d0072158c031efc503ec35f0267b58b649f3d381
[gcc.git] / gcc / lra-lives.c
1 /* Build live ranges for pseudos.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file contains code to build pseudo live-ranges (analogous
23 structures used in IRA, so read comments about the live-ranges
24 there) and other info necessary for other passes to assign
25 hard-registers to pseudos, coalesce the spilled pseudos, and assign
26 stack memory slots to spilled pseudos. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "tm_p.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "output.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "basic-block.h"
42 #include "except.h"
43 #include "df.h"
44 #include "ira.h"
45 #include "sparseset.h"
46 #include "lra-int.h"
47
48 /* Program points are enumerated by numbers from range
49 0..LRA_LIVE_MAX_POINT-1. There are approximately two times more
50 program points than insns. Program points are places in the
51 program where liveness info can be changed. In most general case
52 (there are more complicated cases too) some program points
53 correspond to places where input operand dies and other ones
54 correspond to places where output operands are born. */
55 int lra_live_max_point;
56
57 /* Accumulated execution frequency of all references for each hard
58 register. */
59 int lra_hard_reg_usage[FIRST_PSEUDO_REGISTER];
60
61 /* A global flag whose true value says to build live ranges for all
62 pseudos, otherwise the live ranges only for pseudos got memory is
63 build. True value means also building copies and setting up hard
64 register preferences. The complete info is necessary only for the
65 assignment pass. The complete info is not needed for the
66 coalescing and spill passes. */
67 static bool complete_info_p;
68
69 /* Pseudos live at current point in the RTL scan. */
70 static sparseset pseudos_live;
71
72 /* Pseudos probably living through calls and setjumps. As setjump is
73 a call too, if a bit in PSEUDOS_LIVE_THROUGH_SETJUMPS is set up
74 then the corresponding bit in PSEUDOS_LIVE_THROUGH_CALLS is set up
75 too. These data are necessary for cases when only one subreg of a
76 multi-reg pseudo is set up after a call. So we decide it is
77 probably live when traversing bb backward. We are sure about
78 living when we see its usage or definition of the pseudo. */
79 static sparseset pseudos_live_through_calls;
80 static sparseset pseudos_live_through_setjumps;
81
82 /* Set of hard regs (except eliminable ones) currently live. */
83 static HARD_REG_SET hard_regs_live;
84
85 /* Set of pseudos and hard registers start living/dying in the current
86 insn. These sets are used to update REG_DEAD and REG_UNUSED notes
87 in the insn. */
88 static sparseset start_living, start_dying;
89
90 /* Set of pseudos and hard regs dead and unused in the current
91 insn. */
92 static sparseset unused_set, dead_set;
93
94 /* Pool for pseudo live ranges. */
95 static alloc_pool live_range_pool;
96
97 /* Free live range LR. */
98 static void
99 free_live_range (lra_live_range_t lr)
100 {
101 pool_free (live_range_pool, lr);
102 }
103
104 /* Free live range list LR. */
105 static void
106 free_live_range_list (lra_live_range_t lr)
107 {
108 lra_live_range_t next;
109
110 while (lr != NULL)
111 {
112 next = lr->next;
113 free_live_range (lr);
114 lr = next;
115 }
116 }
117
118 /* Create and return pseudo live range with given attributes. */
119 static lra_live_range_t
120 create_live_range (int regno, int start, int finish, lra_live_range_t next)
121 {
122 lra_live_range_t p;
123
124 p = (lra_live_range_t) pool_alloc (live_range_pool);
125 p->regno = regno;
126 p->start = start;
127 p->finish = finish;
128 p->next = next;
129 return p;
130 }
131
132 /* Copy live range R and return the result. */
133 static lra_live_range_t
134 copy_live_range (lra_live_range_t r)
135 {
136 lra_live_range_t p;
137
138 p = (lra_live_range_t) pool_alloc (live_range_pool);
139 *p = *r;
140 return p;
141 }
142
143 /* Copy live range list given by its head R and return the result. */
144 lra_live_range_t
145 lra_copy_live_range_list (lra_live_range_t r)
146 {
147 lra_live_range_t p, first, *chain;
148
149 first = NULL;
150 for (chain = &first; r != NULL; r = r->next)
151 {
152 p = copy_live_range (r);
153 *chain = p;
154 chain = &p->next;
155 }
156 return first;
157 }
158
159 /* Merge *non-intersected* ranges R1 and R2 and returns the result.
