re PR c++/84705 (internal compiler error: in add_stmt, at cp/semantics.c:390)
[gcc.git] / gcc / machmode.h
1 /* Machine mode definitions for GCC; included by rtl.h and tree.h.
2 Copyright (C) 1991-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef HAVE_MACHINE_MODES
21 #define HAVE_MACHINE_MODES
22
23 typedef opt_mode<machine_mode> opt_machine_mode;
24
25 extern CONST_MODE_SIZE poly_uint16_pod mode_size[NUM_MACHINE_MODES];
26 extern CONST_MODE_PRECISION poly_uint16_pod mode_precision[NUM_MACHINE_MODES];
27 extern const unsigned char mode_inner[NUM_MACHINE_MODES];
28 extern CONST_MODE_NUNITS poly_uint16_pod mode_nunits[NUM_MACHINE_MODES];
29 extern CONST_MODE_UNIT_SIZE unsigned char mode_unit_size[NUM_MACHINE_MODES];
30 extern const unsigned short mode_unit_precision[NUM_MACHINE_MODES];
31 extern const unsigned char mode_wider[NUM_MACHINE_MODES];
32 extern const unsigned char mode_2xwider[NUM_MACHINE_MODES];
33
34 template<typename T>
35 struct mode_traits
36 {
37 /* For use by the machmode support code only.
38
39 There are cases in which the machmode support code needs to forcibly
40 convert a machine_mode to a specific mode class T, and in which the
41 context guarantees that this is valid without the need for an assert.
42 This can be done using:
43
44 return typename mode_traits<T>::from_int (mode);
45
46 when returning a T and:
47
48 res = T (typename mode_traits<T>::from_int (mode));
49
50 when assigning to a value RES that must be assignment-compatible
51 with (but possibly not the same as) T. */
52 #ifdef USE_ENUM_MODES
53 /* Allow direct conversion of enums to specific mode classes only
54 when USE_ENUM_MODES is defined. This is only intended for use
55 by gencondmd, so that it can tell more easily when .md conditions
56 are always false. */
57 typedef machine_mode from_int;
58 #else
59 /* Here we use an enum type distinct from machine_mode but with the
60 same range as machine_mode. T should have a constructor that
61 accepts this enum type; it should not have a constructor that
62 accepts machine_mode.
63
64 We use this somewhat indirect approach to avoid too many constructor
65 calls when the compiler is built with -O0. For example, even in
66 unoptimized code, the return statement above would construct the
67 returned T directly from the numerical value of MODE. */
68 enum from_int { dummy = MAX_MACHINE_MODE };
69 #endif
70 };
71
72 template<>
73 struct mode_traits<machine_mode>
74 {
75 /* machine_mode itself needs no conversion. */
76 typedef machine_mode from_int;
77 };
78
79 /* Always treat machine modes as fixed-size while compiling code specific
80 to targets that have no variable-size modes. */
81 #if defined (IN_TARGET_CODE) && NUM_POLY_INT_COEFFS == 1
82 #define ONLY_FIXED_SIZE_MODES 1
83 #else
84 #define ONLY_FIXED_SIZE_MODES 0
85 #endif
86
87 /* Get the name of mode MODE as a string. */
88
89 extern const char * const mode_name[NUM_MACHINE_MODES];
90 #define GET_MODE_NAME(MODE) mode_name[MODE]
91
92 /* Mode classes. */
93
94 #include "mode-classes.def"
95 #define DEF_MODE_CLASS(M) M
96 enum mode_class { MODE_CLASSES, MAX_MODE_CLASS };
97 #undef DEF_MODE_CLASS
98 #undef MODE_CLASSES
99
100 /* Get the general kind of object that mode MODE represents
101 (integer, floating, complex, etc.) */
102
103 extern const unsigned char mode_class[NUM_MACHINE_MODES];
104 #define GET_MODE_CLASS(MODE) ((enum mode_class) mode_class[MODE])
105
106 /* Nonzero if MODE is an integral mode. */
107 #define INTEGRAL_MODE_P(MODE) \
108 (GET_MODE_CLASS (MODE) == MODE_INT \
109 || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT \
110 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT \
111 || GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL \
112 || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT)
113
114 /* Nonzero if MODE is a floating-point mode. */
115 #define FLOAT_MODE_P(MODE) \
116 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
117 || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT \
118 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
119 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT)
120
121 /* Nonzero if MODE is a complex mode. */
122 #define COMPLEX_MODE_P(MODE) \
123 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT \
124 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
125
126 /* Nonzero if MODE is a vector mode. */
127 #define VECTOR_MODE_P(MODE) \
128 (GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL \
129 || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \
130 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT \
