re PR target/65697 (__atomic memory barriers not strong enough for __sync builtins)
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43
44
45 /* Simplifications of operations with one constant operand and
46 simplifications to constants or single values. */
47
48 (for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
53 /* 0 +p index -> (type)index */
54 (simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
58 /* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60 (simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65 /* See if ARG1 is zero and X - ARG1 reduces to X. */
66 (simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
71 /* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76 (simplify
77 (minus @0 @0)
78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
79 { build_zero_cst (type); }))
80
81 (simplify
82 (mult @0 integer_zerop@1)
83 @1)
84
85 /* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89 (simplify
90 (mult @0 real_zerop@1)
91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
92 @1))
93
94 /* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96 (simplify
97 (mult @0 real_onep)
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103 /* Transform x * -1.0 into -x. */
104 (simplify
105 (mult @0 real_minus_onep)
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
110
111 /* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
118 /* X / -1 is -X. */
119 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
123 (negate @0))))
124
125 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127 (simplify
128 (floor_div @0 @1)
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
131 (trunc_div @0 @1)))
132
133 /* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135 (for div (trunc_div exact_div)
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
147 { build_zero_cst (type); }))))
148
149 /* Optimize A / A to 1.0 if we don't care about
150 NaNs or Infinities. */
151 (simplify
152 (rdiv @0 @0)
153 (if (FLOAT_TYPE_P (type)
154 && ! HONOR_NANS (type)
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158 /* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160 (simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
163 && ! HONOR_NANS (type)
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
166
167 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
168 (simplify
169 (rdiv @0 real_onep)
170 (if (!HONOR_SNANS (element_mode (type)))
171 (non_lvalue @0)))
172
173 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174 (simplify
175 (rdiv @0 real_minus_onep)
176 (if (!HONOR_SNANS (element_mode (type)))
177 (negate @0)))
178
179 /* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
190 (with
191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
199 /* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
201 (for mod (ceil_mod floor_mod round_mod trunc_mod)
202 /* 0 % X is always zero. */
203 (simplify
204 (mod integer_zerop@0 @1)
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
221
222 /* X % -C is the same as X % C. */
223 (simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
232
233 /* X % -Y is the same as X % Y. */
234 (simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241 /* X - (X / Y) * Y is the same as X % Y. */
242 (simplify
243 (minus (convert? @0) (convert? (mult (trunc_div @0 @1) @1)))
244 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
245 (convert (trunc_mod @0 @1))))
246
247 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
248 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
249 Also optimize A % (C << N) where C is a power of 2,
250 to A & ((C << N) - 1). */
251 (match (power_of_two_cand @1)
252 INTEGER_CST@1)
253 (match (power_of_two_cand @1)
254 (lshift INTEGER_CST@1 @2))
255 (for mod (trunc_mod floor_mod)
256 (simplify
257 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
258 (if ((TYPE_UNSIGNED (type)
259 || tree_expr_nonnegative_p (@0))
260 && tree_nop_conversion_p (type, TREE_TYPE (@3))
261 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
262 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
263
264 /* X % Y is smaller than Y. */
265 (for cmp (lt ge)
266 (simplify
267 (cmp (trunc_mod @0 @1) @1)
268 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
269 { constant_boolean_node (cmp == LT_EXPR, type); })))
270 (for cmp (gt le)
271 (simplify
272 (cmp @1 (trunc_mod @0 @1))
273 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
274 { constant_boolean_node (cmp == GT_EXPR, type); })))
275
276 /* x | ~0 -> ~0 */
277 (simplify
278 (bit_ior @0 integer_all_onesp@1)
279 @1)
280
281 /* x & 0 -> 0 */
282 (simplify
283 (bit_and @0 integer_zerop@1)
284 @1)
285
286 /* x ^ x -> 0 */
287 (simplify
288 (bit_xor @0 @0)
289 { build_zero_cst (type); })
290
291 /* Canonicalize X ^ ~0 to ~X. */
292 (simplify
293 (bit_xor @0 integer_all_onesp@1)
294 (bit_not @0))
295
296 /* x & ~0 -> x */
297 (simplify
298 (bit_and @0 integer_all_onesp)
299 (non_lvalue @0))
300
301 /* x & x -> x, x | x -> x */
302 (for bitop (bit_and bit_ior)
303 (simplify
304 (bitop @0 @0)
305 (non_lvalue @0)))
306
307 /* x + (x & 1) -> (x + 1) & ~1 */
308 (simplify
309 (plus:c @0 (bit_and@2 @0 integer_onep@1))
310 (if (single_use (@2))
311 (bit_and (plus @0 @1) (bit_not @1))))
312
313 /* x & ~(x & y) -> x & ~y */
314 /* x | ~(x | y) -> x | ~y */
315 (for bitop (bit_and bit_ior)
316 (simplify
317 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
318 (if (single_use (@2))
319 (bitop @0 (bit_not @1)))))
320
321 /* (x | y) & ~x -> y & ~x */
322 /* (x & y) | ~x -> y | ~x */
323 (for bitop (bit_and bit_ior)
