Remove assertion in get_info_about_necessary_edges
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2020 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p)
41
42 /* Operator lists. */
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53
54 #include "cfn-operators.pd"
55
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
59
60 Also define operand lists:
61
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67 BUILT_IN_L##FN##F \
68 BUILT_IN_LL##FN##F) \
69 (define_operator_list X##FN BUILT_IN_I##FN \
70 BUILT_IN_L##FN \
71 BUILT_IN_LL##FN) \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 BUILT_IN_L##FN##L \
74 BUILT_IN_LL##FN##L)
75
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
83 plus minus
84 mult trunc_div trunc_mod rdiv
85 min max
86 bit_and bit_ior bit_xor
87 lshift rshift)
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
94
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101 /* With nop_convert? combine convert? and view_convert? in one pattern
102 plus conditionalize on tree_nop_conversion_p conversions. */
103 (match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
126
127 (for op (plus pointer_plus minus bit_ior bit_xor)
128 (simplify
129 (op @0 integer_zerop)
130 (non_lvalue @0)))
131
132 /* 0 +p index -> (type)index */
133 (simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137 /* ptr - 0 -> (type)ptr */
138 (simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
144 (simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147 (non_lvalue @0)))
148
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
150 (simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153 (non_lvalue @0)))
154
155 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158 if not -frounding-math. For sNaNs the first operation would raise
159 exceptions but turn the result into qNan, so the second operation
160 would not raise it. */
161 (for inner_op (plus minus)
162 (for outer_op (plus minus)
163 (simplify
164 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
165 (if (real_zerop (@1)
166 && real_zerop (@2)
167 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
170 bool outer_plus
171 = ((outer_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173 (if (outer_plus && !inner_plus)
174 (outer_op @0 @2)
175 @3))))))
176
177 /* Simplify x - x.
178 This is unsafe for certain floats even in non-IEEE formats.
179 In IEEE, it is unsafe because it does wrong for NaNs.
180 Also note that operand_equal_p is always false if an operand
181 is volatile. */
182 (simplify
183 (minus @0 @0)
184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
185 { build_zero_cst (type); }))
186 (simplify
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
189
190 (simplify
191 (mult @0 integer_zerop@1)
192 @1)
193
194 /* Maybe fold x * 0 to 0. The expressions aren't the same
195 when x is NaN, since x * 0 is also NaN. Nor are they the
196 same in modes with signed zeros, since multiplying a
197 negative value by 0 gives -0, not +0. */
198 (simplify
199 (mult @0 real_zerop@1)
200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
201 @1))
202
203 /* In IEEE floating point, x*1 is not equivalent to x for snans.
204 Likewise for complex arithmetic with signed zeros. */
205 (simplify
206 (mult @0 real_onep)
207 (if (!HONOR_SNANS (type)
208 && (!HONOR_SIGNED_ZEROS (type)
209 || !COMPLEX_FLOAT_TYPE_P (type)))
210 (non_lvalue @0)))
211
212 /* Transform x * -1.0 into -x. */
213 (simplify
214 (mult @0 real_minus_onep)
215 (if (!HONOR_SNANS (type)
216 && (!HONOR_SIGNED_ZEROS (type)
217 || !COMPLEX_FLOAT_TYPE_P (type)))
218 (negate @0)))
219
220 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
221 (simplify
222 (mult SSA_NAME@1 SSA_NAME@2)
223 (if (INTEGRAL_TYPE_P (type)
224 && get_nonzero_bits (@1) == 1
225 && get_nonzero_bits (@2) == 1)
226 (bit_and @1 @2)))
227
228 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
229 unless the target has native support for the former but not the latter. */
230 (simplify
231 (mult @0 VECTOR_CST@1)
232 (if (initializer_each_zero_or_onep (@1)
233 && !HONOR_SNANS (type)
234 && !HONOR_SIGNED_ZEROS (type))
235 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
236 (if (itype
237 && (!VECTOR_MODE_P (TYPE_MODE (type))
238 || (VECTOR_MODE_P (TYPE_MODE (itype))
239 && optab_handler (and_optab,
240 TYPE_MODE (itype)) != CODE_FOR_nothing)))
241 (view_convert (bit_and:itype (view_convert @0)
242 (ne @1 { build_zero_cst (type); })))))))
243
244 (for cmp (gt ge lt le)
245 outp (convert convert negate negate)
246 outn (negate negate convert convert)
247 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
248 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
249 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
250 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
251 (simplify
252 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
253 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
254 && types_match (type, TREE_TYPE (@0)))
255 (switch
256 (if (types_match (type, float_type_node))
257 (BUILT_IN_COPYSIGNF @1 (outp @0)))
258 (if (types_match (type, double_type_node))
259 (BUILT_IN_COPYSIGN @1 (outp @0)))
260 (if (types_match (type, long_double_type_node))
261 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
262 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
263 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
264 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
265 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
266 (simplify
267 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
268 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
269 && types_match (type, TREE_TYPE (@0)))
270 (switch
271 (if (types_match (type, float_type_node))
272 (BUILT_IN_COPYSIGNF @1 (outn @0)))
273 (if (types_match (type, double_type_node))
274 (BUILT_IN_COPYSIGN @1 (outn @0)))
275 (if (types_match (type, long_double_type_node))
276 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
277
278 /* Transform X * copysign (1.0, X) into abs(X). */
279 (simplify
280 (mult:c @0 (COPYSIGN_ALL real_onep @0))
281 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
282 (abs @0)))
283
284 /* Transform X * copysign (1.0, -X) into -abs(X). */
285 (simplify
286 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
287 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
288 (negate (abs @0))))
289
290 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
291 (simplify
292 (COPYSIGN_ALL REAL_CST@0 @1)
293 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
294 (COPYSIGN_ALL (negate @0) @1)))
295
296 /* X * 1, X / 1 -> X. */
297 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
298 (simplify
299 (op @0 integer_onep)
300 (non_lvalue @0)))
301
302 /* (A / (1 << B)) -> (A >> B).
303 Only for unsigned A. For signed A, this would not preserve rounding
304 toward zero.
305 For example: (-1 / ( 1 << B)) != -1 >> B.
306 Also also widening conversions, like:
307 (A / (unsigned long long) (1U << B)) -> (A >> B)
308 or
309 (A / (unsigned long long) (1 << B)) -> (A >> B).
310 If the left shift is signed, it can be done only if the upper bits
311 of A starting from shift's type sign bit are zero, as
312 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
313 so it is valid only if A >> 31 is zero. */
314 (simplify
315 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
316 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
317 && (!VECTOR_TYPE_P (type)
318 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
319 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
320 && (useless_type_conversion_p (type, TREE_TYPE (@1))
321 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
322 && (TYPE_UNSIGNED (TREE_TYPE (@1))
323 || (element_precision (type)
324 == element_precision (TREE_TYPE (@1)))
325 || (INTEGRAL_TYPE_P (type)
326 && (tree_nonzero_bits (@0)
327 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
328 true,
329 element_precision (type))) == 0)))))
330 (rshift @0 @2)))
331
332 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
333 undefined behavior in constexpr evaluation, and assuming that the division
334 traps enables better optimizations than these anyway. */
335 (for div (trunc_div ceil_div floor_div round_div exact_div)
336 /* 0 / X is always zero. */
337 (simplify
338 (div integer_zerop@0 @1)
339 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
340 (if (!integer_zerop (@1))
341 @0))
342 /* X / -1 is -X. */
343 (simplify
344 (div @0 integer_minus_onep@1)
345 (if (!TYPE_UNSIGNED (type))
346 (negate @0)))
347 /* X / X is one. */
348 (simplify
349 (div @0 @0)
350 /* But not for 0 / 0 so that we can get the proper warnings and errors.
351 And not for _Fract types where we can't build 1. */
352 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
353 { build_one_cst (type); }))
354 /* X / abs (X) is X < 0 ? -1 : 1. */
355 (simplify
356 (div:C @0 (abs @0))
357 (if (INTEGRAL_TYPE_P (type)
358 && TYPE_OVERFLOW_UNDEFINED (type))
359 (cond (lt @0 { build_zero_cst (type); })
360 { build_minus_one_cst (type); } { build_one_cst (type); })))
361 /* X / -X is -1. */
362 (simplify
363 (div:C @0 (negate @0))
364 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
365 && TYPE_OVERFLOW_UNDEFINED (type))
366 { build_minus_one_cst (type); })))
367
368 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
369 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
370 (simplify
371 (floor_div @0 @1)
372 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
373 && TYPE_UNSIGNED (type))
374 (trunc_div @0 @1)))
375
376 /* Combine two successive divisions. Note that combining ceil_div
377 and floor_div is trickier and combining round_div even more so. */
378 (for div (trunc_div exact_div)
379 (simplify
380 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
381 (with {
382 wi::overflow_type overflow;
383 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
384 TYPE_SIGN (type), &overflow);
385 }
386 (if (div == EXACT_DIV_EXPR
387 || optimize_successive_divisions_p (@2, @3))
388 (if (!overflow)
389 (div @0 { wide_int_to_tree (type, mul); })
390 (if (TYPE_UNSIGNED (type)
391 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
392 { build_zero_cst (type); }))))))
393
394 /* Combine successive multiplications. Similar to above, but handling
395 overflow is different. */
396 (simplify
397 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
398 (with {
399 wi::overflow_type overflow;
400 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
401 TYPE_SIGN (type), &overflow);
402 }
403 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
404 otherwise undefined overflow implies that @0 must be zero. */
405 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
406 (mult @0 { wide_int_to_tree (type, mul); }))))
407
408 /* Optimize A / A to 1.0 if we don't care about
409 NaNs or Infinities. */
410 (simplify
411 (rdiv @0 @0)
412 (if (FLOAT_TYPE_P (type)
413 && ! HONOR_NANS (type)
414 && ! HONOR_INFINITIES (type))
415 { build_one_cst (type); }))
416
417 /* Optimize -A / A to -1.0 if we don't care about
418 NaNs or Infinities. */
419 (simplify
420 (rdiv:C @0 (negate @0))
421 (if (FLOAT_TYPE_P (type)
422 && ! HONOR_NANS (type)
423 && ! HONOR_INFINITIES (type))
424 { build_minus_one_cst (type); }))
425
426 /* PR71078: x / abs(x) -> copysign (1.0, x) */
427 (simplify
428 (rdiv:C (convert? @0) (convert? (abs @0)))
429 (if (SCALAR_FLOAT_TYPE_P (type)
430 && ! HONOR_NANS (type)
431 && ! HONOR_INFINITIES (type))
432 (switch
433 (if (types_match (type, float_type_node))
434 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
435 (if (types_match (type, double_type_node))
436 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
437 (if (types_match (type, long_double_type_node))
438 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
439
440 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
441 (simplify
442 (rdiv @0 real_onep)
443 (if (!HONOR_SNANS (type))
444 (non_lvalue @0)))
445
446 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
447 (simplify
448 (rdiv @0 real_minus_onep)
449 (if (!HONOR_SNANS (type))
450 (negate @0)))
451
452 (if (flag_reciprocal_math)
453 /* Convert (A/B)/C to A/(B*C). */
454 (simplify
455 (rdiv (rdiv:s @0 @1) @2)
456 (rdiv @0 (mult @1 @2)))
457
458 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
459 (simplify
460 (rdiv @0 (mult:s @1 REAL_CST@2))
461 (with
462 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
463 (if (tem)
464 (rdiv (mult @0 { tem; } ) @1))))
465
466 /* Convert A/(B/C) to (A/B)*C */
467 (simplify
468 (rdiv @0 (rdiv:s @1 @2))
469 (mult (rdiv @0 @1) @2)))
470
471 /* Simplify x / (- y) to -x / y. */
472 (simplify
473 (rdiv @0 (negate @1))
474 (rdiv (negate @0) @1))
475
476 (if (flag_unsafe_math_optimizations)
477 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
478 Since C / x may underflow to zero, do this only for unsafe math. */
479 (for op (lt le gt ge)
480 neg_op (gt ge lt le)
481 (simplify
482 (op (rdiv REAL_CST@0 @1) real_zerop@2)
483 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
484 (switch
485 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
486 (op @1 @2))
487 /* For C < 0, use the inverted operator. */
488 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
489 (neg_op @1 @2)))))))
490
491 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
492 (for div (trunc_div ceil_div floor_div round_div exact_div)
493 (simplify
494 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
495 (if (integer_pow2p (@2)
496 && tree_int_cst_sgn (@2) > 0
497 && tree_nop_conversion_p (type, TREE_TYPE (@0))
498 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
499 (rshift (convert @0)
500 { build_int_cst (integer_type_node,
501 wi::exact_log2 (wi::to_wide (@2))); }))))
502
503 /* If ARG1 is a constant, we can convert this to a multiply by the
504 reciprocal. This does not have the same rounding properties,
505 so only do this if -freciprocal-math. We can actually
506 always safely do it if ARG1 is a power of two, but it's hard to
507 tell if it is or not in a portable manner. */
508 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
509 (simplify
510 (rdiv @0 cst@1)
511 (if (optimize)
512 (if (flag_reciprocal_math
513 && !real_zerop (@1))
514 (with
515 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
516 (if (tem)
517 (mult @0 { tem; } )))
518 (if (cst != COMPLEX_CST)
519 (with { tree inverse = exact_inverse (type, @1); }
520 (if (inverse)
521 (mult @0 { inverse; } ))))))))
522
523 (for mod (ceil_mod floor_mod round_mod trunc_mod)
524 /* 0 % X is always zero. */
525 (simplify
526 (mod integer_zerop@0 @1)
527 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
528 (if (!integer_zerop (@1))
529 @0))
530 /* X % 1 is always zero. */
531 (simplify
532 (mod @0 integer_onep)
533 { build_zero_cst (type); })
534 /* X % -1 is zero. */
535 (simplify
536 (mod @0 integer_minus_onep@1)
537 (if (!TYPE_UNSIGNED (type))
538 { build_zero_cst (type); }))
539 /* X % X is zero. */
540 (simplify
541 (mod @0 @0)
542 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
543 (if (!integer_zerop (@0))
544 { build_zero_cst (type); }))
545 /* (X % Y) % Y is just X % Y. */
546 (simplify
547 (mod (mod@2 @0 @1) @1)
548 @2)
549 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
550 (simplify
551 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
552 (if (ANY_INTEGRAL_TYPE_P (type)
553 && TYPE_OVERFLOW_UNDEFINED (type)
554 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
555 TYPE_SIGN (type)))
556 { build_zero_cst (type); }))
557 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
558 modulo and comparison, since it is simpler and equivalent. */
559 (for cmp (eq ne)
560 (simplify
561 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
562 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
563 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
564 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
565
566 /* X % -C is the same as X % C. */
567 (simplify
568 (trunc_mod @0 INTEGER_CST@1)
569 (if (TYPE_SIGN (type) == SIGNED
570 && !TREE_OVERFLOW (@1)
571 && wi::neg_p (wi::to_wide (@1))
572 && !TYPE_OVERFLOW_TRAPS (type)
573 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
574 && !sign_bit_p (@1, @1))
575 (trunc_mod @0 (negate @1))))
576
577 /* X % -Y is the same as X % Y. */
578 (simplify
579 (trunc_mod @0 (convert? (negate @1)))
580 (if (INTEGRAL_TYPE_P (type)
581 && !TYPE_UNSIGNED (type)
582 && !TYPE_OVERFLOW_TRAPS (type)
583 && tree_nop_conversion_p (type, TREE_TYPE (@1))
584 /* Avoid this transformation if X might be INT_MIN or
585 Y might be -1, because we would then change valid
586 INT_MIN % -(-1) into invalid INT_MIN % -1. */
587 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
588 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
589 (TREE_TYPE (@1))))))
590 (trunc_mod @0 (convert @1))))
591
592 /* X - (X / Y) * Y is the same as X % Y. */
593 (simplify
594 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
595 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
596 (convert (trunc_mod @0 @1))))
597
598 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
599 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
600 Also optimize A % (C << N) where C is a power of 2,
601 to A & ((C << N) - 1). */
602 (match (power_of_two_cand @1)
603 INTEGER_CST@1)
604 (match (power_of_two_cand @1)
605 (lshift INTEGER_CST@1 @2))
606 (for mod (trunc_mod floor_mod)
607 (simplify
608 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
609 (if ((TYPE_UNSIGNED (type)
610 || tree_expr_nonnegative_p (@0))
611 && tree_nop_conversion_p (type, TREE_TYPE (@3))
612 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
613 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
614
615 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
616 (simplify
617 (trunc_div (mult @0 integer_pow2p@1) @1)
618 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
619 (bit_and @0 { wide_int_to_tree
620 (type, wi::mask (TYPE_PRECISION (type)
621 - wi::exact_log2 (wi::to_wide (@1)),
622 false, TYPE_PRECISION (type))); })))
623
624 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
625 (simplify
626 (mult (trunc_div @0 integer_pow2p@1) @1)
627 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
628 (bit_and @0 (negate @1))))
629
630 /* Simplify (t * 2) / 2) -> t. */
631 (for div (trunc_div ceil_div floor_div round_div exact_div)
632 (simplify
633 (div (mult:c @0 @1) @1)
634 (if (ANY_INTEGRAL_TYPE_P (type)
635 && TYPE_OVERFLOW_UNDEFINED (type))
636 @0)))
637
638 (for op (negate abs)
639 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
640 (for coss (COS COSH)
641 (simplify
642 (coss (op @0))
643 (coss @0)))
644 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
645 (for pows (POW)
646 (simplify
647 (pows (op @0) REAL_CST@1)
648 (with { HOST_WIDE_INT n; }
649 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
650 (pows @0 @1)))))
651 /* Likewise for powi. */
652 (for pows (POWI)
653 (simplify
654 (pows (op @0) INTEGER_CST@1)
655 (if ((wi::to_wide (@1) & 1) == 0)
656 (pows @0 @1))))
657 /* Strip negate and abs from both operands of hypot. */
658 (for hypots (HYPOT)
659 (simplify
660 (hypots (op @0) @1)
661 (hypots @0 @1))
662 (simplify
663 (hypots @0 (op @1))
664 (hypots @0 @1)))
665 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
666 (for copysigns (COPYSIGN_ALL)
667 (simplify
668 (copysigns (op @0) @1)
669 (copysigns @0 @1))))
670
671 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
672 (simplify
673 (mult (abs@1 @0) @1)
674 (mult @0 @0))
675
676 /* Convert absu(x)*absu(x) -> x*x. */
677 (simplify
678 (mult (absu@1 @0) @1)
679 (mult (convert@2 @0) @2))
680
681 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
682 (for coss (COS COSH)
683 copysigns (COPYSIGN)
684 (simplify
685 (coss (copysigns @0 @1))
686 (coss @0)))
687
688 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
689 (for pows (POW)
690 copysigns (COPYSIGN)
691 (simplify
692 (pows (copysigns @0 @2) REAL_CST@1)
693 (with { HOST_WIDE_INT n; }
694 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
695 (pows @0 @1)))))
696 /* Likewise for powi. */
697 (for pows (POWI)
698 copysigns (COPYSIGN)
699 (simplify
700 (pows (copysigns @0 @2) INTEGER_CST@1)
701 (if ((wi::to_wide (@1) & 1) == 0)
702 (pows @0 @1))))
703
704 (for hypots (HYPOT)
705 copysigns (COPYSIGN)
706 /* hypot(copysign(x, y), z) -> hypot(x, z). */
707 (simplify
708 (hypots (copysigns @0 @1) @2)
709 (hypots @0 @2))
710 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
711 (simplify
712 (hypots @0 (copysigns @1 @2))
713 (hypots @0 @1)))
714
715 /* copysign(x, CST) -> [-]abs (x). */
716 (for copysigns (COPYSIGN_ALL)
717 (simplify
718 (copysigns @0 REAL_CST@1)
719 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
720 (negate (abs @0))
721 (abs @0))))
722
723 /* copysign(copysign(x, y), z) -> copysign(x, z). */
724 (for copysigns (COPYSIGN_ALL)
725 (simplify
726 (copysigns (copysigns @0 @1) @2)
727 (copysigns @0 @2)))
728
729 /* copysign(x,y)*copysign(x,y) -> x*x. */
730 (for copysigns (COPYSIGN_ALL)
731 (simplify
732 (mult (copysigns@2 @0 @1) @2)
733 (mult @0 @0)))
734
735 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
736 (for ccoss (CCOS CCOSH)
737 (simplify
738 (ccoss (negate @0))
739 (ccoss @0)))
740
741 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
742 (for ops (conj negate)
743 (for cabss (CABS)
744 (simplify
745 (cabss (ops @0))
746 (cabss @0))))
747
748 /* Fold (a * (1 << b)) into (a << b) */
749 (simplify
750 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
751 (if (! FLOAT_TYPE_P (type)
752 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
753 (lshift @0 @2)))
754
755 /* Fold (1 << (C - x)) where C = precision(type) - 1
756 into ((1 << C) >> x). */
757 (simplify
758 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
759 (if (INTEGRAL_TYPE_P (type)
760 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
761 && single_use (@1))
762 (if (TYPE_UNSIGNED (type))
763 (rshift (lshift @0 @2) @3)
764 (with
765 { tree utype = unsigned_type_for (type); }
766 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
767
768 /* Fold (C1/X)*C2 into (C1*C2)/X. */
769 (simplify
770 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
771 (if (flag_associative_math
772 && single_use (@3))
773 (with
774 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
775 (if (tem)
776 (rdiv { tem; } @1)))))
777
778 /* Simplify ~X & X as zero. */
779 (simplify
780 (bit_and:c (convert? @0) (convert? (bit_not @0)))
781 { build_zero_cst (type); })
782
783 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
784 (simplify
785 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
786 (if (TYPE_UNSIGNED (type))
787 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
788
789 (for bitop (bit_and bit_ior)
790 cmp (eq ne)
791 /* PR35691: Transform
792 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
793 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
794 (simplify
795 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
796 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
797 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
798 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
799 (cmp (bit_ior @0 (convert @1)) @2)))
800 /* Transform:
801 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
802 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
803 (simplify
804 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
805 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
806 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
807 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
808 (cmp (bit_and @0 (convert @1)) @2))))
809
810 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
811 (simplify
812 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
813 (minus (bit_xor @0 @1) @1))
814 (simplify
815 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
816 (if (~wi::to_wide (@2) == wi::to_wide (@1))
817 (minus (bit_xor @0 @1) @1)))
818
819 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
820 (simplify
821 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
822 (minus @1 (bit_xor @0 @1)))
823
824 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
825 (for op (bit_ior bit_xor plus)
826 (simplify
827 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
828 (bit_xor @0 @1))
829 (simplify
830 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
831 (if (~wi::to_wide (@2) == wi::to_wide (@1))
832 (bit_xor @0 @1))))
833
834 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
835 (simplify
836 (bit_ior:c (bit_xor:c @0 @1) @0)
837 (bit_ior @0 @1))
838
839 /* (a & ~b) | (a ^ b) --> a ^ b */
840 (simplify
841 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
842 @2)
843
844 /* (a & ~b) ^ ~a --> ~(a & b) */
845 (simplify
846 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
847 (bit_not (bit_and @0 @1)))
848
849 /* (~a & b) ^ a --> (a | b) */
850 (simplify
851 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
852 (bit_ior @0 @1))
853
854 /* (a | b) & ~(a ^ b) --> a & b */
855 (simplify
856 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
857 (bit_and @0 @1))
858
859 /* a | ~(a ^ b) --> a | ~b */
860 (simplify
861 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
862 (bit_ior @0 (bit_not @1)))
863
864 /* (a | b) | (a &^ b) --> a | b */
865 (for op (bit_and bit_xor)
866 (simplify
867 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
868 @2))
869
870 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
871 (simplify
872 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
873 @2)
874
875 /* ~(~a & b) --> a | ~b */
876 (simplify
877 (bit_not (bit_and:cs (bit_not @0) @1))
878 (bit_ior @0 (bit_not @1)))
879
880 /* ~(~a | b) --> a & ~b */
881 (simplify
882 (bit_not (bit_ior:cs (bit_not @0) @1))
883 (bit_and @0 (bit_not @1)))
884
885 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
886 #if GIMPLE
887 (simplify
888 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
889 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
890 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
891 (bit_xor @0 @1)))
892 #endif
893
894 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
895 ((A & N) + B) & M -> (A + B) & M
896 Similarly if (N & M) == 0,
897 ((A | N) + B) & M -> (A + B) & M
898 and for - instead of + (or unary - instead of +)
899 and/or ^ instead of |.