131 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT \
132 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT \
133 || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM \
134 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM)
135
136 /* Nonzero if MODE is a scalar integral mode. */
137 #define SCALAR_INT_MODE_P(MODE) \
138 (GET_MODE_CLASS (MODE) == MODE_INT \
139 || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT)
140
141 /* Nonzero if MODE is a scalar floating point mode. */
142 #define SCALAR_FLOAT_MODE_P(MODE) \
143 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
144 || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT)
145
146 /* Nonzero if MODE is a decimal floating point mode. */
147 #define DECIMAL_FLOAT_MODE_P(MODE) \
148 (GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT)
149
150 /* Nonzero if MODE is a scalar fract mode. */
151 #define SCALAR_FRACT_MODE_P(MODE) \
152 (GET_MODE_CLASS (MODE) == MODE_FRACT)
153
154 /* Nonzero if MODE is a scalar ufract mode. */
155 #define SCALAR_UFRACT_MODE_P(MODE) \
156 (GET_MODE_CLASS (MODE) == MODE_UFRACT)
157
158 /* Nonzero if MODE is a scalar fract or ufract mode. */
159 #define ALL_SCALAR_FRACT_MODE_P(MODE) \
160 (SCALAR_FRACT_MODE_P (MODE) || SCALAR_UFRACT_MODE_P (MODE))
161
162 /* Nonzero if MODE is a scalar accum mode. */
163 #define SCALAR_ACCUM_MODE_P(MODE) \
164 (GET_MODE_CLASS (MODE) == MODE_ACCUM)
165
166 /* Nonzero if MODE is a scalar uaccum mode. */
167 #define SCALAR_UACCUM_MODE_P(MODE) \
168 (GET_MODE_CLASS (MODE) == MODE_UACCUM)
169
170 /* Nonzero if MODE is a scalar accum or uaccum mode. */
171 #define ALL_SCALAR_ACCUM_MODE_P(MODE) \
172 (SCALAR_ACCUM_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE))
173
174 /* Nonzero if MODE is a scalar fract or accum mode. */
175 #define SIGNED_SCALAR_FIXED_POINT_MODE_P(MODE) \
176 (SCALAR_FRACT_MODE_P (MODE) || SCALAR_ACCUM_MODE_P (MODE))
177
178 /* Nonzero if MODE is a scalar ufract or uaccum mode. */
179 #define UNSIGNED_SCALAR_FIXED_POINT_MODE_P(MODE) \
180 (SCALAR_UFRACT_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE))
181
182 /* Nonzero if MODE is a scalar fract, ufract, accum or uaccum mode. */
183 #define ALL_SCALAR_FIXED_POINT_MODE_P(MODE) \
184 (SIGNED_SCALAR_FIXED_POINT_MODE_P (MODE) \
185 || UNSIGNED_SCALAR_FIXED_POINT_MODE_P (MODE))
186
187 /* Nonzero if MODE is a scalar/vector fract mode. */
188 #define FRACT_MODE_P(MODE) \
189 (GET_MODE_CLASS (MODE) == MODE_FRACT \
190 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT)
191
192 /* Nonzero if MODE is a scalar/vector ufract mode. */
193 #define UFRACT_MODE_P(MODE) \
194 (GET_MODE_CLASS (MODE) == MODE_UFRACT \
195 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT)
196
197 /* Nonzero if MODE is a scalar/vector fract or ufract mode. */
198 #define ALL_FRACT_MODE_P(MODE) \
199 (FRACT_MODE_P (MODE) || UFRACT_MODE_P (MODE))
200
201 /* Nonzero if MODE is a scalar/vector accum mode. */
202 #define ACCUM_MODE_P(MODE) \
203 (GET_MODE_CLASS (MODE) == MODE_ACCUM \
204 || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM)
205
206 /* Nonzero if MODE is a scalar/vector uaccum mode. */
207 #define UACCUM_MODE_P(MODE) \
208 (GET_MODE_CLASS (MODE) == MODE_UACCUM \
209 || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM)
210
211 /* Nonzero if MODE is a scalar/vector accum or uaccum mode. */
212 #define ALL_ACCUM_MODE_P(MODE) \
213 (ACCUM_MODE_P (MODE) || UACCUM_MODE_P (MODE))
214
215 /* Nonzero if MODE is a scalar/vector fract or accum mode. */
216 #define SIGNED_FIXED_POINT_MODE_P(MODE) \
217 (FRACT_MODE_P (MODE) || ACCUM_MODE_P (MODE))
218
219 /* Nonzero if MODE is a scalar/vector ufract or uaccum mode. */
220 #define UNSIGNED_FIXED_POINT_MODE_P(MODE) \
221 (UFRACT_MODE_P (MODE) || UACCUM_MODE_P (MODE))
222
223 /* Nonzero if MODE is a scalar/vector fract, ufract, accum or uaccum mode. */
224 #define ALL_FIXED_POINT_MODE_P(MODE) \
225 (SIGNED_FIXED_POINT_MODE_P (MODE) \
226 || UNSIGNED_FIXED_POINT_MODE_P (MODE))
227
228 /* Nonzero if CLASS modes can be widened. */
229 #define CLASS_HAS_WIDER_MODES_P(CLASS) \
230 (CLASS == MODE_INT \
231 || CLASS == MODE_PARTIAL_INT \
232 || CLASS == MODE_FLOAT \
233 || CLASS == MODE_DECIMAL_FLOAT \
234 || CLASS == MODE_COMPLEX_FLOAT \
235 || CLASS == MODE_FRACT \
236 || CLASS == MODE_UFRACT \
237 || CLASS == MODE_ACCUM \
238 || CLASS == MODE_UACCUM)
239
240 /* An optional T (i.e. a T or nothing), where T is some form of mode class. */
241 template<typename T>
242 class opt_mode
243 {
244 public:
245 enum from_int { dummy = MAX_MACHINE_MODE };
246
247 ALWAYS_INLINE opt_mode () : m_mode (E_VOIDmode) {}