324 rbitop (bit_ior bit_and)
325 (simplify
326 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
327 (bitop @1 @2)))
328
329 /* (x & y) ^ (x | y) -> x ^ y */
330 (simplify
331 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
332 (bit_xor @0 @1))
333
334 /* (x ^ y) ^ (x | y) -> x & y */
335 (simplify
336 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
337 (bit_and @0 @1))
338
339 /* (x & y) + (x ^ y) -> x | y */
340 /* (x & y) | (x ^ y) -> x | y */
341 /* (x & y) ^ (x ^ y) -> x | y */
342 (for op (plus bit_ior bit_xor)
343 (simplify
344 (op:c (bit_and @0 @1) (bit_xor @0 @1))
345 (bit_ior @0 @1)))
346
347 /* (x & y) + (x | y) -> x + y */
348 (simplify
349 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
350 (plus @0 @1))
351
352 /* (x + y) - (x | y) -> x & y */
353 (simplify
354 (minus (plus @0 @1) (bit_ior @0 @1))
355 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
356 && !TYPE_SATURATING (type))
357 (bit_and @0 @1)))
358
359 /* (x + y) - (x & y) -> x | y */
360 (simplify
361 (minus (plus @0 @1) (bit_and @0 @1))
362 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
363 && !TYPE_SATURATING (type))
364 (bit_ior @0 @1)))
365
366 /* (x | y) - (x ^ y) -> x & y */
367 (simplify
368 (minus (bit_ior @0 @1) (bit_xor @0 @1))
369 (bit_and @0 @1))
370
371 /* (x | y) - (x & y) -> x ^ y */
372 (simplify
373 (minus (bit_ior @0 @1) (bit_and @0 @1))
374 (bit_xor @0 @1))
375
376 /* (x | y) & ~(x & y) -> x ^ y */
377 (simplify
378 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
379 (bit_xor @0 @1))
380
381 /* (x | y) & (~x ^ y) -> x & y */
382 (simplify
383 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
384 (bit_and @0 @1))
385
386 (simplify
387 (abs (negate @0))
388 (abs @0))
389 (simplify
390 (abs tree_expr_nonnegative_p@0)
391 @0)
392
393
394 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
395 when profitable.
396 For bitwise binary operations apply operand conversions to the
397 binary operation result instead of to the operands. This allows
398 to combine successive conversions and bitwise binary operations.
399 We combine the above two cases by using a conditional convert. */
400 (for bitop (bit_and bit_ior bit_xor)
401 (simplify
402 (bitop (convert @0) (convert? @1))
403 (if (((TREE_CODE (@1) == INTEGER_CST
404 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
405 && int_fits_type_p (@1, TREE_TYPE (@0)))
406 || types_match (@0, @1))
407 /* ??? This transform conflicts with fold-const.c doing
408 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
409 constants (if x has signed type, the sign bit cannot be set
410 in c). This folds extension into the BIT_AND_EXPR.
411 Restrict it to GIMPLE to avoid endless recursions. */
412 && (bitop != BIT_AND_EXPR || GIMPLE)
413 && (/* That's a good idea if the conversion widens the operand, thus
414 after hoisting the conversion the operation will be narrower. */
415 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
416 /* It's also a good idea if the conversion is to a non-integer
417 mode. */
418 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
419 /* Or if the precision of TO is not the same as the precision
420 of its mode. */
421 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
422 (convert (bitop @0 (convert @1))))))
423
424 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
425 (for bitop (bit_and bit_ior bit_xor)
426 (simplify
427 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
428 (bit_and (bitop @0 @2) @1)))
429
430 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
431 (simplify
432 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
433 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
434
435 /* Combine successive equal operations with constants. */
436 (for bitop (bit_and bit_ior bit_xor)
437 (simplify
438 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
439 (bitop @0 (bitop @1 @2))))
440
441 /* Try simple folding for X op !X, and X op X with the help
442 of the truth_valued_p and logical_inverted_value predicates. */
443 (match truth_valued_p
444 @0
445 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
446 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
447 (match truth_valued_p
448 (op @0 @1)))
449 (match truth_valued_p
450 (truth_not @0))
451
452 (match (logical_inverted_value @0)
453 (bit_not truth_valued_p@0))
454 (match (logical_inverted_value @0)
455 (eq @0 integer_zerop))
456 (match (logical_inverted_value @0)
457 (ne truth_valued_p@0 integer_truep))
458 (match (logical_inverted_value @0)
459 (bit_xor truth_valued_p@0 integer_truep))
460
461 /* X & !X -> 0. */
462 (simplify
463 (bit_and:c @0 (logical_inverted_value @0))
464 { build_zero_cst (type); })
465 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
466 (for op (bit_ior bit_xor)
467 (simplify
468 (op:c truth_valued_p@0 (logical_inverted_value @0))
469 { constant_boolean_node (true, type); }))
470
471 (for bitop (bit_and bit_ior)
472 rbitop (bit_ior bit_and)
473 /* (x | y) & x -> x */
474 /* (x & y) | x -> x */
475 (simplify
476 (bitop:c (rbitop:c @0 @1) @0)
477 @0)
478 /* (~x | y) & x -> x & y */
479 /* (~x & y) | x -> x | y */
480 (simplify
481 (bitop:c (rbitop:c (bit_not @0) @1) @0)
482 (bitop @0 @1)))
483
484 /* If arg1 and arg2 are booleans (or any single bit type)
485 then try to simplify:
486
487 (~X & Y) -> X < Y
488 (X & ~Y) -> Y < X
489 (~X | Y) -> X <= Y
490 (X | ~Y) -> Y <= X
491
492 But only do this if our result feeds into a comparison as
493 this transformation is not always a win, particularly on
494 targets with and-not instructions.