900 If B is constant and (B & M) == 0, fold into A & M. */
901 (for op (plus minus)
902 (for bitop (bit_and bit_ior bit_xor)
903 (simplify
904 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
905 (with
906 { tree pmop[2];
907 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
908 @3, @4, @1, ERROR_MARK, NULL_TREE,
909 NULL_TREE, pmop); }
910 (if (utype)
911 (convert (bit_and (op (convert:utype { pmop[0]; })
912 (convert:utype { pmop[1]; }))
913 (convert:utype @2))))))
914 (simplify
915 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
916 (with
917 { tree pmop[2];
918 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
919 NULL_TREE, NULL_TREE, @1, bitop, @3,
920 @4, pmop); }
921 (if (utype)
922 (convert (bit_and (op (convert:utype { pmop[0]; })
923 (convert:utype { pmop[1]; }))
924 (convert:utype @2)))))))
925 (simplify
926 (bit_and (op:s @0 @1) INTEGER_CST@2)
927 (with
928 { tree pmop[2];
929 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
930 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
931 NULL_TREE, NULL_TREE, pmop); }
932 (if (utype)
933 (convert (bit_and (op (convert:utype { pmop[0]; })
934 (convert:utype { pmop[1]; }))
935 (convert:utype @2)))))))
936 (for bitop (bit_and bit_ior bit_xor)
937 (simplify
938 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
939 (with
940 { tree pmop[2];
941 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
942 bitop, @2, @3, NULL_TREE, ERROR_MARK,
943 NULL_TREE, NULL_TREE, pmop); }
944 (if (utype)
945 (convert (bit_and (negate (convert:utype { pmop[0]; }))
946 (convert:utype @1)))))))
947
948 /* X % Y is smaller than Y. */
949 (for cmp (lt ge)
950 (simplify
951 (cmp (trunc_mod @0 @1) @1)
952 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
953 { constant_boolean_node (cmp == LT_EXPR, type); })))
954 (for cmp (gt le)
955 (simplify
956 (cmp @1 (trunc_mod @0 @1))
957 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
958 { constant_boolean_node (cmp == GT_EXPR, type); })))
959
960 /* x | ~0 -> ~0 */
961 (simplify
962 (bit_ior @0 integer_all_onesp@1)
963 @1)
964
965 /* x | 0 -> x */
966 (simplify
967 (bit_ior @0 integer_zerop)
968 @0)
969
970 /* x & 0 -> 0 */
971 (simplify
972 (bit_and @0 integer_zerop@1)
973 @1)
974
975 /* ~x | x -> -1 */
976 /* ~x ^ x -> -1 */
977 /* ~x + x -> -1 */
978 (for op (bit_ior bit_xor plus)
979 (simplify
980 (op:c (convert? @0) (convert? (bit_not @0)))
981 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
982
983 /* x ^ x -> 0 */
984 (simplify
985 (bit_xor @0 @0)
986 { build_zero_cst (type); })
987
988 /* Canonicalize X ^ ~0 to ~X. */
989 (simplify
990 (bit_xor @0 integer_all_onesp@1)
991 (bit_not @0))
992
993 /* x & ~0 -> x */
994 (simplify
995 (bit_and @0 integer_all_onesp)
996 (non_lvalue @0))
997
998 /* x & x -> x, x | x -> x */
999 (for bitop (bit_and bit_ior)
1000 (simplify
1001 (bitop @0 @0)
1002 (non_lvalue @0)))
1003
1004 /* x & C -> x if we know that x & ~C == 0. */
1005 #if GIMPLE
1006 (simplify
1007 (bit_and SSA_NAME@0 INTEGER_CST@1)
1008 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1009 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1010 @0))
1011 #endif
1012
1013 /* x + (x & 1) -> (x + 1) & ~1 */
1014 (simplify
1015 (plus:c @0 (bit_and:s @0 integer_onep@1))
1016 (bit_and (plus @0 @1) (bit_not @1)))
1017
1018 /* x & ~(x & y) -> x & ~y */
1019 /* x | ~(x | y) -> x | ~y */
1020 (for bitop (bit_and bit_ior)
1021 (simplify
1022 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1023 (bitop @0 (bit_not @1))))
1024
1025 /* (~x & y) | ~(x | y) -> ~x */
1026 (simplify
1027 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1028 @2)
1029
1030 /* (x | y) ^ (x | ~y) -> ~x */
1031 (simplify
1032 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1033 (bit_not @0))
1034
1035 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1036 (simplify
1037 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1038 (bit_not (bit_xor @0 @1)))
1039
1040 /* (~x | y) ^ (x ^ y) -> x | ~y */
1041 (simplify
1042 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1043 (bit_ior @0 (bit_not @1)))
1044
1045 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1046 (simplify
1047 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1048 (bit_not (bit_and @0 @1)))
1049
1050 /* (x | y) & ~x -> y & ~x */
1051 /* (x & y) | ~x -> y | ~x */
1052 (for bitop (bit_and bit_ior)
1053 rbitop (bit_ior bit_and)
1054 (simplify
1055 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1056 (bitop @1 @2)))
1057
1058 /* (x & y) ^ (x | y) -> x ^ y */
1059 (simplify
1060 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1061 (bit_xor @0 @1))
1062
1063 /* (x ^ y) ^ (x | y) -> x & y */
1064 (simplify
1065 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1066 (bit_and @0 @1))
1067
1068 /* (x & y) + (x ^ y) -> x | y */
1069 /* (x & y) | (x ^ y) -> x | y */
1070 /* (x & y) ^ (x ^ y) -> x | y */
1071 (for op (plus bit_ior bit_xor)
1072 (simplify
1073 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1074 (bit_ior @0 @1)))
1075
1076 /* (x & y) + (x | y) -> x + y */
1077 (simplify
1078 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1079 (plus @0 @1))
1080
1081 /* (x + y) - (x | y) -> x & y */
1082 (simplify
1083 (minus (plus @0 @1) (bit_ior @0 @1))
1084 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1085 && !TYPE_SATURATING (type))
1086 (bit_and @0 @1)))
1087
1088 /* (x + y) - (x & y) -> x | y */
1089 (simplify
1090 (minus (plus @0 @1) (bit_and @0 @1))
1091 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1092 && !TYPE_SATURATING (type))
1093 (bit_ior @0 @1)))
1094
1095 /* (x | y) - (x ^ y) -> x & y */
1096 (simplify
1097 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1098 (bit_and @0 @1))
1099
1100 /* (x | y) - (x & y) -> x ^ y */
1101 (simplify
1102 (minus (bit_ior @0 @1) (bit_and @0 @1))
1103 (bit_xor @0 @1))
1104
1105 /* (x | y) & ~(x & y) -> x ^ y */
1106 (simplify
1107 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1108 (bit_xor @0 @1))
1109
1110 /* (x | y) & (~x ^ y) -> x & y */
1111 (simplify
1112 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1113 (bit_and @0 @1))
1114
1115 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1116 (simplify
1117 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1118 (bit_not (bit_xor @0 @1)))
1119
1120 /* (~x | y) ^ (x | ~y) -> x ^ y */
1121 (simplify
1122 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1123 (bit_xor @0 @1))
1124
1125 /* ~x & ~y -> ~(x | y)
1126 ~x | ~y -> ~(x & y) */
1127 (for op (bit_and bit_ior)
1128 rop (bit_ior bit_and)
1129 (simplify
1130 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1131 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1132 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1133 (bit_not (rop (convert @0) (convert @1))))))
1134
1135 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1136 with a constant, and the two constants have no bits in common,
1137 we should treat this as a BIT_IOR_EXPR since this may produce more
1138 simplifications. */
1139 (for op (bit_xor plus)
1140 (simplify
1141 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1142 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1143 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1144 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1145 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1146 (bit_ior (convert @4) (convert @5)))))
1147
1148 /* (X | Y) ^ X -> Y & ~ X*/
1149 (simplify
1150 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1152 (convert (bit_and @1 (bit_not @0)))))
1153
1154 /* Convert ~X ^ ~Y to X ^ Y. */
1155 (simplify
1156 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1157 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1158 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1159 (bit_xor (convert @0) (convert @1))))
1160
1161 /* Convert ~X ^ C to X ^ ~C. */
1162 (simplify
1163 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1164 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1165 (bit_xor (convert @0) (bit_not @1))))
1166
1167 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1168 (for opo (bit_and bit_xor)
1169 opi (bit_xor bit_and)
1170 (simplify
1171 (opo:c (opi:cs @0 @1) @1)
1172 (bit_and (bit_not @0) @1)))
1173
1174 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1175 operands are another bit-wise operation with a common input. If so,
1176 distribute the bit operations to save an operation and possibly two if
1177 constants are involved. For example, convert
1178 (A | B) & (A | C) into A | (B & C)
1179 Further simplification will occur if B and C are constants. */
1180 (for op (bit_and bit_ior bit_xor)
1181 rop (bit_ior bit_and bit_and)
1182 (simplify
1183 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1184 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1185 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1186 (rop (convert @0) (op (convert @1) (convert @2))))))
1187
1188 /* Some simple reassociation for bit operations, also handled in reassoc. */
1189 /* (X & Y) & Y -> X & Y
1190 (X | Y) | Y -> X | Y */
1191 (for op (bit_and bit_ior)
1192 (simplify
1193 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1194 @2))
1195 /* (X ^ Y) ^ Y -> X */
1196 (simplify
1197 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1198 (convert @0))
1199 /* (X & Y) & (X & Z) -> (X & Y) & Z
1200 (X | Y) | (X | Z) -> (X | Y) | Z */
1201 (for op (bit_and bit_ior)
1202 (simplify
1203 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1204 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1205 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1206 (if (single_use (@5) && single_use (@6))
1207 (op @3 (convert @2))
1208 (if (single_use (@3) && single_use (@4))
1209 (op (convert @1) @5))))))
1210 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1211 (simplify
1212 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1214 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1215 (bit_xor (convert @1) (convert @2))))
1216
1217 /* Convert abs (abs (X)) into abs (X).
1218 also absu (absu (X)) into absu (X). */
1219 (simplify
1220 (abs (abs@1 @0))
1221 @1)
1222
1223 (simplify
1224 (absu (convert@2 (absu@1 @0)))
1225 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1226 @1))
1227
1228 /* Convert abs[u] (-X) -> abs[u] (X). */
1229 (simplify
1230 (abs (negate @0))
1231 (abs @0))
1232
1233 (simplify
1234 (absu (negate @0))
1235 (absu @0))
1236
1237 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1238 (simplify
1239 (abs tree_expr_nonnegative_p@0)
1240 @0)
1241
1242 (simplify
1243 (absu tree_expr_nonnegative_p@0)
1244 (convert @0))
1245
1246 /* A few cases of fold-const.c negate_expr_p predicate. */
1247 (match negate_expr_p
1248 INTEGER_CST
1249 (if ((INTEGRAL_TYPE_P (type)
1250 && TYPE_UNSIGNED (type))
1251 || (!TYPE_OVERFLOW_SANITIZED (type)
1252 && may_negate_without_overflow_p (t)))))
1253 (match negate_expr_p
1254 FIXED_CST)
1255 (match negate_expr_p
1256 (negate @0)
1257 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1258 (match negate_expr_p
1259 REAL_CST
1260 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1261 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1262 ways. */
1263 (match negate_expr_p
1264 VECTOR_CST
1265 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1266 (match negate_expr_p
1267 (minus @0 @1)
1268 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1269 || (FLOAT_TYPE_P (type)
1270 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1271 && !HONOR_SIGNED_ZEROS (type)))))
1272
1273 /* (-A) * (-B) -> A * B */
1274 (simplify
1275 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1276 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1277 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1278 (mult (convert @0) (convert (negate @1)))))
1279
1280 /* -(A + B) -> (-B) - A. */
1281 (simplify
1282 (negate (plus:c @0 negate_expr_p@1))
1283 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1284 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1285 (minus (negate @1) @0)))
1286
1287 /* -(A - B) -> B - A. */
1288 (simplify
1289 (negate (minus @0 @1))
1290 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1291 || (FLOAT_TYPE_P (type)
1292 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1293 && !HONOR_SIGNED_ZEROS (type)))
1294 (minus @1 @0)))
1295 (simplify
1296 (negate (pointer_diff @0 @1))
1297 (if (TYPE_OVERFLOW_UNDEFINED (type))
1298 (pointer_diff @1 @0)))
1299
1300 /* A - B -> A + (-B) if B is easily negatable. */
1301 (simplify
1302 (minus @0 negate_expr_p@1)
1303 (if (!FIXED_POINT_TYPE_P (type))
1304 (plus @0 (negate @1))))
1305
1306 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1307 when profitable.
1308 For bitwise binary operations apply operand conversions to the
1309 binary operation result instead of to the operands. This allows
1310 to combine successive conversions and bitwise binary operations.
1311 We combine the above two cases by using a conditional convert. */
1312 (for bitop (bit_and bit_ior bit_xor)
1313 (simplify
1314 (bitop (convert @0) (convert? @1))
1315 (if (((TREE_CODE (@1) == INTEGER_CST
1316 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1317 && int_fits_type_p (@1, TREE_TYPE (@0)))
1318 || types_match (@0, @1))
1319 /* ??? This transform conflicts with fold-const.c doing
1320 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1321 constants (if x has signed type, the sign bit cannot be set
1322 in c). This folds extension into the BIT_AND_EXPR.
1323 Restrict it to GIMPLE to avoid endless recursions. */
1324 && (bitop != BIT_AND_EXPR || GIMPLE)
1325 && (/* That's a good idea if the conversion widens the operand, thus
1326 after hoisting the conversion the operation will be narrower. */
1327 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1328 /* It's also a good idea if the conversion is to a non-integer
1329 mode. */
1330 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1331 /* Or if the precision of TO is not the same as the precision
1332 of its mode. */
1333 || !type_has_mode_precision_p (type)))
1334 (convert (bitop @0 (convert @1))))))
1335
1336 (for bitop (bit_and bit_ior)
1337 rbitop (bit_ior bit_and)
1338 /* (x | y) & x -> x */
1339 /* (x & y) | x -> x */
1340 (simplify
1341 (bitop:c (rbitop:c @0 @1) @0)
1342 @0)
1343 /* (~x | y) & x -> x & y */
1344 /* (~x & y) | x -> x | y */
1345 (simplify
1346 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1347 (bitop @0 @1)))
1348
1349 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1350 (simplify
1351 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1352 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1353
1354 /* Combine successive equal operations with constants. */
1355 (for bitop (bit_and bit_ior bit_xor)
1356 (simplify
1357 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1358 (if (!CONSTANT_CLASS_P (@0))
1359 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1360 folded to a constant. */
1361 (bitop @0 (bitop @1 @2))
1362 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1363 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1364 the values involved are such that the operation can't be decided at
1365 compile time. Try folding one of @0 or @1 with @2 to see whether
1366 that combination can be decided at compile time.
1367
1368 Keep the existing form if both folds fail, to avoid endless
1369 oscillation. */
1370 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1371 (if (cst1)
1372 (bitop @1 { cst1; })
1373 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1374 (if (cst2)
1375 (bitop @0 { cst2; }))))))))
1376
1377 /* Try simple folding for X op !X, and X op X with the help
1378 of the truth_valued_p and logical_inverted_value predicates. */
1379 (match truth_valued_p
1380 @0
1381 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1382 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1383 (match truth_valued_p
1384 (op @0 @1)))
1385 (match truth_valued_p
1386 (truth_not @0))
1387
1388 (match (logical_inverted_value @0)
1389 (truth_not @0))
1390 (match (logical_inverted_value @0)
1391 (bit_not truth_valued_p@0))
1392 (match (logical_inverted_value @0)
1393 (eq @0 integer_zerop))
1394 (match (logical_inverted_value @0)
1395 (ne truth_valued_p@0 integer_truep))
1396 (match (logical_inverted_value @0)
1397 (bit_xor truth_valued_p@0 integer_truep))
1398
1399 /* X & !X -> 0. */
1400 (simplify
1401 (bit_and:c @0 (logical_inverted_value @0))
1402 { build_zero_cst (type); })
1403 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1404 (for op (bit_ior bit_xor)
1405 (simplify
1406 (op:c truth_valued_p@0 (logical_inverted_value @0))
1407 { constant_boolean_node (true, type); }))
1408 /* X ==/!= !X is false/true. */
1409 (for op (eq ne)
1410 (simplify
1411 (op:c truth_valued_p@0 (logical_inverted_value @0))
1412 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1413
1414 /* ~~x -> x */
1415 (simplify
1416 (bit_not (bit_not @0))
1417 @0)
1418
1419 /* Convert ~ (-A) to A - 1. */
1420 (simplify
1421 (bit_not (convert? (negate @0)))
1422 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1423 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1424 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1425
1426 /* Convert - (~A) to A + 1. */
1427 (simplify
1428 (negate (nop_convert? (bit_not @0)))
1429 (plus (view_convert @0) { build_each_one_cst (type); }))
1430
1431 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1432 (simplify
1433 (bit_not (convert? (minus @0 integer_each_onep)))
1434 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1435 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1436 (convert (negate @0))))
1437 (simplify
1438 (bit_not (convert? (plus @0 integer_all_onesp)))
1439 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1440 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1441 (convert (negate @0))))
1442
1443 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1444 (simplify
1445 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1446 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1447 (convert (bit_xor @0 (bit_not @1)))))
1448 (simplify
1449 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1450 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1451 (convert (bit_xor @0 @1))))
1452
1453 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1454 (simplify
1455 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1456 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1457 (bit_not (bit_xor (view_convert @0) @1))))
1458
1459 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1460 (simplify
1461 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1462 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1463
1464 /* Fold A - (A & B) into ~B & A. */
1465 (simplify
1466 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1467 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1468 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1469 (convert (bit_and (bit_not @1) @0))))
1470
1471 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1472 (for cmp (gt lt ge le)
1473 (simplify
1474 (mult (convert (cmp @0 @1)) @2)
1475 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1476
1477 /* For integral types with undefined overflow and C != 0 fold
1478 x * C EQ/NE y * C into x EQ/NE y. */
1479 (for cmp (eq ne)
1480 (simplify
1481 (cmp (mult:c @0 @1) (mult:c @2 @1))
1482 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1483 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1484 && tree_expr_nonzero_p (@1))
1485 (cmp @0 @2))))
1486
1487 /* For integral types with wrapping overflow and C odd fold
1488 x * C EQ/NE y * C into x EQ/NE y. */
1489 (for cmp (eq ne)
1490 (simplify
1491 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1492 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1493 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1494 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1495 (cmp @0 @2))))
1496
1497 /* For integral types with undefined overflow and C != 0 fold
1498 x * C RELOP y * C into:
1499
1500 x RELOP y for nonnegative C
1501 y RELOP x for negative C */
1502 (for cmp (lt gt le ge)
1503 (simplify
1504 (cmp (mult:c @0 @1) (mult:c @2 @1))
1505 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1506 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1507 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1508 (cmp @0 @2)
1509 (if (TREE_CODE (@1) == INTEGER_CST
1510 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1511 (cmp @2 @0))))))
1512
1513 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1514 (for cmp (le gt)
1515 icmp (gt le)
1516 (simplify
1517 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1518 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1519 && TYPE_UNSIGNED (TREE_TYPE (@0))
1520 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1521 && (wi::to_wide (@2)
1522 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1523 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1524 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1525
1526 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1527 (for cmp (simple_comparison)
1528 (simplify
1529 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1530 (if (element_precision (@3) >= element_precision (@0)
1531 && types_match (@0, @1))
1532 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1533 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1534 (cmp @1 @0)
1535 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1536 (with
1537 {
1538 tree utype = unsigned_type_for (TREE_TYPE (@0));
1539 }
1540 (cmp (convert:utype @1) (convert:utype @0)))))
1541 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1542 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1543 (cmp @0 @1)
1544 (with
1545 {
1546 tree utype = unsigned_type_for (TREE_TYPE (@0));
1547 }
1548 (cmp (convert:utype @0) (convert:utype @1)))))))))
1549
1550 /* X / C1 op C2 into a simple range test. */
1551 (for cmp (simple_comparison)
1552 (simplify
1553 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1554 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1555 && integer_nonzerop (@1)
1556 && !TREE_OVERFLOW (@1)
1557 && !TREE_OVERFLOW (@2))
1558 (with { tree lo, hi; bool neg_overflow;
1559 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1560 &neg_overflow); }
1561 (switch
1562 (if (code == LT_EXPR || code == GE_EXPR)
1563 (if (TREE_OVERFLOW (lo))
1564 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1565 (if (code == LT_EXPR)
1566 (lt @0 { lo; })
1567 (ge @0 { lo; }))))
1568 (if (code == LE_EXPR || code == GT_EXPR)
1569 (if (TREE_OVERFLOW (hi))
1570 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1571 (if (code == LE_EXPR)
1572 (le @0 { hi; })
1573 (gt @0 { hi; }))))
1574 (if (!lo && !hi)
1575 { build_int_cst (type, code == NE_EXPR); })
1576 (if (code == EQ_EXPR && !hi)
1577 (ge @0 { lo; }))
1578 (if (code == EQ_EXPR && !lo)
1579 (le @0 { hi; }))
1580 (if (code == NE_EXPR && !hi)
1581 (lt @0 { lo; }))
1582 (if (code == NE_EXPR && !lo)
1583 (gt @0 { hi; }))
1584 (if (GENERIC)
1585 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1586 lo, hi); })
1587 (with
1588 {
1589 tree etype = range_check_type (TREE_TYPE (@0));
1590 if (etype)
1591 {
1592 hi = fold_convert (etype, hi);
1593 lo = fold_convert (etype, lo);
1594 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1595 }
1596 }
1597 (if (etype && hi && !TREE_OVERFLOW (hi))
1598 (if (code == EQ_EXPR)
1599 (le (minus (convert:etype @0) { lo; }) { hi; })
1600 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1601
1602 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1603 (for op (lt le ge gt)
1604 (simplify
1605 (op (plus:c @0 @2) (plus:c @1 @2))
1606 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1607 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1608 (op @0 @1))))
1609 /* For equality and subtraction, this is also true with wrapping overflow. */
1610 (for op (eq ne minus)
1611 (simplify
1612 (op (plus:c @0 @2) (plus:c @1 @2))
1613 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1614 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1615 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1616 (op @0 @1))))
1617
1618 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1619 (for op (lt le ge gt)
1620 (simplify
1621 (op (minus @0 @2) (minus @1 @2))
1622 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1623 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1624 (op @0 @1))))
1625 /* For equality and subtraction, this is also true with wrapping overflow. */
1626 (for op (eq ne minus)
1627 (simplify
1628 (op (minus @0 @2) (minus @1 @2))
1629 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1630 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1631 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1632 (op @0 @1))))
1633 /* And for pointers... */
1634 (for op (simple_comparison)
1635 (simplify
1636 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1637 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1638 (op @0 @1))))
1639 (simplify
1640 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1641 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1642 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1643 (pointer_diff @0 @1)))
1644
1645 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1646 (for op (lt le ge gt)
1647 (simplify
1648 (op (minus @2 @0) (minus @2 @1))
1649 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1650 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1651 (op @1 @0))))
1652 /* For equality and subtraction, this is also true with wrapping overflow. */
1653 (for op (eq ne minus)
1654 (simplify
1655 (op (minus @2 @0) (minus @2 @1))
1656 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1657 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1658 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1659 (op @1 @0))))
1660 /* And for pointers... */
1661 (for op (simple_comparison)
1662 (simplify
1663 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1664 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1665 (op @1 @0))))
1666 (simplify
1667 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1668 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1669 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1670 (pointer_diff @1 @0)))
1671
1672 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1673 (for op (lt le gt ge)
1674 (simplify
1675 (op:c (plus:c@2 @0 @1) @1)
1676 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1677 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1679 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1680 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1681 /* For equality, this is also true with wrapping overflow. */
1682 (for op (eq ne)
1683 (simplify
1684 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1685 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1686 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1687 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1688 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1689 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1690 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1691 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1692 (simplify
1693 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1694 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1695 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1696 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1697 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1698
1699 /* X - Y < X is the same as Y > 0 when there is no overflow.
