Print lto report at the right place
[gcc.git] / gcc / lto / lto.c
1 /* Top-level LTO routines.
2 Copyright (C) 2009-2013 Free Software Foundation, Inc.
3 Contributed by CodeSourcery, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "opts.h"
25 #include "toplev.h"
26 #include "tree.h"
27 #include "tree-flow.h"
28 #include "diagnostic-core.h"
29 #include "tm.h"
30 #include "cgraph.h"
31 #include "ggc.h"
32 #include "tree-ssa-operands.h"
33 #include "tree-pass.h"
34 #include "langhooks.h"
35 #include "vec.h"
36 #include "bitmap.h"
37 #include "pointer-set.h"
38 #include "ipa-prop.h"
39 #include "common.h"
40 #include "debug.h"
41 #include "gimple.h"
42 #include "lto.h"
43 #include "lto-tree.h"
44 #include "lto-streamer.h"
45 #include "tree-streamer.h"
46 #include "splay-tree.h"
47 #include "lto-partition.h"
48
49 static GTY(()) tree first_personality_decl;
50
51 /* Returns a hash code for P. */
52
53 static hashval_t
54 hash_name (const void *p)
55 {
56 const struct lto_section_slot *ds = (const struct lto_section_slot *) p;
57 return (hashval_t) htab_hash_string (ds->name);
58 }
59
60
61 /* Returns nonzero if P1 and P2 are equal. */
62
63 static int
64 eq_name (const void *p1, const void *p2)
65 {
66 const struct lto_section_slot *s1 =
67 (const struct lto_section_slot *) p1;
68 const struct lto_section_slot *s2 =
69 (const struct lto_section_slot *) p2;
70
71 return strcmp (s1->name, s2->name) == 0;
72 }
73
74 /* Free lto_section_slot */
75
76 static void
77 free_with_string (void *arg)
78 {
79 struct lto_section_slot *s = (struct lto_section_slot *)arg;
80
81 free (CONST_CAST (char *, s->name));
82 free (arg);
83 }
84
85 /* Create section hash table */
86
87 htab_t
88 lto_obj_create_section_hash_table (void)
89 {
90 return htab_create (37, hash_name, eq_name, free_with_string);
91 }
92
93 /* Delete an allocated integer KEY in the splay tree. */
94
95 static void
96 lto_splay_tree_delete_id (splay_tree_key key)
97 {
98 free ((void *) key);
99 }
100
101 /* Compare splay tree node ids A and B. */
102
103 static int
104 lto_splay_tree_compare_ids (splay_tree_key a, splay_tree_key b)
105 {
106 unsigned HOST_WIDE_INT ai;
107 unsigned HOST_WIDE_INT bi;
108
109 ai = *(unsigned HOST_WIDE_INT *) a;
110 bi = *(unsigned HOST_WIDE_INT *) b;
111
112 if (ai < bi)
113 return -1;
114 else if (ai > bi)
115 return 1;
116 return 0;
117 }
118
119 /* Look up splay tree node by ID in splay tree T. */
120
121 static splay_tree_node
122 lto_splay_tree_lookup (splay_tree t, unsigned HOST_WIDE_INT id)
123 {
124 return splay_tree_lookup (t, (splay_tree_key) &id);
125 }
126
127 /* Check if KEY has ID. */
128
129 static bool
130 lto_splay_tree_id_equal_p (splay_tree_key key, unsigned HOST_WIDE_INT id)
131 {
132 return *(unsigned HOST_WIDE_INT *) key == id;
133 }
134
135 /* Insert a splay tree node into tree T with ID as key and FILE_DATA as value.
136 The ID is allocated separately because we need HOST_WIDE_INTs which may
137 be wider than a splay_tree_key. */
138
139 static void
140 lto_splay_tree_insert (splay_tree t, unsigned HOST_WIDE_INT id,
141 struct lto_file_decl_data *file_data)
142 {
143 unsigned HOST_WIDE_INT *idp = XCNEW (unsigned HOST_WIDE_INT);
144 *idp = id;
145 splay_tree_insert (t, (splay_tree_key) idp, (splay_tree_value) file_data);
146 }
147
148 /* Create a splay tree. */
149
150 static splay_tree
151 lto_splay_tree_new (void)
152 {
153 return splay_tree_new (lto_splay_tree_compare_ids,
154 lto_splay_tree_delete_id,
155 NULL);
156 }
157
158 /* Return true when NODE has a clone that is analyzed (i.e. we need
159 to load its body even if the node itself is not needed). */
160
161 static bool
162 has_analyzed_clone_p (struct cgraph_node *node)
163 {
164 struct cgraph_node *orig = node;
165 node = node->clones;
166 if (node)
167 while (node != orig)
168 {
169 if (node->analyzed)
170 return true;
171 if (node->clones)
172 node = node->clones;
173 else if (node->next_sibling_clone)
174 node = node->next_sibling_clone;
175 else
176 {
177 while (node != orig && !node->next_sibling_clone)
178 node = node->clone_of;
179 if (node != orig)
180 node = node->next_sibling_clone;
181 }
182 }
183 return false;
184 }
185
186 /* Read the function body for the function associated with NODE. */
187
188 static void
189 lto_materialize_function (struct cgraph_node *node)
190 {
191 tree decl;
192 struct lto_file_decl_data *file_data;
193 const char *data, *name;
194 size_t len;
195
196 decl = node->symbol.decl;
197 /* Read in functions with body (analyzed nodes)
198 and also functions that are needed to produce virtual clones. */
199 if (cgraph_function_with_gimple_body_p (node) || has_analyzed_clone_p (node))
200 {
201 /* Clones don't need to be read. */
202 if (node->clone_of)
203 return;
204
205 /* Load the function body only if not operating in WPA mode. In
206 WPA mode, the body of the function is not needed. */
207 if (!flag_wpa)
208 {
209 file_data = node->symbol.lto_file_data;
210 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
211
212 /* We may have renamed the declaration, e.g., a static function. */
213 name = lto_get_decl_name_mapping (file_data, name);
214
215 data = lto_get_section_data (file_data, LTO_section_function_body,
216 name, &len);
217 if (!data)
218 fatal_error ("%s: section %s is missing",
219 file_data->file_name,
220 name);
221
222 gcc_assert (DECL_STRUCT_FUNCTION (decl) == NULL);
223
224 push_struct_function (decl);
225 announce_function (decl);
226 lto_input_function_body (file_data, decl, data);
227 if (DECL_FUNCTION_PERSONALITY (decl) && !first_personality_decl)
228 first_personality_decl = DECL_FUNCTION_PERSONALITY (decl);
229 lto_stats.num_function_bodies++;
230 lto_free_section_data (file_data, LTO_section_function_body, name,
231 data, len);
232 pop_cfun ();
233 ggc_collect ();
234 }
235 }
236
237 /* Let the middle end know about the function. */
238 rest_of_decl_compilation (decl, 1, 0);
239 }
240
241
242 /* Decode the content of memory pointed to by DATA in the in decl
243 state object STATE. DATA_IN points to a data_in structure for
244 decoding. Return the address after the decoded object in the
245 input. */
246
247 static const uint32_t *
248 lto_read_in_decl_state (struct data_in *data_in, const uint32_t *data,
249 struct lto_in_decl_state *state)
250 {
251 uint32_t ix;
252 tree decl;
253 uint32_t i, j;
254
255 ix = *data++;
256 decl = streamer_tree_cache_get (data_in->reader_cache, ix);
257 if (TREE_CODE (decl) != FUNCTION_DECL)
258 {
259 gcc_assert (decl == void_type_node);
260 decl = NULL_TREE;
261 }
262 state->fn_decl = decl;
263
264 for (i = 0; i < LTO_N_DECL_STREAMS; i++)
265 {
266 uint32_t size = *data++;
267 tree *decls = ggc_alloc_vec_tree (size);
268
269 for (j = 0; j < size; j++)
270 decls[j] = streamer_tree_cache_get (data_in->reader_cache, data[j]);
271
272 state->streams[i].size = size;
273 state->streams[i].trees = decls;
274 data += size;
275 }
276
277 return data;
278 }
279
280
281
282 /* Global type table. FIXME, it should be possible to re-use some
283 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
284 etc), but those assume that types were built with the various
285 build_*_type routines which is not the case with the streamer. */
286 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
287 htab_t gimple_types;
288 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
289 htab_t type_hash_cache;
290
291 static hashval_t gimple_type_hash (const void *);
292
293 /* Structure used to maintain a cache of some type pairs compared by
294 gimple_types_compatible_p when comparing aggregate types. There are
295 three possible values for SAME_P:
296
297 -2: The pair (T1, T2) has just been inserted in the table.
298 0: T1 and T2 are different types.
299 1: T1 and T2 are the same type. */
300
301 struct type_pair_d
302 {
303 unsigned int uid1;
304 unsigned int uid2;
305 signed char same_p;
306 };
307 typedef struct type_pair_d *type_pair_t;
308
309 #define GIMPLE_TYPE_PAIR_SIZE 16381
310 struct type_pair_d *type_pair_cache;
311
312
313 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
314 entry if none existed. */
315
316 static inline type_pair_t
317 lookup_type_pair (tree t1, tree t2)
318 {
319 unsigned int index;
320 unsigned int uid1, uid2;
321
322 if (TYPE_UID (t1) < TYPE_UID (t2))
323 {
324 uid1 = TYPE_UID (t1);
325 uid2 = TYPE_UID (t2);
326 }
327 else
328 {
329 uid1 = TYPE_UID (t2);
330 uid2 = TYPE_UID (t1);
331 }
332 gcc_checking_assert (uid1 != uid2);
333
334 /* iterative_hash_hashval_t imply an function calls.
335 We know that UIDS are in limited range. */
336 index = ((((unsigned HOST_WIDE_INT)uid1 << HOST_BITS_PER_WIDE_INT / 2) + uid2)
337 % GIMPLE_TYPE_PAIR_SIZE);
338 if (type_pair_cache [index].uid1 == uid1
339 && type_pair_cache [index].uid2 == uid2)
340 return &type_pair_cache[index];
341
342 type_pair_cache [index].uid1 = uid1;
343 type_pair_cache [index].uid2 = uid2;
344 type_pair_cache [index].same_p = -2;
345
346 return &type_pair_cache[index];
347 }
348
349 /* Per pointer state for the SCC finding. The on_sccstack flag
350 is not strictly required, it is true when there is no hash value
351 recorded for the type and false otherwise. But querying that
352 is slower. */
353
354 struct sccs
355 {
356 unsigned int dfsnum;
357 unsigned int low;
358 bool on_sccstack;
359 union {
360 hashval_t hash;
361 signed char same_p;
362 } u;
363 };
364
365 static unsigned int next_dfs_num;
366 static unsigned int gtc_next_dfs_num;
367
368 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
369
370 typedef struct GTY(()) gimple_type_leader_entry_s {
371 tree type;
372 tree leader;
373 } gimple_type_leader_entry;
374
375 #define GIMPLE_TYPE_LEADER_SIZE 16381
376 static GTY((length("GIMPLE_TYPE_LEADER_SIZE")))
377 gimple_type_leader_entry *gimple_type_leader;
378
379 /* Lookup an existing leader for T and return it or NULL_TREE, if
380 there is none in the cache. */
381
382 static inline tree
383 gimple_lookup_type_leader (tree t)
384 {
385 gimple_type_leader_entry *leader;
386
387 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
388 if (leader->type != t)
389 return NULL_TREE;
390
391 return leader->leader;
392 }
393
394
395 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
396 true then if any type has no name return false, otherwise return
397 true if both types have no names. */
398
399 static bool
400 compare_type_names_p (tree t1, tree t2)
401 {
402 tree name1 = TYPE_NAME (t1);
403 tree name2 = TYPE_NAME (t2);
404
405 if ((name1 != NULL_TREE) != (name2 != NULL_TREE))
406 return false;
407
408 if (name1 == NULL_TREE)
409 return true;
410
411 /* Either both should be a TYPE_DECL or both an IDENTIFIER_NODE. */
412 if (TREE_CODE (name1) != TREE_CODE (name2))
413 return false;
414
415 if (TREE_CODE (name1) == TYPE_DECL)
416 name1 = DECL_NAME (name1);
417 gcc_checking_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
418
419 if (TREE_CODE (name2) == TYPE_DECL)
420 name2 = DECL_NAME (name2);
421 gcc_checking_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
422
423 /* Identifiers can be compared with pointer equality rather
424 than a string comparison. */
425 if (name1 == name2)
426 return true;
427
428 return false;
429 }
430
431 static bool
432 gimple_types_compatible_p_1 (tree, tree, type_pair_t,
433 vec<type_pair_t> *,
434 struct pointer_map_t *, struct obstack *);
435
436 /* DFS visit the edge from the callers type pair with state *STATE to
437 the pair T1, T2 while operating in FOR_MERGING_P mode.
438 Update the merging status if it is not part of the SCC containing the
439 callers pair and return it.
440 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
441
442 static bool
443 gtc_visit (tree t1, tree t2,
444 struct sccs *state,
445 vec<type_pair_t> *sccstack,
446 struct pointer_map_t *sccstate,
447 struct obstack *sccstate_obstack)
448 {
449 struct sccs *cstate = NULL;
450 type_pair_t p;
451 void **slot;
452 tree leader1, leader2;
453
454 /* Check first for the obvious case of pointer identity. */
455 if (t1 == t2)
456 return true;
457
458 /* Check that we have two types to compare. */
459 if (t1 == NULL_TREE || t2 == NULL_TREE)
460 return false;
461
462 /* Can't be the same type if the types don't have the same code. */
463 if (TREE_CODE (t1) != TREE_CODE (t2))
464 return false;
465
466 /* Can't be the same type if they have different CV qualifiers. */
467 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
468 return false;
469
470 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
471 return false;
472
473 /* Void types and nullptr types are always the same. */
474 if (TREE_CODE (t1) == VOID_TYPE
475 || TREE_CODE (t1) == NULLPTR_TYPE)
476 return true;
477
478 /* Can't be the same type if they have different alignment or mode. */
479 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
480 || TYPE_MODE (t1) != TYPE_MODE (t2))
481 return false;
482
483 /* Do some simple checks before doing three hashtable queries. */
484 if (INTEGRAL_TYPE_P (t1)
485 || SCALAR_FLOAT_TYPE_P (t1)
486 || FIXED_POINT_TYPE_P (t1)
487 || TREE_CODE (t1) == VECTOR_TYPE
488 || TREE_CODE (t1) == COMPLEX_TYPE
489 || TREE_CODE (t1) == OFFSET_TYPE
490 || POINTER_TYPE_P (t1))
491 {
492 /* Can't be the same type if they have different sign or precision. */
493 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
494 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
495 return false;
496
497 if (TREE_CODE (t1) == INTEGER_TYPE
498 && TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))
499 return false;
500
501 /* That's all we need to check for float and fixed-point types. */
502 if (SCALAR_FLOAT_TYPE_P (t1)
503 || FIXED_POINT_TYPE_P (t1))
504 return true;
505
506 /* For other types fall through to more complex checks. */
507 }
508
509 /* If the types have been previously registered and found equal
510 they still are. */
511 leader1 = gimple_lookup_type_leader (t1);
512 leader2 = gimple_lookup_type_leader (t2);
513 if (leader1 == t2
514 || t1 == leader2
515 || (leader1 && leader1 == leader2))
516 return true;
517
518 /* If the hash values of t1 and t2 are different the types can't
519 possibly be the same. This helps keeping the type-pair hashtable
520 small, only tracking comparisons for hash collisions. */
521 if (gimple_type_hash (t1) != gimple_type_hash (t2))
522 return false;
523
524 /* Allocate a new cache entry for this comparison. */
525 p = lookup_type_pair (t1, t2);
526 if (p->same_p == 0 || p->same_p == 1)
527 {
528 /* We have already decided whether T1 and T2 are the
529 same, return the cached result. */
530 return p->same_p == 1;
531 }
532
533 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
534 cstate = (struct sccs *)*slot;
535 /* Not yet visited. DFS recurse. */
536 if (!cstate)
537 {
538 gimple_types_compatible_p_1 (t1, t2, p,
539 sccstack, sccstate, sccstate_obstack);
540 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
541 state->low = MIN (state->low, cstate->low);
542 }
543 /* If the type is still on the SCC stack adjust the parents low. */
544 if (cstate->dfsnum < state->dfsnum
545 && cstate->on_sccstack)
546 state->low = MIN (cstate->dfsnum, state->low);
547
548 /* Return the current lattice value. We start with an equality
549 assumption so types part of a SCC will be optimistically
550 treated equal unless proven otherwise. */
551 return cstate->u.same_p;
552 }
553
554 /* Worker for gimple_types_compatible.
