IA MCU psABI support: changes to libraries
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43
44
45 /* Simplifications of operations with one constant operand and
46 simplifications to constants or single values. */
47
48 (for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
53 /* 0 +p index -> (type)index */
54 (simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
58 /* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60 (simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65 /* See if ARG1 is zero and X - ARG1 reduces to X. */
66 (simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
71 /* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76 (simplify
77 (minus @0 @0)
78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
79 { build_zero_cst (type); }))
80
81 (simplify
82 (mult @0 integer_zerop@1)
83 @1)
84
85 /* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89 (simplify
90 (mult @0 real_zerop@1)
91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
92 @1))
93
94 /* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96 (simplify
97 (mult @0 real_onep)
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103 /* Transform x * -1.0 into -x. */
104 (simplify
105 (mult @0 real_minus_onep)
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
110
111 /* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
118 /* X / -1 is -X. */
119 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
123 (negate @0))))
124
125 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127 (simplify
128 (floor_div @0 @1)
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
131 (trunc_div @0 @1)))
132
133 /* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135 (for div (trunc_div exact_div)
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
147 { build_zero_cst (type); }))))
148
149 /* Optimize A / A to 1.0 if we don't care about
150 NaNs or Infinities. */
151 (simplify
152 (rdiv @0 @0)
153 (if (FLOAT_TYPE_P (type)
154 && ! HONOR_NANS (type)
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158 /* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160 (simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
163 && ! HONOR_NANS (type)
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
166
167 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
168 (simplify
169 (rdiv @0 real_onep)
170 (if (!HONOR_SNANS (element_mode (type)))
171 (non_lvalue @0)))
172
173 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174 (simplify
175 (rdiv @0 real_minus_onep)
176 (if (!HONOR_SNANS (element_mode (type)))
177 (negate @0)))
178
179 /* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
190 (with
191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
199 /* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
201 (for mod (ceil_mod floor_mod round_mod trunc_mod)
202 /* 0 % X is always zero. */
203 (simplify
204 (mod integer_zerop@0 @1)
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
221
222 /* X % -C is the same as X % C. */
223 (simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
232
233 /* X % -Y is the same as X % Y. */
234 (simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241 /* X - (X / Y) * Y is the same as X % Y. */
242 (simplify
243 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
244 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
245 (trunc_mod (convert @0) (convert @1))))
246
247 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
248 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
249 Also optimize A % (C << N) where C is a power of 2,
250 to A & ((C << N) - 1). */
251 (match (power_of_two_cand @1)
252 INTEGER_CST@1)
253 (match (power_of_two_cand @1)
254 (lshift INTEGER_CST@1 @2))
255 (for mod (trunc_mod floor_mod)
256 (simplify
257 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
258 (if ((TYPE_UNSIGNED (type)
259 || tree_expr_nonnegative_p (@0))
260 && tree_nop_conversion_p (type, TREE_TYPE (@3))
261 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
262 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
263
264 /* X % Y is smaller than Y. */
265 (for cmp (lt ge)
266 (simplify
267 (cmp (trunc_mod @0 @1) @1)
268 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
269 { constant_boolean_node (cmp == LT_EXPR, type); })))
270 (for cmp (gt le)
271 (simplify
272 (cmp @1 (trunc_mod @0 @1))
273 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
274 { constant_boolean_node (cmp == GT_EXPR, type); })))
275
276 /* x | ~0 -> ~0 */
277 (simplify
278 (bit_ior @0 integer_all_onesp@1)
279 @1)
280
281 /* x & 0 -> 0 */
282 (simplify
283 (bit_and @0 integer_zerop@1)
284 @1)
285
286 /* ~x | x -> -1 */
287 (simplify
288 (bit_ior:c (convert? @0) (convert? (bit_not @0)))
289 (convert { build_all_ones_cst (TREE_TYPE (@0)); }))
290
291 /* x ^ x -> 0 */
292 (simplify
293 (bit_xor @0 @0)
294 { build_zero_cst (type); })
295
296 /* Canonicalize X ^ ~0 to ~X. */
297 (simplify
298 (bit_xor @0 integer_all_onesp@1)
299 (bit_not @0))
300
301 /* x & ~0 -> x */
302 (simplify
303 (bit_and @0 integer_all_onesp)
304 (non_lvalue @0))
305
306 /* x & x -> x, x | x -> x */
307 (for bitop (bit_and bit_ior)
308 (simplify
309 (bitop @0 @0)
310 (non_lvalue @0)))
311
312 /* x + (x & 1) -> (x + 1) & ~1 */
313 (simplify
314 (plus:c @0 (bit_and@2 @0 integer_onep@1))