1700 For equality, this is also true with wrapping overflow. */
1701 (for op (simple_comparison)
1702 (simplify
1703 (op:c @0 (minus@2 @0 @1))
1704 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1705 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1706 || ((op == EQ_EXPR || op == NE_EXPR)
1707 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1708 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1709 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1710
1711 /* Transform:
1712 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1713 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1714 (for cmp (eq ne)
1715 ocmp (lt ge)
1716 (simplify
1717 (cmp (trunc_div @0 @1) integer_zerop)
1718 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1719 /* Complex ==/!= is allowed, but not </>=. */
1720 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1721 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1722 (ocmp @0 @1))))
1723
1724 /* X == C - X can never be true if C is odd. */
1725 (for cmp (eq ne)
1726 (simplify
1727 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1728 (if (TREE_INT_CST_LOW (@1) & 1)
1729 { constant_boolean_node (cmp == NE_EXPR, type); })))
1730
1731 /* Arguments on which one can call get_nonzero_bits to get the bits
1732 possibly set. */
1733 (match with_possible_nonzero_bits
1734 INTEGER_CST@0)
1735 (match with_possible_nonzero_bits
1736 SSA_NAME@0
1737 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1738 /* Slightly extended version, do not make it recursive to keep it cheap. */
1739 (match (with_possible_nonzero_bits2 @0)
1740 with_possible_nonzero_bits@0)
1741 (match (with_possible_nonzero_bits2 @0)
1742 (bit_and:c with_possible_nonzero_bits@0 @2))
1743
1744 /* Same for bits that are known to be set, but we do not have
1745 an equivalent to get_nonzero_bits yet. */
1746 (match (with_certain_nonzero_bits2 @0)
1747 INTEGER_CST@0)
1748 (match (with_certain_nonzero_bits2 @0)
1749 (bit_ior @1 INTEGER_CST@0))
1750
1751 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1752 (for cmp (eq ne)
1753 (simplify
1754 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1755 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1756 { constant_boolean_node (cmp == NE_EXPR, type); })))
1757
1758 /* ((X inner_op C0) outer_op C1)
1759 With X being a tree where value_range has reasoned certain bits to always be
1760 zero throughout its computed value range,
1761 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1762 where zero_mask has 1's for all bits that are sure to be 0 in
1763 and 0's otherwise.
1764 if (inner_op == '^') C0 &= ~C1;
1765 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1766 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1767 */
1768 (for inner_op (bit_ior bit_xor)
1769 outer_op (bit_xor bit_ior)
1770 (simplify
1771 (outer_op
1772 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1773 (with
1774 {
1775 bool fail = false;
1776 wide_int zero_mask_not;
1777 wide_int C0;
1778 wide_int cst_emit;
1779
1780 if (TREE_CODE (@2) == SSA_NAME)
1781 zero_mask_not = get_nonzero_bits (@2);
1782 else
1783 fail = true;
1784
1785 if (inner_op == BIT_XOR_EXPR)
1786 {
1787 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1788 cst_emit = C0 | wi::to_wide (@1);
1789 }
1790 else
1791 {
1792 C0 = wi::to_wide (@0);
1793 cst_emit = C0 ^ wi::to_wide (@1);
1794 }
1795 }
1796 (if (!fail && (C0 & zero_mask_not) == 0)
1797 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1798 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1799 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1800
1801 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1802 (simplify
1803 (pointer_plus (pointer_plus:s @0 @1) @3)
1804 (pointer_plus @0 (plus @1 @3)))
1805
1806 /* Pattern match
1807 tem1 = (long) ptr1;
1808 tem2 = (long) ptr2;
1809 tem3 = tem2 - tem1;
1810 tem4 = (unsigned long) tem3;
1811 tem5 = ptr1 + tem4;
1812 and produce
1813 tem5 = ptr2; */
1814 (simplify
1815 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1816 /* Conditionally look through a sign-changing conversion. */
1817 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1818 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1819 || (GENERIC && type == TREE_TYPE (@1))))
1820 @1))
1821 (simplify
1822 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1823 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1824 (convert @1)))
1825
1826 /* Pattern match
1827 tem = (sizetype) ptr;
1828 tem = tem & algn;
1829 tem = -tem;
1830 ... = ptr p+ tem;
1831 and produce the simpler and easier to analyze with respect to alignment
1832 ... = ptr & ~algn; */
1833 (simplify
1834 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1835 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1836 (bit_and @0 { algn; })))
1837
1838 /* Try folding difference of addresses. */
1839 (simplify
1840 (minus (convert ADDR_EXPR@0) (convert @1))
1841 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1842 (with { poly_int64 diff; }
1843 (if (ptr_difference_const (@0, @1, &diff))
1844 { build_int_cst_type (type, diff); }))))
1845 (simplify
1846 (minus (convert @0) (convert ADDR_EXPR@1))
1847 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1848 (with { poly_int64 diff; }
1849 (if (ptr_difference_const (@0, @1, &diff))
1850 { build_int_cst_type (type, diff); }))))
1851 (simplify
1852 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1853 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1854 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1855 (with { poly_int64 diff; }
1856 (if (ptr_difference_const (@0, @1, &diff))
1857 { build_int_cst_type (type, diff); }))))
1858 (simplify
1859 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1860 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1861 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1862 (with { poly_int64 diff; }
1863 (if (ptr_difference_const (@0, @1, &diff))
1864 { build_int_cst_type (type, diff); }))))
1865
1866 /* If arg0 is derived from the address of an object or function, we may
1867 be able to fold this expression using the object or function's
1868 alignment. */
1869 (simplify
1870 (bit_and (convert? @0) INTEGER_CST@1)
1871 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1872 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1873 (with
1874 {
1875 unsigned int align;
1876 unsigned HOST_WIDE_INT bitpos;
1877 get_pointer_alignment_1 (@0, &align, &bitpos);
1878 }
1879 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1880 { wide_int_to_tree (type, (wi::to_wide (@1)
1881 & (bitpos / BITS_PER_UNIT))); }))))
1882
1883 (match min_value
1884 INTEGER_CST
1885 (if (INTEGRAL_TYPE_P (type)
1886 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1887
1888 (match max_value
1889 INTEGER_CST
1890 (if (INTEGRAL_TYPE_P (type)
1891 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1892
1893 /* x > y && x != XXX_MIN --> x > y
1894 x > y && x == XXX_MIN --> false . */
1895 (for eqne (eq ne)
1896 (simplify
1897 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1898 (switch
1899 (if (eqne == EQ_EXPR)
1900 { constant_boolean_node (false, type); })
1901 (if (eqne == NE_EXPR)
1902 @2)
1903 )))
1904
1905 /* x < y && x != XXX_MAX --> x < y
1906 x < y && x == XXX_MAX --> false. */
1907 (for eqne (eq ne)
1908 (simplify
1909 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1910 (switch
1911 (if (eqne == EQ_EXPR)
1912 { constant_boolean_node (false, type); })
1913 (if (eqne == NE_EXPR)
1914 @2)
1915 )))
1916
1917 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1918 (simplify
1919 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1920 @2)
1921
1922 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
1923 (simplify
1924 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1925 @2)
1926
1927 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
1928 (simplify
1929 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1930 @2)
1931
1932 /* x <= y || x != XXX_MIN --> true. */
1933 (simplify
1934 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1935 { constant_boolean_node (true, type); })
1936
1937 /* x <= y || x == XXX_MIN --> x <= y. */
1938 (simplify
1939 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1940 @2)
1941
1942 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
1943 (simplify
1944 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1945 @2)
1946
1947 /* x >= y || x != XXX_MAX --> true
1948 x >= y || x == XXX_MAX --> x >= y. */
1949 (for eqne (eq ne)
1950 (simplify
1951 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1952 (switch
1953 (if (eqne == EQ_EXPR)
1954 @2)
1955 (if (eqne == NE_EXPR)
1956 { constant_boolean_node (true, type); }))))
1957
1958 /* Convert (X == CST1) && (X OP2 CST2) to a known value
1959 based on CST1 OP2 CST2. Similarly for (X != CST1). */
1960
1961 (for code1 (eq ne)
1962 (for code2 (eq ne lt gt le ge)
1963 (simplify
1964 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1965 (with
1966 {
1967 int cmp = tree_int_cst_compare (@1, @2);
1968 bool val;
1969 switch (code2)
1970 {
1971 case EQ_EXPR: val = (cmp == 0); break;
1972 case NE_EXPR: val = (cmp != 0); break;
1973 case LT_EXPR: val = (cmp < 0); break;
1974 case GT_EXPR: val = (cmp > 0); break;
1975 case LE_EXPR: val = (cmp <= 0); break;
1976 case GE_EXPR: val = (cmp >= 0); break;
1977 default: gcc_unreachable ();
1978 }
1979 }
1980 (switch
1981 (if (code1 == EQ_EXPR && val) @3)
1982 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
1983 (if (code1 == NE_EXPR && !val) @4))))))
1984
1985 /* Convert (X OP1 CST1) && (X OP2 CST2). */
1986
1987 (for code1 (lt le gt ge)
1988 (for code2 (lt le gt ge)
1989 (simplify
1990 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
1991 (with
1992 {
1993 int cmp = tree_int_cst_compare (@1, @2);
1994 }
1995 (switch
1996 /* Choose the more restrictive of two < or <= comparisons. */
1997 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
1998 && (code2 == LT_EXPR || code2 == LE_EXPR))
1999 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2000 @3
2001 @4))
2002 /* Likewise chose the more restrictive of two > or >= comparisons. */
2003 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2004 && (code2 == GT_EXPR || code2 == GE_EXPR))
2005 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2006 @3
2007 @4))
2008 /* Check for singleton ranges. */
2009 (if (cmp == 0
2010 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2011 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2012 (eq @0 @1))
2013 /* Check for disjoint ranges. */
2014 (if (cmp <= 0
2015 && (code1 == LT_EXPR || code1 == LE_EXPR)
2016 && (code2 == GT_EXPR || code2 == GE_EXPR))
2017 { constant_boolean_node (false, type); })
2018 (if (cmp >= 0
2019 && (code1 == GT_EXPR || code1 == GE_EXPR)
2020 && (code2 == LT_EXPR || code2 == LE_EXPR))
2021 { constant_boolean_node (false, type); })
2022 )))))
2023
2024 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2025 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2026
2027 (for code1 (eq ne)
2028 (for code2 (eq ne lt gt le ge)
2029 (simplify
2030 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2031 (with
2032 {
2033 int cmp = tree_int_cst_compare (@1, @2);
2034 bool val;
2035 switch (code2)
2036 {
2037 case EQ_EXPR: val = (cmp == 0); break;
2038 case NE_EXPR: val = (cmp != 0); break;
2039 case LT_EXPR: val = (cmp < 0); break;
2040 case GT_EXPR: val = (cmp > 0); break;
2041 case LE_EXPR: val = (cmp <= 0); break;
2042 case GE_EXPR: val = (cmp >= 0); break;
2043 default: gcc_unreachable ();
2044 }
2045 }
2046 (switch
2047 (if (code1 == EQ_EXPR && val) @4)
2048 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2049 (if (code1 == NE_EXPR && !val) @3))))))
2050
2051 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2052
2053 (for code1 (lt le gt ge)
2054 (for code2 (lt le gt ge)
2055 (simplify
2056 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2057 (with
2058 {
2059 int cmp = tree_int_cst_compare (@1, @2);
2060 }
2061 (switch
2062 /* Choose the more restrictive of two < or <= comparisons. */
2063 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2064 && (code2 == LT_EXPR || code2 == LE_EXPR))
2065 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2066 @4
2067 @3))
2068 /* Likewise chose the more restrictive of two > or >= comparisons. */
2069 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2070 && (code2 == GT_EXPR || code2 == GE_EXPR))
2071 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2072 @4
2073 @3))
2074 /* Check for singleton ranges. */
2075 (if (cmp == 0
2076 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2077 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2078 (ne @0 @2))
2079 /* Check for disjoint ranges. */
2080 (if (cmp >= 0
2081 && (code1 == LT_EXPR || code1 == LE_EXPR)
2082 && (code2 == GT_EXPR || code2 == GE_EXPR))
2083 { constant_boolean_node (true, type); })
2084 (if (cmp <= 0
2085 && (code1 == GT_EXPR || code1 == GE_EXPR)
2086 && (code2 == LT_EXPR || code2 == LE_EXPR))
2087 { constant_boolean_node (true, type); })
2088 )))))
2089
2090 /* We can't reassociate at all for saturating types. */
2091 (if (!TYPE_SATURATING (type))
2092
2093 /* Contract negates. */
2094 /* A + (-B) -> A - B */
2095 (simplify
2096 (plus:c @0 (convert? (negate @1)))
2097 /* Apply STRIP_NOPS on the negate. */
2098 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2099 && !TYPE_OVERFLOW_SANITIZED (type))
2100 (with
2101 {
2102 tree t1 = type;
2103 if (INTEGRAL_TYPE_P (type)
2104 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2105 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2106 }
2107 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2108 /* A - (-B) -> A + B */
2109 (simplify
2110 (minus @0 (convert? (negate @1)))
2111 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2112 && !TYPE_OVERFLOW_SANITIZED (type))
2113 (with
2114 {
2115 tree t1 = type;
2116 if (INTEGRAL_TYPE_P (type)
2117 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2118 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2119 }
2120 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2121 /* -(T)(-A) -> (T)A
2122 Sign-extension is ok except for INT_MIN, which thankfully cannot
2123 happen without overflow. */
2124 (simplify
2125 (negate (convert (negate @1)))
2126 (if (INTEGRAL_TYPE_P (type)
2127 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2128 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2129 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2130 && !TYPE_OVERFLOW_SANITIZED (type)
2131 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2132 (convert @1)))
2133 (simplify
2134 (negate (convert negate_expr_p@1))
2135 (if (SCALAR_FLOAT_TYPE_P (type)
2136 && ((DECIMAL_FLOAT_TYPE_P (type)
2137 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2138 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2139 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2140 (convert (negate @1))))
2141 (simplify
2142 (negate (nop_convert? (negate @1)))
2143 (if (!TYPE_OVERFLOW_SANITIZED (type)
2144 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2145 (view_convert @1)))
2146
2147 /* We can't reassociate floating-point unless -fassociative-math
2148 or fixed-point plus or minus because of saturation to +-Inf. */
2149 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2150 && !FIXED_POINT_TYPE_P (type))
2151
2152 /* Match patterns that allow contracting a plus-minus pair
2153 irrespective of overflow issues. */
2154 /* (A +- B) - A -> +- B */
2155 /* (A +- B) -+ B -> A */
2156 /* A - (A +- B) -> -+ B */
2157 /* A +- (B -+ A) -> +- B */
2158 (simplify
2159 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2160 (view_convert @1))
2161 (simplify
2162 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2163 (if (!ANY_INTEGRAL_TYPE_P (type)
2164 || TYPE_OVERFLOW_WRAPS (type))
2165 (negate (view_convert @1))
2166 (view_convert (negate @1))))
2167 (simplify
2168 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2169 (view_convert @0))
2170 (simplify
2171 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2172 (if (!ANY_INTEGRAL_TYPE_P (type)
2173 || TYPE_OVERFLOW_WRAPS (type))
2174 (negate (view_convert @1))
2175 (view_convert (negate @1))))
2176 (simplify
2177 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2178 (view_convert @1))
2179 /* (A +- B) + (C - A) -> C +- B */
2180 /* (A + B) - (A - C) -> B + C */
2181 /* More cases are handled with comparisons. */
2182 (simplify
2183 (plus:c (plus:c @0 @1) (minus @2 @0))
2184 (plus @2 @1))
2185 (simplify
2186 (plus:c (minus @0 @1) (minus @2 @0))
2187 (minus @2 @1))
2188 (simplify
2189 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2190 (if (TYPE_OVERFLOW_UNDEFINED (type)
2191 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2192 (pointer_diff @2 @1)))
2193 (simplify
2194 (minus (plus:c @0 @1) (minus @0 @2))
2195 (plus @1 @2))
2196
2197 /* (A +- CST1) +- CST2 -> A + CST3
2198 Use view_convert because it is safe for vectors and equivalent for
2199 scalars. */
2200 (for outer_op (plus minus)
2201 (for inner_op (plus minus)
2202 neg_inner_op (minus plus)
2203 (simplify
2204 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2205 CONSTANT_CLASS_P@2)
2206 /* If one of the types wraps, use that one. */
2207 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2208 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2209 forever if something doesn't simplify into a constant. */
2210 (if (!CONSTANT_CLASS_P (@0))
2211 (if (outer_op == PLUS_EXPR)
2212 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2213 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2214 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2215 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2216 (if (outer_op == PLUS_EXPR)
2217 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2218 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2219 /* If the constant operation overflows we cannot do the transform
2220 directly as we would introduce undefined overflow, for example
2221 with (a - 1) + INT_MIN. */
2222 (if (types_match (type, @0))
2223 (with { tree cst = const_binop (outer_op == inner_op
2224 ? PLUS_EXPR : MINUS_EXPR,
2225 type, @1, @2); }
2226 (if (cst && !TREE_OVERFLOW (cst))
2227 (inner_op @0 { cst; } )
2228 /* X+INT_MAX+1 is X-INT_MIN. */
2229 (if (INTEGRAL_TYPE_P (type) && cst
2230 && wi::to_wide (cst) == wi::min_value (type))
2231 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2232 /* Last resort, use some unsigned type. */
2233 (with { tree utype = unsigned_type_for (type); }
2234 (if (utype)
2235 (view_convert (inner_op
2236 (view_convert:utype @0)
2237 (view_convert:utype
2238 { drop_tree_overflow (cst); }))))))))))))))
2239
2240 /* (CST1 - A) +- CST2 -> CST3 - A */
2241 (for outer_op (plus minus)
2242 (simplify
2243 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2244 /* If one of the types wraps, use that one. */
2245 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2246 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2247 forever if something doesn't simplify into a constant. */
2248 (if (!CONSTANT_CLASS_P (@0))
2249 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2250 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2251 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2252 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2253 (if (types_match (type, @0))
2254 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2255 (if (cst && !TREE_OVERFLOW (cst))
2256 (minus { cst; } @0))))))))
2257
2258 /* CST1 - (CST2 - A) -> CST3 + A
2259 Use view_convert because it is safe for vectors and equivalent for
2260 scalars. */
2261 (simplify
2262 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2263 /* If one of the types wraps, use that one. */
2264 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2265 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2266 forever if something doesn't simplify into a constant. */
2267 (if (!CONSTANT_CLASS_P (@0))
2268 (plus (view_convert @0) (minus @1 (view_convert @2))))
2269 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2270 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2271 (view_convert (plus @0 (minus (view_convert @1) @2)))
2272 (if (types_match (type, @0))
2273 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2274 (if (cst && !TREE_OVERFLOW (cst))
2275 (plus { cst; } @0)))))))
2276
2277 /* ((T)(A)) + CST -> (T)(A + CST) */
2278 #if GIMPLE
2279 (simplify
2280 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2281 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2282 && TREE_CODE (type) == INTEGER_TYPE
2283 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2284 && int_fits_type_p (@1, TREE_TYPE (@0)))
2285 /* Perform binary operation inside the cast if the constant fits
2286 and (A + CST)'s range does not overflow. */
2287 (with
2288 {
2289 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2290 max_ovf = wi::OVF_OVERFLOW;
2291 tree inner_type = TREE_TYPE (@0);
2292
2293 wide_int w1
2294 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2295 TYPE_SIGN (inner_type));
2296
2297 wide_int wmin0, wmax0;
2298 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2299 {
2300 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2301 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2302 }
2303 }
2304 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2305 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2306 )))
2307 #endif
2308
2309 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2310 #if GIMPLE
2311 (for op (plus minus)
2312 (simplify
2313 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2314 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2315 && TREE_CODE (type) == INTEGER_TYPE
2316 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2317 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2318 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2319 && TYPE_OVERFLOW_WRAPS (type))
2320 (plus (convert @0) (op @2 (convert @1))))))
2321 #endif
2322
2323 /* ~A + A -> -1 */
2324 (simplify
2325 (plus:c (bit_not @0) @0)
2326 (if (!TYPE_OVERFLOW_TRAPS (type))
2327 { build_all_ones_cst (type); }))
2328
2329 /* ~A + 1 -> -A */
2330 (simplify
2331 (plus (convert? (bit_not @0)) integer_each_onep)
2332 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2333 (negate (convert @0))))
2334
2335 /* -A - 1 -> ~A */
2336 (simplify
2337 (minus (convert? (negate @0)) integer_each_onep)
2338 (if (!TYPE_OVERFLOW_TRAPS (type)
2339 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2340 (bit_not (convert @0))))
2341
2342 /* -1 - A -> ~A */
2343 (simplify
2344 (minus integer_all_onesp @0)
2345 (bit_not @0))
2346
2347 /* (T)(P + A) - (T)P -> (T) A */
2348 (simplify
2349 (minus (convert (plus:c @@0 @1))
2350 (convert? @0))
2351 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2352 /* For integer types, if A has a smaller type
2353 than T the result depends on the possible
2354 overflow in P + A.
2355 E.g. T=size_t, A=(unsigned)429497295, P>0.
2356 However, if an overflow in P + A would cause
2357 undefined behavior, we can assume that there
2358 is no overflow. */
2359 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2360 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2361 (convert @1)))
2362 (simplify
2363 (minus (convert (pointer_plus @@0 @1))
2364 (convert @0))
2365 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2366 /* For pointer types, if the conversion of A to the
2367 final type requires a sign- or zero-extension,
2368 then we have to punt - it is not defined which
2369 one is correct. */
2370 || (POINTER_TYPE_P (TREE_TYPE (@0))
2371 && TREE_CODE (@1) == INTEGER_CST
2372 && tree_int_cst_sign_bit (@1) == 0))
2373 (convert @1)))
2374 (simplify
2375 (pointer_diff (pointer_plus @@0 @1) @0)
2376 /* The second argument of pointer_plus must be interpreted as signed, and
2377 thus sign-extended if necessary. */
2378 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2379 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2380 second arg is unsigned even when we need to consider it as signed,
2381 we don't want to diagnose overflow here. */
2382 (convert (view_convert:stype @1))))
2383
2384 /* (T)P - (T)(P + A) -> -(T) A */
2385 (simplify
2386 (minus (convert? @0)
2387 (convert (plus:c @@0 @1)))
2388 (if (INTEGRAL_TYPE_P (type)
2389 && TYPE_OVERFLOW_UNDEFINED (type)
2390 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2391 (with { tree utype = unsigned_type_for (type); }
2392 (convert (negate (convert:utype @1))))
2393 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2394 /* For integer types, if A has a smaller type
2395 than T the result depends on the possible
2396 overflow in P + A.
2397 E.g. T=size_t, A=(unsigned)429497295, P>0.
2398 However, if an overflow in P + A would cause
2399 undefined behavior, we can assume that there
2400 is no overflow. */
2401 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2402 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2403 (negate (convert @1)))))
2404 (simplify
2405 (minus (convert @0)
2406 (convert (pointer_plus @@0 @1)))
2407 (if (INTEGRAL_TYPE_P (type)
2408 && TYPE_OVERFLOW_UNDEFINED (type)
2409 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2410 (with { tree utype = unsigned_type_for (type); }
2411 (convert (negate (convert:utype @1))))
2412 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2413 /* For pointer types, if the conversion of A to the
2414 final type requires a sign- or zero-extension,
2415 then we have to punt - it is not defined which
2416 one is correct. */
2417 || (POINTER_TYPE_P (TREE_TYPE (@0))
2418 && TREE_CODE (@1) == INTEGER_CST
2419 && tree_int_cst_sign_bit (@1) == 0))
2420 (negate (convert @1)))))
2421 (simplify
2422 (pointer_diff @0 (pointer_plus @@0 @1))
2423 /* The second argument of pointer_plus must be interpreted as signed, and
2424 thus sign-extended if necessary. */
2425 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2426 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2427 second arg is unsigned even when we need to consider it as signed,
2428 we don't want to diagnose overflow here. */
2429 (negate (convert (view_convert:stype @1)))))
2430
2431 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2432 (simplify
2433 (minus (convert (plus:c @@0 @1))
2434 (convert (plus:c @0 @2)))
2435 (if (INTEGRAL_TYPE_P (type)
2436 && TYPE_OVERFLOW_UNDEFINED (type)
2437 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2438 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2439 (with { tree utype = unsigned_type_for (type); }
2440 (convert (minus (convert:utype @1) (convert:utype @2))))
2441 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2442 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2443 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2444 /* For integer types, if A has a smaller type
2445 than T the result depends on the possible
2446 overflow in P + A.
