C-family, Objective-C [1/3] : Implement Wobjc-root-class [PR77404].
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2020 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p)
41
42 /* Operator lists. */
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53
54 #include "cfn-operators.pd"
55
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
59
60 Also define operand lists:
61
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67 BUILT_IN_L##FN##F \
68 BUILT_IN_LL##FN##F) \
69 (define_operator_list X##FN BUILT_IN_I##FN \
70 BUILT_IN_L##FN \
71 BUILT_IN_LL##FN) \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 BUILT_IN_L##FN##L \
74 BUILT_IN_LL##FN##L)
75
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
83 plus minus
84 mult trunc_div trunc_mod rdiv
85 min max
86 bit_and bit_ior bit_xor
87 lshift rshift)
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
94
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101 /* With nop_convert? combine convert? and view_convert? in one pattern
102 plus conditionalize on tree_nop_conversion_p conversions. */
103 (match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123 #if GIMPLE
124 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
125 (simplify
126 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
127 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
128 && !TYPE_UNSIGNED (TREE_TYPE (@0))
129 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
130 (abs @0)))
131 #endif
132
133 /* Simplifications of operations with one constant operand and
134 simplifications to constants or single values. */
135
136 (for op (plus pointer_plus minus bit_ior bit_xor)
137 (simplify
138 (op @0 integer_zerop)
139 (non_lvalue @0)))
140
141 /* 0 +p index -> (type)index */
142 (simplify
143 (pointer_plus integer_zerop @1)
144 (non_lvalue (convert @1)))
145
146 /* ptr - 0 -> (type)ptr */
147 (simplify
148 (pointer_diff @0 integer_zerop)
149 (convert @0))
150
151 /* See if ARG1 is zero and X + ARG1 reduces to X.
152 Likewise if the operands are reversed. */
153 (simplify
154 (plus:c @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 0))
156 (non_lvalue @0)))
157
158 /* See if ARG1 is zero and X - ARG1 reduces to X. */
159 (simplify
160 (minus @0 real_zerop@1)
161 (if (fold_real_zero_addition_p (type, @1, 1))
162 (non_lvalue @0)))
163
164 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
165 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
166 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
167 if not -frounding-math. For sNaNs the first operation would raise
168 exceptions but turn the result into qNan, so the second operation
169 would not raise it. */
170 (for inner_op (plus minus)
171 (for outer_op (plus minus)
172 (simplify
173 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
174 (if (real_zerop (@1)
175 && real_zerop (@2)
176 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
177 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
178 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
179 bool outer_plus
180 = ((outer_op == PLUS_EXPR)
181 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
182 (if (outer_plus && !inner_plus)
183 (outer_op @0 @2)
184 @3))))))
185
186 /* Simplify x - x.
187 This is unsafe for certain floats even in non-IEEE formats.
188 In IEEE, it is unsafe because it does wrong for NaNs.
189 Also note that operand_equal_p is always false if an operand
190 is volatile. */
191 (simplify
192 (minus @0 @0)
193 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
194 { build_zero_cst (type); }))
195 (simplify
196 (pointer_diff @@0 @0)
197 { build_zero_cst (type); })
198
199 (simplify
200 (mult @0 integer_zerop@1)
201 @1)
202
203 /* Maybe fold x * 0 to 0. The expressions aren't the same
204 when x is NaN, since x * 0 is also NaN. Nor are they the
205 same in modes with signed zeros, since multiplying a
206 negative value by 0 gives -0, not +0. */
207 (simplify
208 (mult @0 real_zerop@1)
209 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
210 @1))
211
212 /* In IEEE floating point, x*1 is not equivalent to x for snans.
213 Likewise for complex arithmetic with signed zeros. */
214 (simplify
215 (mult @0 real_onep)
216 (if (!HONOR_SNANS (type)
217 && (!HONOR_SIGNED_ZEROS (type)
218 || !COMPLEX_FLOAT_TYPE_P (type)))
219 (non_lvalue @0)))
220
221 /* Transform x * -1.0 into -x. */
222 (simplify
223 (mult @0 real_minus_onep)
224 (if (!HONOR_SNANS (type)
225 && (!HONOR_SIGNED_ZEROS (type)
226 || !COMPLEX_FLOAT_TYPE_P (type)))
227 (negate @0)))
228
229 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
230 (simplify
231 (mult SSA_NAME@1 SSA_NAME@2)
232 (if (INTEGRAL_TYPE_P (type)
233 && get_nonzero_bits (@1) == 1
234 && get_nonzero_bits (@2) == 1)
235 (bit_and @1 @2)))
236
237 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
238 unless the target has native support for the former but not the latter. */
239 (simplify
240 (mult @0 VECTOR_CST@1)
241 (if (initializer_each_zero_or_onep (@1)
242 && !HONOR_SNANS (type)
243 && !HONOR_SIGNED_ZEROS (type))
244 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
245 (if (itype
246 && (!VECTOR_MODE_P (TYPE_MODE (type))
247 || (VECTOR_MODE_P (TYPE_MODE (itype))
248 && optab_handler (and_optab,
249 TYPE_MODE (itype)) != CODE_FOR_nothing)))
250 (view_convert (bit_and:itype (view_convert @0)
251 (ne @1 { build_zero_cst (type); })))))))
252
253 (for cmp (gt ge lt le)
254 outp (convert convert negate negate)
255 outn (negate negate convert convert)
256 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
257 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
258 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
259 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
260 (simplify
261 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
262 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
263 && types_match (type, TREE_TYPE (@0)))
264 (switch
265 (if (types_match (type, float_type_node))
266 (BUILT_IN_COPYSIGNF @1 (outp @0)))
267 (if (types_match (type, double_type_node))
268 (BUILT_IN_COPYSIGN @1 (outp @0)))
269 (if (types_match (type, long_double_type_node))
270 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
271 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
272 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
273 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
274 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
275 (simplify
276 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
277 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
278 && types_match (type, TREE_TYPE (@0)))
279 (switch
280 (if (types_match (type, float_type_node))
281 (BUILT_IN_COPYSIGNF @1 (outn @0)))
282 (if (types_match (type, double_type_node))
283 (BUILT_IN_COPYSIGN @1 (outn @0)))
284 (if (types_match (type, long_double_type_node))
285 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
286
287 /* Transform X * copysign (1.0, X) into abs(X). */
288 (simplify
289 (mult:c @0 (COPYSIGN_ALL real_onep @0))
290 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
291 (abs @0)))
292
293 /* Transform X * copysign (1.0, -X) into -abs(X). */
294 (simplify
295 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
296 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
297 (negate (abs @0))))
298
299 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
300 (simplify
301 (COPYSIGN_ALL REAL_CST@0 @1)
302 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
303 (COPYSIGN_ALL (negate @0) @1)))
304
305 /* X * 1, X / 1 -> X. */
306 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
307 (simplify
308 (op @0 integer_onep)
309 (non_lvalue @0)))
310
311 /* (A / (1 << B)) -> (A >> B).
312 Only for unsigned A. For signed A, this would not preserve rounding
313 toward zero.
314 For example: (-1 / ( 1 << B)) != -1 >> B.
315 Also also widening conversions, like:
316 (A / (unsigned long long) (1U << B)) -> (A >> B)
317 or
318 (A / (unsigned long long) (1 << B)) -> (A >> B).
319 If the left shift is signed, it can be done only if the upper bits
320 of A starting from shift's type sign bit are zero, as
321 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
322 so it is valid only if A >> 31 is zero. */
323 (simplify
324 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
325 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
326 && (!VECTOR_TYPE_P (type)
327 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
328 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
329 && (useless_type_conversion_p (type, TREE_TYPE (@1))
330 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
331 && (TYPE_UNSIGNED (TREE_TYPE (@1))
332 || (element_precision (type)
333 == element_precision (TREE_TYPE (@1)))
334 || (INTEGRAL_TYPE_P (type)
335 && (tree_nonzero_bits (@0)
336 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
337 true,
338 element_precision (type))) == 0)))))
339 (rshift @0 @2)))
340
341 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
342 undefined behavior in constexpr evaluation, and assuming that the division
343 traps enables better optimizations than these anyway. */
344 (for div (trunc_div ceil_div floor_div round_div exact_div)
345 /* 0 / X is always zero. */
346 (simplify
347 (div integer_zerop@0 @1)
348 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
349 (if (!integer_zerop (@1))
350 @0))
351 /* X / -1 is -X. */
352 (simplify
353 (div @0 integer_minus_onep@1)
354 (if (!TYPE_UNSIGNED (type))
355 (negate @0)))
356 /* X / X is one. */
357 (simplify
358 (div @0 @0)
359 /* But not for 0 / 0 so that we can get the proper warnings and errors.
360 And not for _Fract types where we can't build 1. */
361 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
362 { build_one_cst (type); }))
363 /* X / abs (X) is X < 0 ? -1 : 1. */
364 (simplify
365 (div:C @0 (abs @0))
366 (if (INTEGRAL_TYPE_P (type)
367 && TYPE_OVERFLOW_UNDEFINED (type))
368 (cond (lt @0 { build_zero_cst (type); })
369 { build_minus_one_cst (type); } { build_one_cst (type); })))
370 /* X / -X is -1. */
371 (simplify
372 (div:C @0 (negate @0))
373 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
374 && TYPE_OVERFLOW_UNDEFINED (type))
375 { build_minus_one_cst (type); })))
376
377 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
378 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
379 (simplify
380 (floor_div @0 @1)
381 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
382 && TYPE_UNSIGNED (type))
383 (trunc_div @0 @1)))
384
385 /* Combine two successive divisions. Note that combining ceil_div
386 and floor_div is trickier and combining round_div even more so. */
387 (for div (trunc_div exact_div)
388 (simplify
389 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
390 (with {
391 wi::overflow_type overflow;
392 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
393 TYPE_SIGN (type), &overflow);
394 }
395 (if (div == EXACT_DIV_EXPR
396 || optimize_successive_divisions_p (@2, @3))
397 (if (!overflow)
398 (div @0 { wide_int_to_tree (type, mul); })
399 (if (TYPE_UNSIGNED (type)
400 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
401 { build_zero_cst (type); }))))))
402
403 /* Combine successive multiplications. Similar to above, but handling
404 overflow is different. */
405 (simplify
406 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
407 (with {
408 wi::overflow_type overflow;
409 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
410 TYPE_SIGN (type), &overflow);
411 }
412 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
413 otherwise undefined overflow implies that @0 must be zero. */
414 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
415 (mult @0 { wide_int_to_tree (type, mul); }))))
416
417 /* Optimize A / A to 1.0 if we don't care about
418 NaNs or Infinities. */
419 (simplify
420 (rdiv @0 @0)
421 (if (FLOAT_TYPE_P (type)
422 && ! HONOR_NANS (type)
423 && ! HONOR_INFINITIES (type))
424 { build_one_cst (type); }))
425
426 /* Optimize -A / A to -1.0 if we don't care about
427 NaNs or Infinities. */
428 (simplify
429 (rdiv:C @0 (negate @0))
430 (if (FLOAT_TYPE_P (type)
431 && ! HONOR_NANS (type)
432 && ! HONOR_INFINITIES (type))
433 { build_minus_one_cst (type); }))
434
435 /* PR71078: x / abs(x) -> copysign (1.0, x) */
436 (simplify
437 (rdiv:C (convert? @0) (convert? (abs @0)))
438 (if (SCALAR_FLOAT_TYPE_P (type)
439 && ! HONOR_NANS (type)
440 && ! HONOR_INFINITIES (type))
441 (switch
442 (if (types_match (type, float_type_node))
443 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
444 (if (types_match (type, double_type_node))
445 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
446 (if (types_match (type, long_double_type_node))
447 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
448
449 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
450 (simplify
451 (rdiv @0 real_onep)
452 (if (!HONOR_SNANS (type))
453 (non_lvalue @0)))
454
455 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
456 (simplify
457 (rdiv @0 real_minus_onep)
458 (if (!HONOR_SNANS (type))
459 (negate @0)))
460
461 (if (flag_reciprocal_math)
462 /* Convert (A/B)/C to A/(B*C). */
463 (simplify
464 (rdiv (rdiv:s @0 @1) @2)
465 (rdiv @0 (mult @1 @2)))
466
467 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
468 (simplify
469 (rdiv @0 (mult:s @1 REAL_CST@2))
470 (with
471 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
472 (if (tem)
473 (rdiv (mult @0 { tem; } ) @1))))
474
475 /* Convert A/(B/C) to (A/B)*C */
476 (simplify
477 (rdiv @0 (rdiv:s @1 @2))
478 (mult (rdiv @0 @1) @2)))
479
480 /* Simplify x / (- y) to -x / y. */
481 (simplify
482 (rdiv @0 (negate @1))
483 (rdiv (negate @0) @1))
484
485 (if (flag_unsafe_math_optimizations)
486 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
487 Since C / x may underflow to zero, do this only for unsafe math. */
488 (for op (lt le gt ge)
489 neg_op (gt ge lt le)
490 (simplify
491 (op (rdiv REAL_CST@0 @1) real_zerop@2)
492 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
493 (switch
494 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
495 (op @1 @2))
496 /* For C < 0, use the inverted operator. */
497 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
498 (neg_op @1 @2)))))))
499
500 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
501 (for div (trunc_div ceil_div floor_div round_div exact_div)
502 (simplify
503 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
504 (if (integer_pow2p (@2)
505 && tree_int_cst_sgn (@2) > 0
506 && tree_nop_conversion_p (type, TREE_TYPE (@0))
507 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
508 (rshift (convert @0)
509 { build_int_cst (integer_type_node,
510 wi::exact_log2 (wi::to_wide (@2))); }))))
511
512 /* If ARG1 is a constant, we can convert this to a multiply by the
513 reciprocal. This does not have the same rounding properties,
514 so only do this if -freciprocal-math. We can actually
515 always safely do it if ARG1 is a power of two, but it's hard to
516 tell if it is or not in a portable manner. */
517 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
518 (simplify
519 (rdiv @0 cst@1)
520 (if (optimize)
521 (if (flag_reciprocal_math
522 && !real_zerop (@1))
523 (with
524 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
525 (if (tem)
526 (mult @0 { tem; } )))
527 (if (cst != COMPLEX_CST)
528 (with { tree inverse = exact_inverse (type, @1); }
529 (if (inverse)
530 (mult @0 { inverse; } ))))))))
531
532 (for mod (ceil_mod floor_mod round_mod trunc_mod)
533 /* 0 % X is always zero. */
534 (simplify
535 (mod integer_zerop@0 @1)
536 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
537 (if (!integer_zerop (@1))
538 @0))
539 /* X % 1 is always zero. */
540 (simplify
541 (mod @0 integer_onep)
542 { build_zero_cst (type); })
543 /* X % -1 is zero. */
544 (simplify
545 (mod @0 integer_minus_onep@1)
546 (if (!TYPE_UNSIGNED (type))
547 { build_zero_cst (type); }))
548 /* X % X is zero. */
549 (simplify
550 (mod @0 @0)
551 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
552 (if (!integer_zerop (@0))
553 { build_zero_cst (type); }))
554 /* (X % Y) % Y is just X % Y. */
555 (simplify
556 (mod (mod@2 @0 @1) @1)
557 @2)
558 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
559 (simplify
560 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
561 (if (ANY_INTEGRAL_TYPE_P (type)
562 && TYPE_OVERFLOW_UNDEFINED (type)
563 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
564 TYPE_SIGN (type)))
565 { build_zero_cst (type); }))
566 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
567 modulo and comparison, since it is simpler and equivalent. */
568 (for cmp (eq ne)
569 (simplify
570 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
571 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
572 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
573 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
574
575 /* X % -C is the same as X % C. */
576 (simplify
577 (trunc_mod @0 INTEGER_CST@1)
578 (if (TYPE_SIGN (type) == SIGNED
579 && !TREE_OVERFLOW (@1)
580 && wi::neg_p (wi::to_wide (@1))
581 && !TYPE_OVERFLOW_TRAPS (type)
582 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
583 && !sign_bit_p (@1, @1))
584 (trunc_mod @0 (negate @1))))
585
586 /* X % -Y is the same as X % Y. */
587 (simplify
588 (trunc_mod @0 (convert? (negate @1)))
589 (if (INTEGRAL_TYPE_P (type)
590 && !TYPE_UNSIGNED (type)
591 && !TYPE_OVERFLOW_TRAPS (type)
592 && tree_nop_conversion_p (type, TREE_TYPE (@1))
593 /* Avoid this transformation if X might be INT_MIN or
594 Y might be -1, because we would then change valid
595 INT_MIN % -(-1) into invalid INT_MIN % -1. */
596 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
597 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
598 (TREE_TYPE (@1))))))
599 (trunc_mod @0 (convert @1))))
600
601 /* X - (X / Y) * Y is the same as X % Y. */
602 (simplify
603 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
604 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
605 (convert (trunc_mod @0 @1))))
606
607 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
608 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
609 Also optimize A % (C << N) where C is a power of 2,
610 to A & ((C << N) - 1).
611 Also optimize "A shift (B % C)", if C is a power of 2, to
612 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
613 and assume (B % C) is nonnegative as shifts negative values would
614 be UB. */
615 (match (power_of_two_cand @1)
616 INTEGER_CST@1)
617 (match (power_of_two_cand @1)
618 (lshift INTEGER_CST@1 @2))
619 (for mod (trunc_mod floor_mod)
620 (for shift (lshift rshift)
621 (simplify
622 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
623 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
624 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
625 1); }))))))
626 (simplify
627 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
628 (if ((TYPE_UNSIGNED (type)
629 || tree_expr_nonnegative_p (@0))
630 && tree_nop_conversion_p (type, TREE_TYPE (@3))
631 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
632 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
633
634 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
635 (simplify
636 (trunc_div (mult @0 integer_pow2p@1) @1)
637 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
638 (bit_and @0 { wide_int_to_tree
639 (type, wi::mask (TYPE_PRECISION (type)
640 - wi::exact_log2 (wi::to_wide (@1)),
641 false, TYPE_PRECISION (type))); })))
642
643 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
644 (simplify
645 (mult (trunc_div @0 integer_pow2p@1) @1)
646 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
647 (bit_and @0 (negate @1))))
648
649 /* Simplify (t * 2) / 2) -> t. */
650 (for div (trunc_div ceil_div floor_div round_div exact_div)
651 (simplify
652 (div (mult:c @0 @1) @1)
653 (if (ANY_INTEGRAL_TYPE_P (type)
654 && TYPE_OVERFLOW_UNDEFINED (type))
655 @0)))
656
657 (for op (negate abs)
658 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
659 (for coss (COS COSH)
660 (simplify
661 (coss (op @0))
662 (coss @0)))
663 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
664 (for pows (POW)
665 (simplify
666 (pows (op @0) REAL_CST@1)
667 (with { HOST_WIDE_INT n; }
668 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
669 (pows @0 @1)))))
670 /* Likewise for powi. */
671 (for pows (POWI)
672 (simplify
673 (pows (op @0) INTEGER_CST@1)
674 (if ((wi::to_wide (@1) & 1) == 0)
675 (pows @0 @1))))
676 /* Strip negate and abs from both operands of hypot. */
677 (for hypots (HYPOT)
678 (simplify
679 (hypots (op @0) @1)
680 (hypots @0 @1))
681 (simplify
682 (hypots @0 (op @1))
683 (hypots @0 @1)))
684 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
685 (for copysigns (COPYSIGN_ALL)
686 (simplify
687 (copysigns (op @0) @1)
688 (copysigns @0 @1))))
689
690 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
691 (simplify
692 (mult (abs@1 @0) @1)
693 (mult @0 @0))
694
695 /* Convert absu(x)*absu(x) -> x*x. */
696 (simplify
697 (mult (absu@1 @0) @1)
698 (mult (convert@2 @0) @2))
699
700 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
701 (for coss (COS COSH)
702 copysigns (COPYSIGN)
703 (simplify
704 (coss (copysigns @0 @1))
705 (coss @0)))
706
707 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
708 (for pows (POW)
709 copysigns (COPYSIGN)
710 (simplify
711 (pows (copysigns @0 @2) REAL_CST@1)
712 (with { HOST_WIDE_INT n; }
713 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
714 (pows @0 @1)))))
715 /* Likewise for powi. */
716 (for pows (POWI)
717 copysigns (COPYSIGN)
718 (simplify
719 (pows (copysigns @0 @2) INTEGER_CST@1)
720 (if ((wi::to_wide (@1) & 1) == 0)
721 (pows @0 @1))))
722
723 (for hypots (HYPOT)
724 copysigns (COPYSIGN)
725 /* hypot(copysign(x, y), z) -> hypot(x, z). */
726 (simplify
727 (hypots (copysigns @0 @1) @2)
728 (hypots @0 @2))
729 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
730 (simplify
731 (hypots @0 (copysigns @1 @2))
732 (hypots @0 @1)))
733
734 /* copysign(x, CST) -> [-]abs (x). */
735 (for copysigns (COPYSIGN_ALL)
736 (simplify
737 (copysigns @0 REAL_CST@1)
738 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
739 (negate (abs @0))
740 (abs @0))))
741
742 /* copysign(copysign(x, y), z) -> copysign(x, z). */
743 (for copysigns (COPYSIGN_ALL)
744 (simplify
745 (copysigns (copysigns @0 @1) @2)
746 (copysigns @0 @2)))
747
748 /* copysign(x,y)*copysign(x,y) -> x*x. */
749 (for copysigns (COPYSIGN_ALL)
750 (simplify
751 (mult (copysigns@2 @0 @1) @2)
752 (mult @0 @0)))
753
754 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
755 (for ccoss (CCOS CCOSH)
756 (simplify
757 (ccoss (negate @0))
758 (ccoss @0)))
759
760 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
761 (for ops (conj negate)
762 (for cabss (CABS)
763 (simplify
764 (cabss (ops @0))
765 (cabss @0))))
766
767 /* Fold (a * (1 << b)) into (a << b) */
768 (simplify
769 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
770 (if (! FLOAT_TYPE_P (type)
771 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
772 (lshift @0 @2)))
773
774 /* Fold (1 << (C - x)) where C = precision(type) - 1
775 into ((1 << C) >> x). */
776 (simplify
777 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
778 (if (INTEGRAL_TYPE_P (type)
779 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
780 && single_use (@1))
781 (if (TYPE_UNSIGNED (type))
782 (rshift (lshift @0 @2) @3)
783 (with
784 { tree utype = unsigned_type_for (type); }
785 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
786
787 /* Fold (C1/X)*C2 into (C1*C2)/X. */
788 (simplify
789 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
790 (if (flag_associative_math
791 && single_use (@3))
792 (with
793 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
794 (if (tem)
795 (rdiv { tem; } @1)))))
796
797 /* Simplify ~X & X as zero. */
798 (simplify
799 (bit_and:c (convert? @0) (convert? (bit_not @0)))
800 { build_zero_cst (type); })
801
802 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
803 (simplify
804 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
805 (if (TYPE_UNSIGNED (type))
806 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
807
808 (for bitop (bit_and bit_ior)
809 cmp (eq ne)
810 /* PR35691: Transform
811 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
812 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
813 (simplify
814 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
815 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
816 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
817 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
818 (cmp (bit_ior @0 (convert @1)) @2)))
819 /* Transform:
820 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
821 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
822 (simplify
823 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
824 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
825 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
826 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
827 (cmp (bit_and @0 (convert @1)) @2))))
828
829 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
830 (simplify
831 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
832 (minus (bit_xor @0 @1) @1))
833 (simplify
834 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
835 (if (~wi::to_wide (@2) == wi::to_wide (@1))
836 (minus (bit_xor @0 @1) @1)))
837
838 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
839 (simplify
840 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
841 (minus @1 (bit_xor @0 @1)))
842
843 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
844 (for op (bit_ior bit_xor plus)
845 (simplify
846 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
847 (bit_xor @0 @1))
848 (simplify
849 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
850 (if (~wi::to_wide (@2) == wi::to_wide (@1))
851 (bit_xor @0 @1))))
852
853 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
854 (simplify
855 (bit_ior:c (bit_xor:c @0 @1) @0)
856 (bit_ior @0 @1))
857
858 /* (a & ~b) | (a ^ b) --> a ^ b */
859 (simplify
860 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
861 @2)
862
863 /* (a & ~b) ^ ~a --> ~(a & b) */
864 (simplify
865 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
866 (bit_not (bit_and @0 @1)))
867
868 /* (~a & b) ^ a --> (a | b) */
869 (simplify
870 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
871 (bit_ior @0 @1))
872
873 /* (a | b) & ~(a ^ b) --> a & b */
874 (simplify
875 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
876 (bit_and @0 @1))
877
878 /* a | ~(a ^ b) --> a | ~b */
879 (simplify
880 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
881 (bit_ior @0 (bit_not @1)))
882
883 /* (a | b) | (a &^ b) --> a | b */
884 (for op (bit_and bit_xor)
885 (simplify
886 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
887 @2))
888
889 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
890 (simplify
891 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
892 @2)
893
894 /* ~(~a & b) --> a | ~b */
895 (simplify
896 (bit_not (bit_and:cs (bit_not @0) @1))
897 (bit_ior @0 (bit_not @1)))
898
899 /* ~(~a | b) --> a & ~b */
900 (simplify
901 (bit_not (bit_ior:cs (bit_not @0) @1))
902 (bit_and @0 (bit_not @1)))
903
904 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
905 #if GIMPLE
906 (simplify
907 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
908 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
909 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
910 (bit_xor @0 @1)))
911 #endif
912
913 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
914 ((A & N) + B) & M -> (A + B) & M
915 Similarly if (N & M) == 0,
916 ((A | N) + B) & M -> (A + B) & M
917 and for - instead of + (or unary - instead of +)
918 and/or ^ instead of |.