160 The function maintains the order of ranges and tries to minimize
161 size of the result range list. Ranges R1 and R2 may not be used
162 after the call. */
163 lra_live_range_t
164 lra_merge_live_ranges (lra_live_range_t r1, lra_live_range_t r2)
165 {
166 lra_live_range_t first, last, temp;
167
168 if (r1 == NULL)
169 return r2;
170 if (r2 == NULL)
171 return r1;
172 for (first = last = NULL; r1 != NULL && r2 != NULL;)
173 {
174 if (r1->start < r2->start)
175 {
176 temp = r1;
177 r1 = r2;
178 r2 = temp;
179 }
180 if (r1->start == r2->finish + 1)
181 {
182 /* Joint ranges: merge r1 and r2 into r1. */
183 r1->start = r2->start;
184 temp = r2;
185 r2 = r2->next;
186 pool_free (live_range_pool, temp);
187 }
188 else
189 {
190 gcc_assert (r2->finish + 1 < r1->start);
191 /* Add r1 to the result. */
192 if (first == NULL)
193 first = last = r1;
194 else
195 {
196 last->next = r1;
197 last = r1;
198 }
199 r1 = r1->next;
200 }
201 }
202 if (r1 != NULL)
203 {
204 if (first == NULL)
205 first = r1;
206 else
207 last->next = r1;
208 }
209 else
210 {
211 lra_assert (r2 != NULL);
212 if (first == NULL)
213 first = r2;
214 else
215 last->next = r2;
216 }
217 return first;
218 }
219
220 /* Return TRUE if live ranges R1 and R2 intersect. */
221 bool
222 lra_intersected_live_ranges_p (lra_live_range_t r1, lra_live_range_t r2)
223 {
224 /* Remember the live ranges are always kept ordered. */
225 while (r1 != NULL && r2 != NULL)
226 {
227 if (r1->start > r2->finish)
228 r1 = r1->next;
229 else if (r2->start > r1->finish)
230 r2 = r2->next;
231 else
232 return true;
233 }
234 return false;
235 }
236
237 /* The function processing birth of hard register REGNO. It updates
238 living hard regs, conflict hard regs for living pseudos, and
239 START_LIVING. */
240 static void
241 make_hard_regno_born (int regno)
242 {
243 unsigned int i;
244
245 lra_assert (regno < FIRST_PSEUDO_REGISTER);
246 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
247 || TEST_HARD_REG_BIT (hard_regs_live, regno))
248 return;
249 SET_HARD_REG_BIT (hard_regs_live, regno);
250 sparseset_set_bit (start_living, regno);
251 EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, i)
252 SET_HARD_REG_BIT (lra_reg_info[i].conflict_hard_regs, regno);
253 }
254
255 /* Process the death of hard register REGNO. This updates
256 hard_regs_live and START_DYING. */
257 static void
258 make_hard_regno_dead (int regno)
259 {
260 lra_assert (regno < FIRST_PSEUDO_REGISTER);
261 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
262 || ! TEST_HARD_REG_BIT (hard_regs_live, regno))
263 return;
264 sparseset_set_bit (start_dying, regno);
265 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
266 }
267
268 /* Mark pseudo REGNO as living at program point POINT, update conflicting
269 hard registers of the pseudo and START_LIVING, and start a new live
270 range for the pseudo corresponding to REGNO if it is necessary. */
271 static void
272 mark_pseudo_live (int regno, int point)
273 {
274 lra_live_range_t p;
275
276 lra_assert (regno >= FIRST_PSEUDO_REGISTER);
277 lra_assert (! sparseset_bit_p (pseudos_live, regno));
278 sparseset_set_bit (pseudos_live, regno);
279 IOR_HARD_REG_SET (lra_reg_info[regno].conflict_hard_regs, hard_regs_live);
280
281 if ((complete_info_p || lra_get_regno_hard_regno (regno) < 0)
282 && ((p = lra_reg_info[regno].live_ranges) == NULL
283 || (p->finish != point && p->finish + 1 != point)))
284 lra_reg_info[regno].live_ranges
285 = create_live_range (regno, point, -1, p);
286 sparseset_set_bit (start_living, regno);
287 }
288
289 /* Mark pseudo REGNO as not living at program point POINT and update
290 START_DYING.
291 This finishes the current live range for the pseudo corresponding
292 to REGNO. */
293 static void
294 mark_pseudo_dead (int regno, int point)
295 {
296 lra_live_range_t p;
297
298 lra_assert (regno >= FIRST_PSEUDO_REGISTER);
299 lra_assert (sparseset_bit_p (pseudos_live, regno));
300 sparseset_clear_bit (pseudos_live, regno);
301 sparseset_set_bit (start_dying, regno);
302 if (complete_info_p || lra_get_regno_hard_regno (regno) < 0)
303 {
304 p = lra_reg_info[regno].live_ranges;
305 lra_assert (p != NULL);
306 p->finish = point;
307 }
308 }
309
310 /* Mark register REGNO (pseudo or hard register) in MODE as live
311 at program point POINT.