2447 E.g. T=size_t, A=(unsigned)429497295, P>0.
2448 However, if an overflow in P + A would cause
2449 undefined behavior, we can assume that there
2450 is no overflow. */
2451 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2452 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2453 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2454 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2455 (minus (convert @1) (convert @2)))))
2456 (simplify
2457 (minus (convert (pointer_plus @@0 @1))
2458 (convert (pointer_plus @0 @2)))
2459 (if (INTEGRAL_TYPE_P (type)
2460 && TYPE_OVERFLOW_UNDEFINED (type)
2461 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2462 (with { tree utype = unsigned_type_for (type); }
2463 (convert (minus (convert:utype @1) (convert:utype @2))))
2464 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2465 /* For pointer types, if the conversion of A to the
2466 final type requires a sign- or zero-extension,
2467 then we have to punt - it is not defined which
2468 one is correct. */
2469 || (POINTER_TYPE_P (TREE_TYPE (@0))
2470 && TREE_CODE (@1) == INTEGER_CST
2471 && tree_int_cst_sign_bit (@1) == 0
2472 && TREE_CODE (@2) == INTEGER_CST
2473 && tree_int_cst_sign_bit (@2) == 0))
2474 (minus (convert @1) (convert @2)))))
2475 (simplify
2476 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2477 /* The second argument of pointer_plus must be interpreted as signed, and
2478 thus sign-extended if necessary. */
2479 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2480 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2481 second arg is unsigned even when we need to consider it as signed,
2482 we don't want to diagnose overflow here. */
2483 (minus (convert (view_convert:stype @1))
2484 (convert (view_convert:stype @2)))))))
2485
2486 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2487 Modeled after fold_plusminus_mult_expr. */
2488 (if (!TYPE_SATURATING (type)
2489 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2490 (for plusminus (plus minus)
2491 (simplify
2492 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2493 (if ((!ANY_INTEGRAL_TYPE_P (type)
2494 || TYPE_OVERFLOW_WRAPS (type)
2495 || (INTEGRAL_TYPE_P (type)
2496 && tree_expr_nonzero_p (@0)
2497 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2498 /* If @1 +- @2 is constant require a hard single-use on either
2499 original operand (but not on both). */
2500 && (single_use (@3) || single_use (@4)))
2501 (mult (plusminus @1 @2) @0)))
2502 /* We cannot generate constant 1 for fract. */
2503 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2504 (simplify
2505 (plusminus @0 (mult:c@3 @0 @2))
2506 (if ((!ANY_INTEGRAL_TYPE_P (type)
2507 || TYPE_OVERFLOW_WRAPS (type)
2508 /* For @0 + @0*@2 this transformation would introduce UB
2509 (where there was none before) for @0 in [-1,0] and @2 max.
2510 For @0 - @0*@2 this transformation would introduce UB
2511 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2512 || (INTEGRAL_TYPE_P (type)
2513 && ((tree_expr_nonzero_p (@0)
2514 && expr_not_equal_to (@0,
2515 wi::minus_one (TYPE_PRECISION (type))))
2516 || (plusminus == PLUS_EXPR
2517 ? expr_not_equal_to (@2,
2518 wi::max_value (TYPE_PRECISION (type), SIGNED))
2519 /* Let's ignore the @0 -1 and @2 min case. */
2520 : (expr_not_equal_to (@2,
2521 wi::min_value (TYPE_PRECISION (type), SIGNED))
2522 && expr_not_equal_to (@2,
2523 wi::min_value (TYPE_PRECISION (type), SIGNED)
2524 + 1))))))
2525 && single_use (@3))
2526 (mult (plusminus { build_one_cst (type); } @2) @0)))
2527 (simplify
2528 (plusminus (mult:c@3 @0 @2) @0)
2529 (if ((!ANY_INTEGRAL_TYPE_P (type)
2530 || TYPE_OVERFLOW_WRAPS (type)
2531 /* For @0*@2 + @0 this transformation would introduce UB
2532 (where there was none before) for @0 in [-1,0] and @2 max.
2533 For @0*@2 - @0 this transformation would introduce UB
2534 for @0 0 and @2 min. */
2535 || (INTEGRAL_TYPE_P (type)
2536 && ((tree_expr_nonzero_p (@0)
2537 && (plusminus == MINUS_EXPR
2538 || expr_not_equal_to (@0,
2539 wi::minus_one (TYPE_PRECISION (type)))))
2540 || expr_not_equal_to (@2,
2541 (plusminus == PLUS_EXPR
2542 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2543 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2544 && single_use (@3))
2545 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2546
2547 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2548
2549 (for minmax (min max FMIN_ALL FMAX_ALL)
2550 (simplify
2551 (minmax @0 @0)
2552 @0))
2553 /* min(max(x,y),y) -> y. */
2554 (simplify
2555 (min:c (max:c @0 @1) @1)
2556 @1)
2557 /* max(min(x,y),y) -> y. */
2558 (simplify
2559 (max:c (min:c @0 @1) @1)
2560 @1)
2561 /* max(a,-a) -> abs(a). */
2562 (simplify
2563 (max:c @0 (negate @0))
2564 (if (TREE_CODE (type) != COMPLEX_TYPE
2565 && (! ANY_INTEGRAL_TYPE_P (type)
2566 || TYPE_OVERFLOW_UNDEFINED (type)))
2567 (abs @0)))
2568 /* min(a,-a) -> -abs(a). */
2569 (simplify
2570 (min:c @0 (negate @0))
2571 (if (TREE_CODE (type) != COMPLEX_TYPE
2572 && (! ANY_INTEGRAL_TYPE_P (type)
2573 || TYPE_OVERFLOW_UNDEFINED (type)))
2574 (negate (abs @0))))
2575 (simplify
2576 (min @0 @1)
2577 (switch
2578 (if (INTEGRAL_TYPE_P (type)
2579 && TYPE_MIN_VALUE (type)
2580 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2581 @1)
2582 (if (INTEGRAL_TYPE_P (type)
2583 && TYPE_MAX_VALUE (type)
2584 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2585 @0)))
2586 (simplify
2587 (max @0 @1)
2588 (switch
2589 (if (INTEGRAL_TYPE_P (type)
2590 && TYPE_MAX_VALUE (type)
2591 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2592 @1)
2593 (if (INTEGRAL_TYPE_P (type)
2594 && TYPE_MIN_VALUE (type)
2595 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2596 @0)))
2597
2598 /* max (a, a + CST) -> a + CST where CST is positive. */
2599 /* max (a, a + CST) -> a where CST is negative. */
2600 (simplify
2601 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2602 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2603 (if (tree_int_cst_sgn (@1) > 0)
2604 @2
2605 @0)))
2606
2607 /* min (a, a + CST) -> a where CST is positive. */
2608 /* min (a, a + CST) -> a + CST where CST is negative. */
2609 (simplify
2610 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2611 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2612 (if (tree_int_cst_sgn (@1) > 0)
2613 @0
2614 @2)))
2615
2616 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2617 and the outer convert demotes the expression back to x's type. */
2618 (for minmax (min max)
2619 (simplify
2620 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2621 (if (INTEGRAL_TYPE_P (type)
2622 && types_match (@1, type) && int_fits_type_p (@2, type)
2623 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2624 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2625 (minmax @1 (convert @2)))))
2626
2627 (for minmax (FMIN_ALL FMAX_ALL)
2628 /* If either argument is NaN, return the other one. Avoid the
2629 transformation if we get (and honor) a signalling NaN. */
2630 (simplify
2631 (minmax:c @0 REAL_CST@1)
2632 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2633 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2634 @0)))
2635 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2636 functions to return the numeric arg if the other one is NaN.
2637 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2638 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2639 worry about it either. */
2640 (if (flag_finite_math_only)
2641 (simplify
2642 (FMIN_ALL @0 @1)
2643 (min @0 @1))
2644 (simplify
2645 (FMAX_ALL @0 @1)
2646 (max @0 @1)))
2647 /* min (-A, -B) -> -max (A, B) */
2648 (for minmax (min max FMIN_ALL FMAX_ALL)
2649 maxmin (max min FMAX_ALL FMIN_ALL)
2650 (simplify
2651 (minmax (negate:s@2 @0) (negate:s@3 @1))
2652 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2653 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2654 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2655 (negate (maxmin @0 @1)))))
2656 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2657 MAX (~X, ~Y) -> ~MIN (X, Y) */
2658 (for minmax (min max)
2659 maxmin (max min)
2660 (simplify
2661 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2662 (bit_not (maxmin @0 @1))))
2663
2664 /* MIN (X, Y) == X -> X <= Y */
2665 (for minmax (min min max max)
2666 cmp (eq ne eq ne )
2667 out (le gt ge lt )
2668 (simplify
2669 (cmp:c (minmax:c @0 @1) @0)
2670 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2671 (out @0 @1))))
2672 /* MIN (X, 5) == 0 -> X == 0
2673 MIN (X, 5) == 7 -> false */
2674 (for cmp (eq ne)
2675 (simplify
2676 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2677 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2678 TYPE_SIGN (TREE_TYPE (@0))))
2679 { constant_boolean_node (cmp == NE_EXPR, type); }
2680 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2681 TYPE_SIGN (TREE_TYPE (@0))))
2682 (cmp @0 @2)))))
2683 (for cmp (eq ne)
2684 (simplify
2685 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2686 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2687 TYPE_SIGN (TREE_TYPE (@0))))
2688 { constant_boolean_node (cmp == NE_EXPR, type); }
2689 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2690 TYPE_SIGN (TREE_TYPE (@0))))
2691 (cmp @0 @2)))))
2692 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2693 (for minmax (min min max max min min max max )
2694 cmp (lt le gt ge gt ge lt le )
2695 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2696 (simplify
2697 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2698 (comb (cmp @0 @2) (cmp @1 @2))))
2699
2700 /* Undo fancy way of writing max/min or other ?: expressions,
2701 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2702 People normally use ?: and that is what we actually try to optimize. */
2703 (for cmp (simple_comparison)
2704 (simplify
2705 (minus @0 (bit_and:c (minus @0 @1)
2706 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2707 (if (INTEGRAL_TYPE_P (type)
2708 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2709 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2710 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2711 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2712 || !TYPE_UNSIGNED (TREE_TYPE (@4))))
2713 (cond (cmp @2 @3) @1 @0)))
2714 (simplify
2715 (plus:c @0 (bit_and:c (minus @1 @0)
2716 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2717 (if (INTEGRAL_TYPE_P (type)
2718 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2719 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2720 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2721 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2722 || !TYPE_UNSIGNED (TREE_TYPE (@4))))
2723 (cond (cmp @2 @3) @1 @0))))
2724
2725 /* Simplifications of shift and rotates. */
2726
2727 (for rotate (lrotate rrotate)
2728 (simplify
2729 (rotate integer_all_onesp@0 @1)
2730 @0))
2731
2732 /* Optimize -1 >> x for arithmetic right shifts. */
2733 (simplify
2734 (rshift integer_all_onesp@0 @1)
2735 (if (!TYPE_UNSIGNED (type)
2736 && tree_expr_nonnegative_p (@1))
2737 @0))
2738
2739 /* Optimize (x >> c) << c into x & (-1<<c). */
2740 (simplify
2741 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2742 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2743 /* It doesn't matter if the right shift is arithmetic or logical. */
2744 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2745
2746 (simplify
2747 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2748 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2749 /* Allow intermediate conversion to integral type with whatever sign, as
2750 long as the low TYPE_PRECISION (type)
2751 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
2752 && INTEGRAL_TYPE_P (type)
2753 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2754 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2755 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2756 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2757 || wi::geu_p (wi::to_wide (@1),
2758 TYPE_PRECISION (type)
2759 - TYPE_PRECISION (TREE_TYPE (@2)))))
2760 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2761
2762 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2763 types. */
2764 (simplify
2765 (rshift (lshift @0 INTEGER_CST@1) @1)
2766 (if (TYPE_UNSIGNED (type)
2767 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2768 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2769
2770 (for shiftrotate (lrotate rrotate lshift rshift)
2771 (simplify
2772 (shiftrotate @0 integer_zerop)
2773 (non_lvalue @0))
2774 (simplify
2775 (shiftrotate integer_zerop@0 @1)
2776 @0)
2777 /* Prefer vector1 << scalar to vector1 << vector2
2778 if vector2 is uniform. */
2779 (for vec (VECTOR_CST CONSTRUCTOR)
2780 (simplify
2781 (shiftrotate @0 vec@1)
2782 (with { tree tem = uniform_vector_p (@1); }
2783 (if (tem)
2784 (shiftrotate @0 { tem; }))))))
2785
2786 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2787 Y is 0. Similarly for X >> Y. */
2788 #if GIMPLE
2789 (for shift (lshift rshift)
2790 (simplify
2791 (shift @0 SSA_NAME@1)
2792 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2793 (with {
2794 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2795 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2796 }
2797 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2798 @0)))))
2799 #endif
2800
2801 /* Rewrite an LROTATE_EXPR by a constant into an
2802 RROTATE_EXPR by a new constant. */
2803 (simplify
2804 (lrotate @0 INTEGER_CST@1)
2805 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2806 build_int_cst (TREE_TYPE (@1),
2807 element_precision (type)), @1); }))
2808
2809 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2810 (for op (lrotate rrotate rshift lshift)
2811 (simplify
2812 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2813 (with { unsigned int prec = element_precision (type); }
2814 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2815 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2816 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2817 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2818 (with { unsigned int low = (tree_to_uhwi (@1)
2819 + tree_to_uhwi (@2)); }
2820 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2821 being well defined. */
2822 (if (low >= prec)
2823 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2824 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2825 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2826 { build_zero_cst (type); }
2827 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2828 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2829
2830
2831 /* ((1 << A) & 1) != 0 -> A == 0
2832 ((1 << A) & 1) == 0 -> A != 0 */
2833 (for cmp (ne eq)
2834 icmp (eq ne)
2835 (simplify
2836 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2837 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2838
2839 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2840 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2841 if CST2 != 0. */
2842 (for cmp (ne eq)
2843 (simplify
2844 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2845 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2846 (if (cand < 0
2847 || (!integer_zerop (@2)
2848 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2849 { constant_boolean_node (cmp == NE_EXPR, type); }
2850 (if (!integer_zerop (@2)
2851 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2852 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2853
2854 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2855 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2856 if the new mask might be further optimized. */
2857 (for shift (lshift rshift)
2858 (simplify
2859 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2860 INTEGER_CST@2)
2861 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2862 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2863 && tree_fits_uhwi_p (@1)
2864 && tree_to_uhwi (@1) > 0
2865 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2866 (with
2867 {
2868 unsigned int shiftc = tree_to_uhwi (@1);
2869 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2870 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2871 tree shift_type = TREE_TYPE (@3);
2872 unsigned int prec;
2873
2874 if (shift == LSHIFT_EXPR)
2875 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2876 else if (shift == RSHIFT_EXPR
2877 && type_has_mode_precision_p (shift_type))
2878 {
2879 prec = TYPE_PRECISION (TREE_TYPE (@3));
2880 tree arg00 = @0;
2881 /* See if more bits can be proven as zero because of
2882 zero extension. */
2883 if (@3 != @0
2884 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2885 {
2886 tree inner_type = TREE_TYPE (@0);
2887 if (type_has_mode_precision_p (inner_type)
2888 && TYPE_PRECISION (inner_type) < prec)
2889 {
2890 prec = TYPE_PRECISION (inner_type);
2891 /* See if we can shorten the right shift. */
2892 if (shiftc < prec)
2893 shift_type = inner_type;
2894 /* Otherwise X >> C1 is all zeros, so we'll optimize
2895 it into (X, 0) later on by making sure zerobits
2896 is all ones. */
2897 }
2898 }
2899 zerobits = HOST_WIDE_INT_M1U;
2900 if (shiftc < prec)
2901 {
2902 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2903 zerobits <<= prec - shiftc;
2904 }
2905 /* For arithmetic shift if sign bit could be set, zerobits
2906 can contain actually sign bits, so no transformation is
2907 possible, unless MASK masks them all away. In that
2908 case the shift needs to be converted into logical shift. */
2909 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2910 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2911 {
2912 if ((mask & zerobits) == 0)
2913 shift_type = unsigned_type_for (TREE_TYPE (@3));
2914 else
2915 zerobits = 0;
2916 }
2917 }
2918 }
2919 /* ((X << 16) & 0xff00) is (X, 0). */
2920 (if ((mask & zerobits) == mask)
2921 { build_int_cst (type, 0); }
2922 (with { newmask = mask | zerobits; }
2923 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2924 (with
2925 {
2926 /* Only do the transformation if NEWMASK is some integer
2927 mode's mask. */
2928 for (prec = BITS_PER_UNIT;
2929 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2930 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2931 break;
2932 }
2933 (if (prec < HOST_BITS_PER_WIDE_INT
2934 || newmask == HOST_WIDE_INT_M1U)
2935 (with
2936 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2937 (if (!tree_int_cst_equal (newmaskt, @2))
2938 (if (shift_type != TREE_TYPE (@3))
2939 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2940 (bit_and @4 { newmaskt; })))))))))))))
2941
2942 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2943 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2944 (for shift (lshift rshift)
2945 (for bit_op (bit_and bit_xor bit_ior)
2946 (simplify
2947 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2948 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2949 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2950 (bit_op (shift (convert @0) @1) { mask; }))))))
2951
2952 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2953 (simplify
2954 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2955 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2956 && (element_precision (TREE_TYPE (@0))
2957 <= element_precision (TREE_TYPE (@1))
2958 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2959 (with
2960 { tree shift_type = TREE_TYPE (@0); }
2961 (convert (rshift (convert:shift_type @1) @2)))))
2962
2963 /* ~(~X >>r Y) -> X >>r Y
2964 ~(~X <<r Y) -> X <<r Y */
2965 (for rotate (lrotate rrotate)
2966 (simplify
2967 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2968 (if ((element_precision (TREE_TYPE (@0))
2969 <= element_precision (TREE_TYPE (@1))
2970 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2971 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2972 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2973 (with
2974 { tree rotate_type = TREE_TYPE (@0); }
2975 (convert (rotate (convert:rotate_type @1) @2))))))
2976
2977 /* Simplifications of conversions. */
2978
2979 /* Basic strip-useless-type-conversions / strip_nops. */
2980 (for cvt (convert view_convert float fix_trunc)
2981 (simplify
2982 (cvt @0)
2983 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2984 || (GENERIC && type == TREE_TYPE (@0)))
2985 @0)))
2986
2987 /* Contract view-conversions. */
2988 (simplify
2989 (view_convert (view_convert @0))
2990 (view_convert @0))
2991
2992 /* For integral conversions with the same precision or pointer
2993 conversions use a NOP_EXPR instead. */
2994 (simplify
2995 (view_convert @0)
2996 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2997 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2998 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2999 (convert @0)))
3000
3001 /* Strip inner integral conversions that do not change precision or size, or
3002 zero-extend while keeping the same size (for bool-to-char). */
3003 (simplify
3004 (view_convert (convert@0 @1))
3005 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3006 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3007 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3008 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3009 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3010 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3011 (view_convert @1)))
3012
3013 /* Simplify a view-converted empty constructor. */
3014 (simplify
3015 (view_convert CONSTRUCTOR@0)
3016 (if (TREE_CODE (@0) != SSA_NAME
3017 && CONSTRUCTOR_NELTS (@0) == 0)
3018 { build_zero_cst (type); }))
3019
3020 /* Re-association barriers around constants and other re-association
3021 barriers can be removed. */
3022 (simplify
3023 (paren CONSTANT_CLASS_P@0)
3024 @0)
3025 (simplify
3026 (paren (paren@1 @0))
3027 @1)
3028
3029 /* Handle cases of two conversions in a row. */
3030 (for ocvt (convert float fix_trunc)
3031 (for icvt (convert float)
3032 (simplify
3033 (ocvt (icvt@1 @0))
3034 (with
3035 {
3036 tree inside_type = TREE_TYPE (@0);
3037 tree inter_type = TREE_TYPE (@1);
3038 int inside_int = INTEGRAL_TYPE_P (inside_type);
3039 int inside_ptr = POINTER_TYPE_P (inside_type);
3040 int inside_float = FLOAT_TYPE_P (inside_type);
3041 int inside_vec = VECTOR_TYPE_P (inside_type);
3042 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3043 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3044 int inter_int = INTEGRAL_TYPE_P (inter_type);
3045 int inter_ptr = POINTER_TYPE_P (inter_type);
3046 int inter_float = FLOAT_TYPE_P (inter_type);
3047 int inter_vec = VECTOR_TYPE_P (inter_type);
3048 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3049 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3050 int final_int = INTEGRAL_TYPE_P (type);
3051 int final_ptr = POINTER_TYPE_P (type);
3052 int final_float = FLOAT_TYPE_P (type);
3053 int final_vec = VECTOR_TYPE_P (type);
3054 unsigned int final_prec = TYPE_PRECISION (type);
3055 int final_unsignedp = TYPE_UNSIGNED (type);
3056 }
3057 (switch
3058 /* In addition to the cases of two conversions in a row
3059 handled below, if we are converting something to its own
3060 type via an object of identical or wider precision, neither
3061 conversion is needed. */
3062 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3063 || (GENERIC
3064 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3065 && (((inter_int || inter_ptr) && final_int)
3066 || (inter_float && final_float))
3067 && inter_prec >= final_prec)
3068 (ocvt @0))
3069
3070 /* Likewise, if the intermediate and initial types are either both
3071 float or both integer, we don't need the middle conversion if the
3072 former is wider than the latter and doesn't change the signedness
3073 (for integers). Avoid this if the final type is a pointer since
3074 then we sometimes need the middle conversion. */
3075 (if (((inter_int && inside_int) || (inter_float && inside_float))
3076 && (final_int || final_float)
3077 && inter_prec >= inside_prec
3078 && (inter_float || inter_unsignedp == inside_unsignedp))
3079 (ocvt @0))
3080
3081 /* If we have a sign-extension of a zero-extended value, we can
3082 replace that by a single zero-extension. Likewise if the
3083 final conversion does not change precision we can drop the
3084 intermediate conversion. */
3085 (if (inside_int && inter_int && final_int
3086 && ((inside_prec < inter_prec && inter_prec < final_prec
3087 && inside_unsignedp && !inter_unsignedp)
3088 || final_prec == inter_prec))
3089 (ocvt @0))
3090
3091 /* Two conversions in a row are not needed unless:
3092 - some conversion is floating-point (overstrict for now), or
3093 - some conversion is a vector (overstrict for now), or
3094 - the intermediate type is narrower than both initial and
3095 final, or
3096 - the intermediate type and innermost type differ in signedness,
3097 and the outermost type is wider than the intermediate, or
3098 - the initial type is a pointer type and the precisions of the
3099 intermediate and final types differ, or
3100 - the final type is a pointer type and the precisions of the
3101 initial and intermediate types differ. */
3102 (if (! inside_float && ! inter_float && ! final_float
3103 && ! inside_vec && ! inter_vec && ! final_vec
3104 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3105 && ! (inside_int && inter_int
3106 && inter_unsignedp != inside_unsignedp
3107 && inter_prec < final_prec)
3108 && ((inter_unsignedp && inter_prec > inside_prec)
3109 == (final_unsignedp && final_prec > inter_prec))
3110 && ! (inside_ptr && inter_prec != final_prec)
3111 && ! (final_ptr && inside_prec != inter_prec))
3112 (ocvt @0))
3113
3114 /* A truncation to an unsigned type (a zero-extension) should be
3115 canonicalized as bitwise and of a mask. */
3116 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3117 && final_int && inter_int && inside_int
3118 && final_prec == inside_prec
3119 && final_prec > inter_prec
3120 && inter_unsignedp)
3121 (convert (bit_and @0 { wide_int_to_tree
3122 (inside_type,
3123 wi::mask (inter_prec, false,
3124 TYPE_PRECISION (inside_type))); })))
3125
3126 /* If we are converting an integer to a floating-point that can
3127 represent it exactly and back to an integer, we can skip the
3128 floating-point conversion. */
3129 (if (GIMPLE /* PR66211 */
3130 && inside_int && inter_float && final_int &&
3131 (unsigned) significand_size (TYPE_MODE (inter_type))
3132 >= inside_prec - !inside_unsignedp)
3133 (convert @0)))))))
3134
3135 /* If we have a narrowing conversion to an integral type that is fed by a
3136 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3137 masks off bits outside the final type (and nothing else). */
3138 (simplify
3139 (convert (bit_and @0 INTEGER_CST@1))
3140 (if (INTEGRAL_TYPE_P (type)
3141 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3142 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3143 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3144 TYPE_PRECISION (type)), 0))
3145 (convert @0)))
3146
3147
3148 /* (X /[ex] A) * A -> X. */
3149 (simplify
3150 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3151 (convert @0))
3152
3153 /* Simplify (A / B) * B + (A % B) -> A. */
3154 (for div (trunc_div ceil_div floor_div round_div)
3155 mod (trunc_mod ceil_mod floor_mod round_mod)
3156 (simplify
3157 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3158 @0))
3159
3160 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3161 (for op (plus minus)
3162 (simplify
3163 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3164 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3165 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3166 (with
3167 {
3168 wi::overflow_type overflow;
3169 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3170 TYPE_SIGN (type), &overflow);
3171 }
3172 (if (types_match (type, TREE_TYPE (@2))
3173 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3174 (op @0 { wide_int_to_tree (type, mul); })
3175 (with { tree utype = unsigned_type_for (type); }
3176 (convert (op (convert:utype @0)
3177 (mult (convert:utype @1) (convert:utype @2))))))))))
3178
3179 /* Canonicalization of binary operations. */
3180
3181 /* Convert X + -C into X - C. */
3182 (simplify
3183 (plus @0 REAL_CST@1)
3184 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3185 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3186 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3187 (minus @0 { tem; })))))
3188
3189 /* Convert x+x into x*2. */
3190 (simplify
3191 (plus @0 @0)
3192 (if (SCALAR_FLOAT_TYPE_P (type))
3193 (mult @0 { build_real (type, dconst2); })
3194 (if (INTEGRAL_TYPE_P (type))
3195 (mult @0 { build_int_cst (type, 2); }))))
3196
3197 /* 0 - X -> -X. */
3198 (simplify
3199 (minus integer_zerop @1)
3200 (negate @1))
3201 (simplify
3202 (pointer_diff integer_zerop @1)
3203 (negate (convert @1)))
3204
3205 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3206 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3207 (-ARG1 + ARG0) reduces to -ARG1. */
3208 (simplify
3209 (minus real_zerop@0 @1)
3210 (if (fold_real_zero_addition_p (type, @0, 0))
3211 (negate @1)))
3212
3213 /* Transform x * -1 into -x. */
3214 (simplify
3215 (mult @0 integer_minus_onep)
3216 (negate @0))
3217
3218 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3219 signed overflow for CST != 0 && CST != -1. */
3220 (simplify
3221 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3222 (if (TREE_CODE (@2) != INTEGER_CST
3223 && single_use (@3)
3224 && !integer_zerop (@1) && !integer_minus_onep (@1))
3225 (mult (mult @0 @2) @1)))
3226
3227 /* True if we can easily extract the real and imaginary parts of a complex
3228 number. */
3229 (match compositional_complex
3230 (convert? (complex @0 @1)))
3231
3232 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3233 (simplify
3234 (complex (realpart @0) (imagpart @0))
3235 @0)
3236 (simplify
3237 (realpart (complex @0 @1))
3238 @0)
3239 (simplify
3240 (imagpart (complex @0 @1))
3241 @1)
3242
3243 /* Sometimes we only care about half of a complex expression. */
3244 (simplify
3245 (realpart (convert?:s (conj:s @0)))
3246 (convert (realpart @0)))
3247 (simplify
3248 (imagpart (convert?:s (conj:s @0)))
3249 (convert (negate (imagpart @0))))
3250 (for part (realpart imagpart)
3251 (for op (plus minus)
3252 (simplify
3253 (part (convert?:s@2 (op:s @0 @1)))
3254 (convert (op (part @0) (part @1))))))
3255 (simplify
3256 (realpart (convert?:s (CEXPI:s @0)))
3257 (convert (COS @0)))
3258 (simplify
3259 (imagpart (convert?:s (CEXPI:s @0)))
3260 (convert (SIN @0)))
3261
3262 /* conj(conj(x)) -> x */
3263 (simplify
3264 (conj (convert? (conj @0)))
3265 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3266 (convert @0)))
3267
3268 /* conj({x,y}) -> {x,-y} */
3269 (simplify
3270 (conj (convert?:s (complex:s @0 @1)))
3271 (with { tree itype = TREE_TYPE (type); }
3272 (complex (convert:itype @0) (negate (convert:itype @1)))))
3273
3274 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3275 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3276 (simplify
3277 (bswap (bswap @0))
3278 @0)
3279 (simplify
3280 (bswap (bit_not (bswap @0)))
3281 (bit_not @0))
3282 (for bitop (bit_xor bit_ior bit_and)
3283 (simplify
3284 (bswap (bitop:c (bswap @0) @1))
3285 (bitop @0 (bswap @1)))))
3286
3287
3288 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3289
3290 /* Simplify constant conditions.
