[Fortran] gfortran.texi - minor style cleanup
[gcc.git] / gcc / lra.c
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2020 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
26
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
33
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
44
45 Here is block diagram of LRA passes:
46
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
59 | | |
60 | V New |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
67 | | No change
68 ---------------- V
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
72 ----------------
73 | No susbtitions
74 V
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
79 | memory |
80 -------------------------
81
82 To speed up the process:
83 o We process only insns affected by changes on previous
84 iterations;
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
94 o Pseudo data:
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
97 references etc);
98 o data used for assigning (preferred hard regs, costs etc).
99
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
102
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "df.h"
112 #include "memmodel.h"
113 #include "tm_p.h"
114 #include "optabs.h"
115 #include "regs.h"
116 #include "ira.h"
117 #include "recog.h"
118 #include "expr.h"
119 #include "cfgrtl.h"
120 #include "cfgbuild.h"
121 #include "lra.h"
122 #include "lra-int.h"
123 #include "print-rtl.h"
124 #include "function-abi.h"
125
126 /* Dump bitmap SET with TITLE and BB INDEX. */
127 void
128 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
129 {
130 unsigned int i;
131 int count;
132 bitmap_iterator bi;
133 static const int max_nums_on_line = 10;
134
135 if (bitmap_empty_p (set))
136 return;
137 fprintf (lra_dump_file, " %s %d:", title, index);
138 fprintf (lra_dump_file, "\n");
139 count = max_nums_on_line + 1;
140 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
141 {
142 if (count > max_nums_on_line)
143 {
144 fprintf (lra_dump_file, "\n ");
145 count = 0;
146 }
147 fprintf (lra_dump_file, " %4u", i);
148 count++;
149 }
150 fprintf (lra_dump_file, "\n");
151 }
152
153 /* Hard registers currently not available for allocation. It can
154 changed after some hard registers become not eliminable. */
155 HARD_REG_SET lra_no_alloc_regs;
156
157 static int get_new_reg_value (void);
158 static void expand_reg_info (void);
159 static void invalidate_insn_recog_data (int);
160 static int get_insn_freq (rtx_insn *);
161 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
162 rtx_insn *, int);
163 static void remove_scratches_1 (rtx_insn *);
164
165 /* Expand all regno related info needed for LRA. */
166 static void
167 expand_reg_data (int old)
168 {
169 resize_reg_info ();
170 expand_reg_info ();
171 ira_expand_reg_equiv ();
172 for (int i = (int) max_reg_num () - 1; i >= old; i--)
173 lra_change_class (i, ALL_REGS, " Set", true);
174 }
175
176 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
177 or of VOIDmode, use MD_MODE for the new reg. Initialize its
178 register class to RCLASS. Print message about assigning class
179 RCLASS containing new register name TITLE unless it is NULL. Use
180 attributes of ORIGINAL if it is a register. The created register
181 will have unique held value. */
182 rtx
183 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
184 enum reg_class rclass, const char *title)
185 {
186 machine_mode mode;
187 rtx new_reg;
188
189 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
190 mode = md_mode;
191 lra_assert (mode != VOIDmode);
192 new_reg = gen_reg_rtx (mode);
193 if (original == NULL_RTX || ! REG_P (original))
194 {
195 if (lra_dump_file != NULL)
196 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
197 }
198 else
199 {
200 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
201 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
202 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
203 REG_POINTER (new_reg) = REG_POINTER (original);
204 REG_ATTRS (new_reg) = REG_ATTRS (original);
205 if (lra_dump_file != NULL)
206 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
207 REGNO (new_reg), REGNO (original));
208 }
209 if (lra_dump_file != NULL)
210 {
211 if (title != NULL)
212 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
213 reg_class_names[rclass], *title == '\0' ? "" : " ",
214 title, REGNO (new_reg));
215 fprintf (lra_dump_file, "\n");
216 }
217 expand_reg_data (max_reg_num ());
218 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
219 return new_reg;
220 }
221
222 /* Analogous to the previous function but also inherits value of
223 ORIGINAL. */
224 rtx
225 lra_create_new_reg (machine_mode md_mode, rtx original,
226 enum reg_class rclass, const char *title)
227 {
228 rtx new_reg;
229
230 new_reg
231 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
232 if (original != NULL_RTX && REG_P (original))
233 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
234 return new_reg;
235 }
236
237 /* Set up for REGNO unique hold value. */
238 void
239 lra_set_regno_unique_value (int regno)
240 {
241 lra_reg_info[regno].val = get_new_reg_value ();
242 }
243
244 /* Invalidate INSN related info used by LRA. The info should never be
245 used after that. */
246 void
247 lra_invalidate_insn_data (rtx_insn *insn)
248 {
249 lra_invalidate_insn_regno_info (insn);
250 invalidate_insn_recog_data (INSN_UID (insn));
251 }
252
253 /* Mark INSN deleted and invalidate the insn related info used by
254 LRA. */
255 void
256 lra_set_insn_deleted (rtx_insn *insn)
257 {
258 lra_invalidate_insn_data (insn);
259 SET_INSN_DELETED (insn);
260 }
261
262 /* Delete an unneeded INSN and any previous insns who sole purpose is
263 loading data that is dead in INSN. */
264 void
265 lra_delete_dead_insn (rtx_insn *insn)
266 {
267 rtx_insn *prev = prev_real_insn (insn);
268 rtx prev_dest;
269
270 /* If the previous insn sets a register that dies in our insn,
271 delete it too. */
272 if (prev && GET_CODE (PATTERN (prev)) == SET
273 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
274 && reg_mentioned_p (prev_dest, PATTERN (insn))
275 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
276 && ! side_effects_p (SET_SRC (PATTERN (prev))))
277 lra_delete_dead_insn (prev);
278
279 lra_set_insn_deleted (insn);
280 }
281
282 /* Emit insn x = y + z. Return NULL if we failed to do it.
283 Otherwise, return the insn. We don't use gen_add3_insn as it might
284 clobber CC. */
285 static rtx_insn *
286 emit_add3_insn (rtx x, rtx y, rtx z)
287 {
288 rtx_insn *last;
289
290 last = get_last_insn ();
291
292 if (have_addptr3_insn (x, y, z))
293 {
294 rtx_insn *insn = gen_addptr3_insn (x, y, z);
295
296 /* If the target provides an "addptr" pattern it hopefully does
297 for a reason. So falling back to the normal add would be
298 a bug. */
299 lra_assert (insn != NULL_RTX);
300 emit_insn (insn);
301 return insn;
302 }
303
304 rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
305 y, z)));
306 if (recog_memoized (insn) < 0)
307 {
308 delete_insns_since (last);
309 insn = NULL;
310 }
311 return insn;
312 }
313
314 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
315 last resort. */
316 static rtx_insn *
317 emit_add2_insn (rtx x, rtx y)
318 {
319 rtx_insn *insn = emit_add3_insn (x, x, y);
320 if (insn == NULL_RTX)
321 {
322 insn = gen_add2_insn (x, y);
323 if (insn != NULL_RTX)
324 emit_insn (insn);
325 }
326 return insn;
327 }
328
329 /* Target checks operands through operand predicates to recognize an
330 insn. We should have a special precaution to generate add insns
331 which are frequent results of elimination.