919 If B is constant and (B & M) == 0, fold into A & M. */
920 (for op (plus minus)
921 (for bitop (bit_and bit_ior bit_xor)
922 (simplify
923 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
924 (with
925 { tree pmop[2];
926 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
927 @3, @4, @1, ERROR_MARK, NULL_TREE,
928 NULL_TREE, pmop); }
929 (if (utype)
930 (convert (bit_and (op (convert:utype { pmop[0]; })
931 (convert:utype { pmop[1]; }))
932 (convert:utype @2))))))
933 (simplify
934 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
935 (with
936 { tree pmop[2];
937 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
938 NULL_TREE, NULL_TREE, @1, bitop, @3,
939 @4, pmop); }
940 (if (utype)
941 (convert (bit_and (op (convert:utype { pmop[0]; })
942 (convert:utype { pmop[1]; }))
943 (convert:utype @2)))))))
944 (simplify
945 (bit_and (op:s @0 @1) INTEGER_CST@2)
946 (with
947 { tree pmop[2];
948 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
949 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
950 NULL_TREE, NULL_TREE, pmop); }
951 (if (utype)
952 (convert (bit_and (op (convert:utype { pmop[0]; })
953 (convert:utype { pmop[1]; }))
954 (convert:utype @2)))))))
955 (for bitop (bit_and bit_ior bit_xor)
956 (simplify
957 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
958 (with
959 { tree pmop[2];
960 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
961 bitop, @2, @3, NULL_TREE, ERROR_MARK,
962 NULL_TREE, NULL_TREE, pmop); }
963 (if (utype)
964 (convert (bit_and (negate (convert:utype { pmop[0]; }))
965 (convert:utype @1)))))))
966
967 /* X % Y is smaller than Y. */
968 (for cmp (lt ge)
969 (simplify
970 (cmp (trunc_mod @0 @1) @1)
971 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
972 { constant_boolean_node (cmp == LT_EXPR, type); })))
973 (for cmp (gt le)
974 (simplify
975 (cmp @1 (trunc_mod @0 @1))
976 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
977 { constant_boolean_node (cmp == GT_EXPR, type); })))
978
979 /* x | ~0 -> ~0 */
980 (simplify
981 (bit_ior @0 integer_all_onesp@1)
982 @1)
983
984 /* x | 0 -> x */
985 (simplify
986 (bit_ior @0 integer_zerop)
987 @0)
988
989 /* x & 0 -> 0 */
990 (simplify
991 (bit_and @0 integer_zerop@1)
992 @1)
993
994 /* ~x | x -> -1 */
995 /* ~x ^ x -> -1 */
996 /* ~x + x -> -1 */
997 (for op (bit_ior bit_xor plus)
998 (simplify
999 (op:c (convert? @0) (convert? (bit_not @0)))
1000 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1001
1002 /* x ^ x -> 0 */
1003 (simplify
1004 (bit_xor @0 @0)
1005 { build_zero_cst (type); })
1006
1007 /* Canonicalize X ^ ~0 to ~X. */
1008 (simplify
1009 (bit_xor @0 integer_all_onesp@1)
1010 (bit_not @0))
1011
1012 /* x & ~0 -> x */
1013 (simplify
1014 (bit_and @0 integer_all_onesp)
1015 (non_lvalue @0))
1016
1017 /* x & x -> x, x | x -> x */
1018 (for bitop (bit_and bit_ior)
1019 (simplify
1020 (bitop @0 @0)
1021 (non_lvalue @0)))
1022
1023 /* x & C -> x if we know that x & ~C == 0. */
1024 #if GIMPLE
1025 (simplify
1026 (bit_and SSA_NAME@0 INTEGER_CST@1)
1027 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1028 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1029 @0))
1030 #endif
1031
1032 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1033 (simplify
1034 (bit_not (minus (bit_not @0) @1))
1035 (plus @0 @1))
1036 (simplify
1037 (bit_not (plus:c (bit_not @0) @1))
1038 (minus @0 @1))
1039
1040 /* x + (x & 1) -> (x + 1) & ~1 */
1041 (simplify
1042 (plus:c @0 (bit_and:s @0 integer_onep@1))
1043 (bit_and (plus @0 @1) (bit_not @1)))
1044
1045 /* x & ~(x & y) -> x & ~y */
1046 /* x | ~(x | y) -> x | ~y */
1047 (for bitop (bit_and bit_ior)
1048 (simplify
1049 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1050 (bitop @0 (bit_not @1))))
1051
1052 /* (~x & y) | ~(x | y) -> ~x */
1053 (simplify
1054 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1055 @2)
1056
1057 /* (x | y) ^ (x | ~y) -> ~x */
1058 (simplify
1059 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1060 (bit_not @0))
1061
1062 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1063 (simplify
1064 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1065 (bit_not (bit_xor @0 @1)))
1066
1067 /* (~x | y) ^ (x ^ y) -> x | ~y */
1068 (simplify
1069 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1070 (bit_ior @0 (bit_not @1)))
1071
1072 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1073 (simplify
1074 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1075 (bit_not (bit_and @0 @1)))
1076
1077 /* (x | y) & ~x -> y & ~x */
1078 /* (x & y) | ~x -> y | ~x */
1079 (for bitop (bit_and bit_ior)
1080 rbitop (bit_ior bit_and)
1081 (simplify
1082 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1083 (bitop @1 @2)))
1084
1085 /* (x & y) ^ (x | y) -> x ^ y */
1086 (simplify
1087 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1088 (bit_xor @0 @1))
1089
1090 /* (x ^ y) ^ (x | y) -> x & y */
1091 (simplify
1092 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1093 (bit_and @0 @1))
1094
1095 /* (x & y) + (x ^ y) -> x | y */
1096 /* (x & y) | (x ^ y) -> x | y */
1097 /* (x & y) ^ (x ^ y) -> x | y */
1098 (for op (plus bit_ior bit_xor)
1099 (simplify
1100 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1101 (bit_ior @0 @1)))
1102
1103 /* (x & y) + (x | y) -> x + y */
1104 (simplify
1105 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1106 (plus @0 @1))
1107
1108 /* (x + y) - (x | y) -> x & y */
1109 (simplify
1110 (minus (plus @0 @1) (bit_ior @0 @1))
1111 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1112 && !TYPE_SATURATING (type))
1113 (bit_and @0 @1)))
1114
1115 /* (x + y) - (x & y) -> x | y */
1116 (simplify
1117 (minus (plus @0 @1) (bit_and @0 @1))
1118 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1119 && !TYPE_SATURATING (type))
1120 (bit_ior @0 @1)))
1121
1122 /* (x | y) - y -> (x & ~y) */
1123 (simplify
1124 (minus (bit_ior:cs @0 @1) @1)
1125 (bit_and @0 (bit_not @1)))
1126
1127 /* (x | y) - (x ^ y) -> x & y */
1128 (simplify
1129 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1130 (bit_and @0 @1))
1131
1132 /* (x | y) - (x & y) -> x ^ y */
1133 (simplify
1134 (minus (bit_ior @0 @1) (bit_and @0 @1))
1135 (bit_xor @0 @1))
1136
1137 /* (x | y) & ~(x & y) -> x ^ y */
1138 (simplify
1139 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1140 (bit_xor @0 @1))
1141
1142 /* (x | y) & (~x ^ y) -> x & y */
1143 (simplify
1144 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1145 (bit_and @0 @1))
1146
1147 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1148 (simplify
1149 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1150 (bit_not (bit_xor @0 @1)))
1151
1152 /* (~x | y) ^ (x | ~y) -> x ^ y */
1153 (simplify
1154 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1155 (bit_xor @0 @1))
1156
1157 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1158 (simplify
1159 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1160 (nop_convert2? (bit_ior @0 @1))))
1161 integer_all_onesp)
1162 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1163 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1164 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1165 && !TYPE_SATURATING (TREE_TYPE (@2)))
1166 (bit_not (convert (bit_xor @0 @1)))))
1167 (simplify
1168 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1169 integer_all_onesp))
1170 (nop_convert3? (bit_ior @0 @1)))
1171 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1172 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1173 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1174 && !TYPE_SATURATING (TREE_TYPE (@2)))
1175 (bit_not (convert (bit_xor @0 @1)))))
1176 (simplify
1177 (minus (nop_convert1? (bit_and @0 @1))
1178 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1179 integer_onep)))
1180 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1181 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1182 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1183 && !TYPE_SATURATING (TREE_TYPE (@2)))
1184 (bit_not (convert (bit_xor @0 @1)))))
1185
1186 /* ~x & ~y -> ~(x | y)
1187 ~x | ~y -> ~(x & y) */
1188 (for op (bit_and bit_ior)
1189 rop (bit_ior bit_and)
1190 (simplify
1191 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1192 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1193 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1194 (bit_not (rop (convert @0) (convert @1))))))
1195
1196 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1197 with a constant, and the two constants have no bits in common,
1198 we should treat this as a BIT_IOR_EXPR since this may produce more
1199 simplifications. */
1200 (for op (bit_xor plus)
1201 (simplify
1202 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1203 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1204 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1205 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1206 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1207 (bit_ior (convert @4) (convert @5)))))
1208
1209 /* (X | Y) ^ X -> Y & ~ X*/
1210 (simplify
1211 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1212 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1213 (convert (bit_and @1 (bit_not @0)))))
1214
1215 /* Convert ~X ^ ~Y to X ^ Y. */
1216 (simplify
1217 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1218 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1219 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1220 (bit_xor (convert @0) (convert @1))))
1221
1222 /* Convert ~X ^ C to X ^ ~C. */
1223 (simplify
1224 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1225 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1226 (bit_xor (convert @0) (bit_not @1))))
1227
1228 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1229 (for opo (bit_and bit_xor)
1230 opi (bit_xor bit_and)
1231 (simplify
1232 (opo:c (opi:cs @0 @1) @1)
1233 (bit_and (bit_not @0) @1)))
1234
1235 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1236 operands are another bit-wise operation with a common input. If so,
1237 distribute the bit operations to save an operation and possibly two if
1238 constants are involved. For example, convert
1239 (A | B) & (A | C) into A | (B & C)
1240 Further simplification will occur if B and C are constants. */
1241 (for op (bit_and bit_ior bit_xor)
1242 rop (bit_ior bit_and bit_and)
1243 (simplify
1244 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1245 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1246 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1247 (rop (convert @0) (op (convert @1) (convert @2))))))
1248
1249 /* Some simple reassociation for bit operations, also handled in reassoc. */
1250 /* (X & Y) & Y -> X & Y
1251 (X | Y) | Y -> X | Y */
1252 (for op (bit_and bit_ior)
1253 (simplify
1254 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1255 @2))
1256 /* (X ^ Y) ^ Y -> X */
1257 (simplify
1258 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1259 (convert @0))
1260 /* (X & Y) & (X & Z) -> (X & Y) & Z
1261 (X | Y) | (X | Z) -> (X | Y) | Z */
1262 (for op (bit_and bit_ior)
1263 (simplify
1264 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1265 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1266 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1267 (if (single_use (@5) && single_use (@6))
1268 (op @3 (convert @2))
1269 (if (single_use (@3) && single_use (@4))
1270 (op (convert @1) @5))))))
1271 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1272 (simplify
1273 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1274 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1275 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1276 (bit_xor (convert @1) (convert @2))))
1277
1278 /* Convert abs (abs (X)) into abs (X).
1279 also absu (absu (X)) into absu (X). */
1280 (simplify
1281 (abs (abs@1 @0))
1282 @1)
1283
1284 (simplify
1285 (absu (convert@2 (absu@1 @0)))
1286 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1287 @1))
1288
1289 /* Convert abs[u] (-X) -> abs[u] (X). */
1290 (simplify
1291 (abs (negate @0))
1292 (abs @0))
1293
1294 (simplify
1295 (absu (negate @0))
1296 (absu @0))
1297
1298 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1299 (simplify
1300 (abs tree_expr_nonnegative_p@0)
1301 @0)
1302
1303 (simplify
1304 (absu tree_expr_nonnegative_p@0)
1305 (convert @0))
1306
1307 /* A few cases of fold-const.c negate_expr_p predicate. */
1308 (match negate_expr_p
1309 INTEGER_CST
1310 (if ((INTEGRAL_TYPE_P (type)
1311 && TYPE_UNSIGNED (type))
1312 || (!TYPE_OVERFLOW_SANITIZED (type)
1313 && may_negate_without_overflow_p (t)))))
1314 (match negate_expr_p
1315 FIXED_CST)
1316 (match negate_expr_p
1317 (negate @0)
1318 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1319 (match negate_expr_p
1320 REAL_CST
1321 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1322 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1323 ways. */
1324 (match negate_expr_p
1325 VECTOR_CST
1326 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1327 (match negate_expr_p
1328 (minus @0 @1)
1329 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1330 || (FLOAT_TYPE_P (type)
1331 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1332 && !HONOR_SIGNED_ZEROS (type)))))
1333
1334 /* (-A) * (-B) -> A * B */
1335 (simplify
1336 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1337 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1338 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1339 (mult (convert @0) (convert (negate @1)))))
1340
1341 /* -(A + B) -> (-B) - A. */
1342 (simplify
1343 (negate (plus:c @0 negate_expr_p@1))
1344 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1345 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1346 (minus (negate @1) @0)))
1347
1348 /* -(A - B) -> B - A. */
1349 (simplify
1350 (negate (minus @0 @1))
1351 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1352 || (FLOAT_TYPE_P (type)
1353 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1354 && !HONOR_SIGNED_ZEROS (type)))
1355 (minus @1 @0)))
1356 (simplify
1357 (negate (pointer_diff @0 @1))
1358 (if (TYPE_OVERFLOW_UNDEFINED (type))
1359 (pointer_diff @1 @0)))
1360
1361 /* A - B -> A + (-B) if B is easily negatable. */
1362 (simplify
1363 (minus @0 negate_expr_p@1)
1364 (if (!FIXED_POINT_TYPE_P (type))
1365 (plus @0 (negate @1))))
1366
1367 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1368 when profitable.
1369 For bitwise binary operations apply operand conversions to the
1370 binary operation result instead of to the operands. This allows
1371 to combine successive conversions and bitwise binary operations.
1372 We combine the above two cases by using a conditional convert. */
1373 (for bitop (bit_and bit_ior bit_xor)
1374 (simplify
1375 (bitop (convert@2 @0) (convert?@3 @1))
1376 (if (((TREE_CODE (@1) == INTEGER_CST
1377 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1378 && int_fits_type_p (@1, TREE_TYPE (@0)))
1379 || types_match (@0, @1))
1380 /* ??? This transform conflicts with fold-const.c doing
1381 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1382 constants (if x has signed type, the sign bit cannot be set
1383 in c). This folds extension into the BIT_AND_EXPR.
1384 Restrict it to GIMPLE to avoid endless recursions. */
1385 && (bitop != BIT_AND_EXPR || GIMPLE)
1386 && (/* That's a good idea if the conversion widens the operand, thus
1387 after hoisting the conversion the operation will be narrower. */
1388 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1389 /* It's also a good idea if the conversion is to a non-integer
1390 mode. */
1391 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1392 /* Or if the precision of TO is not the same as the precision
1393 of its mode. */
1394 || !type_has_mode_precision_p (type)
1395 /* In GIMPLE, getting rid of 2 conversions for one new results
1396 in smaller IL. */
1397 || (GIMPLE
1398 && TREE_CODE (@1) != INTEGER_CST
1399 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1400 && single_use (@2)
1401 && single_use (@3))))
1402 (convert (bitop @0 (convert @1)))))
1403 /* In GIMPLE, getting rid of 2 conversions for one new results
1404 in smaller IL. */
1405 (simplify
1406 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1407 (if (GIMPLE
1408 && TREE_CODE (@1) != INTEGER_CST
1409 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1410 && types_match (type, @0))
1411 (bitop @0 (convert @1)))))
1412
1413 (for bitop (bit_and bit_ior)
1414 rbitop (bit_ior bit_and)
1415 /* (x | y) & x -> x */
1416 /* (x & y) | x -> x */
1417 (simplify
1418 (bitop:c (rbitop:c @0 @1) @0)
1419 @0)
1420 /* (~x | y) & x -> x & y */
1421 /* (~x & y) | x -> x | y */
1422 (simplify
1423 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1424 (bitop @0 @1)))
1425
1426 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1427 (simplify
1428 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1429 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1430
1431 /* Combine successive equal operations with constants. */
1432 (for bitop (bit_and bit_ior bit_xor)
1433 (simplify
1434 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1435 (if (!CONSTANT_CLASS_P (@0))
1436 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1437 folded to a constant. */
1438 (bitop @0 (bitop @1 @2))
1439 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1440 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1441 the values involved are such that the operation can't be decided at
1442 compile time. Try folding one of @0 or @1 with @2 to see whether
1443 that combination can be decided at compile time.
1444
1445 Keep the existing form if both folds fail, to avoid endless
1446 oscillation. */
1447 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1448 (if (cst1)
1449 (bitop @1 { cst1; })
1450 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1451 (if (cst2)
1452 (bitop @0 { cst2; }))))))))
1453
1454 /* Try simple folding for X op !X, and X op X with the help
1455 of the truth_valued_p and logical_inverted_value predicates. */
1456 (match truth_valued_p
1457 @0
1458 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1459 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1460 (match truth_valued_p
1461 (op @0 @1)))
1462 (match truth_valued_p
1463 (truth_not @0))
1464
1465 (match (logical_inverted_value @0)
1466 (truth_not @0))
1467 (match (logical_inverted_value @0)
1468 (bit_not truth_valued_p@0))
1469 (match (logical_inverted_value @0)
1470 (eq @0 integer_zerop))
1471 (match (logical_inverted_value @0)
1472 (ne truth_valued_p@0 integer_truep))
1473 (match (logical_inverted_value @0)
1474 (bit_xor truth_valued_p@0 integer_truep))
1475
1476 /* X & !X -> 0. */
1477 (simplify
1478 (bit_and:c @0 (logical_inverted_value @0))
1479 { build_zero_cst (type); })
1480 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1481 (for op (bit_ior bit_xor)
1482 (simplify
1483 (op:c truth_valued_p@0 (logical_inverted_value @0))
1484 { constant_boolean_node (true, type); }))
1485 /* X ==/!= !X is false/true. */
1486 (for op (eq ne)
1487 (simplify
1488 (op:c truth_valued_p@0 (logical_inverted_value @0))
1489 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1490
1491 /* ~~x -> x */
1492 (simplify
1493 (bit_not (bit_not @0))
1494 @0)
1495
1496 /* Convert ~ (-A) to A - 1. */
1497 (simplify
1498 (bit_not (convert? (negate @0)))
1499 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1500 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1501 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1502
1503 /* Convert - (~A) to A + 1. */
1504 (simplify
1505 (negate (nop_convert? (bit_not @0)))
1506 (plus (view_convert @0) { build_each_one_cst (type); }))
1507
1508 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1509 (simplify
1510 (bit_not (convert? (minus @0 integer_each_onep)))
1511 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1512 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1513 (convert (negate @0))))
1514 (simplify
1515 (bit_not (convert? (plus @0 integer_all_onesp)))
1516 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1517 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1518 (convert (negate @0))))
1519
1520 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1521 (simplify
1522 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1523 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1524 (convert (bit_xor @0 (bit_not @1)))))
1525 (simplify
1526 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1527 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1528 (convert (bit_xor @0 @1))))
1529
1530 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1531 (simplify
1532 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1533 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1534 (bit_not (bit_xor (view_convert @0) @1))))
1535
1536 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1537 (simplify
1538 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1539 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1540
1541 /* Fold A - (A & B) into ~B & A. */
1542 (simplify
1543 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1544 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1545 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1546 (convert (bit_and (bit_not @1) @0))))
1547
1548 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1549 (for cmp (gt lt ge le)
1550 (simplify
1551 (mult (convert (cmp @0 @1)) @2)
1552 (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1553 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1554
1555 /* For integral types with undefined overflow and C != 0 fold
1556 x * C EQ/NE y * C into x EQ/NE y. */
1557 (for cmp (eq ne)
1558 (simplify
1559 (cmp (mult:c @0 @1) (mult:c @2 @1))
1560 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1561 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1562 && tree_expr_nonzero_p (@1))
1563 (cmp @0 @2))))
1564
1565 /* For integral types with wrapping overflow and C odd fold
1566 x * C EQ/NE y * C into x EQ/NE y. */
1567 (for cmp (eq ne)
1568 (simplify
1569 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1570 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1571 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1572 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1573 (cmp @0 @2))))
1574
1575 /* For integral types with undefined overflow and C != 0 fold
1576 x * C RELOP y * C into:
1577
1578 x RELOP y for nonnegative C
1579 y RELOP x for negative C */
1580 (for cmp (lt gt le ge)
1581 (simplify
1582 (cmp (mult:c @0 @1) (mult:c @2 @1))
1583 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1584 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1585 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1586 (cmp @0 @2)
1587 (if (TREE_CODE (@1) == INTEGER_CST
1588 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1589 (cmp @2 @0))))))
1590
1591 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1592 (for cmp (le gt)
1593 icmp (gt le)
1594 (simplify
1595 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1596 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1597 && TYPE_UNSIGNED (TREE_TYPE (@0))
1598 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1599 && (wi::to_wide (@2)
1600 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1601 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1602 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1603
1604 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1605 (for cmp (simple_comparison)
1606 (simplify
1607 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1608 (if (element_precision (@3) >= element_precision (@0)
1609 && types_match (@0, @1))
1610 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1611 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1612 (cmp @1 @0)
1613 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1614 (with
1615 {
1616 tree utype = unsigned_type_for (TREE_TYPE (@0));
1617 }
1618 (cmp (convert:utype @1) (convert:utype @0)))))
1619 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1620 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1621 (cmp @0 @1)
1622 (with
1623 {
1624 tree utype = unsigned_type_for (TREE_TYPE (@0));
1625 }
1626 (cmp (convert:utype @0) (convert:utype @1)))))))))
1627
1628 /* X / C1 op C2 into a simple range test. */
1629 (for cmp (simple_comparison)
1630 (simplify
1631 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1632 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1633 && integer_nonzerop (@1)
1634 && !TREE_OVERFLOW (@1)
1635 && !TREE_OVERFLOW (@2))
1636 (with { tree lo, hi; bool neg_overflow;
1637 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1638 &neg_overflow); }
1639 (switch
1640 (if (code == LT_EXPR || code == GE_EXPR)
1641 (if (TREE_OVERFLOW (lo))
1642 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1643 (if (code == LT_EXPR)
1644 (lt @0 { lo; })
1645 (ge @0 { lo; }))))
1646 (if (code == LE_EXPR || code == GT_EXPR)
1647 (if (TREE_OVERFLOW (hi))
1648 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1649 (if (code == LE_EXPR)
1650 (le @0 { hi; })
1651 (gt @0 { hi; }))))
1652 (if (!lo && !hi)
1653 { build_int_cst (type, code == NE_EXPR); })
1654 (if (code == EQ_EXPR && !hi)
1655 (ge @0 { lo; }))
1656 (if (code == EQ_EXPR && !lo)
1657 (le @0 { hi; }))
1658 (if (code == NE_EXPR && !hi)
1659 (lt @0 { lo; }))
1660 (if (code == NE_EXPR && !lo)
1661 (gt @0 { hi; }))
1662 (if (GENERIC)
1663 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1664 lo, hi); })
1665 (with
1666 {
1667 tree etype = range_check_type (TREE_TYPE (@0));
1668 if (etype)
1669 {
1670 hi = fold_convert (etype, hi);
1671 lo = fold_convert (etype, lo);
1672 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1673 }
1674 }
1675 (if (etype && hi && !TREE_OVERFLOW (hi))
1676 (if (code == EQ_EXPR)
1677 (le (minus (convert:etype @0) { lo; }) { hi; })
1678 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1679
1680 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1681 (for op (lt le ge gt)
1682 (simplify
1683 (op (plus:c @0 @2) (plus:c @1 @2))
1684 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1685 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1686 (op @0 @1))))
1687 /* For equality and subtraction, this is also true with wrapping overflow. */
1688 (for op (eq ne minus)
1689 (simplify
1690 (op (plus:c @0 @2) (plus:c @1 @2))
1691 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1692 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1693 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1694 (op @0 @1))))
1695
1696 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1697 (for op (lt le ge gt)
1698 (simplify
1699 (op (minus @0 @2) (minus @1 @2))
1700 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1701 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1702 (op @0 @1))))
1703 /* For equality and subtraction, this is also true with wrapping overflow. */
1704 (for op (eq ne minus)
1705 (simplify
1706 (op (minus @0 @2) (minus @1 @2))
1707 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1708 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1709 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1710 (op @0 @1))))
1711 /* And for pointers... */
1712 (for op (simple_comparison)
1713 (simplify
1714 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1715 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1716 (op @0 @1))))
1717 (simplify
1718 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1719 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1720 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1721 (pointer_diff @0 @1)))
1722
1723 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1724 (for op (lt le ge gt)
1725 (simplify
1726 (op (minus @2 @0) (minus @2 @1))
1727 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1728 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1729 (op @1 @0))))
1730 /* For equality and subtraction, this is also true with wrapping overflow. */
1731 (for op (eq ne minus)
1732 (simplify
1733 (op (minus @2 @0) (minus @2 @1))
1734 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1735 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1736 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1737 (op @1 @0))))
1738 /* And for pointers... */
1739 (for op (simple_comparison)
1740 (simplify
1741 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1742 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1743 (op @1 @0))))
1744 (simplify
1745 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1746 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1747 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1748 (pointer_diff @1 @0)))
1749
1750 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1751 (for op (lt le gt ge)
1752 (simplify
1753 (op:c (plus:c@2 @0 @1) @1)
1754 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1755 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1756 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1757 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1758 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1759 /* For equality, this is also true with wrapping overflow. */
1760 (for op (eq ne)
1761 (simplify
1762 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1763 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1764 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1765 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1766 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1767 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1768 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1769 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1770 (simplify
1771 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1772 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1773 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1774 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1775 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1776
1777 /* X - Y < X is the same as Y > 0 when there is no overflow.