315 (if (single_use (@2))
316 (bit_and (plus @0 @1) (bit_not @1))))
317
318 /* x & ~(x & y) -> x & ~y */
319 /* x | ~(x | y) -> x | ~y */
320 (for bitop (bit_and bit_ior)
321 (simplify
322 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
323 (if (single_use (@2))
324 (bitop @0 (bit_not @1)))))
325
326 /* (x | y) & ~x -> y & ~x */
327 /* (x & y) | ~x -> y | ~x */
328 (for bitop (bit_and bit_ior)
329 rbitop (bit_ior bit_and)
330 (simplify
331 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
332 (bitop @1 @2)))
333
334 /* (x & y) ^ (x | y) -> x ^ y */
335 (simplify
336 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
337 (bit_xor @0 @1))
338
339 /* (x ^ y) ^ (x | y) -> x & y */
340 (simplify
341 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
342 (bit_and @0 @1))
343
344 /* (x & y) + (x ^ y) -> x | y */
345 /* (x & y) | (x ^ y) -> x | y */
346 /* (x & y) ^ (x ^ y) -> x | y */
347 (for op (plus bit_ior bit_xor)
348 (simplify
349 (op:c (bit_and @0 @1) (bit_xor @0 @1))
350 (bit_ior @0 @1)))
351
352 /* (x & y) + (x | y) -> x + y */
353 (simplify
354 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
355 (plus @0 @1))
356
357 /* (x + y) - (x | y) -> x & y */
358 (simplify
359 (minus (plus @0 @1) (bit_ior @0 @1))
360 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
361 && !TYPE_SATURATING (type))
362 (bit_and @0 @1)))
363
364 /* (x + y) - (x & y) -> x | y */
365 (simplify
366 (minus (plus @0 @1) (bit_and @0 @1))
367 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
368 && !TYPE_SATURATING (type))
369 (bit_ior @0 @1)))
370
371 /* (x | y) - (x ^ y) -> x & y */
372 (simplify
373 (minus (bit_ior @0 @1) (bit_xor @0 @1))
374 (bit_and @0 @1))
375
376 /* (x | y) - (x & y) -> x ^ y */
377 (simplify
378 (minus (bit_ior @0 @1) (bit_and @0 @1))
379 (bit_xor @0 @1))
380
381 /* (x | y) & ~(x & y) -> x ^ y */
382 (simplify
383 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
384 (bit_xor @0 @1))
385
386 /* (x | y) & (~x ^ y) -> x & y */
387 (simplify
388 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
389 (bit_and @0 @1))
390
391 /* ~x & ~y -> ~(x | y)
392 ~x | ~y -> ~(x & y) */
393 (for op (bit_and bit_ior)
394 rop (bit_ior bit_and)
395 (simplify
396 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
397 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
398 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
399 (bit_not (rop (convert @0) (convert @1))))))
400
401 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
402 with a constant, and the two constants have no bits in common,
403 we should treat this as a BIT_IOR_EXPR since this may produce more
404 simplifications. */
405 (simplify
406 (bit_xor (convert1? (bit_and@4 @0 INTEGER_CST@1))
407 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
408 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
409 && tree_nop_conversion_p (type, TREE_TYPE (@2))
410 && wi::bit_and (@1, @3) == 0)
411 (bit_ior (convert @4) (convert @5))))
412
413 /* (X | Y) ^ X -> Y & ~ X*/
414 (simplify
415 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
416 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
417 (convert (bit_and @1 (bit_not @0)))))
418
419 /* Convert ~X ^ ~Y to X ^ Y. */
420 (simplify
421 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
422 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
423 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
424 (bit_xor (convert @0) (convert @1))))
425
426 /* Convert ~X ^ C to X ^ ~C. */
427 (simplify
428 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
429 (bit_xor (convert @0) (bit_not @1)))
430
431
432 (simplify
433 (abs (abs@1 @0))
434 @1)
435 (simplify
436 (abs (negate @0))
437 (abs @0))
438 (simplify
439 (abs tree_expr_nonnegative_p@0)
440 @0)
441
442 /* A - B -> A + (-B) if B is easily negatable. This just covers
443 very few cases of "easily negatable", effectively inlining negate_expr_p. */
444 (simplify
445 (minus @0 INTEGER_CST@1)
446 (if ((INTEGRAL_TYPE_P (type)
447 && TYPE_OVERFLOW_WRAPS (type))
448 || (!TYPE_OVERFLOW_SANITIZED (type)
449 && may_negate_without_overflow_p (@1)))
450 (plus @0 (negate @1))))
451 (simplify
452 (minus @0 REAL_CST@1)
453 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
454 (plus @0 (negate @1))))
455 (simplify
456 (minus @0 VECTOR_CST@1)
457 (if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
458 (plus @0 (negate @1))))
459
460
461 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
462 when profitable.
463 For bitwise binary operations apply operand conversions to the
464 binary operation result instead of to the operands. This allows
465 to combine successive conversions and bitwise binary operations.
466 We combine the above two cases by using a conditional convert. */
467 (for bitop (bit_and bit_ior bit_xor)
468 (simplify
469 (bitop (convert @0) (convert? @1))
470 (if (((TREE_CODE (@1) == INTEGER_CST
471 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
472 && int_fits_type_p (@1, TREE_TYPE (@0)))
473 || types_match (@0, @1))
474 /* ??? This transform conflicts with fold-const.c doing
475 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
476 constants (if x has signed type, the sign bit cannot be set
477 in c). This folds extension into the BIT_AND_EXPR.