312 Return TRUE if the liveness tracking sets were modified,
313 or FALSE if nothing changed. */
314 static bool
315 mark_regno_live (int regno, enum machine_mode mode, int point)
316 {
317 int last;
318 bool changed = false;
319
320 if (regno < FIRST_PSEUDO_REGISTER)
321 {
322 for (last = regno + hard_regno_nregs[regno][mode];
323 regno < last;
324 regno++)
325 make_hard_regno_born (regno);
326 }
327 else if (! sparseset_bit_p (pseudos_live, regno))
328 {
329 mark_pseudo_live (regno, point);
330 changed = true;
331 }
332 return changed;
333 }
334
335
336 /* Mark register REGNO in MODE as dead at program point POINT.
337 Return TRUE if the liveness tracking sets were modified,
338 or FALSE if nothing changed. */
339 static bool
340 mark_regno_dead (int regno, enum machine_mode mode, int point)
341 {
342 int last;
343 bool changed = false;
344
345 if (regno < FIRST_PSEUDO_REGISTER)
346 {
347 for (last = regno + hard_regno_nregs[regno][mode];
348 regno < last;
349 regno++)
350 make_hard_regno_dead (regno);
351 }
352 else if (sparseset_bit_p (pseudos_live, regno))
353 {
354 mark_pseudo_dead (regno, point);
355 changed = true;
356 }
357 return changed;
358 }
359
360 /* Insn currently scanned. */
361 static rtx curr_insn;
362 /* The insn data. */
363 static lra_insn_recog_data_t curr_id;
364 /* The insn static data. */
365 static struct lra_static_insn_data *curr_static_id;
366
367 /* Return true when one of the predecessor edges of BB is marked with
368 EDGE_ABNORMAL_CALL or EDGE_EH. */
369 static bool
370 bb_has_abnormal_call_pred (basic_block bb)
371 {
372 edge e;
373 edge_iterator ei;
374
375 FOR_EACH_EDGE (e, ei, bb->preds)
376 {
377 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
378 return true;
379 }
380 return false;
381 }
382
383 /* Vec containing execution frequencies of program points. */
384 static vec<int> point_freq_vec;
385
386 /* The start of the above vector elements. */
387 int *lra_point_freq;
388
389 /* Increment the current program point POINT to the next point which has
390 execution frequency FREQ. */
391 static void
392 next_program_point (int &point, int freq)
393 {
394 point_freq_vec.safe_push (freq);
395 lra_point_freq = point_freq_vec.address ();
396 point++;
397 }
398
399 /* Update the preference of HARD_REGNO for pseudo REGNO by PROFIT. */
400 void
401 lra_setup_reload_pseudo_preferenced_hard_reg (int regno,
402 int hard_regno, int profit)
403 {
404 lra_assert (regno >= lra_constraint_new_regno_start);
405 if (lra_reg_info[regno].preferred_hard_regno1 == hard_regno)
406 lra_reg_info[regno].preferred_hard_regno_profit1 += profit;
407 else if (lra_reg_info[regno].preferred_hard_regno2 == hard_regno)
408 lra_reg_info[regno].preferred_hard_regno_profit2 += profit;
409 else if (lra_reg_info[regno].preferred_hard_regno1 < 0)
410 {
411 lra_reg_info[regno].preferred_hard_regno1 = hard_regno;
412 lra_reg_info[regno].preferred_hard_regno_profit1 = profit;
413 }
414 else if (lra_reg_info[regno].preferred_hard_regno2 < 0
415 || profit > lra_reg_info[regno].preferred_hard_regno_profit2)
416 {
417 lra_reg_info[regno].preferred_hard_regno2 = hard_regno;
418 lra_reg_info[regno].preferred_hard_regno_profit2 = profit;
419 }
420 else
421 return;
422 /* Keep the 1st hard regno as more profitable. */
423 if (lra_reg_info[regno].preferred_hard_regno1 >= 0
424 && lra_reg_info[regno].preferred_hard_regno2 >= 0
425 && (lra_reg_info[regno].preferred_hard_regno_profit2