3291 Only optimize constant conditions when the selected branch
3292 has the same type as the COND_EXPR. This avoids optimizing
3293 away "c ? x : throw", where the throw has a void type.
3294 Note that we cannot throw away the fold-const.c variant nor
3295 this one as we depend on doing this transform before possibly
3296 A ? B : B -> B triggers and the fold-const.c one can optimize
3297 0 ? A : B to B even if A has side-effects. Something
3298 genmatch cannot handle. */
3299 (simplify
3300 (cond INTEGER_CST@0 @1 @2)
3301 (if (integer_zerop (@0))
3302 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3303 @2)
3304 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3305 @1)))
3306 (simplify
3307 (vec_cond VECTOR_CST@0 @1 @2)
3308 (if (integer_all_onesp (@0))
3309 @1
3310 (if (integer_zerop (@0))
3311 @2)))
3312
3313 /* Sink unary operations to constant branches, but only if we do fold it to
3314 constants. */
3315 (for op (negate bit_not abs absu)
3316 (simplify
3317 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3318 (with
3319 {
3320 tree cst1, cst2;
3321 cst1 = const_unop (op, type, @1);
3322 if (cst1)
3323 cst2 = const_unop (op, type, @2);
3324 }
3325 (if (cst1 && cst2)
3326 (vec_cond @0 { cst1; } { cst2; })))))
3327
3328 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3329 be extended. */
3330 /* This pattern implements two kinds simplification:
3331
3332 Case 1)
3333 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3334 1) Conversions are type widening from smaller type.
3335 2) Const c1 equals to c2 after canonicalizing comparison.
3336 3) Comparison has tree code LT, LE, GT or GE.
3337 This specific pattern is needed when (cmp (convert x) c) may not
3338 be simplified by comparison patterns because of multiple uses of
3339 x. It also makes sense here because simplifying across multiple
3340 referred var is always benefitial for complicated cases.
3341
3342 Case 2)
3343 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3344 (for cmp (lt le gt ge eq)
3345 (simplify
3346 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3347 (with
3348 {
3349 tree from_type = TREE_TYPE (@1);
3350 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3351 enum tree_code code = ERROR_MARK;
3352
3353 if (INTEGRAL_TYPE_P (from_type)
3354 && int_fits_type_p (@2, from_type)
3355 && (types_match (c1_type, from_type)
3356 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3357 && (TYPE_UNSIGNED (from_type)
3358 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3359 && (types_match (c2_type, from_type)
3360 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3361 && (TYPE_UNSIGNED (from_type)
3362 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3363 {
3364 if (cmp != EQ_EXPR)
3365 {
3366 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3367 {
3368 /* X <= Y - 1 equals to X < Y. */
3369 if (cmp == LE_EXPR)
3370 code = LT_EXPR;
3371 /* X > Y - 1 equals to X >= Y. */
3372 if (cmp == GT_EXPR)
3373 code = GE_EXPR;
3374 }
3375 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3376 {
3377 /* X < Y + 1 equals to X <= Y. */
3378 if (cmp == LT_EXPR)
3379 code = LE_EXPR;
3380 /* X >= Y + 1 equals to X > Y. */
3381 if (cmp == GE_EXPR)
3382 code = GT_EXPR;
3383 }
3384 if (code != ERROR_MARK
3385 || wi::to_widest (@2) == wi::to_widest (@3))
3386 {
3387 if (cmp == LT_EXPR || cmp == LE_EXPR)
3388 code = MIN_EXPR;
3389 if (cmp == GT_EXPR || cmp == GE_EXPR)
3390 code = MAX_EXPR;
3391 }
3392 }
3393 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3394 else if (int_fits_type_p (@3, from_type))
3395 code = EQ_EXPR;
3396 }
3397 }
3398 (if (code == MAX_EXPR)
3399 (convert (max @1 (convert @2)))
3400 (if (code == MIN_EXPR)
3401 (convert (min @1 (convert @2)))
3402 (if (code == EQ_EXPR)
3403 (convert (cond (eq @1 (convert @3))
3404 (convert:from_type @3) (convert:from_type @2)))))))))
3405
3406 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3407
3408 1) OP is PLUS or MINUS.
3409 2) CMP is LT, LE, GT or GE.
3410 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3411
3412 This pattern also handles special cases like:
3413
3414 A) Operand x is a unsigned to signed type conversion and c1 is
3415 integer zero. In this case,
3416 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3417 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3418 B) Const c1 may not equal to (C3 op' C2). In this case we also
3419 check equality for (c1+1) and (c1-1) by adjusting comparison
3420 code.
3421
3422 TODO: Though signed type is handled by this pattern, it cannot be
3423 simplified at the moment because C standard requires additional
3424 type promotion. In order to match&simplify it here, the IR needs
3425 to be cleaned up by other optimizers, i.e, VRP. */
3426 (for op (plus minus)
3427 (for cmp (lt le gt ge)
3428 (simplify
3429 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3430 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3431 (if (types_match (from_type, to_type)
3432 /* Check if it is special case A). */
3433 || (TYPE_UNSIGNED (from_type)
3434 && !TYPE_UNSIGNED (to_type)
3435 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3436 && integer_zerop (@1)
3437 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3438 (with
3439 {
3440 wi::overflow_type overflow = wi::OVF_NONE;
3441 enum tree_code code, cmp_code = cmp;
3442 wide_int real_c1;
3443 wide_int c1 = wi::to_wide (@1);
3444 wide_int c2 = wi::to_wide (@2);
3445 wide_int c3 = wi::to_wide (@3);
3446 signop sgn = TYPE_SIGN (from_type);
3447
3448 /* Handle special case A), given x of unsigned type:
3449 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3450 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3451 if (!types_match (from_type, to_type))
3452 {
3453 if (cmp_code == LT_EXPR)
3454 cmp_code = GT_EXPR;
3455 if (cmp_code == GE_EXPR)
3456 cmp_code = LE_EXPR;
3457 c1 = wi::max_value (to_type);
3458 }
3459 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3460 compute (c3 op' c2) and check if it equals to c1 with op' being
3461 the inverted operator of op. Make sure overflow doesn't happen
3462 if it is undefined. */
3463 if (op == PLUS_EXPR)
3464 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3465 else
3466 real_c1 = wi::add (c3, c2, sgn, &overflow);
3467
3468 code = cmp_code;
3469 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3470 {
3471 /* Check if c1 equals to real_c1. Boundary condition is handled
3472 by adjusting comparison operation if necessary. */
3473 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3474 && !overflow)
3475 {
3476 /* X <= Y - 1 equals to X < Y. */
3477 if (cmp_code == LE_EXPR)
3478 code = LT_EXPR;
3479 /* X > Y - 1 equals to X >= Y. */
3480 if (cmp_code == GT_EXPR)
3481 code = GE_EXPR;
3482 }
3483 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3484 && !overflow)
3485 {
3486 /* X < Y + 1 equals to X <= Y. */
3487 if (cmp_code == LT_EXPR)
3488 code = LE_EXPR;
3489 /* X >= Y + 1 equals to X > Y. */
3490 if (cmp_code == GE_EXPR)
3491 code = GT_EXPR;
3492 }
3493 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3494 {
3495 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3496 code = MIN_EXPR;
3497 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3498 code = MAX_EXPR;
3499 }
3500 }
3501 }
3502 (if (code == MAX_EXPR)
3503 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3504 { wide_int_to_tree (from_type, c2); })
3505 (if (code == MIN_EXPR)
3506 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3507 { wide_int_to_tree (from_type, c2); })))))))))
3508
3509 (for cnd (cond vec_cond)
3510 /* A ? B : (A ? X : C) -> A ? B : C. */
3511 (simplify
3512 (cnd @0 (cnd @0 @1 @2) @3)
3513 (cnd @0 @1 @3))
3514 (simplify
3515 (cnd @0 @1 (cnd @0 @2 @3))
3516 (cnd @0 @1 @3))
3517 /* A ? B : (!A ? C : X) -> A ? B : C. */
3518 /* ??? This matches embedded conditions open-coded because genmatch
3519 would generate matching code for conditions in separate stmts only.
3520 The following is still important to merge then and else arm cases
3521 from if-conversion. */
3522 (simplify
3523 (cnd @0 @1 (cnd @2 @3 @4))
3524 (if (inverse_conditions_p (@0, @2))
3525 (cnd @0 @1 @3)))
3526 (simplify
3527 (cnd @0 (cnd @1 @2 @3) @4)
3528 (if (inverse_conditions_p (@0, @1))
3529 (cnd @0 @3 @4)))
3530
3531 /* A ? B : B -> B. */
3532 (simplify
3533 (cnd @0 @1 @1)
3534 @1)
3535
3536 /* !A ? B : C -> A ? C : B. */
3537 (simplify
3538 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3539 (cnd @0 @2 @1)))
3540
3541 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3542 return all -1 or all 0 results. */
3543 /* ??? We could instead convert all instances of the vec_cond to negate,
3544 but that isn't necessarily a win on its own. */
3545 (simplify
3546 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3547 (if (VECTOR_TYPE_P (type)
3548 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3549 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3550 && (TYPE_MODE (TREE_TYPE (type))
3551 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3552 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3553
3554 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3555 (simplify
3556 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3557 (if (VECTOR_TYPE_P (type)
3558 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3559 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3560 && (TYPE_MODE (TREE_TYPE (type))
3561 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3562 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3563
3564
3565 /* Simplifications of comparisons. */
3566
3567 /* See if we can reduce the magnitude of a constant involved in a
3568 comparison by changing the comparison code. This is a canonicalization
3569 formerly done by maybe_canonicalize_comparison_1. */
3570 (for cmp (le gt)
3571 acmp (lt ge)
3572 (simplify
3573 (cmp @0 uniform_integer_cst_p@1)
3574 (with { tree cst = uniform_integer_cst_p (@1); }
3575 (if (tree_int_cst_sgn (cst) == -1)
3576 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3577 wide_int_to_tree (TREE_TYPE (cst),
3578 wi::to_wide (cst)
3579 + 1)); })))))
3580 (for cmp (ge lt)
3581 acmp (gt le)
3582 (simplify
3583 (cmp @0 uniform_integer_cst_p@1)
3584 (with { tree cst = uniform_integer_cst_p (@1); }
3585 (if (tree_int_cst_sgn (cst) == 1)
3586 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3587 wide_int_to_tree (TREE_TYPE (cst),
3588 wi::to_wide (cst) - 1)); })))))
3589
3590 /* We can simplify a logical negation of a comparison to the
3591 inverted comparison. As we cannot compute an expression
3592 operator using invert_tree_comparison we have to simulate
3593 that with expression code iteration. */
3594 (for cmp (tcc_comparison)
3595 icmp (inverted_tcc_comparison)
3596 ncmp (inverted_tcc_comparison_with_nans)
3597 /* Ideally we'd like to combine the following two patterns
3598 and handle some more cases by using
3599 (logical_inverted_value (cmp @0 @1))
3600 here but for that genmatch would need to "inline" that.
3601 For now implement what forward_propagate_comparison did. */
3602 (simplify
3603 (bit_not (cmp @0 @1))
3604 (if (VECTOR_TYPE_P (type)
3605 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3606 /* Comparison inversion may be impossible for trapping math,
3607 invert_tree_comparison will tell us. But we can't use
3608 a computed operator in the replacement tree thus we have
3609 to play the trick below. */
3610 (with { enum tree_code ic = invert_tree_comparison
3611 (cmp, HONOR_NANS (@0)); }
3612 (if (ic == icmp)
3613 (icmp @0 @1)
3614 (if (ic == ncmp)
3615 (ncmp @0 @1))))))
3616 (simplify
3617 (bit_xor (cmp @0 @1) integer_truep)
3618 (with { enum tree_code ic = invert_tree_comparison
3619 (cmp, HONOR_NANS (@0)); }
3620 (if (ic == icmp)
3621 (icmp @0 @1)
3622 (if (ic == ncmp)
3623 (ncmp @0 @1))))))
3624
3625 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3626 ??? The transformation is valid for the other operators if overflow
3627 is undefined for the type, but performing it here badly interacts
3628 with the transformation in fold_cond_expr_with_comparison which
3629 attempts to synthetize ABS_EXPR. */
3630 (for cmp (eq ne)
3631 (for sub (minus pointer_diff)
3632 (simplify
3633 (cmp (sub@2 @0 @1) integer_zerop)
3634 (if (single_use (@2))
3635 (cmp @0 @1)))))
3636
3637 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3638 signed arithmetic case. That form is created by the compiler
3639 often enough for folding it to be of value. One example is in
3640 computing loop trip counts after Operator Strength Reduction. */
3641 (for cmp (simple_comparison)
3642 scmp (swapped_simple_comparison)
3643 (simplify
3644 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3645 /* Handle unfolded multiplication by zero. */
3646 (if (integer_zerop (@1))
3647 (cmp @1 @2)
3648 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3649 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3650 && single_use (@3))
3651 /* If @1 is negative we swap the sense of the comparison. */
3652 (if (tree_int_cst_sgn (@1) < 0)
3653 (scmp @0 @2)
3654 (cmp @0 @2))))))
3655
3656 /* Simplify comparison of something with itself. For IEEE
3657 floating-point, we can only do some of these simplifications. */
3658 (for cmp (eq ge le)
3659 (simplify
3660 (cmp @0 @0)
3661 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3662 || ! HONOR_NANS (@0))
3663 { constant_boolean_node (true, type); }
3664 (if (cmp != EQ_EXPR)
3665 (eq @0 @0)))))
3666 (for cmp (ne gt lt)
3667 (simplify
3668 (cmp @0 @0)
3669 (if (cmp != NE_EXPR
3670 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3671 || ! HONOR_NANS (@0))
3672 { constant_boolean_node (false, type); })))
3673 (for cmp (unle unge uneq)
3674 (simplify
3675 (cmp @0 @0)
3676 { constant_boolean_node (true, type); }))
3677 (for cmp (unlt ungt)
3678 (simplify
3679 (cmp @0 @0)
3680 (unordered @0 @0)))
3681 (simplify
3682 (ltgt @0 @0)
3683 (if (!flag_trapping_math)
3684 { constant_boolean_node (false, type); }))
3685
3686 /* Fold ~X op ~Y as Y op X. */
3687 (for cmp (simple_comparison)
3688 (simplify
3689 (cmp (bit_not@2 @0) (bit_not@3 @1))
3690 (if (single_use (@2) && single_use (@3))
3691 (cmp @1 @0))))
3692
3693 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3694 (for cmp (simple_comparison)
3695 scmp (swapped_simple_comparison)
3696 (simplify
3697 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3698 (if (single_use (@2)
3699 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3700 (scmp @0 (bit_not @1)))))
3701
3702 (for cmp (simple_comparison)
3703 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3704 (simplify
3705 (cmp (convert@2 @0) (convert? @1))
3706 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3707 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3708 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3709 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3710 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3711 (with
3712 {
3713 tree type1 = TREE_TYPE (@1);
3714 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3715 {
3716 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3717 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3718 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3719 type1 = float_type_node;
3720 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3721 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3722 type1 = double_type_node;
3723 }
3724 tree newtype
3725 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3726 ? TREE_TYPE (@0) : type1);
3727 }
3728 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3729 (cmp (convert:newtype @0) (convert:newtype @1))))))
3730
3731 (simplify
3732 (cmp @0 REAL_CST@1)
3733 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3734 (switch
3735 /* a CMP (-0) -> a CMP 0 */
3736 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3737 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3738 /* x != NaN is always true, other ops are always false. */
3739 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3740 && ! HONOR_SNANS (@1))
3741 { constant_boolean_node (cmp == NE_EXPR, type); })
3742 /* Fold comparisons against infinity. */
3743 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3744 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3745 (with
3746 {
3747 REAL_VALUE_TYPE max;
3748 enum tree_code code = cmp;
3749 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3750 if (neg)
3751 code = swap_tree_comparison (code);
3752 }
3753 (switch
3754 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3755 (if (code == GT_EXPR
3756 && !(HONOR_NANS (@0) && flag_trapping_math))
3757 { constant_boolean_node (false, type); })
3758 (if (code == LE_EXPR)
3759 /* x <= +Inf is always true, if we don't care about NaNs. */
3760 (if (! HONOR_NANS (@0))
3761 { constant_boolean_node (true, type); }
3762 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3763 an "invalid" exception. */
3764 (if (!flag_trapping_math)
3765 (eq @0 @0))))
3766 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3767 for == this introduces an exception for x a NaN. */
3768 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3769 || code == GE_EXPR)
3770 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3771 (if (neg)
3772 (lt @0 { build_real (TREE_TYPE (@0), max); })
3773 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3774 /* x < +Inf is always equal to x <= DBL_MAX. */
3775 (if (code == LT_EXPR)
3776 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3777 (if (neg)
3778 (ge @0 { build_real (TREE_TYPE (@0), max); })
3779 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3780 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3781 an exception for x a NaN so use an unordered comparison. */
3782 (if (code == NE_EXPR)
3783 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3784 (if (! HONOR_NANS (@0))
3785 (if (neg)
3786 (ge @0 { build_real (TREE_TYPE (@0), max); })
3787 (le @0 { build_real (TREE_TYPE (@0), max); }))
3788 (if (neg)
3789 (unge @0 { build_real (TREE_TYPE (@0), max); })
3790 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3791
3792 /* If this is a comparison of a real constant with a PLUS_EXPR
3793 or a MINUS_EXPR of a real constant, we can convert it into a
3794 comparison with a revised real constant as long as no overflow
3795 occurs when unsafe_math_optimizations are enabled. */
3796 (if (flag_unsafe_math_optimizations)
3797 (for op (plus minus)
3798 (simplify
3799 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3800 (with
3801 {
3802 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3803 TREE_TYPE (@1), @2, @1);
3804 }
3805 (if (tem && !TREE_OVERFLOW (tem))
3806 (cmp @0 { tem; }))))))
3807
3808 /* Likewise, we can simplify a comparison of a real constant with
3809 a MINUS_EXPR whose first operand is also a real constant, i.e.