478 Restrict it to GIMPLE to avoid endless recursions. */
479 && (bitop != BIT_AND_EXPR || GIMPLE)
480 && (/* That's a good idea if the conversion widens the operand, thus
481 after hoisting the conversion the operation will be narrower. */
482 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
483 /* It's also a good idea if the conversion is to a non-integer
484 mode. */
485 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
486 /* Or if the precision of TO is not the same as the precision
487 of its mode. */
488 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
489 (convert (bitop @0 (convert @1))))))
490
491 (for bitop (bit_and bit_ior)
492 rbitop (bit_ior bit_and)
493 /* (x | y) & x -> x */
494 /* (x & y) | x -> x */
495 (simplify
496 (bitop:c (rbitop:c @0 @1) @0)
497 @0)
498 /* (~x | y) & x -> x & y */
499 /* (~x & y) | x -> x | y */
500 (simplify
501 (bitop:c (rbitop:c (bit_not @0) @1) @0)
502 (bitop @0 @1)))
503
504 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
505 (for bitop (bit_and bit_ior bit_xor)
506 (simplify
507 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
508 (bit_and (bitop @0 @2) @1)))
509
510 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
511 (simplify
512 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
513 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
514
515 /* Combine successive equal operations with constants. */
516 (for bitop (bit_and bit_ior bit_xor)
517 (simplify
518 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
519 (bitop @0 (bitop @1 @2))))
520
521 /* Try simple folding for X op !X, and X op X with the help
522 of the truth_valued_p and logical_inverted_value predicates. */
523 (match truth_valued_p
524 @0
525 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
526 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
527 (match truth_valued_p
528 (op @0 @1)))
529 (match truth_valued_p
530 (truth_not @0))
531
532 (match (logical_inverted_value @0)
533 (bit_not truth_valued_p@0))
534 (match (logical_inverted_value @0)
535 (eq @0 integer_zerop))
536 (match (logical_inverted_value @0)
537 (ne truth_valued_p@0 integer_truep))
538 (match (logical_inverted_value @0)
539 (bit_xor truth_valued_p@0 integer_truep))
540
541 /* X & !X -> 0. */
542 (simplify
543 (bit_and:c @0 (logical_inverted_value @0))
544 { build_zero_cst (type); })
545 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
546 (for op (bit_ior bit_xor)
547 (simplify
548 (op:c truth_valued_p@0 (logical_inverted_value @0))
549 { constant_boolean_node (true, type); }))
550
551 /* If arg1 and arg2 are booleans (or any single bit type)
552 then try to simplify:
553
554 (~X & Y) -> X < Y
555 (X & ~Y) -> Y < X
556 (~X | Y) -> X <= Y
557 (X | ~Y) -> Y <= X
558
559 But only do this if our result feeds into a comparison as
560 this transformation is not always a win, particularly on
561 targets with and-not instructions.
562 -> simplify_bitwise_binary_boolean */
563 (simplify
564 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
565 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
566 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
567 (lt @0 @1)))
568 (simplify
569 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
570 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
571 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
572 (le @0 @1)))
573
574 /* ~~x -> x */
575 (simplify
576 (bit_not (bit_not @0))
577 @0)
578
579 /* Convert ~ (-A) to A - 1. */
580 (simplify
581 (bit_not (convert? (negate @0)))
582 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
583 (convert (minus @0 { build_one_cst (TREE_TYPE (@0)); }))))
584
585 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
586 (simplify
587 (bit_not (convert? (minus @0 integer_onep)))
588 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
589 (convert (negate @0))))
590 (simplify
591 (bit_not (convert? (plus @0 integer_all_onesp)))
592 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
593 (convert (negate @0))))
594
595 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
596 (simplify
597 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
598 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
599 (convert (bit_xor @0 (bit_not @1)))))
600 (simplify
601 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
602 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
603 (convert (bit_xor @0 @1))))
604
605 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
606 (simplify
607 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
608 (if (single_use (@3) && single_use (@4))
609 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
610
611
612 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
613 (simplify
614 (pointer_plus (pointer_plus@2 @0 @1) @3)
615 (if (single_use (@2)
616 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