1778 For equality, this is also true with wrapping overflow. */
1779 (for op (simple_comparison)
1780 (simplify
1781 (op:c @0 (minus@2 @0 @1))
1782 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1783 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1784 || ((op == EQ_EXPR || op == NE_EXPR)
1785 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1786 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1787 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1788
1789 /* Transform:
1790 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1791 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1792 (for cmp (eq ne)
1793 ocmp (lt ge)
1794 (simplify
1795 (cmp (trunc_div @0 @1) integer_zerop)
1796 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1797 /* Complex ==/!= is allowed, but not </>=. */
1798 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1799 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1800 (ocmp @0 @1))))
1801
1802 /* X == C - X can never be true if C is odd. */
1803 (for cmp (eq ne)
1804 (simplify
1805 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1806 (if (TREE_INT_CST_LOW (@1) & 1)
1807 { constant_boolean_node (cmp == NE_EXPR, type); })))
1808
1809 /* Arguments on which one can call get_nonzero_bits to get the bits
1810 possibly set. */
1811 (match with_possible_nonzero_bits
1812 INTEGER_CST@0)
1813 (match with_possible_nonzero_bits
1814 SSA_NAME@0
1815 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1816 /* Slightly extended version, do not make it recursive to keep it cheap. */
1817 (match (with_possible_nonzero_bits2 @0)
1818 with_possible_nonzero_bits@0)
1819 (match (with_possible_nonzero_bits2 @0)
1820 (bit_and:c with_possible_nonzero_bits@0 @2))
1821
1822 /* Same for bits that are known to be set, but we do not have
1823 an equivalent to get_nonzero_bits yet. */
1824 (match (with_certain_nonzero_bits2 @0)
1825 INTEGER_CST@0)
1826 (match (with_certain_nonzero_bits2 @0)
1827 (bit_ior @1 INTEGER_CST@0))
1828
1829 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1830 (for cmp (eq ne)
1831 (simplify
1832 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1833 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1834 { constant_boolean_node (cmp == NE_EXPR, type); })))
1835
1836 /* ((X inner_op C0) outer_op C1)
1837 With X being a tree where value_range has reasoned certain bits to always be
1838 zero throughout its computed value range,
1839 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1840 where zero_mask has 1's for all bits that are sure to be 0 in
1841 and 0's otherwise.
1842 if (inner_op == '^') C0 &= ~C1;
1843 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1844 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1845 */
1846 (for inner_op (bit_ior bit_xor)
1847 outer_op (bit_xor bit_ior)
1848 (simplify
1849 (outer_op
1850 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1851 (with
1852 {
1853 bool fail = false;
1854 wide_int zero_mask_not;
1855 wide_int C0;
1856 wide_int cst_emit;
1857
1858 if (TREE_CODE (@2) == SSA_NAME)
1859 zero_mask_not = get_nonzero_bits (@2);
1860 else
1861 fail = true;
1862
1863 if (inner_op == BIT_XOR_EXPR)
1864 {
1865 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1866 cst_emit = C0 | wi::to_wide (@1);
1867 }
1868 else
1869 {
1870 C0 = wi::to_wide (@0);
1871 cst_emit = C0 ^ wi::to_wide (@1);
1872 }
1873 }
1874 (if (!fail && (C0 & zero_mask_not) == 0)
1875 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1876 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1877 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1878
1879 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1880 (simplify
1881 (pointer_plus (pointer_plus:s @0 @1) @3)
1882 (pointer_plus @0 (plus @1 @3)))
1883
1884 /* Pattern match
1885 tem1 = (long) ptr1;
1886 tem2 = (long) ptr2;
1887 tem3 = tem2 - tem1;
1888 tem4 = (unsigned long) tem3;
1889 tem5 = ptr1 + tem4;
1890 and produce
1891 tem5 = ptr2; */
1892 (simplify
1893 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1894 /* Conditionally look through a sign-changing conversion. */
1895 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1896 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1897 || (GENERIC && type == TREE_TYPE (@1))))
1898 @1))
1899 (simplify
1900 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1901 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1902 (convert @1)))
1903
1904 /* Pattern match
1905 tem = (sizetype) ptr;
1906 tem = tem & algn;
1907 tem = -tem;
1908 ... = ptr p+ tem;
1909 and produce the simpler and easier to analyze with respect to alignment
1910 ... = ptr & ~algn; */
1911 (simplify
1912 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1913 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1914 (bit_and @0 { algn; })))
1915
1916 /* Try folding difference of addresses. */
1917 (simplify
1918 (minus (convert ADDR_EXPR@0) (convert @1))
1919 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1920 (with { poly_int64 diff; }
1921 (if (ptr_difference_const (@0, @1, &diff))
1922 { build_int_cst_type (type, diff); }))))
1923 (simplify
1924 (minus (convert @0) (convert ADDR_EXPR@1))
1925 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1926 (with { poly_int64 diff; }
1927 (if (ptr_difference_const (@0, @1, &diff))
1928 { build_int_cst_type (type, diff); }))))
1929 (simplify
1930 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1931 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1932 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1933 (with { poly_int64 diff; }
1934 (if (ptr_difference_const (@0, @1, &diff))
1935 { build_int_cst_type (type, diff); }))))
1936 (simplify
1937 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1938 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1939 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1940 (with { poly_int64 diff; }
1941 (if (ptr_difference_const (@0, @1, &diff))
1942 { build_int_cst_type (type, diff); }))))
1943
1944 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
1945 (simplify
1946 (convert (pointer_diff @0 INTEGER_CST@1))
1947 (if (POINTER_TYPE_P (type))
1948 { build_fold_addr_expr_with_type
1949 (build2 (MEM_REF, char_type_node, @0,
1950 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
1951 type); }))
1952
1953 /* If arg0 is derived from the address of an object or function, we may
1954 be able to fold this expression using the object or function's
1955 alignment. */
1956 (simplify
1957 (bit_and (convert? @0) INTEGER_CST@1)
1958 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1959 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1960 (with
1961 {
1962 unsigned int align;
1963 unsigned HOST_WIDE_INT bitpos;
1964 get_pointer_alignment_1 (@0, &align, &bitpos);
1965 }
1966 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1967 { wide_int_to_tree (type, (wi::to_wide (@1)
1968 & (bitpos / BITS_PER_UNIT))); }))))
1969
1970 (match min_value
1971 INTEGER_CST
1972 (if (INTEGRAL_TYPE_P (type)
1973 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1974
1975 (match max_value
1976 INTEGER_CST
1977 (if (INTEGRAL_TYPE_P (type)
1978 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1979
1980 /* x > y && x != XXX_MIN --> x > y
1981 x > y && x == XXX_MIN --> false . */
1982 (for eqne (eq ne)
1983 (simplify
1984 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1985 (switch
1986 (if (eqne == EQ_EXPR)
1987 { constant_boolean_node (false, type); })
1988 (if (eqne == NE_EXPR)
1989 @2)
1990 )))
1991
1992 /* x < y && x != XXX_MAX --> x < y
1993 x < y && x == XXX_MAX --> false. */
1994 (for eqne (eq ne)
1995 (simplify
1996 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1997 (switch
1998 (if (eqne == EQ_EXPR)
1999 { constant_boolean_node (false, type); })
2000 (if (eqne == NE_EXPR)
2001 @2)
2002 )))
2003
2004 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2005 (simplify
2006 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2007 @2)
2008
2009 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2010 (simplify
2011 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2012 @2)
2013
2014 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2015 (simplify
2016 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2017 @2)
2018
2019 /* x <= y || x != XXX_MIN --> true. */
2020 (simplify
2021 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2022 { constant_boolean_node (true, type); })
2023
2024 /* x <= y || x == XXX_MIN --> x <= y. */
2025 (simplify
2026 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2027 @2)
2028
2029 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2030 (simplify
2031 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2032 @2)
2033
2034 /* x >= y || x != XXX_MAX --> true
2035 x >= y || x == XXX_MAX --> x >= y. */
2036 (for eqne (eq ne)
2037 (simplify
2038 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2039 (switch
2040 (if (eqne == EQ_EXPR)
2041 @2)
2042 (if (eqne == NE_EXPR)
2043 { constant_boolean_node (true, type); }))))
2044
2045 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2046 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2047
2048 (for code1 (eq ne)
2049 (for code2 (eq ne lt gt le ge)
2050 (simplify
2051 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2052 (with
2053 {
2054 int cmp = tree_int_cst_compare (@1, @2);
2055 bool val;
2056 switch (code2)
2057 {
2058 case EQ_EXPR: val = (cmp == 0); break;
2059 case NE_EXPR: val = (cmp != 0); break;
2060 case LT_EXPR: val = (cmp < 0); break;
2061 case GT_EXPR: val = (cmp > 0); break;
2062 case LE_EXPR: val = (cmp <= 0); break;
2063 case GE_EXPR: val = (cmp >= 0); break;
2064 default: gcc_unreachable ();
2065 }
2066 }
2067 (switch
2068 (if (code1 == EQ_EXPR && val) @3)
2069 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2070 (if (code1 == NE_EXPR && !val) @4))))))
2071
2072 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2073
2074 (for code1 (lt le gt ge)
2075 (for code2 (lt le gt ge)
2076 (simplify
2077 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2078 (with
2079 {
2080 int cmp = tree_int_cst_compare (@1, @2);
2081 }
2082 (switch
2083 /* Choose the more restrictive of two < or <= comparisons. */
2084 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2085 && (code2 == LT_EXPR || code2 == LE_EXPR))
2086 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2087 @3
2088 @4))
2089 /* Likewise chose the more restrictive of two > or >= comparisons. */
2090 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2091 && (code2 == GT_EXPR || code2 == GE_EXPR))
2092 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2093 @3
2094 @4))
2095 /* Check for singleton ranges. */
2096 (if (cmp == 0
2097 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2098 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2099 (eq @0 @1))
2100 /* Check for disjoint ranges. */
2101 (if (cmp <= 0
2102 && (code1 == LT_EXPR || code1 == LE_EXPR)
2103 && (code2 == GT_EXPR || code2 == GE_EXPR))
2104 { constant_boolean_node (false, type); })
2105 (if (cmp >= 0
2106 && (code1 == GT_EXPR || code1 == GE_EXPR)
2107 && (code2 == LT_EXPR || code2 == LE_EXPR))
2108 { constant_boolean_node (false, type); })
2109 )))))
2110
2111 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2112 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2113
2114 (for code1 (eq ne)
2115 (for code2 (eq ne lt gt le ge)
2116 (simplify
2117 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2118 (with
2119 {
2120 int cmp = tree_int_cst_compare (@1, @2);
2121 bool val;
2122 switch (code2)
2123 {
2124 case EQ_EXPR: val = (cmp == 0); break;
2125 case NE_EXPR: val = (cmp != 0); break;
2126 case LT_EXPR: val = (cmp < 0); break;
2127 case GT_EXPR: val = (cmp > 0); break;
2128 case LE_EXPR: val = (cmp <= 0); break;
2129 case GE_EXPR: val = (cmp >= 0); break;
2130 default: gcc_unreachable ();
2131 }
2132 }
2133 (switch
2134 (if (code1 == EQ_EXPR && val) @4)
2135 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2136 (if (code1 == NE_EXPR && !val) @3))))))
2137
2138 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2139
2140 (for code1 (lt le gt ge)
2141 (for code2 (lt le gt ge)
2142 (simplify
2143 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2144 (with
2145 {
2146 int cmp = tree_int_cst_compare (@1, @2);
2147 }
2148 (switch
2149 /* Choose the more restrictive of two < or <= comparisons. */
2150 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2151 && (code2 == LT_EXPR || code2 == LE_EXPR))
2152 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2153 @4
2154 @3))
2155 /* Likewise chose the more restrictive of two > or >= comparisons. */
2156 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2157 && (code2 == GT_EXPR || code2 == GE_EXPR))
2158 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2159 @4
2160 @3))
2161 /* Check for singleton ranges. */
2162 (if (cmp == 0
2163 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2164 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2165 (ne @0 @2))
2166 /* Check for disjoint ranges. */
2167 (if (cmp >= 0
2168 && (code1 == LT_EXPR || code1 == LE_EXPR)
2169 && (code2 == GT_EXPR || code2 == GE_EXPR))
2170 { constant_boolean_node (true, type); })
2171 (if (cmp <= 0
2172 && (code1 == GT_EXPR || code1 == GE_EXPR)
2173 && (code2 == LT_EXPR || code2 == LE_EXPR))
2174 { constant_boolean_node (true, type); })
2175 )))))
2176
2177 /* We can't reassociate at all for saturating types. */
2178 (if (!TYPE_SATURATING (type))
2179
2180 /* Contract negates. */
2181 /* A + (-B) -> A - B */
2182 (simplify
2183 (plus:c @0 (convert? (negate @1)))
2184 /* Apply STRIP_NOPS on the negate. */
2185 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2186 && !TYPE_OVERFLOW_SANITIZED (type))
2187 (with
2188 {
2189 tree t1 = type;
2190 if (INTEGRAL_TYPE_P (type)
2191 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2192 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2193 }
2194 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2195 /* A - (-B) -> A + B */
2196 (simplify
2197 (minus @0 (convert? (negate @1)))
2198 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2199 && !TYPE_OVERFLOW_SANITIZED (type))
2200 (with
2201 {
2202 tree t1 = type;
2203 if (INTEGRAL_TYPE_P (type)
2204 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2205 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2206 }
2207 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2208 /* -(T)(-A) -> (T)A
2209 Sign-extension is ok except for INT_MIN, which thankfully cannot
2210 happen without overflow. */
2211 (simplify
2212 (negate (convert (negate @1)))
2213 (if (INTEGRAL_TYPE_P (type)
2214 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2215 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2216 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2217 && !TYPE_OVERFLOW_SANITIZED (type)
2218 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2219 (convert @1)))
2220 (simplify
2221 (negate (convert negate_expr_p@1))
2222 (if (SCALAR_FLOAT_TYPE_P (type)
2223 && ((DECIMAL_FLOAT_TYPE_P (type)
2224 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2225 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2226 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2227 (convert (negate @1))))
2228 (simplify
2229 (negate (nop_convert? (negate @1)))
2230 (if (!TYPE_OVERFLOW_SANITIZED (type)
2231 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2232 (view_convert @1)))
2233
2234 /* We can't reassociate floating-point unless -fassociative-math
2235 or fixed-point plus or minus because of saturation to +-Inf. */
2236 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2237 && !FIXED_POINT_TYPE_P (type))
2238
2239 /* Match patterns that allow contracting a plus-minus pair
2240 irrespective of overflow issues. */
2241 /* (A +- B) - A -> +- B */
2242 /* (A +- B) -+ B -> A */
2243 /* A - (A +- B) -> -+ B */
2244 /* A +- (B -+ A) -> +- B */
2245 (simplify
2246 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2247 (view_convert @1))
2248 (simplify
2249 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2250 (if (!ANY_INTEGRAL_TYPE_P (type)
2251 || TYPE_OVERFLOW_WRAPS (type))
2252 (negate (view_convert @1))
2253 (view_convert (negate @1))))
2254 (simplify
2255 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2256 (view_convert @0))
2257 (simplify
2258 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2259 (if (!ANY_INTEGRAL_TYPE_P (type)
2260 || TYPE_OVERFLOW_WRAPS (type))
2261 (negate (view_convert @1))
2262 (view_convert (negate @1))))
2263 (simplify
2264 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2265 (view_convert @1))
2266 /* (A +- B) + (C - A) -> C +- B */
2267 /* (A + B) - (A - C) -> B + C */
2268 /* More cases are handled with comparisons. */
2269 (simplify
2270 (plus:c (plus:c @0 @1) (minus @2 @0))
2271 (plus @2 @1))
2272 (simplify
2273 (plus:c (minus @0 @1) (minus @2 @0))
2274 (minus @2 @1))
2275 (simplify
2276 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2277 (if (TYPE_OVERFLOW_UNDEFINED (type)
2278 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2279 (pointer_diff @2 @1)))
2280 (simplify
2281 (minus (plus:c @0 @1) (minus @0 @2))
2282 (plus @1 @2))
2283
2284 /* (A +- CST1) +- CST2 -> A + CST3
2285 Use view_convert because it is safe for vectors and equivalent for
2286 scalars. */
2287 (for outer_op (plus minus)
2288 (for inner_op (plus minus)
2289 neg_inner_op (minus plus)
2290 (simplify
2291 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2292 CONSTANT_CLASS_P@2)
2293 /* If one of the types wraps, use that one. */
2294 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2295 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2296 forever if something doesn't simplify into a constant. */
2297 (if (!CONSTANT_CLASS_P (@0))
2298 (if (outer_op == PLUS_EXPR)
2299 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2300 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2301 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2302 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2303 (if (outer_op == PLUS_EXPR)
2304 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2305 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2306 /* If the constant operation overflows we cannot do the transform
2307 directly as we would introduce undefined overflow, for example
2308 with (a - 1) + INT_MIN. */
2309 (if (types_match (type, @0))
2310 (with { tree cst = const_binop (outer_op == inner_op
2311 ? PLUS_EXPR : MINUS_EXPR,
2312 type, @1, @2); }
2313 (if (cst && !TREE_OVERFLOW (cst))
2314 (inner_op @0 { cst; } )
2315 /* X+INT_MAX+1 is X-INT_MIN. */
2316 (if (INTEGRAL_TYPE_P (type) && cst
2317 && wi::to_wide (cst) == wi::min_value (type))
2318 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2319 /* Last resort, use some unsigned type. */
2320 (with { tree utype = unsigned_type_for (type); }
2321 (if (utype)
2322 (view_convert (inner_op
2323 (view_convert:utype @0)
2324 (view_convert:utype
2325 { drop_tree_overflow (cst); }))))))))))))))
2326
2327 /* (CST1 - A) +- CST2 -> CST3 - A */
2328 (for outer_op (plus minus)
2329 (simplify
2330 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2331 /* If one of the types wraps, use that one. */
2332 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2333 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2334 forever if something doesn't simplify into a constant. */
2335 (if (!CONSTANT_CLASS_P (@0))
2336 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2337 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2338 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2339 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2340 (if (types_match (type, @0))
2341 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2342 (if (cst && !TREE_OVERFLOW (cst))
2343 (minus { cst; } @0))))))))
2344
2345 /* CST1 - (CST2 - A) -> CST3 + A
2346 Use view_convert because it is safe for vectors and equivalent for
2347 scalars. */
2348 (simplify
2349 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2350 /* If one of the types wraps, use that one. */
2351 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2352 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2353 forever if something doesn't simplify into a constant. */
2354 (if (!CONSTANT_CLASS_P (@0))
2355 (plus (view_convert @0) (minus @1 (view_convert @2))))
2356 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2357 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2358 (view_convert (plus @0 (minus (view_convert @1) @2)))
2359 (if (types_match (type, @0))
2360 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2361 (if (cst && !TREE_OVERFLOW (cst))
2362 (plus { cst; } @0)))))))
2363
2364 /* ((T)(A)) + CST -> (T)(A + CST) */
2365 #if GIMPLE
2366 (simplify
2367 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2368 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2369 && TREE_CODE (type) == INTEGER_TYPE
2370 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2371 && int_fits_type_p (@1, TREE_TYPE (@0)))
2372 /* Perform binary operation inside the cast if the constant fits
2373 and (A + CST)'s range does not overflow. */
2374 (with
2375 {
2376 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2377 max_ovf = wi::OVF_OVERFLOW;
2378 tree inner_type = TREE_TYPE (@0);
2379
2380 wide_int w1
2381 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2382 TYPE_SIGN (inner_type));
2383
2384 wide_int wmin0, wmax0;
2385 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2386 {
2387 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2388 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2389 }
2390 }
2391 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2392 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2393 )))
2394 #endif
2395
2396 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2397 #if GIMPLE
2398 (for op (plus minus)
2399 (simplify
2400 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2401 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2402 && TREE_CODE (type) == INTEGER_TYPE
2403 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2404 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2405 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2406 && TYPE_OVERFLOW_WRAPS (type))
2407 (plus (convert @0) (op @2 (convert @1))))))
2408 #endif
2409
2410 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2411 to a simple value. */
2412 #if GIMPLE
2413 (for op (plus minus)
2414 (simplify
2415 (op (convert @0) (convert @1))
2416 (if (INTEGRAL_TYPE_P (type)
2417 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2418 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2419 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2420 && !TYPE_OVERFLOW_TRAPS (type)
2421 && !TYPE_OVERFLOW_SANITIZED (type))
2422 (convert (op! @0 @1)))))
2423 #endif
2424
2425 /* ~A + A -> -1 */
2426 (simplify
2427 (plus:c (bit_not @0) @0)
2428 (if (!TYPE_OVERFLOW_TRAPS (type))
2429 { build_all_ones_cst (type); }))
2430
2431 /* ~A + 1 -> -A */
2432 (simplify
2433 (plus (convert? (bit_not @0)) integer_each_onep)
2434 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2435 (negate (convert @0))))
2436
2437 /* -A - 1 -> ~A */
2438 (simplify
2439 (minus (convert? (negate @0)) integer_each_onep)
2440 (if (!TYPE_OVERFLOW_TRAPS (type)
2441 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2442 (bit_not (convert @0))))
2443
2444 /* -1 - A -> ~A */
2445 (simplify
2446 (minus integer_all_onesp @0)
2447 (bit_not @0))
2448
2449 /* (T)(P + A) - (T)P -> (T) A */
2450 (simplify
2451 (minus (convert (plus:c @@0 @1))
2452 (convert? @0))
2453 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2454 /* For integer types, if A has a smaller type
2455 than T the result depends on the possible
2456 overflow in P + A.
2457 E.g. T=size_t, A=(unsigned)429497295, P>0.
2458 However, if an overflow in P + A would cause
2459 undefined behavior, we can assume that there
2460 is no overflow. */
2461 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2462 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2463 (convert @1)))
2464 (simplify
2465 (minus (convert (pointer_plus @@0 @1))
2466 (convert @0))
2467 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2468 /* For pointer types, if the conversion of A to the
2469 final type requires a sign- or zero-extension,
2470 then we have to punt - it is not defined which
2471 one is correct. */
2472 || (POINTER_TYPE_P (TREE_TYPE (@0))
2473 && TREE_CODE (@1) == INTEGER_CST
2474 && tree_int_cst_sign_bit (@1) == 0))
2475 (convert @1)))
2476 (simplify
2477 (pointer_diff (pointer_plus @@0 @1) @0)
2478 /* The second argument of pointer_plus must be interpreted as signed, and
2479 thus sign-extended if necessary. */
2480 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2481 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2482 second arg is unsigned even when we need to consider it as signed,
2483 we don't want to diagnose overflow here. */
2484 (convert (view_convert:stype @1))))
2485
2486 /* (T)P - (T)(P + A) -> -(T) A */
2487 (simplify
2488 (minus (convert? @0)
2489 (convert (plus:c @@0 @1)))
2490 (if (INTEGRAL_TYPE_P (type)
2491 && TYPE_OVERFLOW_UNDEFINED (type)
2492 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2493 (with { tree utype = unsigned_type_for (type); }
2494 (convert (negate (convert:utype @1))))
2495 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2496 /* For integer types, if A has a smaller type
2497 than T the result depends on the possible
2498 overflow in P + A.
2499 E.g. T=size_t, A=(unsigned)429497295, P>0.
2500 However, if an overflow in P + A would cause
2501 undefined behavior, we can assume that there
2502 is no overflow. */
2503 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2504 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2505 (negate (convert @1)))))
2506 (simplify
2507 (minus (convert @0)
2508 (convert (pointer_plus @@0 @1)))
2509 (if (INTEGRAL_TYPE_P (type)
2510 && TYPE_OVERFLOW_UNDEFINED (type)
2511 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2512 (with { tree utype = unsigned_type_for (type); }
2513 (convert (negate (convert:utype @1))))
2514 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2515 /* For pointer types, if the conversion of A to the
2516 final type requires a sign- or zero-extension,
2517 then we have to punt - it is not defined which
2518 one is correct. */
2519 || (POINTER_TYPE_P (TREE_TYPE (@0))
2520 && TREE_CODE (@1) == INTEGER_CST
2521 && tree_int_cst_sign_bit (@1) == 0))
2522 (negate (convert @1)))))
2523 (simplify
2524 (pointer_diff @0 (pointer_plus @@0 @1))
2525 /* The second argument of pointer_plus must be interpreted as signed, and
2526 thus sign-extended if necessary. */
2527 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2528 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2529 second arg is unsigned even when we need to consider it as signed,
2530 we don't want to diagnose overflow here. */
2531 (negate (convert (view_convert:stype @1)))))
2532
2533 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2534 (simplify
2535 (minus (convert (plus:c @@0 @1))
2536 (convert (plus:c @0 @2)))
2537 (if (INTEGRAL_TYPE_P (type)
2538 && TYPE_OVERFLOW_UNDEFINED (type)
2539 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2540 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2541 (with { tree utype = unsigned_type_for (type); }
2542 (convert (minus (convert:utype @1) (convert:utype @2))))
2543 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2544 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2545 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2546 /* For integer types, if A has a smaller type
2547 than T the result depends on the possible
2548 overflow in P + A.
2549 E.g. T=size_t, A=(unsigned)429497295, P>0.
2550 However, if an overflow in P + A would cause
2551 undefined behavior, we can assume that there
2552 is no overflow. */
2553 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2554 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2556 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2557 (minus (convert @1) (convert @2)))))
2558 (simplify
2559 (minus (convert (pointer_plus @@0 @1))
2560 (convert (pointer_plus @0 @2)))
2561 (if (INTEGRAL_TYPE_P (type)
2562 && TYPE_OVERFLOW_UNDEFINED (type)
2563 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2564 (with { tree utype = unsigned_type_for (type); }
2565 (convert (minus (convert:utype @1) (convert:utype @2))))
2566 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2567 /* For pointer types, if the conversion of A to the
2568 final type requires a sign- or zero-extension,
2569 then we have to punt - it is not defined which
2570 one is correct. */
2571 || (POINTER_TYPE_P (TREE_TYPE (@0))
2572 && TREE_CODE (@1) == INTEGER_CST
2573 && tree_int_cst_sign_bit (@1) == 0
2574 && TREE_CODE (@2) == INTEGER_CST
2575 && tree_int_cst_sign_bit (@2) == 0))
2576 (minus (convert @1) (convert @2)))))
2577 (simplify
2578 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
2579 (pointer_diff @0 @1))
2580 (simplify
2581 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2582 /* The second argument of pointer_plus must be interpreted as signed, and
2583 thus sign-extended if necessary. */
2584 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2585 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2586 second arg is unsigned even when we need to consider it as signed,
2587 we don't want to diagnose overflow here. */
2588 (minus (convert (view_convert:stype @1))
2589 (convert (view_convert:stype @2)))))))
2590
2591 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2592 Modeled after fold_plusminus_mult_expr. */
2593 (if (!TYPE_SATURATING (type)
2594 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2595 (for plusminus (plus minus)
2596 (simplify
2597 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2598 (if (!ANY_INTEGRAL_TYPE_P (type)
2599 || TYPE_OVERFLOW_WRAPS (type)
2600 || (INTEGRAL_TYPE_P (type)
2601 && tree_expr_nonzero_p (@0)
2602 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2603 (if (single_use (@3) || single_use (@4))
2604 /* If @1 +- @2 is constant require a hard single-use on either
2605 original operand (but not on both). */
2606 (mult (plusminus @1 @2) @0)
2607 #if GIMPLE
2608 (mult! (plusminus @1 @2) @0)
2609 #endif
2610 )))
2611 /* We cannot generate constant 1 for fract. */
2612 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2613 (simplify
2614 (plusminus @0 (mult:c@3 @0 @2))
2615 (if ((!ANY_INTEGRAL_TYPE_P (type)
2616 || TYPE_OVERFLOW_WRAPS (type)
2617 /* For @0 + @0*@2 this transformation would introduce UB
2618 (where there was none before) for @0 in [-1,0] and @2 max.
