudo'. */
5372 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5373 reloads_num++;
5374 update_reloads_num_p = false;
5375 succ_p = false;
5376 if (usage_insns[src_regno].check == curr_usage_insns_check
5377 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
5378 succ_p = inherit_reload_reg (false, src_regno, cl,
5379 curr_insn, next_usage_insns);
5380 if (succ_p)
5381 change_p = true;
5382 else
5383 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
5384 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5385 IOR_HARD_REG_SET (potential_reload_hard_regs,
5386 reg_class_contents[cl]);
5387 }
5388 else if (src_regno >= lra_constraint_new_regno_start
5389 && dst_regno < lra_constraint_new_regno_start
5390 && dst_regno >= FIRST_PSEUDO_REGISTER
5391 && reg_renumber[dst_regno] < 0
5392 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
5393 && usage_insns[dst_regno].check == curr_usage_insns_check
5394 && (next_usage_insns
5395 = usage_insns[dst_regno].insns) != NULL_RTX)
5396 {
5397 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5398 reloads_num++;
5399 update_reloads_num_p = false;
5400 /* 'original_pseudo <- reload_pseudo'. */
5401 if (! JUMP_P (curr_insn)
5402 && inherit_reload_reg (true, dst_regno, cl,
5403 curr_insn, next_usage_insns))
5404 change_p = true;
5405 /* Invalidate. */
5406 usage_insns[dst_regno].check = 0;
5407 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5408 IOR_HARD_REG_SET (potential_reload_hard_regs,
5409 reg_class_contents[cl]);
5410 }
5411 else if (INSN_P (curr_insn))
5412 {
5413 int iter;
5414 int max_uid = get_max_uid ();
5415
5416 curr_id = lra_get_insn_recog_data (curr_insn);
5417 curr_static_id = curr_id->insn_static_data;
5418 to_inherit_num = 0;
5419 /* Process insn definitions. */
5420 for (iter = 0; iter < 2; iter++)
5421 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
5422 reg != NULL;
5423 reg = reg->next)
5424 if (reg->type != OP_IN
5425 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
5426 {
5427 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
5428 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
5429 && usage_insns[dst_regno].check == curr_usage_insns_check
5430 && (next_usage_insns
5431 = usage_insns[dst_regno].insns) != NULL_RTX)
5432 {
5433 struct lra_insn_reg *r;
5434
5435 for (r = curr_id->regs; r != NULL; r = r->next)
5436 if (r->type != OP_OUT && r->regno == dst_regno)
5437 break;
5438 /* Don't do inheritance if the pseudo is also
5439 used in the insn. */
5440 if (r == NULL)
5441 /* We can not do inheritance right now
5442 because the current insn reg info (chain
5443 regs) can change after that. */
5444 add_to_inherit (dst_regno, next_usage_insns);
5445 }
5446 /* We can not process one reg twice here because of
5447 usage_insns invalidation. */
5448 if ((dst_regno < FIRST_PSEUDO_REGISTER
5449 || reg_renumber[dst_regno] >= 0)
5450 && ! reg->subreg_p && reg->type != OP_IN)
5451 {
5452 HARD_REG_SET s;
5453
5454 if (split_if_necessary (dst_regno, reg->biggest_mode,
5455 potential_reload_hard_regs,
5456 false, curr_insn, max_uid))
5457 change_p = true;
5458 CLEAR_HARD_REG_SET (s);
5459 if (dst_regno < FIRST_PSEUDO_REGISTER)
5460 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
5461 else
5462 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
5463 reg_renumber[dst_regno]);
5464 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
5465 }
5466 /* We should invalidate potential inheritance or
5467 splitting for the current insn usages to the next
5468 usage insns (see code below) as the output pseudo