555 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
556
557 static bool
558 gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
559 vec<type_pair_t> *sccstack,
560 struct pointer_map_t *sccstate,
561 struct obstack *sccstate_obstack)
562 {
563 struct sccs *state;
564
565 gcc_assert (p->same_p == -2);
566
567 state = XOBNEW (sccstate_obstack, struct sccs);
568 *pointer_map_insert (sccstate, p) = state;
569
570 sccstack->safe_push (p);
571 state->dfsnum = gtc_next_dfs_num++;
572 state->low = state->dfsnum;
573 state->on_sccstack = true;
574 /* Start with an equality assumption. As we DFS recurse into child
575 SCCs this assumption may get revisited. */
576 state->u.same_p = 1;
577
578 /* The struct tags shall compare equal. */
579 if (!compare_type_names_p (t1, t2))
580 goto different_types;
581
582 /* The main variant of both types should compare equal. */
583 if (TYPE_MAIN_VARIANT (t1) != t1
584 || TYPE_MAIN_VARIANT (t2) != t2)
585 {
586 if (!gtc_visit (TYPE_MAIN_VARIANT (t1), TYPE_MAIN_VARIANT (t2),
587 state, sccstack, sccstate, sccstate_obstack))
588 goto different_types;
589 }
590
591 /* We may not merge typedef types to the same type in different
592 contexts. */
593 if (TYPE_NAME (t1)
594 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
595 && DECL_CONTEXT (TYPE_NAME (t1))
596 && TYPE_P (DECL_CONTEXT (TYPE_NAME (t1))))
597 {
598 if (!gtc_visit (DECL_CONTEXT (TYPE_NAME (t1)),
599 DECL_CONTEXT (TYPE_NAME (t2)),
600 state, sccstack, sccstate, sccstate_obstack))
601 goto different_types;
602 }
603
604 /* If their attributes are not the same they can't be the same type. */
605 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
606 goto different_types;
607
608 /* Do type-specific comparisons. */
609 switch (TREE_CODE (t1))
610 {
611 case VECTOR_TYPE:
612 case COMPLEX_TYPE:
613 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
614 state, sccstack, sccstate, sccstate_obstack))
615 goto different_types;
616 goto same_types;
617
618 case ARRAY_TYPE:
619 /* Array types are the same if the element types are the same and
620 the number of elements are the same. */
621 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
622 state, sccstack, sccstate, sccstate_obstack)
623 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
624 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
625 goto different_types;
626 else
627 {
628 tree i1 = TYPE_DOMAIN (t1);
629 tree i2 = TYPE_DOMAIN (t2);
630
631 /* For an incomplete external array, the type domain can be
632 NULL_TREE. Check this condition also. */
633 if (i1 == NULL_TREE && i2 == NULL_TREE)
634 goto same_types;
635 else if (i1 == NULL_TREE || i2 == NULL_TREE)
636 goto different_types;
637 else
638 {
639 tree min1 = TYPE_MIN_VALUE (i1);
640 tree min2 = TYPE_MIN_VALUE (i2);
641 tree max1 = TYPE_MAX_VALUE (i1);
642 tree max2 = TYPE_MAX_VALUE (i2);
643
644 /* The minimum/maximum values have to be the same. */
645 if ((min1 == min2
646 || (min1 && min2
647 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
648 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
649 || operand_equal_p (min1, min2, 0))))
650 && (max1 == max2
651 || (max1 && max2
652 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
653 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
654 || operand_equal_p (max1, max2, 0)))))
655 goto same_types;
656 else
657 goto different_types;
658 }
659 }
660
661 case METHOD_TYPE:
662 /* Method types should belong to the same class. */
663 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
664 state, sccstack, sccstate, sccstate_obstack))
665 goto different_types;
666
667 /* Fallthru */
668
669 case FUNCTION_TYPE:
670 /* Function types are the same if the return type and arguments types
671 are the same. */
672 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
673 state, sccstack, sccstate, sccstate_obstack))
674 goto different_types;
675
676 if (!comp_type_attributes (t1, t2))
677 goto different_types;
678
679 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
680 goto same_types;
681 else
682 {
683 tree parms1, parms2;
684
685 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
686 parms1 && parms2;
687 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
688 {
689 if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
690 state, sccstack, sccstate, sccstate_obstack))
691 goto different_types;
692 }
693
694 if (parms1 || parms2)
695 goto different_types;
696
697 goto same_types;
698 }
699
700 case OFFSET_TYPE:
701 {
702 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
703 state, sccstack, sccstate, sccstate_obstack)
704 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
705 TYPE_OFFSET_BASETYPE (t2),
706 state, sccstack, sccstate, sccstate_obstack))
707 goto different_types;
708
709 goto same_types;
710 }
711
712 case POINTER_TYPE:
713 case REFERENCE_TYPE:
714 {
715 /* If the two pointers have different ref-all attributes,
716 they can't be the same type. */
717 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
718 goto different_types;
719
720 /* Otherwise, pointer and reference types are the same if the
721 pointed-to types are the same. */
722 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
723 state, sccstack, sccstate, sccstate_obstack))
724 goto same_types;
725
726 goto different_types;
727 }
728
729 case INTEGER_TYPE:
730 case BOOLEAN_TYPE:
731 {
732 tree min1 = TYPE_MIN_VALUE (t1);
733 tree max1 = TYPE_MAX_VALUE (t1);
734 tree min2 = TYPE_MIN_VALUE (t2);
735 tree max2 = TYPE_MAX_VALUE (t2);
736 bool min_equal_p = false;
737 bool max_equal_p = false;
738
739 /* If either type has a minimum value, the other type must
740 have the same. */
741 if (min1 == NULL_TREE && min2 == NULL_TREE)
742 min_equal_p = true;
743 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
744 min_equal_p = true;
745
746 /* Likewise, if either type has a maximum value, the other
747 type must have the same. */
748 if (max1 == NULL_TREE && max2 == NULL_TREE)
749 max_equal_p = true;
750 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
751 max_equal_p = true;
752
753 if (!min_equal_p || !max_equal_p)
754 goto different_types;
755
756 goto same_types;
757 }
758
759 case ENUMERAL_TYPE:
760 {
761 /* FIXME lto, we cannot check bounds on enumeral types because
762 different front ends will produce different values.
763 In C, enumeral types are integers, while in C++ each element
764 will have its own symbolic value. We should decide how enums
765 are to be represented in GIMPLE and have each front end lower
766 to that. */
767 tree v1, v2;
768
769 /* For enumeral types, all the values must be the same. */
770 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
771 goto same_types;
772
773 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
774 v1 && v2;
775 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
776 {
777 tree c1 = TREE_VALUE (v1);
778 tree c2 = TREE_VALUE (v2);
779
780 if (TREE_CODE (c1) == CONST_DECL)
781 c1 = DECL_INITIAL (c1);
782
783 if (TREE_CODE (c2) == CONST_DECL)
784 c2 = DECL_INITIAL (c2);
785
786 if (tree_int_cst_equal (c1, c2) != 1)
787 goto different_types;
788
789 if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
790 goto different_types;
791 }
792
793 /* If one enumeration has more values than the other, they
794 are not the same. */
795 if (v1 || v2)
796 goto different_types;
797
798 goto same_types;
799 }
800
801 case RECORD_TYPE:
802 case UNION_TYPE:
803 case QUAL_UNION_TYPE:
804 {
805 tree f1, f2;
806
807 /* For aggregate types, all the fields must be the same. */
808 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
809 f1 && f2;
810 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
811 {
812 /* Different field kinds are not compatible. */
813 if (TREE_CODE (f1) != TREE_CODE (f2))
814 goto different_types;
815 /* Field decls must have the same name and offset. */
816 if (TREE_CODE (f1) == FIELD_DECL
817 && (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
818 || !gimple_compare_field_offset (f1, f2)))
819 goto different_types;
820 /* All entities should have the same name and type. */
821 if (DECL_NAME (f1) != DECL_NAME (f2)
822 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
823 state, sccstack, sccstate, sccstate_obstack))
824 goto different_types;
825 }
826
827 /* If one aggregate has more fields than the other, they
828 are not the same. */
829 if (f1 || f2)
830 goto different_types;
831
832 goto same_types;
833 }
834
835 default:
836 gcc_unreachable ();
837 }
838
839 /* Common exit path for types that are not compatible. */
840 different_types:
841 state->u.same_p = 0;
842 goto pop;
843
844 /* Common exit path for types that are compatible. */
845 same_types:
846 gcc_assert (state->u.same_p == 1);
847
848 pop:
849 if (state->low == state->dfsnum)
850 {
851 type_pair_t x;
852
853 /* Pop off the SCC and set its cache values to the final
854 comparison result. */
855 do
856 {
857 struct sccs *cstate;
858 x = sccstack->pop ();
859 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
860 cstate->on_sccstack = false;
861 x->same_p = state->u.same_p;
862 }
863 while (x != p);
864 }
865
866 return state->u.same_p;
867 }
868
869 /* Return true iff T1 and T2 are structurally identical. When
870 FOR_MERGING_P is true the an incomplete type and a complete type
871 are considered different, otherwise they are considered compatible. */
872
873 static bool
874 gimple_types_compatible_p (tree t1, tree t2)
875 {
876 vec<type_pair_t> sccstack = vNULL;
877 struct pointer_map_t *sccstate;
878 struct obstack sccstate_obstack;
879 type_pair_t p = NULL;
880 bool res;
881 tree leader1, leader2;
882
883 /* Before starting to set up the SCC machinery handle simple cases. */
884
885 /* Check first for the obvious case of pointer identity. */
886 if (t1 == t2)
887 return true;
888
889 /* Check that we have two types to compare. */
890 if (t1 == NULL_TREE || t2 == NULL_TREE)
891 return false;
892
893 /* Can't be the same type if the types don't have the same code. */
894 if (TREE_CODE (t1) != TREE_CODE (t2))
895 return false;
896
897 /* Can't be the same type if they have different CV qualifiers. */
898 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
899 return false;
900
901 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
902 return false;
903
904 /* Void types and nullptr types are always the same. */
905 if (TREE_CODE (t1) == VOID_TYPE
906 || TREE_CODE (t1) == NULLPTR_TYPE)
907 return true;
908
909 /* Can't be the same type if they have different alignment or mode. */
910 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
911 || TYPE_MODE (t1) != TYPE_MODE (t2))
912 return false;
913
914 /* Do some simple checks before doing three hashtable queries. */
915 if (INTEGRAL_TYPE_P (t1)
916 || SCALAR_FLOAT_TYPE_P (t1)
917 || FIXED_POINT_TYPE_P (t1)
918 || TREE_CODE (t1) == VECTOR_TYPE
919 || TREE_CODE (t1) == COMPLEX_TYPE
920 || TREE_CODE (t1) == OFFSET_TYPE
921 || POINTER_TYPE_P (t1))
922 {
923 /* Can't be the same type if they have different sign or precision. */
924 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
925 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
926 return false;
927
928 if (TREE_CODE (t1) == INTEGER_TYPE
929 && TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))
930 return false;
931
932 /* That's all we need to check for float and fixed-point types. */
933 if (SCALAR_FLOAT_TYPE_P (t1)
934 || FIXED_POINT_TYPE_P (t1))
935 return true;
936
937 /* For other types fall through to more complex checks. */
938 }
939
940 /* If the types have been previously registered and found equal
941 they still are. */
942 leader1 = gimple_lookup_type_leader (t1);
943 leader2 = gimple_lookup_type_leader (t2);
944 if (leader1 == t2
945 || t1 == leader2
946 || (leader1 && leader1 == leader2))
947 return true;
948
949 /* If the hash values of t1 and t2 are different the types can't
950 possibly be the same. This helps keeping the type-pair hashtable
951 small, only tracking comparisons for hash collisions. */
952 if (gimple_type_hash (t1) != gimple_type_hash (t2))
953 return false;
954
955 /* If we've visited this type pair before (in the case of aggregates
956 with self-referential types), and we made a decision, return it. */
957 p = lookup_type_pair (t1, t2);
958 if (p->same_p == 0 || p->same_p == 1)
959 {
960 /* We have already decided whether T1 and T2 are the
961 same, return the cached result. */
962 return p->same_p == 1;
963 }
964
965 /* Now set up the SCC machinery for the comparison. */
966 gtc_next_dfs_num = 1;
967 sccstate = pointer_map_create ();
968 gcc_obstack_init (&sccstate_obstack);
969 res = gimple_types_compatible_p_1 (t1, t2, p,
970 &sccstack, sccstate, &sccstate_obstack);
971 sccstack.release ();
972 pointer_map_destroy (sccstate);
973 obstack_free (&sccstate_obstack, NULL);
974
975 return res;
976 }
977
978 static hashval_t
979 iterative_hash_gimple_type (tree, hashval_t, vec<tree> *,
980 struct pointer_map_t *, struct obstack *);
981
982 /* DFS visit the edge from the callers type with state *STATE to T.
983 Update the callers type hash V with the hash for T if it is not part
984 of the SCC containing the callers type and return it.