2619 For @0 - @0*@2 this transformation would introduce UB
2620 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2621 || (INTEGRAL_TYPE_P (type)
2622 && ((tree_expr_nonzero_p (@0)
2623 && expr_not_equal_to (@0,
2624 wi::minus_one (TYPE_PRECISION (type))))
2625 || (plusminus == PLUS_EXPR
2626 ? expr_not_equal_to (@2,
2627 wi::max_value (TYPE_PRECISION (type), SIGNED))
2628 /* Let's ignore the @0 -1 and @2 min case. */
2629 : (expr_not_equal_to (@2,
2630 wi::min_value (TYPE_PRECISION (type), SIGNED))
2631 && expr_not_equal_to (@2,
2632 wi::min_value (TYPE_PRECISION (type), SIGNED)
2633 + 1))))))
2634 && single_use (@3))
2635 (mult (plusminus { build_one_cst (type); } @2) @0)))
2636 (simplify
2637 (plusminus (mult:c@3 @0 @2) @0)
2638 (if ((!ANY_INTEGRAL_TYPE_P (type)
2639 || TYPE_OVERFLOW_WRAPS (type)
2640 /* For @0*@2 + @0 this transformation would introduce UB
2641 (where there was none before) for @0 in [-1,0] and @2 max.
2642 For @0*@2 - @0 this transformation would introduce UB
2643 for @0 0 and @2 min. */
2644 || (INTEGRAL_TYPE_P (type)
2645 && ((tree_expr_nonzero_p (@0)
2646 && (plusminus == MINUS_EXPR
2647 || expr_not_equal_to (@0,
2648 wi::minus_one (TYPE_PRECISION (type)))))
2649 || expr_not_equal_to (@2,
2650 (plusminus == PLUS_EXPR
2651 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2652 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2653 && single_use (@3))
2654 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2655
2656 #if GIMPLE
2657 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2658 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
2659 (simplify
2660 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2661 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2662 && tree_fits_uhwi_p (@1)
2663 && tree_to_uhwi (@1) < element_precision (type))
2664 (with { tree t = type;
2665 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2666 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2667 element_precision (type));
2668 w += 1;
2669 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2670 : t, w);
2671 cst = build_uniform_cst (t, cst); }
2672 (convert (mult (convert:t @0) { cst; })))))
2673 (simplify
2674 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2675 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2676 && tree_fits_uhwi_p (@1)
2677 && tree_to_uhwi (@1) < element_precision (type)
2678 && tree_fits_uhwi_p (@2)
2679 && tree_to_uhwi (@2) < element_precision (type))
2680 (with { tree t = type;
2681 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2682 unsigned int prec = element_precision (type);
2683 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2684 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2685 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2686 : t, w);
2687 cst = build_uniform_cst (t, cst); }
2688 (convert (mult (convert:t @0) { cst; })))))
2689 #endif
2690
2691 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2692
2693 (for minmax (min max FMIN_ALL FMAX_ALL)
2694 (simplify
2695 (minmax @0 @0)
2696 @0))
2697 /* min(max(x,y),y) -> y. */
2698 (simplify
2699 (min:c (max:c @0 @1) @1)
2700 @1)
2701 /* max(min(x,y),y) -> y. */
2702 (simplify
2703 (max:c (min:c @0 @1) @1)
2704 @1)
2705 /* max(a,-a) -> abs(a). */
2706 (simplify
2707 (max:c @0 (negate @0))
2708 (if (TREE_CODE (type) != COMPLEX_TYPE
2709 && (! ANY_INTEGRAL_TYPE_P (type)
2710 || TYPE_OVERFLOW_UNDEFINED (type)))
2711 (abs @0)))
2712 /* min(a,-a) -> -abs(a). */
2713 (simplify
2714 (min:c @0 (negate @0))
2715 (if (TREE_CODE (type) != COMPLEX_TYPE
2716 && (! ANY_INTEGRAL_TYPE_P (type)
2717 || TYPE_OVERFLOW_UNDEFINED (type)))
2718 (negate (abs @0))))
2719 (simplify
2720 (min @0 @1)
2721 (switch
2722 (if (INTEGRAL_TYPE_P (type)
2723 && TYPE_MIN_VALUE (type)
2724 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2725 @1)
2726 (if (INTEGRAL_TYPE_P (type)
2727 && TYPE_MAX_VALUE (type)
2728 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2729 @0)))
2730 (simplify
2731 (max @0 @1)
2732 (switch
2733 (if (INTEGRAL_TYPE_P (type)
2734 && TYPE_MAX_VALUE (type)
2735 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2736 @1)
2737 (if (INTEGRAL_TYPE_P (type)
2738 && TYPE_MIN_VALUE (type)
2739 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2740 @0)))
2741
2742 /* max (a, a + CST) -> a + CST where CST is positive. */
2743 /* max (a, a + CST) -> a where CST is negative. */
2744 (simplify
2745 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2746 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2747 (if (tree_int_cst_sgn (@1) > 0)
2748 @2
2749 @0)))
2750
2751 /* min (a, a + CST) -> a where CST is positive. */
2752 /* min (a, a + CST) -> a + CST where CST is negative. */
2753 (simplify
2754 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2755 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2756 (if (tree_int_cst_sgn (@1) > 0)
2757 @0
2758 @2)))
2759
2760 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2761 and the outer convert demotes the expression back to x's type. */
2762 (for minmax (min max)
2763 (simplify
2764 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2765 (if (INTEGRAL_TYPE_P (type)
2766 && types_match (@1, type) && int_fits_type_p (@2, type)
2767 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2768 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2769 (minmax @1 (convert @2)))))
2770
2771 (for minmax (FMIN_ALL FMAX_ALL)
2772 /* If either argument is NaN, return the other one. Avoid the
2773 transformation if we get (and honor) a signalling NaN. */
2774 (simplify
2775 (minmax:c @0 REAL_CST@1)
2776 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2777 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2778 @0)))
2779 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2780 functions to return the numeric arg if the other one is NaN.
2781 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2782 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2783 worry about it either. */
2784 (if (flag_finite_math_only)
2785 (simplify
2786 (FMIN_ALL @0 @1)
2787 (min @0 @1))
2788 (simplify
2789 (FMAX_ALL @0 @1)
2790 (max @0 @1)))
2791 /* min (-A, -B) -> -max (A, B) */
2792 (for minmax (min max FMIN_ALL FMAX_ALL)
2793 maxmin (max min FMAX_ALL FMIN_ALL)
2794 (simplify
2795 (minmax (negate:s@2 @0) (negate:s@3 @1))
2796 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2797 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2798 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2799 (negate (maxmin @0 @1)))))
2800 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2801 MAX (~X, ~Y) -> ~MIN (X, Y) */
2802 (for minmax (min max)
2803 maxmin (max min)
2804 (simplify
2805 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2806 (bit_not (maxmin @0 @1))))
2807
2808 /* MIN (X, Y) == X -> X <= Y */
2809 (for minmax (min min max max)
2810 cmp (eq ne eq ne )
2811 out (le gt ge lt )
2812 (simplify
2813 (cmp:c (minmax:c @0 @1) @0)
2814 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2815 (out @0 @1))))
2816 /* MIN (X, 5) == 0 -> X == 0
2817 MIN (X, 5) == 7 -> false */
2818 (for cmp (eq ne)
2819 (simplify
2820 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2821 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2822 TYPE_SIGN (TREE_TYPE (@0))))
2823 { constant_boolean_node (cmp == NE_EXPR, type); }
2824 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2825 TYPE_SIGN (TREE_TYPE (@0))))
2826 (cmp @0 @2)))))
2827 (for cmp (eq ne)
2828 (simplify
2829 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2830 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2831 TYPE_SIGN (TREE_TYPE (@0))))
2832 { constant_boolean_node (cmp == NE_EXPR, type); }
2833 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2834 TYPE_SIGN (TREE_TYPE (@0))))
2835 (cmp @0 @2)))))
2836 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2837 (for minmax (min min max max min min max max )
2838 cmp (lt le gt ge gt ge lt le )
2839 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2840 (simplify
2841 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2842 (comb (cmp @0 @2) (cmp @1 @2))))
2843
2844 /* Undo fancy way of writing max/min or other ?: expressions,
2845 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2846 People normally use ?: and that is what we actually try to optimize. */
2847 (for cmp (simple_comparison)
2848 (simplify
2849 (minus @0 (bit_and:c (minus @0 @1)
2850 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2851 (if (INTEGRAL_TYPE_P (type)
2852 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2853 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2854 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2855 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2856 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2857 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2858 (cond (cmp @2 @3) @1 @0)))
2859 (simplify
2860 (plus:c @0 (bit_and:c (minus @1 @0)
2861 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2862 (if (INTEGRAL_TYPE_P (type)
2863 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2864 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2865 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2866 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2867 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2868 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2869 (cond (cmp @2 @3) @1 @0)))
2870 /* Similarly with ^ instead of - though in that case with :c. */
2871 (simplify
2872 (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
2873 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2874 (if (INTEGRAL_TYPE_P (type)
2875 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2876 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2877 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2878 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2879 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2880 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2881 (cond (cmp @2 @3) @1 @0))))
2882
2883 /* Simplifications of shift and rotates. */
2884
2885 (for rotate (lrotate rrotate)
2886 (simplify
2887 (rotate integer_all_onesp@0 @1)
2888 @0))
2889
2890 /* Optimize -1 >> x for arithmetic right shifts. */
2891 (simplify
2892 (rshift integer_all_onesp@0 @1)
2893 (if (!TYPE_UNSIGNED (type)
2894 && tree_expr_nonnegative_p (@1))
2895 @0))
2896
2897 /* Optimize (x >> c) << c into x & (-1<<c). */
2898 (simplify
2899 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2900 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2901 /* It doesn't matter if the right shift is arithmetic or logical. */
2902 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2903
2904 (simplify
2905 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2906 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2907 /* Allow intermediate conversion to integral type with whatever sign, as
2908 long as the low TYPE_PRECISION (type)
2909 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
2910 && INTEGRAL_TYPE_P (type)
2911 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2912 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2913 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2914 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2915 || wi::geu_p (wi::to_wide (@1),
2916 TYPE_PRECISION (type)
2917 - TYPE_PRECISION (TREE_TYPE (@2)))))
2918 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2919
2920 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2921 types. */
2922 (simplify
2923 (rshift (lshift @0 INTEGER_CST@1) @1)
2924 (if (TYPE_UNSIGNED (type)
2925 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2926 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2927
2928 /* Optimize x >> x into 0 */
2929 (simplify
2930 (rshift @0 @0)
2931 { build_zero_cst (type); })
2932
2933 (for shiftrotate (lrotate rrotate lshift rshift)
2934 (simplify
2935 (shiftrotate @0 integer_zerop)
2936 (non_lvalue @0))
2937 (simplify
2938 (shiftrotate integer_zerop@0 @1)
2939 @0)
2940 /* Prefer vector1 << scalar to vector1 << vector2
2941 if vector2 is uniform. */
2942 (for vec (VECTOR_CST CONSTRUCTOR)
2943 (simplify
2944 (shiftrotate @0 vec@1)
2945 (with { tree tem = uniform_vector_p (@1); }
2946 (if (tem)
2947 (shiftrotate @0 { tem; }))))))
2948
2949 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2950 Y is 0. Similarly for X >> Y. */
2951 #if GIMPLE
2952 (for shift (lshift rshift)
2953 (simplify
2954 (shift @0 SSA_NAME@1)
2955 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2956 (with {
2957 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2958 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2959 }
2960 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2961 @0)))))
2962 #endif
2963
2964 /* Rewrite an LROTATE_EXPR by a constant into an
2965 RROTATE_EXPR by a new constant. */
2966 (simplify
2967 (lrotate @0 INTEGER_CST@1)
2968 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2969 build_int_cst (TREE_TYPE (@1),
2970 element_precision (type)), @1); }))
2971
2972 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2973 (for op (lrotate rrotate rshift lshift)
2974 (simplify
2975 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2976 (with { unsigned int prec = element_precision (type); }
2977 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2978 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2979 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2980 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2981 (with { unsigned int low = (tree_to_uhwi (@1)
2982 + tree_to_uhwi (@2)); }
2983 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2984 being well defined. */
2985 (if (low >= prec)
2986 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2987 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2988 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2989 { build_zero_cst (type); }
2990 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2991 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2992
2993
2994 /* ((1 << A) & 1) != 0 -> A == 0
2995 ((1 << A) & 1) == 0 -> A != 0 */
2996 (for cmp (ne eq)
2997 icmp (eq ne)
2998 (simplify
2999 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
3000 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
3001
3002 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3003 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3004 if CST2 != 0. */
3005 (for cmp (ne eq)
3006 (simplify
3007 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3008 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3009 (if (cand < 0
3010 || (!integer_zerop (@2)
3011 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3012 { constant_boolean_node (cmp == NE_EXPR, type); }
3013 (if (!integer_zerop (@2)
3014 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3015 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3016
3017 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3018 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3019 if the new mask might be further optimized. */
3020 (for shift (lshift rshift)
3021 (simplify
3022 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3023 INTEGER_CST@2)
3024 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3025 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3026 && tree_fits_uhwi_p (@1)
3027 && tree_to_uhwi (@1) > 0
3028 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3029 (with
3030 {
3031 unsigned int shiftc = tree_to_uhwi (@1);
3032 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3033 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3034 tree shift_type = TREE_TYPE (@3);
3035 unsigned int prec;
3036
3037 if (shift == LSHIFT_EXPR)
3038 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3039 else if (shift == RSHIFT_EXPR
3040 && type_has_mode_precision_p (shift_type))
3041 {
3042 prec = TYPE_PRECISION (TREE_TYPE (@3));
3043 tree arg00 = @0;
3044 /* See if more bits can be proven as zero because of
3045 zero extension. */
3046 if (@3 != @0
3047 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3048 {
3049 tree inner_type = TREE_TYPE (@0);
3050 if (type_has_mode_precision_p (inner_type)
3051 && TYPE_PRECISION (inner_type) < prec)
3052 {
3053 prec = TYPE_PRECISION (inner_type);
3054 /* See if we can shorten the right shift. */
3055 if (shiftc < prec)
3056 shift_type = inner_type;
3057 /* Otherwise X >> C1 is all zeros, so we'll optimize
3058 it into (X, 0) later on by making sure zerobits
3059 is all ones. */
3060 }
3061 }
3062 zerobits = HOST_WIDE_INT_M1U;
3063 if (shiftc < prec)
3064 {
3065 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3066 zerobits <<= prec - shiftc;
3067 }
3068 /* For arithmetic shift if sign bit could be set, zerobits
3069 can contain actually sign bits, so no transformation is
3070 possible, unless MASK masks them all away. In that
3071 case the shift needs to be converted into logical shift. */
3072 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3073 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3074 {
3075 if ((mask & zerobits) == 0)
3076 shift_type = unsigned_type_for (TREE_TYPE (@3));
3077 else
3078 zerobits = 0;
3079 }
3080 }
3081 }
3082 /* ((X << 16) & 0xff00) is (X, 0). */
3083 (if ((mask & zerobits) == mask)
3084 { build_int_cst (type, 0); }
3085 (with { newmask = mask | zerobits; }
3086 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3087 (with
3088 {
3089 /* Only do the transformation if NEWMASK is some integer
3090 mode's mask. */
3091 for (prec = BITS_PER_UNIT;
3092 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3093 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3094 break;
3095 }
3096 (if (prec < HOST_BITS_PER_WIDE_INT
3097 || newmask == HOST_WIDE_INT_M1U)
3098 (with
3099 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3100 (if (!tree_int_cst_equal (newmaskt, @2))
3101 (if (shift_type != TREE_TYPE (@3))
3102 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3103 (bit_and @4 { newmaskt; })))))))))))))
3104
3105 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3106 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3107 (for shift (lshift rshift)
3108 (for bit_op (bit_and bit_xor bit_ior)
3109 (simplify
3110 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3111 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3112 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3113 (bit_op (shift (convert @0) @1) { mask; }))))))
3114
3115 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3116 (simplify
3117 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3118 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3119 && (element_precision (TREE_TYPE (@0))
3120 <= element_precision (TREE_TYPE (@1))
3121 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3122 (with
3123 { tree shift_type = TREE_TYPE (@0); }
3124 (convert (rshift (convert:shift_type @1) @2)))))
3125
3126 /* ~(~X >>r Y) -> X >>r Y
3127 ~(~X <<r Y) -> X <<r Y */
3128 (for rotate (lrotate rrotate)
3129 (simplify
3130 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3131 (if ((element_precision (TREE_TYPE (@0))
3132 <= element_precision (TREE_TYPE (@1))
3133 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3134 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3135 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3136 (with
3137 { tree rotate_type = TREE_TYPE (@0); }
3138 (convert (rotate (convert:rotate_type @1) @2))))))
3139
3140 /* Simplifications of conversions. */
3141
3142 /* Basic strip-useless-type-conversions / strip_nops. */
3143 (for cvt (convert view_convert float fix_trunc)
3144 (simplify
3145 (cvt @0)
3146 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3147 || (GENERIC && type == TREE_TYPE (@0)))
3148 @0)))
3149
3150 /* Contract view-conversions. */
3151 (simplify
3152 (view_convert (view_convert @0))
3153 (view_convert @0))
3154
3155 /* For integral conversions with the same precision or pointer
3156 conversions use a NOP_EXPR instead. */
3157 (simplify
3158 (view_convert @0)
3159 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3160 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3161 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3162 (convert @0)))
3163
3164 /* Strip inner integral conversions that do not change precision or size, or
3165 zero-extend while keeping the same size (for bool-to-char). */
3166 (simplify
3167 (view_convert (convert@0 @1))
3168 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3169 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3170 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3171 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3172 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3173 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3174 (view_convert @1)))
3175
3176 /* Simplify a view-converted empty constructor. */
3177 (simplify
3178 (view_convert CONSTRUCTOR@0)
3179 (if (TREE_CODE (@0) != SSA_NAME
3180 && CONSTRUCTOR_NELTS (@0) == 0)
3181 { build_zero_cst (type); }))
3182
3183 /* Re-association barriers around constants and other re-association
3184 barriers can be removed. */
3185 (simplify
3186 (paren CONSTANT_CLASS_P@0)
3187 @0)
3188 (simplify
3189 (paren (paren@1 @0))
3190 @1)
3191
3192 /* Handle cases of two conversions in a row. */
3193 (for ocvt (convert float fix_trunc)
3194 (for icvt (convert float)
3195 (simplify
3196 (ocvt (icvt@1 @0))
3197 (with
3198 {
3199 tree inside_type = TREE_TYPE (@0);
3200 tree inter_type = TREE_TYPE (@1);
3201 int inside_int = INTEGRAL_TYPE_P (inside_type);
3202 int inside_ptr = POINTER_TYPE_P (inside_type);
3203 int inside_float = FLOAT_TYPE_P (inside_type);
3204 int inside_vec = VECTOR_TYPE_P (inside_type);
3205 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3206 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3207 int inter_int = INTEGRAL_TYPE_P (inter_type);
3208 int inter_ptr = POINTER_TYPE_P (inter_type);
3209 int inter_float = FLOAT_TYPE_P (inter_type);
3210 int inter_vec = VECTOR_TYPE_P (inter_type);
3211 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3212 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3213 int final_int = INTEGRAL_TYPE_P (type);
3214 int final_ptr = POINTER_TYPE_P (type);
3215 int final_float = FLOAT_TYPE_P (type);
3216 int final_vec = VECTOR_TYPE_P (type);
3217 unsigned int final_prec = TYPE_PRECISION (type);
3218 int final_unsignedp = TYPE_UNSIGNED (type);
3219 }
3220 (switch
3221 /* In addition to the cases of two conversions in a row
3222 handled below, if we are converting something to its own
3223 type via an object of identical or wider precision, neither
3224 conversion is needed. */
3225 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3226 || (GENERIC
3227 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3228 && (((inter_int || inter_ptr) && final_int)
3229 || (inter_float && final_float))
3230 && inter_prec >= final_prec)
3231 (ocvt @0))
3232
3233 /* Likewise, if the intermediate and initial types are either both
3234 float or both integer, we don't need the middle conversion if the
3235 former is wider than the latter and doesn't change the signedness
3236 (for integers). Avoid this if the final type is a pointer since
3237 then we sometimes need the middle conversion. */
3238 (if (((inter_int && inside_int) || (inter_float && inside_float))
3239 && (final_int || final_float)
3240 && inter_prec >= inside_prec
3241 && (inter_float || inter_unsignedp == inside_unsignedp))
3242 (ocvt @0))
3243
3244 /* If we have a sign-extension of a zero-extended value, we can
3245 replace that by a single zero-extension. Likewise if the
3246 final conversion does not change precision we can drop the
3247 intermediate conversion. */
3248 (if (inside_int && inter_int && final_int
3249 && ((inside_prec < inter_prec && inter_prec < final_prec
3250 && inside_unsignedp && !inter_unsignedp)
3251 || final_prec == inter_prec))
3252 (ocvt @0))
3253
3254 /* Two conversions in a row are not needed unless:
3255 - some conversion is floating-point (overstrict for now), or
3256 - some conversion is a vector (overstrict for now), or
3257 - the intermediate type is narrower than both initial and
3258 final, or
3259 - the intermediate type and innermost type differ in signedness,
3260 and the outermost type is wider than the intermediate, or
3261 - the initial type is a pointer type and the precisions of the
3262 intermediate and final types differ, or
3263 - the final type is a pointer type and the precisions of the
3264 initial and intermediate types differ. */
3265 (if (! inside_float && ! inter_float && ! final_float
3266 && ! inside_vec && ! inter_vec && ! final_vec
3267 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3268 && ! (inside_int && inter_int
3269 && inter_unsignedp != inside_unsignedp
3270 && inter_prec < final_prec)
3271 && ((inter_unsignedp && inter_prec > inside_prec)
3272 == (final_unsignedp && final_prec > inter_prec))
3273 && ! (inside_ptr && inter_prec != final_prec)
3274 && ! (final_ptr && inside_prec != inter_prec))
3275 (ocvt @0))
3276
3277 /* A truncation to an unsigned type (a zero-extension) should be
3278 canonicalized as bitwise and of a mask. */
3279 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3280 && final_int && inter_int && inside_int
3281 && final_prec == inside_prec
3282 && final_prec > inter_prec
3283 && inter_unsignedp)
3284 (convert (bit_and @0 { wide_int_to_tree
3285 (inside_type,
3286 wi::mask (inter_prec, false,
3287 TYPE_PRECISION (inside_type))); })))
3288
3289 /* If we are converting an integer to a floating-point that can
3290 represent it exactly and back to an integer, we can skip the
3291 floating-point conversion. */
3292 (if (GIMPLE /* PR66211 */
3293 && inside_int && inter_float && final_int &&
3294 (unsigned) significand_size (TYPE_MODE (inter_type))
3295 >= inside_prec - !inside_unsignedp)
3296 (convert @0)))))))
3297
3298 /* If we have a narrowing conversion to an integral type that is fed by a
3299 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3300 masks off bits outside the final type (and nothing else). */
3301 (simplify
3302 (convert (bit_and @0 INTEGER_CST@1))
3303 (if (INTEGRAL_TYPE_P (type)
3304 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3305 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3306 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3307 TYPE_PRECISION (type)), 0))
3308 (convert @0)))
3309
3310
3311 /* (X /[ex] A) * A -> X. */
3312 (simplify
3313 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3314 (convert @0))
3315
3316 /* Simplify (A / B) * B + (A % B) -> A. */
3317 (for div (trunc_div ceil_div floor_div round_div)
3318 mod (trunc_mod ceil_mod floor_mod round_mod)
3319 (simplify
3320 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3321 @0))
3322
3323 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3324 (for op (plus minus)
3325 (simplify
3326 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3327 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3328 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3329 (with
3330 {
3331 wi::overflow_type overflow;
3332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3333 TYPE_SIGN (type), &overflow);
3334 }
3335 (if (types_match (type, TREE_TYPE (@2))
3336 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3337 (op @0 { wide_int_to_tree (type, mul); })
3338 (with { tree utype = unsigned_type_for (type); }
3339 (convert (op (convert:utype @0)
3340 (mult (convert:utype @1) (convert:utype @2))))))))))
3341
3342 /* Canonicalization of binary operations. */
3343
3344 /* Convert X + -C into X - C. */
3345 (simplify
3346 (plus @0 REAL_CST@1)
3347 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3348 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3349 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3350 (minus @0 { tem; })))))
3351
3352 /* Convert x+x into x*2. */
3353 (simplify
3354 (plus @0 @0)
3355 (if (SCALAR_FLOAT_TYPE_P (type))
3356 (mult @0 { build_real (type, dconst2); })
3357 (if (INTEGRAL_TYPE_P (type))
3358 (mult @0 { build_int_cst (type, 2); }))))
3359
3360 /* 0 - X -> -X. */
3361 (simplify
3362 (minus integer_zerop @1)
3363 (negate @1))
3364 (simplify
3365 (pointer_diff integer_zerop @1)
3366 (negate (convert @1)))
3367
3368 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3369 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3370 (-ARG1 + ARG0) reduces to -ARG1. */
3371 (simplify
3372 (minus real_zerop@0 @1)
3373 (if (fold_real_zero_addition_p (type, @0, 0))
3374 (negate @1)))
3375
3376 /* Transform x * -1 into -x. */
3377 (simplify
3378 (mult @0 integer_minus_onep)
3379 (negate @0))
3380
3381 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3382 signed overflow for CST != 0 && CST != -1. */
3383 (simplify
3384 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3385 (if (TREE_CODE (@2) != INTEGER_CST
3386 && single_use (@3)
3387 && !integer_zerop (@1) && !integer_minus_onep (@1))
3388 (mult (mult @0 @2) @1)))
3389
3390 /* True if we can easily extract the real and imaginary parts of a complex
3391 number. */
3392 (match compositional_complex
3393 (convert? (complex @0 @1)))
3394
3395 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3396 (simplify
3397 (complex (realpart @0) (imagpart @0))
3398 @0)
3399 (simplify
3400 (realpart (complex @0 @1))
3401 @0)
3402 (simplify
3403 (imagpart (complex @0 @1))
3404 @1)
3405
3406 /* Sometimes we only care about half of a complex expression. */
3407 (simplify
3408 (realpart (convert?:s (conj:s @0)))
3409 (convert (realpart @0)))
3410 (simplify
3411 (imagpart (convert?:s (conj:s @0)))
3412 (convert (negate (imagpart @0))))
3413 (for part (realpart imagpart)
3414 (for op (plus minus)
3415 (simplify
3416 (part (convert?:s@2 (op:s @0 @1)))
3417 (convert (op (part @0) (part @1))))))
3418 (simplify
3419 (realpart (convert?:s (CEXPI:s @0)))
3420 (convert (COS @0)))
3421 (simplify
3422 (imagpart (convert?:s (CEXPI:s @0)))
3423 (convert (SIN @0)))
3424
3425 /* conj(conj(x)) -> x */
3426 (simplify
3427 (conj (convert? (conj @0)))
3428 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3429 (convert @0)))
3430
3431 /* conj({x,y}) -> {x,-y} */
3432 (simplify
3433 (conj (convert?:s (complex:s @0 @1)))
3434 (with { tree itype = TREE_TYPE (type); }
3435 (complex (convert:itype @0) (negate (convert:itype @1)))))
3436
3437 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3438 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3439 (simplify
3440 (bswap (bswap @0))
3441 @0)
3442 (simplify
3443 (bswap (bit_not (bswap @0)))
3444 (bit_not @0))
3445 (for bitop (bit_xor bit_ior bit_and)
3446 (simplify
3447 (bswap (bitop:c (bswap @0) @1))
3448 (bitop @0 (bswap @1)))))
3449
3450
3451 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3452
3453 /* Simplify constant conditions.