332
333 Emit insns for x = y + z. X can be used to store intermediate
334 values and should be not in Y and Z when we use X to store an
335 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
336 + disp] where base and index are registers, disp and scale are
337 constants. Y should contain base if it is present, Z should
338 contain disp if any. index[*scale] can be part of Y or Z. */
339 void
340 lra_emit_add (rtx x, rtx y, rtx z)
341 {
342 int old;
343 rtx_insn *last;
344 rtx a1, a2, base, index, disp, scale, index_scale;
345 bool ok_p;
346
347 rtx_insn *add3_insn = emit_add3_insn (x, y, z);
348 old = max_reg_num ();
349 if (add3_insn != NULL)
350 ;
351 else
352 {
353 disp = a2 = NULL_RTX;
354 if (GET_CODE (y) == PLUS)
355 {
356 a1 = XEXP (y, 0);
357 a2 = XEXP (y, 1);
358 disp = z;
359 }
360 else
361 {
362 a1 = y;
363 if (CONSTANT_P (z))
364 disp = z;
365 else
366 a2 = z;
367 }
368 index_scale = scale = NULL_RTX;
369 if (GET_CODE (a1) == MULT)
370 {
371 index_scale = a1;
372 index = XEXP (a1, 0);
373 scale = XEXP (a1, 1);
374 base = a2;
375 }
376 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
377 {
378 index_scale = a2;
379 index = XEXP (a2, 0);
380 scale = XEXP (a2, 1);
381 base = a1;
382 }
383 else
384 {
385 base = a1;
386 index = a2;
387 }
388 if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
389 || (index != NULL_RTX
390 && ! (REG_P (index) || GET_CODE (index) == SUBREG))
391 || (disp != NULL_RTX && ! CONSTANT_P (disp))
392 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
393 {
394 /* Probably we have no 3 op add. Last chance is to use 2-op
395 add insn. To succeed, don't move Z to X as an address
396 segment always comes in Y. Otherwise, we might fail when
397 adding the address segment to register. */
398 lra_assert (x != y && x != z);
399 emit_move_insn (x, y);
400 rtx_insn *insn = emit_add2_insn (x, z);
401 lra_assert (insn != NULL_RTX);
402 }
403 else
404 {
405 if (index_scale == NULL_RTX)
406 index_scale = index;
407 if (disp == NULL_RTX)
408 {
409 /* Generate x = index_scale; x = x + base. */
410 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
411 emit_move_insn (x, index_scale);
412 rtx_insn *insn = emit_add2_insn (x, base);
413 lra_assert (insn != NULL_RTX);
414 }
415 else if (scale == NULL_RTX)
416 {
417 /* Try x = base + disp. */
418 lra_assert (base != NULL_RTX);
419 last = get_last_insn ();
420 rtx_insn *move_insn =
421 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
422 if (recog_memoized (move_insn) < 0)
423 {
424 delete_insns_since (last);
425 /* Generate x = disp; x = x + base. */
426 emit_move_insn (x, disp);
427 rtx_insn *add2_insn = emit_add2_insn (x, base);
428 lra_assert (add2_insn != NULL_RTX);
429 }
430 /* Generate x = x + index. */
431 if (index != NULL_RTX)
432 {
433 rtx_insn *insn = emit_add2_insn (x, index);
434 lra_assert (insn != NULL_RTX);
435 }
436 }
437 else
438 {
439 /* Try x = index_scale; x = x + disp; x = x + base. */
440 last = get_last_insn ();
441 rtx_insn *move_insn = emit_move_insn (x, index_scale);
442 ok_p = false;
443 if (recog_memoized (move_insn) >= 0)
444 {
445 rtx_insn *insn = emit_add2_insn (x, disp);
446 if (insn != NULL_RTX)
447 {
448 if (base == NULL_RTX)
449 ok_p = true;
450 else
451 {
452 insn = emit_add2_insn (x, base);
453 if (insn != NULL_RTX)
454 ok_p = true;
455 }
456 }
457 }
458 if (! ok_p)
459 {
460 rtx_insn *insn;
461
462 delete_insns_since (last);
463 /* Generate x = disp; x = x + base; x = x + index_scale. */
464 emit_move_insn (x, disp);
465 if (base != NULL_RTX)
466 {
467 insn = emit_add2_insn (x, base);
468 lra_assert (insn != NULL_RTX);
469 }
470 insn = emit_add2_insn (x, index_scale);
471 lra_assert (insn != NULL_RTX);
472 }
473 }
474 }
475 }
476 /* Functions emit_... can create pseudos -- so expand the pseudo
477 data. */
478 if (old != max_reg_num ())
479 expand_reg_data (old);
480 }
481
482 /* The number of emitted reload insns so far. */
483 int lra_curr_reload_num;
484
485 /* Emit x := y, processing special case when y = u + v or y = u + v *
486 scale + w through emit_add (Y can be an address which is base +
487 index reg * scale + displacement in general case). X may be used
488 as intermediate result therefore it should be not in Y. */
489 void
490 lra_emit_move (rtx x, rtx y)
491 {
492 int old;
493
494 if (GET_CODE (y) != PLUS)
495 {
496 if (rtx_equal_p (x, y))
497 return;
498 old = max_reg_num ();
499 rtx_insn *insn = emit_move_insn (x, y);
500 /* The move pattern may require scratch registers, so convert them
501 into real registers now. */
502 if (insn != NULL_RTX)
503 remove_scratches_1 (insn);
504 if (REG_P (x))
505 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
506 /* Function emit_move can create pseudos -- so expand the pseudo
507 data. */
508 if (old != max_reg_num ())
509 expand_reg_data (old);
510 return;
511 }
512 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
513 }
514
515 /* Update insn operands which are duplication of operands whose
516 numbers are in array of NOPS (with end marker -1). The insn is
517 represented by its LRA internal representation ID. */
518 void
519 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
520 {
521 int i, j, nop;
522 struct lra_static_insn_data *static_id = id->insn_static_data;
523
524 for (i = 0; i < static_id->n_dups; i++)
525 for (j = 0; (nop = nops[j]) >= 0; j++)
526 if (static_id->dup_num[i] == nop)
527 *id->dup_loc[i] = *id->operand_loc[nop];
528 }
529
530 \f
531
532 /* This page contains code dealing with info about registers in the
533 insns. */
534
535 /* Pools for insn reg info. */
536 object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
537
538 /* Create LRA insn related info about a reference to REGNO in INSN
539 with TYPE (in/out/inout), biggest reference mode MODE, flag that it
540 is reference through subreg (SUBREG_P), and reference to the next
541 insn reg info (NEXT). If REGNO can be early clobbered,
542 alternatives in which it can be early clobbered are given by
543 EARLY_CLOBBER_ALTS. */
544 static struct lra_insn_reg *
545 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
546 machine_mode mode, bool subreg_p,
547 alternative_mask early_clobber_alts,
548 struct lra_insn_reg *next)
549 {
550 lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
551 ir->type = type;
552 ir->biggest_mode = mode;
553 if (NONDEBUG_INSN_P (insn)
554 && partial_subreg_p (lra_reg_info[regno].biggest_mode, mode))
555 lra_reg_info[regno].biggest_mode = mode;
556 ir->subreg_p = subreg_p;
557 ir->early_clobber_alts = early_clobber_alts;
558 ir->regno = regno;
559 ir->next = next;
560 return ir;
561 }
562
563 /* Free insn reg info list IR. */
564 static void
565 free_insn_regs (struct lra_insn_reg *ir)
566 {
567 struct lra_insn_reg *next_ir;
568
569 for (; ir != NULL; ir = next_ir)
570 {
571 next_ir = ir->next;
572 lra_insn_reg_pool.remove (ir);
573 }
574 }
575
576 /* Finish pool for insn reg info. */
577 static void
578 finish_insn_regs (void)
579 {
580 lra_insn_reg_pool.release ();
581 }
582
583 \f
584
585 /* This page contains code dealing LRA insn info (or in other words
586 LRA internal insn representation). */
587
588 /* Map INSN_CODE -> the static insn data. This info is valid during
589 all translation unit. */
590 struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
591
592 /* Debug insns are represented as a special insn with one input
593 operand which is RTL expression in var_location. */
594
595 /* The following data are used as static insn operand data for all
596 debug insns. If structure lra_operand_data is changed, the
597 initializer should be changed too. */
598 static struct lra_operand_data debug_operand_data =
599 {
600 NULL, /* alternative */
601 0, /* early_clobber_alts */
602 E_VOIDmode, /* We are not interesting in the operand mode. */
603 OP_IN,
604 0, 0, 0
605 };
606
607 /* The following data are used as static insn data for all debug
608 bind insns. If structure lra_static_insn_data is changed, the
609 initializer should be changed too. */
610 static struct lra_static_insn_data debug_bind_static_data =
611 {
612 &debug_operand_data,
613 0, /* Duplication operands #. */
614 -1, /* Commutative operand #. */
615 1, /* Operands #. There is only one operand which is debug RTL
616 expression. */
617 0, /* Duplications #. */
618 0, /* Alternatives #. We are not interesting in alternatives
619 because we does not proceed debug_insns for reloads. */
620 NULL, /* Hard registers referenced in machine description. */
621 NULL /* Descriptions of operands in alternatives. */
622 };
623
624 /* The following data are used as static insn data for all debug
625 marker insns. If structure lra_static_insn_data is changed, the
626 initializer should be changed too. */
627 static struct lra_static_insn_data debug_marker_static_data =
628 {
629 &debug_operand_data,
630 0, /* Duplication operands #. */
631 -1, /* Commutative operand #. */
632 0, /* Operands #. There isn't any operand. */
633 0, /* Duplications #. */
634 0, /* Alternatives #. We are not interesting in alternatives
635 because we does not proceed debug_insns for reloads. */
636 NULL, /* Hard registers referenced in machine description. */
637 NULL /* Descriptions of operands in alternatives. */
638 };
639
640 /* Called once per compiler work to initialize some LRA data related
641 to insns. */
642 static void
643 init_insn_code_data_once (void)
644 {
645 memset (insn_code_data, 0, sizeof (insn_code_data));
646 }
647
648 /* Called once per compiler work to finalize some LRA data related to
649 insns. */
650 static void
651 finish_insn_code_data_once (void)
652 {
653 for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
654 {
655 if (insn_code_data[i] != NULL)
656 free (insn_code_data[i]);
657 }
658 }
659
660 /* Return static insn data, allocate and setup if necessary. Although
661 dup_num is static data (it depends only on icode), to set it up we
662 need to extract insn first. So recog_data should be valid for