495 -> simplify_bitwise_binary_boolean */
496 (simplify
497 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
498 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
499 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
500 (lt @0 @1)))
501 (simplify
502 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
503 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
504 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
505 (le @0 @1)))
506
507 /* ~~x -> x */
508 (simplify
509 (bit_not (bit_not @0))
510 @0)
511
512 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
513 (simplify
514 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
515 (if (single_use (@3) && single_use (@4))
516 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
517
518
519 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
520 (simplify
521 (pointer_plus (pointer_plus@2 @0 @1) @3)
522 (if (single_use (@2)
523 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
524 (pointer_plus @0 (plus @1 @3))))
525
526 /* Pattern match
527 tem1 = (long) ptr1;
528 tem2 = (long) ptr2;
529 tem3 = tem2 - tem1;
530 tem4 = (unsigned long) tem3;
531 tem5 = ptr1 + tem4;
532 and produce
533 tem5 = ptr2; */
534 (simplify
535 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
536 /* Conditionally look through a sign-changing conversion. */
537 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
538 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
539 || (GENERIC && type == TREE_TYPE (@1))))
540 @1))
541
542 /* Pattern match
543 tem = (sizetype) ptr;
544 tem = tem & algn;
545 tem = -tem;
546 ... = ptr p+ tem;
547 and produce the simpler and easier to analyze with respect to alignment
548 ... = ptr & ~algn; */
549 (simplify
550 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
551 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
552 (bit_and @0 { algn; })))
553
554 /* Try folding difference of addresses. */
555 (simplify
556 (minus (convert ADDR_EXPR@0) (convert @1))
557 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
558 (with { HOST_WIDE_INT diff; }
559 (if (ptr_difference_const (@0, @1, &diff))
560 { build_int_cst_type (type, diff); }))))
561 (simplify
562 (minus (convert @0) (convert ADDR_EXPR@1))
563 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
564 (with { HOST_WIDE_INT diff; }
565 (if (ptr_difference_const (@0, @1, &diff))
566 { build_int_cst_type (type, diff); }))))
567
568
569
570 /* We can't reassociate at all for saturating types. */
571 (if (!TYPE_SATURATING (type))
572
573 /* Contract negates. */
574 /* A + (-B) -> A - B */
575 (simplify
576 (plus:c (convert1? @0) (convert2? (negate @1)))
577 /* Apply STRIP_NOPS on @0 and the negate. */
578 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
579 && tree_nop_conversion_p (type, TREE_TYPE (@1))
580 && !TYPE_OVERFLOW_SANITIZED (type))
581 (minus (convert @0) (convert @1))))
582 /* A - (-B) -> A + B */
583 (simplify
584 (minus (convert1? @0) (convert2? (negate @1)))
585 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
586 && tree_nop_conversion_p (type, TREE_TYPE (@1))
587 && !TYPE_OVERFLOW_SANITIZED (type))
588 (plus (convert @0) (convert @1))))
589 /* -(-A) -> A */
590 (simplify
591 (negate (convert? (negate @1)))
592 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
593 && !TYPE_OVERFLOW_SANITIZED (type))
594 (convert @1)))
595
596 /* We can't reassociate floating-point unless -fassociative-math
597 or fixed-point plus or minus because of saturation to +-Inf. */
598 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
599 && !FIXED_POINT_TYPE_P (type))
600
601 /* Match patterns that allow contracting a plus-minus pair
602 irrespective of overflow issues. */
603 /* (A +- B) - A -> +- B */
604 /* (A +- B) -+ B -> A */
605 /* A - (A +- B) -> -+ B */
606 /* A +- (B -+ A) -> +- B */
607 (simplify
608 (minus (plus:c @0 @1) @0)
609 @1)
610 (simplify
611 (minus (minus @0 @1) @0)
612 (negate @1))
613 (simplify
614 (plus:c (minus @0 @1) @1)
615 @0)
616 (simplify
617 (minus @0 (plus:c @0 @1))
618 (negate @1))
619 (simplify
620 (minus @0 (minus @0 @1))
621 @1)
622
623 /* (A +- CST) +- CST -> A + CST */
624 (for outer_op (plus minus)
625 (for inner_op (plus minus)
626 (simplify
627 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
628 /* If the constant operation overflows we cannot do the transform
629 as we would introduce undefined overflow, for example
630 with (a - 1) + INT_MIN. */
631 (with { tree cst = fold_binary (outer_op == inner_op
632 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
633 (if (cst && !TREE_OVERFLOW (cst))
634 (inner_op @0 { cst; } ))))))
635
636 /* (CST - A) +- CST -> CST - A */
637 (for outer_op (plus minus)
638 (simplify
639 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
640 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
641 (if (cst && !TREE_OVERFLOW (cst))
642 (minus { cst; } @0)))))
643
644 /* ~A + A -> -1 */
645 (simplify
646 (plus:c (bit_not @0) @0)
647 (if (!TYPE_OVERFLOW_TRAPS (type))
648 { build_all_ones_cst (type); }))
649
650 /* ~A + 1 -> -A */
651 (simplify
652 (plus (convert? (bit_not @0)) integer_each_onep)
653 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
654 (negate (convert @0))))
655
656 /* -A - 1 -> ~A */
657 (simplify
658 (minus (convert? (negate @0)) integer_each_onep)
659 (if (!TYPE_OVERFLOW_TRAPS (type)
660 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
661 (bit_not (convert @0))))
662
663 /* -1 - A -> ~A */
664 (simplify
665 (minus integer_all_onesp @0)
666 (bit_not @0))
667
668 /* (T)(P + A) - (T)P -> (T) A */
669 (for add (plus pointer_plus)
670 (simplify
671 (minus (convert (add @0 @1))
672 (convert @0))
673 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
674 /* For integer types, if A has a smaller type
675 than T the result depends on the possible
676 overflow in P + A.