248 ALWAYS_INLINE opt_mode (const T &m) : m_mode (m) {}
249 template<typename U>
250 ALWAYS_INLINE opt_mode (const U &m) : m_mode (T (m)) {}
251 ALWAYS_INLINE opt_mode (from_int m) : m_mode (machine_mode (m)) {}
252
253 machine_mode else_void () const;
254 machine_mode else_blk () const;
255 T require () const;
256
257 bool exists () const;
258 template<typename U> bool exists (U *) const;
259
260 private:
261 machine_mode m_mode;
262 };
263
264 /* If the object contains a T, return its enum value, otherwise return
265 E_VOIDmode. */
266
267 template<typename T>
268 ALWAYS_INLINE machine_mode
269 opt_mode<T>::else_void () const
270 {
271 return m_mode;
272 }
273
274 /* If the T exists, return its enum value, otherwise return E_BLKmode. */
275
276 template<typename T>
277 inline machine_mode
278 opt_mode<T>::else_blk () const
279 {
280 return m_mode == E_VOIDmode ? E_BLKmode : m_mode;
281 }
282
283 /* Assert that the object contains a T and return it. */
284
285 template<typename T>
286 inline T
287 opt_mode<T>::require () const
288 {
289 gcc_checking_assert (m_mode != E_VOIDmode);
290 return typename mode_traits<T>::from_int (m_mode);
291 }
292
293 /* Return true if the object contains a T rather than nothing. */
294
295 template<typename T>
296 ALWAYS_INLINE bool
297 opt_mode<T>::exists () const
298 {
299 return m_mode != E_VOIDmode;
300 }
301
302 /* Return true if the object contains a T, storing it in *MODE if so. */
303
304 template<typename T>
305 template<typename U>
306 inline bool
307 opt_mode<T>::exists (U *mode) const
308 {
309 if (m_mode != E_VOIDmode)
310 {
311 *mode = T (typename mode_traits<T>::from_int (m_mode));
312 return true;
313 }
314 return false;
315 }
316
317 /* A POD version of mode class T. */
318
319 template<typename T>
320 struct pod_mode
321 {
322 typedef typename mode_traits<T>::from_int from_int;
323 typedef typename T::measurement_type measurement_type;
324
325 machine_mode m_mode;
326 ALWAYS_INLINE operator machine_mode () const { return m_mode; }
327 ALWAYS_INLINE operator T () const { return from_int (m_mode); }
328 ALWAYS_INLINE pod_mode &operator = (const T &m) { m_mode = m; return *this; }
329 };
330
331 /* Return true if mode M has type T. */
332
333 template<typename T>
334 inline bool
335 is_a (machine_mode m)
336 {
337 return T::includes_p (m);
338 }
339
340 template<typename T, typename U>
341 inline bool
342 is_a (const opt_mode<U> &m)
343 {
344 return T::includes_p (m.else_void ());
345 }
346
347 /* Assert that mode M has type T, and return it in that form. */
348
349 template<typename T>
350 inline T
351 as_a (machine_mode m)
352 {
353 gcc_checking_assert (T::includes_p (m));
354 return typename mode_traits<T>::from_int (m);
355 }
356
357 template<typename T, typename U>
358 inline T
359 as_a (const opt_mode<U> &m)
360 {
361 return as_a <T> (m.else_void ());
362 }
363
364 /* Convert M to an opt_mode<T>. */
365
366 template<typename T>
367 inline opt_mode<T>
368 dyn_cast (machine_mode m)
369 {
370 if (T::includes_p (m))
371 return T (typename mode_traits<T>::from_int (m));
372 return opt_mode<T> ();
373 }
374
375 template<typename T, typename U>
376 inline opt_mode<T>
377 dyn_cast (const opt_mode<U> &m)
378 {
379 return dyn_cast <T> (m.else_void ());
380 }
381
382 /* Return true if mode M has type T, storing it as a T in *RESULT
383 if so. */
384
385 template<typename T, typename U>
386 inline bool
387 is_a (machine_mode m, U *result)
388 {
389 if (T::includes_p (m))
390 {
391 *result = T (typename mode_traits<T>::from_int (m));
392 return true;
393 }
394 return false;
395 }
396
397 /* Represents a machine mode that is known to be a SCALAR_INT_MODE_P. */
398 class scalar_int_mode
399 {
400 public:
401 typedef mode_traits<scalar_int_mode>::from_int from_int;
402 typedef unsigned short measurement_type;
403
404 ALWAYS_INLINE scalar_int_mode () {}
405 ALWAYS_INLINE scalar_int_mode (from_int m) : m_mode (machine_mode (m)) {}
406 ALWAYS_INLINE operator machine_mode () const { return m_mode; }
407
408 static bool includes_p (machine_mode);
409
410 protected:
411 machine_mode m_mode;
412 };
413
414 /* Return true if M is a scalar_int_mode. */
415
416 inline bool
417 scalar_int_mode::includes_p (machine_mode m)
418 {
419 return SCALAR_INT_MODE_P (m);
420 }
421
422 /* Represents a machine mode that is known to be a SCALAR_FLOAT_MODE_P. */
423 class scalar_float_mode
424 {
425 public:
426 typedef mode_traits<scalar_float_mode>::from_int from_int;
427 typedef unsigned short measurement_type;
428
429 ALWAYS_INLINE scalar_float_mode () {}
430 ALWAYS_INLINE scalar_float_mode (from_int m) : m_mode (machine_mode (m)) {}