663 normal insn (ICODE >= 0) before the call. */
664 static struct lra_static_insn_data *
665 get_static_insn_data (int icode, int nop, int ndup, int nalt)
666 {
667 struct lra_static_insn_data *data;
668 size_t n_bytes;
669
670 lra_assert (icode < (int) NUM_INSN_CODES);
671 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
672 return data;
673 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
674 n_bytes = sizeof (struct lra_static_insn_data)
675 + sizeof (struct lra_operand_data) * nop
676 + sizeof (int) * ndup;
677 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
678 data->operand_alternative = NULL;
679 data->n_operands = nop;
680 data->n_dups = ndup;
681 data->n_alternatives = nalt;
682 data->operand = ((struct lra_operand_data *)
683 ((char *) data + sizeof (struct lra_static_insn_data)));
684 data->dup_num = ((int *) ((char *) data->operand
685 + sizeof (struct lra_operand_data) * nop));
686 if (icode >= 0)
687 {
688 int i;
689
690 insn_code_data[icode] = data;
691 for (i = 0; i < nop; i++)
692 {
693 data->operand[i].constraint
694 = insn_data[icode].operand[i].constraint;
695 data->operand[i].mode = insn_data[icode].operand[i].mode;
696 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
697 data->operand[i].is_operator
698 = insn_data[icode].operand[i].is_operator;
699 data->operand[i].type
700 = (data->operand[i].constraint[0] == '=' ? OP_OUT
701 : data->operand[i].constraint[0] == '+' ? OP_INOUT
702 : OP_IN);
703 data->operand[i].is_address = false;
704 }
705 for (i = 0; i < ndup; i++)
706 data->dup_num[i] = recog_data.dup_num[i];
707 }
708 return data;
709 }
710
711 /* The current length of the following array. */
712 int lra_insn_recog_data_len;
713
714 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
715 lra_insn_recog_data_t *lra_insn_recog_data;
716
717 /* Alloc pool we allocate entries for lra_insn_recog_data from. */
718 static object_allocator<class lra_insn_recog_data>
719 lra_insn_recog_data_pool ("insn recog data pool");
720
721 /* Initialize LRA data about insns. */
722 static void
723 init_insn_recog_data (void)
724 {
725 lra_insn_recog_data_len = 0;
726 lra_insn_recog_data = NULL;
727 }
728
729 /* Expand, if necessary, LRA data about insns. */
730 static void
731 check_and_expand_insn_recog_data (int index)
732 {
733 int i, old;
734
735 if (lra_insn_recog_data_len > index)
736 return;
737 old = lra_insn_recog_data_len;
738 lra_insn_recog_data_len = index * 3 / 2 + 1;
739 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
740 lra_insn_recog_data,
741 lra_insn_recog_data_len);
742 for (i = old; i < lra_insn_recog_data_len; i++)
743 lra_insn_recog_data[i] = NULL;
744 }
745
746 /* Finish LRA DATA about insn. */
747 static void
748 free_insn_recog_data (lra_insn_recog_data_t data)
749 {
750 if (data->operand_loc != NULL)
751 free (data->operand_loc);
752 if (data->dup_loc != NULL)
753 free (data->dup_loc);
754 if (data->arg_hard_regs != NULL)
755 free (data->arg_hard_regs);
756 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
757 {
758 if (data->insn_static_data->operand_alternative != NULL)
759 free (const_cast <operand_alternative *>
760 (data->insn_static_data->operand_alternative));
761 free_insn_regs (data->insn_static_data->hard_regs);
762 free (data->insn_static_data);
763 }
764 free_insn_regs (data->regs);
765 data->regs = NULL;
766 lra_insn_recog_data_pool.remove (data);
767 }
768
769 /* Pools for copies. */
770 static object_allocator<lra_copy> lra_copy_pool ("lra copies");
771
772 /* Finish LRA data about all insns. */
773 static void
774 finish_insn_recog_data (void)
775 {
776 int i;
777 lra_insn_recog_data_t data;
778
779 for (i = 0; i < lra_insn_recog_data_len; i++)
780 if ((data = lra_insn_recog_data[i]) != NULL)
781 free_insn_recog_data (data);
782 finish_insn_regs ();
783 lra_copy_pool.release ();
784 lra_insn_reg_pool.release ();
785 lra_insn_recog_data_pool.release ();
786 free (lra_insn_recog_data);
787 }
788
789 /* Setup info about operands in alternatives of LRA DATA of insn. */
790 static void
791 setup_operand_alternative (lra_insn_recog_data_t data,
792 const operand_alternative *op_alt)
793 {
794 int i, j, nop, nalt;
795 int icode = data->icode;
796 struct lra_static_insn_data *static_data = data->insn_static_data;
797
798 static_data->commutative = -1;
799 nop = static_data->n_operands;
800 nalt = static_data->n_alternatives;
801 static_data->operand_alternative = op_alt;
802 for (i = 0; i < nop; i++)
803 {
804 static_data->operand[i].early_clobber_alts = 0;
805 static_data->operand[i].is_address = false;
806 if (static_data->operand[i].constraint[0] == '%')
807 {
808 /* We currently only support one commutative pair of operands. */
809 if (static_data->commutative < 0)
810 static_data->commutative = i;
811 else
812 lra_assert (icode < 0); /* Asm */
813 /* The last operand should not be marked commutative. */
814 lra_assert (i != nop - 1);
815 }
816 }
817 for (j = 0; j < nalt; j++)
818 for (i = 0; i < nop; i++, op_alt++)
819 {
820 if (op_alt->earlyclobber)
821 static_data->operand[i].early_clobber_alts |= (alternative_mask) 1 << j;
822 static_data->operand[i].is_address |= op_alt->is_address;
823 }
824 }
825
826 /* Recursively process X and collect info about registers, which are
827 not the insn operands, in X with TYPE (in/out/inout) and flag that
828 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
829 to LIST. X is a part of insn given by DATA. Return the result
830 list. */
831 static struct lra_insn_reg *
832 collect_non_operand_hard_regs (rtx_insn *insn, rtx *x,
833 lra_insn_recog_data_t data,
834 struct lra_insn_reg *list,
835 enum op_type type, bool early_clobber)
836 {
837 int i, j, regno, last;
838 bool subreg_p;
839 machine_mode mode;
840 struct lra_insn_reg *curr;
841 rtx op = *x;
842 enum rtx_code code = GET_CODE (op);
843 const char *fmt = GET_RTX_FORMAT (code);
844
845 for (i = 0; i < data->insn_static_data->n_operands; i++)
846 if (! data->insn_static_data->operand[i].is_operator
847 && x == data->operand_loc[i])
848 /* It is an operand loc. Stop here. */
849 return list;
850 for (i = 0; i < data->insn_static_data->n_dups; i++)
851 if (x == data->dup_loc[i])
852 /* It is a dup loc. Stop here. */
853 return list;
854 mode = GET_MODE (op);
855 subreg_p = false;
856 if (code == SUBREG)
857 {
858 mode = wider_subreg_mode (op);
859 if (read_modify_subreg_p (op))
860 subreg_p = true;
861 op = SUBREG_REG (op);
862 code = GET_CODE (op);
863 }
864 if (REG_P (op))
865 {
866 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
867 return list;
868 /* Process all regs even unallocatable ones as we need info
869 about all regs for rematerialization pass. */
870 for (last = end_hard_regno (mode, regno); regno < last; regno++)
871 {
872 for (curr = list; curr != NULL; curr = curr->next)
873 if (curr->regno == regno && curr->subreg_p == subreg_p
874 && curr->biggest_mode == mode)
875 {
876 if (curr->type != type)
877 curr->type = OP_INOUT;
878 if (early_clobber)
879 curr->early_clobber_alts = ALL_ALTERNATIVES;
880 break;
881 }
882 if (curr == NULL)
883 {
884 /* This is a new hard regno or the info cannot be
885 integrated into the found structure. */
886 #ifdef STACK_REGS
887 early_clobber
888 = (early_clobber
889 /* This clobber is to inform popping floating
890 point stack only. */
891 && ! (FIRST_STACK_REG <= regno
892 && regno <= LAST_STACK_REG));
893 #endif
894 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
895 early_clobber ? ALL_ALTERNATIVES : 0, list);
896 }
897 }
898 return list;
899 }
900 switch (code)
901 {
902 case SET:
903 list = collect_non_operand_hard_regs (insn, &SET_DEST (op), data,
904 list, OP_OUT, false);
905 list = collect_non_operand_hard_regs (insn, &SET_SRC (op), data,
906 list, OP_IN, false);
907 break;
908 case CLOBBER:
909 /* We treat clobber of non-operand hard registers as early clobber. */
910 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
911 list, OP_OUT, true);
912 break;
913 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
914 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
915 list, OP_INOUT, false);
916 break;
917 case PRE_MODIFY: case POST_MODIFY:
918 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
919 list, OP_INOUT, false);
920 list = collect_non_operand_hard_regs (insn, &XEXP (op, 1), data,
921 list, OP_IN, false);
922 break;
923 default:
924 fmt = GET_RTX_FORMAT (code);
925 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
926 {
927 if (fmt[i] == 'e')
928 list = collect_non_operand_hard_regs (insn, &XEXP (op, i), data,
929 list, OP_IN, false);
930 else if (fmt[i] == 'E')
931 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
932 list = collect_non_operand_hard_regs (insn, &XVECEXP (op, i, j),
933 data, list, OP_IN, false);
934 }
935 }
936 return list;
937 }
938
939 /* Set up and return info about INSN. Set up the info if it is not set up
940 yet. */
941 lra_insn_recog_data_t
942 lra_set_insn_recog_data (rtx_insn *insn)
943 {
944 lra_insn_recog_data_t data;
945 int i, n, icode;
946 rtx **locs;
947 unsigned int uid = INSN_UID (insn);
948 struct lra_static_insn_data *insn_static_data;
949
950 check_and_expand_insn_recog_data (uid);
951 if (DEBUG_INSN_P (insn))
952 icode = -1;
953 else
954 {
955 icode = INSN_CODE (insn);
956 if (icode < 0)
957 /* It might be a new simple insn which is not recognized yet. */
958 INSN_CODE (insn) = icode = recog_memoized (insn);
959 }
960 data = lra_insn_recog_data_pool.allocate ();
961 lra_insn_recog_data[uid] = data;
962 data->insn = insn;
963 data->used_insn_alternative = LRA_UNKNOWN_ALT;
964 data->icode = icode;
965 data->regs = NULL;
966 if (DEBUG_INSN_P (insn))
967 {
968 data->dup_loc = NULL;
969 data->arg_hard_regs = NULL;
970 data->preferred_alternatives = ALL_ALTERNATIVES;
971 if (DEBUG_BIND_INSN_P (insn))
972 {
973 data->insn_static_data = &debug_bind_static_data;
974 data->operand_loc = XNEWVEC (rtx *, 1);
975 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