426 > lra_reg_info[regno].preferred_hard_regno_profit1))
427 {
428 int temp;
429
430 temp = lra_reg_info[regno].preferred_hard_regno1;
431 lra_reg_info[regno].preferred_hard_regno1
432 = lra_reg_info[regno].preferred_hard_regno2;
433 lra_reg_info[regno].preferred_hard_regno2 = temp;
434 temp = lra_reg_info[regno].preferred_hard_regno_profit1;
435 lra_reg_info[regno].preferred_hard_regno_profit1
436 = lra_reg_info[regno].preferred_hard_regno_profit2;
437 lra_reg_info[regno].preferred_hard_regno_profit2 = temp;
438 }
439 if (lra_dump_file != NULL)
440 {
441 if ((hard_regno = lra_reg_info[regno].preferred_hard_regno1) >= 0)
442 fprintf (lra_dump_file,
443 " Hard reg %d is preferable by r%d with profit %d\n",
444 hard_regno, regno,
445 lra_reg_info[regno].preferred_hard_regno_profit1);
446 if ((hard_regno = lra_reg_info[regno].preferred_hard_regno2) >= 0)
447 fprintf (lra_dump_file,
448 " Hard reg %d is preferable by r%d with profit %d\n",
449 hard_regno, regno,
450 lra_reg_info[regno].preferred_hard_regno_profit2);
451 }
452 }
453
454 /* Check that REGNO living through calls and setjumps, set up conflict
455 regs, and clear corresponding bits in PSEUDOS_LIVE_THROUGH_CALLS and
456 PSEUDOS_LIVE_THROUGH_SETJUMPS. */
457 static inline void
458 check_pseudos_live_through_calls (int regno)
459 {
460 int hr;
461
462 if (! sparseset_bit_p (pseudos_live_through_calls, regno))
463 return;
464 sparseset_clear_bit (pseudos_live_through_calls, regno);
465 IOR_HARD_REG_SET (lra_reg_info[regno].conflict_hard_regs,
466 call_used_reg_set);
467
468 for (hr = 0; hr < FIRST_PSEUDO_REGISTER; hr++)
469 if (HARD_REGNO_CALL_PART_CLOBBERED (hr, PSEUDO_REGNO_MODE (regno)))
470 SET_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hr);
471 #ifdef ENABLE_CHECKING
472 lra_reg_info[regno].call_p = true;
473 #endif
474 if (! sparseset_bit_p (pseudos_live_through_setjumps, regno))
475 return;
476 sparseset_clear_bit (pseudos_live_through_setjumps, regno);
477 /* Don't allocate pseudos that cross setjmps or any call, if this
478 function receives a nonlocal goto. */
479 SET_HARD_REG_SET (lra_reg_info[regno].conflict_hard_regs);
480 }
481
482 /* Process insns of the basic block BB to update pseudo live ranges,
483 pseudo hard register conflicts, and insn notes. We do it on
484 backward scan of BB insns. CURR_POINT is the program point where
485 BB ends. The function updates this counter and returns in
486 CURR_POINT the program point where BB starts. */
487 static void
488 process_bb_lives (basic_block bb, int &curr_point)
489 {
490 int i, regno, freq;
491 unsigned int j;
492 bitmap_iterator bi;
493 bitmap reg_live_out;
494 unsigned int px;
495 rtx link, *link_loc;
496 bool need_curr_point_incr;
497
498 reg_live_out = df_get_live_out (bb);
499 sparseset_clear (pseudos_live);
500 sparseset_clear (pseudos_live_through_calls);
501 sparseset_clear (pseudos_live_through_setjumps);
502 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
503 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
504 AND_COMPL_HARD_REG_SET (hard_regs_live, lra_no_alloc_regs);
505 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
506 mark_pseudo_live (j, curr_point);
507
508 freq = REG_FREQ_FROM_BB (bb);
509
510 if (lra_dump_file != NULL)
511 fprintf (lra_dump_file, " BB %d\n", bb->index);
512
513 /* Scan the code of this basic block, noting which pseudos and hard
514 regs are born or die.