431 ALWAYS_INLINE operator machine_mode () const { return m_mode; }
432
433 static bool includes_p (machine_mode);
434
435 protected:
436 machine_mode m_mode;
437 };
438
439 /* Return true if M is a scalar_float_mode. */
440
441 inline bool
442 scalar_float_mode::includes_p (machine_mode m)
443 {
444 return SCALAR_FLOAT_MODE_P (m);
445 }
446
447 /* Represents a machine mode that is known to be scalar. */
448 class scalar_mode
449 {
450 public:
451 typedef mode_traits<scalar_mode>::from_int from_int;
452 typedef unsigned short measurement_type;
453
454 ALWAYS_INLINE scalar_mode () {}
455 ALWAYS_INLINE scalar_mode (from_int m) : m_mode (machine_mode (m)) {}
456 ALWAYS_INLINE scalar_mode (const scalar_int_mode &m) : m_mode (m) {}
457 ALWAYS_INLINE scalar_mode (const scalar_float_mode &m) : m_mode (m) {}
458 ALWAYS_INLINE scalar_mode (const scalar_int_mode_pod &m) : m_mode (m) {}
459 ALWAYS_INLINE operator machine_mode () const { return m_mode; }
460
461 static bool includes_p (machine_mode);
462
463 protected:
464 machine_mode m_mode;
465 };
466
467 /* Return true if M represents some kind of scalar value. */
468
469 inline bool
470 scalar_mode::includes_p (machine_mode m)
471 {
472 switch (GET_MODE_CLASS (m))
473 {
474 case MODE_INT:
475 case MODE_PARTIAL_INT:
476 case MODE_FRACT:
477 case MODE_UFRACT:
478 case MODE_ACCUM:
479 case MODE_UACCUM:
480 case MODE_FLOAT:
481 case MODE_DECIMAL_FLOAT:
482 return true;
483 default:
484 return false;
485 }
486 }
487
488 /* Represents a machine mode that is known to be a COMPLEX_MODE_P. */
489 class complex_mode
490 {
491 public:
492 typedef mode_traits<complex_mode>::from_int from_int;
493 typedef unsigned short measurement_type;
494
495 ALWAYS_INLINE complex_mode () {}
496 ALWAYS_INLINE complex_mode (from_int m) : m_mode (machine_mode (m)) {}
497 ALWAYS_INLINE operator machine_mode () const { return m_mode; }
498
499 static bool includes_p (machine_mode);
500
501 protected:
502 machine_mode m_mode;
503 };
504
505 /* Return true if M is a complex_mode. */
506
507 inline bool
508 complex_mode::includes_p (machine_mode m)
509 {
510 return COMPLEX_MODE_P (m);
511 }
512
513 /* Return the base GET_MODE_SIZE value for MODE. */
514
515 ALWAYS_INLINE poly_uint16
516 mode_to_bytes (machine_mode mode)
517 {
518 #if GCC_VERSION >= 4001
519 return (__builtin_constant_p (mode)
520 ? mode_size_inline (mode) : mode_size[mode]);
521 #else
522 return mode_size[mode];
523 #endif
524 }
525
526 /* Return the base GET_MODE_BITSIZE value for MODE. */
527
528 ALWAYS_INLINE poly_uint16
529 mode_to_bits (machine_mode mode)
530 {
531 return mode_to_bytes (mode) * BITS_PER_UNIT;
532 }
533
534 /* Return the base GET_MODE_PRECISION value for MODE. */
535
536 ALWAYS_INLINE poly_uint16
537 mode_to_precision (machine_mode mode)
538 {
539 return mode_precision[mode];
540 }
541
542 /* Return the base GET_MODE_INNER value for MODE. */
543
544 ALWAYS_INLINE scalar_mode
545 mode_to_inner (machine_mode mode)
546 {
547 #if GCC_VERSION >= 4001
548 return scalar_mode::from_int (__builtin_constant_p (mode)
549 ? mode_inner_inline (mode)
550 : mode_inner[mode]);
551 #else
552 return scalar_mode::from_int (mode_inner[mode]);
553 #endif
554 }
555
556 /* Return the base GET_MODE_UNIT_SIZE value for MODE. */
557
558 ALWAYS_INLINE unsigned char
559 mode_to_unit_size (machine_mode mode)
560 {
561 #if GCC_VERSION >= 4001
562 return (__builtin_constant_p (mode)
563 ? mode_unit_size_inline (mode) : mode_unit_size[mode]);
564 #else
565 return mode_unit_size[mode];
566 #endif
567 }
568
569 /* Return the base GET_MODE_UNIT_PRECISION value for MODE. */
570
571 ALWAYS_INLINE unsigned short
572 mode_to_unit_precision (machine_mode mode)
573 {
574 #if GCC_VERSION >= 4001
575 return (__builtin_constant_p (mode)
576 ? mode_unit_precision_inline (mode) : mode_unit_precision[mode]);
577 #else
578 return mode_unit_precision[mode];
579 #endif
580 }
581
582 /* Return the base GET_MODE_NUNITS value for MODE. */
583
584 ALWAYS_INLINE poly_uint16
585 mode_to_nunits (machine_mode mode)
586 {
587 #if GCC_VERSION >= 4001
588 return (__builtin_constant_p (mode)
589 ? mode_nunits_inline (mode) : mode_nunits[mode]);
590 #else
591 return mode_nunits[mode];
592 #endif
593 }
594
595 /* Get the size in bytes of an object of mode MODE. */
596
597 #if ONLY_FIXED_SIZE_MODES
598 #define GET_MODE_SIZE(MODE) ((unsigned short) mode_to_bytes (MODE).coeffs[0])
599 #else
600 ALWAYS_INLINE poly_uint16
601 GET_MODE_SIZE (machine_mode mode)
602 {
603 return mode_to_bytes (mode);
604 }
605
606 template<typename T>
607 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