976 }
977 else if (DEBUG_MARKER_INSN_P (insn))
978 {
979 data->insn_static_data = &debug_marker_static_data;
980 data->operand_loc = NULL;
981 }
982 return data;
983 }
984 if (icode < 0)
985 {
986 int nop, nalt;
987 machine_mode operand_mode[MAX_RECOG_OPERANDS];
988 const char *constraints[MAX_RECOG_OPERANDS];
989
990 nop = asm_noperands (PATTERN (insn));
991 data->operand_loc = data->dup_loc = NULL;
992 nalt = 1;
993 if (nop < 0)
994 {
995 /* It is a special insn like USE or CLOBBER. We should
996 recognize any regular insn otherwise LRA can do nothing
997 with this insn. */
998 gcc_assert (GET_CODE (PATTERN (insn)) == USE
999 || GET_CODE (PATTERN (insn)) == CLOBBER
1000 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
1001 data->insn_static_data = insn_static_data
1002 = get_static_insn_data (-1, 0, 0, nalt);
1003 }
1004 else
1005 {
1006 /* expand_asm_operands makes sure there aren't too many
1007 operands. */
1008 lra_assert (nop <= MAX_RECOG_OPERANDS);
1009 if (nop != 0)
1010 data->operand_loc = XNEWVEC (rtx *, nop);
1011 /* Now get the operand values and constraints out of the
1012 insn. */
1013 decode_asm_operands (PATTERN (insn), NULL,
1014 data->operand_loc,
1015 constraints, operand_mode, NULL);
1016 if (nop > 0)
1017 for (const char *p =constraints[0]; *p; p++)
1018 nalt += *p == ',';
1019 data->insn_static_data = insn_static_data
1020 = get_static_insn_data (-1, nop, 0, nalt);
1021 for (i = 0; i < nop; i++)
1022 {
1023 insn_static_data->operand[i].mode = operand_mode[i];
1024 insn_static_data->operand[i].constraint = constraints[i];
1025 insn_static_data->operand[i].strict_low = false;
1026 insn_static_data->operand[i].is_operator = false;
1027 insn_static_data->operand[i].is_address = false;
1028 }
1029 }
1030 for (i = 0; i < insn_static_data->n_operands; i++)
1031 insn_static_data->operand[i].type
1032 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1033 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1034 : OP_IN);
1035 data->preferred_alternatives = ALL_ALTERNATIVES;
1036 if (nop > 0)
1037 {
1038 operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1039 nalt * nop);
1040 preprocess_constraints (nop, nalt, constraints, op_alt,
1041 data->operand_loc);
1042 setup_operand_alternative (data, op_alt);
1043 }
1044 }
1045 else
1046 {
1047 insn_extract (insn);
1048 data->insn_static_data = insn_static_data
1049 = get_static_insn_data (icode, insn_data[icode].n_operands,
1050 insn_data[icode].n_dups,
1051 insn_data[icode].n_alternatives);
1052 n = insn_static_data->n_operands;
1053 if (n == 0)
1054 locs = NULL;
1055 else
1056 {
1057 locs = XNEWVEC (rtx *, n);
1058 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1059 }
1060 data->operand_loc = locs;
1061 n = insn_static_data->n_dups;
1062 if (n == 0)
1063 locs = NULL;
1064 else
1065 {
1066 locs = XNEWVEC (rtx *, n);
1067 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1068 }
1069 data->dup_loc = locs;
1070 data->preferred_alternatives = get_preferred_alternatives (insn);
1071 const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1072 if (!insn_static_data->operand_alternative)
1073 setup_operand_alternative (data, op_alt);
1074 else if (op_alt != insn_static_data->operand_alternative)
1075 insn_static_data->operand_alternative = op_alt;
1076 }
1077 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1078 insn_static_data->hard_regs = NULL;
1079 else
1080 insn_static_data->hard_regs
1081 = collect_non_operand_hard_regs (insn, &PATTERN (insn), data,
1082 NULL, OP_IN, false);
1083 data->arg_hard_regs = NULL;
1084 if (CALL_P (insn))
1085 {
1086 bool use_p;
1087 rtx link;
1088 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1089
1090 n_hard_regs = 0;
1091 /* Finding implicit hard register usage. We believe it will be
1092 not changed whatever transformations are used. Call insns
1093 are such example. */
1094 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1095 link != NULL_RTX;
1096 link = XEXP (link, 1))
1097 if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1098 || GET_CODE (XEXP (link, 0)) == CLOBBER)
1099 && REG_P (XEXP (XEXP (link, 0), 0)))
1100 {
1101 regno = REGNO (XEXP (XEXP (link, 0), 0));
1102 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1103 /* It is an argument register. */
1104 for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1105 arg_hard_regs[n_hard_regs++]
1106 = regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1107 }
1108
1109 if (n_hard_regs != 0)
1110 {
1111 arg_hard_regs[n_hard_regs++] = -1;
1112 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1113 memcpy (data->arg_hard_regs, arg_hard_regs,
1114 sizeof (int) * n_hard_regs);
1115 }
1116 }
1117 /* Some output operand can be recognized only from the context not
1118 from the constraints which are empty in this case. Call insn may
1119 contain a hard register in set destination with empty constraint
1120 and extract_insn treats them as an input. */
1121 for (i = 0; i < insn_static_data->n_operands; i++)
1122 {
1123 int j;
1124 rtx pat, set;
1125 struct lra_operand_data *operand = &insn_static_data->operand[i];
1126
1127 /* ??? Should we treat 'X' the same way. It looks to me that
1128 'X' means anything and empty constraint means we do not
1129 care. */
1130 if (operand->type != OP_IN || *operand->constraint != '\0'
1131 || operand->is_operator)
1132 continue;
1133 pat = PATTERN (insn);
1134 if (GET_CODE (pat) == SET)
1135 {
1136 if (data->operand_loc[i] != &SET_DEST (pat))
1137 continue;
1138 }
1139 else if (GET_CODE (pat) == PARALLEL)
1140 {
1141 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1142 {
1143 set = XVECEXP (PATTERN (insn), 0, j);
1144 if (GET_CODE (set) == SET
1145 && &SET_DEST (set) == data->operand_loc[i])
1146 break;
1147 }
1148 if (j < 0)
1149 continue;
1150 }
1151 else
1152 continue;
1153 operand->type = OP_OUT;
1154 }
1155 return data;
1156 }
1157
1158 /* Return info about insn give by UID. The info should be already set
1159 up. */
1160 static lra_insn_recog_data_t
1161 get_insn_recog_data_by_uid (int uid)
1162 {
1163 lra_insn_recog_data_t data;
1164
1165 data = lra_insn_recog_data[uid];
1166 lra_assert (data != NULL);
1167 return data;
1168 }
1169
1170 /* Invalidate all info about insn given by its UID. */
1171 static void
1172 invalidate_insn_recog_data (int uid)
1173 {
1174 lra_insn_recog_data_t data;
1175
1176 data = lra_insn_recog_data[uid];
1177 lra_assert (data != NULL);
1178 free_insn_recog_data (data);
1179 lra_insn_recog_data[uid] = NULL;
1180 }
1181
1182 /* Update all the insn info about INSN. It is usually called when
1183 something in the insn was changed. Return the updated info. */
1184 lra_insn_recog_data_t
1185 lra_update_insn_recog_data (rtx_insn *insn)
1186 {
1187 lra_insn_recog_data_t data;
1188 int n;
1189 unsigned int uid = INSN_UID (insn);
1190 struct lra_static_insn_data *insn_static_data;
1191 poly_int64 sp_offset = 0;
1192
1193 check_and_expand_insn_recog_data (uid);
1194 if ((data = lra_insn_recog_data[uid]) != NULL
1195 && data->icode != INSN_CODE (insn))
1196 {
1197 sp_offset = data->sp_offset;
1198 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1199 invalidate_insn_recog_data (uid);
1200 data = NULL;
1201 }
1202 if (data == NULL)
1203 {
1204 data = lra_get_insn_recog_data (insn);
1205 /* Initiate or restore SP offset. */
1206 data->sp_offset = sp_offset;
1207 return data;
1208 }
1209 insn_static_data = data->insn_static_data;
1210 data->used_insn_alternative = LRA_UNKNOWN_ALT;
1211 if (DEBUG_INSN_P (insn))
1212 return data;
1213 if (data->icode < 0)
1214 {
1215 int nop;
1216 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1217 const char *constraints[MAX_RECOG_OPERANDS];
1218
1219 nop = asm_noperands (PATTERN (insn));
1220 if (nop >= 0)
1221 {
1222 lra_assert (nop == data->insn_static_data->n_operands);
1223 /* Now get the operand values and constraints out of the
1224 insn. */
1225 decode_asm_operands (PATTERN (insn), NULL,
1226 data->operand_loc,
1227 constraints, operand_mode, NULL);
1228
1229 if (flag_checking)
1230 for (int i = 0; i < nop; i++)
1231 lra_assert
1232 (insn_static_data->operand[i].mode == operand_mode[i]
1233 && insn_static_data->operand[i].constraint == constraints[i]
1234 && ! insn_static_data->operand[i].is_operator);
1235 }
1236
1237 if (flag_checking)
1238 for (int i = 0; i < insn_static_data->n_operands; i++)
1239 lra_assert
1240 (insn_static_data->operand[i].type
1241 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1242 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1243 : OP_IN));
1244 }
1245 else
1246 {
1247 insn_extract (insn);
1248 n = insn_static_data->n_operands;
1249 if (n != 0)
1250 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1251 n = insn_static_data->n_dups;
1252 if (n != 0)
1253 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1254 lra_assert (check_bool_attrs (insn));
1255 }
1256 return data;
1257 }
1258
1259 /* Set up that INSN is using alternative ALT now. */
1260 void
1261 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1262 {
1263 lra_insn_recog_data_t data;
1264
1265 data = lra_get_insn_recog_data (insn);
1266 data->used_insn_alternative = alt;
1267 }
1268
1269 /* Set up that insn with UID is using alternative ALT now. The insn
1270 info should be already set up. */
1271 void
1272 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1273 {
1274 lra_insn_recog_data_t data;
1275
1276 check_and_expand_insn_recog_data (uid);
1277 data = lra_insn_recog_data[uid];
1278 lra_assert (data != NULL);
1279 data->used_insn_alternative = alt;
1280 }
1281
1282 \f
1283
1284 /* This page contains code dealing with common register info and
1285 pseudo copies. */
1286
1287 /* The size of the following array. */
1288 static int reg_info_size;
1289 /* Common info about each register. */
1290 class lra_reg *lra_reg_info;
1291
1292 HARD_REG_SET hard_regs_spilled_into;
1293
1294 /* Last register value. */
1295 static int last_reg_value;