3454 Only optimize constant conditions when the selected branch
3455 has the same type as the COND_EXPR. This avoids optimizing
3456 away "c ? x : throw", where the throw has a void type.
3457 Note that we cannot throw away the fold-const.c variant nor
3458 this one as we depend on doing this transform before possibly
3459 A ? B : B -> B triggers and the fold-const.c one can optimize
3460 0 ? A : B to B even if A has side-effects. Something
3461 genmatch cannot handle. */
3462 (simplify
3463 (cond INTEGER_CST@0 @1 @2)
3464 (if (integer_zerop (@0))
3465 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3466 @2)
3467 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3468 @1)))
3469 (simplify
3470 (vec_cond VECTOR_CST@0 @1 @2)
3471 (if (integer_all_onesp (@0))
3472 @1
3473 (if (integer_zerop (@0))
3474 @2)))
3475
3476 #if GIMPLE
3477 /* Sink unary operations to branches, but only if we do fold both. */
3478 (for op (negate bit_not abs absu)
3479 (simplify
3480 (op (vec_cond:s @0 @1 @2))
3481 (vec_cond @0 (op! @1) (op! @2))))
3482
3483 /* Sink binary operation to branches, but only if we can fold it. */
3484 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
3485 rdiv trunc_div ceil_div floor_div round_div
3486 trunc_mod ceil_mod floor_mod round_mod min max)
3487 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
3488 (simplify
3489 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
3490 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
3491
3492 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
3493 (simplify
3494 (op (vec_cond:s @0 @1 @2) @3)
3495 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
3496 (simplify
3497 (op @3 (vec_cond:s @0 @1 @2))
3498 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
3499 #endif
3500
3501 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
3502 Currently disabled after pass lvec because ARM understands
3503 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
3504 (simplify
3505 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
3506 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3507 (vec_cond (bit_and @0 @3) @1 @2)))
3508 (simplify
3509 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
3510 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3511 (vec_cond (bit_ior @0 @3) @1 @2)))
3512 (simplify
3513 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
3514 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3515 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
3516 (simplify
3517 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
3518 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3519 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
3520
3521 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
3522 (simplify
3523 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
3524 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3525 (vec_cond (bit_and @0 @1) @2 @3)))
3526 (simplify
3527 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
3528 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3529 (vec_cond (bit_ior @0 @1) @2 @3)))
3530 (simplify
3531 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
3532 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3533 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
3534 (simplify
3535 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
3536 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3537 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
3538
3539 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
3540 types are compatible. */
3541 (simplify
3542 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
3543 (if (VECTOR_BOOLEAN_TYPE_P (type)
3544 && types_match (type, TREE_TYPE (@0)))
3545 (if (integer_zerop (@1) && integer_all_onesp (@2))
3546 (bit_not @0)
3547 (if (integer_all_onesp (@1) && integer_zerop (@2))
3548 @0))))
3549
3550 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3551 be extended. */
3552 /* This pattern implements two kinds simplification:
3553
3554 Case 1)
3555 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3556 1) Conversions are type widening from smaller type.
3557 2) Const c1 equals to c2 after canonicalizing comparison.
3558 3) Comparison has tree code LT, LE, GT or GE.
3559 This specific pattern is needed when (cmp (convert x) c) may not
3560 be simplified by comparison patterns because of multiple uses of
3561 x. It also makes sense here because simplifying across multiple
3562 referred var is always benefitial for complicated cases.
3563
3564 Case 2)
3565 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3566 (for cmp (lt le gt ge eq)
3567 (simplify
3568 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3569 (with
3570 {
3571 tree from_type = TREE_TYPE (@1);
3572 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3573 enum tree_code code = ERROR_MARK;
3574
3575 if (INTEGRAL_TYPE_P (from_type)
3576 && int_fits_type_p (@2, from_type)
3577 && (types_match (c1_type, from_type)
3578 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3579 && (TYPE_UNSIGNED (from_type)
3580 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3581 && (types_match (c2_type, from_type)
3582 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3583 && (TYPE_UNSIGNED (from_type)
3584 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3585 {
3586 if (cmp != EQ_EXPR)
3587 {
3588 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3589 {
3590 /* X <= Y - 1 equals to X < Y. */
3591 if (cmp == LE_EXPR)
3592 code = LT_EXPR;
3593 /* X > Y - 1 equals to X >= Y. */
3594 if (cmp == GT_EXPR)
3595 code = GE_EXPR;
3596 }
3597 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3598 {
3599 /* X < Y + 1 equals to X <= Y. */
3600 if (cmp == LT_EXPR)
3601 code = LE_EXPR;
3602 /* X >= Y + 1 equals to X > Y. */
3603 if (cmp == GE_EXPR)
3604 code = GT_EXPR;
3605 }
3606 if (code != ERROR_MARK
3607 || wi::to_widest (@2) == wi::to_widest (@3))
3608 {
3609 if (cmp == LT_EXPR || cmp == LE_EXPR)
3610 code = MIN_EXPR;
3611 if (cmp == GT_EXPR || cmp == GE_EXPR)
3612 code = MAX_EXPR;
3613 }
3614 }
3615 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3616 else if (int_fits_type_p (@3, from_type))
3617 code = EQ_EXPR;
3618 }
3619 }
3620 (if (code == MAX_EXPR)
3621 (convert (max @1 (convert @2)))
3622 (if (code == MIN_EXPR)
3623 (convert (min @1 (convert @2)))
3624 (if (code == EQ_EXPR)
3625 (convert (cond (eq @1 (convert @3))
3626 (convert:from_type @3) (convert:from_type @2)))))))))
3627
3628 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3629
3630 1) OP is PLUS or MINUS.
3631 2) CMP is LT, LE, GT or GE.
3632 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3633
3634 This pattern also handles special cases like:
3635
3636 A) Operand x is a unsigned to signed type conversion and c1 is
3637 integer zero. In this case,
3638 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3639 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3640 B) Const c1 may not equal to (C3 op' C2). In this case we also
3641 check equality for (c1+1) and (c1-1) by adjusting comparison
3642 code.
3643
3644 TODO: Though signed type is handled by this pattern, it cannot be
3645 simplified at the moment because C standard requires additional
3646 type promotion. In order to match&simplify it here, the IR needs
3647 to be cleaned up by other optimizers, i.e, VRP. */
3648 (for op (plus minus)
3649 (for cmp (lt le gt ge)
3650 (simplify
3651 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3652 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3653 (if (types_match (from_type, to_type)
3654 /* Check if it is special case A). */
3655 || (TYPE_UNSIGNED (from_type)
3656 && !TYPE_UNSIGNED (to_type)
3657 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3658 && integer_zerop (@1)
3659 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3660 (with
3661 {
3662 wi::overflow_type overflow = wi::OVF_NONE;
3663 enum tree_code code, cmp_code = cmp;
3664 wide_int real_c1;
3665 wide_int c1 = wi::to_wide (@1);
3666 wide_int c2 = wi::to_wide (@2);
3667 wide_int c3 = wi::to_wide (@3);
3668 signop sgn = TYPE_SIGN (from_type);
3669
3670 /* Handle special case A), given x of unsigned type:
3671 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3672 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3673 if (!types_match (from_type, to_type))
3674 {
3675 if (cmp_code == LT_EXPR)
3676 cmp_code = GT_EXPR;
3677 if (cmp_code == GE_EXPR)
3678 cmp_code = LE_EXPR;
3679 c1 = wi::max_value (to_type);
3680 }
3681 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3682 compute (c3 op' c2) and check if it equals to c1 with op' being
3683 the inverted operator of op. Make sure overflow doesn't happen
3684 if it is undefined. */
3685 if (op == PLUS_EXPR)
3686 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3687 else
3688 real_c1 = wi::add (c3, c2, sgn, &overflow);
3689
3690 code = cmp_code;
3691 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3692 {
3693 /* Check if c1 equals to real_c1. Boundary condition is handled
3694 by adjusting comparison operation if necessary. */
3695 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3696 && !overflow)
3697 {
3698 /* X <= Y - 1 equals to X < Y. */
3699 if (cmp_code == LE_EXPR)
3700 code = LT_EXPR;
3701 /* X > Y - 1 equals to X >= Y. */
3702 if (cmp_code == GT_EXPR)
3703 code = GE_EXPR;
3704 }
3705 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3706 && !overflow)
3707 {
3708 /* X < Y + 1 equals to X <= Y. */
3709 if (cmp_code == LT_EXPR)
3710 code = LE_EXPR;
3711 /* X >= Y + 1 equals to X > Y. */
3712 if (cmp_code == GE_EXPR)
3713 code = GT_EXPR;
3714 }
3715 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3716 {
3717 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3718 code = MIN_EXPR;
3719 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3720 code = MAX_EXPR;
3721 }
3722 }
3723 }
3724 (if (code == MAX_EXPR)
3725 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3726 { wide_int_to_tree (from_type, c2); })
3727 (if (code == MIN_EXPR)
3728 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3729 { wide_int_to_tree (from_type, c2); })))))))))
3730
3731 (for cnd (cond vec_cond)
3732 /* A ? B : (A ? X : C) -> A ? B : C. */
3733 (simplify
3734 (cnd @0 (cnd @0 @1 @2) @3)
3735 (cnd @0 @1 @3))
3736 (simplify
3737 (cnd @0 @1 (cnd @0 @2 @3))
3738 (cnd @0 @1 @3))
3739 /* A ? B : (!A ? C : X) -> A ? B : C. */
3740 /* ??? This matches embedded conditions open-coded because genmatch
3741 would generate matching code for conditions in separate stmts only.
3742 The following is still important to merge then and else arm cases
3743 from if-conversion. */
3744 (simplify
3745 (cnd @0 @1 (cnd @2 @3 @4))
3746 (if (inverse_conditions_p (@0, @2))
3747 (cnd @0 @1 @3)))
3748 (simplify
3749 (cnd @0 (cnd @1 @2 @3) @4)
3750 (if (inverse_conditions_p (@0, @1))
3751 (cnd @0 @3 @4)))
3752
3753 /* A ? B : B -> B. */
3754 (simplify
3755 (cnd @0 @1 @1)
3756 @1)
3757
3758 /* !A ? B : C -> A ? C : B. */
3759 (simplify
3760 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3761 (cnd @0 @2 @1)))
3762
3763 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3764 return all -1 or all 0 results. */
3765 /* ??? We could instead convert all instances of the vec_cond to negate,
3766 but that isn't necessarily a win on its own. */
3767 (simplify
3768 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3769 (if (VECTOR_TYPE_P (type)
3770 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3771 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3772 && (TYPE_MODE (TREE_TYPE (type))
3773 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3774 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3775
3776 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3777 (simplify
3778 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3779 (if (VECTOR_TYPE_P (type)
3780 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3781 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3782 && (TYPE_MODE (TREE_TYPE (type))
3783 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3784 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3785
3786
3787 /* Simplifications of comparisons. */
3788
3789 /* See if we can reduce the magnitude of a constant involved in a
3790 comparison by changing the comparison code. This is a canonicalization
3791 formerly done by maybe_canonicalize_comparison_1. */
3792 (for cmp (le gt)
3793 acmp (lt ge)
3794 (simplify
3795 (cmp @0 uniform_integer_cst_p@1)
3796 (with { tree cst = uniform_integer_cst_p (@1); }
3797 (if (tree_int_cst_sgn (cst) == -1)
3798 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3799 wide_int_to_tree (TREE_TYPE (cst),
3800 wi::to_wide (cst)
3801 + 1)); })))))
3802 (for cmp (ge lt)
3803 acmp (gt le)
3804 (simplify
3805 (cmp @0 uniform_integer_cst_p@1)
3806 (with { tree cst = uniform_integer_cst_p (@1); }
3807 (if (tree_int_cst_sgn (cst) == 1)
3808 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3809 wide_int_to_tree (TREE_TYPE (cst),
3810 wi::to_wide (cst) - 1)); })))))
3811
3812 /* We can simplify a logical negation of a comparison to the
3813 inverted comparison. As we cannot compute an expression
3814 operator using invert_tree_comparison we have to simulate
3815 that with expression code iteration. */
3816 (for cmp (tcc_comparison)
3817 icmp (inverted_tcc_comparison)
3818 ncmp (inverted_tcc_comparison_with_nans)
3819 /* Ideally we'd like to combine the following two patterns
3820 and handle some more cases by using
3821 (logical_inverted_value (cmp @0 @1))
3822 here but for that genmatch would need to "inline" that.
3823 For now implement what forward_propagate_comparison did. */
3824 (simplify
3825 (bit_not (cmp @0 @1))
3826 (if (VECTOR_TYPE_P (type)
3827 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3828 /* Comparison inversion may be impossible for trapping math,
3829 invert_tree_comparison will tell us. But we can't use
3830 a computed operator in the replacement tree thus we have
3831 to play the trick below. */
3832 (with { enum tree_code ic = invert_tree_comparison
3833 (cmp, HONOR_NANS (@0)); }
3834 (if (ic == icmp)
3835 (icmp @0 @1)
3836 (if (ic == ncmp)
3837 (ncmp @0 @1))))))
3838 (simplify
3839 (bit_xor (cmp @0 @1) integer_truep)
3840 (with { enum tree_code ic = invert_tree_comparison
3841 (cmp, HONOR_NANS (@0)); }
3842 (if (ic == icmp)
3843 (icmp @0 @1)
3844 (if (ic == ncmp)
3845 (ncmp @0 @1))))))
3846
3847 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3848 ??? The transformation is valid for the other operators if overflow
3849 is undefined for the type, but performing it here badly interacts
3850 with the transformation in fold_cond_expr_with_comparison which
3851 attempts to synthetize ABS_EXPR. */
3852 (for cmp (eq ne)
3853 (for sub (minus pointer_diff)
3854 (simplify
3855 (cmp (sub@2 @0 @1) integer_zerop)
3856 (if (single_use (@2))
3857 (cmp @0 @1)))))
3858
3859 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3860 signed arithmetic case. That form is created by the compiler
3861 often enough for folding it to be of value. One example is in
3862 computing loop trip counts after Operator Strength Reduction. */
3863 (for cmp (simple_comparison)
3864 scmp (swapped_simple_comparison)
3865 (simplify
3866 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3867 /* Handle unfolded multiplication by zero. */
3868 (if (integer_zerop (@1))
3869 (cmp @1 @2)
3870 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3871 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3872 && single_use (@3))
3873 /* If @1 is negative we swap the sense of the comparison. */
3874 (if (tree_int_cst_sgn (@1) < 0)
3875 (scmp @0 @2)
3876 (cmp @0 @2))))))
3877
3878 /* For integral types with undefined overflow fold
3879 x * C1 == C2 into x == C2 / C1 or false.
3880 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
3881 Z / 2^n Z. */
3882 (for cmp (eq ne)
3883 (simplify
3884 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
3885 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3886 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3887 && wi::to_wide (@1) != 0)
3888 (with { widest_int quot; }
3889 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
3890 TYPE_SIGN (TREE_TYPE (@0)), &quot))
3891 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
3892 { constant_boolean_node (cmp == NE_EXPR, type); }))
3893 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3894 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3895 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
3896 (cmp @0
3897 {
3898 tree itype = TREE_TYPE (@0);
3899 int p = TYPE_PRECISION (itype);
3900 wide_int m = wi::one (p + 1) << p;
3901 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
3902 wide_int i = wide_int::from (wi::mod_inv (a, m),
3903 p, TYPE_SIGN (itype));
3904 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
3905 })))))
3906
3907 /* Simplify comparison of something with itself. For IEEE
3908 floating-point, we can only do some of these simplifications. */
3909 (for cmp (eq ge le)
3910 (simplify
3911 (cmp @0 @0)
3912 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3913 || ! HONOR_NANS (@0))
3914 { constant_boolean_node (true, type); }
3915 (if (cmp != EQ_EXPR)
3916 (eq @0 @0)))))
3917 (for cmp (ne gt lt)
3918 (simplify
3919 (cmp @0 @0)
3920 (if (cmp != NE_EXPR
3921 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3922 || ! HONOR_NANS (@0))
3923 { constant_boolean_node (false, type); })))
3924 (for cmp (unle unge uneq)
3925 (simplify
3926 (cmp @0 @0)
3927 { constant_boolean_node (true, type); }))
3928 (for cmp (unlt ungt)
3929 (simplify
3930 (cmp @0 @0)
3931 (unordered @0 @0)))
3932 (simplify
3933 (ltgt @0 @0)
3934 (if (!flag_trapping_math)
3935 { constant_boolean_node (false, type); }))
3936
3937 /* Fold ~X op ~Y as Y op X. */
3938 (for cmp (simple_comparison)
3939 (simplify
3940 (cmp (bit_not@2 @0) (bit_not@3 @1))
3941 (if (single_use (@2) && single_use (@3))
3942 (cmp @1 @0))))
3943
3944 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3945 (for cmp (simple_comparison)
3946 scmp (swapped_simple_comparison)
3947 (simplify
3948 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3949 (if (single_use (@2)
3950 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3951 (scmp @0 (bit_not @1)))))
3952
3953 (for cmp (simple_comparison)
3954 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3955 (simplify
3956 (cmp (convert@2 @0) (convert? @1))
3957 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3958 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3959 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3960 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3961 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3962 (with
3963 {
3964 tree type1 = TREE_TYPE (@1);
3965 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3966 {
3967 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3968 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3969 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3970 type1 = float_type_node;
3971 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3972 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3973 type1 = double_type_node;
3974 }
3975 tree newtype
3976 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3977 ? TREE_TYPE (@0) : type1);
3978 }
3979 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3980 (cmp (convert:newtype @0) (convert:newtype @1))))))
3981
3982 (simplify
3983 (cmp @0 REAL_CST@1)
3984 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3985 (switch
3986 /* a CMP (-0) -> a CMP 0 */
3987 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3988 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3989 /* x != NaN is always true, other ops are always false. */
3990 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3991 && ! HONOR_SNANS (@1))
3992 { constant_boolean_node (cmp == NE_EXPR, type); })
3993 /* Fold comparisons against infinity. */
3994 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3995 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3996 (with
3997 {
3998 REAL_VALUE_TYPE max;
3999 enum tree_code code = cmp;
4000 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
4001 if (neg)
4002 code = swap_tree_comparison (code);
4003 }
4004 (switch
4005 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
4006 (if (code == GT_EXPR
4007 && !(HONOR_NANS (@0) && flag_trapping_math))
4008 { constant_boolean_node (false, type); })
4009 (if (code == LE_EXPR)
4010 /* x <= +Inf is always true, if we don't care about NaNs. */
4011 (if (! HONOR_NANS (@0))
4012 { constant_boolean_node (true, type); }
4013 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
4014 an "invalid" exception. */
4015 (if (!flag_trapping_math)
4016 (eq @0 @0))))
4017 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
4018 for == this introduces an exception for x a NaN. */
4019 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
4020 || code == GE_EXPR)
4021 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4022 (if (neg)
4023 (lt @0 { build_real (TREE_TYPE (@0), max); })
4024 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
4025 /* x < +Inf is always equal to x <= DBL_MAX. */
4026 (if (code == LT_EXPR)
4027 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4028 (if (neg)
4029 (ge @0 { build_real (TREE_TYPE (@0), max); })
4030 (le @0 { build_real (TREE_TYPE (@0), max); }))))
4031 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
4032 an exception for x a NaN so use an unordered comparison. */
4033 (if (code == NE_EXPR)
4034 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4035 (if (! HONOR_NANS (@0))
4036 (if (neg)
4037 (ge @0 { build_real (TREE_TYPE (@0), max); })
4038 (le @0 { build_real (TREE_TYPE (@0), max); }))
4039 (if (neg)
4040 (unge @0 { build_real (TREE_TYPE (@0), max); })
4041 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
4042
4043 /* If this is a comparison of a real constant with a PLUS_EXPR
4044 or a MINUS_EXPR of a real constant, we can convert it into a
4045 comparison with a revised real constant as long as no overflow
4046 occurs when unsafe_math_optimizations are enabled. */
4047 (if (flag_unsafe_math_optimizations)
4048 (for op (plus minus)
4049 (simplify
4050 (cmp (op @0 REAL_CST@1) REAL_CST@2)
4051 (with
4052 {
4053 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
4054 TREE_TYPE (@1), @2, @1);
4055 }
4056 (if (tem && !TREE_OVERFLOW (tem))
4057 (cmp @0 { tem; }))))))
4058
4059 /* Likewise, we can simplify a comparison of a real constant with
4060 a MINUS_EXPR whose first operand is also a real constant, i.e.
4061 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
4062 floating-point types only if -fassociative-math is set. */
4063 (if (flag_associative_math)
4064 (simplify
4065 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
4066 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
4067 (if (tem && !TREE_OVERFLOW (tem))
4068 (cmp { tem; } @1)))))
4069
4070 /* Fold comparisons against built-in math functions. */
4071 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
4072 (for sq (SQRT)
4073 (simplify
4074 (cmp (sq @0) REAL_CST@1)
4075 (switch
4076 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4077 (switch
4078 /* sqrt(x) < y is always false, if y is negative. */
4079 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
4080 { constant_boolean_node (false, type); })
4081 /* sqrt(x) > y is always true, if y is negative and we
4082 don't care about NaNs, i.e. negative values of x. */
4083 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
4084 { constant_boolean_node (true, type); })
4085 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4086 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
4087 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
4088 (switch
4089 /* sqrt(x) < 0 is always false. */
4090 (if (cmp == LT_EXPR)
4091 { constant_boolean_node (false, type); })
4092 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
4093 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
4094 { constant_boolean_node (true, type); })
4095 /* sqrt(x) <= 0 -> x == 0. */
4096 (if (cmp == LE_EXPR)
4097 (eq @0 @1))
4098 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
4099 == or !=. In the last case:
4100
4101 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
4102
4103 if x is negative or NaN. Due to -funsafe-math-optimizations,
4104 the results for other x follow from natural arithmetic. */
4105 (cmp @0 @1)))
4106 (if ((cmp == LT_EXPR
4107 || cmp == LE_EXPR
4108 || cmp == GT_EXPR
4109 || cmp == GE_EXPR)
4110 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4111 /* Give up for -frounding-math. */
4112 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
4113 (with
4114 {
4115 REAL_VALUE_TYPE c2;
4116 enum tree_code ncmp = cmp;
4117 const real_format *fmt
4118 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
4119 real_arithmetic (&c2, MULT_EXPR,
4120 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
4121 real_convert (&c2, fmt, &c2);
4122 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
4123 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
4124 if (!REAL_VALUE_ISINF (c2))
4125 {
4126 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4127 build_real (TREE_TYPE (@0), c2));
4128 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4129 ncmp = ERROR_MARK;
4130 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
4131 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
4132 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
4133 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
4134 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
4135 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
4136 else
4137 {
4138 /* With rounding to even, sqrt of up to 3 different values
4139 gives the same normal result, so in some cases c2 needs
4140 to be adjusted. */
4141 REAL_VALUE_TYPE c2alt, tow;
4142 if (cmp == LT_EXPR || cmp == GE_EXPR)
4143 tow = dconst0;
4144 else
4145 real_inf (&tow);
4146 real_nextafter (&c2alt, fmt, &c2, &tow);
4147 real_convert (&c2alt, fmt, &c2alt);
4148 if (REAL_VALUE_ISINF (c2alt))
4149 ncmp = ERROR_MARK;
4150 else
4151 {
4152 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4153 build_real (TREE_TYPE (@0), c2alt));
4154 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4155 ncmp = ERROR_MARK;
4156 else if (real_equal (&TREE_REAL_CST (c3),
4157 &TREE_REAL_CST (@1)))
4158 c2 = c2alt;
4159 }
4160 }
4161 }
4162 }
4163 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4164 (if (REAL_VALUE_ISINF (c2))
4165 /* sqrt(x) > y is x == +Inf, when y is very large. */
4166 (if (HONOR_INFINITIES (@0))
4167 (eq @0 { build_real (TREE_TYPE (@0), c2); })
4168 { constant_boolean_node (false, type); })
4169 /* sqrt(x) > c is the same as x > c*c. */
4170 (if (ncmp != ERROR_MARK)
4171 (if (ncmp == GE_EXPR)
4172 (ge @0 { build_real (TREE_TYPE (@0), c2); })
4173 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4174 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
4175 (if (REAL_VALUE_ISINF (c2))
4176 (switch
4177 /* sqrt(x) < y is always true, when y is a very large
4178 value and we don't care about NaNs or Infinities. */
4179 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4180 { constant_boolean_node (true, type); })
4181 /* sqrt(x) < y is x != +Inf when y is very large and we
4182 don't care about NaNs. */
4183 (if (! HONOR_NANS (@0))
4184 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4185 /* sqrt(x) < y is x >= 0 when y is very large and we
4186 don't care about Infinities. */
4187 (if (! HONOR_INFINITIES (@0))
4188 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4189 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4190 (if (GENERIC)
4191 (truth_andif
4192 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4193 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
4194 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4195 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
4196 (if (ncmp == LT_EXPR)
4197 (lt @0 { build_real (TREE_TYPE (@0), c2); })
4198 (le @0 { build_real (TREE_TYPE (@0), c2); }))
4199 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4200 (if (ncmp != ERROR_MARK && GENERIC)
4201 (if (ncmp == LT_EXPR)
4202 (truth_andif
4203 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4204 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
4205 (truth_andif
4206 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4207 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
4208 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
4209 (simplify
4210 (cmp (sq @0) (sq @1))
4211 (if (! HONOR_NANS (@0))
4212 (cmp @0 @1))))))
4213
4214 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
4215 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
4216 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
4217 (simplify
4218 (cmp (float@0 @1) (float @2))
4219 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
4220 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4221 (with
4222 {
4223 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
4224 tree type1 = TREE_TYPE (@1);
4225 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
4226 tree type2 = TREE_TYPE (@2);
4227 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
4228 }
4229 (if (fmt.can_represent_integral_type_p (type1)
4230 && fmt.can_represent_integral_type_p (type2))
4231 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
4232 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
4233 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
4234 && type1_signed_p >= type2_signed_p)
4235 (icmp @1 (convert @2))
4236 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
4237 && type1_signed_p <= type2_signed_p)
4238 (icmp (convert:type2 @1) @2)
4239 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4240 && type1_signed_p == type2_signed_p)
4241 (icmp @1 @2))))))))))
4242
4243 /* Optimize various special cases of (FTYPE) N CMP CST. */
4244 (for cmp (lt le eq ne ge gt)
4245 icmp (le le eq ne ge ge)
4246 (simplify
4247 (cmp (float @0) REAL_CST@1)
4248 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4249 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4250 (with
4251 {
4252 tree itype = TREE_TYPE (@0);
4253 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4254 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4255 /* Be careful to preserve any potential exceptions due to