515
516 Note that this loop treats uninitialized values as live until the
517 beginning of the block. For example, if an instruction uses
518 (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever set,
519 FOO will remain live until the beginning of the block. Likewise
520 if FOO is not set at all. This is unnecessarily pessimistic, but
521 it probably doesn't matter much in practice. */
522 FOR_BB_INSNS_REVERSE (bb, curr_insn)
523 {
524 bool call_p;
525 int dst_regno, src_regno;
526 rtx set;
527 struct lra_insn_reg *reg;
528
529 if (!NONDEBUG_INSN_P (curr_insn))
530 continue;
531
532 curr_id = lra_get_insn_recog_data (curr_insn);
533 curr_static_id = curr_id->insn_static_data;
534 if (lra_dump_file != NULL)
535 fprintf (lra_dump_file, " Insn %u: point = %d\n",
536 INSN_UID (curr_insn), curr_point);
537
538 /* Update max ref width and hard reg usage. */
539 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
540 if (reg->regno >= FIRST_PSEUDO_REGISTER
541 && (GET_MODE_SIZE (reg->biggest_mode)
542 > GET_MODE_SIZE (lra_reg_info[reg->regno].biggest_mode)))
543 lra_reg_info[reg->regno].biggest_mode = reg->biggest_mode;
544 else if (reg->regno < FIRST_PSEUDO_REGISTER)
545 lra_hard_reg_usage[reg->regno] += freq;
546
547 call_p = CALL_P (curr_insn);
548 if (complete_info_p
549 && (set = single_set (curr_insn)) != NULL_RTX
550 && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set))
551 /* Check that source regno does not conflict with
552 destination regno to exclude most impossible
553 preferences. */
554 && ((((src_regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
555 && ! sparseset_bit_p (pseudos_live, src_regno))
556 || (src_regno < FIRST_PSEUDO_REGISTER
557 && ! TEST_HARD_REG_BIT (hard_regs_live, src_regno)))
558 /* It might be 'inheritance pseudo <- reload pseudo'. */
559 || (src_regno >= lra_constraint_new_regno_start
560 && ((int) REGNO (SET_DEST (set))
561 >= lra_constraint_new_regno_start))))
562 {
563 int hard_regno = -1, regno = -1;
564
565 dst_regno = REGNO (SET_DEST (set));
566 if (dst_regno >= lra_constraint_new_regno_start
567 && src_regno >= lra_constraint_new_regno_start)
568 lra_create_copy (dst_regno, src_regno, freq);
569 else if (dst_regno >= lra_constraint_new_regno_start)
570 {
571 if ((hard_regno = src_regno) >= FIRST_PSEUDO_REGISTER)
572 hard_regno = reg_renumber[src_regno];
573 regno = dst_regno;
574 }
575 else if (src_regno >= lra_constraint_new_regno_start)
576 {
577 if ((hard_regno = dst_regno) >= FIRST_PSEUDO_REGISTER)
578 hard_regno = reg_renumber[dst_regno];
579 regno = src_regno;
580 }
581 if (regno >= 0 && hard_regno >= 0)
582 lra_setup_reload_pseudo_preferenced_hard_reg
583 (regno, hard_regno, freq);
584 }
585
586 sparseset_clear (start_living);
587
588 /* Try to avoid unnecessary program point increments, this saves
589 a lot of time in remove_some_program_points_and_update_live_ranges.
590 We only need an increment if something becomes live or dies at this
591 program point. */
592 need_curr_point_incr = false;
593
594 /* Mark each defined value as live. We need to do this for
595 unused values because they still conflict with quantities
596 that are live at the time of the definition. */
597 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
598 if (reg->type != OP_IN)
599 {
600 need_curr_point_incr |= mark_regno_live (reg->regno,
601 reg->biggest_mode,
602 curr_point);
603 check_pseudos_live_through_calls (reg->regno);
604 }
605
606 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
607 if (reg->type != OP_IN)
608 make_hard_regno_born (reg->regno);
609
610 sparseset_copy (unused_set, start_living);
611
612 sparseset_clear (start_dying);
613
614 /* See which defined values die here. */
615 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
616 if (reg->type == OP_OUT && ! reg->early_clobber && ! reg->subreg_p)
617 need_curr_point_incr |= mark_regno_dead (reg->regno,
618 reg->biggest_mode,
619 curr_point);
620
621 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
622 if (reg->type == OP_OUT && ! reg->early_clobber && ! reg->subreg_p)
623 make_hard_regno_dead (reg->regno);
624
625 if (call_p)
626 {
627 if (flag_use_caller_save)
628 {
629 HARD_REG_SET this_call_used_reg_set;
630 get_call_reg_set_usage (curr_insn, &this_call_used_reg_set,
631 call_used_reg_set);
632
633 EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, j)
634 IOR_HARD_REG_SET (lra_reg_info[j].actual_call_used_reg_set,