5469 prevents this. */
5470 if ((dst_regno >= FIRST_PSEUDO_REGISTER
5471 && reg_renumber[dst_regno] < 0)
5472 || (reg->type == OP_OUT && ! reg->subreg_p
5473 && (dst_regno < FIRST_PSEUDO_REGISTER
5474 || reg_renumber[dst_regno] >= 0)))
5475 {
5476 /* Invalidate and mark definitions. */
5477 if (dst_regno >= FIRST_PSEUDO_REGISTER)
5478 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
5479 else
5480 {
5481 nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
5482 for (i = 0; i < nregs; i++)
5483 usage_insns[dst_regno + i].check
5484 = -(int) INSN_UID (curr_insn);
5485 }
5486 }
5487 }
5488 if (! JUMP_P (curr_insn))
5489 for (i = 0; i < to_inherit_num; i++)
5490 if (inherit_reload_reg (true, to_inherit[i].regno,
5491 ALL_REGS, curr_insn,
5492 to_inherit[i].insns))
5493 change_p = true;
5494 if (CALL_P (curr_insn))
5495 {
5496 rtx cheap, pat, dest;
5497 rtx_insn *restore;
5498 int regno, hard_regno;
5499
5500 calls_num++;
5501 if ((cheap = find_reg_note (curr_insn,
5502 REG_RETURNED, NULL_RTX)) != NULL_RTX
5503 && ((cheap = XEXP (cheap, 0)), true)
5504 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
5505 && (hard_regno = reg_renumber[regno]) >= 0
5506 /* If there are pending saves/restores, the
5507 optimization is not worth. */
5508 && usage_insns[regno].calls_num == calls_num - 1
5509 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
5510 {
5511 /* Restore the pseudo from the call result as
5512 REG_RETURNED note says that the pseudo value is
5513 in the call result and the pseudo is an argument
5514 of the call. */
5515 pat = PATTERN (curr_insn);
5516 if (GET_CODE (pat) == PARALLEL)
5517 pat = XVECEXP (pat, 0, 0);
5518 dest = SET_DEST (pat);
5519 /* For multiple return values dest is PARALLEL.
5520 Currently we handle only single return value case. */
5521 if (REG_P (dest))
5522 {
5523 start_sequence ();
5524 emit_move_insn (cheap, copy_rtx (dest));
5525 restore = get_insns ();
5526 end_sequence ();
5527 lra_process_new_insns (curr_insn, NULL, restore,
5528 "Inserting call parameter restore");
5529 /* We don't need to save/restore of the pseudo from
5530 this call. */
5531 usage_insns[regno].calls_num = calls_num;
5532 bitmap_set_bit (&check_only_regs, regno);
5533 }
5534 }
5535 }
5536 to_inherit_num = 0;
5537 /* Process insn usages. */
5538 for (iter = 0; iter < 2; iter++)
5539 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
5540 reg != NULL;
5541 reg = reg->next)
5542 if ((reg->type != OP_OUT
5543 || (reg->type == OP_OUT && reg->subreg_p))
5544 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
5545 {
5546 if (src_regno >= FIRST_PSEUDO_REGISTER
5547 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
5548 {
5549 if (usage_insns[src_regno].check == curr_usage_insns_check
5550 && (next_usage_insns
5551 = usage_insns[src_regno].insns) != NULL_RTX
5552 && NONDEBUG_INSN_P (curr_insn))
5553 add_to_inherit (src_regno, next_usage_insns);
5554 else if (usage_insns[src_regno].check
5555 != -(int) INSN_UID (curr_insn))
5556 /* Add usages but only if the reg is not set up
5557 in the same insn. */
5558 add_next_usage_insn (src_regno, curr_insn, reloads_num);
5559 }
5560 else if (src_regno < FIRST_PSEUDO_REGISTER
5561 || reg_renumber[src_regno] >= 0)
5562 {
5563 bool before_p;
5564 rtx_insn *use_insn = curr_insn;
5565
5566 before_p = (JUMP_P (curr_insn)
5567 || (CALL_P (curr_insn) && reg->type == OP_IN));
5568 if (NONDEBUG_INSN_P (curr_insn)
5569 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
5570 && split_if_necessary (src_regno, reg->biggest_mode,
5571 potential_reload_hard_regs,