3810 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3811 floating-point types only if -fassociative-math is set. */
3812 (if (flag_associative_math)
3813 (simplify
3814 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3815 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3816 (if (tem && !TREE_OVERFLOW (tem))
3817 (cmp { tem; } @1)))))
3818
3819 /* Fold comparisons against built-in math functions. */
3820 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3821 (for sq (SQRT)
3822 (simplify
3823 (cmp (sq @0) REAL_CST@1)
3824 (switch
3825 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3826 (switch
3827 /* sqrt(x) < y is always false, if y is negative. */
3828 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3829 { constant_boolean_node (false, type); })
3830 /* sqrt(x) > y is always true, if y is negative and we
3831 don't care about NaNs, i.e. negative values of x. */
3832 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3833 { constant_boolean_node (true, type); })
3834 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3835 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3836 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3837 (switch
3838 /* sqrt(x) < 0 is always false. */
3839 (if (cmp == LT_EXPR)
3840 { constant_boolean_node (false, type); })
3841 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3842 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3843 { constant_boolean_node (true, type); })
3844 /* sqrt(x) <= 0 -> x == 0. */
3845 (if (cmp == LE_EXPR)
3846 (eq @0 @1))
3847 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3848 == or !=. In the last case:
3849
3850 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3851
3852 if x is negative or NaN. Due to -funsafe-math-optimizations,
3853 the results for other x follow from natural arithmetic. */
3854 (cmp @0 @1)))
3855 (if ((cmp == LT_EXPR
3856 || cmp == LE_EXPR
3857 || cmp == GT_EXPR
3858 || cmp == GE_EXPR)
3859 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3860 /* Give up for -frounding-math. */
3861 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3862 (with
3863 {
3864 REAL_VALUE_TYPE c2;
3865 enum tree_code ncmp = cmp;
3866 const real_format *fmt
3867 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3868 real_arithmetic (&c2, MULT_EXPR,
3869 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3870 real_convert (&c2, fmt, &c2);
3871 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3872 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
3873 if (!REAL_VALUE_ISINF (c2))
3874 {
3875 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3876 build_real (TREE_TYPE (@0), c2));
3877 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3878 ncmp = ERROR_MARK;
3879 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3880 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3881 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3882 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3883 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3884 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3885 else
3886 {
3887 /* With rounding to even, sqrt of up to 3 different values
3888 gives the same normal result, so in some cases c2 needs
3889 to be adjusted. */
3890 REAL_VALUE_TYPE c2alt, tow;
3891 if (cmp == LT_EXPR || cmp == GE_EXPR)
3892 tow = dconst0;
3893 else
3894 real_inf (&tow);
3895 real_nextafter (&c2alt, fmt, &c2, &tow);
3896 real_convert (&c2alt, fmt, &c2alt);
3897 if (REAL_VALUE_ISINF (c2alt))
3898 ncmp = ERROR_MARK;
3899 else
3900 {
3901 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3902 build_real (TREE_TYPE (@0), c2alt));
3903 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3904 ncmp = ERROR_MARK;
3905 else if (real_equal (&TREE_REAL_CST (c3),
3906 &TREE_REAL_CST (@1)))
3907 c2 = c2alt;
3908 }
3909 }
3910 }
3911 }
3912 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3913 (if (REAL_VALUE_ISINF (c2))
3914 /* sqrt(x) > y is x == +Inf, when y is very large. */
3915 (if (HONOR_INFINITIES (@0))
3916 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3917 { constant_boolean_node (false, type); })
3918 /* sqrt(x) > c is the same as x > c*c. */
3919 (if (ncmp != ERROR_MARK)
3920 (if (ncmp == GE_EXPR)
3921 (ge @0 { build_real (TREE_TYPE (@0), c2); })
3922 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
3923 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
3924 (if (REAL_VALUE_ISINF (c2))
3925 (switch
3926 /* sqrt(x) < y is always true, when y is a very large
3927 value and we don't care about NaNs or Infinities. */
3928 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3929 { constant_boolean_node (true, type); })
3930 /* sqrt(x) < y is x != +Inf when y is very large and we
3931 don't care about NaNs. */
3932 (if (! HONOR_NANS (@0))
3933 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3934 /* sqrt(x) < y is x >= 0 when y is very large and we
3935 don't care about Infinities. */
3936 (if (! HONOR_INFINITIES (@0))
3937 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3938 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3939 (if (GENERIC)
3940 (truth_andif
3941 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3942 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3943 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3944 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
3945 (if (ncmp == LT_EXPR)
3946 (lt @0 { build_real (TREE_TYPE (@0), c2); })
3947 (le @0 { build_real (TREE_TYPE (@0), c2); }))
3948 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3949 (if (ncmp != ERROR_MARK && GENERIC)
3950 (if (ncmp == LT_EXPR)
3951 (truth_andif
3952 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3953 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
3954 (truth_andif
3955 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3956 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
3957 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3958 (simplify
3959 (cmp (sq @0) (sq @1))
3960 (if (! HONOR_NANS (@0))
3961 (cmp @0 @1))))))
3962
3963 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3964 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3965 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3966 (simplify
3967 (cmp (float@0 @1) (float @2))
3968 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3969 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3970 (with
3971 {
3972 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3973 tree type1 = TREE_TYPE (@1);
3974 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3975 tree type2 = TREE_TYPE (@2);
3976 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3977 }
3978 (if (fmt.can_represent_integral_type_p (type1)
3979 && fmt.can_represent_integral_type_p (type2))
3980 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3981 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3982 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3983 && type1_signed_p >= type2_signed_p)
3984 (icmp @1 (convert @2))
3985 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3986 && type1_signed_p <= type2_signed_p)
3987 (icmp (convert:type2 @1) @2)
3988 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3989 && type1_signed_p == type2_signed_p)
3990 (icmp @1 @2))))))))))
3991
3992 /* Optimize various special cases of (FTYPE) N CMP CST. */
3993 (for cmp (lt le eq ne ge gt)
3994 icmp (le le eq ne ge ge)
3995 (simplify
3996 (cmp (float @0) REAL_CST@1)
3997 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3998 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3999 (with
4000 {
4001 tree itype = TREE_TYPE (@0);
4002 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4003 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4004 /* Be careful to preserve any potential exceptions due to
4005 NaNs. qNaNs are ok in == or != context.
4006 TODO: relax under -fno-trapping-math or
4007 -fno-signaling-nans. */
4008 bool exception_p
4009 = real_isnan (cst) && (cst->signalling
4010 || (cmp != EQ_EXPR && cmp != NE_EXPR));
4011 }
4012 /* TODO: allow non-fitting itype and SNaNs when
4013 -fno-trapping-math. */
4014 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4015 (with
4016 {
4017 signop isign = TYPE_SIGN (itype);
4018 REAL_VALUE_TYPE imin, imax;
4019 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4020 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4021
4022 REAL_VALUE_TYPE icst;
4023 if (cmp == GT_EXPR || cmp == GE_EXPR)
4024 real_ceil (&icst, fmt, cst);
4025 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4026 real_floor (&icst, fmt, cst);
4027 else
4028 real_trunc (&icst, fmt, cst);
4029
4030 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4031
4032 bool overflow_p = false;
4033 wide_int icst_val
4034 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4035 }
4036 (switch
4037 /* Optimize cases when CST is outside of ITYPE's range. */
4038 (if (real_compare (LT_EXPR, cst, &imin))
4039 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4040 type); })
4041 (if (real_compare (GT_EXPR, cst, &imax))
4042 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4043 type); })
4044 /* Remove cast if CST is an integer representable by ITYPE. */
4045 (if (cst_int_p)
4046 (cmp @0 { gcc_assert (!overflow_p);
4047 wide_int_to_tree (itype, icst_val); })
4048 )
4049 /* When CST is fractional, optimize
4050 (FTYPE) N == CST -> 0
4051 (FTYPE) N != CST -> 1. */
4052 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4053 { constant_boolean_node (cmp == NE_EXPR, type); })
4054 /* Otherwise replace with sensible integer constant. */
4055 (with
4056 {
4057 gcc_checking_assert (!overflow_p);
4058 }
4059 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4060
4061 /* Fold A /[ex] B CMP C to A CMP B * C. */
4062 (for cmp (eq ne)
4063 (simplify
4064 (cmp (exact_div @0 @1) INTEGER_CST@2)
4065 (if (!integer_zerop (@1))
4066 (if (wi::to_wide (@2) == 0)
4067 (cmp @0 @2)
4068 (if (TREE_CODE (@1) == INTEGER_CST)
4069 (with
4070 {
4071 wi::overflow_type ovf;
4072 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4073 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4074 }
4075 (if (ovf)
4076 { constant_boolean_node (cmp == NE_EXPR, type); }
4077 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4078 (for cmp (lt le gt ge)
4079 (simplify
4080 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4081 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4082 (with
4083 {
4084 wi::overflow_type ovf;
4085 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4086 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4087 }
4088 (if (ovf)
4089 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4090 TYPE_SIGN (TREE_TYPE (@2)))
4091 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4092 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4093
4094 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4095
4096 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4097 For large C (more than min/B+2^size), this is also true, with the
4098 multiplication computed modulo 2^size.
4099 For intermediate C, this just tests the sign of A. */
4100 (for cmp (lt le gt ge)
4101 cmp2 (ge ge lt lt)
4102 (simplify
4103 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4104 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4105 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4106 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4107 (with
4108 {
4109 tree utype = TREE_TYPE (@2);
4110 wide_int denom = wi::to_wide (@1);
4111 wide_int right = wi::to_wide (@2);
4112 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4113 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4114 bool small = wi::leu_p (right, smax);
4115 bool large = wi::geu_p (right, smin);
4116 }
4117 (if (small || large)
4118 (cmp (convert:utype @0) (mult @2 (convert @1)))
4119 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4120
4121 /* Unordered tests if either argument is a NaN. */
4122 (simplify
4123 (bit_ior (unordered @0 @0) (unordered @1 @1))
4124 (if (types_match (@0, @1))
4125 (unordered @0 @1)))
4126 (simplify
4127 (bit_and (ordered @0 @0) (ordered @1 @1))
4128 (if (types_match (@0, @1))
4129 (ordered @0 @1)))
4130 (simplify
4131 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4132 @2)
4133 (simplify
4134 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4135 @2)
4136
4137 /* Simple range test simplifications. */
4138 /* A < B || A >= B -> true. */
4139 (for test1 (lt le le le ne ge)
4140 test2 (ge gt ge ne eq ne)
4141 (simplify
4142 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4143 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4144 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4145 { constant_boolean_node (true, type); })))
4146 /* A < B && A >= B -> false. */
4147 (for test1 (lt lt lt le ne eq)
4148 test2 (ge gt eq gt eq gt)
4149 (simplify
4150 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4151 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4152 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4153 { constant_boolean_node (false, type); })))
4154
4155 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4156 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4157
4158 Note that comparisons
4159 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4160 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4161 will be canonicalized to above so there's no need to
4162 consider them here.
4163 */
4164
4165 (for cmp (le gt)
4166 eqcmp (eq ne)
4167 (simplify
4168 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4169 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4170 (with
4171 {
4172 tree ty = TREE_TYPE (@0);
4173 unsigned prec = TYPE_PRECISION (ty);
4174 wide_int mask = wi::to_wide (@2, prec);
4175 wide_int rhs = wi::to_wide (@3, prec);
4176 signop sgn = TYPE_SIGN (ty);
4177 }
4178 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4179 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4180 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4181 { build_zero_cst (ty); }))))))
4182
4183 /* -A CMP -B -> B CMP A. */
4184 (for cmp (tcc_comparison)
4185 scmp (swapped_tcc_comparison)
4186 (simplify
4187 (cmp (negate @0) (negate @1))
4188 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4189 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4190 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4191 (scmp @0 @1)))
4192 (simplify
4193 (cmp (negate @0) CONSTANT_CLASS_P@1)
4194 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4195 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4196 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4197 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4198 (if (tem && !TREE_OVERFLOW (tem))
4199 (scmp @0 { tem; }))))))
4200
4201 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4202 (for op (eq ne)
4203 (simplify
4204 (op (abs @0) zerop@1)
4205 (op @0 @1)))
4206
4207 /* From fold_sign_changed_comparison and fold_widened_comparison.
4208 FIXME: the lack of symmetry is disturbing. */
4209 (for cmp (simple_comparison)
4210 (simplify
4211 (cmp (convert@0 @00) (convert?@1 @10))
4212 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4213 /* Disable this optimization if we're casting a function pointer
4214 type on targets that require function pointer canonicalization. */
4215 && !(targetm.have_canonicalize_funcptr_for_compare ()
4216 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4217 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4218 || (POINTER_TYPE_P (TREE_TYPE (@10))
4219 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4220 && single_use (@0))
4221 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4222 && (TREE_CODE (@10) == INTEGER_CST
4223 || @1 != @10)
4224 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4225 || cmp == NE_EXPR
4226 || cmp == EQ_EXPR)
4227 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4228 /* ??? The special-casing of INTEGER_CST conversion was in the original
4229 code and here to avoid a spurious overflow flag on the resulting
4230 constant which fold_convert produces. */
4231 (if (TREE_CODE (@1) == INTEGER_CST)
4232 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4233 TREE_OVERFLOW (@1)); })
4234 (cmp @00 (convert @1)))
4235
4236 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4237 /* If possible, express the comparison in the shorter mode. */
4238 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4239 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4240 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4241 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4242 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4243 || ((TYPE_PRECISION (TREE_TYPE (@00))
4244 >= TYPE_PRECISION (TREE_TYPE (@10)))
4245 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4246 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4247 || (TREE_CODE (@10) == INTEGER_CST
4248 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4249 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4250 (cmp @00 (convert @10))
4251 (if (TREE_CODE (@10) == INTEGER_CST
4252 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4253 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4254 (with
4255 {
4256 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4257 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4258 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4259 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4260 }
4261 (if (above || below)
4262 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4263 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4264 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4265 { constant_boolean_node (above ? true : false, type); }
4266 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4267 { constant_boolean_node (above ? false : true, type); }))))))))))))
4268
4269 (for cmp (eq ne)
4270 /* A local variable can never be pointed to by
4271 the default SSA name of an incoming parameter.
4272 SSA names are canonicalized to 2nd place. */
4273 (simplify
4274 (cmp addr@0 SSA_NAME@1)
4275 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4276 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
4277 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
4278 (if (TREE_CODE (base) == VAR_DECL
4279 && auto_var_in_fn_p (base, current_function_decl))
4280 (if (cmp == NE_EXPR)
4281 { constant_boolean_node (true, type); }
4282 { constant_boolean_node (false, type); }))))))
4283
4284 /* Equality compare simplifications from fold_binary */
4285 (for cmp (eq ne)
4286
4287 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4288 Similarly for NE_EXPR. */
4289 (simplify
4290 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4291 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4292 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4293 { constant_boolean_node (cmp == NE_EXPR, type); }))
4294
4295 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4296 (simplify
4297 (cmp (bit_xor @0 @1) integer_zerop)
4298 (cmp @0 @1))
4299
4300 /* (X ^ Y) == Y becomes X == 0.
4301 Likewise (X ^ Y) == X becomes Y == 0. */
4302 (simplify
4303 (cmp:c (bit_xor:c @0 @1) @0)
4304 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4305
4306 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4307 (simplify
4308 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4309 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4310 (cmp @0 (bit_xor @1 (convert @2)))))
4311
4312 (simplify
4313 (cmp (convert? addr@0) integer_zerop)
4314 (if (tree_single_nonzero_warnv_p (@0, NULL))
4315 { constant_boolean_node (cmp == NE_EXPR, type); })))
4316
4317 /* If we have (A & C) == C where C is a power of 2, convert this into
4318 (A & C) != 0. Similarly for NE_EXPR. */
4319 (for cmp (eq ne)
4320 icmp (ne eq)
4321 (simplify
4322 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4323 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4324
4325 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4326 convert this into a shift followed by ANDing with D. */
4327 (simplify
4328 (cond
4329 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4330 INTEGER_CST@2 integer_zerop)
4331 (if (integer_pow2p (@2))
4332 (with {
4333 int shift = (wi::exact_log2 (wi::to_wide (@2))
4334 - wi::exact_log2 (wi::to_wide (@1)));
4335 }
4336 (if (shift > 0)
4337 (bit_and
4338 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4339 (bit_and
4340 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4341 @2)))))
4342
4343 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4344 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4345 (for cmp (eq ne)
4346 ncmp (ge lt)
4347 (simplify
4348 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4349 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4350 && type_has_mode_precision_p (TREE_TYPE (@0))
4351 && element_precision (@2) >= element_precision (@0)
4352 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4353 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4354 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4355
4356 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4357 this into a right shift or sign extension followed by ANDing with C. */
4358 (simplify
4359 (cond
4360 (lt @0 integer_zerop)
4361 INTEGER_CST@1 integer_zerop)
4362 (if (integer_pow2p (@1)
4363 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4364 (with {
4365 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4366 }
4367 (if (shift >= 0)
4368 (bit_and
4369 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4370 @1)
4371 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4372 sign extension followed by AND with C will achieve the effect. */
4373 (bit_and (convert @0) @1)))))
4374
4375 /* When the addresses are not directly of decls compare base and offset.
4376 This implements some remaining parts of fold_comparison address
4377 comparisons but still no complete part of it. Still it is good
4378 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4379 (for cmp (simple_comparison)
4380 (simplify
4381 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4382 (with
4383 {
4384 poly_int64 off0, off1;
4385 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4386 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4387 if (base0 && TREE_CODE (base0) == MEM_REF)
4388 {
4389 off0 += mem_ref_offset (base0).force_shwi ();
4390 base0 = TREE_OPERAND (base0, 0);
4391 }
4392 if (base1 && TREE_CODE (base1) == MEM_REF)
4393 {
4394 off1 += mem_ref_offset (base1).force_shwi ();
4395 base1 = TREE_OPERAND (base1, 0);
4396 }
4397 }
4398 (if (base0 && base1)
4399 (with
4400 {
4401 int equal = 2;
4402 /* Punt in GENERIC on variables with value expressions;
4403 the value expressions might point to fields/elements
4404 of other vars etc. */
4405 if (GENERIC
4406 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4407 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4408 ;
4409 else if (decl_in_symtab_p (base0)
4410 && decl_in_symtab_p (base1))
4411 equal = symtab_node::get_create (base0)
4412 ->equal_address_to (symtab_node::get_create (base1));
4413 else if ((DECL_P (base0)
4414 || TREE_CODE (base0) == SSA_NAME
4415 || TREE_CODE (base0) == STRING_CST)
4416 && (DECL_P (base1)
4417 || TREE_CODE (base1) == SSA_NAME
4418 || TREE_CODE (base1) == STRING_CST))
4419 equal = (base0 == base1);
4420 if (equal == 0)
4421 {
4422 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4423 off0.is_constant (&ioff0);
4424 off1.is_constant (&ioff1);
4425 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4426 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4427 || (TREE_CODE (base0) == STRING_CST
4428 && TREE_CODE (base1) == STRING_CST
4429 && ioff0 >= 0 && ioff1 >= 0
4430 && ioff0 < TREE_STRING_LENGTH (base0)
4431 && ioff1 < TREE_STRING_LENGTH (base1)
4432 /* This is a too conservative test that the STRING_CSTs
4433 will not end up being string-merged. */
4434 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4435 TREE_STRING_POINTER (base1) + ioff1,
4436 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4437 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4438 ;
4439 else if (!DECL_P (base0) || !DECL_P (base1))
4440 equal = 2;
4441 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4442 equal = 2;
4443 /* If this is a pointer comparison, ignore for now even
4444 valid equalities where one pointer is the offset zero
4445 of one object and the other to one past end of another one. */
4446 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4447 ;
4448 /* Assume that automatic variables can't be adjacent to global
4449 variables. */
4450 else if (is_global_var (base0) != is_global_var (base1))
4451 ;
4452 else
4453 {
4454 tree sz0 = DECL_SIZE_UNIT (base0);
4455 tree sz1 = DECL_SIZE_UNIT (base1);
4456 /* If sizes are unknown, e.g. VLA or not representable,
4457 punt. */
4458 if (!tree_fits_poly_int64_p (sz0)
4459 || !tree_fits_poly_int64_p (sz1))
4460 equal = 2;
4461 else
4462 {
4463 poly_int64 size0 = tree_to_poly_int64 (sz0);
4464 poly_int64 size1 = tree_to_poly_int64 (sz1);
4465 /* If one offset is pointing (or could be) to the beginning
4466 of one object and the other is pointing to one past the
4467 last byte of the other object, punt. */
4468 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4469 equal = 2;
4470 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4471 equal = 2;
4472 /* If both offsets are the same, there are some cases
4473 we know that are ok. Either if we know they aren't
4474 zero, or if we know both sizes are no zero. */
4475 if (equal == 2
4476 && known_eq (off0, off1)
4477 && (known_ne (off0, 0)
4478 || (known_ne (size0, 0) && known_ne (size1, 0))))
4479 equal = 0;
4480 }
4481 }
4482 }
4483 }
4484 (if (equal == 1
4485 && (cmp == EQ_EXPR || cmp == NE_EXPR
4486 /* If the offsets are equal we can ignore overflow. */
4487 || known_eq (off0, off1)
4488 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4489 /* Or if we compare using pointers to decls or strings. */
4490 || (POINTER_TYPE_P (TREE_TYPE (@2))
4491 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4492 (switch
4493 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4494 { constant_boolean_node (known_eq (off0, off1), type); })
4495 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4496 { constant_boolean_node (known_ne (off0, off1), type); })
4497 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4498 { constant_boolean_node (known_lt (off0, off1), type); })
4499 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4500 { constant_boolean_node (known_le (off0, off1), type); })
4501 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4502 { constant_boolean_node (known_ge (off0, off1), type); })
4503 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4504 { constant_boolean_node (known_gt (off0, off1), type); }))
4505 (if (equal == 0)
4506 (switch
4507 (if (cmp == EQ_EXPR)
4508 { constant_boolean_node (false, type); })
4509 (if (cmp == NE_EXPR)
4510 { constant_boolean_node (true, type); })))))))))
4511
4512 /* Simplify pointer equality compares using PTA. */
4513 (for neeq (ne eq)
4514 (simplify
4515 (neeq @0 @1)
4516 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4517 && ptrs_compare_unequal (@0, @1))
4518 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4519
4520 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4521 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4522 Disable the transform if either operand is pointer to function.
4523 This broke pr22051-2.c for arm where function pointer
4524 canonicalizaion is not wanted. */
4525
4526 (for cmp (ne eq)
4527 (simplify
4528 (cmp (convert @0) INTEGER_CST@1)
4529 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4530 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4531 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4532 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4533 && POINTER_TYPE_P (TREE_TYPE (@1))
4534 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4535 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4536 (cmp @0 (convert @1)))))
4537
4538 /* Non-equality compare simplifications from fold_binary */
4539 (for cmp (lt gt le ge)
4540 /* Comparisons with the highest or lowest possible integer of
4541 the specified precision will have known values. */
4542 (simplify
4543 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4544 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4545 || POINTER_TYPE_P (TREE_TYPE (@1))
4546 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4547 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4548 (with
4549 {
4550 tree cst = uniform_integer_cst_p (@1);
4551 tree arg1_type = TREE_TYPE (cst);
4552 unsigned int prec = TYPE_PRECISION (arg1_type);
4553 wide_int max = wi::max_value (arg1_type);
4554 wide_int signed_max = wi::max_value (prec, SIGNED);
4555 wide_int min = wi::min_value (arg1_type);
4556 }
4557 (switch
4558 (if (wi::to_wide (cst) == max)
4559 (switch
4560 (if (cmp == GT_EXPR)
4561 { constant_boolean_node (false, type); })
4562 (if (cmp == GE_EXPR)
4563 (eq @2 @1))
4564 (if (cmp == LE_EXPR)
4565 { constant_boolean_node (true, type); })
4566 (if (cmp == LT_EXPR)
4567 (ne @2 @1))))
4568 (if (wi::to_wide (cst) == min)
4569 (switch
4570 (if (cmp == LT_EXPR)
4571 { constant_boolean_node (false, type); })
4572 (if (cmp == LE_EXPR)
4573 (eq @2 @1))
4574 (if (cmp == GE_EXPR)
4575 { constant_boolean_node (true, type); })
4576 (if (cmp == GT_EXPR)
4577 (ne @2 @1))))
4578 (if (wi::to_wide (cst) == max - 1)
4579 (switch
4580 (if (cmp == GT_EXPR)
4581 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4582 wide_int_to_tree (TREE_TYPE (cst),
4583 wi::to_wide (cst)
4584 + 1)); }))
4585 (if (cmp == LE_EXPR)
4586 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4587 wide_int_to_tree (TREE_TYPE (cst),
4588 wi::to_wide (cst)
4589 + 1)); }))))
4590 (if (wi::to_wide (cst) == min + 1)
4591 (switch
4592 (if (cmp == GE_EXPR)
4593 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4594 wide_int_to_tree (TREE_TYPE (cst),
4595 wi::to_wide (cst)
4596 - 1)); }))
4597 (if (cmp == LT_EXPR)
4598 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4599 wide_int_to_tree (TREE_TYPE (cst),
4600 wi::to_wide (cst)
4601 - 1)); }))))
4602 (if (wi::to_wide (cst) == signed_max
4603 && TYPE_UNSIGNED (arg1_type)
4604 /* We will flip the signedness of the comparison operator
4605 associated with the mode of @1, so the sign bit is
4606 specified by this mode. Check that @1 is the signed
4607 max associated with this sign bit. */
4608 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4609 /* signed_type does not work on pointer types. */
4610 && INTEGRAL_TYPE_P (arg1_type))
4611 /* The following case also applies to X < signed_max+1
4612 and X >= signed_max+1 because previous transformations. */
4613 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4614 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4615 (switch
4616 (if (cst == @1 && cmp == LE_EXPR)
4617 (ge (convert:st @0) { build_zero_cst (st); }))
4618 (if (cst == @1 && cmp == GT_EXPR)
4619 (lt (convert:st @0) { build_zero_cst (st); }))
4620 (if (cmp == LE_EXPR)
4621 (ge (view_convert:st @0) { build_zero_cst (st); }))
4622 (if (cmp == GT_EXPR)
4623 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4624
4625 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4626 /* If the second operand is NaN, the result is constant. */
4627 (simplify
4628 (cmp @0 REAL_CST@1)
4629 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4630 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4631 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4632 ? false : true, type); })))
4633
4634 /* bool_var != 0 becomes bool_var. */
4635 (simplify
4636 (ne @0 integer_zerop)
4637 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4638 && types_match (type, TREE_TYPE (@0)))
4639 (non_lvalue @0)))
4640 /* bool_var == 1 becomes bool_var. */
4641 (simplify
4642 (eq @0 integer_onep)
4643 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4644 && types_match (type, TREE_TYPE (@0)))
4645 (non_lvalue @0)))
4646 /* Do not handle
4647 bool_var == 0 becomes !bool_var or
4648 bool_var != 1 becomes !bool_var
4649 here because that only is good in assignment context as long
4650 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4651 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4652 clearly less optimal and which we'll transform again in forwprop. */
4653
4654 /* When one argument is a constant, overflow detection can be simplified.