985 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
986
987 static hashval_t
988 visit (tree t, struct sccs *state, hashval_t v,
989 vec<tree> *sccstack,
990 struct pointer_map_t *sccstate,
991 struct obstack *sccstate_obstack)
992 {
993 struct sccs *cstate = NULL;
994 struct tree_int_map m;
995 void **slot;
996
997 /* If there is a hash value recorded for this type then it can't
998 possibly be part of our parent SCC. Simply mix in its hash. */
999 m.base.from = t;
1000 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
1001 && *slot)
1002 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
1003
1004 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
1005 cstate = (struct sccs *)*slot;
1006 if (!cstate)
1007 {
1008 hashval_t tem;
1009 /* Not yet visited. DFS recurse. */
1010 tem = iterative_hash_gimple_type (t, v,
1011 sccstack, sccstate, sccstate_obstack);
1012 if (!cstate)
1013 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
1014 state->low = MIN (state->low, cstate->low);
1015 /* If the type is no longer on the SCC stack and thus is not part
1016 of the parents SCC mix in its hash value. Otherwise we will
1017 ignore the type for hashing purposes and return the unaltered
1018 hash value. */
1019 if (!cstate->on_sccstack)
1020 return tem;
1021 }
1022 if (cstate->dfsnum < state->dfsnum
1023 && cstate->on_sccstack)
1024 state->low = MIN (cstate->dfsnum, state->low);
1025
1026 /* We are part of our parents SCC, skip this type during hashing
1027 and return the unaltered hash value. */
1028 return v;
1029 }
1030
1031 /* Hash NAME with the previous hash value V and return it. */
1032
1033 static hashval_t
1034 iterative_hash_name (tree name, hashval_t v)
1035 {
1036 if (!name)
1037 return v;
1038 v = iterative_hash_hashval_t (TREE_CODE (name), v);
1039 if (TREE_CODE (name) == TYPE_DECL)
1040 name = DECL_NAME (name);
1041 if (!name)
1042 return v;
1043 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1044 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
1045 }
1046
1047 /* A type, hashvalue pair for sorting SCC members. */
1048
1049 struct type_hash_pair {
1050 tree type;
1051 hashval_t hash;
1052 };
1053
1054 /* Compare two type, hashvalue pairs. */
1055
1056 static int
1057 type_hash_pair_compare (const void *p1_, const void *p2_)
1058 {
1059 const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
1060 const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
1061 if (p1->hash < p2->hash)
1062 return -1;
1063 else if (p1->hash > p2->hash)
1064 return 1;
1065 return 0;
1066 }
1067
1068 /* Returning a hash value for gimple type TYPE combined with VAL.
1069 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
1070
1071 To hash a type we end up hashing in types that are reachable.
1072 Through pointers we can end up with cycles which messes up the
1073 required property that we need to compute the same hash value
1074 for structurally equivalent types. To avoid this we have to
1075 hash all types in a cycle (the SCC) in a commutative way. The
1076 easiest way is to not mix in the hashes of the SCC members at
1077 all. To make this work we have to delay setting the hash
1078 values of the SCC until it is complete. */
1079
1080 static hashval_t
1081 iterative_hash_gimple_type (tree type, hashval_t val,
1082 vec<tree> *sccstack,
1083 struct pointer_map_t *sccstate,
1084 struct obstack *sccstate_obstack)
1085 {
1086 hashval_t v;
1087 void **slot;
1088 struct sccs *state;
1089
1090 /* Not visited during this DFS walk. */
1091 gcc_checking_assert (!pointer_map_contains (sccstate, type));
1092 state = XOBNEW (sccstate_obstack, struct sccs);
1093 *pointer_map_insert (sccstate, type) = state;
1094
1095 sccstack->safe_push (type);
1096 state->dfsnum = next_dfs_num++;
1097 state->low = state->dfsnum;
1098 state->on_sccstack = true;
1099
1100 /* Combine a few common features of types so that types are grouped into
1101 smaller sets; when searching for existing matching types to merge,
1102 only existing types having the same features as the new type will be
1103 checked. */
1104 v = iterative_hash_name (TYPE_NAME (type), 0);
1105 if (TYPE_NAME (type)
1106 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1107 && DECL_CONTEXT (TYPE_NAME (type))
1108 && TYPE_P (DECL_CONTEXT (TYPE_NAME (type))))
1109 v = visit (DECL_CONTEXT (TYPE_NAME (type)), state, v,
1110 sccstack, sccstate, sccstate_obstack);
1111
1112 /* Factor in the variant structure. */
1113 if (TYPE_MAIN_VARIANT (type) != type)
1114 v = visit (TYPE_MAIN_VARIANT (type), state, v,
1115 sccstack, sccstate, sccstate_obstack);
1116
1117 v = iterative_hash_hashval_t (TREE_CODE (type), v);
1118 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
1119 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
1120
1121 /* Do not hash the types size as this will cause differences in
1122 hash values for the complete vs. the incomplete type variant. */
1123
1124 /* Incorporate common features of numerical types. */
1125 if (INTEGRAL_TYPE_P (type)
1126 || SCALAR_FLOAT_TYPE_P (type)
1127 || FIXED_POINT_TYPE_P (type))
1128 {
1129 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
1130 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
1131 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
1132 }
1133
1134 /* For pointer and reference types, fold in information about the type
1135 pointed to. */
1136 if (POINTER_TYPE_P (type))
1137 v = visit (TREE_TYPE (type), state, v,
1138 sccstack, sccstate, sccstate_obstack);
1139
1140 /* For integer types hash the types min/max values and the string flag. */
1141 if (TREE_CODE (type) == INTEGER_TYPE)
1142 {
1143 /* OMP lowering can introduce error_mark_node in place of
1144 random local decls in types. */
1145 if (TYPE_MIN_VALUE (type) != error_mark_node)
1146 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
1147 if (TYPE_MAX_VALUE (type) != error_mark_node)
1148 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
1149 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
1150 }
1151
1152 /* For array types hash the domain and the string flag. */
1153 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
1154 {
1155 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
1156 v = visit (TYPE_DOMAIN (type), state, v,
1157 sccstack, sccstate, sccstate_obstack);
1158 }
1159
1160 /* Recurse for aggregates with a single element type. */
1161 if (TREE_CODE (type) == ARRAY_TYPE
1162 || TREE_CODE (type) == COMPLEX_TYPE
1163 || TREE_CODE (type) == VECTOR_TYPE)
1164 v = visit (TREE_TYPE (type), state, v,
1165 sccstack, sccstate, sccstate_obstack);
1166
1167 /* Incorporate function return and argument types. */
1168 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
1169 {
1170 unsigned na;
1171 tree p;
1172
1173 /* For method types also incorporate their parent class. */
1174 if (TREE_CODE (type) == METHOD_TYPE)
1175 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
1176 sccstack, sccstate, sccstate_obstack);
1177
1178 /* Check result and argument types. */
1179 v = visit (TREE_TYPE (type), state, v,
1180 sccstack, sccstate, sccstate_obstack);
1181 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
1182 {
1183 v = visit (TREE_VALUE (p), state, v,
1184 sccstack, sccstate, sccstate_obstack);
1185 na++;
1186 }
1187
1188 v = iterative_hash_hashval_t (na, v);
1189 }
1190
1191 if (RECORD_OR_UNION_TYPE_P (type))
1192 {
1193 unsigned nf;
1194 tree f;
1195
1196 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
1197 {
1198 v = iterative_hash_name (DECL_NAME (f), v);
1199 v = visit (TREE_TYPE (f), state, v,
1200 sccstack, sccstate, sccstate_obstack);
1201 nf++;
1202 }
1203
1204 v = iterative_hash_hashval_t (nf, v);
1205 }
1206
1207 /* Record hash for us. */
1208 state->u.hash = v;
1209
1210 /* See if we found an SCC. */
1211 if (state->low == state->dfsnum)
1212 {
1213 tree x;
1214 struct tree_int_map *m;
1215
1216 /* Pop off the SCC and set its hash values. */
1217 x = sccstack->pop ();
1218 /* Optimize SCC size one. */
1219 if (x == type)
1220 {
1221 state->on_sccstack = false;
1222 m = ggc_alloc_cleared_tree_int_map ();
1223 m->base.from = x;
1224 m->to = v;
1225 slot = htab_find_slot (type_hash_cache, m, INSERT);
1226 gcc_assert (!*slot);
1227 *slot = (void *) m;
1228 }
1229 else
1230 {
1231 struct sccs *cstate;
1232 unsigned first, i, size, j;
1233 struct type_hash_pair *pairs;
1234 /* Pop off the SCC and build an array of type, hash pairs. */
1235 first = sccstack->length () - 1;
1236 while ((*sccstack)[first] != type)
1237 --first;
1238 size = sccstack->length () - first + 1;
1239 pairs = XALLOCAVEC (struct type_hash_pair, size);
1240 i = 0;
1241 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
1242 cstate->on_sccstack = false;
1243 pairs[i].type = x;
1244 pairs[i].hash = cstate->u.hash;
1245 do
1246 {
1247 x = sccstack->pop ();
1248 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
1249 cstate->on_sccstack = false;
1250 ++i;
1251 pairs[i].type = x;
1252 pairs[i].hash = cstate->u.hash;
1253 }
1254 while (x != type);
1255 gcc_assert (i + 1 == size);
1256 /* Sort the arrays of type, hash pairs so that when we mix in
1257 all members of the SCC the hash value becomes independent on
1258 the order we visited the SCC. Disregard hashes equal to
1259 the hash of the type we mix into because we cannot guarantee
1260 a stable sort for those across different TUs. */
1261 qsort (pairs, size, sizeof (struct type_hash_pair),
1262 type_hash_pair_compare);
1263 for (i = 0; i < size; ++i)
1264 {
1265 hashval_t hash;
1266 m = ggc_alloc_cleared_tree_int_map ();
1267 m->base.from = pairs[i].type;
1268 hash = pairs[i].hash;
1269 /* Skip same hashes. */
1270 for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
1271 ;
1272 for (; j < size; ++j)
1273 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
1274 for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
1275 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
1276 m->to = hash;
1277 if (pairs[i].type == type)
1278 v = hash;
1279 slot = htab_find_slot (type_hash_cache, m, INSERT);
1280 gcc_assert (!*slot);
1281 *slot = (void *) m;
1282 }
1283 }
1284 }
1285
1286 return iterative_hash_hashval_t (v, val);
1287 }
1288
1289 /* Returns a hash value for P (assumed to be a type). The hash value
1290 is computed using some distinguishing features of the type. Note
1291 that we cannot use pointer hashing here as we may be dealing with
1292 two distinct instances of the same type.
1293
1294 This function should produce the same hash value for two compatible
1295 types according to gimple_types_compatible_p. */
1296
1297 static hashval_t
1298 gimple_type_hash (const void *p)
1299 {
1300 const_tree t = (const_tree) p;
1301 vec<tree> sccstack = vNULL;
1302 struct pointer_map_t *sccstate;
1303 struct obstack sccstate_obstack;
1304 hashval_t val;
1305 void **slot;
1306 struct tree_int_map m;
1307
1308 m.base.from = CONST_CAST_TREE (t);
1309 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
1310 && *slot)
1311 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
1312
1313 /* Perform a DFS walk and pre-hash all reachable types. */
1314 next_dfs_num = 1;
1315 sccstate = pointer_map_create ();
1316 gcc_obstack_init (&sccstate_obstack);
1317 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
1318 &sccstack, sccstate, &sccstate_obstack);
1319 sccstack.release ();
1320 pointer_map_destroy (sccstate);
1321 obstack_free (&sccstate_obstack, NULL);
1322
1323 return val;
1324 }
1325
1326 /* Returns nonzero if P1 and P2 are equal. */
1327
1328 static int
1329 gimple_type_eq (const void *p1, const void *p2)
1330 {
1331 const_tree t1 = (const_tree) p1;
1332 const_tree t2 = (const_tree) p2;
1333 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
1334 CONST_CAST_TREE (t2));
1335 }
1336
1337
1338 /* Worker for gimple_register_type.
1339 Register type T in the global type table gimple_types.
1340 When REGISTERING_MV is false first recurse for the main variant of T. */
1341
1342 static tree
1343 gimple_register_type_1 (tree t, bool registering_mv)
1344 {
1345 void **slot;
1346 gimple_type_leader_entry *leader;
1347
1348 /* If we registered this type before return the cached result. */
1349 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
1350 if (leader->type == t)
1351 return leader->leader;
1352
1353 /* Always register the main variant first. This is important so we
1354 pick up the non-typedef variants as canonical, otherwise we'll end
1355 up taking typedef ids for structure tags during comparison.
1356 It also makes sure that main variants will be merged to main variants.
1357 As we are operating on a possibly partially fixed up type graph
1358 do not bother to recurse more than once, otherwise we may end up
1359 walking in circles.
1360 If we are registering a main variant it will either remain its
1361 own main variant or it will be merged to something else in which
1362 case we do not care for the main variant leader. */
1363 if (!registering_mv
1364 && TYPE_MAIN_VARIANT (t) != t)
1365 gimple_register_type_1 (TYPE_MAIN_VARIANT (t), true);
1366
1367 /* See if we already have an equivalent type registered. */
1368 slot = htab_find_slot (gimple_types, t, INSERT);
1369 if (*slot
1370 && *(tree *)slot != t)
1371 {
1372 tree new_type = (tree) *((tree *) slot);
1373 leader->type = t;
1374 leader->leader = new_type;
1375 return new_type;
1376 }
1377
1378 /* If not, insert it to the cache and the hash. */
1379 leader->type = t;
1380 leader->leader = t;
1381 *slot = (void *) t;
1382 return t;
1383 }
1384
1385 /* Register type T in the global type table gimple_types.