5572 before_p, curr_insn, max_uid))
5573 {
5574 if (reg->subreg_p)
5575 lra_risky_transformations_p = true;
5576 change_p = true;
5577 /* Invalidate. */
5578 usage_insns[src_regno].check = 0;
5579 if (before_p)
5580 use_insn = PREV_INSN (curr_insn);
5581 }
5582 if (NONDEBUG_INSN_P (curr_insn))
5583 {
5584 if (src_regno < FIRST_PSEUDO_REGISTER)
5585 add_to_hard_reg_set (&live_hard_regs,
5586 reg->biggest_mode, src_regno);
5587 else
5588 add_to_hard_reg_set (&live_hard_regs,
5589 PSEUDO_REGNO_MODE (src_regno),
5590 reg_renumber[src_regno]);
5591 }
5592 add_next_usage_insn (src_regno, use_insn, reloads_num);
5593 }
5594 }
5595 /* Process call args. */
5596 if (curr_id->arg_hard_regs != NULL)
5597 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5598 if (src_regno < FIRST_PSEUDO_REGISTER)
5599 {
5600 SET_HARD_REG_BIT (live_hard_regs, src_regno);
5601 add_next_usage_insn (src_regno, curr_insn, reloads_num);
5602 }
5603 for (i = 0; i < to_inherit_num; i++)
5604 {
5605 src_regno = to_inherit[i].regno;
5606 if (inherit_reload_reg (false, src_regno, ALL_REGS,
5607 curr_insn, to_inherit[i].insns))
5608 change_p = true;
5609 else
5610 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
5611 }
5612 }
5613 if (update_reloads_num_p
5614 && NONDEBUG_INSN_P (curr_insn)
5615 && (set = single_set (curr_insn)) != NULL_RTX)
5616 {
5617 int regno = -1;
5618 if ((REG_P (SET_DEST (set))
5619 && (regno = REGNO (SET_DEST (set))) >= lra_constraint_new_regno_start
5620 && reg_renumber[regno] < 0
5621 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
5622 || (REG_P (SET_SRC (set))
5623 && (regno = REGNO (SET_SRC (set))) >= lra_constraint_new_regno_start
5624 && reg_renumber[regno] < 0
5625 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
5626 {
5627 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5628 reloads_num++;
5629 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5630 IOR_HARD_REG_SET (potential_reload_hard_regs,
5631 reg_class_contents[cl]);
5632 }
5633 }
5634 /* We reached the start of the current basic block. */
5635 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
5636 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
5637 {
5638 /* We reached the beginning of the current block -- do
5639 rest of spliting in the current BB. */
5640 to_process = df_get_live_in (curr_bb);
5641 if (BLOCK_FOR_INSN (head) != curr_bb)
5642 {
5643 /* We are somewhere in the middle of EBB. */
5644 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
5645 curr_bb, &temp_bitmap);
5646 to_process = &temp_bitmap;
5647 }
5648 head_p = true;
5649 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
5650 {
5651 if ((int) j >= lra_constraint_new_regno_start)
5652 break;
5653 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
5654 && usage_insns[j].check == curr_usage_insns_check
5655 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
5656 {
5657 if (need_for_split_p (potential_reload_hard_regs, j))
5658 {
5659 if (lra_dump_file != NULL && head_p)
5660 {
5661 fprintf (lra_dump_file,
5662 " ----------------------------------\n");
5663 head_p = false;
5664 }
5665 if (split_reg (false, j, bb_note (curr_bb),
5666 next_usage_insns))
5667 change_p = true;
5668 }
5669 usage_insns[j].check = 0;
5670 }
5671 }
5672 }
5673 }
5674 return change_p;
5675 }
5676
5677 /* This value affects EBB forming. If probability of edge from EBB to
5678 a BB is not greater than the following value, we don't add the BB
5679 to EBB. */
5680 #define EBB_PROBABILITY_CUTOFF \
5681 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
5682