1296
1297 /* Return new register value. */
1298 static int
1299 get_new_reg_value (void)
1300 {
1301 return ++last_reg_value;
1302 }
1303
1304 /* Vec referring to pseudo copies. */
1305 static vec<lra_copy_t> copy_vec;
1306
1307 /* Initialize I-th element of lra_reg_info. */
1308 static inline void
1309 initialize_lra_reg_info_element (int i)
1310 {
1311 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1312 #ifdef STACK_REGS
1313 lra_reg_info[i].no_stack_p = false;
1314 #endif
1315 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1316 lra_reg_info[i].preferred_hard_regno1 = -1;
1317 lra_reg_info[i].preferred_hard_regno2 = -1;
1318 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1319 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1320 lra_reg_info[i].biggest_mode = VOIDmode;
1321 lra_reg_info[i].live_ranges = NULL;
1322 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1323 lra_reg_info[i].last_reload = 0;
1324 lra_reg_info[i].restore_rtx = NULL_RTX;
1325 lra_reg_info[i].val = get_new_reg_value ();
1326 lra_reg_info[i].offset = 0;
1327 lra_reg_info[i].copies = NULL;
1328 }
1329
1330 /* Initialize common reg info and copies. */
1331 static void
1332 init_reg_info (void)
1333 {
1334 int i;
1335
1336 last_reg_value = 0;
1337 reg_info_size = max_reg_num () * 3 / 2 + 1;
1338 lra_reg_info = XNEWVEC (class lra_reg, reg_info_size);
1339 for (i = 0; i < reg_info_size; i++)
1340 initialize_lra_reg_info_element (i);
1341 copy_vec.truncate (0);
1342 CLEAR_HARD_REG_SET (hard_regs_spilled_into);
1343 }
1344
1345
1346 /* Finish common reg info and copies. */
1347 static void
1348 finish_reg_info (void)
1349 {
1350 int i;
1351
1352 for (i = 0; i < reg_info_size; i++)
1353 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1354 free (lra_reg_info);
1355 reg_info_size = 0;
1356 }
1357
1358 /* Expand common reg info if it is necessary. */
1359 static void
1360 expand_reg_info (void)
1361 {
1362 int i, old = reg_info_size;
1363
1364 if (reg_info_size > max_reg_num ())
1365 return;
1366 reg_info_size = max_reg_num () * 3 / 2 + 1;
1367 lra_reg_info = XRESIZEVEC (class lra_reg, lra_reg_info, reg_info_size);
1368 for (i = old; i < reg_info_size; i++)
1369 initialize_lra_reg_info_element (i);
1370 }
1371
1372 /* Free all copies. */
1373 void
1374 lra_free_copies (void)
1375 {
1376 lra_copy_t cp;
1377
1378 while (copy_vec.length () != 0)
1379 {
1380 cp = copy_vec.pop ();
1381 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1382 lra_copy_pool.remove (cp);
1383 }
1384 }
1385
1386 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1387 frequency is FREQ. */
1388 void
1389 lra_create_copy (int regno1, int regno2, int freq)
1390 {
1391 bool regno1_dest_p;
1392 lra_copy_t cp;
1393
1394 lra_assert (regno1 != regno2);
1395 regno1_dest_p = true;
1396 if (regno1 > regno2)
1397 {
1398 std::swap (regno1, regno2);
1399 regno1_dest_p = false;
1400 }
1401 cp = lra_copy_pool.allocate ();
1402 copy_vec.safe_push (cp);
1403 cp->regno1_dest_p = regno1_dest_p;
1404 cp->freq = freq;
1405 cp->regno1 = regno1;
1406 cp->regno2 = regno2;
1407 cp->regno1_next = lra_reg_info[regno1].copies;
1408 lra_reg_info[regno1].copies = cp;
1409 cp->regno2_next = lra_reg_info[regno2].copies;
1410 lra_reg_info[regno2].copies = cp;
1411 if (lra_dump_file != NULL)
1412 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1413 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1414 }
1415
1416 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1417 NULL. */
1418 lra_copy_t
1419 lra_get_copy (int n)
1420 {
1421 if (n >= (int) copy_vec.length ())
1422 return NULL;
1423 return copy_vec[n];
1424 }
1425
1426 \f
1427
1428 /* This page contains code dealing with info about registers in
1429 insns. */
1430
1431 /* Process X of INSN recursively and add info (operand type is given
1432 by TYPE) about registers in X to the insn DATA. If X can be early
1433 clobbered, alternatives in which it can be early clobbered are given
1434 by EARLY_CLOBBER_ALTS. */
1435 static void
1436 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x,
1437 rtx_insn *insn, enum op_type type,
1438 alternative_mask early_clobber_alts)
1439 {
1440 int i, j, regno;
1441 bool subreg_p;
1442 machine_mode mode;
1443 const char *fmt;
1444 enum rtx_code code;
1445 struct lra_insn_reg *curr;
1446
1447 code = GET_CODE (x);
1448 mode = GET_MODE (x);
1449 subreg_p = false;
1450 if (GET_CODE (x) == SUBREG)
1451 {
1452 mode = wider_subreg_mode (x);
1453 if (read_modify_subreg_p (x))
1454 subreg_p = true;
1455 x = SUBREG_REG (x);
1456 code = GET_CODE (x);
1457 }
1458 if (REG_P (x))
1459 {
1460 regno = REGNO (x);
1461 /* Process all regs even unallocatable ones as we need info about
1462 all regs for rematerialization pass. */
1463 expand_reg_info ();
1464 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, INSN_UID (insn)))
1465 {
1466 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1467 early_clobber_alts, data->regs);
1468 return;
1469 }
1470 else
1471 {
1472 for (curr = data->regs; curr != NULL; curr = curr->next)
1473 if (curr->regno == regno)
1474 {
1475 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1476 /* The info cannot be integrated into the found
1477 structure. */
1478 data->regs = new_insn_reg (data->insn, regno, type, mode,
1479 subreg_p, early_clobber_alts,
1480 data->regs);
1481 else
1482 {
1483 if (curr->type != type)
1484 curr->type = OP_INOUT;
1485 curr->early_clobber_alts |= early_clobber_alts;
1486 }
1487 return;
1488 }
1489 gcc_unreachable ();
1490 }
1491 }
1492
1493 switch (code)
1494 {
1495 case SET:
1496 add_regs_to_insn_regno_info (data, SET_DEST (x), insn, OP_OUT, 0);
1497 add_regs_to_insn_regno_info (data, SET_SRC (x), insn, OP_IN, 0);
1498 break;
1499 case CLOBBER:
1500 /* We treat clobber of non-operand hard registers as early
1501 clobber. */
1502 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_OUT,
1503 ALL_ALTERNATIVES);
1504 break;
1505 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1506 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1507 break;
1508 case PRE_MODIFY: case POST_MODIFY:
1509 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1510 add_regs_to_insn_regno_info (data, XEXP (x, 1), insn, OP_IN, 0);
1511 break;
1512 default:
1513 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1514 /* Some targets place small structures in registers for return
1515 values of functions, and those registers are wrapped in
1516 PARALLEL that we may see as the destination of a SET. Here
1517 is an example:
1518
1519 (call_insn 13 12 14 2 (set (parallel:BLK [
1520 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1521 (const_int 0 [0]))
1522 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1523 (const_int 8 [0x8]))
1524 ])
1525 (call (mem:QI (symbol_ref:DI (... */
1526 type = OP_IN;
1527 fmt = GET_RTX_FORMAT (code);
1528 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1529 {
1530 if (fmt[i] == 'e')
1531 add_regs_to_insn_regno_info (data, XEXP (x, i), insn, type, 0);
1532 else if (fmt[i] == 'E')
1533 {
1534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1535 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), insn,
1536 type, 0);
1537 }
1538 }
1539 }
1540 }
1541
1542 /* Return execution frequency of INSN. */
1543 static int
1544 get_insn_freq (rtx_insn *insn)
1545 {
1546 basic_block bb = BLOCK_FOR_INSN (insn);
1547
1548 gcc_checking_assert (bb != NULL);
1549 return REG_FREQ_FROM_BB (bb);
1550 }
1551
1552 /* Invalidate all reg info of INSN with DATA and execution frequency
1553 FREQ. Update common info about the invalidated registers. */
1554 static void
1555 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1556 int freq)
1557 {
1558 int uid;
1559 bool debug_p;
1560 unsigned int i;
1561 struct lra_insn_reg *ir, *next_ir;
1562
1563 uid = INSN_UID (insn);
1564 debug_p = DEBUG_INSN_P (insn);
1565 for (ir = data->regs; ir != NULL; ir = next_ir)
1566 {
1567 i = ir->regno;
1568 next_ir = ir->next;
1569 lra_insn_reg_pool.remove (ir);
1570 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1571 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1572 {
1573 lra_reg_info[i].nrefs--;
1574 lra_reg_info[i].freq -= freq;
1575 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1576 }
1577 }
1578 data->regs = NULL;
1579 }
1580
1581 /* Invalidate all reg info of INSN. Update common info about the
1582 invalidated registers. */
1583 void
1584 lra_invalidate_insn_regno_info (rtx_insn *insn)
1585 {
1586 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1587 get_insn_freq (insn));
1588 }
1589
1590 /* Update common reg info from reg info of insn given by its DATA and
1591 execution frequency FREQ. */
1592 static void
1593 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1594 {
1595 unsigned int i;
1596 struct lra_insn_reg *ir;
1597
1598 for (ir = data->regs; ir != NULL; ir = ir->next)
1599 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1600 {
1601 lra_reg_info[i].nrefs++;
1602 lra_reg_info[i].freq += freq;
1603 }
1604 }
1605
1606 /* Set up insn reg info of INSN. Update common reg info from reg info
1607 of INSN. */
1608 void
1609 lra_update_insn_regno_info (rtx_insn *insn)
1610 {
1611 int i, freq;
1612 lra_insn_recog_data_t data;
1613 struct lra_static_insn_data *static_data;
1614 enum rtx_code code;
1615 rtx link;
1616
1617 if (! INSN_P (insn))
1618 return;
1619 data = lra_get_insn_recog_data (insn);
1620 static_data = data->insn_static_data;
1621 freq = NONDEBUG_INSN_P (insn) ? get_insn_freq (insn) : 0;
1622 invalidate_insn_data_regno_info (data, insn, freq);
1623 for (i = static_data->n_operands - 1; i >= 0; i--)
1624 add_regs_to_insn_regno_info (data, *data->operand_loc[i], insn,
1625 static_data->operand[i].type,
1626 static_data->operand[i].early_clobber_alts);
1627 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1628 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), insn,
1629 code == USE ? OP_IN : OP_OUT, 0);
1630 if (CALL_P (insn))