1386 If another type T', compatible with T, already existed in
1387 gimple_types then return T', otherwise return T. This is used by
1388 LTO to merge identical types read from different TUs. */
1389
1390 static tree
1391 gimple_register_type (tree t)
1392 {
1393 gcc_assert (TYPE_P (t));
1394 return gimple_register_type_1 (t, false);
1395 }
1396
1397 #define GIMPLE_REGISTER_TYPE(tt) \
1398 (TREE_VISITED (tt) ? gimple_register_type (tt) : tt)
1399
1400
1401
1402 /* A hashtable of trees that potentially refer to variables or functions
1403 that must be replaced with their prevailing variant. */
1404 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node))) htab_t
1405 tree_with_vars;
1406
1407 /* Remember that T is a tree that (potentially) refers to a variable
1408 or function decl that may be replaced with its prevailing variant. */
1409 static void
1410 remember_with_vars (tree t)
1411 {
1412 *(tree *) htab_find_slot (tree_with_vars, t, INSERT) = t;
1413 }
1414
1415 #define LTO_FIXUP_TREE(tt) \
1416 do \
1417 { \
1418 if (tt) \
1419 { \
1420 if (TYPE_P (tt)) \
1421 (tt) = GIMPLE_REGISTER_TYPE (tt); \
1422 if (VAR_OR_FUNCTION_DECL_P (tt) && TREE_PUBLIC (tt)) \
1423 remember_with_vars (t); \
1424 if (TREE_CODE (tt) == INTEGER_CST) \
1425 (tt) = fixup_integer_cst (tt); \
1426 } \
1427 } while (0)
1428
1429 static void lto_fixup_types (tree);
1430
1431 /* Return integer_cst T with updated type. */
1432
1433 static tree
1434 fixup_integer_cst (tree t)
1435 {
1436 tree type = GIMPLE_REGISTER_TYPE (TREE_TYPE (t));
1437
1438 if (type == TREE_TYPE (t))
1439 return t;
1440
1441 /* If overflow was set, streamer_read_integer_cst
1442 produced local copy of T. */
1443 if (TREE_OVERFLOW (t))
1444 {
1445 TREE_TYPE (t) = type;
1446 return t;
1447 }
1448 else
1449 /* Otherwise produce new shared node for the new type. */
1450 return build_int_cst_wide (type, TREE_INT_CST_LOW (t),
1451 TREE_INT_CST_HIGH (t));
1452 }
1453
1454 /* Fix up fields of a tree_typed T. */
1455
1456 static void
1457 lto_ft_typed (tree t)
1458 {
1459 LTO_FIXUP_TREE (TREE_TYPE (t));
1460 }
1461
1462 /* Fix up fields of a tree_common T. */
1463
1464 static void
1465 lto_ft_common (tree t)
1466 {
1467 lto_ft_typed (t);
1468 LTO_FIXUP_TREE (TREE_CHAIN (t));
1469 }
1470
1471 /* Fix up fields of a decl_minimal T. */
1472
1473 static void
1474 lto_ft_decl_minimal (tree t)
1475 {
1476 lto_ft_common (t);
1477 LTO_FIXUP_TREE (DECL_NAME (t));
1478 LTO_FIXUP_TREE (DECL_CONTEXT (t));
1479 }
1480
1481 /* Fix up fields of a decl_common T. */
1482
1483 static void
1484 lto_ft_decl_common (tree t)
1485 {
1486 lto_ft_decl_minimal (t);
1487 LTO_FIXUP_TREE (DECL_SIZE (t));
1488 LTO_FIXUP_TREE (DECL_SIZE_UNIT (t));
1489 LTO_FIXUP_TREE (DECL_INITIAL (t));
1490 LTO_FIXUP_TREE (DECL_ATTRIBUTES (t));
1491 LTO_FIXUP_TREE (DECL_ABSTRACT_ORIGIN (t));
1492 }
1493
1494 /* Fix up fields of a decl_with_vis T. */
1495
1496 static void
1497 lto_ft_decl_with_vis (tree t)
1498 {
1499 lto_ft_decl_common (t);
1500
1501 /* Accessor macro has side-effects, use field-name here. */
1502 LTO_FIXUP_TREE (t->decl_with_vis.assembler_name);
1503 LTO_FIXUP_TREE (DECL_SECTION_NAME (t));
1504 }
1505
1506 /* Fix up fields of a decl_non_common T. */
1507
1508 static void
1509 lto_ft_decl_non_common (tree t)
1510 {
1511 lto_ft_decl_with_vis (t);
1512 LTO_FIXUP_TREE (DECL_ARGUMENT_FLD (t));
1513 LTO_FIXUP_TREE (DECL_RESULT_FLD (t));
1514 LTO_FIXUP_TREE (DECL_VINDEX (t));
1515 /* The C frontends may create exact duplicates for DECL_ORIGINAL_TYPE
1516 like for 'typedef enum foo foo'. We have no way of avoiding to
1517 merge them and dwarf2out.c cannot deal with this,
1518 so fix this up by clearing DECL_ORIGINAL_TYPE in this case. */
1519 if (TREE_CODE (t) == TYPE_DECL
1520 && DECL_ORIGINAL_TYPE (t) == TREE_TYPE (t))
1521 DECL_ORIGINAL_TYPE (t) = NULL_TREE;
1522 }
1523
1524 /* Fix up fields of a decl_non_common T. */
1525
1526 static void
1527 lto_ft_function (tree t)
1528 {
1529 lto_ft_decl_non_common (t);
1530 LTO_FIXUP_TREE (DECL_FUNCTION_PERSONALITY (t));
1531 }
1532
1533 /* Fix up fields of a field_decl T. */
1534
1535 static void
1536 lto_ft_field_decl (tree t)
1537 {
1538 lto_ft_decl_common (t);
1539 LTO_FIXUP_TREE (DECL_FIELD_OFFSET (t));
1540 LTO_FIXUP_TREE (DECL_BIT_FIELD_TYPE (t));
1541 LTO_FIXUP_TREE (DECL_QUALIFIER (t));
1542 LTO_FIXUP_TREE (DECL_FIELD_BIT_OFFSET (t));
1543 LTO_FIXUP_TREE (DECL_FCONTEXT (t));
1544 }
1545
1546 /* Fix up fields of a type T. */
1547
1548 static void
1549 lto_ft_type (tree t)
1550 {
1551 lto_ft_common (t);
1552 LTO_FIXUP_TREE (TYPE_CACHED_VALUES (t));
1553 LTO_FIXUP_TREE (TYPE_SIZE (t));
1554 LTO_FIXUP_TREE (TYPE_SIZE_UNIT (t));
1555 LTO_FIXUP_TREE (TYPE_ATTRIBUTES (t));
1556 LTO_FIXUP_TREE (TYPE_NAME (t));
1557
1558 /* Accessors are for derived node types only. */
1559 if (!POINTER_TYPE_P (t))
1560 LTO_FIXUP_TREE (TYPE_MINVAL (t));
1561 LTO_FIXUP_TREE (TYPE_MAXVAL (t));
1562
1563 /* Accessor is for derived node types only. */
1564 LTO_FIXUP_TREE (t->type_non_common.binfo);
1565
1566 LTO_FIXUP_TREE (TYPE_CONTEXT (t));
1567 }
1568
1569 /* Fix up fields of a BINFO T. */
1570
1571 static void
1572 lto_ft_binfo (tree t)
1573 {
1574 unsigned HOST_WIDE_INT i, n;
1575 tree base, saved_base;
1576
1577 lto_ft_common (t);
1578 LTO_FIXUP_TREE (BINFO_VTABLE (t));
1579 LTO_FIXUP_TREE (BINFO_OFFSET (t));
1580 LTO_FIXUP_TREE (BINFO_VIRTUALS (t));
1581 LTO_FIXUP_TREE (BINFO_VPTR_FIELD (t));
1582 n = vec_safe_length (BINFO_BASE_ACCESSES (t));
1583 for (i = 0; i < n; i++)
1584 {
1585 saved_base = base = BINFO_BASE_ACCESS (t, i);
1586 LTO_FIXUP_TREE (base);
1587 if (base != saved_base)
1588 (*BINFO_BASE_ACCESSES (t))[i] = base;
1589 }
1590 LTO_FIXUP_TREE (BINFO_INHERITANCE_CHAIN (t));
1591 LTO_FIXUP_TREE (BINFO_SUBVTT_INDEX (t));
1592 LTO_FIXUP_TREE (BINFO_VPTR_INDEX (t));
1593 n = BINFO_N_BASE_BINFOS (t);
1594 for (i = 0; i < n; i++)
1595 {
1596 saved_base = base = BINFO_BASE_BINFO (t, i);
1597 LTO_FIXUP_TREE (base);
1598 if (base != saved_base)
1599 (*BINFO_BASE_BINFOS (t))[i] = base;
1600 }
1601 }
1602
1603 /* Fix up fields of a CONSTRUCTOR T. */
1604
1605 static void
1606 lto_ft_constructor (tree t)
1607 {
1608 unsigned HOST_WIDE_INT idx;
1609 constructor_elt *ce;
1610
1611 lto_ft_typed (t);
1612
1613 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (t), idx, &ce); idx++)
1614 {
1615 LTO_FIXUP_TREE (ce->index);
1616 LTO_FIXUP_TREE (ce->value);
1617 }
1618 }
1619
1620 /* Fix up fields of an expression tree T. */
1621
1622 static void
1623 lto_ft_expr (tree t)
1624 {
1625 int i;
1626 lto_ft_typed (t);
1627 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
1628 LTO_FIXUP_TREE (TREE_OPERAND (t, i));
1629 }
1630
1631 /* Given a tree T fixup fields of T by replacing types with their merged
1632 variant and other entities by an equal entity from an earlier compilation
1633 unit, or an entity being canonical in a different way. This includes
1634 for instance integer or string constants. */
1635
1636 static void
1637 lto_fixup_types (tree t)
1638 {
1639 switch (TREE_CODE (t))
1640 {
1641 case IDENTIFIER_NODE:
1642 break;
1643
1644 case TREE_LIST:
1645 LTO_FIXUP_TREE (TREE_VALUE (t));
1646 LTO_FIXUP_TREE (TREE_PURPOSE (t));
1647 LTO_FIXUP_TREE (TREE_CHAIN (t));
1648 break;
1649
1650 case FIELD_DECL:
1651 lto_ft_field_decl (t);
1652 break;
1653
1654 case LABEL_DECL:
1655 case CONST_DECL:
1656 case PARM_DECL:
1657 case RESULT_DECL:
1658 case IMPORTED_DECL:
1659 lto_ft_decl_common (t);
1660 break;
1661
1662 case VAR_DECL:
1663 lto_ft_decl_with_vis (t);
1664 break;
1665
1666 case TYPE_DECL:
1667 lto_ft_decl_non_common (t);
1668 break;
1669
1670 case FUNCTION_DECL:
1671 lto_ft_function (t);
1672 break;
1673
1674 case TREE_BINFO:
1675 lto_ft_binfo (t);
1676 break;
1677
1678 case PLACEHOLDER_EXPR:
1679 lto_ft_common (t);
1680 break;
1681
1682 case BLOCK:
1683 case TRANSLATION_UNIT_DECL:
1684 case OPTIMIZATION_NODE:
1685 case TARGET_OPTION_NODE:
1686 break;
1687
1688 default:
1689 if (TYPE_P (t))
1690 lto_ft_type (t);
1691 else if (TREE_CODE (t) == CONSTRUCTOR)
1692 lto_ft_constructor (t);
1693 else if (CONSTANT_CLASS_P (t))
1694 LTO_FIXUP_TREE (TREE_TYPE (t));
1695 else if (EXPR_P (t))
1696 {
1697 lto_ft_expr (t);
1698 }
1699 else
1700 {
1701 remember_with_vars (t);
1702 }
1703 }
1704 }
1705
1706
1707 /* Return the resolution for the decl with index INDEX from DATA_IN. */
1708
1709 static enum ld_plugin_symbol_resolution
1710 get_resolution (struct data_in *data_in, unsigned index)
1711 {
1712 if (data_in->globals_resolution.exists ())
1713 {
1714 ld_plugin_symbol_resolution_t ret;
1715 /* We can have references to not emitted functions in
1716 DECL_FUNCTION_PERSONALITY at least. So we can and have
1717 to indeed return LDPR_UNKNOWN in some cases. */
1718 if (data_in->globals_resolution.length () <= index)
1719 return LDPR_UNKNOWN;
1720 ret = data_in->globals_resolution[index];
1721 return ret;
1722 }
1723 else
1724 /* Delay resolution finding until decl merging. */
1725 return LDPR_UNKNOWN;
1726 }
1727
1728 /* Map assigning declarations their resolutions. */
1729 static pointer_map_t *resolution_map;
1730
1731 /* We need to record resolutions until symbol table is read. */
1732 static void
1733 register_resolution (tree decl, enum ld_plugin_symbol_resolution resolution)
1734 {
1735 if (resolution == LDPR_UNKNOWN)
1736 return;
1737 if (!resolution_map)
1738 resolution_map = pointer_map_create ();
1739 *pointer_map_insert (resolution_map, decl) = (void *)(size_t)resolution;
1740 }
1741
1742 /* Register DECL with the global symbol table and change its
1743 name if necessary to avoid name clashes for static globals across
1744 different files. */
1745
1746 static void
1747 lto_register_var_decl_in_symtab (struct data_in *data_in, tree decl)
1748 {
1749 tree context;
1750
1751 /* Variable has file scope, not local. Need to ensure static variables
1752 between different files don't clash unexpectedly. */
1753 if (!TREE_PUBLIC (decl)
1754 && !((context = decl_function_context (decl))
1755 && auto_var_in_fn_p (decl, context)))
1756 {
1757 /* ??? We normally pre-mangle names before we serialize them
1758 out. Here, in lto1, we do not know the language, and
1759 thus cannot do the mangling again. Instead, we just
1760 append a suffix to the mangled name. The resulting name,
1761 however, is not a properly-formed mangled name, and will
1762 confuse any attempt to unmangle it. */
1763 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
1764 char *label;
1765
1766 ASM_FORMAT_PRIVATE_NAME (label, name, DECL_UID (decl));
1767 SET_DECL_ASSEMBLER_NAME (decl, get_identifier (label));
1768 rest_of_decl_compilation (decl, 1, 0);
1769 }
1770
1771 /* If this variable has already been declared, queue the
1772 declaration for merging. */
1773 if (TREE_PUBLIC (decl))
1774 {
1775 unsigned ix;
1776 if (!streamer_tree_cache_lookup (data_in->reader_cache, decl, &ix))
1777 gcc_unreachable ();
1778 register_resolution (decl, get_resolution (data_in, ix));
1779 }
1780 }
1781
1782
1783 /* Register DECL with the global symbol table and change its
1784 name if necessary to avoid name clashes for static globals across
1785 different files. DATA_IN contains descriptors and tables for the
1786 file being read. */
1787
1788 static void
1789 lto_register_function_decl_in_symtab (struct data_in *data_in, tree decl)
1790 {
1791 /* Need to ensure static entities between different files
1792 don't clash unexpectedly. */
1793 if (!TREE_PUBLIC (decl))
1794 {
1795 /* We must not use the DECL_ASSEMBLER_NAME macro here, as it
1796 may set the assembler name where it was previously empty. */
1797 tree old_assembler_name = decl->decl_with_vis.assembler_name;
1798
1799 /* FIXME lto: We normally pre-mangle names before we serialize
1800 them out. Here, in lto1, we do not know the language, and
1801 thus cannot do the mangling again. Instead, we just append a
1802 suffix to the mangled name. The resulting name, however, is
1803 not a properly-formed mangled name, and will confuse any
1804 attempt to unmangle it. */
1805 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
1806 char *label;
1807
1808 ASM_FORMAT_PRIVATE_NAME (label, name, DECL_UID (decl));
1809 SET_DECL_ASSEMBLER_NAME (decl, get_identifier (label));
1810
1811 /* We may arrive here with the old assembler name not set
1812 if the function body is not needed, e.g., it has been
1813 inlined away and does not appear in the cgraph. */
1814 if (old_assembler_name)
1815 {
1816 tree new_assembler_name = DECL_ASSEMBLER_NAME (decl);
1817
1818 /* Make the original assembler name available for later use.
1819 We may have used it to indicate the section within its
1820 object file where the function body may be found.