617 (pointer_plus @0 (plus @1 @3))))
618
619 /* Pattern match
620 tem1 = (long) ptr1;
621 tem2 = (long) ptr2;
622 tem3 = tem2 - tem1;
623 tem4 = (unsigned long) tem3;
624 tem5 = ptr1 + tem4;
625 and produce
626 tem5 = ptr2; */
627 (simplify
628 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
629 /* Conditionally look through a sign-changing conversion. */
630 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
631 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
632 || (GENERIC && type == TREE_TYPE (@1))))
633 @1))
634
635 /* Pattern match
636 tem = (sizetype) ptr;
637 tem = tem & algn;
638 tem = -tem;
639 ... = ptr p+ tem;
640 and produce the simpler and easier to analyze with respect to alignment
641 ... = ptr & ~algn; */
642 (simplify
643 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
644 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
645 (bit_and @0 { algn; })))
646
647 /* Try folding difference of addresses. */
648 (simplify
649 (minus (convert ADDR_EXPR@0) (convert @1))
650 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
651 (with { HOST_WIDE_INT diff; }
652 (if (ptr_difference_const (@0, @1, &diff))
653 { build_int_cst_type (type, diff); }))))
654 (simplify
655 (minus (convert @0) (convert ADDR_EXPR@1))
656 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
657 (with { HOST_WIDE_INT diff; }
658 (if (ptr_difference_const (@0, @1, &diff))
659 { build_int_cst_type (type, diff); }))))
660
661
662
663 /* We can't reassociate at all for saturating types. */
664 (if (!TYPE_SATURATING (type))
665
666 /* Contract negates. */
667 /* A + (-B) -> A - B */
668 (simplify
669 (plus:c (convert1? @0) (convert2? (negate @1)))
670 /* Apply STRIP_NOPS on @0 and the negate. */
671 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
672 && tree_nop_conversion_p (type, TREE_TYPE (@1))
673 && !TYPE_OVERFLOW_SANITIZED (type))
674 (minus (convert @0) (convert @1))))
675 /* A - (-B) -> A + B */
676 (simplify
677 (minus (convert1? @0) (convert2? (negate @1)))
678 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
679 && tree_nop_conversion_p (type, TREE_TYPE (@1))
680 && !TYPE_OVERFLOW_SANITIZED (type))
681 (plus (convert @0) (convert @1))))
682 /* -(-A) -> A */
683 (simplify
684 (negate (convert? (negate @1)))
685 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
686 && !TYPE_OVERFLOW_SANITIZED (type))
687 (convert @1)))
688
689 /* We can't reassociate floating-point unless -fassociative-math
690 or fixed-point plus or minus because of saturation to +-Inf. */
691 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
692 && !FIXED_POINT_TYPE_P (type))
693
694 /* Match patterns that allow contracting a plus-minus pair
695 irrespective of overflow issues. */
696 /* (A +- B) - A -> +- B */
697 /* (A +- B) -+ B -> A */
698 /* A - (A +- B) -> -+ B */
699 /* A +- (B -+ A) -> +- B */
700 (simplify
701 (minus (plus:c @0 @1) @0)
702 @1)
703 (simplify
704 (minus (minus @0 @1) @0)
705 (negate @1))
706 (simplify
707 (plus:c (minus @0 @1) @1)
708 @0)
709 (simplify
710 (minus @0 (plus:c @0 @1))
711 (negate @1))
712 (simplify
713 (minus @0 (minus @0 @1))
714 @1)
715
716 /* (A +- CST) +- CST -> A + CST */
717 (for outer_op (plus minus)
718 (for inner_op (plus minus)
719 (simplify
720 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
721 /* If the constant operation overflows we cannot do the transform
722 as we would introduce undefined overflow, for example
723 with (a - 1) + INT_MIN. */
724 (with { tree cst = fold_binary (outer_op == inner_op
725 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
726 (if (cst && !TREE_OVERFLOW (cst))
727 (inner_op @0 { cst; } ))))))
728
729 /* (CST - A) +- CST -> CST - A */
730 (for outer_op (plus minus)
731 (simplify
732 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
733 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
734 (if (cst && !TREE_OVERFLOW (cst))
735 (minus { cst; } @0)))))
736
737 /* ~A + A -> -1 */
738 (simplify
739 (plus:c (bit_not @0) @0)
740 (if (!TYPE_OVERFLOW_TRAPS (type))
741 { build_all_ones_cst (type); }))
742
743 /* ~A + 1 -> -A */
744 (simplify
745 (plus (convert? (bit_not @0)) integer_each_onep)
746 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
747 (negate (convert @0))))
748
749 /* -A - 1 -> ~A */
750 (simplify
751 (minus (convert? (negate @0)) integer_each_onep)
752 (if (!TYPE_OVERFLOW_TRAPS (type)
753 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
754 (bit_not (convert @0))))
755
756 /* -1 - A -> ~A */
757 (simplify
758 (minus integer_all_onesp @0)
759 (bit_not @0))
760
761 /* (T)(P + A) - (T)P -> (T) A */
762 (for add (plus pointer_plus)
763 (simplify
764 (minus (convert (add @0 @1))
765 (convert @0))
766 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
767 /* For integer types, if A has a smaller type
768 than T the result depends on the possible
769 overflow in P + A.