5683 /* Current number of inheritance/split iteration. */
5684 int lra_inheritance_iter;
5685
5686 /* Entry function for inheritance/split pass. */
5687 void
5688 lra_inheritance (void)
5689 {
5690 int i;
5691 basic_block bb, start_bb;
5692 edge e;
5693
5694 lra_inheritance_iter++;
5695 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
5696 return;
5697 timevar_push (TV_LRA_INHERITANCE);
5698 if (lra_dump_file != NULL)
5699 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
5700 lra_inheritance_iter);
5701 curr_usage_insns_check = 0;
5702 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
5703 for (i = 0; i < lra_constraint_new_regno_start; i++)
5704 usage_insns[i].check = 0;
5705 bitmap_initialize (&check_only_regs, &reg_obstack);
5706 bitmap_initialize (&live_regs, &reg_obstack);
5707 bitmap_initialize (&temp_bitmap, &reg_obstack);
5708 bitmap_initialize (&ebb_global_regs, &reg_obstack);
5709 FOR_EACH_BB_FN (bb, cfun)
5710 {
5711 start_bb = bb;
5712 if (lra_dump_file != NULL)
5713 fprintf (lra_dump_file, "EBB");
5714 /* Form a EBB starting with BB. */
5715 bitmap_clear (&ebb_global_regs);
5716 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
5717 for (;;)
5718 {
5719 if (lra_dump_file != NULL)
5720 fprintf (lra_dump_file, " %d", bb->index);
5721 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
5722 || LABEL_P (BB_HEAD (bb->next_bb)))
5723 break;
5724 e = find_fallthru_edge (bb->succs);
5725 if (! e)
5726 break;
5727 if (e->probability < EBB_PROBABILITY_CUTOFF)
5728 break;
5729 bb = bb->next_bb;
5730 }
5731 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
5732 if (lra_dump_file != NULL)
5733 fprintf (lra_dump_file, "\n");
5734 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
5735 /* Remember that the EBB head and tail can change in
5736 inherit_in_ebb. */
5737 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
5738 }
5739 bitmap_clear (&ebb_global_regs);
5740 bitmap_clear (&temp_bitmap);
5741 bitmap_clear (&live_regs);
5742 bitmap_clear (&check_only_regs);
5743 free (usage_insns);
5744
5745 timevar_pop (TV_LRA_INHERITANCE);
5746 }
5747
5748 \f
5749
5750 /* This page contains code to undo failed inheritance/split
5751 transformations. */
5752
5753 /* Current number of iteration undoing inheritance/split. */
5754 int lra_undo_inheritance_iter;
5755
5756 /* Fix BB live info LIVE after removing pseudos created on pass doing
5757 inheritance/split which are REMOVED_PSEUDOS. */
5758 static void
5759 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
5760 {
5761 unsigned int regno;
5762 bitmap_iterator bi;
5763
5764 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
5765 if (bitmap_clear_bit (live, regno))
5766 bitmap_set_bit (live, lra_reg_info[regno].restore_regno);
5767 }
5768
5769 /* Return regno of the (subreg of) REG. Otherwise, return a negative
5770 number. */
5771 static int
5772 get_regno (rtx reg)
5773 {
5774 if (GET_CODE (reg) == SUBREG)
5775 reg = SUBREG_REG (reg);
5776 if (REG_P (reg))
5777 return REGNO (reg);
5778 return -1;
5779 }
5780
5781 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
5782 return true if we did any change. The undo transformations for
5783 inheritance looks like
5784 i <- i2
5785 p <- i => p <- i2
5786 or removing
5787 p <- i, i <- p, and i <- i3
5788 where p is original pseudo from which inheritance pseudo i was
5789 created, i and i3 are removed inheritance pseudos, i2 is another
5790 not removed inheritance pseudo. All split pseudos or other
5791 occurrences of removed inheritance pseudos are changed on the
5792 corresponding original pseudos.