1821 FIXME lto: Find a better way to maintain the function decl
1822 to body section mapping so we don't need this hack. */
1823 lto_record_renamed_decl (data_in->file_data,
1824 IDENTIFIER_POINTER (old_assembler_name),
1825 IDENTIFIER_POINTER (new_assembler_name));
1826 }
1827 }
1828
1829 /* If this variable has already been declared, queue the
1830 declaration for merging. */
1831 if (TREE_PUBLIC (decl) && !DECL_ABSTRACT (decl))
1832 {
1833 unsigned ix;
1834 if (!streamer_tree_cache_lookup (data_in->reader_cache, decl, &ix))
1835 gcc_unreachable ();
1836 register_resolution (decl, get_resolution (data_in, ix));
1837 }
1838 }
1839
1840
1841 /* Given a streamer cache structure DATA_IN (holding a sequence of trees
1842 for one compilation unit) go over all trees starting at index FROM until the
1843 end of the sequence and replace fields of those trees, and the trees
1844 themself with their canonical variants as per gimple_register_type. */
1845
1846 static void
1847 uniquify_nodes (struct data_in *data_in, unsigned from)
1848 {
1849 struct streamer_tree_cache_d *cache = data_in->reader_cache;
1850 unsigned len = cache->nodes.length ();
1851 unsigned i;
1852
1853 /* Go backwards because children streamed for the first time come
1854 as part of their parents, and hence are created after them. */
1855
1856 /* First register all the types in the cache. This makes sure to
1857 have the original structure in the type cycles when registering
1858 them and computing hashes. */
1859 for (i = len; i-- > from;)
1860 {
1861 tree t = cache->nodes[i];
1862 if (t && TYPE_P (t))
1863 {
1864 tree newt = gimple_register_type (t);
1865 /* Mark non-prevailing types so we fix them up. No need
1866 to reset that flag afterwards - nothing that refers
1867 to those types is left and they are collected. */
1868 if (newt != t)
1869 TREE_VISITED (t) = 1;
1870 }
1871 }
1872
1873 /* Second fixup all trees in the new cache entries. */
1874 for (i = len; i-- > from;)
1875 {
1876 tree t = cache->nodes[i];
1877 tree oldt = t;
1878 if (!t)
1879 continue;
1880
1881 /* First fixup the fields of T. */
1882 lto_fixup_types (t);
1883
1884 if (!TYPE_P (t))
1885 continue;
1886
1887 /* Now try to find a canonical variant of T itself. */
1888 t = GIMPLE_REGISTER_TYPE (t);
1889
1890 if (t == oldt)
1891 {
1892 /* The following re-creates proper variant lists while fixing up
1893 the variant leaders. We do not stream TYPE_NEXT_VARIANT so the
1894 variant list state before fixup is broken. */
1895 tree tem, mv;
1896
1897 #ifdef ENABLE_CHECKING
1898 /* Remove us from our main variant list if we are not the
1899 variant leader. */
1900 if (TYPE_MAIN_VARIANT (t) != t)
1901 {
1902 tem = TYPE_MAIN_VARIANT (t);
1903 while (tem && TYPE_NEXT_VARIANT (tem) != t)
1904 tem = TYPE_NEXT_VARIANT (tem);
1905 gcc_assert (!tem && !TYPE_NEXT_VARIANT (t));
1906 }
1907 #endif
1908
1909 /* Query our new main variant. */
1910 mv = GIMPLE_REGISTER_TYPE (TYPE_MAIN_VARIANT (t));
1911
1912 /* If we were the variant leader and we get replaced ourselves drop
1913 all variants from our list. */
1914 if (TYPE_MAIN_VARIANT (t) == t
1915 && mv != t)
1916 {
1917 tem = t;
1918 while (tem)
1919 {
1920 tree tem2 = TYPE_NEXT_VARIANT (tem);
1921 TYPE_NEXT_VARIANT (tem) = NULL_TREE;
1922 tem = tem2;
1923 }
1924 }
1925
1926 /* If we are not our own variant leader link us into our new leaders
1927 variant list. */
1928 if (mv != t)
1929 {
1930 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
1931 TYPE_NEXT_VARIANT (mv) = t;
1932 if (RECORD_OR_UNION_TYPE_P (t))
1933 TYPE_BINFO (t) = TYPE_BINFO (mv);
1934 /* Preserve the invariant that type variants share their
1935 TYPE_FIELDS. */
1936 if (RECORD_OR_UNION_TYPE_P (t)
1937 && TYPE_FIELDS (mv) != TYPE_FIELDS (t))
1938 {
1939 tree f1, f2;
1940 for (f1 = TYPE_FIELDS (mv), f2 = TYPE_FIELDS (t);
1941 f1 && f2; f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
1942 {
1943 unsigned ix;
1944 gcc_assert (f1 != f2
1945 && DECL_NAME (f1) == DECL_NAME (f2));
1946 if (!streamer_tree_cache_lookup (cache, f2, &ix))
1947 gcc_unreachable ();
1948 /* If we're going to replace an element which we'd
1949 still visit in the next iterations, we wouldn't
1950 handle it, so do it here. We do have to handle it
1951 even though the field_decl itself will be removed,
1952 as it could refer to e.g. integer_cst which we
1953 wouldn't reach via any other way, hence they
1954 (and their type) would stay uncollected. */
1955 /* ??? We should rather make sure to replace all
1956 references to f2 with f1. That means handling
1957 COMPONENT_REFs and CONSTRUCTOR elements in
1958 lto_fixup_types and special-case the field-decl
1959 operand handling. */
1960 /* ??? Not sure the above is all relevant in this
1961 path canonicalizing TYPE_FIELDS to that of the
1962 main variant. */
1963 if (ix < i)
1964 lto_fixup_types (f2);
1965 streamer_tree_cache_insert_at (cache, f1, ix);
1966 }
1967 TYPE_FIELDS (t) = TYPE_FIELDS (mv);
1968 }
1969 }
1970
1971 /* Finally adjust our main variant and fix it up. */
1972 TYPE_MAIN_VARIANT (t) = mv;
1973
1974 /* The following reconstructs the pointer chains
1975 of the new pointed-to type if we are a main variant. We do
1976 not stream those so they are broken before fixup. */
1977 if (TREE_CODE (t) == POINTER_TYPE
1978 && TYPE_MAIN_VARIANT (t) == t)
1979 {
1980 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (TREE_TYPE (t));
1981 TYPE_POINTER_TO (TREE_TYPE (t)) = t;
1982 }
1983 else if (TREE_CODE (t) == REFERENCE_TYPE
1984 && TYPE_MAIN_VARIANT (t) == t)
1985 {
1986 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (TREE_TYPE (t));
1987 TYPE_REFERENCE_TO (TREE_TYPE (t)) = t;
1988 }
1989 }
1990
1991 else
1992 {
1993 if (RECORD_OR_UNION_TYPE_P (t))
1994 {
1995 tree f1, f2;
1996 if (TYPE_FIELDS (t) != TYPE_FIELDS (oldt))
1997 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (oldt);
1998 f1 && f2; f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
1999 {
2000 unsigned ix;
2001 gcc_assert (f1 != f2 && DECL_NAME (f1) == DECL_NAME (f2));
2002 if (!streamer_tree_cache_lookup (cache, f2, &ix))
2003 gcc_unreachable ();
2004 /* If we're going to replace an element which we'd
2005 still visit in the next iterations, we wouldn't
2006 handle it, so do it here. We do have to handle it
2007 even though the field_decl itself will be removed,
2008 as it could refer to e.g. integer_cst which we
2009 wouldn't reach via any other way, hence they
2010 (and their type) would stay uncollected. */
2011 /* ??? We should rather make sure to replace all
2012 references to f2 with f1. That means handling
2013 COMPONENT_REFs and CONSTRUCTOR elements in
2014 lto_fixup_types and special-case the field-decl
2015 operand handling. */
2016 if (ix < i)
2017 lto_fixup_types (f2);
2018 streamer_tree_cache_insert_at (cache, f1, ix);
2019 }
2020 }
2021
2022 /* If we found a tree that is equal to oldt replace it in the
2023 cache, so that further users (in the various LTO sections)
2024 make use of it. */
2025 streamer_tree_cache_insert_at (cache, t, i);
2026 }
2027 }
2028
2029 /* Finally compute the canonical type of all TREE_TYPEs and register
2030 VAR_DECL and FUNCTION_DECL nodes in the symbol table.
2031 From this point there are no longer any types with
2032 TYPE_STRUCTURAL_EQUALITY_P and its type-based alias problems.
2033 This step requires the TYPE_POINTER_TO lists being present, so
2034 make sure it is done last. */
2035 for (i = len; i-- > from;)
2036 {
2037 tree t = cache->nodes[i];
2038 if (t == NULL_TREE)
2039 continue;
2040
2041 if (TREE_CODE (t) == VAR_DECL)
2042 lto_register_var_decl_in_symtab (data_in, t);
2043 else if (TREE_CODE (t) == FUNCTION_DECL && !DECL_BUILT_IN (t))
2044 lto_register_function_decl_in_symtab (data_in, t);
2045 else if (!flag_wpa
2046 && TREE_CODE (t) == TYPE_DECL)
2047 debug_hooks->type_decl (t, !DECL_FILE_SCOPE_P (t));
2048 else if (TYPE_P (t) && !TYPE_CANONICAL (t))
2049 TYPE_CANONICAL (t) = gimple_register_canonical_type (t);
2050 }
2051 }
2052
2053
2054 /* Read all the symbols from buffer DATA, using descriptors in DECL_DATA.
2055 RESOLUTIONS is the set of symbols picked by the linker (read from the
2056 resolution file when the linker plugin is being used). */
2057
2058 static void
2059 lto_read_decls (struct lto_file_decl_data *decl_data, const void *data,
2060 vec<ld_plugin_symbol_resolution_t> resolutions)
2061 {
2062 const struct lto_decl_header *header = (const struct lto_decl_header *) data;
2063 const int decl_offset = sizeof (struct lto_decl_header);
2064 const int main_offset = decl_offset + header->decl_state_size;
2065 const int string_offset = main_offset + header->main_size;
2066 struct lto_input_block ib_main;
2067 struct data_in *data_in;
2068 unsigned int i;
2069 const uint32_t *data_ptr, *data_end;
2070 uint32_t num_decl_states;
2071
2072 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
2073 header->main_size);
2074
2075 data_in = lto_data_in_create (decl_data, (const char *) data + string_offset,
2076 header->string_size, resolutions);
2077
2078 /* We do not uniquify the pre-loaded cache entries, those are middle-end
2079 internal types that should not be merged. */
2080
2081 /* Read the global declarations and types. */
2082 while (ib_main.p < ib_main.len)
2083 {
2084 tree t;
2085 unsigned from = data_in->reader_cache->nodes.length ();
2086 t = stream_read_tree (&ib_main, data_in);
2087 gcc_assert (t && ib_main.p <= ib_main.len);
2088 uniquify_nodes (data_in, from);
2089 }
2090
2091 /* Read in lto_in_decl_state objects. */
2092 data_ptr = (const uint32_t *) ((const char*) data + decl_offset);
2093 data_end =
2094 (const uint32_t *) ((const char*) data_ptr + header->decl_state_size);
2095 num_decl_states = *data_ptr++;
2096
2097 gcc_assert (num_decl_states > 0);
2098 decl_data->global_decl_state = lto_new_in_decl_state ();
2099 data_ptr = lto_read_in_decl_state (data_in, data_ptr,
2100 decl_data->global_decl_state);
2101
2102 /* Read in per-function decl states and enter them in hash table. */
2103 decl_data->function_decl_states =
2104 htab_create_ggc (37, lto_hash_in_decl_state, lto_eq_in_decl_state, NULL);
2105
2106 for (i = 1; i < num_decl_states; i++)
2107 {
2108 struct lto_in_decl_state *state = lto_new_in_decl_state ();
2109 void **slot;
2110
2111 data_ptr = lto_read_in_decl_state (data_in, data_ptr, state);
2112 slot = htab_find_slot (decl_data->function_decl_states, state, INSERT);
2113 gcc_assert (*slot == NULL);
2114 *slot = state;
2115 }
2116
2117 if (data_ptr != data_end)
2118 internal_error ("bytecode stream: garbage at the end of symbols section");
2119
2120 /* Set the current decl state to be the global state. */
2121 decl_data->current_decl_state = decl_data->global_decl_state;
2122
2123 lto_data_in_delete (data_in);
2124 }
2125
2126 /* Custom version of strtoll, which is not portable. */
2127
2128 static HOST_WIDEST_INT
2129 lto_parse_hex (const char *p)
2130 {
2131 HOST_WIDEST_INT ret = 0;
2132
2133 for (; *p != '\0'; ++p)
2134 {
2135 char c = *p;
2136 unsigned char part;
2137 ret <<= 4;
2138 if (c >= '0' && c <= '9')
2139 part = c - '0';
2140 else if (c >= 'a' && c <= 'f')
2141 part = c - 'a' + 10;
2142 else if (c >= 'A' && c <= 'F')
2143 part = c - 'A' + 10;
2144 else
2145 internal_error ("could not parse hex number");
2146 ret |= part;
2147 }
2148
2149 return ret;
2150 }
2151
2152 /* Read resolution for file named FILE_NAME. The resolution is read from
2153 RESOLUTION. */
2154
2155 static void
2156 lto_resolution_read (splay_tree file_ids, FILE *resolution, lto_file *file)
2157 {
2158 /* We require that objects in the resolution file are in the same
2159 order as the lto1 command line. */
2160 unsigned int name_len;
2161 char *obj_name;
2162 unsigned int num_symbols;
2163 unsigned int i;
2164 struct lto_file_decl_data *file_data;
2165 splay_tree_node nd = NULL;
2166
2167 if (!resolution)
2168 return;
2169
2170 name_len = strlen (file->filename);
2171 obj_name = XNEWVEC (char, name_len + 1);
2172 fscanf (resolution, " "); /* Read white space. */
2173
2174 fread (obj_name, sizeof (char), name_len, resolution);
2175 obj_name[name_len] = '\0';
2176 if (filename_cmp (obj_name, file->filename) != 0)
2177 internal_error ("unexpected file name %s in linker resolution file. "
2178 "Expected %s", obj_name, file->filename);
2179 if (file->offset != 0)
2180 {
2181 int t;
2182 char offset_p[17];
2183 HOST_WIDEST_INT offset;
2184 t = fscanf (resolution, "@0x%16s", offset_p);
2185 if (t != 1)
2186 internal_error ("could not parse file offset");
2187 offset = lto_parse_hex (offset_p);
2188 if (offset != file->offset)
2189 internal_error ("unexpected offset");
2190 }
2191
2192 free (obj_name);
2193
2194 fscanf (resolution, "%u", &num_symbols);
2195
2196 for (i = 0; i < num_symbols; i++)
2197 {
2198 int t;
2199 unsigned index;
2200 unsigned HOST_WIDE_INT id;
2201 char r_str[27];
2202 enum ld_plugin_symbol_resolution r = (enum ld_plugin_symbol_resolution) 0;
2203 unsigned int j;
2204 unsigned int lto_resolution_str_len =
2205 sizeof (lto_resolution_str) / sizeof (char *);
2206 res_pair rp;
2207
2208 t = fscanf (resolution, "%u " HOST_WIDE_INT_PRINT_HEX_PURE " %26s %*[^\n]\n",
2209 &index, &id, r_str);
2210 if (t != 3)
2211 internal_error ("invalid line in the resolution file");
2212
2213 for (j = 0; j < lto_resolution_str_len; j++)
2214 {
2215 if (strcmp (lto_resolution_str[j], r_str) == 0)
2216 {
2217 r = (enum ld_plugin_symbol_resolution) j;
2218 break;
2219 }
2220 }
2221 if (j == lto_resolution_str_len)
2222 internal_error ("invalid resolution in the resolution file");
2223
2224 if (!(nd && lto_splay_tree_id_equal_p (nd->key, id)))
2225 {
2226 nd = lto_splay_tree_lookup (file_ids, id);
2227 if (nd == NULL)
2228 internal_error ("resolution sub id %wx not in object file", id);
2229 }
2230
2231 file_data = (struct lto_file_decl_data *)nd->value;
2232 /* The indexes are very sparse. To save memory save them in a compact
2233 format that is only unpacked later when the subfile is processed. */
2234 rp.res = r;
2235 rp.index = index;
2236 file_data->respairs.safe_push (rp);
2237 if (file_data->max_index < index)
2238 file_data->max_index = index;
2239 }
2240 }
2241
2242 /* List of file_decl_datas */
2243 struct file_data_list
2244 {
2245 struct lto_file_decl_data *first, *last;
2246 };
2247
2248 /* Is the name for a id'ed LTO section? */
2249
2250 static int
2251 lto_section_with_id (const char *name, unsigned HOST_WIDE_INT *id)
2252 {
2253 const char *s;
2254
2255 if (strncmp (name, LTO_SECTION_NAME_PREFIX, strlen (LTO_SECTION_NAME_PREFIX)))
2256 return 0;
2257 s = strrchr (name, '.');
2258 return s && sscanf (s, "." HOST_WIDE_INT_PRINT_HEX_PURE, id) == 1;
2259 }
2260
2261 /* Create file_data of each sub file id */
2262
2263 static int
2264 create_subid_section_table (struct lto_section_slot *ls, splay_tree file_ids,
2265 struct file_data_list *list)
2266 {
2267 struct lto_section_slot s_slot, *new_slot;
2268 unsigned HOST_WIDE_INT id;
2269 splay_tree_node nd;
2270 void **hash_slot;
2271 char *new_name;
2272 struct lto_file_decl_data *file_data;
2273
2274 if (!lto_section_with_id (ls->name, &id))
2275 return 1;
2276
2277 /* Find hash table of sub module id */
2278 nd = lto_splay_tree_lookup (file_ids, id);
2279 if (nd != NULL)
2280 {
2281 file_data = (struct lto_file_decl_data *)nd->value;
2282 }
2283 else
2284 {
2285 file_data = ggc_alloc_lto_file_decl_data ();
2286 memset(file_data, 0, sizeof (struct lto_file_decl_data));
2287 file_data->id = id;
2288 file_data->section_hash_table = lto_obj_create_section_hash_table ();;
2289 lto_splay_tree_insert (file_ids, id, file_data);
2290
2291 /* Maintain list in linker order */
2292 if (!list->first)
2293 list->first = file_data;
2294 if (list->last)
2295 list->last->next = file_data;
2296 list->last = file_data;
2297 }
2298
2299 /* Copy section into sub module hash table */
2300 new_name = XDUPVEC (char, ls->name, strlen (ls->name) + 1);
2301 s_slot.name = new_name;
2302 hash_slot = htab_find_slot (file_data->section_hash_table, &s_slot, INSERT);
2303 gcc_assert (*hash_slot == NULL);
2304
2305 new_slot = XDUP (struct lto_section_slot, ls);
2306 new_slot->name = new_name;
2307 *hash_slot = new_slot;
2308 return 1;
2309 }
2310
2311 /* Read declarations and other initializations for a FILE_DATA. */
2312
2313 static void
2314 lto_file_finalize (struct lto_file_decl_data *file_data, lto_file *file)
2315 {
2316 const char *data;
2317 size_t len;
2318 vec<ld_plugin_symbol_resolution_t>
2319 resolutions = vNULL;
2320 int i;
2321 res_pair *rp;
2322
2323 /* Create vector for fast access of resolution. We do this lazily
2324 to save memory. */
2325 resolutions.safe_grow_cleared (file_data->max_index + 1);
2326 for (i = 0; file_data->respairs.iterate (i, &rp); i++)
2327 resolutions[rp->index] = rp->res;
2328 file_data->respairs.release ();
2329
2330 file_data->renaming_hash_table = lto_create_renaming_table ();
2331 file_data->file_name = file->filename;
2332 data = lto_get_section_data (file_data, LTO_section_decls, NULL, &len);
2333 if (data == NULL)
2334 {
2335 internal_error ("cannot read LTO decls from %s", file_data->file_name);
2336 return;
2337 }
2338 /* Frees resolutions */
2339 lto_read_decls (file_data, data, resolutions);
2340 lto_free_section_data (file_data, LTO_section_decls, NULL, data, len);
2341 }
2342
2343 /* Finalize FILE_DATA in FILE and increase COUNT. */
2344
2345 static int
2346 lto_create_files_from_ids (lto_file *file, struct lto_file_decl_data *file_data,
2347 int *count)
2348 {
2349 lto_file_finalize (file_data, file);
2350 if (cgraph_dump_file)
2351 fprintf (cgraph_dump_file, "Creating file %s with sub id " HOST_WIDE_INT_PRINT_HEX "\n",
2352 file_data->file_name, file_data->id);
2353 (*count)++;
2354 return 0;
2355 }
2356
2357 /* Generate a TREE representation for all types and external decls
2358 entities in FILE.