770 E.g. T=size_t, A=(unsigned)429497295, P>0.
771 However, if an overflow in P + A would cause
772 undefined behavior, we can assume that there
773 is no overflow. */
774 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
775 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
776 /* For pointer types, if the conversion of A to the
777 final type requires a sign- or zero-extension,
778 then we have to punt - it is not defined which
779 one is correct. */
780 || (POINTER_TYPE_P (TREE_TYPE (@0))
781 && TREE_CODE (@1) == INTEGER_CST
782 && tree_int_cst_sign_bit (@1) == 0))
783 (convert @1))))))
784
785
786 /* Simplifications of MIN_EXPR and MAX_EXPR. */
787
788 (for minmax (min max)
789 (simplify
790 (minmax @0 @0)
791 @0))
792 (simplify
793 (min @0 @1)
794 (if (INTEGRAL_TYPE_P (type)
795 && TYPE_MIN_VALUE (type)
796 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
797 @1))
798 (simplify
799 (max @0 @1)
800 (if (INTEGRAL_TYPE_P (type)
801 && TYPE_MAX_VALUE (type)
802 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
803 @1))
804
805
806 /* Simplifications of shift and rotates. */
807
808 (for rotate (lrotate rrotate)
809 (simplify
810 (rotate integer_all_onesp@0 @1)
811 @0))
812
813 /* Optimize -1 >> x for arithmetic right shifts. */
814 (simplify
815 (rshift integer_all_onesp@0 @1)
816 (if (!TYPE_UNSIGNED (type)
817 && tree_expr_nonnegative_p (@1))
818 @0))
819
820 (for shiftrotate (lrotate rrotate lshift rshift)
821 (simplify
822 (shiftrotate @0 integer_zerop)
823 (non_lvalue @0))
824 (simplify
825 (shiftrotate integer_zerop@0 @1)
826 @0)
827 /* Prefer vector1 << scalar to vector1 << vector2
828 if vector2 is uniform. */
829 (for vec (VECTOR_CST CONSTRUCTOR)
830 (simplify
831 (shiftrotate @0 vec@1)
832 (with { tree tem = uniform_vector_p (@1); }
833 (if (tem)
834 (shiftrotate @0 { tem; }))))))
835
836 /* Rewrite an LROTATE_EXPR by a constant into an
837 RROTATE_EXPR by a new constant. */
838 (simplify
839 (lrotate @0 INTEGER_CST@1)
840 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
841 build_int_cst (TREE_TYPE (@1),
842 element_precision (type)), @1); }))
843
844 /* ((1 << A) & 1) != 0 -> A == 0
845 ((1 << A) & 1) == 0 -> A != 0 */
846 (for cmp (ne eq)
847 icmp (eq ne)
848 (simplify
849 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
850 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
851
852 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
853 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
854 if CST2 != 0. */
855 (for cmp (ne eq)
856 (simplify
857 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
858 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
859 (if (cand < 0
860 || (!integer_zerop (@2)
861 && wi::ne_p (wi::lshift (@0, cand), @2)))
862 { constant_boolean_node (cmp == NE_EXPR, type); })
863 (if (!integer_zerop (@2)
864 && wi::eq_p (wi::lshift (@0, cand), @2))
865 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
866
867 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
868 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
869 if the new mask might be further optimized. */
870 (for shift (lshift rshift)
871 (simplify
872 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
873 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
874 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
875 && tree_fits_uhwi_p (@1)
876 && tree_to_uhwi (@1) > 0
877 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
878 (with
879 {
880 unsigned int shiftc = tree_to_uhwi (@1);
881 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
882 unsigned HOST_WIDE_INT newmask, zerobits = 0;
883 tree shift_type = TREE_TYPE (@3);
884 unsigned int prec;
885
886 if (shift == LSHIFT_EXPR)
887 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
888 else if (shift == RSHIFT_EXPR
889 && (TYPE_PRECISION (shift_type)
890 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
891 {
892 prec = TYPE_PRECISION (TREE_TYPE (@3));
893 tree arg00 = @0;
894 /* See if more bits can be proven as zero because of
895 zero extension. */
896 if (@3 != @0
897 && TYPE_UNSIGNED (TREE_TYPE (@0)))
898 {
899 tree inner_type = TREE_TYPE (@0);
900 if ((TYPE_PRECISION (inner_type)
901 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
902 && TYPE_PRECISION (inner_type) < prec)
903 {
904 prec = TYPE_PRECISION (inner_type);
905 /* See if we can shorten the right shift. */
906 if (shiftc < prec)
907 shift_type = inner_type;
908 /* Otherwise X >> C1 is all zeros, so we'll optimize
909 it into (X, 0) later on by making sure zerobits
910 is all ones. */
911 }
912 }
913 zerobits = ~(unsigned HOST_WIDE_INT) 0;
914 if (shiftc < prec)
915 {
916 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
917 zerobits <<= prec - shiftc;
918 }
919 /* For arithmetic shift if sign bit could be set, zerobits
920 can contain actually sign bits, so no transformation is
921 possible, unless MASK masks them all away. In that
922 case the shift needs to be converted into logical shift. */