5793
5794 The function also schedules insns changed and created during
5795 inheritance/split pass for processing by the subsequent constraint
5796 pass. */
5797 static bool
5798 remove_inheritance_pseudos (bitmap remove_pseudos)
5799 {
5800 basic_block bb;
5801 int regno, sregno, prev_sregno, dregno, restore_regno;
5802 rtx set, prev_set;
5803 rtx_insn *prev_insn;
5804 bool change_p, done_p;
5805
5806 change_p = ! bitmap_empty_p (remove_pseudos);
5807 /* We can not finish the function right away if CHANGE_P is true
5808 because we need to marks insns affected by previous
5809 inheritance/split pass for processing by the subsequent
5810 constraint pass. */
5811 FOR_EACH_BB_FN (bb, cfun)
5812 {
5813 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
5814 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
5815 FOR_BB_INSNS_REVERSE (bb, curr_insn)
5816 {
5817 if (! INSN_P (curr_insn))
5818 continue;
5819 done_p = false;
5820 sregno = dregno = -1;
5821 if (change_p && NONDEBUG_INSN_P (curr_insn)
5822 && (set = single_set (curr_insn)) != NULL_RTX)
5823 {
5824 dregno = get_regno (SET_DEST (set));
5825 sregno = get_regno (SET_SRC (set));
5826 }
5827
5828 if (sregno >= 0 && dregno >= 0)
5829 {
5830 if ((bitmap_bit_p (remove_pseudos, sregno)
5831 && (lra_reg_info[sregno].restore_regno == dregno
5832 || (bitmap_bit_p (remove_pseudos, dregno)
5833 && (lra_reg_info[sregno].restore_regno
5834 == lra_reg_info[dregno].restore_regno))))
5835 || (bitmap_bit_p (remove_pseudos, dregno)
5836 && lra_reg_info[dregno].restore_regno == sregno))
5837 /* One of the following cases:
5838 original <- removed inheritance pseudo
5839 removed inherit pseudo <- another removed inherit pseudo
5840 removed inherit pseudo <- original pseudo
5841 Or
5842 removed_split_pseudo <- original_reg
5843 original_reg <- removed_split_pseudo */
5844 {
5845 if (lra_dump_file != NULL)
5846 {
5847 fprintf (lra_dump_file, " Removing %s:\n",
5848 bitmap_bit_p (&lra_split_regs, sregno)
5849 || bitmap_bit_p (&lra_split_regs, dregno)
5850 ? "split" : "inheritance");
5851 dump_insn_slim (lra_dump_file, curr_insn);
5852 }
5853 lra_set_insn_deleted (curr_insn);
5854 done_p = true;
5855 }
5856 else if (bitmap_bit_p (remove_pseudos, sregno)
5857 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
5858 {
5859 /* Search the following pattern:
5860 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
5861 original_pseudo <- inherit_or_split_pseudo1
5862 where the 2nd insn is the current insn and
5863 inherit_or_split_pseudo2 is not removed. If it is found,
5864 change the current insn onto:
5865 original_pseudo <- inherit_or_split_pseudo2. */
5866 for (prev_insn = PREV_INSN (curr_insn);
5867 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
5868 prev_insn = PREV_INSN (prev_insn))
5869 ;
5870 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
5871 && (prev_set = single_set (prev_insn)) != NULL_RTX
5872 /* There should be no subregs in insn we are
5873 searching because only the original reg might
5874 be in subreg when we changed the mode of
5875 load/store for splitting. */
5876 && REG_P (SET_DEST (prev_set))
5877 && REG_P (SET_SRC (prev_set))
5878 && (int) REGNO (SET_DEST (prev_set)) == sregno
5879 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
5880 >= FIRST_PSEUDO_REGISTER)
5881 /* As we consider chain of inheritance or
5882 splitting described in above comment we should
5883 check that sregno and prev_sregno were
5884 inheritance/split pseudos created from the
5885 same original regno. */
5886 && (lra_reg_info[sregno].restore_regno
5887 == lra_reg_info[prev_sregno].restore_regno)
5888 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
5889 {
5890 lra_assert (GET_MODE (SET_SRC (prev_set))
5891 == GET_MODE (regno_reg_rtx[sregno]));
5892 if (GET_CODE (SET_SRC (set)) == SUBREG)
5893 SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
5894 else
5895 SET_SRC (set) = SET_SRC (prev_set);
5896 /* As we are finishing with processing the insn
5897 here, check the destination too as it might
5898 inheritance pseudo for another pseudo. */
5899 if (bitmap_bit_p (remove_pseudos, dregno)
5900 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
5901 && (restore_regno