2359
2360 Read all of the globals out of the file. Then read the cgraph
2361 and process the .o index into the cgraph nodes so that it can open
2362 the .o file to load the functions and ipa information. */
2363
2364 static struct lto_file_decl_data *
2365 lto_file_read (lto_file *file, FILE *resolution_file, int *count)
2366 {
2367 struct lto_file_decl_data *file_data = NULL;
2368 splay_tree file_ids;
2369 htab_t section_hash_table;
2370 struct lto_section_slot *section;
2371 struct file_data_list file_list;
2372 struct lto_section_list section_list;
2373
2374 memset (&section_list, 0, sizeof (struct lto_section_list));
2375 section_hash_table = lto_obj_build_section_table (file, &section_list);
2376
2377 /* Find all sub modules in the object and put their sections into new hash
2378 tables in a splay tree. */
2379 file_ids = lto_splay_tree_new ();
2380 memset (&file_list, 0, sizeof (struct file_data_list));
2381 for (section = section_list.first; section != NULL; section = section->next)
2382 create_subid_section_table (section, file_ids, &file_list);
2383
2384 /* Add resolutions to file ids */
2385 lto_resolution_read (file_ids, resolution_file, file);
2386
2387 /* Finalize each lto file for each submodule in the merged object */
2388 for (file_data = file_list.first; file_data != NULL; file_data = file_data->next)
2389 lto_create_files_from_ids (file, file_data, count);
2390
2391 splay_tree_delete (file_ids);
2392 htab_delete (section_hash_table);
2393
2394 return file_list.first;
2395 }
2396
2397 #if HAVE_MMAP_FILE && HAVE_SYSCONF && defined _SC_PAGE_SIZE
2398 #define LTO_MMAP_IO 1
2399 #endif
2400
2401 #if LTO_MMAP_IO
2402 /* Page size of machine is used for mmap and munmap calls. */
2403 static size_t page_mask;
2404 #endif
2405
2406 /* Get the section data of length LEN from FILENAME starting at
2407 OFFSET. The data segment must be freed by the caller when the
2408 caller is finished. Returns NULL if all was not well. */
2409
2410 static char *
2411 lto_read_section_data (struct lto_file_decl_data *file_data,
2412 intptr_t offset, size_t len)
2413 {
2414 char *result;
2415 static int fd = -1;
2416 static char *fd_name;
2417 #if LTO_MMAP_IO
2418 intptr_t computed_len;
2419 intptr_t computed_offset;
2420 intptr_t diff;
2421 #endif
2422
2423 /* Keep a single-entry file-descriptor cache. The last file we
2424 touched will get closed at exit.
2425 ??? Eventually we want to add a more sophisticated larger cache
2426 or rather fix function body streaming to not stream them in
2427 practically random order. */
2428 if (fd != -1
2429 && filename_cmp (fd_name, file_data->file_name) != 0)
2430 {
2431 free (fd_name);
2432 close (fd);
2433 fd = -1;
2434 }
2435 if (fd == -1)
2436 {
2437 fd = open (file_data->file_name, O_RDONLY|O_BINARY);
2438 if (fd == -1)
2439 {
2440 fatal_error ("Cannot open %s", file_data->file_name);
2441 return NULL;
2442 }
2443 fd_name = xstrdup (file_data->file_name);
2444 }
2445
2446 #if LTO_MMAP_IO
2447 if (!page_mask)
2448 {
2449 size_t page_size = sysconf (_SC_PAGE_SIZE);
2450 page_mask = ~(page_size - 1);
2451 }
2452
2453 computed_offset = offset & page_mask;
2454 diff = offset - computed_offset;
2455 computed_len = len + diff;
2456
2457 result = (char *) mmap (NULL, computed_len, PROT_READ, MAP_PRIVATE,
2458 fd, computed_offset);
2459 if (result == MAP_FAILED)
2460 {
2461 fatal_error ("Cannot map %s", file_data->file_name);
2462 return NULL;
2463 }
2464
2465 return result + diff;
2466 #else
2467 result = (char *) xmalloc (len);
2468 if (lseek (fd, offset, SEEK_SET) != offset
2469 || read (fd, result, len) != (ssize_t) len)
2470 {
2471 free (result);
2472 fatal_error ("Cannot read %s", file_data->file_name);
2473 result = NULL;
2474 }
2475 #ifdef __MINGW32__
2476 /* Native windows doesn't supports delayed unlink on opened file. So
2477 we close file here again. This produces higher I/O load, but at least
2478 it prevents to have dangling file handles preventing unlink. */
2479 free (fd_name);
2480 fd_name = NULL;
2481 close (fd);
2482 fd = -1;
2483 #endif
2484 return result;
2485 #endif
2486 }
2487
2488
2489 /* Get the section data from FILE_DATA of SECTION_TYPE with NAME.
2490 NAME will be NULL unless the section type is for a function
2491 body. */
2492
2493 static const char *
2494 get_section_data (struct lto_file_decl_data *file_data,
2495 enum lto_section_type section_type,
2496 const char *name,
2497 size_t *len)
2498 {
2499 htab_t section_hash_table = file_data->section_hash_table;
2500 struct lto_section_slot *f_slot;
2501 struct lto_section_slot s_slot;
2502 const char *section_name = lto_get_section_name (section_type, name, file_data);
2503 char *data = NULL;
2504
2505 *len = 0;
2506 s_slot.name = section_name;
2507 f_slot = (struct lto_section_slot *) htab_find (section_hash_table, &s_slot);
2508 if (f_slot)
2509 {
2510 data = lto_read_section_data (file_data, f_slot->start, f_slot->len);
2511 *len = f_slot->len;
2512 }
2513
2514 free (CONST_CAST (char *, section_name));
2515 return data;
2516 }
2517
2518
2519 /* Free the section data from FILE_DATA of SECTION_TYPE with NAME that
2520 starts at OFFSET and has LEN bytes. */
2521
2522 static void
2523 free_section_data (struct lto_file_decl_data *file_data ATTRIBUTE_UNUSED,
2524 enum lto_section_type section_type ATTRIBUTE_UNUSED,
2525 const char *name ATTRIBUTE_UNUSED,
2526 const char *offset, size_t len ATTRIBUTE_UNUSED)
2527 {
2528 #if LTO_MMAP_IO
2529 intptr_t computed_len;
2530 intptr_t computed_offset;
2531 intptr_t diff;
2532 #endif
2533
2534 #if LTO_MMAP_IO
2535 computed_offset = ((intptr_t) offset) & page_mask;
2536 diff = (intptr_t) offset - computed_offset;
2537 computed_len = len + diff;
2538
2539 munmap ((caddr_t) computed_offset, computed_len);
2540 #else
2541 free (CONST_CAST(char *, offset));
2542 #endif
2543 }
2544
2545 static lto_file *current_lto_file;
2546
2547 /* Helper for qsort; compare partitions and return one with smaller size.
2548 We sort from greatest to smallest so parallel build doesn't stale on the
2549 longest compilation being executed too late. */
2550
2551 static int
2552 cmp_partitions_size (const void *a, const void *b)
2553 {
2554 const struct ltrans_partition_def *pa
2555 = *(struct ltrans_partition_def *const *)a;
2556 const struct ltrans_partition_def *pb
2557 = *(struct ltrans_partition_def *const *)b;
2558 return pb->insns - pa->insns;
2559 }
2560
2561 /* Helper for qsort; compare partitions and return one with smaller order. */
2562
2563 static int
2564 cmp_partitions_order (const void *a, const void *b)
2565 {
2566 const struct ltrans_partition_def *pa
2567 = *(struct ltrans_partition_def *const *)a;
2568 const struct ltrans_partition_def *pb
2569 = *(struct ltrans_partition_def *const *)b;
2570 int ordera = -1, orderb = -1;
2571
2572 if (lto_symtab_encoder_size (pa->encoder))
2573 ordera = lto_symtab_encoder_deref (pa->encoder, 0)->symbol.order;
2574 if (lto_symtab_encoder_size (pb->encoder))
2575 orderb = lto_symtab_encoder_deref (pb->encoder, 0)->symbol.order;
2576 return orderb - ordera;
2577 }
2578
2579 /* Write all output files in WPA mode and the file with the list of
2580 LTRANS units. */
2581
2582 static void
2583 lto_wpa_write_files (void)
2584 {
2585 unsigned i, n_sets;
2586 lto_file *file;
2587 ltrans_partition part;
2588 FILE *ltrans_output_list_stream;
2589 char *temp_filename;
2590 size_t blen;
2591
2592 /* Open the LTRANS output list. */
2593 if (!ltrans_output_list)
2594 fatal_error ("no LTRANS output list filename provided");
2595 ltrans_output_list_stream = fopen (ltrans_output_list, "w");
2596 if (ltrans_output_list_stream == NULL)
2597 fatal_error ("opening LTRANS output list %s: %m", ltrans_output_list);
2598
2599 timevar_push (TV_WHOPR_WPA);
2600
2601 FOR_EACH_VEC_ELT (ltrans_partitions, i, part)
2602 lto_stats.num_output_symtab_nodes += lto_symtab_encoder_size (part->encoder);
2603
2604 /* Find out statics that need to be promoted
2605 to globals with hidden visibility because they are accessed from multiple
2606 partitions. */
2607 lto_promote_cross_file_statics ();
2608
2609 timevar_pop (TV_WHOPR_WPA);
2610
2611 timevar_push (TV_WHOPR_WPA_IO);
2612
2613 /* Generate a prefix for the LTRANS unit files. */
2614 blen = strlen (ltrans_output_list);
2615 temp_filename = (char *) xmalloc (blen + sizeof ("2147483648.o"));
2616 strcpy (temp_filename, ltrans_output_list);
2617 if (blen > sizeof (".out")
2618 && strcmp (temp_filename + blen - sizeof (".out") + 1,
2619 ".out") == 0)
2620 temp_filename[blen - sizeof (".out") + 1] = '\0';
2621 blen = strlen (temp_filename);
2622
2623 n_sets = ltrans_partitions.length ();
2624
2625 /* Sort partitions by size so small ones are compiled last.