923 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
924 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
925 {
926 if ((mask & zerobits) == 0)
927 shift_type = unsigned_type_for (TREE_TYPE (@3));
928 else
929 zerobits = 0;
930 }
931 }
932 }
933 /* ((X << 16) & 0xff00) is (X, 0). */
934 (if ((mask & zerobits) == mask)
935 { build_int_cst (type, 0); })
936 (with { newmask = mask | zerobits; }
937 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
938 (with
939 {
940 /* Only do the transformation if NEWMASK is some integer
941 mode's mask. */
942 for (prec = BITS_PER_UNIT;
943 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
944 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
945 break;
946 }
947 (if (prec < HOST_BITS_PER_WIDE_INT
948 || newmask == ~(unsigned HOST_WIDE_INT) 0)
949 (with
950 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
951 (if (!tree_int_cst_equal (newmaskt, @2))
952 (if (shift_type != TREE_TYPE (@3)
953 && single_use (@4) && single_use (@5))
954 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
955 (if (shift_type == TREE_TYPE (@3))
956 (bit_and @4 { newmaskt; }))))))))))))
957
958 /* Simplifications of conversions. */
959
960 /* Basic strip-useless-type-conversions / strip_nops. */
961 (for cvt (convert view_convert float fix_trunc)
962 (simplify
963 (cvt @0)
964 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
965 || (GENERIC && type == TREE_TYPE (@0)))
966 @0)))
967
968 /* Contract view-conversions. */
969 (simplify
970 (view_convert (view_convert @0))
971 (view_convert @0))
972
973 /* For integral conversions with the same precision or pointer
974 conversions use a NOP_EXPR instead. */
975 (simplify
976 (view_convert @0)
977 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
978 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
979 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
980 (convert @0)))
981
982 /* Strip inner integral conversions that do not change precision or size. */
983 (simplify
984 (view_convert (convert@0 @1))
985 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
986 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
987 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
988 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
989 (view_convert @1)))
990
991 /* Re-association barriers around constants and other re-association
992 barriers can be removed. */
993 (simplify
994 (paren CONSTANT_CLASS_P@0)
995 @0)
996 (simplify
997 (paren (paren@1 @0))
998 @1)
999
1000 /* Handle cases of two conversions in a row. */
1001 (for ocvt (convert float fix_trunc)
1002 (for icvt (convert float)
1003 (simplify
1004 (ocvt (icvt@1 @0))
1005 (with
1006 {
1007 tree inside_type = TREE_TYPE (@0);
1008 tree inter_type = TREE_TYPE (@1);
1009 int inside_int = INTEGRAL_TYPE_P (inside_type);
1010 int inside_ptr = POINTER_TYPE_P (inside_type);
1011 int inside_float = FLOAT_TYPE_P (inside_type);
1012 int inside_vec = VECTOR_TYPE_P (inside_type);
1013 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1014 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1015 int inter_int = INTEGRAL_TYPE_P (inter_type);
1016 int inter_ptr = POINTER_TYPE_P (inter_type);
1017 int inter_float = FLOAT_TYPE_P (inter_type);
1018 int inter_vec = VECTOR_TYPE_P (inter_type);
1019 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1020 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1021 int final_int = INTEGRAL_TYPE_P (type);
1022 int final_ptr = POINTER_TYPE_P (type);
1023 int final_float = FLOAT_TYPE_P (type);
1024 int final_vec = VECTOR_TYPE_P (type);
1025 unsigned int final_prec = TYPE_PRECISION (type);
1026 int final_unsignedp = TYPE_UNSIGNED (type);
1027 }
1028 /* In addition to the cases of two conversions in a row
1029 handled below, if we are converting something to its own
1030 type via an object of identical or wider precision, neither
1031 conversion is needed. */
1032 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1033 || (GENERIC
1034 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1035 && (((inter_int || inter_ptr) && final_int)
1036 || (inter_float && final_float))
1037 && inter_prec >= final_prec)
1038 (ocvt @0))
1039
1040 /* Likewise, if the intermediate and initial types are either both
1041 float or both integer, we don't need the middle conversion if the
1042 former is wider than the latter and doesn't change the signedness
1043 (for integers). Avoid this if the final type is a pointer since
1044 then we sometimes need the middle conversion. Likewise if the
1045 final type has a precision not equal to the size of its mode. */
1046 (if (((inter_int && inside_int) || (inter_float && inside_float))
1047 && (final_int || final_float)
1048 && inter_prec >= inside_prec
1049 && (inter_float || inter_unsignedp == inside_unsignedp)
1050 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1051 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1052 (ocvt @0))
1053
1054 /* If we have a sign-extension of a zero-extended value, we can