5902 = lra_reg_info[dregno].restore_regno) >= 0)
5903 {
5904 if (GET_CODE (SET_DEST (set)) == SUBREG)
5905 SUBREG_REG (SET_DEST (set))
5906 = regno_reg_rtx[restore_regno];
5907 else
5908 SET_DEST (set) = regno_reg_rtx[restore_regno];
5909 }
5910 lra_push_insn_and_update_insn_regno_info (curr_insn);
5911 lra_set_used_insn_alternative_by_uid
5912 (INSN_UID (curr_insn), -1);
5913 done_p = true;
5914 if (lra_dump_file != NULL)
5915 {
5916 fprintf (lra_dump_file, " Change reload insn:\n");
5917 dump_insn_slim (lra_dump_file, curr_insn);
5918 }
5919 }
5920 }
5921 }
5922 if (! done_p)
5923 {
5924 struct lra_insn_reg *reg;
5925 bool restored_regs_p = false;
5926 bool kept_regs_p = false;
5927
5928 curr_id = lra_get_insn_recog_data (curr_insn);
5929 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5930 {
5931 regno = reg->regno;
5932 restore_regno = lra_reg_info[regno].restore_regno;
5933 if (restore_regno >= 0)
5934 {
5935 if (change_p && bitmap_bit_p (remove_pseudos, regno))
5936 {
5937 lra_substitute_pseudo_within_insn (
5938 curr_insn, regno, regno_reg_rtx[restore_regno]);
5939 restored_regs_p = true;
5940 }
5941 else
5942 kept_regs_p = true;
5943 }
5944 }
5945 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
5946 {
5947 /* The instruction has changed since the previous
5948 constraints pass. */
5949 lra_push_insn_and_update_insn_regno_info (curr_insn);
5950 lra_set_used_insn_alternative_by_uid
5951 (INSN_UID (curr_insn), -1);
5952 }
5953 else if (restored_regs_p)
5954 /* The instruction has been restored to the form that
5955 it had during the previous constraints pass. */
5956 lra_update_insn_regno_info (curr_insn);
5957 if (restored_regs_p && lra_dump_file != NULL)
5958 {
5959 fprintf (lra_dump_file, " Insn after restoring regs:\n");
5960 dump_insn_slim (lra_dump_file, curr_insn);
5961 }
5962 }
5963 }
5964 }
5965 return change_p;
5966 }
5967
5968 /* If optional reload pseudos failed to get a hard register or was not
5969 inherited, it is better to remove optional reloads. We do this
5970 transformation after undoing inheritance to figure out necessity to
5971 remove optional reloads easier. Return true if we do any
5972 change. */
5973 static bool
5974 undo_optional_reloads (void)
5975 {
5976 bool change_p, keep_p;
5977 unsigned int regno, uid;
5978 bitmap_iterator bi, bi2;
5979 rtx_insn *insn;
5980 rtx set, src, dest;
5981 bitmap_head removed_optional_reload_pseudos, insn_bitmap;
5982
5983 bitmap_initialize (&removed_optional_reload_pseudos, &reg_obstack);
5984 bitmap_copy (&removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
5985 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
5986 {
5987 keep_p = false;
5988 /* Keep optional reloads from previous subpasses. */
5989 if (lra_reg_info[regno].restore_regno < 0
5990 /* If the original pseudo changed its allocation, just
5991 removing the optional pseudo is dangerous as the original
5992 pseudo will have longer live range. */
5993 || reg_renumber[lra_reg_info[regno].restore_regno] >= 0)
5994 keep_p = true;
5995 else if (reg_renumber[regno] >= 0)
5996 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
5997 {
5998 insn = lra_insn_recog_data[uid]->insn;
5999 if ((set = single_set (insn)) == NULL_RTX)
6000 continue;
6001 src = SET_SRC (set);
6002 dest = SET_DEST (set);
6003 if (! REG_P (src) || ! REG_P (dest))
6004 continue;
6005 if (REGNO (dest) == regno
6006 /* Ignore insn for optional reloads itself. */
6007 && lra_reg_info[regno].restore_regno != (int) REGNO (src)
6008 /* Check only inheritance on last inheritance pass. */
6009 && (int) REGNO (src) >= new_regno_start
6010 /* Check that the optional reload was inherited. */
6011 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6012 {
6013 keep_p = true;
6014 break;
6015 }
6016 }
6017 if (keep_p)
6018 {
6019 bitmap_clear_bit (&removed_optional_reload_pseudos, regno);
6020 if (lra_dump_file != NULL)
6021 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6022 }
6023 }
6024 change_p = ! bitmap_empty_p (&removed_optional_reload_pseudos);
6025 bitmap_initialize (&insn_bitmap, &reg_obstack);
6026 EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos, 0, regno, bi)
6027 {
6028 if (lra_dump_file != NULL)