635 this_call_used_reg_set);
636 }
637
638 sparseset_ior (pseudos_live_through_calls,
639 pseudos_live_through_calls, pseudos_live);
640 if (cfun->has_nonlocal_label
641 || find_reg_note (curr_insn, REG_SETJMP,
642 NULL_RTX) != NULL_RTX)
643 sparseset_ior (pseudos_live_through_setjumps,
644 pseudos_live_through_setjumps, pseudos_live);
645 }
646
647 /* Increment the current program point if we must. */
648 if (need_curr_point_incr)
649 next_program_point (curr_point, freq);
650
651 sparseset_clear (start_living);
652
653 need_curr_point_incr = false;
654
655 /* Mark each used value as live. */
656 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
657 if (reg->type == OP_IN)
658 {
659 need_curr_point_incr |= mark_regno_live (reg->regno,
660 reg->biggest_mode,
661 curr_point);
662 check_pseudos_live_through_calls (reg->regno);
663 }
664
665 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
666 if (reg->type == OP_IN)
667 make_hard_regno_born (reg->regno);
668
669 if (curr_id->arg_hard_regs != NULL)
670 /* Make argument hard registers live. */
671 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
672 make_hard_regno_born (regno);
673
674 sparseset_and_compl (dead_set, start_living, start_dying);
675
676 /* Mark early clobber outputs dead. */
677 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
678 if (reg->type == OP_OUT && reg->early_clobber && ! reg->subreg_p)
679 need_curr_point_incr = mark_regno_dead (reg->regno,
680 reg->biggest_mode,
681 curr_point);
682
683 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
684 if (reg->type == OP_OUT && reg->early_clobber && ! reg->subreg_p)
685 make_hard_regno_dead (reg->regno);
686
687 if (need_curr_point_incr)
688 next_program_point (curr_point, freq);
689
690 /* Update notes. */
691 for (link_loc = &REG_NOTES (curr_insn); (link = *link_loc) != NULL_RTX;)
692 {
693 if (REG_NOTE_KIND (link) != REG_DEAD
694 && REG_NOTE_KIND (link) != REG_UNUSED)
695 ;
696 else if (REG_P (XEXP (link, 0)))
697 {
698 regno = REGNO (XEXP (link, 0));
699 if ((REG_NOTE_KIND (link) == REG_DEAD
700 && ! sparseset_bit_p (dead_set, regno))
701 || (REG_NOTE_KIND (link) == REG_UNUSED
702 && ! sparseset_bit_p (unused_set, regno)))
703 {
704 *link_loc = XEXP (link, 1);
705 continue;
706 }
707 if (REG_NOTE_KIND (link) == REG_DEAD)
708 sparseset_clear_bit (dead_set, regno);
709 else if (REG_NOTE_KIND (link) == REG_UNUSED)
710 sparseset_clear_bit (unused_set, regno);
711 }
712 link_loc = &XEXP (link, 1);
713 }
714 EXECUTE_IF_SET_IN_SPARSESET (dead_set, j)
715 add_reg_note (curr_insn, REG_DEAD, regno_reg_rtx[j]);
716 EXECUTE_IF_SET_IN_SPARSESET (unused_set, j)
717 add_reg_note (curr_insn, REG_UNUSED, regno_reg_rtx[j]);
718 }
719
720 #ifdef EH_RETURN_DATA_REGNO
721 if (bb_has_eh_pred (bb))
722 for (j = 0; ; ++j)
723 {
724 unsigned int regno = EH_RETURN_DATA_REGNO (j);
725
726 if (regno == INVALID_REGNUM)
727 break;
728 make_hard_regno_born (regno);
729 }
730 #endif
731
732 /* Pseudos can't go in stack regs at the start of a basic block that
733 is reached by an abnormal edge. Likewise for call clobbered regs,
734 because caller-save, fixup_abnormal_edges and possibly the table
735 driven EH machinery are not quite ready to handle such pseudos
736 live across such edges. */
737 if (bb_has_abnormal_pred (bb))
738 {
739 #ifdef STACK_REGS
740 EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, px)
741 lra_reg_info[px].no_stack_p = true;
742 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
743 make_hard_regno_born (px);
744 #endif
745 /* No need to record conflicts for call clobbered regs if we
746 have nonlocal labels around, as we don't ever try to
747 allocate such regs in this case. */
748 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
749 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
750 if (call_used_regs[px])
751 make_hard_regno_born (px);
752 }
753
754 /* See if we'll need an increment at the end of this basic block.
755 An increment is needed if the PSEUDOS_LIVE set is not empty,
756 to make sure the finish points are set up correctly. */
757 need_curr_point_incr = (sparseset_cardinality (pseudos_live) > 0);
758
759 EXECUTE_IF_SET_IN_SPARSESET (pseudos_live, i)
760 mark_pseudo_dead (i, curr_point);
761
762 EXECUTE_IF_SET_IN_BITMAP (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, j, bi)
763 {
764 if (sparseset_cardinality (pseudos_live_through_calls) == 0)
765 break;