1631 /* On some targets call insns can refer to pseudos in memory in
1632 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1633 consider their occurrences in calls for different
1634 transformations (e.g. inheritance) with given pseudos. */
1635 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1636 link != NULL_RTX;
1637 link = XEXP (link, 1))
1638 {
1639 code = GET_CODE (XEXP (link, 0));
1640 if ((code == USE || code == CLOBBER)
1641 && MEM_P (XEXP (XEXP (link, 0), 0)))
1642 add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), insn,
1643 code == USE ? OP_IN : OP_OUT, 0);
1644 }
1645 if (NONDEBUG_INSN_P (insn))
1646 setup_insn_reg_info (data, freq);
1647 }
1648
1649 /* Return reg info of insn given by it UID. */
1650 struct lra_insn_reg *
1651 lra_get_insn_regs (int uid)
1652 {
1653 lra_insn_recog_data_t data;
1654
1655 data = get_insn_recog_data_by_uid (uid);
1656 return data->regs;
1657 }
1658
1659 \f
1660
1661 /* Recursive hash function for RTL X. */
1662 hashval_t
1663 lra_rtx_hash (rtx x)
1664 {
1665 int i, j;
1666 enum rtx_code code;
1667 const char *fmt;
1668 hashval_t val = 0;
1669
1670 if (x == 0)
1671 return val;
1672
1673 code = GET_CODE (x);
1674 val += (int) code + 4095;
1675
1676 /* Some RTL can be compared nonrecursively. */
1677 switch (code)
1678 {
1679 case REG:
1680 return val + REGNO (x);
1681
1682 case LABEL_REF:
1683 return iterative_hash_object (XEXP (x, 0), val);
1684
1685 case SYMBOL_REF:
1686 return iterative_hash_object (XSTR (x, 0), val);
1687
1688 case SCRATCH:
1689 case CONST_DOUBLE:
1690 case CONST_VECTOR:
1691 return val;
1692
1693 case CONST_INT:
1694 return val + UINTVAL (x);
1695
1696 default:
1697 break;
1698 }
1699
1700 /* Hash the elements. */
1701 fmt = GET_RTX_FORMAT (code);
1702 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1703 {
1704 switch (fmt[i])
1705 {
1706 case 'w':
1707 val += XWINT (x, i);
1708 break;
1709
1710 case 'n':
1711 case 'i':
1712 val += XINT (x, i);
1713 break;
1714
1715 case 'V':
1716 case 'E':
1717 val += XVECLEN (x, i);
1718
1719 for (j = 0; j < XVECLEN (x, i); j++)
1720 val += lra_rtx_hash (XVECEXP (x, i, j));
1721 break;
1722
1723 case 'e':
1724 val += lra_rtx_hash (XEXP (x, i));
1725 break;
1726
1727 case 'S':
1728 case 's':
1729 val += htab_hash_string (XSTR (x, i));
1730 break;
1731
1732 case 'u':
1733 case '0':
1734 case 't':
1735 break;
1736
1737 /* It is believed that rtx's at this level will never
1738 contain anything but integers and other rtx's, except for
1739 within LABEL_REFs and SYMBOL_REFs. */
1740 default:
1741 abort ();
1742 }
1743 }
1744 return val;
1745 }
1746
1747 \f
1748
1749 /* This page contains code dealing with stack of the insns which
1750 should be processed by the next constraint pass. */
1751
1752 /* Bitmap used to put an insn on the stack only in one exemplar. */
1753 static sbitmap lra_constraint_insn_stack_bitmap;
1754
1755 /* The stack itself. */
1756 vec<rtx_insn *> lra_constraint_insn_stack;
1757
1758 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1759 info for INSN, otherwise only update it if INSN is not already on the
1760 stack. */
1761 static inline void
1762 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1763 {
1764 unsigned int uid = INSN_UID (insn);
1765 if (always_update)
1766 lra_update_insn_regno_info (insn);
1767 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1768 lra_constraint_insn_stack_bitmap =
1769 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1770 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1771 return;
1772 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1773 if (! always_update)
1774 lra_update_insn_regno_info (insn);
1775 lra_constraint_insn_stack.safe_push (insn);
1776 }
1777
1778 /* Put INSN on the stack. */
1779 void
1780 lra_push_insn (rtx_insn *insn)
1781 {
1782 lra_push_insn_1 (insn, false);
1783 }
1784
1785 /* Put INSN on the stack and update its reg info. */
1786 void
1787 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1788 {
1789 lra_push_insn_1 (insn, true);
1790 }
1791
1792 /* Put insn with UID on the stack. */
1793 void
1794 lra_push_insn_by_uid (unsigned int uid)
1795 {
1796 lra_push_insn (lra_insn_recog_data[uid]->insn);
1797 }
1798
1799 /* Take the last-inserted insns off the stack and return it. */
1800 rtx_insn *
1801 lra_pop_insn (void)
1802 {
1803 rtx_insn *insn = lra_constraint_insn_stack.pop ();
1804 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1805 return insn;
1806 }
1807
1808 /* Return the current size of the insn stack. */
1809 unsigned int
1810 lra_insn_stack_length (void)
1811 {
1812 return lra_constraint_insn_stack.length ();
1813 }
1814
1815 /* Push insns FROM to TO (excluding it) going in reverse order. */
1816 static void
1817 push_insns (rtx_insn *from, rtx_insn *to)
1818 {
1819 rtx_insn *insn;
1820
1821 if (from == NULL_RTX)
1822 return;
1823 for (insn = from; insn != to; insn = PREV_INSN (insn))
1824 if (INSN_P (insn))
1825 lra_push_insn (insn);
1826 }
1827
1828 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1829 taken from the next BB insn after LAST or zero if there in such
1830 insn. */
1831 static void
1832 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1833 {
1834 rtx_insn *before = next_nonnote_nondebug_insn_bb (last);
1835 poly_int64 offset = (before == NULL_RTX || ! INSN_P (before)
1836 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1837
1838 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1839 lra_get_insn_recog_data (insn)->sp_offset = offset;
1840 }
1841
1842 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1843 insns onto the stack. Print about emitting the insns with
1844 TITLE. */
1845 void
1846 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1847 const char *title)
1848 {
1849 rtx_insn *last;
1850
1851 if (before == NULL_RTX && after == NULL_RTX)
1852 return;
1853 if (lra_dump_file != NULL)
1854 {
1855 dump_insn_slim (lra_dump_file, insn);
1856 if (before != NULL_RTX)
1857 {
1858 fprintf (lra_dump_file," %s before:\n", title);
1859 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1860 }
1861 if (after != NULL_RTX)
1862 {
1863 fprintf (lra_dump_file, " %s after:\n", title);
1864 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1865 }
1866 fprintf (lra_dump_file, "\n");
1867 }
1868 if (before != NULL_RTX)
1869 {
1870 if (cfun->can_throw_non_call_exceptions)
1871 copy_reg_eh_region_note_forward (insn, before, NULL);
1872 emit_insn_before (before, insn);
1873 push_insns (PREV_INSN (insn), PREV_INSN (before));
1874 setup_sp_offset (before, PREV_INSN (insn));
1875 }
1876 if (after != NULL_RTX)
1877 {
1878 if (cfun->can_throw_non_call_exceptions)
1879 copy_reg_eh_region_note_forward (insn, after, NULL);
1880 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1881 ;
1882 emit_insn_after (after, insn);
1883 push_insns (last, insn);
1884 setup_sp_offset (after, last);
1885 }
1886 if (cfun->can_throw_non_call_exceptions)
1887 {
1888 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1889 if (note && !insn_could_throw_p (insn))
1890 remove_note (insn, note);
1891 }
1892 }
1893 \f
1894
1895 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1896 register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
1897 DEBUG_P is if LOC is within a DEBUG_INSN. Return true if any
1898 change was made. */
1899 bool
1900 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p,
1901 bool debug_p)
1902 {
1903 rtx x = *loc;
1904 bool result = false;
1905 enum rtx_code code;
1906 const char *fmt;
1907 int i, j;
1908
1909 if (x == NULL_RTX)
1910 return false;
1911
1912 code = GET_CODE (x);
1913 if (code == SUBREG && subreg_p)
1914 {
1915 rtx subst, inner = SUBREG_REG (x);
1916 /* Transform subreg of constant while we still have inner mode
1917 of the subreg. The subreg internal should not be an insn
1918 operand. */
1919 if (REG_P (inner) && (int) REGNO (inner) == old_regno
1920 && CONSTANT_P (new_reg)
1921 && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1922 SUBREG_BYTE (x))) != NULL_RTX)
1923 {
1924 *loc = subst;
1925 return true;
1926 }
1927
1928 }
1929 else if (code == REG && (int) REGNO (x) == old_regno)
1930 {
1931 machine_mode mode = GET_MODE (x);
1932 machine_mode inner_mode = GET_MODE (new_reg);
1933
1934 if (mode != inner_mode
1935 && ! (CONST_SCALAR_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1936 {
1937 poly_uint64 offset = 0;
1938 if (partial_subreg_p (mode, inner_mode)
1939 && SCALAR_INT_MODE_P (inner_mode))
1940 offset = subreg_lowpart_offset (mode, inner_mode);
1941 if (debug_p)
1942 new_reg = gen_rtx_raw_SUBREG (mode, new_reg, offset);
1943 else
1944 new_reg = gen_rtx_SUBREG (mode, new_reg, offset);
1945 }
1946 *loc = new_reg;
1947 return true;
1948 }
1949
1950 /* Scan all the operand sub-expressions. */
1951 fmt = GET_RTX_FORMAT (code);
1952 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1953 {
1954 if (fmt[i] == 'e')
1955 {
1956 if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
1957 new_reg, subreg_p, debug_p))
1958 result = true;
1959 }
1960 else if (fmt[i] == 'E')
1961 {
1962 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1963 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
1964 new_reg, subreg_p, debug_p))
1965 result = true;
1966 }
1967 }
1968 return result;
1969 }
1970
1971 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg
1972 of constant if SUBREG_P. This won't update the insn ptr, just the
1973 contents of the insn. */
1974 bool
1975 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
1976 rtx new_reg, bool subreg_p)
1977 {
1978 rtx loc = insn;
1979 return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p,
1980 DEBUG_INSN_P (insn));
1981 }
1982
1983 \f
1984
1985 /* This page contains code dealing with scratches (changing them onto
1986 pseudos and restoring them from the pseudos).
1987
1988 We change scratches into pseudos at the beginning of LRA to
1989 simplify dealing with them (conflicts, hard register assignments).