4256 NaNs. qNaNs are ok in == or != context.
4257 TODO: relax under -fno-trapping-math or
4258 -fno-signaling-nans. */
4259 bool exception_p
4260 = real_isnan (cst) && (cst->signalling
4261 || (cmp != EQ_EXPR && cmp != NE_EXPR));
4262 }
4263 /* TODO: allow non-fitting itype and SNaNs when
4264 -fno-trapping-math. */
4265 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4266 (with
4267 {
4268 signop isign = TYPE_SIGN (itype);
4269 REAL_VALUE_TYPE imin, imax;
4270 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4271 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4272
4273 REAL_VALUE_TYPE icst;
4274 if (cmp == GT_EXPR || cmp == GE_EXPR)
4275 real_ceil (&icst, fmt, cst);
4276 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4277 real_floor (&icst, fmt, cst);
4278 else
4279 real_trunc (&icst, fmt, cst);
4280
4281 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4282
4283 bool overflow_p = false;
4284 wide_int icst_val
4285 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4286 }
4287 (switch
4288 /* Optimize cases when CST is outside of ITYPE's range. */
4289 (if (real_compare (LT_EXPR, cst, &imin))
4290 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4291 type); })
4292 (if (real_compare (GT_EXPR, cst, &imax))
4293 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4294 type); })
4295 /* Remove cast if CST is an integer representable by ITYPE. */
4296 (if (cst_int_p)
4297 (cmp @0 { gcc_assert (!overflow_p);
4298 wide_int_to_tree (itype, icst_val); })
4299 )
4300 /* When CST is fractional, optimize
4301 (FTYPE) N == CST -> 0
4302 (FTYPE) N != CST -> 1. */
4303 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4304 { constant_boolean_node (cmp == NE_EXPR, type); })
4305 /* Otherwise replace with sensible integer constant. */
4306 (with
4307 {
4308 gcc_checking_assert (!overflow_p);
4309 }
4310 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4311
4312 /* Fold A /[ex] B CMP C to A CMP B * C. */
4313 (for cmp (eq ne)
4314 (simplify
4315 (cmp (exact_div @0 @1) INTEGER_CST@2)
4316 (if (!integer_zerop (@1))
4317 (if (wi::to_wide (@2) == 0)
4318 (cmp @0 @2)
4319 (if (TREE_CODE (@1) == INTEGER_CST)
4320 (with
4321 {
4322 wi::overflow_type ovf;
4323 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4324 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4325 }
4326 (if (ovf)
4327 { constant_boolean_node (cmp == NE_EXPR, type); }
4328 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4329 (for cmp (lt le gt ge)
4330 (simplify
4331 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4332 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4333 (with
4334 {
4335 wi::overflow_type ovf;
4336 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4337 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4338 }
4339 (if (ovf)
4340 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4341 TYPE_SIGN (TREE_TYPE (@2)))
4342 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4343 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4344
4345 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4346
4347 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4348 For large C (more than min/B+2^size), this is also true, with the
4349 multiplication computed modulo 2^size.
4350 For intermediate C, this just tests the sign of A. */
4351 (for cmp (lt le gt ge)
4352 cmp2 (ge ge lt lt)
4353 (simplify
4354 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4355 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4356 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4357 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4358 (with
4359 {
4360 tree utype = TREE_TYPE (@2);
4361 wide_int denom = wi::to_wide (@1);
4362 wide_int right = wi::to_wide (@2);
4363 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4364 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4365 bool small = wi::leu_p (right, smax);
4366 bool large = wi::geu_p (right, smin);
4367 }
4368 (if (small || large)
4369 (cmp (convert:utype @0) (mult @2 (convert @1)))
4370 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4371
4372 /* Unordered tests if either argument is a NaN. */
4373 (simplify
4374 (bit_ior (unordered @0 @0) (unordered @1 @1))
4375 (if (types_match (@0, @1))
4376 (unordered @0 @1)))
4377 (simplify
4378 (bit_and (ordered @0 @0) (ordered @1 @1))
4379 (if (types_match (@0, @1))
4380 (ordered @0 @1)))
4381 (simplify
4382 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4383 @2)
4384 (simplify
4385 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4386 @2)
4387
4388 /* Simple range test simplifications. */
4389 /* A < B || A >= B -> true. */
4390 (for test1 (lt le le le ne ge)
4391 test2 (ge gt ge ne eq ne)
4392 (simplify
4393 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4394 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4395 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4396 { constant_boolean_node (true, type); })))
4397 /* A < B && A >= B -> false. */
4398 (for test1 (lt lt lt le ne eq)
4399 test2 (ge gt eq gt eq gt)
4400 (simplify
4401 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4402 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4403 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4404 { constant_boolean_node (false, type); })))
4405
4406 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4407 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4408
4409 Note that comparisons
4410 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4411 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4412 will be canonicalized to above so there's no need to
4413 consider them here.
4414 */
4415
4416 (for cmp (le gt)
4417 eqcmp (eq ne)
4418 (simplify
4419 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4420 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4421 (with
4422 {
4423 tree ty = TREE_TYPE (@0);
4424 unsigned prec = TYPE_PRECISION (ty);
4425 wide_int mask = wi::to_wide (@2, prec);
4426 wide_int rhs = wi::to_wide (@3, prec);
4427 signop sgn = TYPE_SIGN (ty);
4428 }
4429 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4430 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4431 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4432 { build_zero_cst (ty); }))))))
4433
4434 /* -A CMP -B -> B CMP A. */
4435 (for cmp (tcc_comparison)
4436 scmp (swapped_tcc_comparison)
4437 (simplify
4438 (cmp (negate @0) (negate @1))
4439 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4440 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4441 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4442 (scmp @0 @1)))
4443 (simplify
4444 (cmp (negate @0) CONSTANT_CLASS_P@1)
4445 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4446 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4447 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4448 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4449 (if (tem && !TREE_OVERFLOW (tem))
4450 (scmp @0 { tem; }))))))
4451
4452 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4453 (for op (eq ne)
4454 (simplify
4455 (op (abs @0) zerop@1)
4456 (op @0 @1)))
4457
4458 /* From fold_sign_changed_comparison and fold_widened_comparison.
4459 FIXME: the lack of symmetry is disturbing. */
4460 (for cmp (simple_comparison)
4461 (simplify
4462 (cmp (convert@0 @00) (convert?@1 @10))
4463 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4464 /* Disable this optimization if we're casting a function pointer
4465 type on targets that require function pointer canonicalization. */
4466 && !(targetm.have_canonicalize_funcptr_for_compare ()
4467 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4468 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4469 || (POINTER_TYPE_P (TREE_TYPE (@10))
4470 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4471 && single_use (@0))
4472 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4473 && (TREE_CODE (@10) == INTEGER_CST
4474 || @1 != @10)
4475 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4476 || cmp == NE_EXPR
4477 || cmp == EQ_EXPR)
4478 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4479 /* ??? The special-casing of INTEGER_CST conversion was in the original
4480 code and here to avoid a spurious overflow flag on the resulting
4481 constant which fold_convert produces. */
4482 (if (TREE_CODE (@1) == INTEGER_CST)
4483 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4484 TREE_OVERFLOW (@1)); })
4485 (cmp @00 (convert @1)))
4486
4487 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4488 /* If possible, express the comparison in the shorter mode. */
4489 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4490 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4491 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4492 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4493 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4494 || ((TYPE_PRECISION (TREE_TYPE (@00))
4495 >= TYPE_PRECISION (TREE_TYPE (@10)))
4496 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4497 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4498 || (TREE_CODE (@10) == INTEGER_CST
4499 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4500 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4501 (cmp @00 (convert @10))
4502 (if (TREE_CODE (@10) == INTEGER_CST
4503 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4504 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4505 (with
4506 {
4507 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4508 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4509 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4510 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4511 }
4512 (if (above || below)
4513 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4514 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4515 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4516 { constant_boolean_node (above ? true : false, type); }
4517 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4518 { constant_boolean_node (above ? false : true, type); }))))))))))))
4519
4520 (for cmp (eq ne)
4521 (simplify
4522 /* SSA names are canonicalized to 2nd place. */
4523 (cmp addr@0 SSA_NAME@1)
4524 (with
4525 { poly_int64 off; tree base; }
4526 /* A local variable can never be pointed to by
4527 the default SSA name of an incoming parameter. */
4528 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4529 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
4530 && (base = get_base_address (TREE_OPERAND (@0, 0)))
4531 && TREE_CODE (base) == VAR_DECL
4532 && auto_var_in_fn_p (base, current_function_decl))
4533 (if (cmp == NE_EXPR)
4534 { constant_boolean_node (true, type); }
4535 { constant_boolean_node (false, type); })
4536 /* If the address is based on @1 decide using the offset. */
4537 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
4538 && TREE_CODE (base) == MEM_REF
4539 && TREE_OPERAND (base, 0) == @1)
4540 (with { off += mem_ref_offset (base).force_shwi (); }
4541 (if (known_ne (off, 0))
4542 { constant_boolean_node (cmp == NE_EXPR, type); }
4543 (if (known_eq (off, 0))
4544 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
4545
4546 /* Equality compare simplifications from fold_binary */
4547 (for cmp (eq ne)
4548
4549 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4550 Similarly for NE_EXPR. */
4551 (simplify
4552 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4553 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4554 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4555 { constant_boolean_node (cmp == NE_EXPR, type); }))
4556
4557 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4558 (simplify
4559 (cmp (bit_xor @0 @1) integer_zerop)
4560 (cmp @0 @1))
4561
4562 /* (X ^ Y) == Y becomes X == 0.
4563 Likewise (X ^ Y) == X becomes Y == 0. */
4564 (simplify
4565 (cmp:c (bit_xor:c @0 @1) @0)
4566 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4567
4568 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4569 (simplify
4570 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4571 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4572 (cmp @0 (bit_xor @1 (convert @2)))))
4573
4574 (simplify
4575 (cmp (convert? addr@0) integer_zerop)
4576 (if (tree_single_nonzero_warnv_p (@0, NULL))
4577 { constant_boolean_node (cmp == NE_EXPR, type); }))
4578
4579 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
4580 (simplify
4581 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
4582 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
4583
4584 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
4585 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
4586 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
4587 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
4588 (for cmp (eq ne)
4589 ncmp (ge lt)
4590 (for sgncmp (ge lt)
4591 (simplify
4592 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
4593 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4594 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4595 && types_match (@0, @1))
4596 (ncmp (bit_xor @0 @1) @2)))))
4597 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
4598 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
4599 (for cmp (eq ne)
4600 ncmp (lt ge)
4601 (simplify
4602 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
4603 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4604 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4605 && types_match (@0, @1))
4606 (ncmp (bit_xor @0 @1) @2))))
4607
4608 /* If we have (A & C) == C where C is a power of 2, convert this into
4609 (A & C) != 0. Similarly for NE_EXPR. */
4610 (for cmp (eq ne)
4611 icmp (ne eq)
4612 (simplify
4613 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4614 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4615
4616 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4617 convert this into a shift followed by ANDing with D. */
4618 (simplify
4619 (cond
4620 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4621 INTEGER_CST@2 integer_zerop)
4622 (if (integer_pow2p (@2))
4623 (with {
4624 int shift = (wi::exact_log2 (wi::to_wide (@2))
4625 - wi::exact_log2 (wi::to_wide (@1)));
4626 }
4627 (if (shift > 0)
4628 (bit_and
4629 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4630 (bit_and
4631 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4632 @2)))))
4633
4634 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4635 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4636 (for cmp (eq ne)
4637 ncmp (ge lt)
4638 (simplify
4639 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4640 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4641 && type_has_mode_precision_p (TREE_TYPE (@0))
4642 && element_precision (@2) >= element_precision (@0)
4643 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4644 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4645 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4646
4647 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4648 this into a right shift or sign extension followed by ANDing with C. */
4649 (simplify
4650 (cond
4651 (lt @0 integer_zerop)
4652 INTEGER_CST@1 integer_zerop)
4653 (if (integer_pow2p (@1)
4654 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4655 (with {
4656 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4657 }
4658 (if (shift >= 0)
4659 (bit_and
4660 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4661 @1)
4662 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4663 sign extension followed by AND with C will achieve the effect. */
4664 (bit_and (convert @0) @1)))))
4665
4666 /* When the addresses are not directly of decls compare base and offset.
4667 This implements some remaining parts of fold_comparison address
4668 comparisons but still no complete part of it. Still it is good
4669 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4670 (for cmp (simple_comparison)
4671 (simplify
4672 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4673 (with
4674 {
4675 poly_int64 off0, off1;
4676 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4677 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4678 if (base0 && TREE_CODE (base0) == MEM_REF)
4679 {
4680 off0 += mem_ref_offset (base0).force_shwi ();
4681 base0 = TREE_OPERAND (base0, 0);
4682 }
4683 if (base1 && TREE_CODE (base1) == MEM_REF)
4684 {
4685 off1 += mem_ref_offset (base1).force_shwi ();
4686 base1 = TREE_OPERAND (base1, 0);
4687 }
4688 }
4689 (if (base0 && base1)
4690 (with
4691 {
4692 int equal = 2;
4693 /* Punt in GENERIC on variables with value expressions;
4694 the value expressions might point to fields/elements
4695 of other vars etc. */
4696 if (GENERIC
4697 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4698 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4699 ;
4700 else if (decl_in_symtab_p (base0)
4701 && decl_in_symtab_p (base1))
4702 equal = symtab_node::get_create (base0)
4703 ->equal_address_to (symtab_node::get_create (base1));
4704 else if ((DECL_P (base0)
4705 || TREE_CODE (base0) == SSA_NAME
4706 || TREE_CODE (base0) == STRING_CST)
4707 && (DECL_P (base1)
4708 || TREE_CODE (base1) == SSA_NAME
4709 || TREE_CODE (base1) == STRING_CST))
4710 equal = (base0 == base1);
4711 if (equal == 0)
4712 {
4713 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4714 off0.is_constant (&ioff0);
4715 off1.is_constant (&ioff1);
4716 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4717 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4718 || (TREE_CODE (base0) == STRING_CST
4719 && TREE_CODE (base1) == STRING_CST
4720 && ioff0 >= 0 && ioff1 >= 0
4721 && ioff0 < TREE_STRING_LENGTH (base0)
4722 && ioff1 < TREE_STRING_LENGTH (base1)
4723 /* This is a too conservative test that the STRING_CSTs
4724 will not end up being string-merged. */
4725 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4726 TREE_STRING_POINTER (base1) + ioff1,
4727 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4728 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4729 ;
4730 else if (!DECL_P (base0) || !DECL_P (base1))
4731 equal = 2;
4732 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4733 equal = 2;
4734 /* If this is a pointer comparison, ignore for now even
4735 valid equalities where one pointer is the offset zero
4736 of one object and the other to one past end of another one. */
4737 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4738 ;
4739 /* Assume that automatic variables can't be adjacent to global
4740 variables. */
4741 else if (is_global_var (base0) != is_global_var (base1))
4742 ;
4743 else
4744 {
4745 tree sz0 = DECL_SIZE_UNIT (base0);
4746 tree sz1 = DECL_SIZE_UNIT (base1);
4747 /* If sizes are unknown, e.g. VLA or not representable,
4748 punt. */
4749 if (!tree_fits_poly_int64_p (sz0)
4750 || !tree_fits_poly_int64_p (sz1))
4751 equal = 2;
4752 else
4753 {
4754 poly_int64 size0 = tree_to_poly_int64 (sz0);
4755 poly_int64 size1 = tree_to_poly_int64 (sz1);
4756 /* If one offset is pointing (or could be) to the beginning
4757 of one object and the other is pointing to one past the
4758 last byte of the other object, punt. */
4759 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4760 equal = 2;
4761 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4762 equal = 2;
4763 /* If both offsets are the same, there are some cases
4764 we know that are ok. Either if we know they aren't
4765 zero, or if we know both sizes are no zero. */
4766 if (equal == 2
4767 && known_eq (off0, off1)
4768 && (known_ne (off0, 0)
4769 || (known_ne (size0, 0) && known_ne (size1, 0))))
4770 equal = 0;
4771 }
4772 }
4773 }
4774 }
4775 (if (equal == 1
4776 && (cmp == EQ_EXPR || cmp == NE_EXPR
4777 /* If the offsets are equal we can ignore overflow. */
4778 || known_eq (off0, off1)
4779 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4780 /* Or if we compare using pointers to decls or strings. */
4781 || (POINTER_TYPE_P (TREE_TYPE (@2))
4782 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4783 (switch
4784 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4785 { constant_boolean_node (known_eq (off0, off1), type); })
4786 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4787 { constant_boolean_node (known_ne (off0, off1), type); })
4788 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4789 { constant_boolean_node (known_lt (off0, off1), type); })
4790 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4791 { constant_boolean_node (known_le (off0, off1), type); })
4792 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4793 { constant_boolean_node (known_ge (off0, off1), type); })
4794 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4795 { constant_boolean_node (known_gt (off0, off1), type); }))
4796 (if (equal == 0)
4797 (switch
4798 (if (cmp == EQ_EXPR)
4799 { constant_boolean_node (false, type); })
4800 (if (cmp == NE_EXPR)
4801 { constant_boolean_node (true, type); })))))))))
4802
4803 /* Simplify pointer equality compares using PTA. */
4804 (for neeq (ne eq)
4805 (simplify
4806 (neeq @0 @1)
4807 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4808 && ptrs_compare_unequal (@0, @1))
4809 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4810
4811 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4812 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4813 Disable the transform if either operand is pointer to function.
4814 This broke pr22051-2.c for arm where function pointer
4815 canonicalizaion is not wanted. */
4816
4817 (for cmp (ne eq)
4818 (simplify
4819 (cmp (convert @0) INTEGER_CST@1)
4820 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4821 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4822 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4823 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4824 && POINTER_TYPE_P (TREE_TYPE (@1))
4825 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4826 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4827 (cmp @0 (convert @1)))))
4828
4829 /* Non-equality compare simplifications from fold_binary */
4830 (for cmp (lt gt le ge)
4831 /* Comparisons with the highest or lowest possible integer of
4832 the specified precision will have known values. */
4833 (simplify
4834 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4835 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4836 || POINTER_TYPE_P (TREE_TYPE (@1))
4837 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4838 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4839 (with
4840 {
4841 tree cst = uniform_integer_cst_p (@1);
4842 tree arg1_type = TREE_TYPE (cst);
4843 unsigned int prec = TYPE_PRECISION (arg1_type);
4844 wide_int max = wi::max_value (arg1_type);
4845 wide_int signed_max = wi::max_value (prec, SIGNED);
4846 wide_int min = wi::min_value (arg1_type);
4847 }
4848 (switch
4849 (if (wi::to_wide (cst) == max)
4850 (switch
4851 (if (cmp == GT_EXPR)
4852 { constant_boolean_node (false, type); })
4853 (if (cmp == GE_EXPR)
4854 (eq @2 @1))
4855 (if (cmp == LE_EXPR)
4856 { constant_boolean_node (true, type); })
4857 (if (cmp == LT_EXPR)
4858 (ne @2 @1))))
4859 (if (wi::to_wide (cst) == min)
4860 (switch
4861 (if (cmp == LT_EXPR)
4862 { constant_boolean_node (false, type); })
4863 (if (cmp == LE_EXPR)
4864 (eq @2 @1))
4865 (if (cmp == GE_EXPR)
4866 { constant_boolean_node (true, type); })
4867 (if (cmp == GT_EXPR)
4868 (ne @2 @1))))
4869 (if (wi::to_wide (cst) == max - 1)
4870 (switch
4871 (if (cmp == GT_EXPR)
4872 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4873 wide_int_to_tree (TREE_TYPE (cst),
4874 wi::to_wide (cst)
4875 + 1)); }))
4876 (if (cmp == LE_EXPR)
4877 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4878 wide_int_to_tree (TREE_TYPE (cst),
4879 wi::to_wide (cst)
4880 + 1)); }))))
4881 (if (wi::to_wide (cst) == min + 1)
4882 (switch
4883 (if (cmp == GE_EXPR)
4884 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4885 wide_int_to_tree (TREE_TYPE (cst),
4886 wi::to_wide (cst)
4887 - 1)); }))
4888 (if (cmp == LT_EXPR)
4889 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4890 wide_int_to_tree (TREE_TYPE (cst),
4891 wi::to_wide (cst)
4892 - 1)); }))))
4893 (if (wi::to_wide (cst) == signed_max
4894 && TYPE_UNSIGNED (arg1_type)
4895 /* We will flip the signedness of the comparison operator
4896 associated with the mode of @1, so the sign bit is
4897 specified by this mode. Check that @1 is the signed
4898 max associated with this sign bit. */
4899 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4900 /* signed_type does not work on pointer types. */
4901 && INTEGRAL_TYPE_P (arg1_type))
4902 /* The following case also applies to X < signed_max+1
4903 and X >= signed_max+1 because previous transformations. */
4904 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4905 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4906 (switch
4907 (if (cst == @1 && cmp == LE_EXPR)
4908 (ge (convert:st @0) { build_zero_cst (st); }))
4909 (if (cst == @1 && cmp == GT_EXPR)
4910 (lt (convert:st @0) { build_zero_cst (st); }))
4911 (if (cmp == LE_EXPR)
4912 (ge (view_convert:st @0) { build_zero_cst (st); }))
4913 (if (cmp == GT_EXPR)
4914 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4915
4916 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4917 /* If the second operand is NaN, the result is constant. */
4918 (simplify
4919 (cmp @0 REAL_CST@1)
4920 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4921 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4922 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4923 ? false : true, type); })))
4924
4925 /* bool_var != 0 becomes bool_var. */
4926 (simplify
4927 (ne @0 integer_zerop)
4928 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4929 && types_match (type, TREE_TYPE (@0)))
4930 (non_lvalue @0)))
4931 /* bool_var == 1 becomes bool_var. */
4932 (simplify
4933 (eq @0 integer_onep)
4934 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4935 && types_match (type, TREE_TYPE (@0)))
4936 (non_lvalue @0)))
4937 /* Do not handle
4938 bool_var == 0 becomes !bool_var or
4939 bool_var != 1 becomes !bool_var
4940 here because that only is good in assignment context as long
4941 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4942 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4943 clearly less optimal and which we'll transform again in forwprop. */
4944
4945 /* When one argument is a constant, overflow detection can be simplified.
4946 Currently restricted to single use so as not to interfere too much with
4947 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4948 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
4949 (for cmp (lt le ge gt)
4950 out (gt gt le le)
4951 (simplify
4952 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
4953 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
4954 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
4955 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
4956 && wi::to_wide (@1) != 0
4957 && single_use (@2))
4958 (with {
4959 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
4960 signop sign = TYPE_SIGN (TREE_TYPE (@0));
4961 }
4962 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4963 wi::max_value (prec, sign)
4964 - wi::to_wide (@1)); })))))
4965
4966 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4967 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4968 expects the long form, so we restrict the transformation for now. */
4969 (for cmp (gt le)
4970 (simplify
4971 (cmp:c (minus@2 @0 @1) @0)
4972 (if (single_use (@2)
4973 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4974 && TYPE_UNSIGNED (TREE_TYPE (@0)))
4975 (cmp @1 @0))))
4976
4977 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
4978 (for cmp (ge lt)
4979 (simplify
4980 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
4981 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4982 && TYPE_UNSIGNED (TREE_TYPE (@0)))
4983 (cmp @1 @0))))
4984
4985 /* Testing for overflow is unnecessary if we already know the result. */
4986 /* A - B > A */
4987 (for cmp (gt le)
4988 out (ne eq)
4989 (simplify
4990 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4991 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4992 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4993 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4994 /* A + B < A */
4995 (for cmp (lt ge)
4996 out (ne eq)
4997 (simplify
4998 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4999 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5000 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5001 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5002
5003 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
5004 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
5005 (for cmp (lt ge)
5006 out (ne eq)
5007 (simplify
5008 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
5009 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
5010 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5011 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5012
5013 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
5014 is at least twice as wide as type of A and B, simplify to
5015 __builtin_mul_overflow (A, B, <unused>). */
5016 (for cmp (eq ne)
5017 (simplify
5018 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
5019 integer_zerop)
5020 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5021 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5022 && TYPE_UNSIGNED (TREE_TYPE (@0))
5023 && (TYPE_PRECISION (TREE_TYPE (@3))
5024 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
5025 && tree_fits_uhwi_p (@2)
5026 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
5027 && types_match (@0, @1)
5028 && type_has_mode_precision_p (TREE_TYPE (@0))
5029 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
5030 != CODE_FOR_nothing))
5031 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5032 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5033
5034 /* Simplification of math builtins. These rules must all be optimizations
5035 as well as IL simplifications. If there is a possibility that the new
5036 form could be a pessimization, the rule should go in the canonicalization
5037 section that follows this one.