766 if (sparseset_bit_p (pseudos_live_through_calls, j))
767 check_pseudos_live_through_calls (j);
768 }
769
770 if (need_curr_point_incr)
771 next_program_point (curr_point, freq);
772 }
773
774 /* Compress pseudo live ranges by removing program points where
775 nothing happens. Complexity of many algorithms in LRA is linear
776 function of program points number. To speed up the code we try to
777 minimize the number of the program points here. */
778 static void
779 remove_some_program_points_and_update_live_ranges (void)
780 {
781 unsigned i;
782 int n, max_regno;
783 int *map;
784 lra_live_range_t r, prev_r, next_r;
785 sbitmap born_or_dead, born, dead;
786 sbitmap_iterator sbi;
787 bool born_p, dead_p, prev_born_p, prev_dead_p;
788
789 born = sbitmap_alloc (lra_live_max_point);
790 dead = sbitmap_alloc (lra_live_max_point);
791 bitmap_clear (born);
792 bitmap_clear (dead);
793 max_regno = max_reg_num ();
794 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
795 {
796 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
797 {
798 lra_assert (r->start <= r->finish);
799 bitmap_set_bit (born, r->start);
800 bitmap_set_bit (dead, r->finish);
801 }
802 }
803 born_or_dead = sbitmap_alloc (lra_live_max_point);
804 bitmap_ior (born_or_dead, born, dead);
805 map = XCNEWVEC (int, lra_live_max_point);
806 n = -1;
807 prev_born_p = prev_dead_p = false;
808 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
809 {
810 born_p = bitmap_bit_p (born, i);
811 dead_p = bitmap_bit_p (dead, i);
812 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
813 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
814 {
815 map[i] = n;
816 lra_point_freq[n] = MAX (lra_point_freq[n], lra_point_freq[i]);
817 }
818 else
819 {
820 map[i] = ++n;
821 lra_point_freq[n] = lra_point_freq[i];
822 }
823 prev_born_p = born_p;
824 prev_dead_p = dead_p;
825 }
826 sbitmap_free (born_or_dead);
827 sbitmap_free (born);
828 sbitmap_free (dead);
829 n++;
830 if (lra_dump_file != NULL)
831 fprintf (lra_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
832 lra_live_max_point, n, 100 * n / lra_live_max_point);
833 if (n < lra_live_max_point)
834 {
835 lra_live_max_point = n;
836 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
837 {
838 for (prev_r = NULL, r = lra_reg_info[i].live_ranges;
839 r != NULL;
840 r = next_r)
841 {
842 next_r = r->next;
843 r->start = map[r->start];
844 r->finish = map[r->finish];
845 if (prev_r == NULL || prev_r->start > r->finish + 1)
846 {
847 prev_r = r;
848 continue;
849 }
850 prev_r->start = r->start;
851 prev_r->next = next_r;
852 free_live_range (r);
853 }
854 }
855 }
856 free (map);
857 }
858
859 /* Print live ranges R to file F. */
860 void
861 lra_print_live_range_list (FILE *f, lra_live_range_t r)
862 {
863 for (; r != NULL; r = r->next)
864 fprintf (f, " [%d..%d]", r->start, r->finish);
865 fprintf (f, "\n");
866 }
867
868 DEBUG_FUNCTION void
869 debug (lra_live_range &ref)
870 {
871 lra_print_live_range_list (stderr, &ref);
872 }
873
874 DEBUG_FUNCTION void
875 debug (lra_live_range *ptr)
876 {
877 if (ptr)
878 debug (*ptr);
879 else
880 fprintf (stderr, "<nil>\n");
881 }
882
883 /* Print live ranges R to stderr. */
884 void
885 lra_debug_live_range_list (lra_live_range_t r)
886 {
887 lra_print_live_range_list (stderr, r);
888 }
889
890 /* Print live ranges of pseudo REGNO to file F. */
891 static void
892 print_pseudo_live_ranges (FILE *f, int regno)
893 {
894 if (lra_reg_info[regno].live_ranges == NULL)
895 return;
896 fprintf (f, " r%d:", regno);
897 lra_print_live_range_list (f, lra_reg_info[regno].live_ranges);
898 }
899
900 /* Print live ranges of pseudo REGNO to stderr. */
901 void
902 lra_debug_pseudo_live_ranges (int regno)
903 {
904 print_pseudo_live_ranges (stderr, regno);
905 }
906
907 /* Print live ranges of all pseudos to file F. */
908 static void
909 print_live_ranges (FILE *f)
910 {
911 int i, max_regno;
912
913 max_regno = max_reg_num ();
914 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
915 print_pseudo_live_ranges (f, i);
916 }
917
918 /* Print live ranges of all pseudos to stderr. */
919 void
920 lra_debug_live_ranges (void)
921 {
922 print_live_ranges (stderr);
923 }
924
925 /* Compress pseudo live ranges. */
926 static void
927 compress_live_ranges (void)
928 {
929 remove_some_program_points_and_update_live_ranges ();
930 if (lra_dump_file != NULL)
931 {
932 fprintf (lra_dump_file, "Ranges after the compression:\n");