608 GET_MODE_SIZE (const T &mode)
609 {
610 return mode_to_bytes (mode);
611 }
612
613 template<typename T>
614 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
615 GET_MODE_SIZE (const T &mode)
616 {
617 return mode_to_bytes (mode).coeffs[0];
618 }
619 #endif
620
621 /* Get the size in bits of an object of mode MODE. */
622
623 #if ONLY_FIXED_SIZE_MODES
624 #define GET_MODE_BITSIZE(MODE) ((unsigned short) mode_to_bits (MODE).coeffs[0])
625 #else
626 ALWAYS_INLINE poly_uint16
627 GET_MODE_BITSIZE (machine_mode mode)
628 {
629 return mode_to_bits (mode);
630 }
631
632 template<typename T>
633 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
634 GET_MODE_BITSIZE (const T &mode)
635 {
636 return mode_to_bits (mode);
637 }
638
639 template<typename T>
640 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
641 GET_MODE_BITSIZE (const T &mode)
642 {
643 return mode_to_bits (mode).coeffs[0];
644 }
645 #endif
646
647 /* Get the number of value bits of an object of mode MODE. */
648
649 #if ONLY_FIXED_SIZE_MODES
650 #define GET_MODE_PRECISION(MODE) \
651 ((unsigned short) mode_to_precision (MODE).coeffs[0])
652 #else
653 ALWAYS_INLINE poly_uint16
654 GET_MODE_PRECISION (machine_mode mode)
655 {
656 return mode_to_precision (mode);
657 }
658
659 template<typename T>
660 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
661 GET_MODE_PRECISION (const T &mode)
662 {
663 return mode_to_precision (mode);
664 }
665
666 template<typename T>
667 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
668 GET_MODE_PRECISION (const T &mode)
669 {
670 return mode_to_precision (mode).coeffs[0];
671 }
672 #endif
673
674 /* Get the number of integral bits of an object of mode MODE. */
675 extern CONST_MODE_IBIT unsigned char mode_ibit[NUM_MACHINE_MODES];
676 #define GET_MODE_IBIT(MODE) mode_ibit[MODE]
677
678 /* Get the number of fractional bits of an object of mode MODE. */
679 extern CONST_MODE_FBIT unsigned char mode_fbit[NUM_MACHINE_MODES];
680 #define GET_MODE_FBIT(MODE) mode_fbit[MODE]
681
682 /* Get a bitmask containing 1 for all bits in a word
683 that fit within mode MODE. */
684
685 extern const unsigned HOST_WIDE_INT mode_mask_array[NUM_MACHINE_MODES];
686
687 #define GET_MODE_MASK(MODE) mode_mask_array[MODE]
688
689 /* Return the mode of the basic parts of MODE. For vector modes this is the
690 mode of the vector elements. For complex modes it is the mode of the real
691 and imaginary parts. For other modes it is MODE itself. */
692
693 #define GET_MODE_INNER(MODE) (mode_to_inner (MODE))
694
695 /* Get the size in bytes or bits of the basic parts of an
696 object of mode MODE. */
697
698 #define GET_MODE_UNIT_SIZE(MODE) mode_to_unit_size (MODE)
699
700 #define GET_MODE_UNIT_BITSIZE(MODE) \
701 ((unsigned short) (GET_MODE_UNIT_SIZE (MODE) * BITS_PER_UNIT))
702
703 #define GET_MODE_UNIT_PRECISION(MODE) (mode_to_unit_precision (MODE))
704
705 /* Get the number of units in an object of mode MODE. This is 2 for
706 complex modes and the number of elements for vector modes. */
707
708 #if ONLY_FIXED_SIZE_MODES
709 #define GET_MODE_NUNITS(MODE) (mode_to_nunits (MODE).coeffs[0])
710 #else
711 ALWAYS_INLINE poly_uint16
712 GET_MODE_NUNITS (machine_mode mode)
713 {
714 return mode_to_nunits (mode);
715 }
716
717 template<typename T>
718 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
719 GET_MODE_NUNITS (const T &mode)
720 {
721 return mode_to_nunits (mode);
722 }
723
724 template<typename T>
725 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
726 GET_MODE_NUNITS (const T &mode)
727 {
728 return mode_to_nunits (mode).coeffs[0];
729 }
730 #endif
731
732 /* Get the next wider natural mode (eg, QI -> HI -> SI -> DI -> TI). */
733
734 template<typename T>
735 ALWAYS_INLINE opt_mode<T>
736 GET_MODE_WIDER_MODE (const T &m)
737 {
738 return typename opt_mode<T>::from_int (mode_wider[m]);
739 }
740
741 /* For scalars, this is a mode with twice the precision. For vectors,
742 this is a mode with the same inner mode but with twice the elements. */
743
744 template<typename T>
745 ALWAYS_INLINE opt_mode<T>
746 GET_MODE_2XWIDER_MODE (const T &m)
747 {
748 return typename opt_mode<T>::from_int (mode_2xwider[m]);
749 }
750
751 /* Get the complex mode from the component mode. */
752 extern const unsigned char mode_complex[NUM_MACHINE_MODES];
753 #define GET_MODE_COMPLEX_MODE(MODE) ((machine_mode) mode_complex[MODE])
754
755 /* Represents a machine mode that must have a fixed size. The main
756 use of this class is to represent the modes of objects that always
757 have static storage duration, such as constant pool entries.