2626 FIXME: Even when not reordering we may want to output one list for parallel make
2627 and other for final link command. */
2628 ltrans_partitions.qsort (flag_toplevel_reorder
2629 ? cmp_partitions_size
2630 : cmp_partitions_order);
2631 for (i = 0; i < n_sets; i++)
2632 {
2633 size_t len;
2634 ltrans_partition part = ltrans_partitions[i];
2635
2636 /* Write all the nodes in SET. */
2637 sprintf (temp_filename + blen, "%u.o", i);
2638 file = lto_obj_file_open (temp_filename, true);
2639 if (!file)
2640 fatal_error ("lto_obj_file_open() failed");
2641
2642 if (!quiet_flag)
2643 fprintf (stderr, " %s (%s %i insns)", temp_filename, part->name, part->insns);
2644 if (cgraph_dump_file)
2645 {
2646 lto_symtab_encoder_iterator lsei;
2647
2648 fprintf (cgraph_dump_file, "Writing partition %s to file %s, %i insns\n",
2649 part->name, temp_filename, part->insns);
2650 fprintf (cgraph_dump_file, " Symbols in partition: ");
2651 for (lsei = lsei_start_in_partition (part->encoder); !lsei_end_p (lsei);
2652 lsei_next_in_partition (&lsei))
2653 {
2654 symtab_node node = lsei_node (lsei);
2655 fprintf (cgraph_dump_file, "%s ", symtab_node_asm_name (node));
2656 }
2657 fprintf (cgraph_dump_file, "\n Symbols in boundary: ");
2658 for (lsei = lsei_start (part->encoder); !lsei_end_p (lsei);
2659 lsei_next (&lsei))
2660 {
2661 symtab_node node = lsei_node (lsei);
2662 if (!lto_symtab_encoder_in_partition_p (part->encoder, node))
2663 {
2664 fprintf (cgraph_dump_file, "%s ", symtab_node_asm_name (node));
2665 cgraph_node *cnode = dyn_cast <cgraph_node> (node);
2666 if (cnode
2667 && lto_symtab_encoder_encode_body_p (part->encoder, cnode))
2668 fprintf (cgraph_dump_file, "(body included)");
2669 else
2670 {
2671 varpool_node *vnode = dyn_cast <varpool_node> (node);
2672 if (vnode
2673 && lto_symtab_encoder_encode_initializer_p (part->encoder, vnode))
2674 fprintf (cgraph_dump_file, "(initializer included)");
2675 }
2676 }
2677 }
2678 fprintf (cgraph_dump_file, "\n");
2679 }
2680 gcc_checking_assert (lto_symtab_encoder_size (part->encoder) || !i);
2681
2682 lto_set_current_out_file (file);
2683
2684 ipa_write_optimization_summaries (part->encoder);
2685
2686 lto_set_current_out_file (NULL);
2687 lto_obj_file_close (file);
2688 free (file);
2689 part->encoder = NULL;
2690
2691 len = strlen (temp_filename);
2692 if (fwrite (temp_filename, 1, len, ltrans_output_list_stream) < len
2693 || fwrite ("\n", 1, 1, ltrans_output_list_stream) < 1)
2694 fatal_error ("writing to LTRANS output list %s: %m",
2695 ltrans_output_list);
2696 }
2697
2698 lto_stats.num_output_files += n_sets;
2699
2700 /* Close the LTRANS output list. */
2701 if (fclose (ltrans_output_list_stream))
2702 fatal_error ("closing LTRANS output list %s: %m", ltrans_output_list);
2703
2704 free_ltrans_partitions();
2705 free (temp_filename);
2706
2707 timevar_pop (TV_WHOPR_WPA_IO);
2708 }
2709
2710
2711 /* If TT is a variable or function decl replace it with its
2712 prevailing variant. */
2713 #define LTO_SET_PREVAIL(tt) \
2714 do {\
2715 if ((tt) && VAR_OR_FUNCTION_DECL_P (tt)) \
2716 tt = lto_symtab_prevailing_decl (tt); \
2717 } while (0)
2718
2719 /* Ensure that TT isn't a replacable var of function decl. */
2720 #define LTO_NO_PREVAIL(tt) \
2721 gcc_assert (!(tt) || !VAR_OR_FUNCTION_DECL_P (tt))
2722
2723 /* Given a tree T replace all fields referring to variables or functions
2724 with their prevailing variant. */
2725 static void
2726 lto_fixup_prevailing_decls (tree t)
2727 {
2728 enum tree_code code = TREE_CODE (t);
2729 LTO_NO_PREVAIL (TREE_TYPE (t));
2730 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
2731 LTO_NO_PREVAIL (TREE_CHAIN (t));
2732 if (DECL_P (t))
2733 {
2734 LTO_NO_PREVAIL (DECL_NAME (t));
2735 LTO_SET_PREVAIL (DECL_CONTEXT (t));
2736 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
2737 {
2738 LTO_SET_PREVAIL (DECL_SIZE (t));
2739 LTO_SET_PREVAIL (DECL_SIZE_UNIT (t));
2740 LTO_SET_PREVAIL (DECL_INITIAL (t));
2741 LTO_NO_PREVAIL (DECL_ATTRIBUTES (t));
2742 LTO_SET_PREVAIL (DECL_ABSTRACT_ORIGIN (t));
2743 }
2744 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
2745 {
2746 LTO_NO_PREVAIL (t->decl_with_vis.assembler_name);
2747 LTO_NO_PREVAIL (DECL_SECTION_NAME (t));
2748 }
2749 if (CODE_CONTAINS_STRUCT (code, TS_DECL_NON_COMMON))
2750 {
2751 LTO_NO_PREVAIL (DECL_ARGUMENT_FLD (t));
2752 LTO_NO_PREVAIL (DECL_RESULT_FLD (t));
2753 LTO_NO_PREVAIL (DECL_VINDEX (t));
2754 }
2755 if (CODE_CONTAINS_STRUCT (code, TS_FUNCTION_DECL))
2756 LTO_SET_PREVAIL (DECL_FUNCTION_PERSONALITY (t));
2757 if (CODE_CONTAINS_STRUCT (code, TS_FIELD_DECL))
2758 {
2759 LTO_NO_PREVAIL (DECL_FIELD_OFFSET (t));
2760 LTO_NO_PREVAIL (DECL_BIT_FIELD_TYPE (t));
2761 LTO_NO_PREVAIL (DECL_QUALIFIER (t));
2762 LTO_NO_PREVAIL (DECL_FIELD_BIT_OFFSET (t));
2763 LTO_NO_PREVAIL (DECL_FCONTEXT (t));
2764 }
2765 }
2766 else if (TYPE_P (t))
2767 {
2768 LTO_NO_PREVAIL (TYPE_CACHED_VALUES (t));
2769 LTO_SET_PREVAIL (TYPE_SIZE (t));
2770 LTO_SET_PREVAIL (TYPE_SIZE_UNIT (t));
2771 LTO_NO_PREVAIL (TYPE_ATTRIBUTES (t));
2772 LTO_NO_PREVAIL (TYPE_NAME (t));
2773
2774 LTO_SET_PREVAIL (TYPE_MINVAL (t));
2775 LTO_SET_PREVAIL (TYPE_MAXVAL (t));
2776 LTO_SET_PREVAIL (t->type_non_common.binfo);
2777
2778 LTO_SET_PREVAIL (TYPE_CONTEXT (t));
2779
2780 LTO_NO_PREVAIL (TYPE_CANONICAL (t));
2781 LTO_NO_PREVAIL (TYPE_MAIN_VARIANT (t));
2782 LTO_NO_PREVAIL (TYPE_NEXT_VARIANT (t));
2783 }
2784 else if (EXPR_P (t))
2785 {
2786 int i;
2787 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
2788 LTO_SET_PREVAIL (TREE_OPERAND (t, i));
2789 }
2790 else
2791 {
2792 switch (code)
2793 {
2794 case TREE_LIST:
2795 LTO_SET_PREVAIL (TREE_VALUE (t));
2796 LTO_SET_PREVAIL (TREE_PURPOSE (t));
2797 break;
2798 default:
2799 gcc_unreachable ();
2800 }
2801 }
2802 }
2803 #undef LTO_SET_PREVAIL
2804 #undef LTO_NO_PREVAIL
2805
2806 /* Helper function of lto_fixup_decls. Walks the var and fn streams in STATE,
2807 replaces var and function decls with the corresponding prevailing def. */
2808
2809 static void
2810 lto_fixup_state (struct lto_in_decl_state *state)
2811 {
2812 unsigned i, si;
2813 struct lto_tree_ref_table *table;
2814
2815 /* Although we only want to replace FUNCTION_DECLs and VAR_DECLs,
2816 we still need to walk from all DECLs to find the reachable
2817 FUNCTION_DECLs and VAR_DECLs. */
2818 for (si = 0; si < LTO_N_DECL_STREAMS; si++)
2819 {
2820 table = &state->streams[si];
2821 for (i = 0; i < table->size; i++)
2822 {
2823 tree *tp = table->trees + i;
2824 if (VAR_OR_FUNCTION_DECL_P (*tp))
2825 *tp = lto_symtab_prevailing_decl (*tp);
2826 }
2827 }
2828 }
2829
2830 /* A callback of htab_traverse. Just extracts a state from SLOT
2831 and calls lto_fixup_state. */
2832
2833 static int
2834 lto_fixup_state_aux (void **slot, void *aux ATTRIBUTE_UNUSED)
2835 {
2836 struct lto_in_decl_state *state = (struct lto_in_decl_state *) *slot;
2837 lto_fixup_state (state);
2838 return 1;
2839 }
2840
2841 /* Fix the decls from all FILES. Replaces each decl with the corresponding
2842 prevailing one. */
2843
2844 static void
2845 lto_fixup_decls (struct lto_file_decl_data **files)
2846 {
2847 unsigned int i;
2848 htab_iterator hi;
2849 tree t;
2850
2851 FOR_EACH_HTAB_ELEMENT (tree_with_vars, t, tree, hi)
2852 lto_fixup_prevailing_decls (t);
2853
2854 for (i = 0; files[i]; i++)
2855 {
2856 struct lto_file_decl_data *file = files[i];
2857 struct lto_in_decl_state *state = file->global_decl_state;
2858 lto_fixup_state (state);
2859
2860 htab_traverse (file->function_decl_states, lto_fixup_state_aux, NULL);
2861 }
2862 }
2863
2864 static GTY((length ("lto_stats.num_input_files + 1"))) struct lto_file_decl_data **all_file_decl_data;
2865
2866 /* Turn file datas for sub files into a single array, so that they look
2867 like separate files for further passes. */
2868
2869 static void
2870 lto_flatten_files (struct lto_file_decl_data **orig, int count, int last_file_ix)
2871 {
2872 struct lto_file_decl_data *n, *next;
2873 int i, k;
2874
2875 lto_stats.num_input_files = count;
2876 all_file_decl_data
2877 = ggc_alloc_cleared_vec_lto_file_decl_data_ptr (count + 1);
2878 /* Set the hooks so that all of the ipa passes can read in their data. */
2879 lto_set_in_hooks (all_file_decl_data, get_section_data, free_section_data);
2880 for (i = 0, k = 0; i < last_file_ix; i++)
2881 {
2882 for (n = orig[i]; n != NULL; n = next)
2883 {
2884 all_file_decl_data[k++] = n;
2885 next = n->next;
2886 n->next = NULL;
2887 }
2888 }
2889 all_file_decl_data[k] = NULL;
2890 gcc_assert (k == count);
2891 }
2892
2893 /* Input file data before flattening (i.e. splitting them to subfiles to support
2894 incremental linking. */
2895 static int real_file_count;
2896 static GTY((length ("real_file_count + 1"))) struct lto_file_decl_data **real_file_decl_data;
2897
2898 static void print_lto_report_1 (void);
2899
2900 /* Read all the symbols from the input files FNAMES. NFILES is the
2901 number of files requested in the command line. Instantiate a
2902 global call graph by aggregating all the sub-graphs found in each
2903 file. */
2904
2905 static void
2906 read_cgraph_and_symbols (unsigned nfiles, const char **fnames)
2907 {
2908 unsigned int i, last_file_ix;
2909 FILE *resolution;
2910 struct cgraph_node *node;
2911 int count = 0;
2912 struct lto_file_decl_data **decl_data;
2913
2914 init_cgraph ();
2915
2916 timevar_push (TV_IPA_LTO_DECL_IN);
2917
2918 real_file_decl_data
2919 = decl_data = ggc_alloc_cleared_vec_lto_file_decl_data_ptr (nfiles + 1);
2920 real_file_count = nfiles;
2921
2922 /* Read the resolution file. */
2923 resolution = NULL;
2924 if (resolution_file_name)
2925 {
2926 int t;
2927 unsigned num_objects;
2928
2929 resolution = fopen (resolution_file_name, "r");
2930 if (resolution == NULL)
2931 fatal_error ("could not open symbol resolution file: %m");
2932
2933 t = fscanf (resolution, "%u", &num_objects);
2934 gcc_assert (t == 1);
2935
2936 /* True, since the plugin splits the archives. */
2937 gcc_assert (num_objects == nfiles);
2938 }
2939
2940 tree_with_vars = htab_create_ggc (101, htab_hash_pointer, htab_eq_pointer,
2941 NULL);
2942 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
2943 tree_int_map_eq, NULL);
2944 type_pair_cache = XCNEWVEC (struct type_pair_d, GIMPLE_TYPE_PAIR_SIZE);
2945 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
2946 (GIMPLE_TYPE_LEADER_SIZE);
2947 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
2948
2949 if (!quiet_flag)
2950 fprintf (stderr, "Reading object files:");
2951
2952 /* Read all of the object files specified on the command line. */
2953 for (i = 0, last_file_ix = 0; i < nfiles; ++i)
2954 {
2955 struct lto_file_decl_data *file_data = NULL;
2956 if (!quiet_flag)
2957 {
2958 fprintf (stderr, " %s", fnames[i]);
2959 fflush (stderr);
2960 }
2961
2962 current_lto_file = lto_obj_file_open (fnames[i], false);
2963 if (!current_lto_file)
2964 break;
2965
2966 file_data = lto_file_read (current_lto_file, resolution, &count);
2967 if (!file_data)
2968 {
2969 lto_obj_file_close (current_lto_file);
2970 free (current_lto_file);
2971 current_lto_file = NULL;
2972 break;
2973 }
2974
2975 decl_data[last_file_ix++] = file_data;
2976
2977 lto_obj_file_close (current_lto_file);
2978 free (current_lto_file);
2979 current_lto_file = NULL;
2980 ggc_collect ();
2981 }
2982
2983 lto_flatten_files (decl_data, count, last_file_ix);
2984 lto_stats.num_input_files = count;
2985 ggc_free(decl_data);
2986 real_file_decl_data = NULL;
2987
2988 if (resolution_file_name)
2989 fclose (resolution);
2990
2991 /* Show the LTO report before launching LTRANS. */
2992 if (flag_lto_report || (flag_wpa && flag_lto_report_wpa))
2993 print_lto_report_1 ();
2994
2995 /* Free gimple type merging datastructures. */
2996 htab_delete (gimple_types);
2997 gimple_types = NULL;
2998 htab_delete (type_hash_cache);
2999 type_hash_cache = NULL;
3000 free (type_pair_cache);
3001 type_pair_cache = NULL;
3002 gimple_type_leader = NULL;
3003 free_gimple_type_tables ();
3004 ggc_collect ();
3005
3006 /* Set the hooks so that all of the ipa passes can read in their data. */
3007 lto_set_in_hooks (all_file_decl_data, get_section_data, free_section_data);
3008
3009 timevar_pop (TV_IPA_LTO_DECL_IN);
3010
3011 if (!quiet_flag)
3012 fprintf (stderr, "\nReading the callgraph\n");
3013
3014 timevar_push (TV_IPA_LTO_CGRAPH_IO);
3015 /* Read the symtab. */
3016 input_symtab ();
3017
3018 /* Store resolutions into the symbol table. */
3019 if (resolution_map)