5038
5039 Rules can generally go in this section if they satisfy one of
5040 the following:
5041
5042 - the rule describes an identity
5043
5044 - the rule replaces calls with something as simple as addition or
5045 multiplication
5046
5047 - the rule contains unary calls only and simplifies the surrounding
5048 arithmetic. (The idea here is to exclude non-unary calls in which
5049 one operand is constant and in which the call is known to be cheap
5050 when the operand has that value.) */
5051
5052 (if (flag_unsafe_math_optimizations)
5053 /* Simplify sqrt(x) * sqrt(x) -> x. */
5054 (simplify
5055 (mult (SQRT_ALL@1 @0) @1)
5056 (if (!HONOR_SNANS (type))
5057 @0))
5058
5059 (for op (plus minus)
5060 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
5061 (simplify
5062 (op (rdiv @0 @1)
5063 (rdiv @2 @1))
5064 (rdiv (op @0 @2) @1)))
5065
5066 (for cmp (lt le gt ge)
5067 neg_cmp (gt ge lt le)
5068 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
5069 (simplify
5070 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
5071 (with
5072 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
5073 (if (tem
5074 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
5075 || (real_zerop (tem) && !real_zerop (@1))))
5076 (switch
5077 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
5078 (cmp @0 { tem; }))
5079 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
5080 (neg_cmp @0 { tem; })))))))
5081
5082 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
5083 (for root (SQRT CBRT)
5084 (simplify
5085 (mult (root:s @0) (root:s @1))
5086 (root (mult @0 @1))))
5087
5088 /* Simplify expN(x) * expN(y) -> expN(x+y). */
5089 (for exps (EXP EXP2 EXP10 POW10)
5090 (simplify
5091 (mult (exps:s @0) (exps:s @1))
5092 (exps (plus @0 @1))))
5093
5094 /* Simplify a/root(b/c) into a*root(c/b). */
5095 (for root (SQRT CBRT)
5096 (simplify
5097 (rdiv @0 (root:s (rdiv:s @1 @2)))
5098 (mult @0 (root (rdiv @2 @1)))))
5099
5100 /* Simplify x/expN(y) into x*expN(-y). */
5101 (for exps (EXP EXP2 EXP10 POW10)
5102 (simplify
5103 (rdiv @0 (exps:s @1))
5104 (mult @0 (exps (negate @1)))))
5105
5106 (for logs (LOG LOG2 LOG10 LOG10)
5107 exps (EXP EXP2 EXP10 POW10)
5108 /* logN(expN(x)) -> x. */
5109 (simplify
5110 (logs (exps @0))
5111 @0)
5112 /* expN(logN(x)) -> x. */
5113 (simplify
5114 (exps (logs @0))
5115 @0))
5116
5117 /* Optimize logN(func()) for various exponential functions. We
5118 want to determine the value "x" and the power "exponent" in
5119 order to transform logN(x**exponent) into exponent*logN(x). */
5120 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
5121 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
5122 (simplify
5123 (logs (exps @0))
5124 (if (SCALAR_FLOAT_TYPE_P (type))
5125 (with {
5126 tree x;
5127 switch (exps)
5128 {
5129 CASE_CFN_EXP:
5130 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
5131 x = build_real_truncate (type, dconst_e ());
5132 break;
5133 CASE_CFN_EXP2:
5134 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
5135 x = build_real (type, dconst2);
5136 break;
5137 CASE_CFN_EXP10:
5138 CASE_CFN_POW10:
5139 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
5140 {
5141 REAL_VALUE_TYPE dconst10;
5142 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
5143 x = build_real (type, dconst10);
5144 }
5145 break;
5146 default:
5147 gcc_unreachable ();
5148 }
5149 }
5150 (mult (logs { x; }) @0)))))
5151
5152 (for logs (LOG LOG
5153 LOG2 LOG2
5154 LOG10 LOG10)
5155 exps (SQRT CBRT)
5156 (simplify
5157 (logs (exps @0))
5158 (if (SCALAR_FLOAT_TYPE_P (type))
5159 (with {
5160 tree x;
5161 switch (exps)
5162 {
5163 CASE_CFN_SQRT:
5164 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
5165 x = build_real (type, dconsthalf);
5166 break;
5167 CASE_CFN_CBRT:
5168 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
5169 x = build_real_truncate (type, dconst_third ());
5170 break;
5171 default:
5172 gcc_unreachable ();
5173 }
5174 }
5175 (mult { x; } (logs @0))))))
5176
5177 /* logN(pow(x,exponent)) -> exponent*logN(x). */
5178 (for logs (LOG LOG2 LOG10)
5179 pows (POW)
5180 (simplify
5181 (logs (pows @0 @1))
5182 (mult @1 (logs @0))))
5183
5184 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5185 or if C is a positive power of 2,
5186 pow(C,x) -> exp2(log2(C)*x). */
5187 #if GIMPLE
5188 (for pows (POW)
5189 exps (EXP)
5190 logs (LOG)
5191 exp2s (EXP2)
5192 log2s (LOG2)
5193 (simplify
5194 (pows REAL_CST@0 @1)
5195 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5196 && real_isfinite (TREE_REAL_CST_PTR (@0))
5197 /* As libmvec doesn't have a vectorized exp2, defer optimizing
5198 the use_exp2 case until after vectorization. It seems actually
5199 beneficial for all constants to postpone this until later,
5200 because exp(log(C)*x), while faster, will have worse precision
5201 and if x folds into a constant too, that is unnecessary
5202 pessimization. */
5203 && canonicalize_math_after_vectorization_p ())
5204 (with {
5205 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
5206 bool use_exp2 = false;
5207 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
5208 && value->cl == rvc_normal)
5209 {
5210 REAL_VALUE_TYPE frac_rvt = *value;
5211 SET_REAL_EXP (&frac_rvt, 1);
5212 if (real_equal (&frac_rvt, &dconst1))
5213 use_exp2 = true;
5214 }
5215 }
5216 (if (!use_exp2)
5217 (if (optimize_pow_to_exp (@0, @1))
5218 (exps (mult (logs @0) @1)))
5219 (exp2s (mult (log2s @0) @1)))))))
5220 #endif
5221
5222 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
5223 (for pows (POW)
5224 exps (EXP EXP2 EXP10 POW10)
5225 logs (LOG LOG2 LOG10 LOG10)
5226 (simplify
5227 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
5228 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5229 && real_isfinite (TREE_REAL_CST_PTR (@0)))
5230 (exps (plus (mult (logs @0) @1) @2)))))
5231
5232 (for sqrts (SQRT)
5233 cbrts (CBRT)
5234 pows (POW)
5235 exps (EXP EXP2 EXP10 POW10)
5236 /* sqrt(expN(x)) -> expN(x*0.5). */
5237 (simplify
5238 (sqrts (exps @0))
5239 (exps (mult @0 { build_real (type, dconsthalf); })))
5240 /* cbrt(expN(x)) -> expN(x/3). */
5241 (simplify
5242 (cbrts (exps @0))
5243 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
5244 /* pow(expN(x), y) -> expN(x*y). */
5245 (simplify
5246 (pows (exps @0) @1)
5247 (exps (mult @0 @1))))
5248
5249 /* tan(atan(x)) -> x. */
5250 (for tans (TAN)
5251 atans (ATAN)
5252 (simplify
5253 (tans (atans @0))
5254 @0)))
5255
5256 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
5257 (for sins (SIN)
5258 atans (ATAN)
5259 sqrts (SQRT)
5260 copysigns (COPYSIGN)
5261 (simplify
5262 (sins (atans:s @0))
5263 (with
5264 {
5265 REAL_VALUE_TYPE r_cst;
5266 build_sinatan_real (&r_cst, type);
5267 tree t_cst = build_real (type, r_cst);
5268 tree t_one = build_one_cst (type);
5269 }
5270 (if (SCALAR_FLOAT_TYPE_P (type))
5271 (cond (lt (abs @0) { t_cst; })
5272 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
5273 (copysigns { t_one; } @0))))))
5274
5275 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
5276 (for coss (COS)
5277 atans (ATAN)
5278 sqrts (SQRT)
5279 copysigns (COPYSIGN)
5280 (simplify
5281 (coss (atans:s @0))
5282 (with
5283 {
5284 REAL_VALUE_TYPE r_cst;
5285 build_sinatan_real (&r_cst, type);
5286 tree t_cst = build_real (type, r_cst);
5287 tree t_one = build_one_cst (type);
5288 tree t_zero = build_zero_cst (type);
5289 }
5290 (if (SCALAR_FLOAT_TYPE_P (type))
5291 (cond (lt (abs @0) { t_cst; })
5292 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
5293 (copysigns { t_zero; } @0))))))
5294
5295 (if (!flag_errno_math)
5296 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
5297 (for sinhs (SINH)
5298 atanhs (ATANH)
5299 sqrts (SQRT)
5300 (simplify
5301 (sinhs (atanhs:s @0))
5302 (with { tree t_one = build_one_cst (type); }
5303 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5304
5305 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5306 (for coshs (COSH)
5307 atanhs (ATANH)
5308 sqrts (SQRT)
5309 (simplify
5310 (coshs (atanhs:s @0))
5311 (with { tree t_one = build_one_cst (type); }
5312 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5313
5314 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
5315 (simplify
5316 (CABS (complex:C @0 real_zerop@1))
5317 (abs @0))
5318
5319 /* trunc(trunc(x)) -> trunc(x), etc. */
5320 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5321 (simplify
5322 (fns (fns @0))
5323 (fns @0)))
5324 /* f(x) -> x if x is integer valued and f does nothing for such values. */
5325 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5326 (simplify
5327 (fns integer_valued_real_p@0)
5328 @0))
5329
5330 /* hypot(x,0) and hypot(0,x) -> abs(x). */
5331 (simplify
5332 (HYPOT:c @0 real_zerop@1)
5333 (abs @0))
5334
5335 /* pow(1,x) -> 1. */
5336 (simplify
5337 (POW real_onep@0 @1)
5338 @0)
5339
5340 (simplify
5341 /* copysign(x,x) -> x. */
5342 (COPYSIGN_ALL @0 @0)
5343 @0)
5344
5345 (simplify
5346 /* copysign(x,-x) -> -x. */
5347 (COPYSIGN_ALL @0 (negate@1 @0))
5348 @1)
5349
5350 (simplify
5351 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
5352 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5353 (abs @0))
5354
5355 (for scale (LDEXP SCALBN SCALBLN)
5356 /* ldexp(0, x) -> 0. */
5357 (simplify
5358 (scale real_zerop@0 @1)
5359 @0)
5360 /* ldexp(x, 0) -> x. */
5361 (simplify
5362 (scale @0 integer_zerop@1)
5363 @0)
5364 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
5365 (simplify
5366 (scale REAL_CST@0 @1)
5367 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5368 @0)))
5369
5370 /* Canonicalization of sequences of math builtins. These rules represent
5371 IL simplifications but are not necessarily optimizations.
5372
5373 The sincos pass is responsible for picking "optimal" implementations
5374 of math builtins, which may be more complicated and can sometimes go
5375 the other way, e.g. converting pow into a sequence of sqrts.
5376 We only want to do these canonicalizations before the pass has run. */
5377
5378 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5379 /* Simplify tan(x) * cos(x) -> sin(x). */
5380 (simplify
5381 (mult:c (TAN:s @0) (COS:s @0))
5382 (SIN @0))
5383
5384 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5385 (simplify
5386 (mult:c @0 (POW:s @0 REAL_CST@1))
5387 (if (!TREE_OVERFLOW (@1))
5388 (POW @0 (plus @1 { build_one_cst (type); }))))
5389
5390 /* Simplify sin(x) / cos(x) -> tan(x). */
5391 (simplify
5392 (rdiv (SIN:s @0) (COS:s @0))
5393 (TAN @0))
5394
5395 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5396 (simplify
5397 (rdiv (SINH:s @0) (COSH:s @0))
5398 (TANH @0))
5399
5400 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
5401 (simplify
5402 (rdiv (TANH:s @0) (SINH:s @0))
5403 (rdiv {build_one_cst (type);} (COSH @0)))
5404
5405 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5406 (simplify
5407 (rdiv (COS:s @0) (SIN:s @0))
5408 (rdiv { build_one_cst (type); } (TAN @0)))
5409
5410 /* Simplify sin(x) / tan(x) -> cos(x). */
5411 (simplify
5412 (rdiv (SIN:s @0) (TAN:s @0))
5413 (if (! HONOR_NANS (@0)
5414 && ! HONOR_INFINITIES (@0))
5415 (COS @0)))
5416
5417 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5418 (simplify
5419 (rdiv (TAN:s @0) (SIN:s @0))
5420 (if (! HONOR_NANS (@0)
5421 && ! HONOR_INFINITIES (@0))
5422 (rdiv { build_one_cst (type); } (COS @0))))
5423
5424 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5425 (simplify
5426 (mult (POW:s @0 @1) (POW:s @0 @2))
5427 (POW @0 (plus @1 @2)))
5428
5429 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5430 (simplify
5431 (mult (POW:s @0 @1) (POW:s @2 @1))
5432 (POW (mult @0 @2) @1))
5433
5434 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5435 (simplify
5436 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5437 (POWI (mult @0 @2) @1))
5438
5439 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5440 (simplify
5441 (rdiv (POW:s @0 REAL_CST@1) @0)
5442 (if (!TREE_OVERFLOW (@1))
5443 (POW @0 (minus @1 { build_one_cst (type); }))))
5444
5445 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5446 (simplify
5447 (rdiv @0 (POW:s @1 @2))
5448 (mult @0 (POW @1 (negate @2))))
5449
5450 (for sqrts (SQRT)
5451 cbrts (CBRT)
5452 pows (POW)
5453 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5454 (simplify
5455 (sqrts (sqrts @0))
5456 (pows @0 { build_real (type, dconst_quarter ()); }))
5457 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5458 (simplify
5459 (sqrts (cbrts @0))
5460 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5461 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5462 (simplify
5463 (cbrts (sqrts @0))
5464 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5465 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5466 (simplify
5467 (cbrts (cbrts tree_expr_nonnegative_p@0))
5468 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5469 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5470 (simplify
5471 (sqrts (pows @0 @1))
5472 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5473 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5474 (simplify
5475 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5476 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5477 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5478 (simplify
5479 (pows (sqrts @0) @1)
5480 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5481 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5482 (simplify
5483 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5484 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5485 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5486 (simplify
5487 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5488 (pows @0 (mult @1 @2))))
5489
5490 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5491 (simplify
5492 (CABS (complex @0 @0))
5493 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5494
5495 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5496 (simplify
5497 (HYPOT @0 @0)
5498 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5499
5500 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5501 (for cexps (CEXP)
5502 exps (EXP)
5503 cexpis (CEXPI)
5504 (simplify
5505 (cexps compositional_complex@0)
5506 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
5507 (complex
5508 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5509 (mult @1 (imagpart @2)))))))
5510
5511 (if (canonicalize_math_p ())
5512 /* floor(x) -> trunc(x) if x is nonnegative. */
5513 (for floors (FLOOR_ALL)
5514 truncs (TRUNC_ALL)
5515 (simplify
5516 (floors tree_expr_nonnegative_p@0)
5517 (truncs @0))))
5518
5519 (match double_value_p
5520 @0
5521 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5522 (for froms (BUILT_IN_TRUNCL
5523 BUILT_IN_FLOORL
5524 BUILT_IN_CEILL
5525 BUILT_IN_ROUNDL
5526 BUILT_IN_NEARBYINTL
5527 BUILT_IN_RINTL)
5528 tos (BUILT_IN_TRUNC
5529 BUILT_IN_FLOOR
5530 BUILT_IN_CEIL
5531 BUILT_IN_ROUND
5532 BUILT_IN_NEARBYINT
5533 BUILT_IN_RINT)
5534 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5535 (if (optimize && canonicalize_math_p ())
5536 (simplify
5537 (froms (convert double_value_p@0))
5538 (convert (tos @0)))))
5539
5540 (match float_value_p
5541 @0
5542 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5543 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5544 BUILT_IN_FLOORL BUILT_IN_FLOOR
5545 BUILT_IN_CEILL BUILT_IN_CEIL
5546 BUILT_IN_ROUNDL BUILT_IN_ROUND
5547 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5548 BUILT_IN_RINTL BUILT_IN_RINT)
5549 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5550 BUILT_IN_FLOORF BUILT_IN_FLOORF
5551 BUILT_IN_CEILF BUILT_IN_CEILF
5552 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5553 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5554 BUILT_IN_RINTF BUILT_IN_RINTF)
5555 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5556 if x is a float. */
5557 (if (optimize && canonicalize_math_p ()
5558 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
5559 (simplify
5560 (froms (convert float_value_p@0))
5561 (convert (tos @0)))))
5562
5563 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5564 tos (XFLOOR XCEIL XROUND XRINT)
5565 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5566 (if (optimize && canonicalize_math_p ())
5567 (simplify
5568 (froms (convert double_value_p@0))
5569 (tos @0))))
5570
5571 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5572 XFLOOR XCEIL XROUND XRINT)
5573 tos (XFLOORF XCEILF XROUNDF XRINTF)
5574 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5575 if x is a float. */
5576 (if (optimize && canonicalize_math_p ())
5577 (simplify
5578 (froms (convert float_value_p@0))
5579 (tos @0))))
5580
5581 (if (canonicalize_math_p ())
5582 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5583 (for floors (IFLOOR LFLOOR LLFLOOR)
5584 (simplify
5585 (floors tree_expr_nonnegative_p@0)
5586 (fix_trunc @0))))
5587
5588 (if (canonicalize_math_p ())
5589 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5590 (for fns (IFLOOR LFLOOR LLFLOOR
5591 ICEIL LCEIL LLCEIL
5592 IROUND LROUND LLROUND)
5593 (simplify
5594 (fns integer_valued_real_p@0)
5595 (fix_trunc @0)))
5596 (if (!flag_errno_math)
5597 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5598 (for rints (IRINT LRINT LLRINT)
5599 (simplify
5600 (rints integer_valued_real_p@0)
5601 (fix_trunc @0)))))
5602
5603 (if (canonicalize_math_p ())
5604 (for ifn (IFLOOR ICEIL IROUND IRINT)
5605 lfn (LFLOOR LCEIL LROUND LRINT)
5606 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5607 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5608 sizeof (int) == sizeof (long). */
5609 (if (TYPE_PRECISION (integer_type_node)
5610 == TYPE_PRECISION (long_integer_type_node))
5611 (simplify
5612 (ifn @0)
5613 (lfn:long_integer_type_node @0)))
5614 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5615 sizeof (long long) == sizeof (long). */
5616 (if (TYPE_PRECISION (long_long_integer_type_node)
5617 == TYPE_PRECISION (long_integer_type_node))
5618 (simplify
5619 (llfn @0)
5620 (lfn:long_integer_type_node @0)))))
5621
5622 /* cproj(x) -> x if we're ignoring infinities. */
5623 (simplify
5624 (CPROJ @0)
5625 (if (!HONOR_INFINITIES (type))
5626 @0))
5627
5628 /* If the real part is inf and the imag part is known to be
5629 nonnegative, return (inf + 0i). */
5630 (simplify
5631 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5632 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5633 { build_complex_inf (type, false); }))
5634
5635 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5636 (simplify
5637 (CPROJ (complex @0 REAL_CST@1))
5638 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5639 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5640
5641 (for pows (POW)
5642 sqrts (SQRT)
5643 cbrts (CBRT)
5644 (simplify
5645 (pows @0 REAL_CST@1)
5646 (with {
5647 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5648 REAL_VALUE_TYPE tmp;
5649 }
5650 (switch
5651 /* pow(x,0) -> 1. */
5652 (if (real_equal (value, &dconst0))
5653 { build_real (type, dconst1); })
5654 /* pow(x,1) -> x. */
5655 (if (real_equal (value, &dconst1))
5656 @0)
5657 /* pow(x,-1) -> 1/x. */
5658 (if (real_equal (value, &dconstm1))
5659 (rdiv { build_real (type, dconst1); } @0))
5660 /* pow(x,0.5) -> sqrt(x). */
5661 (if (flag_unsafe_math_optimizations
5662 && canonicalize_math_p ()
5663 && real_equal (value, &dconsthalf))
5664 (sqrts @0))
5665 /* pow(x,1/3) -> cbrt(x). */
5666 (if (flag_unsafe_math_optimizations
5667 && canonicalize_math_p ()
5668 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5669 real_equal (value, &tmp)))
5670 (cbrts @0))))))
5671
5672 /* powi(1,x) -> 1. */
5673 (simplify
5674 (POWI real_onep@0 @1)
5675 @0)
5676
5677 (simplify
5678 (POWI @0 INTEGER_CST@1)
5679 (switch
5680 /* powi(x,0) -> 1. */
5681 (if (wi::to_wide (@1) == 0)
5682 { build_real (type, dconst1); })
5683 /* powi(x,1) -> x. */
5684 (if (wi::to_wide (@1) == 1)
5685 @0)
5686 /* powi(x,-1) -> 1/x. */
5687 (if (wi::to_wide (@1) == -1)
5688 (rdiv { build_real (type, dconst1); } @0))))
5689
5690 /* Narrowing of arithmetic and logical operations.