677 E.g. T=size_t, A=(unsigned)429497295, P>0.
678 However, if an overflow in P + A would cause
679 undefined behavior, we can assume that there
680 is no overflow. */
681 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
682 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
683 /* For pointer types, if the conversion of A to the
684 final type requires a sign- or zero-extension,
685 then we have to punt - it is not defined which
686 one is correct. */
687 || (POINTER_TYPE_P (TREE_TYPE (@0))
688 && TREE_CODE (@1) == INTEGER_CST
689 && tree_int_cst_sign_bit (@1) == 0))
690 (convert @1))))))
691
692
693 /* Simplifications of MIN_EXPR and MAX_EXPR. */
694
695 (for minmax (min max)
696 (simplify
697 (minmax @0 @0)
698 @0))
699 (simplify
700 (min @0 @1)
701 (if (INTEGRAL_TYPE_P (type)
702 && TYPE_MIN_VALUE (type)
703 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
704 @1))
705 (simplify
706 (max @0 @1)
707 (if (INTEGRAL_TYPE_P (type)
708 && TYPE_MAX_VALUE (type)
709 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
710 @1))
711
712
713 /* Simplifications of shift and rotates. */
714
715 (for rotate (lrotate rrotate)
716 (simplify
717 (rotate integer_all_onesp@0 @1)
718 @0))
719
720 /* Optimize -1 >> x for arithmetic right shifts. */
721 (simplify
722 (rshift integer_all_onesp@0 @1)
723 (if (!TYPE_UNSIGNED (type)
724 && tree_expr_nonnegative_p (@1))
725 @0))
726
727 (for shiftrotate (lrotate rrotate lshift rshift)
728 (simplify
729 (shiftrotate @0 integer_zerop)
730 (non_lvalue @0))
731 (simplify
732 (shiftrotate integer_zerop@0 @1)
733 @0)
734 /* Prefer vector1 << scalar to vector1 << vector2
735 if vector2 is uniform. */
736 (for vec (VECTOR_CST CONSTRUCTOR)
737 (simplify
738 (shiftrotate @0 vec@1)
739 (with { tree tem = uniform_vector_p (@1); }
740 (if (tem)
741 (shiftrotate @0 { tem; }))))))
742
743 /* Rewrite an LROTATE_EXPR by a constant into an
744 RROTATE_EXPR by a new constant. */
745 (simplify
746 (lrotate @0 INTEGER_CST@1)
747 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
748 build_int_cst (TREE_TYPE (@1),
749 element_precision (type)), @1); }))
750
751 /* ((1 << A) & 1) != 0 -> A == 0
752 ((1 << A) & 1) == 0 -> A != 0 */
753 (for cmp (ne eq)
754 icmp (eq ne)
755 (simplify
756 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
757 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
758
759 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
760 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
761 if CST2 != 0. */
762 (for cmp (ne eq)
763 (simplify
764 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
765 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
766 (if (cand < 0
767 || (!integer_zerop (@2)
768 && wi::ne_p (wi::lshift (@0, cand), @2)))
769 { constant_boolean_node (cmp == NE_EXPR, type); })
770 (if (!integer_zerop (@2)
771 && wi::eq_p (wi::lshift (@0, cand), @2))
772 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
773
774 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
775 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
776 if the new mask might be further optimized. */
777 (for shift (lshift rshift)
778 (simplify
779 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
780 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
781 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
782 && tree_fits_uhwi_p (@1)
783 && tree_to_uhwi (@1) > 0
784 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
785 (with
786 {
787 unsigned int shiftc = tree_to_uhwi (@1);
788 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
789 unsigned HOST_WIDE_INT newmask, zerobits = 0;
790 tree shift_type = TREE_TYPE (@3);
791 unsigned int prec;
792
793 if (shift == LSHIFT_EXPR)
794 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
795 else if (shift == RSHIFT_EXPR
796 && (TYPE_PRECISION (shift_type)
797 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
798 {
799 prec = TYPE_PRECISION (TREE_TYPE (@3));
800 tree arg00 = @0;
801 /* See if more bits can be proven as zero because of
802 zero extension. */
803 if (@3 != @0
804 && TYPE_UNSIGNED (TREE_TYPE (@0)))
805 {
806 tree inner_type = TREE_TYPE (@0);
807 if ((TYPE_PRECISION (inner_type)
808 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
809 && TYPE_PRECISION (inner_type) < prec)
810 {
811 prec = TYPE_PRECISION (inner_type);
812 /* See if we can shorten the right shift. */
813 if (shiftc < prec)
814 shift_type = inner_type;
815 /* Otherwise X >> C1 is all zeros, so we'll optimize
816 it into (X, 0) later on by making sure zerobits
817 is all ones. */
818 }
819 }
820 zerobits = ~(unsigned HOST_WIDE_INT) 0;
821 if (shiftc < prec)
822 {
823 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
824 zerobits <<= prec - shiftc;
825 }
826 /* For arithmetic shift if sign bit could be set, zerobits
827 can contain actually sign bits, so no transformation is
828 possible, unless MASK masks them all away. In that
829 case the shift needs to be converted into logical shift. */