758 (No current target supports the concept of variable-size static data.) */
759 class fixed_size_mode
760 {
761 public:
762 typedef mode_traits<fixed_size_mode>::from_int from_int;
763 typedef unsigned short measurement_type;
764
765 ALWAYS_INLINE fixed_size_mode () {}
766 ALWAYS_INLINE fixed_size_mode (from_int m) : m_mode (machine_mode (m)) {}
767 ALWAYS_INLINE fixed_size_mode (const scalar_mode &m) : m_mode (m) {}
768 ALWAYS_INLINE fixed_size_mode (const scalar_int_mode &m) : m_mode (m) {}
769 ALWAYS_INLINE fixed_size_mode (const scalar_float_mode &m) : m_mode (m) {}
770 ALWAYS_INLINE fixed_size_mode (const scalar_mode_pod &m) : m_mode (m) {}
771 ALWAYS_INLINE fixed_size_mode (const scalar_int_mode_pod &m) : m_mode (m) {}
772 ALWAYS_INLINE fixed_size_mode (const complex_mode &m) : m_mode (m) {}
773 ALWAYS_INLINE operator machine_mode () const { return m_mode; }
774
775 static bool includes_p (machine_mode);
776
777 protected:
778 machine_mode m_mode;
779 };
780
781 /* Return true if MODE has a fixed size. */
782
783 inline bool
784 fixed_size_mode::includes_p (machine_mode mode)
785 {
786 return mode_to_bytes (mode).is_constant ();
787 }
788
789 /* Wrapper for mode arguments to target macros, so that if a target
790 doesn't need polynomial-sized modes, its header file can continue
791 to treat everything as fixed_size_mode. This should go away once
792 macros are moved to target hooks. It shouldn't be used in other
793 contexts. */
794 #if NUM_POLY_INT_COEFFS == 1
795 #define MACRO_MODE(MODE) (as_a <fixed_size_mode> (MODE))
796 #else
797 #define MACRO_MODE(MODE) (MODE)
798 #endif
799
800 extern opt_machine_mode mode_for_size (poly_uint64, enum mode_class, int);
801
802 /* Return the machine mode to use for a MODE_INT of SIZE bits, if one
803 exists. If LIMIT is nonzero, modes wider than MAX_FIXED_MODE_SIZE
804 will not be used. */
805
806 inline opt_scalar_int_mode
807 int_mode_for_size (poly_uint64 size, int limit)
808 {
809 return dyn_cast <scalar_int_mode> (mode_for_size (size, MODE_INT, limit));
810 }
811
812 /* Return the machine mode to use for a MODE_FLOAT of SIZE bits, if one
813 exists. */
814
815 inline opt_scalar_float_mode
816 float_mode_for_size (poly_uint64 size)
817 {
818 return dyn_cast <scalar_float_mode> (mode_for_size (size, MODE_FLOAT, 0));
819 }
820
821 /* Likewise for MODE_DECIMAL_FLOAT. */
822
823 inline opt_scalar_float_mode
824 decimal_float_mode_for_size (unsigned int size)
825 {
826 return dyn_cast <scalar_float_mode>
827 (mode_for_size (size, MODE_DECIMAL_FLOAT, 0));
828 }
829
830 extern machine_mode smallest_mode_for_size (poly_uint64, enum mode_class);
831
832 /* Find the narrowest integer mode that contains at least SIZE bits.
833 Such a mode must exist. */
834
835 inline scalar_int_mode
836 smallest_int_mode_for_size (poly_uint64 size)
837 {
838 return as_a <scalar_int_mode> (smallest_mode_for_size (size, MODE_INT));
839 }
840
841 extern opt_scalar_int_mode int_mode_for_mode (machine_mode);
842 extern opt_machine_mode bitwise_mode_for_mode (machine_mode);
843 extern opt_machine_mode mode_for_vector (scalar_mode, poly_uint64);
844 extern opt_machine_mode mode_for_int_vector (unsigned int, poly_uint64);
845
846 /* Return the integer vector equivalent of MODE, if one exists. In other
847 words, return the mode for an integer vector that has the same number
848 of bits as MODE and the same number of elements as MODE, with the
849 latter being 1 if MODE is scalar. The returned mode can be either
850 an integer mode or a vector mode. */
851
852 inline opt_machine_mode
853 mode_for_int_vector (machine_mode mode)
854 {
855 return mode_for_int_vector (GET_MODE_UNIT_BITSIZE (mode),
856 GET_MODE_NUNITS (mode));
857 }
858
859 /* A class for iterating through possible bitfield modes. */
860 class bit_field_mode_iterator
861 {
862 public:
863 bit_field_mode_iterator (HOST_WIDE_INT, HOST_WIDE_INT,
864 poly_int64, poly_int64,
865 unsigned int, bool);
866 bool next_mode (scalar_int_mode *);
867 bool prefer_smaller_modes ();
868
869 private:
870 opt_scalar_int_mode m_mode;
871 /* We use signed values here because the bit position can be negative
872 for invalid input such as gcc.dg/pr48335-8.c. */
873 HOST_WIDE_INT m_bitsize;
874 HOST_WIDE_INT m_bitpos;
875 poly_int64 m_bitregion_start;
876 poly_int64 m_bitregion_end;
877 unsigned int m_align;
878 bool m_volatilep;
879 int m_count;
880 };
881
882 /* Find the best mode to use to access a bit field. */
883
884 extern bool get_best_mode (int, int, poly_uint64, poly_uint64, unsigned int,
885 unsigned HOST_WIDE_INT, bool, scalar_int_mode *);
886
887 /* Determine alignment, 1<=result<=BIGGEST_ALIGNMENT. */
888
889 extern CONST_MODE_BASE_ALIGN unsigned short mode_base_align[NUM_MACHINE_MODES];
890
891 extern unsigned get_mode_alignment (machine_mode);
892
893 #define GET_MODE_ALIGNMENT(MODE) get_mode_alignment (MODE)
894
895 /* For each class, get the narrowest mode in that class. */
896
897 extern const unsigned char class_narrowest_mode[MAX_MODE_CLASS];
898 #define GET_CLASS_NARROWEST_MODE(CLASS) \
899 ((machine_mode) class_narrowest_mode[CLASS])
900