4655 Currently restricted to single use so as not to interfere too much with
4656 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4657 A + CST CMP A -> A CMP' CST' */
4658 (for cmp (lt le ge gt)
4659 out (gt gt le le)
4660 (simplify
4661 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4662 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4663 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4664 && wi::to_wide (@1) != 0
4665 && single_use (@2))
4666 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4667 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4668 wi::max_value (prec, UNSIGNED)
4669 - wi::to_wide (@1)); })))))
4670
4671 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4672 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4673 expects the long form, so we restrict the transformation for now. */
4674 (for cmp (gt le)
4675 (simplify
4676 (cmp:c (minus@2 @0 @1) @0)
4677 (if (single_use (@2)
4678 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4679 && TYPE_UNSIGNED (TREE_TYPE (@0))
4680 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4681 (cmp @1 @0))))
4682
4683 /* Testing for overflow is unnecessary if we already know the result. */
4684 /* A - B > A */
4685 (for cmp (gt le)
4686 out (ne eq)
4687 (simplify
4688 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4689 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4690 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4691 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4692 /* A + B < A */
4693 (for cmp (lt ge)
4694 out (ne eq)
4695 (simplify
4696 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4697 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4698 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4699 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4700
4701 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4702 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4703 (for cmp (lt ge)
4704 out (ne eq)
4705 (simplify
4706 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4707 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4708 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4709 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4710
4711 /* Simplification of math builtins. These rules must all be optimizations
4712 as well as IL simplifications. If there is a possibility that the new
4713 form could be a pessimization, the rule should go in the canonicalization
4714 section that follows this one.
4715
4716 Rules can generally go in this section if they satisfy one of
4717 the following:
4718
4719 - the rule describes an identity
4720
4721 - the rule replaces calls with something as simple as addition or
4722 multiplication
4723
4724 - the rule contains unary calls only and simplifies the surrounding
4725 arithmetic. (The idea here is to exclude non-unary calls in which
4726 one operand is constant and in which the call is known to be cheap
4727 when the operand has that value.) */
4728
4729 (if (flag_unsafe_math_optimizations)
4730 /* Simplify sqrt(x) * sqrt(x) -> x. */
4731 (simplify
4732 (mult (SQRT_ALL@1 @0) @1)
4733 (if (!HONOR_SNANS (type))
4734 @0))
4735
4736 (for op (plus minus)
4737 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4738 (simplify
4739 (op (rdiv @0 @1)
4740 (rdiv @2 @1))
4741 (rdiv (op @0 @2) @1)))
4742
4743 (for cmp (lt le gt ge)
4744 neg_cmp (gt ge lt le)
4745 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4746 (simplify
4747 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4748 (with
4749 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4750 (if (tem
4751 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4752 || (real_zerop (tem) && !real_zerop (@1))))
4753 (switch
4754 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4755 (cmp @0 { tem; }))
4756 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4757 (neg_cmp @0 { tem; })))))))
4758
4759 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4760 (for root (SQRT CBRT)
4761 (simplify
4762 (mult (root:s @0) (root:s @1))
4763 (root (mult @0 @1))))
4764
4765 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4766 (for exps (EXP EXP2 EXP10 POW10)
4767 (simplify
4768 (mult (exps:s @0) (exps:s @1))
4769 (exps (plus @0 @1))))
4770
4771 /* Simplify a/root(b/c) into a*root(c/b). */
4772 (for root (SQRT CBRT)
4773 (simplify
4774 (rdiv @0 (root:s (rdiv:s @1 @2)))
4775 (mult @0 (root (rdiv @2 @1)))))
4776
4777 /* Simplify x/expN(y) into x*expN(-y). */
4778 (for exps (EXP EXP2 EXP10 POW10)
4779 (simplify
4780 (rdiv @0 (exps:s @1))
4781 (mult @0 (exps (negate @1)))))
4782
4783 (for logs (LOG LOG2 LOG10 LOG10)
4784 exps (EXP EXP2 EXP10 POW10)
4785 /* logN(expN(x)) -> x. */
4786 (simplify
4787 (logs (exps @0))
4788 @0)
4789 /* expN(logN(x)) -> x. */
4790 (simplify
4791 (exps (logs @0))
4792 @0))
4793
4794 /* Optimize logN(func()) for various exponential functions. We
4795 want to determine the value "x" and the power "exponent" in
4796 order to transform logN(x**exponent) into exponent*logN(x). */
4797 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4798 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4799 (simplify
4800 (logs (exps @0))
4801 (if (SCALAR_FLOAT_TYPE_P (type))
4802 (with {
4803 tree x;
4804 switch (exps)
4805 {
4806 CASE_CFN_EXP:
4807 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4808 x = build_real_truncate (type, dconst_e ());
4809 break;
4810 CASE_CFN_EXP2:
4811 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4812 x = build_real (type, dconst2);
4813 break;
4814 CASE_CFN_EXP10:
4815 CASE_CFN_POW10:
4816 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4817 {
4818 REAL_VALUE_TYPE dconst10;
4819 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4820 x = build_real (type, dconst10);
4821 }
4822 break;
4823 default:
4824 gcc_unreachable ();
4825 }
4826 }
4827 (mult (logs { x; }) @0)))))
4828
4829 (for logs (LOG LOG
4830 LOG2 LOG2
4831 LOG10 LOG10)
4832 exps (SQRT CBRT)
4833 (simplify
4834 (logs (exps @0))
4835 (if (SCALAR_FLOAT_TYPE_P (type))
4836 (with {
4837 tree x;
4838 switch (exps)
4839 {
4840 CASE_CFN_SQRT:
4841 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4842 x = build_real (type, dconsthalf);
4843 break;
4844 CASE_CFN_CBRT:
4845 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4846 x = build_real_truncate (type, dconst_third ());
4847 break;
4848 default:
4849 gcc_unreachable ();
4850 }
4851 }
4852 (mult { x; } (logs @0))))))
4853
4854 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4855 (for logs (LOG LOG2 LOG10)
4856 pows (POW)
4857 (simplify
4858 (logs (pows @0 @1))
4859 (mult @1 (logs @0))))
4860
4861 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4862 or if C is a positive power of 2,
4863 pow(C,x) -> exp2(log2(C)*x). */
4864 #if GIMPLE
4865 (for pows (POW)
4866 exps (EXP)
4867 logs (LOG)
4868 exp2s (EXP2)
4869 log2s (LOG2)
4870 (simplify
4871 (pows REAL_CST@0 @1)
4872 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4873 && real_isfinite (TREE_REAL_CST_PTR (@0))
4874 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4875 the use_exp2 case until after vectorization. It seems actually
4876 beneficial for all constants to postpone this until later,
4877 because exp(log(C)*x), while faster, will have worse precision
4878 and if x folds into a constant too, that is unnecessary
4879 pessimization. */
4880 && canonicalize_math_after_vectorization_p ())
4881 (with {
4882 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4883 bool use_exp2 = false;
4884 if (targetm.libc_has_function (function_c99_misc)
4885 && value->cl == rvc_normal)
4886 {
4887 REAL_VALUE_TYPE frac_rvt = *value;
4888 SET_REAL_EXP (&frac_rvt, 1);
4889 if (real_equal (&frac_rvt, &dconst1))
4890 use_exp2 = true;
4891 }
4892 }
4893 (if (!use_exp2)
4894 (if (optimize_pow_to_exp (@0, @1))
4895 (exps (mult (logs @0) @1)))
4896 (exp2s (mult (log2s @0) @1)))))))
4897 #endif
4898
4899 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4900 (for pows (POW)
4901 exps (EXP EXP2 EXP10 POW10)
4902 logs (LOG LOG2 LOG10 LOG10)
4903 (simplify
4904 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4905 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4906 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4907 (exps (plus (mult (logs @0) @1) @2)))))
4908
4909 (for sqrts (SQRT)
4910 cbrts (CBRT)
4911 pows (POW)
4912 exps (EXP EXP2 EXP10 POW10)
4913 /* sqrt(expN(x)) -> expN(x*0.5). */
4914 (simplify
4915 (sqrts (exps @0))
4916 (exps (mult @0 { build_real (type, dconsthalf); })))
4917 /* cbrt(expN(x)) -> expN(x/3). */
4918 (simplify
4919 (cbrts (exps @0))
4920 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4921 /* pow(expN(x), y) -> expN(x*y). */
4922 (simplify
4923 (pows (exps @0) @1)
4924 (exps (mult @0 @1))))
4925
4926 /* tan(atan(x)) -> x. */
4927 (for tans (TAN)
4928 atans (ATAN)
4929 (simplify
4930 (tans (atans @0))
4931 @0)))
4932
4933 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4934 (for sins (SIN)
4935 atans (ATAN)
4936 sqrts (SQRT)
4937 copysigns (COPYSIGN)
4938 (simplify
4939 (sins (atans:s @0))
4940 (with
4941 {
4942 REAL_VALUE_TYPE r_cst;
4943 build_sinatan_real (&r_cst, type);
4944 tree t_cst = build_real (type, r_cst);
4945 tree t_one = build_one_cst (type);
4946 }
4947 (if (SCALAR_FLOAT_TYPE_P (type))
4948 (cond (lt (abs @0) { t_cst; })
4949 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4950 (copysigns { t_one; } @0))))))
4951
4952 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4953 (for coss (COS)
4954 atans (ATAN)
4955 sqrts (SQRT)
4956 copysigns (COPYSIGN)
4957 (simplify
4958 (coss (atans:s @0))
4959 (with
4960 {
4961 REAL_VALUE_TYPE r_cst;
4962 build_sinatan_real (&r_cst, type);
4963 tree t_cst = build_real (type, r_cst);
4964 tree t_one = build_one_cst (type);
4965 tree t_zero = build_zero_cst (type);
4966 }
4967 (if (SCALAR_FLOAT_TYPE_P (type))
4968 (cond (lt (abs @0) { t_cst; })
4969 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4970 (copysigns { t_zero; } @0))))))
4971
4972 (if (!flag_errno_math)
4973 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4974 (for sinhs (SINH)
4975 atanhs (ATANH)
4976 sqrts (SQRT)
4977 (simplify
4978 (sinhs (atanhs:s @0))
4979 (with { tree t_one = build_one_cst (type); }
4980 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4981
4982 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4983 (for coshs (COSH)
4984 atanhs (ATANH)
4985 sqrts (SQRT)
4986 (simplify
4987 (coshs (atanhs:s @0))
4988 (with { tree t_one = build_one_cst (type); }
4989 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4990
4991 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4992 (simplify
4993 (CABS (complex:C @0 real_zerop@1))
4994 (abs @0))
4995
4996 /* trunc(trunc(x)) -> trunc(x), etc. */
4997 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4998 (simplify
4999 (fns (fns @0))
5000 (fns @0)))
5001 /* f(x) -> x if x is integer valued and f does nothing for such values. */
5002 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5003 (simplify
5004 (fns integer_valued_real_p@0)
5005 @0))
5006
5007 /* hypot(x,0) and hypot(0,x) -> abs(x). */
5008 (simplify
5009 (HYPOT:c @0 real_zerop@1)
5010 (abs @0))
5011
5012 /* pow(1,x) -> 1. */
5013 (simplify
5014 (POW real_onep@0 @1)
5015 @0)
5016
5017 (simplify
5018 /* copysign(x,x) -> x. */
5019 (COPYSIGN_ALL @0 @0)
5020 @0)
5021
5022 (simplify
5023 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
5024 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5025 (abs @0))
5026
5027 (for scale (LDEXP SCALBN SCALBLN)
5028 /* ldexp(0, x) -> 0. */
5029 (simplify
5030 (scale real_zerop@0 @1)
5031 @0)
5032 /* ldexp(x, 0) -> x. */
5033 (simplify
5034 (scale @0 integer_zerop@1)
5035 @0)
5036 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
5037 (simplify
5038 (scale REAL_CST@0 @1)
5039 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5040 @0)))
5041
5042 /* Canonicalization of sequences of math builtins. These rules represent
5043 IL simplifications but are not necessarily optimizations.
5044
5045 The sincos pass is responsible for picking "optimal" implementations
5046 of math builtins, which may be more complicated and can sometimes go
5047 the other way, e.g. converting pow into a sequence of sqrts.
5048 We only want to do these canonicalizations before the pass has run. */
5049
5050 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5051 /* Simplify tan(x) * cos(x) -> sin(x). */
5052 (simplify
5053 (mult:c (TAN:s @0) (COS:s @0))
5054 (SIN @0))
5055
5056 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5057 (simplify
5058 (mult:c @0 (POW:s @0 REAL_CST@1))
5059 (if (!TREE_OVERFLOW (@1))
5060 (POW @0 (plus @1 { build_one_cst (type); }))))
5061
5062 /* Simplify sin(x) / cos(x) -> tan(x). */
5063 (simplify
5064 (rdiv (SIN:s @0) (COS:s @0))
5065 (TAN @0))
5066
5067 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5068 (simplify
5069 (rdiv (SINH:s @0) (COSH:s @0))
5070 (TANH @0))
5071
5072 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5073 (simplify
5074 (rdiv (COS:s @0) (SIN:s @0))
5075 (rdiv { build_one_cst (type); } (TAN @0)))
5076
5077 /* Simplify sin(x) / tan(x) -> cos(x). */
5078 (simplify
5079 (rdiv (SIN:s @0) (TAN:s @0))
5080 (if (! HONOR_NANS (@0)
5081 && ! HONOR_INFINITIES (@0))
5082 (COS @0)))
5083
5084 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5085 (simplify
5086 (rdiv (TAN:s @0) (SIN:s @0))
5087 (if (! HONOR_NANS (@0)
5088 && ! HONOR_INFINITIES (@0))
5089 (rdiv { build_one_cst (type); } (COS @0))))
5090
5091 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5092 (simplify
5093 (mult (POW:s @0 @1) (POW:s @0 @2))
5094 (POW @0 (plus @1 @2)))
5095
5096 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5097 (simplify
5098 (mult (POW:s @0 @1) (POW:s @2 @1))
5099 (POW (mult @0 @2) @1))
5100
5101 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5102 (simplify
5103 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5104 (POWI (mult @0 @2) @1))
5105
5106 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5107 (simplify
5108 (rdiv (POW:s @0 REAL_CST@1) @0)
5109 (if (!TREE_OVERFLOW (@1))
5110 (POW @0 (minus @1 { build_one_cst (type); }))))
5111
5112 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5113 (simplify
5114 (rdiv @0 (POW:s @1 @2))
5115 (mult @0 (POW @1 (negate @2))))
5116
5117 (for sqrts (SQRT)
5118 cbrts (CBRT)
5119 pows (POW)
5120 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5121 (simplify
5122 (sqrts (sqrts @0))
5123 (pows @0 { build_real (type, dconst_quarter ()); }))
5124 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5125 (simplify
5126 (sqrts (cbrts @0))
5127 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5128 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5129 (simplify
5130 (cbrts (sqrts @0))
5131 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5132 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5133 (simplify
5134 (cbrts (cbrts tree_expr_nonnegative_p@0))
5135 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5136 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5137 (simplify
5138 (sqrts (pows @0 @1))
5139 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5140 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5141 (simplify
5142 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5143 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5144 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5145 (simplify
5146 (pows (sqrts @0) @1)
5147 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5148 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5149 (simplify
5150 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5151 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5152 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5153 (simplify
5154 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5155 (pows @0 (mult @1 @2))))
5156
5157 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5158 (simplify
5159 (CABS (complex @0 @0))
5160 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5161
5162 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5163 (simplify
5164 (HYPOT @0 @0)
5165 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5166
5167 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5168 (for cexps (CEXP)
5169 exps (EXP)
5170 cexpis (CEXPI)
5171 (simplify
5172 (cexps compositional_complex@0)
5173 (if (targetm.libc_has_function (function_c99_math_complex))
5174 (complex
5175 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5176 (mult @1 (imagpart @2)))))))
5177
5178 (if (canonicalize_math_p ())
5179 /* floor(x) -> trunc(x) if x is nonnegative. */
5180 (for floors (FLOOR_ALL)
5181 truncs (TRUNC_ALL)
5182 (simplify
5183 (floors tree_expr_nonnegative_p@0)
5184 (truncs @0))))
5185
5186 (match double_value_p
5187 @0
5188 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5189 (for froms (BUILT_IN_TRUNCL
5190 BUILT_IN_FLOORL
5191 BUILT_IN_CEILL
5192 BUILT_IN_ROUNDL
5193 BUILT_IN_NEARBYINTL
5194 BUILT_IN_RINTL)
5195 tos (BUILT_IN_TRUNC
5196 BUILT_IN_FLOOR
5197 BUILT_IN_CEIL
5198 BUILT_IN_ROUND
5199 BUILT_IN_NEARBYINT
5200 BUILT_IN_RINT)
5201 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5202 (if (optimize && canonicalize_math_p ())
5203 (simplify
5204 (froms (convert double_value_p@0))
5205 (convert (tos @0)))))
5206
5207 (match float_value_p
5208 @0
5209 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5210 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5211 BUILT_IN_FLOORL BUILT_IN_FLOOR
5212 BUILT_IN_CEILL BUILT_IN_CEIL
5213 BUILT_IN_ROUNDL BUILT_IN_ROUND
5214 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5215 BUILT_IN_RINTL BUILT_IN_RINT)
5216 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5217 BUILT_IN_FLOORF BUILT_IN_FLOORF
5218 BUILT_IN_CEILF BUILT_IN_CEILF
5219 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5220 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5221 BUILT_IN_RINTF BUILT_IN_RINTF)
5222 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5223 if x is a float. */
5224 (if (optimize && canonicalize_math_p ()
5225 && targetm.libc_has_function (function_c99_misc))
5226 (simplify
5227 (froms (convert float_value_p@0))
5228 (convert (tos @0)))))
5229
5230 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5231 tos (XFLOOR XCEIL XROUND XRINT)
5232 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5233 (if (optimize && canonicalize_math_p ())
5234 (simplify
5235 (froms (convert double_value_p@0))
5236 (tos @0))))
5237
5238 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5239 XFLOOR XCEIL XROUND XRINT)
5240 tos (XFLOORF XCEILF XROUNDF XRINTF)
5241 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5242 if x is a float. */
5243 (if (optimize && canonicalize_math_p ())
5244 (simplify
5245 (froms (convert float_value_p@0))
5246 (tos @0))))
5247
5248 (if (canonicalize_math_p ())
5249 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5250 (for floors (IFLOOR LFLOOR LLFLOOR)
5251 (simplify
5252 (floors tree_expr_nonnegative_p@0)
5253 (fix_trunc @0))))
5254
5255 (if (canonicalize_math_p ())
5256 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5257 (for fns (IFLOOR LFLOOR LLFLOOR
5258 ICEIL LCEIL LLCEIL
5259 IROUND LROUND LLROUND)
5260 (simplify
5261 (fns integer_valued_real_p@0)
5262 (fix_trunc @0)))
5263 (if (!flag_errno_math)
5264 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5265 (for rints (IRINT LRINT LLRINT)
5266 (simplify
5267 (rints integer_valued_real_p@0)
5268 (fix_trunc @0)))))
5269
5270 (if (canonicalize_math_p ())
5271 (for ifn (IFLOOR ICEIL IROUND IRINT)
5272 lfn (LFLOOR LCEIL LROUND LRINT)
5273 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5274 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5275 sizeof (int) == sizeof (long). */
5276 (if (TYPE_PRECISION (integer_type_node)
5277 == TYPE_PRECISION (long_integer_type_node))
5278 (simplify
5279 (ifn @0)
5280 (lfn:long_integer_type_node @0)))
5281 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5282 sizeof (long long) == sizeof (long). */
5283 (if (TYPE_PRECISION (long_long_integer_type_node)
5284 == TYPE_PRECISION (long_integer_type_node))
5285 (simplify
5286 (llfn @0)
5287 (lfn:long_integer_type_node @0)))))
5288
5289 /* cproj(x) -> x if we're ignoring infinities. */
5290 (simplify
5291 (CPROJ @0)
5292 (if (!HONOR_INFINITIES (type))
5293 @0))
5294
5295 /* If the real part is inf and the imag part is known to be
5296 nonnegative, return (inf + 0i). */
5297 (simplify
5298 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5299 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5300 { build_complex_inf (type, false); }))
5301
5302 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5303 (simplify
5304 (CPROJ (complex @0 REAL_CST@1))
5305 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5306 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5307
5308 (for pows (POW)
5309 sqrts (SQRT)
5310 cbrts (CBRT)
5311 (simplify
5312 (pows @0 REAL_CST@1)
5313 (with {
5314 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5315 REAL_VALUE_TYPE tmp;
5316 }
5317 (switch
5318 /* pow(x,0) -> 1. */
5319 (if (real_equal (value, &dconst0))
5320 { build_real (type, dconst1); })
5321 /* pow(x,1) -> x. */
5322 (if (real_equal (value, &dconst1))
5323 @0)
5324 /* pow(x,-1) -> 1/x. */
5325 (if (real_equal (value, &dconstm1))
5326 (rdiv { build_real (type, dconst1); } @0))
5327 /* pow(x,0.5) -> sqrt(x). */
5328 (if (flag_unsafe_math_optimizations
5329 && canonicalize_math_p ()
5330 && real_equal (value, &dconsthalf))
5331 (sqrts @0))
5332 /* pow(x,1/3) -> cbrt(x). */
5333 (if (flag_unsafe_math_optimizations
5334 && canonicalize_math_p ()
5335 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5336 real_equal (value, &tmp)))
5337 (cbrts @0))))))
5338
5339 /* powi(1,x) -> 1. */
5340 (simplify
5341 (POWI real_onep@0 @1)
5342 @0)
5343
5344 (simplify
5345 (POWI @0 INTEGER_CST@1)
5346 (switch
5347 /* powi(x,0) -> 1. */
5348 (if (wi::to_wide (@1) == 0)
5349 { build_real (type, dconst1); })
5350 /* powi(x,1) -> x. */
5351 (if (wi::to_wide (@1) == 1)
5352 @0)
5353 /* powi(x,-1) -> 1/x. */
5354 (if (wi::to_wide (@1) == -1)
5355 (rdiv { build_real (type, dconst1); } @0))))
5356
5357 /* Narrowing of arithmetic and logical operations.