5691
5692 These are conceptually similar to the transformations performed for
5693 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5694 term we want to move all that code out of the front-ends into here. */
5695
5696 /* Convert (outertype)((innertype0)a+(innertype1)b)
5697 into ((newtype)a+(newtype)b) where newtype
5698 is the widest mode from all of these. */
5699 (for op (plus minus mult rdiv)
5700 (simplify
5701 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5702 /* If we have a narrowing conversion of an arithmetic operation where
5703 both operands are widening conversions from the same type as the outer
5704 narrowing conversion. Then convert the innermost operands to a
5705 suitable unsigned type (to avoid introducing undefined behavior),
5706 perform the operation and convert the result to the desired type. */
5707 (if (INTEGRAL_TYPE_P (type)
5708 && op != MULT_EXPR
5709 && op != RDIV_EXPR
5710 /* We check for type compatibility between @0 and @1 below,
5711 so there's no need to check that @2/@4 are integral types. */
5712 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5713 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5714 /* The precision of the type of each operand must match the
5715 precision of the mode of each operand, similarly for the
5716 result. */
5717 && type_has_mode_precision_p (TREE_TYPE (@1))
5718 && type_has_mode_precision_p (TREE_TYPE (@2))
5719 && type_has_mode_precision_p (type)
5720 /* The inner conversion must be a widening conversion. */
5721 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5722 && types_match (@1, type)
5723 && (types_match (@1, @2)
5724 /* Or the second operand is const integer or converted const
5725 integer from valueize. */
5726 || TREE_CODE (@2) == INTEGER_CST))
5727 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5728 (op @1 (convert @2))
5729 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5730 (convert (op (convert:utype @1)
5731 (convert:utype @2)))))
5732 (if (FLOAT_TYPE_P (type)
5733 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5734 == DECIMAL_FLOAT_TYPE_P (type))
5735 (with { tree arg0 = strip_float_extensions (@1);
5736 tree arg1 = strip_float_extensions (@2);
5737 tree itype = TREE_TYPE (@0);
5738 tree ty1 = TREE_TYPE (arg0);
5739 tree ty2 = TREE_TYPE (arg1);
5740 enum tree_code code = TREE_CODE (itype); }
5741 (if (FLOAT_TYPE_P (ty1)
5742 && FLOAT_TYPE_P (ty2))
5743 (with { tree newtype = type;
5744 if (TYPE_MODE (ty1) == SDmode
5745 || TYPE_MODE (ty2) == SDmode
5746 || TYPE_MODE (type) == SDmode)
5747 newtype = dfloat32_type_node;
5748 if (TYPE_MODE (ty1) == DDmode
5749 || TYPE_MODE (ty2) == DDmode
5750 || TYPE_MODE (type) == DDmode)
5751 newtype = dfloat64_type_node;
5752 if (TYPE_MODE (ty1) == TDmode
5753 || TYPE_MODE (ty2) == TDmode
5754 || TYPE_MODE (type) == TDmode)
5755 newtype = dfloat128_type_node; }
5756 (if ((newtype == dfloat32_type_node
5757 || newtype == dfloat64_type_node
5758 || newtype == dfloat128_type_node)
5759 && newtype == type
5760 && types_match (newtype, type))
5761 (op (convert:newtype @1) (convert:newtype @2))
5762 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5763 newtype = ty1;
5764 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5765 newtype = ty2; }
5766 /* Sometimes this transformation is safe (cannot
5767 change results through affecting double rounding
5768 cases) and sometimes it is not. If NEWTYPE is
5769 wider than TYPE, e.g. (float)((long double)double
5770 + (long double)double) converted to
5771 (float)(double + double), the transformation is
5772 unsafe regardless of the details of the types
5773 involved; double rounding can arise if the result
5774 of NEWTYPE arithmetic is a NEWTYPE value half way
5775 between two representable TYPE values but the
5776 exact value is sufficiently different (in the
5777 right direction) for this difference to be
5778 visible in ITYPE arithmetic. If NEWTYPE is the
5779 same as TYPE, however, the transformation may be
5780 safe depending on the types involved: it is safe
5781 if the ITYPE has strictly more than twice as many
5782 mantissa bits as TYPE, can represent infinities
5783 and NaNs if the TYPE can, and has sufficient
5784 exponent range for the product or ratio of two
5785 values representable in the TYPE to be within the
5786 range of normal values of ITYPE. */
5787 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5788 && (flag_unsafe_math_optimizations
5789 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5790 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5791 TYPE_MODE (type))
5792 && !excess_precision_type (newtype)))
5793 && !types_match (itype, newtype))
5794 (convert:type (op (convert:newtype @1)
5795 (convert:newtype @2)))
5796 )))) )
5797 ))
5798 )))
5799
5800 /* This is another case of narrowing, specifically when there's an outer
5801 BIT_AND_EXPR which masks off bits outside the type of the innermost
5802 operands. Like the previous case we have to convert the operands
5803 to unsigned types to avoid introducing undefined behavior for the
5804 arithmetic operation. */
5805 (for op (minus plus)
5806 (simplify
5807 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5808 (if (INTEGRAL_TYPE_P (type)
5809 /* We check for type compatibility between @0 and @1 below,
5810 so there's no need to check that @1/@3 are integral types. */
5811 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5812 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5813 /* The precision of the type of each operand must match the
5814 precision of the mode of each operand, similarly for the
5815 result. */
5816 && type_has_mode_precision_p (TREE_TYPE (@0))
5817 && type_has_mode_precision_p (TREE_TYPE (@1))
5818 && type_has_mode_precision_p (type)
5819 /* The inner conversion must be a widening conversion. */
5820 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5821 && types_match (@0, @1)
5822 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5823 <= TYPE_PRECISION (TREE_TYPE (@0)))
5824 && (wi::to_wide (@4)
5825 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5826 true, TYPE_PRECISION (type))) == 0)
5827 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5828 (with { tree ntype = TREE_TYPE (@0); }
5829 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5830 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5831 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5832 (convert:utype @4))))))))
5833
5834 /* Transform (@0 < @1 and @0 < @2) to use min,
5835 (@0 > @1 and @0 > @2) to use max */
5836 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5837 op (lt le gt ge lt le gt ge )
5838 ext (min min max max max max min min )
5839 (simplify
5840 (logic (op:cs @0 @1) (op:cs @0 @2))
5841 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5842 && TREE_CODE (@0) != INTEGER_CST)
5843 (op @0 (ext @1 @2)))))
5844
5845 (simplify
5846 /* signbit(x) -> 0 if x is nonnegative. */
5847 (SIGNBIT tree_expr_nonnegative_p@0)
5848 { integer_zero_node; })
5849
5850 (simplify
5851 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5852 (SIGNBIT @0)
5853 (if (!HONOR_SIGNED_ZEROS (@0))
5854 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5855
5856 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5857 (for cmp (eq ne)
5858 (for op (plus minus)
5859 rop (minus plus)
5860 (simplify
5861 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5862 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5863 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5864 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5865 && !TYPE_SATURATING (TREE_TYPE (@0)))
5866 (with { tree res = int_const_binop (rop, @2, @1); }
5867 (if (TREE_OVERFLOW (res)
5868 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5869 { constant_boolean_node (cmp == NE_EXPR, type); }
5870 (if (single_use (@3))
5871 (cmp @0 { TREE_OVERFLOW (res)
5872 ? drop_tree_overflow (res) : res; }))))))))
5873 (for cmp (lt le gt ge)
5874 (for op (plus minus)
5875 rop (minus plus)
5876 (simplify
5877 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5878 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5879 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5880 (with { tree res = int_const_binop (rop, @2, @1); }
5881 (if (TREE_OVERFLOW (res))
5882 {
5883 fold_overflow_warning (("assuming signed overflow does not occur "
5884 "when simplifying conditional to constant"),
5885 WARN_STRICT_OVERFLOW_CONDITIONAL);
5886 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5887 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5888 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5889 TYPE_SIGN (TREE_TYPE (@1)))
5890 != (op == MINUS_EXPR);
5891 constant_boolean_node (less == ovf_high, type);
5892 }
5893 (if (single_use (@3))
5894 (with
5895 {
5896 fold_overflow_warning (("assuming signed overflow does not occur "
5897 "when changing X +- C1 cmp C2 to "
5898 "X cmp C2 -+ C1"),
5899 WARN_STRICT_OVERFLOW_COMPARISON);
5900 }
5901 (cmp @0 { res; })))))))))
5902
5903 /* Canonicalizations of BIT_FIELD_REFs. */
5904
5905 (simplify
5906 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5907 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5908
5909 (simplify
5910 (BIT_FIELD_REF (view_convert @0) @1 @2)
5911 (BIT_FIELD_REF @0 @1 @2))
5912
5913 (simplify
5914 (BIT_FIELD_REF @0 @1 integer_zerop)
5915 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5916 (view_convert @0)))
5917
5918 (simplify
5919 (BIT_FIELD_REF @0 @1 @2)
5920 (switch
5921 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5922 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5923 (switch
5924 (if (integer_zerop (@2))
5925 (view_convert (realpart @0)))
5926 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5927 (view_convert (imagpart @0)))))
5928 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5929 && INTEGRAL_TYPE_P (type)
5930 /* On GIMPLE this should only apply to register arguments. */
5931 && (! GIMPLE || is_gimple_reg (@0))
5932 /* A bit-field-ref that referenced the full argument can be stripped. */
5933 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5934 && integer_zerop (@2))
5935 /* Low-parts can be reduced to integral conversions.
5936 ??? The following doesn't work for PDP endian. */
5937 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5938 /* Don't even think about BITS_BIG_ENDIAN. */
5939 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5940 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5941 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5942 ? (TYPE_PRECISION (TREE_TYPE (@0))
5943 - TYPE_PRECISION (type))
5944 : 0)) == 0)))
5945 (convert @0))))
5946
5947 /* Simplify vector extracts. */
5948
5949 (simplify
5950 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5951 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5952 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5953 || (VECTOR_TYPE_P (type)
5954 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5955 (with
5956 {
5957 tree ctor = (TREE_CODE (@0) == SSA_NAME
5958 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5959 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5960 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5961 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5962 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5963 }
5964 (if (n != 0
5965 && (idx % width) == 0
5966 && (n % width) == 0
5967 && known_le ((idx + n) / width,
5968 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5969 (with
5970 {
5971 idx = idx / width;
5972 n = n / width;
5973 /* Constructor elements can be subvectors. */
5974 poly_uint64 k = 1;
5975 if (CONSTRUCTOR_NELTS (ctor) != 0)
5976 {
5977 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5978 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5979 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5980 }
5981 unsigned HOST_WIDE_INT elt, count, const_k;
5982 }
5983 (switch
5984 /* We keep an exact subset of the constructor elements. */
5985 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5986 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5987 { build_constructor (type, NULL); }
5988 (if (count == 1)
5989 (if (elt < CONSTRUCTOR_NELTS (ctor))
5990 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5991 { build_zero_cst (type); })
5992 /* We don't want to emit new CTORs unless the old one goes away.
5993 ??? Eventually allow this if the CTOR ends up constant or
5994 uniform. */
5995 (if (single_use (@0))
5996 {
5997 vec<constructor_elt, va_gc> *vals;
5998 vec_alloc (vals, count);
5999 for (unsigned i = 0;
6000 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
6001 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
6002 CONSTRUCTOR_ELT (ctor, elt + i)->value);
6003 build_constructor (type, vals);
6004 }))))
6005 /* The bitfield references a single constructor element. */
6006 (if (k.is_constant (&const_k)
6007 && idx + n <= (idx / const_k + 1) * const_k)
6008 (switch
6009 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
6010 { build_zero_cst (type); })
6011 (if (n == const_k)
6012 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
6013 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
6014 @1 { bitsize_int ((idx % const_k) * width); })))))))))
6015
6016 /* Simplify a bit extraction from a bit insertion for the cases with
6017 the inserted element fully covering the extraction or the insertion
6018 not touching the extraction. */
6019 (simplify
6020 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
6021 (with
6022 {
6023 unsigned HOST_WIDE_INT isize;
6024 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
6025 isize = TYPE_PRECISION (TREE_TYPE (@1));
6026 else
6027 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
6028 }
6029 (switch
6030 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
6031 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
6032 wi::to_wide (@ipos) + isize))
6033 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
6034 wi::to_wide (@rpos)
6035 - wi::to_wide (@ipos)); }))
6036 (if (wi::geu_p (wi::to_wide (@ipos),
6037 wi::to_wide (@rpos) + wi::to_wide (@rsize))
6038 || wi::geu_p (wi::to_wide (@rpos),
6039 wi::to_wide (@ipos) + isize))
6040 (BIT_FIELD_REF @0 @rsize @rpos)))))
6041
6042 (if (canonicalize_math_after_vectorization_p ())
6043 (for fmas (FMA)
6044 (simplify
6045 (fmas:c (negate @0) @1 @2)
6046 (IFN_FNMA @0 @1 @2))
6047 (simplify
6048 (fmas @0 @1 (negate @2))
6049 (IFN_FMS @0 @1 @2))
6050 (simplify
6051 (fmas:c (negate @0) @1 (negate @2))
6052 (IFN_FNMS @0 @1 @2))
6053 (simplify
6054 (negate (fmas@3 @0 @1 @2))
6055 (if (single_use (@3))
6056 (IFN_FNMS @0 @1 @2))))
6057
6058 (simplify
6059 (IFN_FMS:c (negate @0) @1 @2)
6060 (IFN_FNMS @0 @1 @2))
6061 (simplify
6062 (IFN_FMS @0 @1 (negate @2))
6063 (IFN_FMA @0 @1 @2))
6064 (simplify
6065 (IFN_FMS:c (negate @0) @1 (negate @2))
6066 (IFN_FNMA @0 @1 @2))
6067 (simplify
6068 (negate (IFN_FMS@3 @0 @1 @2))
6069 (if (single_use (@3))
6070 (IFN_FNMA @0 @1 @2)))
6071
6072 (simplify
6073 (IFN_FNMA:c (negate @0) @1 @2)
6074 (IFN_FMA @0 @1 @2))
6075 (simplify
6076 (IFN_FNMA @0 @1 (negate @2))
6077 (IFN_FNMS @0 @1 @2))
6078 (simplify
6079 (IFN_FNMA:c (negate @0) @1 (negate @2))
6080 (IFN_FMS @0 @1 @2))
6081 (simplify
6082 (negate (IFN_FNMA@3 @0 @1 @2))
6083 (if (single_use (@3))
6084 (IFN_FMS @0 @1 @2)))
6085
6086 (simplify
6087 (IFN_FNMS:c (negate @0) @1 @2)
6088 (IFN_FMS @0 @1 @2))
6089 (simplify
6090 (IFN_FNMS @0 @1 (negate @2))
6091 (IFN_FNMA @0 @1 @2))
6092 (simplify
6093 (IFN_FNMS:c (negate @0) @1 (negate @2))
6094 (IFN_FMA @0 @1 @2))
6095 (simplify
6096 (negate (IFN_FNMS@3 @0 @1 @2))
6097 (if (single_use (@3))
6098 (IFN_FMA @0 @1 @2))))
6099
6100 /* POPCOUNT simplifications. */
6101 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
6102 (simplify
6103 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
6104 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
6105 (POPCOUNT (bit_ior @0 @1))))
6106
6107 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
6108 (for popcount (POPCOUNT)
6109 (for cmp (le eq ne gt)
6110 rep (eq eq ne ne)
6111 (simplify
6112 (cmp (popcount @0) integer_zerop)
6113 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
6114
6115 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
6116 (simplify
6117 (bit_and (POPCOUNT @0) integer_onep)
6118 (PARITY @0))
6119
6120 /* PARITY simplifications. */
6121 /* parity(~X) is parity(X). */
6122 (simplify
6123 (PARITY (bit_not @0))
6124 (PARITY @0))
6125
6126 /* parity(X)^parity(Y) is parity(X^Y). */
6127 (simplify
6128 (bit_xor (PARITY:s @0) (PARITY:s @1))
6129 (PARITY (bit_xor @0 @1)))
6130
6131 /* Common POPCOUNT/PARITY simplifications. */
6132 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
6133 (for pfun (POPCOUNT PARITY)
6134 (simplify
6135 (pfun @0)
6136 (with { wide_int nz = tree_nonzero_bits (@0); }
6137 (switch
6138 (if (nz == 1)
6139 (convert @0))
6140 (if (wi::popcount (nz) == 1)
6141 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6142 (convert (rshift:utype (convert:utype @0)
6143 { build_int_cst (integer_type_node,
6144 wi::ctz (nz)); }))))))))
6145
6146 #if GIMPLE
6147 /* 64- and 32-bits branchless implementations of popcount are detected:
6148
6149 int popcount64c (uint64_t x)
6150 {
6151 x -= (x >> 1) & 0x5555555555555555ULL;
6152 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
6153 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
6154 return (x * 0x0101010101010101ULL) >> 56;
6155 }
6156
6157 int popcount32c (uint32_t x)
6158 {
6159 x -= (x >> 1) & 0x55555555;
6160 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
6161 x = (x + (x >> 4)) & 0x0f0f0f0f;
6162 return (x * 0x01010101) >> 24;
6163 } */
6164 (simplify
6165 (rshift
6166 (mult
6167 (bit_and
6168 (plus:c
6169 (rshift @8 INTEGER_CST@5)
6170 (plus:c@8
6171 (bit_and @6 INTEGER_CST@7)
6172 (bit_and
6173 (rshift
6174 (minus@6 @0
6175 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
6176 INTEGER_CST@10)
6177 INTEGER_CST@9)))
6178 INTEGER_CST@3)
6179 INTEGER_CST@2)
6180 INTEGER_CST@1)
6181 /* Check constants and optab. */
6182 (with { unsigned prec = TYPE_PRECISION (type);
6183 int shift = (64 - prec) & 63;
6184 unsigned HOST_WIDE_INT c1
6185 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
6186 unsigned HOST_WIDE_INT c2
6187 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
6188 unsigned HOST_WIDE_INT c3
6189 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
6190 unsigned HOST_WIDE_INT c4
6191 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
6192 }
6193 (if (prec >= 16
6194 && prec <= 64
6195 && pow2p_hwi (prec)
6196 && TYPE_UNSIGNED (type)
6197 && integer_onep (@4)
6198 && wi::to_widest (@10) == 2
6199 && wi::to_widest (@5) == 4
6200 && wi::to_widest (@1) == prec - 8
6201 && tree_to_uhwi (@2) == c1
6202 && tree_to_uhwi (@3) == c2
6203 && tree_to_uhwi (@9) == c3
6204 && tree_to_uhwi (@7) == c3
6205 && tree_to_uhwi (@11) == c4
6206 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
6207 OPTIMIZE_FOR_BOTH))
6208 (convert (IFN_POPCOUNT:type @0)))))
6209
6210 /* __builtin_ffs needs to deal on many targets with the possible zero
6211 argument. If we know the argument is always non-zero, __builtin_ctz + 1
6212 should lead to better code. */
6213 (simplify
6214 (FFS tree_expr_nonzero_p@0)
6215 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6216 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
6217 OPTIMIZE_FOR_SPEED))
6218 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6219 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
6220 #endif
6221
6222 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
6223 BUILT_IN_FFSIMAX)
6224 /* __builtin_ffs (X) == 0 -> X == 0.
6225 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
6226 (for cmp (eq ne)
6227 (simplify
6228 (cmp (ffs@2 @0) INTEGER_CST@1)
6229 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6230 (switch
6231 (if (integer_zerop (@1))
6232 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
6233 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
6234 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
6235 (if (single_use (@2))
6236 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
6237 wi::mask (tree_to_uhwi (@1),
6238 false, prec)); })
6239 { wide_int_to_tree (TREE_TYPE (@0),
6240 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
6241 false, prec)); }))))))
6242
6243 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
6244 (for cmp (gt le)
6245 cmp2 (ne eq)
6246 cmp3 (eq ne)
6247 bit_op (bit_and bit_ior)
6248 (simplify
6249 (cmp (ffs@2 @0) INTEGER_CST@1)
6250 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6251 (switch
6252 (if (integer_zerop (@1))
6253 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
6254 (if (tree_int_cst_sgn (@1) < 0)
6255 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
6256 (if (wi::to_widest (@1) >= prec)
6257 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
6258 (if (wi::to_widest (@1) == prec - 1)
6259 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
6260 wi::shifted_mask (prec - 1, 1,
6261 false, prec)); }))
6262 (if (single_use (@2))
6263 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
6264 (cmp3 (bit_and @0
6265 { wide_int_to_tree (TREE_TYPE (@0),
6266 wi::mask (tree_to_uhwi (@1),
6267 false, prec)); })
6268 { build_zero_cst (TREE_TYPE (@0)); }))))))))
6269
6270 /* Simplify:
6271
6272 a = a1 op a2
6273 r = c ? a : b;
6274
6275 to:
6276
6277 r = c ? a1 op a2 : b;
6278
6279 if the target can do it in one go. This makes the operation conditional
6280 on c, so could drop potentially-trapping arithmetic, but that's a valid
6281 simplification if the result of the operation isn't needed.
6282
6283 Avoid speculatively generating a stand-alone vector comparison
6284 on targets that might not support them. Any target implementing
6285 conditional internal functions must support the same comparisons
6286 inside and outside a VEC_COND_EXPR. */
6287
6288 #if GIMPLE
6289 (for uncond_op (UNCOND_BINARY)
6290 cond_op (COND_BINARY)
6291 (simplify
6292 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
6293 (with { tree op_type = TREE_TYPE (@4); }
6294 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6295 && element_precision (type) == element_precision (op_type))
6296 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
6297 (simplify
6298 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
6299 (with { tree op_type = TREE_TYPE (@4); }
6300 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6301 && element_precision (type) == element_precision (op_type))
6302 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
6303
6304 /* Same for ternary operations. */
6305 (for uncond_op (UNCOND_TERNARY)
6306 cond_op (COND_TERNARY)
6307 (simplify
6308 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
6309 (with { tree op_type = TREE_TYPE (@5); }
6310 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6311 && element_precision (type) == element_precision (op_type))
6312 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
6313 (simplify
6314 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
6315 (with { tree op_type = TREE_TYPE (@5); }
6316 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6317 && element_precision (type) == element_precision (op_type))
6318 (view_convert (cond_op (bit_not @0) @2 @3 @4
6319 (view_convert:op_type @1)))))))
6320 #endif
6321
6322 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
6323 "else" value of an IFN_COND_*. */
6324 (for cond_op (COND_BINARY)
6325 (simplify
6326 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
6327 (with { tree op_type = TREE_TYPE (@3); }
6328 (if (element_precision (type) == element_precision (op_type))
6329 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
6330 (simplify
6331 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
6332 (with { tree op_type = TREE_TYPE (@5); }
6333 (if (inverse_conditions_p (@0, @2)
6334 && element_precision (type) == element_precision (op_type))
6335 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
6336
6337 /* Same for ternary operations. */
6338 (for cond_op (COND_TERNARY)
6339 (simplify
6340 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
6341 (with { tree op_type = TREE_TYPE (@4); }
6342 (if (element_precision (type) == element_precision (op_type))
6343 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
6344 (simplify
6345 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
6346 (with { tree op_type = TREE_TYPE (@6); }
6347 (if (inverse_conditions_p (@0, @2)
6348 && element_precision (type) == element_precision (op_type))
6349 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
6350
6351 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
6352 expressions like:
6353
6354 A: (@0 + @1 < @2) | (@2 + @1 < @0)
6355 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
6356
6357 If pointers are known not to wrap, B checks whether @1 bytes starting
6358 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
6359 bytes. A is more efficiently tested as:
6360
6361 A: (sizetype) (@0 + @1 - @2) > @1 * 2
6362
6363 The equivalent expression for B is given by replacing @1 with @1 - 1:
6364
6365 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
6366
6367 @0 and @2 can be swapped in both expressions without changing the result.
6368
6369 The folds rely on sizetype's being unsigned (which is always true)
6370 and on its being the same width as the pointer (which we have to check).
6371
6372 The fold replaces two pointer_plus expressions, two comparisons and
6373 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
6374 the best case it's a saving of two operations. The A fold retains one
6375 of the original pointer_pluses, so is a win even if both pointer_pluses
6376 are used elsewhere. The B fold is a wash if both pointer_pluses are
6377 used elsewhere, since all we end up doing is replacing a comparison with
6378 a pointer_plus. We do still apply the fold under those circumstances
6379 though, in case applying it to other conditions eventually makes one of the
6380 pointer_pluses dead. */
6381 (for ior (truth_orif truth_or bit_ior)
6382 (for cmp (le lt)
6383 (simplify
6384 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
6385 (cmp:cs (pointer_plus@4 @2 @1) @0))
6386 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6387 && TYPE_OVERFLOW_WRAPS (sizetype)
6388 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
6389 /* Calculate the rhs constant. */
6390 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
6391 offset_int rhs = off * 2; }
6392 /* Always fails for negative values. */
6393 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
6394 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
6395 pick a canonical order. This increases the chances of using the
6396 same pointer_plus in multiple checks. */
6397 (with { bool swap_p = tree_swap_operands_p (@0, @2);
6398 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
6399 (if (cmp == LT_EXPR)
6400 (gt (convert:sizetype
6401 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
6402 { swap_p ? @0 : @2; }))
6403 { rhs_tree; })
6404 (gt (convert:sizetype
6405 (pointer_diff:ssizetype
6406 (pointer_plus { swap_p ? @2 : @0; }
6407 { wide_int_to_tree (sizetype, off); })
6408 { swap_p ? @0 : @2; }))
6409 { rhs_tree; })))))))))
6410
6411 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
6412 element of @1. */
6413 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
6414 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
6415 (with { int i = single_nonzero_element (@1); }
6416 (if (i >= 0)
6417 (with { tree elt = vector_cst_elt (@1, i);
6418 tree elt_type = TREE_TYPE (elt);
6419 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6420 tree size = bitsize_int (elt_bits);
6421 tree pos = bitsize_int (elt_bits * i); }
6422 (view_convert
6423 (bit_and:elt_type
6424 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6425 { elt; })))))))
6426
6427 (simplify
6428 (vec_perm @0 @1 VECTOR_CST@2)
6429 (with
6430 {
6431 tree op0 = @0, op1 = @1, op2 = @2;
6432
6433 /* Build a vector of integers from the tree mask. */
6434 vec_perm_builder builder;
6435 if (!tree_to_vec_perm_builder (&builder, op2))
6436 return NULL_TREE;
6437
6438 /* Create a vec_perm_indices for the integer vector. */
6439 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6440 bool single_arg = (op0 == op1);
6441 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6442 }
6443 (if (sel.series_p (0, 1, 0, 1))
6444 { op0; }
6445 (if (sel.series_p (0, 1, nelts, 1))
6446 { op1; }
6447 (with
6448 {
6449 if (!single_arg)
6450 {
6451 if (sel.all_from_input_p (0))
6452 op1 = op0;
6453 else if (sel.all_from_input_p (1))
6454 {
6455 op0 = op1;
6456 sel.rotate_inputs (1);
6457 }
6458 else if (known_ge (poly_uint64 (sel[0]), nelts))
6459 {
6460 std::swap (op0, op1);
6461 sel.rotate_inputs (1);
6462 }
6463 }
6464 gassign *def;
6465 tree cop0 = op0, cop1 = op1;
6466 if (TREE_CODE (op0) == SSA_NAME
6467 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6468 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6469 cop0 = gimple_assign_rhs1 (def);
6470 if (TREE_CODE (op1) == SSA_NAME
6471 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6472 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6473 cop1 = gimple_assign_rhs1 (def);
6474
6475 tree t;
6476 }
6477 (if ((TREE_CODE (cop0) == VECTOR_CST
6478 || TREE_CODE (cop0) == CONSTRUCTOR)
6479 && (TREE_CODE (cop1) == VECTOR_CST
6480 || TREE_CODE (cop1) == CONSTRUCTOR)
6481 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6482 { t; }
6483 (with
6484 {
6485 bool changed = (op0 == op1 && !single_arg);
6486 tree ins = NULL_TREE;
6487 unsigned at = 0;
6488
6489 /* See if the permutation is performing a single element
6490 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6491 in that case. But only if the vector mode is supported,
6492 otherwise this is invalid GIMPLE. */
6493 if (TYPE_MODE (type) != BLKmode
6494 && (TREE_CODE (cop0) == VECTOR_CST
6495 || TREE_CODE (cop0) == CONSTRUCTOR
6496 || TREE_CODE (cop1) == VECTOR_CST
6497 || TREE_CODE (cop1) == CONSTRUCTOR))
6498 {
6499 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6500 if (insert_first_p)
6501 {
6502 /* After canonicalizing the first elt to come from the
6503 first vector we only can insert the first elt from
6504 the first vector. */
6505 at = 0;
6506 if ((ins = fold_read_from_vector (cop0, sel[0])))
6507 op0 = op1;
6508 }
6509 /* The above can fail for two-element vectors which always
6510 appear to insert the first element, so try inserting
6511 into the second lane as well. For more than two
6512 elements that's wasted time. */
6513 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6514 {
6515 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6516 for (at = 0; at < encoded_nelts; ++at)
6517 if (maybe_ne (sel[at], at))
6518 break;
6519 if (at < encoded_nelts
6520 && (known_eq (at + 1, nelts)
6521 || sel.series_p (at + 1, 1, at + 1, 1)))
6522 {
6523 if (known_lt (poly_uint64 (sel[at]), nelts))
6524 ins = fold_read_from_vector (cop0, sel[at]);
6525 else
6526 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6527 }
6528 }
6529 }
6530
6531 /* Generate a canonical form of the selector. */
6532 if (!ins && sel.encoding () != builder)
6533 {
6534 /* Some targets are deficient and fail to expand a single
6535 argument permutation while still allowing an equivalent
6536 2-argument version. */
6537 tree oldop2 = op2;
6538 if (sel.ninputs () == 2
6539 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6540 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6541 else
6542 {
6543 vec_perm_indices sel2 (builder, 2, nelts);
6544 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6545 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6546 else
6547 /* Not directly supported with either encoding,
6548 so use the preferred form. */
6549 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6550 }
6551 if (!operand_equal_p (op2, oldop2, 0))
6552 changed = true;
6553 }
6554 }
6555 (if (ins)
6556 (bit_insert { op0; } { ins; }
6557 { bitsize_int (at * vector_element_bits (type)); })
6558 (if (changed)
6559 (vec_perm { op0; } { op1; } { op2; }))))))))))
6560
6561 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6562
6563 (match vec_same_elem_p
6564 @0
6565 (if (uniform_vector_p (@0))))
6566
6567 (match vec_same_elem_p
6568 (vec_duplicate @0))
6569
6570 (simplify
6571 (vec_perm vec_same_elem_p@0 @0 @1)
6572 @0)
6573
6574 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6575 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6576 constant which when multiplied by a power of 2 contains a unique value
6577 in the top 5 or 6 bits. This is then indexed into a table which maps it
6578 to the number of trailing zeroes. */
6579 (match (ctz_table_index @1 @2 @3)
6580 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))