3020 {
3021 void **res;
3022 symtab_node snode;
3023
3024 FOR_EACH_SYMBOL (snode)
3025 if (symtab_real_symbol_p (snode)
3026 && (res = pointer_map_contains (resolution_map,
3027 snode->symbol.decl)))
3028 snode->symbol.resolution
3029 = (enum ld_plugin_symbol_resolution)(size_t)*res;
3030
3031 pointer_map_destroy (resolution_map);
3032 resolution_map = NULL;
3033 }
3034
3035 timevar_pop (TV_IPA_LTO_CGRAPH_IO);
3036
3037 if (!quiet_flag)
3038 fprintf (stderr, "Merging declarations\n");
3039
3040 timevar_push (TV_IPA_LTO_DECL_MERGE);
3041 /* Merge global decls. In ltrans mode we read merged cgraph, we do not
3042 need to care about resolving symbols again, we only need to replace
3043 duplicated declarations read from the callgraph and from function
3044 sections. */
3045 if (!flag_ltrans)
3046 {
3047 lto_symtab_merge_decls ();
3048
3049 /* If there were errors during symbol merging bail out, we have no
3050 good way to recover here. */
3051 if (seen_error ())
3052 fatal_error ("errors during merging of translation units");
3053
3054 /* Fixup all decls. */
3055 lto_fixup_decls (all_file_decl_data);
3056 }
3057 htab_delete (tree_with_vars);
3058 tree_with_vars = NULL;
3059 ggc_collect ();
3060
3061 timevar_pop (TV_IPA_LTO_DECL_MERGE);
3062 /* Each pass will set the appropriate timer. */
3063
3064 if (!quiet_flag)
3065 fprintf (stderr, "Reading summaries\n");
3066
3067 /* Read the IPA summary data. */
3068 if (flag_ltrans)
3069 ipa_read_optimization_summaries ();
3070 else
3071 ipa_read_summaries ();
3072
3073 for (i = 0; all_file_decl_data[i]; i++)
3074 {
3075 gcc_assert (all_file_decl_data[i]->symtab_node_encoder);
3076 lto_symtab_encoder_delete (all_file_decl_data[i]->symtab_node_encoder);
3077 all_file_decl_data[i]->symtab_node_encoder = NULL;
3078 }
3079
3080 /* Finally merge the cgraph according to the decl merging decisions. */
3081 timevar_push (TV_IPA_LTO_CGRAPH_MERGE);
3082 if (cgraph_dump_file)
3083 {
3084 fprintf (cgraph_dump_file, "Before merging:\n");
3085 dump_cgraph (cgraph_dump_file);
3086 dump_varpool (cgraph_dump_file);
3087 }
3088 lto_symtab_merge_cgraph_nodes ();
3089 ggc_collect ();
3090
3091 /* FIXME: ipa_transforms_to_apply holds list of passes that have optimization
3092 summaries computed and needs to apply changes. At the moment WHOPR only
3093 supports inlining, so we can push it here by hand. In future we need to stream
3094 this field into ltrans compilation. */
3095 if (flag_ltrans)
3096 FOR_EACH_DEFINED_FUNCTION (node)
3097 node->ipa_transforms_to_apply.safe_push ((ipa_opt_pass)&pass_ipa_inline);
3098
3099 timevar_pop (TV_IPA_LTO_CGRAPH_MERGE);
3100
3101 timevar_push (TV_IPA_LTO_DECL_INIT_IO);
3102
3103 /* Indicate that the cgraph is built and ready. */
3104 cgraph_function_flags_ready = true;
3105
3106 timevar_pop (TV_IPA_LTO_DECL_INIT_IO);
3107 ggc_free (all_file_decl_data);
3108 all_file_decl_data = NULL;
3109 }
3110
3111
3112 /* Materialize all the bodies for all the nodes in the callgraph. */
3113
3114 static void
3115 materialize_cgraph (void)
3116 {
3117 tree decl;
3118 struct cgraph_node *node;
3119 unsigned i;
3120 timevar_id_t lto_timer;
3121
3122 if (!quiet_flag)
3123 fprintf (stderr,
3124 flag_wpa ? "Materializing decls:" : "Reading function bodies:");
3125
3126 /* Now that we have input the cgraph, we need to clear all of the aux
3127 nodes and read the functions if we are not running in WPA mode. */
3128 timevar_push (TV_IPA_LTO_GIMPLE_IN);
3129
3130 FOR_EACH_FUNCTION (node)
3131 {
3132 if (node->symbol.lto_file_data)
3133 {
3134 lto_materialize_function (node);
3135 lto_stats.num_input_cgraph_nodes++;
3136 }
3137 }
3138
3139 timevar_pop (TV_IPA_LTO_GIMPLE_IN);
3140
3141 /* Start the appropriate timer depending on the mode that we are
3142 operating in. */
3143 lto_timer = (flag_wpa) ? TV_WHOPR_WPA
3144 : (flag_ltrans) ? TV_WHOPR_LTRANS
3145 : TV_LTO;
3146 timevar_push (lto_timer);
3147
3148 current_function_decl = NULL;
3149 set_cfun (NULL);
3150
3151 /* Inform the middle end about the global variables we have seen. */
3152 FOR_EACH_VEC_ELT (*lto_global_var_decls, i, decl)
3153 rest_of_decl_compilation (decl, 1, 0);
3154
3155 if (!quiet_flag)
3156 fprintf (stderr, "\n");
3157
3158 timevar_pop (lto_timer);
3159 }
3160
3161
3162 /* Show various memory usage statistics related to LTO. */
3163 static void
3164 print_lto_report_1 (void)
3165 {
3166 const char *pfx = (flag_lto) ? "LTO" : (flag_wpa) ? "WPA" : "LTRANS";
3167 fprintf (stderr, "%s statistics\n", pfx);
3168
3169 if (gimple_types)
3170 fprintf (stderr, "[%s] GIMPLE type table: size %ld, %ld elements, "
3171 "%ld searches, %ld collisions (ratio: %f)\n", pfx,
3172 (long) htab_size (gimple_types),
3173 (long) htab_elements (gimple_types),
3174 (long) gimple_types->searches,
3175 (long) gimple_types->collisions,
3176 htab_collisions (gimple_types));
3177 else
3178 fprintf (stderr, "[%s] GIMPLE type table is empty\n", pfx);
3179 if (type_hash_cache)
3180 fprintf (stderr, "[%s] GIMPLE type hash table: size %ld, %ld elements, "
3181 "%ld searches, %ld collisions (ratio: %f)\n", pfx,
3182 (long) htab_size (type_hash_cache),
3183 (long) htab_elements (type_hash_cache),
3184 (long) type_hash_cache->searches,
3185 (long) type_hash_cache->collisions,
3186 htab_collisions (type_hash_cache));
3187 else
3188 fprintf (stderr, "[%s] GIMPLE type hash table is empty\n", pfx);
3189
3190 print_gimple_types_stats (pfx);
3191 print_lto_report (pfx);
3192 }
3193
3194 /* Perform whole program analysis (WPA) on the callgraph and write out the
3195 optimization plan. */
3196
3197 static void
3198 do_whole_program_analysis (void)
3199 {
3200 symtab_node node;
3201
3202 timevar_start (TV_PHASE_OPT_GEN);
3203
3204 /* Note that since we are in WPA mode, materialize_cgraph will not
3205 actually read in all the function bodies. It only materializes
3206 the decls and cgraph nodes so that analysis can be performed. */
3207 materialize_cgraph ();
3208
3209 /* Reading in the cgraph uses different timers, start timing WPA now. */
3210 timevar_push (TV_WHOPR_WPA);
3211
3212 if (pre_ipa_mem_report)
3213 {
3214 fprintf (stderr, "Memory consumption before IPA\n");
3215 dump_memory_report (false);
3216 }
3217
3218 cgraph_function_flags_ready = true;
3219
3220 if (cgraph_dump_file)
3221 {
3222 dump_cgraph (cgraph_dump_file);
3223 dump_varpool (cgraph_dump_file);
3224 }
3225 bitmap_obstack_initialize (NULL);
3226 cgraph_state = CGRAPH_STATE_IPA_SSA;
3227
3228 execute_ipa_pass_list (all_regular_ipa_passes);
3229 symtab_remove_unreachable_nodes (false, dump_file);
3230
3231 if (cgraph_dump_file)
3232 {
3233 fprintf (cgraph_dump_file, "Optimized ");
3234 dump_cgraph (cgraph_dump_file);
3235 dump_varpool (cgraph_dump_file);
3236 }
3237 #ifdef ENABLE_CHECKING
3238 verify_cgraph ();
3239 #endif
3240 bitmap_obstack_release (NULL);
3241
3242 /* We are about to launch the final LTRANS phase, stop the WPA timer. */
3243 timevar_pop (TV_WHOPR_WPA);
3244
3245 timevar_push (TV_WHOPR_PARTITIONING);
3246 if (flag_lto_partition_1to1)
3247 lto_1_to_1_map ();
3248 else if (flag_lto_partition_max)
3249 lto_max_map ();
3250 else
3251 lto_balanced_map ();
3252
3253 /* AUX pointers are used by partitioning code to bookkeep number of
3254 partitions symbol is in. This is no longer needed. */
3255 FOR_EACH_SYMBOL (node)
3256 node->symbol.aux = NULL;
3257
3258 lto_stats.num_cgraph_partitions += ltrans_partitions.length ();
3259 timevar_pop (TV_WHOPR_PARTITIONING);
3260
3261 timevar_stop (TV_PHASE_OPT_GEN);
3262 timevar_start (TV_PHASE_STREAM_OUT);
3263
3264 if (!quiet_flag)
3265 {
3266 fprintf (stderr, "\nStreaming out");
3267 fflush (stderr);
3268 }
3269 lto_wpa_write_files ();
3270 if (!quiet_flag)
3271 fprintf (stderr, "\n");
3272
3273 timevar_stop (TV_PHASE_STREAM_OUT);
3274
3275 ggc_collect ();
3276 if (post_ipa_mem_report)
3277 {
3278 fprintf (stderr, "Memory consumption after IPA\n");
3279 dump_memory_report (false);
3280 }
3281
3282 /* Show the LTO report before launching LTRANS. */
3283 if (flag_lto_report || (flag_wpa && flag_lto_report_wpa))
3284 print_lto_report_1 ();
3285 if (mem_report_wpa)
3286 dump_memory_report (true);
3287 }
3288
3289
3290 static GTY(()) tree lto_eh_personality_decl;
3291
3292 /* Return the LTO personality function decl. */
3293
3294 tree
3295 lto_eh_personality (void)
3296 {
3297 if (!lto_eh_personality_decl)
3298 {
3299 /* Use the first personality DECL for our personality if we don't
3300 support multiple ones. This ensures that we don't artificially
3301 create the need for them in a single-language program. */
3302 if (first_personality_decl && !dwarf2out_do_cfi_asm ())
3303 lto_eh_personality_decl = first_personality_decl;
3304 else
3305 lto_eh_personality_decl = lhd_gcc_personality ();
3306 }
3307
3308 return lto_eh_personality_decl;
3309 }
3310
3311 /* Set the process name based on the LTO mode. */
3312
3313 static void
3314 lto_process_name (void)
3315 {
3316 if (flag_lto)
3317 setproctitle ("lto1-lto");
3318 if (flag_wpa)
3319 setproctitle ("lto1-wpa");
3320 if (flag_ltrans)
3321 setproctitle ("lto1-ltrans");
3322 }
3323
3324
3325 /* Initialize the LTO front end. */
3326
3327 static void
3328 lto_init (void)
3329 {
3330 lto_process_name ();
3331 lto_streamer_hooks_init ();
3332 lto_reader_init ();
3333 lto_set_in_hooks (NULL, get_section_data, free_section_data);
3334 memset (&lto_stats, 0, sizeof (lto_stats));
3335 bitmap_obstack_initialize (NULL);
3336 gimple_register_cfg_hooks ();
3337 }
3338
3339
3340 /* Main entry point for the GIMPLE front end. This front end has
3341 three main personalities:
3342
3343 - LTO (-flto). All the object files on the command line are
3344 loaded in memory and processed as a single translation unit.
3345 This is the traditional link-time optimization behavior.
3346
3347 - WPA (-fwpa). Only the callgraph and summary information for
3348 files in the command file are loaded. A single callgraph
3349 (without function bodies) is instantiated for the whole set of
3350 files. IPA passes are only allowed to analyze the call graph
3351 and make transformation decisions. The callgraph is
3352 partitioned, each partition is written to a new object file
3353 together with the transformation decisions.
3354
3355 - LTRANS (-fltrans). Similar to -flto but it prevents the IPA
3356 summary files from running again. Since WPA computed summary
3357 information and decided what transformations to apply, LTRANS
3358 simply applies them. */
3359
3360 void
3361 lto_main (void)
3362 {
3363 /* LTO is called as a front end, even though it is not a front end.
3364 Because it is called as a front end, TV_PHASE_PARSING and
3365 TV_PARSE_GLOBAL are active, and we need to turn them off while
3366 doing LTO. Later we turn them back on so they are active up in
3367 toplev.c. */
3368 timevar_pop (TV_PARSE_GLOBAL);
3369 timevar_stop (TV_PHASE_PARSING);
3370
3371 timevar_start (TV_PHASE_SETUP);
3372
3373 /* Initialize the LTO front end. */
3374 lto_init ();
3375
3376 timevar_stop (TV_PHASE_SETUP);
3377 timevar_start (TV_PHASE_STREAM_IN);
3378
3379 /* Read all the symbols and call graph from all the files in the
3380 command line. */
3381 read_cgraph_and_symbols (num_in_fnames, in_fnames);
3382
3383 timevar_stop (TV_PHASE_STREAM_IN);
3384
3385 if (!seen_error ())
3386 {
3387 /* If WPA is enabled analyze the whole call graph and create an
3388 optimization plan. Otherwise, read in all the function
3389 bodies and continue with optimization. */
3390 if (flag_wpa)
3391 do_whole_program_analysis ();
3392 else
3393 {
3394 struct varpool_node *vnode;
3395
3396 timevar_start (TV_PHASE_OPT_GEN);
3397
3398 materialize_cgraph ();
3399
3400 /* Let the middle end know that we have read and merged all of
3401 the input files. */
3402 compile ();
3403
3404 timevar_stop (TV_PHASE_OPT_GEN);
3405
3406 /* FIXME lto, if the processes spawned by WPA fail, we miss
3407 the chance to print WPA's report, so WPA will call
3408 print_lto_report before launching LTRANS. If LTRANS was
3409 launched directly by the driver we would not need to do
3410 this. */
3411 if (flag_lto_report || (flag_wpa && flag_lto_report_wpa))
3412 print_lto_report_1 ();
3413
3414 /* Record the global variables. */
3415 FOR_EACH_DEFINED_VARIABLE (vnode)
3416 vec_safe_push (lto_global_var_decls, vnode->symbol.decl);
3417 }
3418 }
3419
3420 /* Here we make LTO pretend to be a parser. */
3421 timevar_start (TV_PHASE_PARSING);
3422 timevar_push (TV_PARSE_GLOBAL);
3423 }
3424
3425 #include "gt-lto-lto.h"