6029 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6030 bitmap_copy (&insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6031 EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap, 0, uid, bi2)
6032 {
6033 insn = lra_insn_recog_data[uid]->insn;
6034 if ((set = single_set (insn)) != NULL_RTX)
6035 {
6036 src = SET_SRC (set);
6037 dest = SET_DEST (set);
6038 if (REG_P (src) && REG_P (dest)
6039 && ((REGNO (src) == regno
6040 && (lra_reg_info[regno].restore_regno
6041 == (int) REGNO (dest)))
6042 || (REGNO (dest) == regno
6043 && (lra_reg_info[regno].restore_regno
6044 == (int) REGNO (src)))))
6045 {
6046 if (lra_dump_file != NULL)
6047 {
6048 fprintf (lra_dump_file, " Deleting move %u\n",
6049 INSN_UID (insn));
6050 dump_insn_slim (lra_dump_file, insn);
6051 }
6052 lra_set_insn_deleted (insn);
6053 continue;
6054 }
6055 /* We should not worry about generation memory-memory
6056 moves here as if the corresponding inheritance did
6057 not work (inheritance pseudo did not get a hard reg),
6058 we remove the inheritance pseudo and the optional
6059 reload. */
6060 }
6061 lra_substitute_pseudo_within_insn (
6062 insn, regno,
6063 regno_reg_rtx[lra_reg_info[regno].restore_regno]);
6064 lra_update_insn_regno_info (insn);
6065 if (lra_dump_file != NULL)
6066 {
6067 fprintf (lra_dump_file,
6068 " Restoring original insn:\n");
6069 dump_insn_slim (lra_dump_file, insn);
6070 }
6071 }
6072 }
6073 /* Clear restore_regnos. */
6074 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6075 lra_reg_info[regno].restore_regno = -1;
6076 bitmap_clear (&insn_bitmap);
6077 bitmap_clear (&removed_optional_reload_pseudos);
6078 return change_p;
6079 }
6080
6081 /* Entry function for undoing inheritance/split transformation. Return true
6082 if we did any RTL change in this pass. */
6083 bool
6084 lra_undo_inheritance (void)
6085 {
6086 unsigned int regno;
6087 int restore_regno, hard_regno;
6088 int n_all_inherit, n_inherit, n_all_split, n_split;
6089 bitmap_head remove_pseudos;
6090 bitmap_iterator bi;
6091 bool change_p;
6092
6093 lra_undo_inheritance_iter++;
6094 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6095 return false;
6096 if (lra_dump_file != NULL)
6097 fprintf (lra_dump_file,
6098 "\n********** Undoing inheritance #%d: **********\n\n",
6099 lra_undo_inheritance_iter);
6100 bitmap_initialize (&remove_pseudos, &reg_obstack);
6101 n_inherit = n_all_inherit = 0;
6102 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6103 if (lra_reg_info[regno].restore_regno >= 0)
6104 {
6105 n_all_inherit++;
6106 if (reg_renumber[regno] < 0
6107 /* If the original pseudo changed its allocation, just
6108 removing inheritance is dangerous as for changing
6109 allocation we used shorter live-ranges. */
6110 && reg_renumber[lra_reg_info[regno].restore_regno] < 0)
6111 bitmap_set_bit (&remove_pseudos, regno);
6112 else
6113 n_inherit++;
6114 }
6115 if (lra_dump_file != NULL && n_all_inherit != 0)
6116 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
6117 n_inherit, n_all_inherit,
6118 (double) n_inherit / n_all_inherit * 100);
6119 n_split = n_all_split = 0;
6120 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6121 if ((restore_regno = lra_reg_info[regno].restore_regno) >= 0)
6122 {
6123 n_all_split++;
6124 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
6125 ? reg_renumber[restore_regno] : restore_regno);
6126 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
6127 bitmap_set_bit (&remove_pseudos, regno);
6128 else
6129 {
6130 n_split++;
6131 if (lra_dump_file != NULL)
6132 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
6133 regno, restore_regno);
6134 }
6135 }
6136 if (lra_dump_file != NULL && n_all_split != 0)
6137 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
6138 n_split, n_all_split,
6139 (double) n_split / n_all_split * 100);
6140 change_p = remove_inheritance_pseudos (&remove_pseudos);
6141 bitmap_clear (&remove_pseudos);
6142 /* Clear restore_regnos. */
6143 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6144 lra_reg_info[regno].restore_regno = -1;
6145 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6146 lra_reg_info[regno].restore_regno = -1;
6147 change_p = undo_optional_reloads () || change_p;
6148 return change_p;
6149 }