830 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
831 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
832 {
833 if ((mask & zerobits) == 0)
834 shift_type = unsigned_type_for (TREE_TYPE (@3));
835 else
836 zerobits = 0;
837 }
838 }
839 }
840 /* ((X << 16) & 0xff00) is (X, 0). */
841 (if ((mask & zerobits) == mask)
842 { build_int_cst (type, 0); })
843 (with { newmask = mask | zerobits; }
844 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
845 (with
846 {
847 /* Only do the transformation if NEWMASK is some integer
848 mode's mask. */
849 for (prec = BITS_PER_UNIT;
850 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
851 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
852 break;
853 }
854 (if (prec < HOST_BITS_PER_WIDE_INT
855 || newmask == ~(unsigned HOST_WIDE_INT) 0)
856 (with
857 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
858 (if (!tree_int_cst_equal (newmaskt, @2))
859 (if (shift_type != TREE_TYPE (@3)
860 && single_use (@4) && single_use (@5))
861 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
862 (if (shift_type == TREE_TYPE (@3))
863 (bit_and @4 { newmaskt; }))))))))))))
864
865 /* Simplifications of conversions. */
866
867 /* Basic strip-useless-type-conversions / strip_nops. */
868 (for cvt (convert view_convert float fix_trunc)
869 (simplify
870 (cvt @0)
871 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
872 || (GENERIC && type == TREE_TYPE (@0)))
873 @0)))
874
875 /* Contract view-conversions. */
876 (simplify
877 (view_convert (view_convert @0))
878 (view_convert @0))
879
880 /* For integral conversions with the same precision or pointer
881 conversions use a NOP_EXPR instead. */
882 (simplify
883 (view_convert @0)
884 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
885 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
886 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
887 (convert @0)))
888
889 /* Strip inner integral conversions that do not change precision or size. */
890 (simplify
891 (view_convert (convert@0 @1))
892 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
893 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
894 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
895 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
896 (view_convert @1)))
897
898 /* Re-association barriers around constants and other re-association
899 barriers can be removed. */
900 (simplify
901 (paren CONSTANT_CLASS_P@0)
902 @0)
903 (simplify
904 (paren (paren@1 @0))
905 @1)
906
907 /* Handle cases of two conversions in a row. */
908 (for ocvt (convert float fix_trunc)
909 (for icvt (convert float)
910 (simplify
911 (ocvt (icvt@1 @0))
912 (with
913 {
914 tree inside_type = TREE_TYPE (@0);
915 tree inter_type = TREE_TYPE (@1);
916 int inside_int = INTEGRAL_TYPE_P (inside_type);
917 int inside_ptr = POINTER_TYPE_P (inside_type);
918 int inside_float = FLOAT_TYPE_P (inside_type);
919 int inside_vec = VECTOR_TYPE_P (inside_type);
920 unsigned int inside_prec = TYPE_PRECISION (inside_type);
921 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
922 int inter_int = INTEGRAL_TYPE_P (inter_type);
923 int inter_ptr = POINTER_TYPE_P (inter_type);
924 int inter_float = FLOAT_TYPE_P (inter_type);
925 int inter_vec = VECTOR_TYPE_P (inter_type);
926 unsigned int inter_prec = TYPE_PRECISION (inter_type);
927 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
928 int final_int = INTEGRAL_TYPE_P (type);
929 int final_ptr = POINTER_TYPE_P (type);
930 int final_float = FLOAT_TYPE_P (type);
931 int final_vec = VECTOR_TYPE_P (type);
932 unsigned int final_prec = TYPE_PRECISION (type);
933 int final_unsignedp = TYPE_UNSIGNED (type);
934 }
935 /* In addition to the cases of two conversions in a row
936 handled below, if we are converting something to its own
937 type via an object of identical or wider precision, neither
938 conversion is needed. */
939 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
940 || (GENERIC
941 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
942 && (((inter_int || inter_ptr) && final_int)
943 || (inter_float && final_float))
944 && inter_prec >= final_prec)
945 (ocvt @0))
946
947 /* Likewise, if the intermediate and initial types are either both
948 float or both integer, we don't need the middle conversion if the
949 former is wider than the latter and doesn't change the signedness
950 (for integers). Avoid this if the final type is a pointer since
951 then we sometimes need the middle conversion. Likewise if the
952 final type has a precision not equal to the size of its mode. */
953 (if (((inter_int && inside_int) || (inter_float && inside_float))
954 && (final_int || final_float)
955 && inter_prec >= inside_prec
956 && (inter_float || inter_unsignedp == inside_unsignedp)
957 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
958 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
959 (ocvt @0))
960
961 /* If we have a sign-extension of a zero-extended value, we can