1055 replace that by a single zero-extension. Likewise if the
1056 final conversion does not change precision we can drop the
1057 intermediate conversion. */
1058 (if (inside_int && inter_int && final_int
1059 && ((inside_prec < inter_prec && inter_prec < final_prec
1060 && inside_unsignedp && !inter_unsignedp)
1061 || final_prec == inter_prec))
1062 (ocvt @0))
1063
1064 /* Two conversions in a row are not needed unless:
1065 - some conversion is floating-point (overstrict for now), or
1066 - some conversion is a vector (overstrict for now), or
1067 - the intermediate type is narrower than both initial and
1068 final, or
1069 - the intermediate type and innermost type differ in signedness,
1070 and the outermost type is wider than the intermediate, or
1071 - the initial type is a pointer type and the precisions of the
1072 intermediate and final types differ, or
1073 - the final type is a pointer type and the precisions of the
1074 initial and intermediate types differ. */
1075 (if (! inside_float && ! inter_float && ! final_float
1076 && ! inside_vec && ! inter_vec && ! final_vec
1077 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1078 && ! (inside_int && inter_int
1079 && inter_unsignedp != inside_unsignedp
1080 && inter_prec < final_prec)
1081 && ((inter_unsignedp && inter_prec > inside_prec)
1082 == (final_unsignedp && final_prec > inter_prec))
1083 && ! (inside_ptr && inter_prec != final_prec)
1084 && ! (final_ptr && inside_prec != inter_prec)
1085 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1086 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1087 (ocvt @0))
1088
1089 /* A truncation to an unsigned type (a zero-extension) should be
1090 canonicalized as bitwise and of a mask. */
1091 (if (final_int && inter_int && inside_int
1092 && final_prec == inside_prec
1093 && final_prec > inter_prec
1094 && inter_unsignedp)
1095 (convert (bit_and @0 { wide_int_to_tree
1096 (inside_type,
1097 wi::mask (inter_prec, false,
1098 TYPE_PRECISION (inside_type))); })))
1099
1100 /* If we are converting an integer to a floating-point that can
1101 represent it exactly and back to an integer, we can skip the
1102 floating-point conversion. */
1103 (if (GIMPLE /* PR66211 */
1104 && inside_int && inter_float && final_int &&
1105 (unsigned) significand_size (TYPE_MODE (inter_type))
1106 >= inside_prec - !inside_unsignedp)
1107 (convert @0))))))
1108
1109 /* If we have a narrowing conversion to an integral type that is fed by a
1110 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1111 masks off bits outside the final type (and nothing else). */
1112 (simplify
1113 (convert (bit_and @0 INTEGER_CST@1))
1114 (if (INTEGRAL_TYPE_P (type)
1115 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1116 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1117 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1118 TYPE_PRECISION (type)), 0))
1119 (convert @0)))
1120
1121
1122 /* (X /[ex] A) * A -> X. */
1123 (simplify
1124 (mult (convert? (exact_div @0 @1)) @1)
1125 /* Look through a sign-changing conversion. */
1126 (convert @0))
1127
1128 /* Canonicalization of binary operations. */
1129
1130 /* Convert X + -C into X - C. */
1131 (simplify
1132 (plus @0 REAL_CST@1)
1133 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1134 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1135 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1136 (minus @0 { tem; })))))
1137
1138 /* Convert x+x into x*2.0. */
1139 (simplify
1140 (plus @0 @0)
1141 (if (SCALAR_FLOAT_TYPE_P (type))
1142 (mult @0 { build_real (type, dconst2); })))
1143
1144 (simplify
1145 (minus integer_zerop @1)
1146 (negate @1))
1147
1148 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1149 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1150 (-ARG1 + ARG0) reduces to -ARG1. */
1151 (simplify
1152 (minus real_zerop@0 @1)
1153 (if (fold_real_zero_addition_p (type, @0, 0))
1154 (negate @1)))
1155
1156 /* Transform x * -1 into -x. */
1157 (simplify
1158 (mult @0 integer_minus_onep)
1159 (negate @0))
1160
1161 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1162 (simplify
1163 (complex (realpart @0) (imagpart @0))
1164 @0)
1165 (simplify
1166 (realpart (complex @0 @1))
1167 @0)
1168 (simplify
1169 (imagpart (complex @0 @1))
1170 @1)
1171
1172
1173 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1174 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1175 (simplify
1176 (bswap (bswap @0))
1177 @0)
1178 (simplify
1179 (bswap (bit_not (bswap @0)))
1180 (bit_not @0))
1181 (for bitop (bit_xor bit_ior bit_and)
1182 (simplify
1183 (bswap (bitop:c (bswap @0) @1))
1184 (bitop @0 (bswap @1)))))
1185
1186
1187 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1188
1189 /* Simplify constant conditions.
1190 Only optimize constant conditions when the selected branch
1191 has the same type as the COND_EXPR. This avoids optimizing
1192 away "c ? x : throw", where the throw has a void type.