5358
5359 These are conceptually similar to the transformations performed for
5360 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5361 term we want to move all that code out of the front-ends into here. */
5362
5363 /* Convert (outertype)((innertype0)a+(innertype1)b)
5364 into ((newtype)a+(newtype)b) where newtype
5365 is the widest mode from all of these. */
5366 (for op (plus minus mult rdiv)
5367 (simplify
5368 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5369 /* If we have a narrowing conversion of an arithmetic operation where
5370 both operands are widening conversions from the same type as the outer
5371 narrowing conversion. Then convert the innermost operands to a
5372 suitable unsigned type (to avoid introducing undefined behavior),
5373 perform the operation and convert the result to the desired type. */
5374 (if (INTEGRAL_TYPE_P (type)
5375 && op != MULT_EXPR
5376 && op != RDIV_EXPR
5377 /* We check for type compatibility between @0 and @1 below,
5378 so there's no need to check that @2/@4 are integral types. */
5379 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5380 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5381 /* The precision of the type of each operand must match the
5382 precision of the mode of each operand, similarly for the
5383 result. */
5384 && type_has_mode_precision_p (TREE_TYPE (@1))
5385 && type_has_mode_precision_p (TREE_TYPE (@2))
5386 && type_has_mode_precision_p (type)
5387 /* The inner conversion must be a widening conversion. */
5388 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5389 && types_match (@1, type)
5390 && (types_match (@1, @2)
5391 /* Or the second operand is const integer or converted const
5392 integer from valueize. */
5393 || TREE_CODE (@2) == INTEGER_CST))
5394 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5395 (op @1 (convert @2))
5396 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5397 (convert (op (convert:utype @1)
5398 (convert:utype @2)))))
5399 (if (FLOAT_TYPE_P (type)
5400 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5401 == DECIMAL_FLOAT_TYPE_P (type))
5402 (with { tree arg0 = strip_float_extensions (@1);
5403 tree arg1 = strip_float_extensions (@2);
5404 tree itype = TREE_TYPE (@0);
5405 tree ty1 = TREE_TYPE (arg0);
5406 tree ty2 = TREE_TYPE (arg1);
5407 enum tree_code code = TREE_CODE (itype); }
5408 (if (FLOAT_TYPE_P (ty1)
5409 && FLOAT_TYPE_P (ty2))
5410 (with { tree newtype = type;
5411 if (TYPE_MODE (ty1) == SDmode
5412 || TYPE_MODE (ty2) == SDmode
5413 || TYPE_MODE (type) == SDmode)
5414 newtype = dfloat32_type_node;
5415 if (TYPE_MODE (ty1) == DDmode
5416 || TYPE_MODE (ty2) == DDmode
5417 || TYPE_MODE (type) == DDmode)
5418 newtype = dfloat64_type_node;
5419 if (TYPE_MODE (ty1) == TDmode
5420 || TYPE_MODE (ty2) == TDmode
5421 || TYPE_MODE (type) == TDmode)
5422 newtype = dfloat128_type_node; }
5423 (if ((newtype == dfloat32_type_node
5424 || newtype == dfloat64_type_node
5425 || newtype == dfloat128_type_node)
5426 && newtype == type
5427 && types_match (newtype, type))
5428 (op (convert:newtype @1) (convert:newtype @2))
5429 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5430 newtype = ty1;
5431 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5432 newtype = ty2; }
5433 /* Sometimes this transformation is safe (cannot
5434 change results through affecting double rounding
5435 cases) and sometimes it is not. If NEWTYPE is
5436 wider than TYPE, e.g. (float)((long double)double
5437 + (long double)double) converted to
5438 (float)(double + double), the transformation is
5439 unsafe regardless of the details of the types
5440 involved; double rounding can arise if the result
5441 of NEWTYPE arithmetic is a NEWTYPE value half way
5442 between two representable TYPE values but the
5443 exact value is sufficiently different (in the
5444 right direction) for this difference to be
5445 visible in ITYPE arithmetic. If NEWTYPE is the
5446 same as TYPE, however, the transformation may be
5447 safe depending on the types involved: it is safe
5448 if the ITYPE has strictly more than twice as many
5449 mantissa bits as TYPE, can represent infinities
5450 and NaNs if the TYPE can, and has sufficient
5451 exponent range for the product or ratio of two
5452 values representable in the TYPE to be within the
5453 range of normal values of ITYPE. */
5454 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5455 && (flag_unsafe_math_optimizations
5456 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5457 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5458 TYPE_MODE (type))
5459 && !excess_precision_type (newtype)))
5460 && !types_match (itype, newtype))
5461 (convert:type (op (convert:newtype @1)
5462 (convert:newtype @2)))
5463 )))) )
5464 ))
5465 )))
5466
5467 /* This is another case of narrowing, specifically when there's an outer
5468 BIT_AND_EXPR which masks off bits outside the type of the innermost
5469 operands. Like the previous case we have to convert the operands
5470 to unsigned types to avoid introducing undefined behavior for the
5471 arithmetic operation. */
5472 (for op (minus plus)
5473 (simplify
5474 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5475 (if (INTEGRAL_TYPE_P (type)
5476 /* We check for type compatibility between @0 and @1 below,
5477 so there's no need to check that @1/@3 are integral types. */
5478 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5479 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5480 /* The precision of the type of each operand must match the
5481 precision of the mode of each operand, similarly for the
5482 result. */
5483 && type_has_mode_precision_p (TREE_TYPE (@0))
5484 && type_has_mode_precision_p (TREE_TYPE (@1))
5485 && type_has_mode_precision_p (type)
5486 /* The inner conversion must be a widening conversion. */
5487 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5488 && types_match (@0, @1)
5489 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5490 <= TYPE_PRECISION (TREE_TYPE (@0)))
5491 && (wi::to_wide (@4)
5492 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5493 true, TYPE_PRECISION (type))) == 0)
5494 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5495 (with { tree ntype = TREE_TYPE (@0); }
5496 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5497 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5498 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5499 (convert:utype @4))))))))
5500
5501 /* Transform (@0 < @1 and @0 < @2) to use min,
5502 (@0 > @1 and @0 > @2) to use max */
5503 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5504 op (lt le gt ge lt le gt ge )
5505 ext (min min max max max max min min )
5506 (simplify
5507 (logic (op:cs @0 @1) (op:cs @0 @2))
5508 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5509 && TREE_CODE (@0) != INTEGER_CST)
5510 (op @0 (ext @1 @2)))))
5511
5512 (simplify
5513 /* signbit(x) -> 0 if x is nonnegative. */
5514 (SIGNBIT tree_expr_nonnegative_p@0)
5515 { integer_zero_node; })
5516
5517 (simplify
5518 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5519 (SIGNBIT @0)
5520 (if (!HONOR_SIGNED_ZEROS (@0))
5521 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5522
5523 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5524 (for cmp (eq ne)
5525 (for op (plus minus)
5526 rop (minus plus)
5527 (simplify
5528 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5529 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5530 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5531 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5532 && !TYPE_SATURATING (TREE_TYPE (@0)))
5533 (with { tree res = int_const_binop (rop, @2, @1); }
5534 (if (TREE_OVERFLOW (res)
5535 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5536 { constant_boolean_node (cmp == NE_EXPR, type); }
5537 (if (single_use (@3))
5538 (cmp @0 { TREE_OVERFLOW (res)
5539 ? drop_tree_overflow (res) : res; }))))))))
5540 (for cmp (lt le gt ge)
5541 (for op (plus minus)
5542 rop (minus plus)
5543 (simplify
5544 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5545 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5546 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5547 (with { tree res = int_const_binop (rop, @2, @1); }
5548 (if (TREE_OVERFLOW (res))
5549 {
5550 fold_overflow_warning (("assuming signed overflow does not occur "
5551 "when simplifying conditional to constant"),
5552 WARN_STRICT_OVERFLOW_CONDITIONAL);
5553 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5554 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5555 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5556 TYPE_SIGN (TREE_TYPE (@1)))
5557 != (op == MINUS_EXPR);
5558 constant_boolean_node (less == ovf_high, type);
5559 }
5560 (if (single_use (@3))
5561 (with
5562 {
5563 fold_overflow_warning (("assuming signed overflow does not occur "
5564 "when changing X +- C1 cmp C2 to "
5565 "X cmp C2 -+ C1"),
5566 WARN_STRICT_OVERFLOW_COMPARISON);
5567 }
5568 (cmp @0 { res; })))))))))
5569
5570 /* Canonicalizations of BIT_FIELD_REFs. */
5571
5572 (simplify
5573 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5574 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5575
5576 (simplify
5577 (BIT_FIELD_REF (view_convert @0) @1 @2)
5578 (BIT_FIELD_REF @0 @1 @2))
5579
5580 (simplify
5581 (BIT_FIELD_REF @0 @1 integer_zerop)
5582 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5583 (view_convert @0)))
5584
5585 (simplify
5586 (BIT_FIELD_REF @0 @1 @2)
5587 (switch
5588 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5589 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5590 (switch
5591 (if (integer_zerop (@2))
5592 (view_convert (realpart @0)))
5593 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5594 (view_convert (imagpart @0)))))
5595 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5596 && INTEGRAL_TYPE_P (type)
5597 /* On GIMPLE this should only apply to register arguments. */
5598 && (! GIMPLE || is_gimple_reg (@0))
5599 /* A bit-field-ref that referenced the full argument can be stripped. */
5600 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5601 && integer_zerop (@2))
5602 /* Low-parts can be reduced to integral conversions.
5603 ??? The following doesn't work for PDP endian. */
5604 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5605 /* Don't even think about BITS_BIG_ENDIAN. */
5606 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5607 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5608 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5609 ? (TYPE_PRECISION (TREE_TYPE (@0))
5610 - TYPE_PRECISION (type))
5611 : 0)) == 0)))
5612 (convert @0))))
5613
5614 /* Simplify vector extracts. */
5615
5616 (simplify
5617 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5618 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5619 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5620 || (VECTOR_TYPE_P (type)
5621 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5622 (with
5623 {
5624 tree ctor = (TREE_CODE (@0) == SSA_NAME
5625 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5626 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5627 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5628 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5629 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5630 }
5631 (if (n != 0
5632 && (idx % width) == 0
5633 && (n % width) == 0
5634 && known_le ((idx + n) / width,
5635 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5636 (with
5637 {
5638 idx = idx / width;
5639 n = n / width;
5640 /* Constructor elements can be subvectors. */
5641 poly_uint64 k = 1;
5642 if (CONSTRUCTOR_NELTS (ctor) != 0)
5643 {
5644 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5645 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5646 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5647 }
5648 unsigned HOST_WIDE_INT elt, count, const_k;
5649 }
5650 (switch
5651 /* We keep an exact subset of the constructor elements. */
5652 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5653 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5654 { build_constructor (type, NULL); }
5655 (if (count == 1)
5656 (if (elt < CONSTRUCTOR_NELTS (ctor))
5657 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5658 { build_zero_cst (type); })
5659 /* We don't want to emit new CTORs unless the old one goes away.
5660 ??? Eventually allow this if the CTOR ends up constant or
5661 uniform. */
5662 (if (single_use (@0))
5663 {
5664 vec<constructor_elt, va_gc> *vals;
5665 vec_alloc (vals, count);
5666 for (unsigned i = 0;
5667 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5668 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5669 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5670 build_constructor (type, vals);
5671 }))))
5672 /* The bitfield references a single constructor element. */
5673 (if (k.is_constant (&const_k)
5674 && idx + n <= (idx / const_k + 1) * const_k)
5675 (switch
5676 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5677 { build_zero_cst (type); })
5678 (if (n == const_k)
5679 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5680 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5681 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5682
5683 /* Simplify a bit extraction from a bit insertion for the cases with
5684 the inserted element fully covering the extraction or the insertion
5685 not touching the extraction. */
5686 (simplify
5687 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5688 (with
5689 {
5690 unsigned HOST_WIDE_INT isize;
5691 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5692 isize = TYPE_PRECISION (TREE_TYPE (@1));
5693 else
5694 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5695 }
5696 (switch
5697 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5698 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5699 wi::to_wide (@ipos) + isize))
5700 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5701 wi::to_wide (@rpos)
5702 - wi::to_wide (@ipos)); }))
5703 (if (wi::geu_p (wi::to_wide (@ipos),
5704 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5705 || wi::geu_p (wi::to_wide (@rpos),
5706 wi::to_wide (@ipos) + isize))
5707 (BIT_FIELD_REF @0 @rsize @rpos)))))
5708
5709 (if (canonicalize_math_after_vectorization_p ())
5710 (for fmas (FMA)
5711 (simplify
5712 (fmas:c (negate @0) @1 @2)
5713 (IFN_FNMA @0 @1 @2))
5714 (simplify
5715 (fmas @0 @1 (negate @2))
5716 (IFN_FMS @0 @1 @2))
5717 (simplify
5718 (fmas:c (negate @0) @1 (negate @2))
5719 (IFN_FNMS @0 @1 @2))
5720 (simplify
5721 (negate (fmas@3 @0 @1 @2))
5722 (if (single_use (@3))
5723 (IFN_FNMS @0 @1 @2))))
5724
5725 (simplify
5726 (IFN_FMS:c (negate @0) @1 @2)
5727 (IFN_FNMS @0 @1 @2))
5728 (simplify
5729 (IFN_FMS @0 @1 (negate @2))
5730 (IFN_FMA @0 @1 @2))
5731 (simplify
5732 (IFN_FMS:c (negate @0) @1 (negate @2))
5733 (IFN_FNMA @0 @1 @2))
5734 (simplify
5735 (negate (IFN_FMS@3 @0 @1 @2))
5736 (if (single_use (@3))
5737 (IFN_FNMA @0 @1 @2)))
5738
5739 (simplify
5740 (IFN_FNMA:c (negate @0) @1 @2)
5741 (IFN_FMA @0 @1 @2))
5742 (simplify
5743 (IFN_FNMA @0 @1 (negate @2))
5744 (IFN_FNMS @0 @1 @2))
5745 (simplify
5746 (IFN_FNMA:c (negate @0) @1 (negate @2))
5747 (IFN_FMS @0 @1 @2))
5748 (simplify
5749 (negate (IFN_FNMA@3 @0 @1 @2))
5750 (if (single_use (@3))
5751 (IFN_FMS @0 @1 @2)))
5752
5753 (simplify
5754 (IFN_FNMS:c (negate @0) @1 @2)
5755 (IFN_FMS @0 @1 @2))
5756 (simplify
5757 (IFN_FNMS @0 @1 (negate @2))
5758 (IFN_FNMA @0 @1 @2))
5759 (simplify
5760 (IFN_FNMS:c (negate @0) @1 (negate @2))
5761 (IFN_FMA @0 @1 @2))
5762 (simplify
5763 (negate (IFN_FNMS@3 @0 @1 @2))
5764 (if (single_use (@3))
5765 (IFN_FMA @0 @1 @2))))
5766
5767 /* POPCOUNT simplifications. */
5768 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5769 BUILT_IN_POPCOUNTIMAX)
5770 /* popcount(X&1) is nop_expr(X&1). */
5771 (simplify
5772 (popcount @0)
5773 (if (tree_nonzero_bits (@0) == 1)
5774 (convert @0)))
5775 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5776 (simplify
5777 (plus (popcount:s @0) (popcount:s @1))
5778 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5779 (popcount (bit_ior @0 @1))))
5780 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5781 (for cmp (le eq ne gt)
5782 rep (eq eq ne ne)
5783 (simplify
5784 (cmp (popcount @0) integer_zerop)
5785 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5786
5787 #if GIMPLE
5788 /* 64- and 32-bits branchless implementations of popcount are detected:
5789
5790 int popcount64c (uint64_t x)
5791 {
5792 x -= (x >> 1) & 0x5555555555555555ULL;
5793 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5794 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5795 return (x * 0x0101010101010101ULL) >> 56;
5796 }
5797
5798 int popcount32c (uint32_t x)
5799 {
5800 x -= (x >> 1) & 0x55555555;
5801 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5802 x = (x + (x >> 4)) & 0x0f0f0f0f;
5803 return (x * 0x01010101) >> 24;
5804 } */
5805 (simplify
5806 (rshift
5807 (mult
5808 (bit_and
5809 (plus:c
5810 (rshift @8 INTEGER_CST@5)
5811 (plus:c@8
5812 (bit_and @6 INTEGER_CST@7)
5813 (bit_and
5814 (rshift
5815 (minus@6 @0
5816 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
5817 INTEGER_CST@10)
5818 INTEGER_CST@9)))
5819 INTEGER_CST@3)
5820 INTEGER_CST@2)
5821 INTEGER_CST@1)
5822 /* Check constants and optab. */
5823 (with { unsigned prec = TYPE_PRECISION (type);
5824 int shift = (64 - prec) & 63;
5825 unsigned HOST_WIDE_INT c1
5826 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
5827 unsigned HOST_WIDE_INT c2
5828 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
5829 unsigned HOST_WIDE_INT c3
5830 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
5831 unsigned HOST_WIDE_INT c4
5832 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
5833 }
5834 (if (prec >= 16
5835 && prec <= 64
5836 && pow2p_hwi (prec)
5837 && TYPE_UNSIGNED (type)
5838 && integer_onep (@4)
5839 && wi::to_widest (@10) == 2
5840 && wi::to_widest (@5) == 4
5841 && wi::to_widest (@1) == prec - 8
5842 && tree_to_uhwi (@2) == c1
5843 && tree_to_uhwi (@3) == c2
5844 && tree_to_uhwi (@9) == c3
5845 && tree_to_uhwi (@7) == c3
5846 && tree_to_uhwi (@11) == c4
5847 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
5848 OPTIMIZE_FOR_BOTH))
5849 (convert (IFN_POPCOUNT:type @0)))))
5850 #endif
5851
5852 /* Simplify:
5853
5854 a = a1 op a2
5855 r = c ? a : b;
5856
5857 to:
5858
5859 r = c ? a1 op a2 : b;
5860
5861 if the target can do it in one go. This makes the operation conditional
5862 on c, so could drop potentially-trapping arithmetic, but that's a valid
5863 simplification if the result of the operation isn't needed.
5864
5865 Avoid speculatively generating a stand-alone vector comparison
5866 on targets that might not support them. Any target implementing
5867 conditional internal functions must support the same comparisons
5868 inside and outside a VEC_COND_EXPR. */
5869
5870 #if GIMPLE
5871 (for uncond_op (UNCOND_BINARY)
5872 cond_op (COND_BINARY)
5873 (simplify
5874 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5875 (with { tree op_type = TREE_TYPE (@4); }
5876 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5877 && element_precision (type) == element_precision (op_type))
5878 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5879 (simplify
5880 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5881 (with { tree op_type = TREE_TYPE (@4); }
5882 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5883 && element_precision (type) == element_precision (op_type))
5884 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5885
5886 /* Same for ternary operations. */
5887 (for uncond_op (UNCOND_TERNARY)
5888 cond_op (COND_TERNARY)
5889 (simplify
5890 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5891 (with { tree op_type = TREE_TYPE (@5); }
5892 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5893 && element_precision (type) == element_precision (op_type))
5894 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5895 (simplify
5896 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5897 (with { tree op_type = TREE_TYPE (@5); }
5898 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5899 && element_precision (type) == element_precision (op_type))
5900 (view_convert (cond_op (bit_not @0) @2 @3 @4
5901 (view_convert:op_type @1)))))))
5902 #endif
5903
5904 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5905 "else" value of an IFN_COND_*. */
5906 (for cond_op (COND_BINARY)
5907 (simplify
5908 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5909 (with { tree op_type = TREE_TYPE (@3); }
5910 (if (element_precision (type) == element_precision (op_type))
5911 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5912 (simplify
5913 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5914 (with { tree op_type = TREE_TYPE (@5); }
5915 (if (inverse_conditions_p (@0, @2)
5916 && element_precision (type) == element_precision (op_type))
5917 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5918
5919 /* Same for ternary operations. */
5920 (for cond_op (COND_TERNARY)
5921 (simplify
5922 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5923 (with { tree op_type = TREE_TYPE (@4); }
5924 (if (element_precision (type) == element_precision (op_type))
5925 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5926 (simplify
5927 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5928 (with { tree op_type = TREE_TYPE (@6); }
5929 (if (inverse_conditions_p (@0, @2)
5930 && element_precision (type) == element_precision (op_type))
5931 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5932
5933 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5934 expressions like:
5935
5936 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5937 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5938
5939 If pointers are known not to wrap, B checks whether @1 bytes starting
5940 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5941 bytes. A is more efficiently tested as:
5942
5943 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5944
5945 The equivalent expression for B is given by replacing @1 with @1 - 1:
5946
5947 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5948
5949 @0 and @2 can be swapped in both expressions without changing the result.
5950
5951 The folds rely on sizetype's being unsigned (which is always true)
5952 and on its being the same width as the pointer (which we have to check).
5953
5954 The fold replaces two pointer_plus expressions, two comparisons and
5955 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5956 the best case it's a saving of two operations. The A fold retains one
5957 of the original pointer_pluses, so is a win even if both pointer_pluses
5958 are used elsewhere. The B fold is a wash if both pointer_pluses are
5959 used elsewhere, since all we end up doing is replacing a comparison with
5960 a pointer_plus. We do still apply the fold under those circumstances
5961 though, in case applying it to other conditions eventually makes one of the
5962 pointer_pluses dead. */
5963 (for ior (truth_orif truth_or bit_ior)
5964 (for cmp (le lt)
5965 (simplify
5966 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5967 (cmp:cs (pointer_plus@4 @2 @1) @0))
5968 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5969 && TYPE_OVERFLOW_WRAPS (sizetype)
5970 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5971 /* Calculate the rhs constant. */
5972 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5973 offset_int rhs = off * 2; }
5974 /* Always fails for negative values. */
5975 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5976 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5977 pick a canonical order. This increases the chances of using the
5978 same pointer_plus in multiple checks. */
5979 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5980 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5981 (if (cmp == LT_EXPR)
5982 (gt (convert:sizetype
5983 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5984 { swap_p ? @0 : @2; }))
5985 { rhs_tree; })
5986 (gt (convert:sizetype
5987 (pointer_diff:ssizetype
5988 (pointer_plus { swap_p ? @2 : @0; }
5989 { wide_int_to_tree (sizetype, off); })
5990 { swap_p ? @0 : @2; }))
5991 { rhs_tree; })))))))))
5992
5993 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5994 element of @1. */
5995 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5996 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5997 (with { int i = single_nonzero_element (@1); }
5998 (if (i >= 0)
5999 (with { tree elt = vector_cst_elt (@1, i);
6000 tree elt_type = TREE_TYPE (elt);
6001 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6002 tree size = bitsize_int (elt_bits);
6003 tree pos = bitsize_int (elt_bits * i); }
6004 (view_convert
6005 (bit_and:elt_type
6006 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6007 { elt; })))))))
6008
6009 (simplify
6010 (vec_perm @0 @1 VECTOR_CST@2)
6011 (with
6012 {
6013 tree op0 = @0, op1 = @1, op2 = @2;
6014
6015 /* Build a vector of integers from the tree mask. */
6016 vec_perm_builder builder;
6017 if (!tree_to_vec_perm_builder (&builder, op2))
6018 return NULL_TREE;
6019
6020 /* Create a vec_perm_indices for the integer vector. */
6021 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6022 bool single_arg = (op0 == op1);
6023 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6024 }
6025 (if (sel.series_p (0, 1, 0, 1))
6026 { op0; }
6027 (if (sel.series_p (0, 1, nelts, 1))
6028 { op1; }
6029 (with
6030 {
6031 if (!single_arg)
6032 {
6033 if (sel.all_from_input_p (0))
6034 op1 = op0;
6035 else if (sel.all_from_input_p (1))
6036 {
6037 op0 = op1;
6038 sel.rotate_inputs (1);
6039 }
6040 else if (known_ge (poly_uint64 (sel[0]), nelts))
6041 {
6042 std::swap (op0, op1);
6043 sel.rotate_inputs (1);
6044 }
6045 }
6046 gassign *def;
6047 tree cop0 = op0, cop1 = op1;
6048 if (TREE_CODE (op0) == SSA_NAME
6049 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6050 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6051 cop0 = gimple_assign_rhs1 (def);
6052 if (TREE_CODE (op1) == SSA_NAME
6053 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6054 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6055 cop1 = gimple_assign_rhs1 (def);
6056
6057 tree t;
6058 }
6059 (if ((TREE_CODE (cop0) == VECTOR_CST
6060 || TREE_CODE (cop0) == CONSTRUCTOR)
6061 && (TREE_CODE (cop1) == VECTOR_CST
6062 || TREE_CODE (cop1) == CONSTRUCTOR)
6063 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6064 { t; }
6065 (with
6066 {
6067 bool changed = (op0 == op1 && !single_arg);
6068 tree ins = NULL_TREE;
6069 unsigned at = 0;
6070
6071 /* See if the permutation is performing a single element
6072 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6073 in that case. But only if the vector mode is supported,
6074 otherwise this is invalid GIMPLE. */
6075 if (TYPE_MODE (type) != BLKmode
6076 && (TREE_CODE (cop0) == VECTOR_CST
6077 || TREE_CODE (cop0) == CONSTRUCTOR
6078 || TREE_CODE (cop1) == VECTOR_CST
6079 || TREE_CODE (cop1) == CONSTRUCTOR))
6080 {
6081 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6082 if (insert_first_p)
6083 {
6084 /* After canonicalizing the first elt to come from the
6085 first vector we only can insert the first elt from
6086 the first vector. */
6087 at = 0;
6088 if ((ins = fold_read_from_vector (cop0, sel[0])))
6089 op0 = op1;
6090 }
6091 /* The above can fail for two-element vectors which always
6092 appear to insert the first element, so try inserting
6093 into the second lane as well. For more than two
6094 elements that's wasted time. */
6095 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6096 {
6097 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6098 for (at = 0; at < encoded_nelts; ++at)
6099 if (maybe_ne (sel[at], at))
6100 break;
6101 if (at < encoded_nelts
6102 && (known_eq (at + 1, nelts)
6103 || sel.series_p (at + 1, 1, at + 1, 1)))
6104 {
6105 if (known_lt (poly_uint64 (sel[at]), nelts))
6106 ins = fold_read_from_vector (cop0, sel[at]);
6107 else
6108 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6109 }
6110 }
6111 }
6112
6113 /* Generate a canonical form of the selector. */
6114 if (!ins && sel.encoding () != builder)
6115 {
6116 /* Some targets are deficient and fail to expand a single
6117 argument permutation while still allowing an equivalent
6118 2-argument version. */
6119 tree oldop2 = op2;
6120 if (sel.ninputs () == 2
6121 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6122 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6123 else
6124 {
6125 vec_perm_indices sel2 (builder, 2, nelts);
6126 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6127 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6128 else
6129 /* Not directly supported with either encoding,
6130 so use the preferred form. */
6131 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6132 }
6133 if (!operand_equal_p (op2, oldop2, 0))
6134 changed = true;
6135 }
6136 }
6137 (if (ins)
6138 (bit_insert { op0; } { ins; }
6139 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
6140 (if (changed)
6141 (vec_perm { op0; } { op1; } { op2; }))))))))))
6142
6143 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6144
6145 (match vec_same_elem_p
6146 @0
6147 (if (uniform_vector_p (@0))))
6148
6149 (match vec_same_elem_p
6150 (vec_duplicate @0))
6151
6152 (simplify
6153 (vec_perm vec_same_elem_p@0 @0 @1)
6154 @0)
6155
6156 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6157 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6158 constant which when multiplied by a power of 2 contains a unique value
6159 in the top 5 or 6 bits. This is then indexed into a table which maps it
6160 to the number of trailing zeroes. */
6161 (match (ctz_table_index @1 @2 @3)
6162 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))