962 replace that by a single zero-extension. Likewise if the
963 final conversion does not change precision we can drop the
964 intermediate conversion. */
965 (if (inside_int && inter_int && final_int
966 && ((inside_prec < inter_prec && inter_prec < final_prec
967 && inside_unsignedp && !inter_unsignedp)
968 || final_prec == inter_prec))
969 (ocvt @0))
970
971 /* Two conversions in a row are not needed unless:
972 - some conversion is floating-point (overstrict for now), or
973 - some conversion is a vector (overstrict for now), or
974 - the intermediate type is narrower than both initial and
975 final, or
976 - the intermediate type and innermost type differ in signedness,
977 and the outermost type is wider than the intermediate, or
978 - the initial type is a pointer type and the precisions of the
979 intermediate and final types differ, or
980 - the final type is a pointer type and the precisions of the
981 initial and intermediate types differ. */
982 (if (! inside_float && ! inter_float && ! final_float
983 && ! inside_vec && ! inter_vec && ! final_vec
984 && (inter_prec >= inside_prec || inter_prec >= final_prec)
985 && ! (inside_int && inter_int
986 && inter_unsignedp != inside_unsignedp
987 && inter_prec < final_prec)
988 && ((inter_unsignedp && inter_prec > inside_prec)
989 == (final_unsignedp && final_prec > inter_prec))
990 && ! (inside_ptr && inter_prec != final_prec)
991 && ! (final_ptr && inside_prec != inter_prec)
992 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
993 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
994 (ocvt @0))
995
996 /* A truncation to an unsigned type (a zero-extension) should be
997 canonicalized as bitwise and of a mask. */
998 (if (final_int && inter_int && inside_int
999 && final_prec == inside_prec
1000 && final_prec > inter_prec
1001 && inter_unsignedp)
1002 (convert (bit_and @0 { wide_int_to_tree
1003 (inside_type,
1004 wi::mask (inter_prec, false,
1005 TYPE_PRECISION (inside_type))); })))
1006
1007 /* If we are converting an integer to a floating-point that can
1008 represent it exactly and back to an integer, we can skip the
1009 floating-point conversion. */
1010 (if (GIMPLE /* PR66211 */
1011 && inside_int && inter_float && final_int &&
1012 (unsigned) significand_size (TYPE_MODE (inter_type))
1013 >= inside_prec - !inside_unsignedp)
1014 (convert @0))))))
1015
1016 /* If we have a narrowing conversion to an integral type that is fed by a
1017 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1018 masks off bits outside the final type (and nothing else). */
1019 (simplify
1020 (convert (bit_and @0 INTEGER_CST@1))
1021 (if (INTEGRAL_TYPE_P (type)
1022 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1023 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1024 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1025 TYPE_PRECISION (type)), 0))
1026 (convert @0)))
1027
1028
1029 /* (X /[ex] A) * A -> X. */
1030 (simplify
1031 (mult (convert? (exact_div @0 @1)) @1)
1032 /* Look through a sign-changing conversion. */
1033 (convert @0))
1034
1035 /* Canonicalization of binary operations. */
1036
1037 /* Convert X + -C into X - C. */
1038 (simplify
1039 (plus @0 REAL_CST@1)
1040 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1041 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1042 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1043 (minus @0 { tem; })))))
1044
1045 /* Convert x+x into x*2.0. */
1046 (simplify
1047 (plus @0 @0)
1048 (if (SCALAR_FLOAT_TYPE_P (type))
1049 (mult @0 { build_real (type, dconst2); })))
1050
1051 (simplify
1052 (minus integer_zerop @1)
1053 (negate @1))
1054
1055 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1056 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1057 (-ARG1 + ARG0) reduces to -ARG1. */
1058 (simplify
1059 (minus real_zerop@0 @1)
1060 (if (fold_real_zero_addition_p (type, @0, 0))
1061 (negate @1)))
1062
1063 /* Transform x * -1 into -x. */
1064 (simplify
1065 (mult @0 integer_minus_onep)
1066 (negate @0))
1067
1068 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1069 (simplify
1070 (complex (realpart @0) (imagpart @0))
1071 @0)
1072 (simplify
1073 (realpart (complex @0 @1))
1074 @0)
1075 (simplify
1076 (imagpart (complex @0 @1))
1077 @1)
1078
1079
1080 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1081 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1082 (simplify
1083 (bswap (bswap @0))
1084 @0)
1085 (simplify
1086 (bswap (bit_not (bswap @0)))
1087 (bit_not @0))
1088 (for bitop (bit_xor bit_ior bit_and)
1089 (simplify
1090 (bswap (bitop:c (bswap @0) @1))
1091 (bitop @0 (bswap @1)))))
1092
1093
1094 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1095
1096 /* Simplify constant conditions.
1097 Only optimize constant conditions when the selected branch
1098 has the same type as the COND_EXPR. This avoids optimizing
1099 away "c ? x : throw", where the throw has a void type.