901 /* The narrowest full integer mode available on the target. */
902
903 #define NARROWEST_INT_MODE \
904 (scalar_int_mode \
905 (scalar_int_mode::from_int (class_narrowest_mode[MODE_INT])))
906
907 /* Return the narrowest mode in T's class. */
908
909 template<typename T>
910 inline T
911 get_narrowest_mode (T mode)
912 {
913 return typename mode_traits<T>::from_int
914 (class_narrowest_mode[GET_MODE_CLASS (mode)]);
915 }
916
917 /* Define the integer modes whose sizes are BITS_PER_UNIT and BITS_PER_WORD
918 and the mode whose class is Pmode and whose size is POINTER_SIZE. */
919
920 extern scalar_int_mode byte_mode;
921 extern scalar_int_mode word_mode;
922 extern scalar_int_mode ptr_mode;
923
924 /* Target-dependent machine mode initialization - in insn-modes.c. */
925 extern void init_adjust_machine_modes (void);
926
927 #define TRULY_NOOP_TRUNCATION_MODES_P(MODE1, MODE2) \
928 (targetm.truly_noop_truncation (GET_MODE_PRECISION (MODE1), \
929 GET_MODE_PRECISION (MODE2)))
930
931 /* Return true if MODE is a scalar integer mode that fits in a
932 HOST_WIDE_INT. */
933
934 inline bool
935 HWI_COMPUTABLE_MODE_P (machine_mode mode)
936 {
937 machine_mode mme = mode;
938 return (SCALAR_INT_MODE_P (mme)
939 && mode_to_precision (mme).coeffs[0] <= HOST_BITS_PER_WIDE_INT);
940 }
941
942 inline bool
943 HWI_COMPUTABLE_MODE_P (scalar_int_mode mode)
944 {
945 return GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT;
946 }
947
948 struct int_n_data_t {
949 /* These parts are initailized by genmodes output */
950 unsigned int bitsize;
951 scalar_int_mode_pod m;
952 /* RID_* is RID_INTN_BASE + index into this array */
953 };
954
955 /* This is also in tree.h. genmodes.c guarantees the're sorted from
956 smallest bitsize to largest bitsize. */
957 extern bool int_n_enabled_p[NUM_INT_N_ENTS];
958 extern const int_n_data_t int_n_data[NUM_INT_N_ENTS];
959
960 /* Return true if MODE has class MODE_INT, storing it as a scalar_int_mode
961 in *INT_MODE if so. */
962
963 template<typename T>
964 inline bool
965 is_int_mode (machine_mode mode, T *int_mode)
966 {
967 if (GET_MODE_CLASS (mode) == MODE_INT)
968 {
969 *int_mode = scalar_int_mode (scalar_int_mode::from_int (mode));
970 return true;
971 }
972 return false;
973 }
974
975 /* Return true if MODE has class MODE_FLOAT, storing it as a
976 scalar_float_mode in *FLOAT_MODE if so. */
977
978 template<typename T>
979 inline bool
980 is_float_mode (machine_mode mode, T *float_mode)
981 {
982 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
983 {
984 *float_mode = scalar_float_mode (scalar_float_mode::from_int (mode));
985 return true;
986 }
987 return false;
988 }
989
990 /* Return true if MODE has class MODE_COMPLEX_INT, storing it as
991 a complex_mode in *CMODE if so. */
992
993 template<typename T>
994 inline bool
995 is_complex_int_mode (machine_mode mode, T *cmode)
996 {
997 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
998 {
999 *cmode = complex_mode (complex_mode::from_int (mode));
1000 return true;
1001 }
1002 return false;
1003 }
1004
1005 /* Return true if MODE has class MODE_COMPLEX_FLOAT, storing it as
1006 a complex_mode in *CMODE if so. */
1007
1008 template<typename T>
1009 inline bool
1010 is_complex_float_mode (machine_mode mode, T *cmode)
1011 {
1012 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
1013 {
1014 *cmode = complex_mode (complex_mode::from_int (mode));
1015 return true;
1016 }
1017 return false;
1018 }
1019
1020 /* Return true if MODE is a scalar integer mode with a precision
1021 smaller than LIMIT's precision. */
1022
1023 inline bool
1024 is_narrower_int_mode (machine_mode mode, scalar_int_mode limit)
1025 {
1026 scalar_int_mode int_mode;
1027 return (is_a <scalar_int_mode> (mode, &int_mode)
1028 && GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (limit));
1029 }
1030
1031 namespace mode_iterator
1032 {
1033 /* Start mode iterator *ITER at the first mode in class MCLASS, if any. */
1034
1035 template<typename T>
1036 inline void
1037 start (opt_mode<T> *iter, enum mode_class mclass)
1038 {
1039 if (GET_CLASS_NARROWEST_MODE (mclass) == E_VOIDmode)
1040 *iter = opt_mode<T> ();
1041 else
1042 *iter = as_a<T> (GET_CLASS_NARROWEST_MODE (mclass));
1043 }
1044
1045 inline void
1046 start (machine_mode *iter, enum mode_class mclass)
1047 {
1048 *iter = GET_CLASS_NARROWEST_MODE (mclass);
1049 }
1050
1051 /* Return true if mode iterator *ITER has not reached the end. */
1052
1053 template<typename T>
1054 inline bool
1055 iterate_p (opt_mode<T> *iter)
1056 {
1057 return iter->exists ();
1058 }
1059
1060 inline bool
1061 iterate_p (machine_mode *iter)
1062 {
1063 return *iter != E_VOIDmode;
1064 }
1065
1066 /* Set mode iterator *ITER to the next widest mode in the same class,
1067 if any. */
1068
1069 template<typename T>
1070 inline void
1071 get_wider (opt_mode<T> *iter)
1072 {
1073 *iter = GET_MODE_WIDER_MODE (iter->require ());
1074 }
1075
1076 inline void
1077 get_wider (machine_mode *iter)
1078 {
1079 *iter = GET_MODE_WIDER_MODE (*iter).else_void ();
1080 }
1081
1082 /* Set mode iterator *ITER to the next widest mode in the same class.