1990
1991 If the pseudo denoting scratch was spilled it means that we do need
1992 a hard register for it. Such pseudos are transformed back to
1993 scratches at the end of LRA. */
1994
1995 /* Description of location of a former scratch operand. */
1996 struct sloc
1997 {
1998 rtx_insn *insn; /* Insn where the scratch was. */
1999 int nop; /* Number of the operand which was a scratch. */
2000 int icode; /* Original icode from which scratch was removed. */
2001 };
2002
2003 typedef struct sloc *sloc_t;
2004
2005 /* Locations of the former scratches. */
2006 static vec<sloc_t> scratches;
2007
2008 /* Bitmap of scratch regnos. */
2009 static bitmap_head scratch_bitmap;
2010
2011 /* Bitmap of scratch operands. */
2012 static bitmap_head scratch_operand_bitmap;
2013
2014 /* Return true if pseudo REGNO is made of SCRATCH. */
2015 bool
2016 lra_former_scratch_p (int regno)
2017 {
2018 return bitmap_bit_p (&scratch_bitmap, regno);
2019 }
2020
2021 /* Return true if the operand NOP of INSN is a former scratch. */
2022 bool
2023 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
2024 {
2025 return bitmap_bit_p (&scratch_operand_bitmap,
2026 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
2027 }
2028
2029 /* Register operand NOP in INSN as a former scratch. It will be
2030 changed to scratch back, if it is necessary, at the LRA end. */
2031 void
2032 lra_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
2033 {
2034 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
2035 rtx op = *id->operand_loc[nop];
2036 sloc_t loc = XNEW (struct sloc);
2037 lra_assert (REG_P (op));
2038 loc->insn = insn;
2039 loc->nop = nop;
2040 loc->icode = icode;
2041 scratches.safe_push (loc);
2042 bitmap_set_bit (&scratch_bitmap, REGNO (op));
2043 bitmap_set_bit (&scratch_operand_bitmap,
2044 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
2045 add_reg_note (insn, REG_UNUSED, op);
2046 }
2047
2048 /* Change INSN's scratches into pseudos and save their location. */
2049 static void
2050 remove_scratches_1 (rtx_insn *insn)
2051 {
2052 int i;
2053 bool insn_changed_p;
2054 rtx reg;
2055 lra_insn_recog_data_t id;
2056 struct lra_static_insn_data *static_id;
2057
2058 id = lra_get_insn_recog_data (insn);
2059 static_id = id->insn_static_data;
2060 insn_changed_p = false;
2061 for (i = 0; i < static_id->n_operands; i++)
2062 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
2063 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
2064 {
2065 insn_changed_p = true;
2066 *id->operand_loc[i] = reg
2067 = lra_create_new_reg (static_id->operand[i].mode,
2068 *id->operand_loc[i], ALL_REGS, NULL);
2069 lra_register_new_scratch_op (insn, i, id->icode);
2070 if (lra_dump_file != NULL)
2071 fprintf (lra_dump_file,
2072 "Removing SCRATCH in insn #%u (nop %d)\n",
2073 INSN_UID (insn), i);
2074 }
2075 if (insn_changed_p)
2076 /* Because we might use DF right after caller-saves sub-pass
2077 we need to keep DF info up to date. */
2078 df_insn_rescan (insn);
2079 }
2080
2081 /* Change scratches into pseudos and save their location. */
2082 static void
2083 remove_scratches (void)
2084 {
2085 basic_block bb;
2086 rtx_insn *insn;
2087
2088 scratches.create (get_max_uid ());
2089 bitmap_initialize (&scratch_bitmap, &reg_obstack);
2090 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
2091 FOR_EACH_BB_FN (bb, cfun)
2092 FOR_BB_INSNS (bb, insn)
2093 if (INSN_P (insn))
2094 remove_scratches_1 (insn);
2095 }
2096
2097 /* Changes pseudos created by function remove_scratches onto scratches. */
2098 static void
2099 restore_scratches (void)
2100 {
2101 int regno;
2102 unsigned i;
2103 sloc_t loc;
2104 rtx_insn *last = NULL;
2105 lra_insn_recog_data_t id = NULL;
2106
2107 for (i = 0; scratches.iterate (i, &loc); i++)
2108 {
2109 /* Ignore already deleted insns. */
2110 if (NOTE_P (loc->insn)
2111 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
2112 continue;
2113 if (last != loc->insn)
2114 {
2115 last = loc->insn;
2116 id = lra_get_insn_recog_data (last);
2117 }
2118 if (loc->icode != id->icode)
2119 {
2120 /* The icode doesn't match, which means the insn has been modified
2121 (e.g. register elimination). The scratch cannot be restored. */
2122 continue;
2123 }
2124 if (REG_P (*id->operand_loc[loc->nop])
2125 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2126 >= FIRST_PSEUDO_REGISTER)
2127 && lra_get_regno_hard_regno (regno) < 0)
2128 {
2129 /* It should be only case when scratch register with chosen
2130 constraint 'X' did not get memory or hard register. */
2131 lra_assert (lra_former_scratch_p (regno));
2132 *id->operand_loc[loc->nop]
2133 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2134 lra_update_dup (id, loc->nop);
2135 if (lra_dump_file != NULL)
2136 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2137 INSN_UID (loc->insn), loc->nop);
2138 }
2139 }
2140 for (i = 0; scratches.iterate (i, &loc); i++)
2141 free (loc);
2142 scratches.release ();
2143 bitmap_clear (&scratch_bitmap);
2144 bitmap_clear (&scratch_operand_bitmap);
2145 }
2146
2147 \f
2148
2149 /* Function checks RTL for correctness. If FINAL_P is true, it is
2150 done at the end of LRA and the check is more rigorous. */
2151 static void
2152 check_rtl (bool final_p)
2153 {
2154 basic_block bb;
2155 rtx_insn *insn;
2156
2157 lra_assert (! final_p || reload_completed);
2158 FOR_EACH_BB_FN (bb, cfun)
2159 FOR_BB_INSNS (bb, insn)
2160 if (NONDEBUG_INSN_P (insn)
2161 && GET_CODE (PATTERN (insn)) != USE
2162 && GET_CODE (PATTERN (insn)) != CLOBBER
2163 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2164 {
2165 if (final_p)
2166 {
2167 extract_constrain_insn (insn);
2168 continue;
2169 }
2170 /* LRA code is based on assumption that all addresses can be
2171 correctly decomposed. LRA can generate reloads for
2172 decomposable addresses. The decomposition code checks the
2173 correctness of the addresses. So we don't need to check
2174 the addresses here. Don't call insn_invalid_p here, it can
2175 change the code at this stage. */
2176 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2177 fatal_insn_not_found (insn);
2178 }
2179 }
2180
2181 /* Determine if the current function has an exception receiver block
2182 that reaches the exit block via non-exceptional edges */
2183 static bool
2184 has_nonexceptional_receiver (void)
2185 {
2186 edge e;
2187 edge_iterator ei;
2188 basic_block *tos, *worklist, bb;
2189
2190 /* If we're not optimizing, then just err on the safe side. */
2191 if (!optimize)
2192 return true;
2193
2194 /* First determine which blocks can reach exit via normal paths. */
2195 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2196
2197 FOR_EACH_BB_FN (bb, cfun)
2198 bb->flags &= ~BB_REACHABLE;
2199
2200 /* Place the exit block on our worklist. */
2201 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2202 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2203
2204 /* Iterate: find everything reachable from what we've already seen. */
2205 while (tos != worklist)
2206 {
2207 bb = *--tos;
2208
2209 FOR_EACH_EDGE (e, ei, bb->preds)
2210 if (e->flags & EDGE_ABNORMAL)
2211 {
2212 free (worklist);
2213 return true;
2214 }
2215 else
2216 {
2217 basic_block src = e->src;
2218
2219 if (!(src->flags & BB_REACHABLE))
2220 {
2221 src->flags |= BB_REACHABLE;
2222 *tos++ = src;
2223 }
2224 }
2225 }
2226 free (worklist);
2227 /* No exceptional block reached exit unexceptionally. */
2228 return false;
2229 }
2230
2231
2232 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2233 static void
2234 add_auto_inc_notes (rtx_insn *insn, rtx x)
2235 {
2236 enum rtx_code code = GET_CODE (x);
2237 const char *fmt;
2238 int i, j;
2239
2240 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2241 {
2242 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2243 return;
2244 }
2245
2246 /* Scan all X sub-expressions. */
2247 fmt = GET_RTX_FORMAT (code);
2248 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2249 {
2250 if (fmt[i] == 'e')
2251 add_auto_inc_notes (insn, XEXP (x, i));
2252 else if (fmt[i] == 'E')
2253 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2254 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2255 }
2256 }
2257
2258
2259 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2260 We change pseudos by hard registers without notification of DF and
2261 that can make the notes obsolete. DF-infrastructure does not deal
2262 with REG_INC notes -- so we should regenerate them here. */
2263 static void
2264 update_inc_notes (void)
2265 {
2266 rtx *pnote;
2267 basic_block bb;
2268 rtx_insn *insn;
2269
2270 FOR_EACH_BB_FN (bb, cfun)
2271 FOR_BB_INSNS (bb, insn)
2272 if (NONDEBUG_INSN_P (insn))
2273 {
2274 pnote = &REG_NOTES (insn);
2275 while (*pnote != 0)
2276 {
2277 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2278 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2279 || REG_NOTE_KIND (*pnote) == REG_INC)
2280 *pnote = XEXP (*pnote, 1);
2281 else
2282 pnote = &XEXP (*pnote, 1);
2283 }
2284
2285 if (AUTO_INC_DEC)
2286 add_auto_inc_notes (insn, PATTERN (insn));
2287 }
2288 }
2289
2290 /* Set to 1 while in lra. */
2291 int lra_in_progress;
2292
2293 /* Start of pseudo regnos before the LRA. */
2294 int lra_new_regno_start;
2295
2296 /* Start of reload pseudo regnos before the new spill pass. */
2297 int lra_constraint_new_regno_start;
2298
2299 /* Avoid spilling pseudos with regno more than the following value if
2300 it is possible. */
2301 int lra_bad_spill_regno_start;
2302
2303 /* Inheritance pseudo regnos before the new spill pass. */
2304 bitmap_head lra_inheritance_pseudos;
2305
2306 /* Split regnos before the new spill pass. */
2307 bitmap_head lra_split_regs;
2308
2309 /* Reload pseudo regnos before the new assignment pass which still can
2310 be spilled after the assignment pass as memory is also accepted in
2311 insns for the reload pseudos. */
2312 bitmap_head lra_optional_reload_pseudos;
2313
2314 /* Pseudo regnos used for subreg reloads before the new assignment
2315 pass. Such pseudos still can be spilled after the assignment