1100 Note that we cannot throw away the fold-const.c variant nor
1101 this one as we depend on doing this transform before possibly
1102 A ? B : B -> B triggers and the fold-const.c one can optimize
1103 0 ? A : B to B even if A has side-effects. Something
1104 genmatch cannot handle. */
1105 (simplify
1106 (cond INTEGER_CST@0 @1 @2)
1107 (if (integer_zerop (@0)
1108 && (!VOID_TYPE_P (TREE_TYPE (@2))
1109 || VOID_TYPE_P (type)))
1110 @2)
1111 (if (!integer_zerop (@0)
1112 && (!VOID_TYPE_P (TREE_TYPE (@1))
1113 || VOID_TYPE_P (type)))
1114 @1))
1115 (simplify
1116 (vec_cond VECTOR_CST@0 @1 @2)
1117 (if (integer_all_onesp (@0))
1118 @1)
1119 (if (integer_zerop (@0))
1120 @2))
1121
1122 (for cnd (cond vec_cond)
1123 /* A ? B : (A ? X : C) -> A ? B : C. */
1124 (simplify
1125 (cnd @0 (cnd @0 @1 @2) @3)
1126 (cnd @0 @1 @3))
1127 (simplify
1128 (cnd @0 @1 (cnd @0 @2 @3))
1129 (cnd @0 @1 @3))
1130
1131 /* A ? B : B -> B. */
1132 (simplify
1133 (cnd @0 @1 @1)
1134 @1)
1135
1136 /* !A ? B : C -> A ? C : B. */
1137 (simplify
1138 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1139 (cnd @0 @2 @1)))
1140
1141 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1142 return all-1 or all-0 results. */
1143 /* ??? We could instead convert all instances of the vec_cond to negate,
1144 but that isn't necessarily a win on its own. */
1145 (simplify
1146 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1147 (if (VECTOR_TYPE_P (type)
1148 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1149 && (TYPE_MODE (TREE_TYPE (type))
1150 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1151 (minus @3 (view_convert @0))))
1152
1153 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1154 (simplify
1155 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1156 (if (VECTOR_TYPE_P (type)
1157 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1158 && (TYPE_MODE (TREE_TYPE (type))
1159 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1160 (plus @3 (view_convert @0))))
1161
1162 /* Simplifications of comparisons. */
1163
1164 /* We can simplify a logical negation of a comparison to the
1165 inverted comparison. As we cannot compute an expression
1166 operator using invert_tree_comparison we have to simulate
1167 that with expression code iteration. */
1168 (for cmp (tcc_comparison)
1169 icmp (inverted_tcc_comparison)
1170 ncmp (inverted_tcc_comparison_with_nans)
1171 /* Ideally we'd like to combine the following two patterns
1172 and handle some more cases by using
1173 (logical_inverted_value (cmp @0 @1))
1174 here but for that genmatch would need to "inline" that.
1175 For now implement what forward_propagate_comparison did. */
1176 (simplify
1177 (bit_not (cmp @0 @1))
1178 (if (VECTOR_TYPE_P (type)
1179 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1180 /* Comparison inversion may be impossible for trapping math,
1181 invert_tree_comparison will tell us. But we can't use
1182 a computed operator in the replacement tree thus we have
1183 to play the trick below. */
1184 (with { enum tree_code ic = invert_tree_comparison
1185 (cmp, HONOR_NANS (@0)); }
1186 (if (ic == icmp)
1187 (icmp @0 @1))
1188 (if (ic == ncmp)
1189 (ncmp @0 @1)))))
1190 (simplify
1191 (bit_xor (cmp @0 @1) integer_truep)
1192 (with { enum tree_code ic = invert_tree_comparison
1193 (cmp, HONOR_NANS (@0)); }
1194 (if (ic == icmp)
1195 (icmp @0 @1))
1196 (if (ic == ncmp)
1197 (ncmp @0 @1)))))
1198
1199 /* Unordered tests if either argument is a NaN. */
1200 (simplify
1201 (bit_ior (unordered @0 @0) (unordered @1 @1))
1202 (if (types_match (@0, @1))
1203 (unordered @0 @1)))
1204 (simplify
1205 (bit_and (ordered @0 @0) (ordered @1 @1))
1206 (if (types_match (@0, @1))
1207 (ordered @0 @1)))
1208 (simplify
1209 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1210 @2)
1211 (simplify
1212 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1213 @2)
1214
1215 /* -A CMP -B -> B CMP A. */
1216 (for cmp (tcc_comparison)
1217 scmp (swapped_tcc_comparison)
1218 (simplify
1219 (cmp (negate @0) (negate @1))
1220 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1221 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1222 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1223 (scmp @0 @1)))
1224 (simplify
1225 (cmp (negate @0) CONSTANT_CLASS_P@1)
1226 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1227 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1228 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1229 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1230 (if (tem && !TREE_OVERFLOW (tem))
1231 (scmp @0 { tem; }))))))
1232
1233
1234 /* Equality compare simplifications from fold_binary */
1235 (for cmp (eq ne)
1236
1237 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1238 Similarly for NE_EXPR. */
1239 (simplify
1240 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1241 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1242 && wi::bit_and_not (@1, @2) != 0)
1243 { constant_boolean_node (cmp == NE_EXPR, type); }))
1244
1245 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1246 (simplify
1247 (cmp (bit_xor @0 @1) integer_zerop)
1248 (cmp @0 @1))
1249
1250 /* (X ^ Y) == Y becomes X == 0.