1083 Such a mode is known to exist. */
1084
1085 template<typename T>
1086 inline void
1087 get_known_wider (T *iter)
1088 {
1089 *iter = GET_MODE_WIDER_MODE (*iter).require ();
1090 }
1091
1092 /* Set mode iterator *ITER to the mode that is two times wider than the
1093 current one, if such a mode exists. */
1094
1095 template<typename T>
1096 inline void
1097 get_2xwider (opt_mode<T> *iter)
1098 {
1099 *iter = GET_MODE_2XWIDER_MODE (iter->require ());
1100 }
1101
1102 inline void
1103 get_2xwider (machine_mode *iter)
1104 {
1105 *iter = GET_MODE_2XWIDER_MODE (*iter).else_void ();
1106 }
1107 }
1108
1109 /* Make ITERATOR iterate over all the modes in mode class CLASS,
1110 from narrowest to widest. */
1111 #define FOR_EACH_MODE_IN_CLASS(ITERATOR, CLASS) \
1112 for (mode_iterator::start (&(ITERATOR), CLASS); \
1113 mode_iterator::iterate_p (&(ITERATOR)); \
1114 mode_iterator::get_wider (&(ITERATOR)))
1115
1116 /* Make ITERATOR iterate over all the modes in the range [START, END),
1117 in order of increasing width. */
1118 #define FOR_EACH_MODE(ITERATOR, START, END) \
1119 for ((ITERATOR) = (START); \
1120 (ITERATOR) != (END); \
1121 mode_iterator::get_known_wider (&(ITERATOR)))
1122
1123 /* Make ITERATOR iterate over START and all wider modes in the same
1124 class, in order of increasing width. */
1125 #define FOR_EACH_MODE_FROM(ITERATOR, START) \
1126 for ((ITERATOR) = (START); \
1127 mode_iterator::iterate_p (&(ITERATOR)); \
1128 mode_iterator::get_wider (&(ITERATOR)))
1129
1130 /* Make ITERATOR iterate over modes in the range [NARROWEST, END)
1131 in order of increasing width, where NARROWEST is the narrowest mode
1132 in END's class. */
1133 #define FOR_EACH_MODE_UNTIL(ITERATOR, END) \
1134 FOR_EACH_MODE (ITERATOR, get_narrowest_mode (END), END)
1135
1136 /* Make ITERATOR iterate over modes in the same class as MODE, in order
1137 of increasing width. Start at the first mode wider than START,
1138 or don't iterate at all if there is no wider mode. */
1139 #define FOR_EACH_WIDER_MODE(ITERATOR, START) \
1140 for ((ITERATOR) = (START), mode_iterator::get_wider (&(ITERATOR)); \
1141 mode_iterator::iterate_p (&(ITERATOR)); \
1142 mode_iterator::get_wider (&(ITERATOR)))
1143
1144 /* Make ITERATOR iterate over modes in the same class as MODE, in order
1145 of increasing width, and with each mode being twice the width of the
1146 previous mode. Start at the mode that is two times wider than START,
1147 or don't iterate at all if there is no such mode. */
1148 #define FOR_EACH_2XWIDER_MODE(ITERATOR, START) \
1149 for ((ITERATOR) = (START), mode_iterator::get_2xwider (&(ITERATOR)); \
1150 mode_iterator::iterate_p (&(ITERATOR)); \
1151 mode_iterator::get_2xwider (&(ITERATOR)))
1152
1153 template<typename T>
1154 void
1155 gt_ggc_mx (pod_mode<T> *)
1156 {
1157 }
1158
1159 template<typename T>
1160 void
1161 gt_pch_nx (pod_mode<T> *)
1162 {
1163 }
1164
1165 template<typename T>
1166 void
1167 gt_pch_nx (pod_mode<T> *, void (*) (void *, void *), void *)
1168 {
1169 }
1170
1171 #endif /* not HAVE_MACHINE_MODES */