933 print_live_ranges (lra_dump_file);
934 }
935 }
936
937 /* The number of the current live range pass. */
938 int lra_live_range_iter;
939
940 /* The main entry function creates live ranges only for memory pseudos
941 (or for all ones if ALL_P), set up CONFLICT_HARD_REGS for
942 the pseudos. */
943 void
944 lra_create_live_ranges (bool all_p)
945 {
946 basic_block bb;
947 int i, hard_regno, max_regno = max_reg_num ();
948 int curr_point;
949 bool have_referenced_pseudos = false;
950
951 timevar_push (TV_LRA_CREATE_LIVE_RANGES);
952
953 complete_info_p = all_p;
954 if (lra_dump_file != NULL)
955 fprintf (lra_dump_file,
956 "\n********** Pseudo live ranges #%d: **********\n\n",
957 ++lra_live_range_iter);
958 memset (lra_hard_reg_usage, 0, sizeof (lra_hard_reg_usage));
959 for (i = 0; i < max_regno; i++)
960 {
961 lra_reg_info[i].live_ranges = NULL;
962 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
963 lra_reg_info[i].preferred_hard_regno1 = -1;
964 lra_reg_info[i].preferred_hard_regno2 = -1;
965 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
966 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
967 #ifdef STACK_REGS
968 lra_reg_info[i].no_stack_p = false;
969 #endif
970 /* The biggest mode is already set but its value might be to
971 conservative because of recent transformation. Here in this
972 file we recalculate it again as it costs practically
973 nothing. */
974 if (regno_reg_rtx[i] != NULL_RTX)
975 lra_reg_info[i].biggest_mode = GET_MODE (regno_reg_rtx[i]);
976 else
977 lra_reg_info[i].biggest_mode = VOIDmode;
978 #ifdef ENABLE_CHECKING
979 lra_reg_info[i].call_p = false;
980 #endif
981 if (i >= FIRST_PSEUDO_REGISTER
982 && lra_reg_info[i].nrefs != 0)
983 {
984 if ((hard_regno = reg_renumber[i]) >= 0)
985 lra_hard_reg_usage[hard_regno] += lra_reg_info[i].freq;
986 have_referenced_pseudos = true;
987 }
988 }
989 lra_free_copies ();
990
991 /* Under some circumstances, we can have functions without pseudo
992 registers. For such functions, lra_live_max_point will be 0,
993 see e.g. PR55604, and there's nothing more to do for us here. */
994 if (! have_referenced_pseudos)
995 {
996 timevar_pop (TV_LRA_CREATE_LIVE_RANGES);
997 return;
998 }
999
1000 pseudos_live = sparseset_alloc (max_regno);
1001 pseudos_live_through_calls = sparseset_alloc (max_regno);
1002 pseudos_live_through_setjumps = sparseset_alloc (max_regno);
1003 start_living = sparseset_alloc (max_regno);
1004 start_dying = sparseset_alloc (max_regno);
1005 dead_set = sparseset_alloc (max_regno);
1006 unused_set = sparseset_alloc (max_regno);
1007 curr_point = 0;
1008 point_freq_vec.create (get_max_uid () * 2);
1009 lra_point_freq = point_freq_vec.address ();
1010 int *post_order_rev_cfg = XNEWVEC (int, last_basic_block_for_fn (cfun));
1011 int n_blocks_inverted = inverted_post_order_compute (post_order_rev_cfg);
1012 lra_assert (n_blocks_inverted == n_basic_blocks_for_fn (cfun));
1013 for (i = n_blocks_inverted - 1; i >= 0; --i)
1014 {
1015 bb = BASIC_BLOCK_FOR_FN (cfun, post_order_rev_cfg[i]);
1016 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb
1017 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1018 continue;
1019 process_bb_lives (bb, curr_point);
1020 }
1021 free (post_order_rev_cfg);
1022 lra_live_max_point = curr_point;
1023 gcc_checking_assert (lra_live_max_point > 0);
1024 if (lra_dump_file != NULL)
1025 print_live_ranges (lra_dump_file);
1026 /* Clean up. */
1027 sparseset_free (unused_set);
1028 sparseset_free (dead_set);
1029 sparseset_free (start_dying);
1030 sparseset_free (start_living);
1031 sparseset_free (pseudos_live_through_calls);
1032 sparseset_free (pseudos_live_through_setjumps);
1033 sparseset_free (pseudos_live);
1034 compress_live_ranges ();
1035 timevar_pop (TV_LRA_CREATE_LIVE_RANGES);
1036 }
1037
1038 /* Finish all live ranges. */
1039 void
1040 lra_clear_live_ranges (void)
1041 {
1042 int i;
1043
1044 for (i = 0; i < max_reg_num (); i++)
1045 free_live_range_list (lra_reg_info[i].live_ranges);
1046 point_freq_vec.release ();
1047 }
1048
1049 /* Initialize live ranges data once per function. */
1050 void
1051 lra_live_ranges_init (void)
1052 {
1053 live_range_pool = create_alloc_pool ("live ranges",
1054 sizeof (struct lra_live_range), 100);
1055 }
1056
1057 /* Finish live ranges data once per function. */
1058 void
1059 lra_live_ranges_finish (void)
1060 {
1061 free_alloc_pool (live_range_pool);
1062 }