2316 pass. */
2317 bitmap_head lra_subreg_reload_pseudos;
2318
2319 /* File used for output of LRA debug information. */
2320 FILE *lra_dump_file;
2321
2322 /* True if we found an asm error. */
2323 bool lra_asm_error_p;
2324
2325 /* True if we should try spill into registers of different classes
2326 instead of memory. */
2327 bool lra_reg_spill_p;
2328
2329 /* Set up value LRA_REG_SPILL_P. */
2330 static void
2331 setup_reg_spill_flag (void)
2332 {
2333 int cl, mode;
2334
2335 if (targetm.spill_class != NULL)
2336 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2337 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2338 if (targetm.spill_class ((enum reg_class) cl,
2339 (machine_mode) mode) != NO_REGS)
2340 {
2341 lra_reg_spill_p = true;
2342 return;
2343 }
2344 lra_reg_spill_p = false;
2345 }
2346
2347 /* True if the current function is too big to use regular algorithms
2348 in LRA. In other words, we should use simpler and faster algorithms
2349 in LRA. It also means we should not worry about generation code
2350 for caller saves. The value is set up in IRA. */
2351 bool lra_simple_p;
2352
2353 /* Major LRA entry function. F is a file should be used to dump LRA
2354 debug info. */
2355 void
2356 lra (FILE *f)
2357 {
2358 int i;
2359 bool live_p, inserted_p;
2360
2361 lra_dump_file = f;
2362 lra_asm_error_p = false;
2363
2364 timevar_push (TV_LRA);
2365
2366 /* Make sure that the last insn is a note. Some subsequent passes
2367 need it. */
2368 emit_note (NOTE_INSN_DELETED);
2369
2370 lra_no_alloc_regs = ira_no_alloc_regs;
2371
2372 init_reg_info ();
2373 expand_reg_info ();
2374
2375 init_insn_recog_data ();
2376
2377 /* Some quick check on RTL generated by previous passes. */
2378 if (flag_checking)
2379 check_rtl (false);
2380
2381 lra_in_progress = 1;
2382
2383 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2384 lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2385 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2386 lra_rematerialization_iter = 0;
2387
2388 setup_reg_spill_flag ();
2389
2390 /* Function remove_scratches can creates new pseudos for clobbers --
2391 so set up lra_constraint_new_regno_start before its call to
2392 permit changing reg classes for pseudos created by this
2393 simplification. */
2394 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2395 lra_bad_spill_regno_start = INT_MAX;
2396 remove_scratches ();
2397
2398 /* A function that has a non-local label that can reach the exit
2399 block via non-exceptional paths must save all call-saved
2400 registers. */
2401 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2402 crtl->saves_all_registers = 1;
2403
2404 if (crtl->saves_all_registers)
2405 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2406 if (!crtl->abi->clobbers_full_reg_p (i)
2407 && !fixed_regs[i]
2408 && !LOCAL_REGNO (i))
2409 df_set_regs_ever_live (i, true);
2410
2411 /* We don't DF from now and avoid its using because it is to
2412 expensive when a lot of RTL changes are made. */
2413 df_set_flags (DF_NO_INSN_RESCAN);
2414 lra_constraint_insn_stack.create (get_max_uid ());
2415 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2416 bitmap_clear (lra_constraint_insn_stack_bitmap);
2417 lra_live_ranges_init ();
2418 lra_constraints_init ();
2419 lra_curr_reload_num = 0;
2420 push_insns (get_last_insn (), NULL);
2421 /* It is needed for the 1st coalescing. */
2422 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2423 bitmap_initialize (&lra_split_regs, &reg_obstack);
2424 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2425 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2426 live_p = false;
2427 if (maybe_ne (get_frame_size (), 0) && crtl->stack_alignment_needed)
2428 /* If we have a stack frame, we must align it now. The stack size
2429 may be a part of the offset computation for register
2430 elimination. */
2431 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2432 lra_init_equiv ();
2433 for (;;)
2434 {
2435 for (;;)
2436 {
2437 bool reloads_p = lra_constraints (lra_constraint_iter == 0);
2438 /* Constraint transformations may result in that eliminable
2439 hard regs become uneliminable and pseudos which use them
2440 should be spilled. It is better to do it before pseudo
2441 assignments.
2442
2443 For example, rs6000 can make
2444 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2445 to use a constant pool. */
2446 lra_eliminate (false, false);
2447 /* We should try to assign hard registers to scratches even
2448 if there were no RTL transformations in lra_constraints.
2449 Also we should check IRA assignments on the first
2450 iteration as they can be wrong because of early clobbers
2451 operands which are ignored in IRA. */
2452 if (! reloads_p && lra_constraint_iter > 1)
2453 {
2454 /* Stack is not empty here only when there are changes
2455 during the elimination sub-pass. */
2456 if (bitmap_empty_p (lra_constraint_insn_stack_bitmap))
2457 break;
2458 else
2459 /* If there are no reloads but changing due
2460 elimination, restart the constraint sub-pass
2461 first. */
2462 continue;
2463 }
2464 /* Do inheritance only for regular algorithms. */
2465 if (! lra_simple_p)
2466 lra_inheritance ();
2467 if (live_p)
2468 lra_clear_live_ranges ();
2469 bool fails_p;
2470 do
2471 {
2472 /* We need live ranges for lra_assign -- so build them.
2473 But don't remove dead insns or change global live
2474 info as we can undo inheritance transformations after
2475 inheritance pseudo assigning. */
2476 lra_create_live_ranges (true, !lra_simple_p);
2477 live_p = true;
2478 /* If we don't spill non-reload and non-inheritance
2479 pseudos, there is no sense to run memory-memory move
2480 coalescing. If inheritance pseudos were spilled, the
2481 memory-memory moves involving them will be removed by
2482 pass undoing inheritance. */
2483 if (lra_simple_p)
2484 lra_assign (fails_p);
2485 else
2486 {
2487 bool spill_p = !lra_assign (fails_p);
2488
2489 if (lra_undo_inheritance ())
2490 live_p = false;
2491 if (spill_p && ! fails_p)
2492 {
2493 if (! live_p)
2494 {
2495 lra_create_live_ranges (true, true);
2496 live_p = true;
2497 }
2498 if (lra_coalesce ())
2499 live_p = false;
2500 }
2501 if (! live_p)
2502 lra_clear_live_ranges ();
2503 }
2504 if (fails_p)
2505 {
2506 /* It is a very rare case. It is the last hope to
2507 split a hard regno live range for a reload
2508 pseudo. */
2509 if (live_p)
2510 lra_clear_live_ranges ();
2511 live_p = false;
2512 if (! lra_split_hard_reg_for ())
2513 break;
2514 }
2515 }
2516 while (fails_p);
2517 if (! live_p) {
2518 /* We need the correct reg notes for work of constraint sub-pass. */
2519 lra_create_live_ranges (true, true);
2520 live_p = true;
2521 }
2522 }
2523 /* Don't clear optional reloads bitmap until all constraints are
2524 satisfied as we need to differ them from regular reloads. */
2525 bitmap_clear (&lra_optional_reload_pseudos);
2526 bitmap_clear (&lra_subreg_reload_pseudos);
2527 bitmap_clear (&lra_inheritance_pseudos);
2528 bitmap_clear (&lra_split_regs);
2529 if (! live_p)
2530 {
2531 /* We need full live info for spilling pseudos into
2532 registers instead of memory. */
2533 lra_create_live_ranges (lra_reg_spill_p, true);
2534 live_p = true;
2535 }
2536 /* We should check necessity for spilling here as the above live
2537 range pass can remove spilled pseudos. */
2538 if (! lra_need_for_spills_p ())
2539 break;
2540 /* Now we know what pseudos should be spilled. Try to
2541 rematerialize them first. */
2542 if (lra_remat ())
2543 {
2544 /* We need full live info -- see the comment above. */
2545 lra_create_live_ranges (lra_reg_spill_p, true);
2546 live_p = true;
2547 if (! lra_need_for_spills_p ())
2548 {
2549 if (lra_need_for_scratch_reg_p ())
2550 continue;
2551 break;
2552 }
2553 }
2554 lra_spill ();
2555 /* Assignment of stack slots changes elimination offsets for
2556 some eliminations. So update the offsets here. */
2557 lra_eliminate (false, false);
2558 lra_constraint_new_regno_start = max_reg_num ();
2559 if (lra_bad_spill_regno_start == INT_MAX
2560 && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2561 && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2562 /* After switching off inheritance and rematerialization
2563 passes, avoid spilling reload pseudos will be created to
2564 prevent LRA cycling in some complicated cases. */
2565 lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2566 lra_assignment_iter_after_spill = 0;
2567 }
2568 restore_scratches ();
2569 lra_eliminate (true, false);
2570 lra_final_code_change ();
2571 lra_in_progress = 0;
2572 if (live_p)
2573 lra_clear_live_ranges ();
2574 lra_live_ranges_finish ();
2575 lra_constraints_finish ();
2576 finish_reg_info ();
2577 sbitmap_free (lra_constraint_insn_stack_bitmap);
2578 lra_constraint_insn_stack.release ();
2579 finish_insn_recog_data ();
2580 regstat_free_n_sets_and_refs ();
2581 regstat_free_ri ();
2582 reload_completed = 1;
2583 update_inc_notes ();
2584
2585 inserted_p = fixup_abnormal_edges ();
2586
2587 /* We've possibly turned single trapping insn into multiple ones. */
2588 if (cfun->can_throw_non_call_exceptions)
2589 {
2590 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2591 bitmap_ones (blocks);
2592 find_many_sub_basic_blocks (blocks);
2593 }
2594
2595 if (inserted_p)
2596 commit_edge_insertions ();
2597
2598 /* Replacing pseudos with their memory equivalents might have
2599 created shared rtx. Subsequent passes would get confused
2600 by this, so unshare everything here. */
2601 unshare_all_rtl_again (get_insns ());
2602
2603 if (flag_checking)
2604 check_rtl (true);
2605
2606 timevar_pop (TV_LRA);
2607 }
2608
2609 /* Called once per compiler to initialize LRA data once. */
2610 void
2611 lra_init_once (void)
2612 {
2613 init_insn_code_data_once ();
2614 }
2615
2616 /* Called once per compiler to finish LRA data which are initialize
2617 once. */
2618 void
2619 lra_finish_once (void)
2620 {
2621 finish_insn_code_data_once ();
2622 }