1251 Likewise (X ^ Y) == X becomes Y == 0. */
1252 (simplify
1253 (cmp:c (bit_xor:c @0 @1) @0)
1254 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1255
1256 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1257 (simplify
1258 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1259 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1260 (cmp @0 (bit_xor @1 (convert @2))))))
1261
1262 /* Simplification of math builtins. */
1263
1264 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1265 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1266 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1267 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1268 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1269 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1270 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1271 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1272 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1273 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1274
1275
1276 /* fold_builtin_logarithm */
1277 (if (flag_unsafe_math_optimizations)
1278 /* Special case, optimize logN(expN(x)) = x. */
1279 (for logs (LOG LOG2 LOG10)
1280 exps (EXP EXP2 EXP10)
1281 (simplify
1282 (logs (exps @0))
1283 @0))
1284 /* Optimize logN(func()) for various exponential functions. We
1285 want to determine the value "x" and the power "exponent" in
1286 order to transform logN(x**exponent) into exponent*logN(x). */
1287 (for logs (LOG LOG LOG LOG
1288 LOG2 LOG2 LOG2 LOG2
1289 LOG10 LOG10 LOG10 LOG10)
1290 exps (EXP EXP2 EXP10 POW10)
1291 (simplify
1292 (logs (exps @0))
1293 (with {
1294 tree x;
1295 switch (exps)
1296 {
1297 CASE_FLT_FN (BUILT_IN_EXP):
1298 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1299 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1300 dconst_e ()));
1301 break;
1302 CASE_FLT_FN (BUILT_IN_EXP2):
1303 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1304 x = build_real (type, dconst2);
1305 break;
1306 CASE_FLT_FN (BUILT_IN_EXP10):
1307 CASE_FLT_FN (BUILT_IN_POW10):
1308 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1309 {
1310 REAL_VALUE_TYPE dconst10;
1311 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1312 x = build_real (type, dconst10);
1313 }
1314 break;
1315 }
1316 }
1317 (mult (logs { x; }) @0))))
1318 (for logs (LOG LOG
1319 LOG2 LOG2
1320 LOG10 LOG10)
1321 exps (SQRT CBRT)
1322 (simplify
1323 (logs (exps @0))
1324 (with {
1325 tree x;
1326 switch (exps)
1327 {
1328 CASE_FLT_FN (BUILT_IN_SQRT):
1329 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1330 x = build_real (type, dconsthalf);
1331 break;
1332 CASE_FLT_FN (BUILT_IN_CBRT):
1333 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1334 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1335 dconst_third ()));
1336 break;
1337 }
1338 }
1339 (mult { x; } (logs @0)))))
1340 /* logN(pow(x,exponent) -> exponent*logN(x). */
1341 (for logs (LOG LOG2 LOG10)
1342 pows (POW)
1343 (simplify
1344 (logs (pows @0 @1))
1345 (mult @1 (logs @0)))))
1346
1347 /* Narrowing of arithmetic and logical operations.
1348
1349 These are conceptually similar to the transformations performed for
1350 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1351 term we want to move all that code out of the front-ends into here. */
1352
1353 /* If we have a narrowing conversion of an arithmetic operation where
1354 both operands are widening conversions from the same type as the outer
1355 narrowing conversion. Then convert the innermost operands to a suitable
1356 unsigned type (to avoid introducing undefined behaviour), perform the
1357 operation and convert the result to the desired type. */
1358 (for op (plus minus)
1359 (simplify
1360 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1361 (if (INTEGRAL_TYPE_P (type)
1362 /* We check for type compatibility between @0 and @1 below,
1363 so there's no need to check that @1/@3 are integral types. */
1364 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1366 /* The precision of the type of each operand must match the
1367 precision of the mode of each operand, similarly for the
1368 result. */
1369 && (TYPE_PRECISION (TREE_TYPE (@0))
1370 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1371 && (TYPE_PRECISION (TREE_TYPE (@1))
1372 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1373 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1374 /* The inner conversion must be a widening conversion. */
1375 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1376 && types_match (@0, @1)
1377 && types_match (@0, type)
1378 && single_use (@4))
1379 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1380 (convert (op @0 @1)))
1381 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1382 (convert (op (convert:utype @0) (convert:utype @1)))))))
1383
1384 /* This is another case of narrowing, specifically when there's an outer
1385 BIT_AND_EXPR which masks off bits outside the type of the innermost
1386 operands. Like the previous case we have to convert the operands
1387 to unsigned types to avoid introducing undefined behaviour for the
1388 arithmetic operation. */
1389 (for op (minus plus)
1390 (simplify
1391 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1392 (if (INTEGRAL_TYPE_P (type)
1393 /* We check for type compatibility between @0 and @1 below,
1394 so there's no need to check that @1/@3 are integral types. */
1395 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1396 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1397 /* The precision of the type of each operand must match the
1398 precision of the mode of each operand, similarly for the
1399 result. */
1400 && (TYPE_PRECISION (TREE_TYPE (@0))
1401 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1402 && (TYPE_PRECISION (TREE_TYPE (@1))
1403 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1404 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1405 /* The inner conversion must be a widening conversion. */
1406 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1407 && types_match (@0, @1)
1408 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1409 <= TYPE_PRECISION (TREE_TYPE (@0)))
1410 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1411 || tree_int_cst_sgn (@4) >= 0)
1412 && single_use (@5))
1413 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1414 (with { tree ntype = TREE_TYPE (@0); }
1415 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1416 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1417 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1418 (convert:utype @4)))))))
1419