1193 Note that we cannot throw away the fold-const.c variant nor
1194 this one as we depend on doing this transform before possibly
1195 A ? B : B -> B triggers and the fold-const.c one can optimize
1196 0 ? A : B to B even if A has side-effects. Something
1197 genmatch cannot handle. */
1198 (simplify
1199 (cond INTEGER_CST@0 @1 @2)
1200 (if (integer_zerop (@0)
1201 && (!VOID_TYPE_P (TREE_TYPE (@2))
1202 || VOID_TYPE_P (type)))
1203 @2)
1204 (if (!integer_zerop (@0)
1205 && (!VOID_TYPE_P (TREE_TYPE (@1))
1206 || VOID_TYPE_P (type)))
1207 @1))
1208 (simplify
1209 (vec_cond VECTOR_CST@0 @1 @2)
1210 (if (integer_all_onesp (@0))
1211 @1)
1212 (if (integer_zerop (@0))
1213 @2))
1214
1215 (for cnd (cond vec_cond)
1216 /* A ? B : (A ? X : C) -> A ? B : C. */
1217 (simplify
1218 (cnd @0 (cnd @0 @1 @2) @3)
1219 (cnd @0 @1 @3))
1220 (simplify
1221 (cnd @0 @1 (cnd @0 @2 @3))
1222 (cnd @0 @1 @3))
1223
1224 /* A ? B : B -> B. */
1225 (simplify
1226 (cnd @0 @1 @1)
1227 @1)
1228
1229 /* !A ? B : C -> A ? C : B. */
1230 (simplify
1231 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1232 (cnd @0 @2 @1)))
1233
1234 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1235 return all-1 or all-0 results. */
1236 /* ??? We could instead convert all instances of the vec_cond to negate,
1237 but that isn't necessarily a win on its own. */
1238 (simplify
1239 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1240 (if (VECTOR_TYPE_P (type)
1241 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1242 && (TYPE_MODE (TREE_TYPE (type))
1243 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1244 (minus @3 (view_convert @0))))
1245
1246 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1247 (simplify
1248 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1249 (if (VECTOR_TYPE_P (type)
1250 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1251 && (TYPE_MODE (TREE_TYPE (type))
1252 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1253 (plus @3 (view_convert @0))))
1254
1255 /* Simplifications of comparisons. */
1256
1257 /* We can simplify a logical negation of a comparison to the
1258 inverted comparison. As we cannot compute an expression
1259 operator using invert_tree_comparison we have to simulate
1260 that with expression code iteration. */
1261 (for cmp (tcc_comparison)
1262 icmp (inverted_tcc_comparison)
1263 ncmp (inverted_tcc_comparison_with_nans)
1264 /* Ideally we'd like to combine the following two patterns
1265 and handle some more cases by using
1266 (logical_inverted_value (cmp @0 @1))
1267 here but for that genmatch would need to "inline" that.
1268 For now implement what forward_propagate_comparison did. */
1269 (simplify
1270 (bit_not (cmp @0 @1))
1271 (if (VECTOR_TYPE_P (type)
1272 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1273 /* Comparison inversion may be impossible for trapping math,
1274 invert_tree_comparison will tell us. But we can't use
1275 a computed operator in the replacement tree thus we have
1276 to play the trick below. */
1277 (with { enum tree_code ic = invert_tree_comparison
1278 (cmp, HONOR_NANS (@0)); }
1279 (if (ic == icmp)
1280 (icmp @0 @1))
1281 (if (ic == ncmp)
1282 (ncmp @0 @1)))))
1283 (simplify
1284 (bit_xor (cmp @0 @1) integer_truep)
1285 (with { enum tree_code ic = invert_tree_comparison
1286 (cmp, HONOR_NANS (@0)); }
1287 (if (ic == icmp)
1288 (icmp @0 @1))
1289 (if (ic == ncmp)
1290 (ncmp @0 @1)))))
1291
1292 /* Unordered tests if either argument is a NaN. */
1293 (simplify
1294 (bit_ior (unordered @0 @0) (unordered @1 @1))
1295 (if (types_match (@0, @1))
1296 (unordered @0 @1)))
1297 (simplify
1298 (bit_and (ordered @0 @0) (ordered @1 @1))
1299 (if (types_match (@0, @1))
1300 (ordered @0 @1)))
1301 (simplify
1302 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1303 @2)
1304 (simplify
1305 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1306 @2)
1307
1308 /* -A CMP -B -> B CMP A. */
1309 (for cmp (tcc_comparison)
1310 scmp (swapped_tcc_comparison)
1311 (simplify
1312 (cmp (negate @0) (negate @1))
1313 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1314 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1315 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1316 (scmp @0 @1)))
1317 (simplify
1318 (cmp (negate @0) CONSTANT_CLASS_P@1)
1319 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1320 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1321 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1322 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1323 (if (tem && !TREE_OVERFLOW (tem))
1324 (scmp @0 { tem; }))))))
1325
1326
1327 /* Equality compare simplifications from fold_binary */
1328 (for cmp (eq ne)
1329
1330 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1331 Similarly for NE_EXPR. */
1332 (simplify
1333 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1334 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1335 && wi::bit_and_not (@1, @2) != 0)
1336 { constant_boolean_node (cmp == NE_EXPR, type); }))
1337
1338 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1339 (simplify
1340 (cmp (bit_xor @0 @1) integer_zerop)
1341 (cmp @0 @1))
1342
1343 /* (X ^ Y) == Y becomes X == 0.
1344 Likewise (X ^ Y) == X becomes Y == 0. */
1345 (simplify
1346 (cmp:c (bit_xor:c @0 @1) @0)
1347 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1348
1349 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1350 (simplify
1351 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1352 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1353 (cmp @0 (bit_xor @1 (convert @2))))))
1354
1355 /* Simplification of math builtins. */
1356
1357 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1358 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1359 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1360 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1361 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1362 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1363 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1364 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1365 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1366 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1367
1368
1369 /* fold_builtin_logarithm */
1370 (if (flag_unsafe_math_optimizations)
1371 /* Special case, optimize logN(expN(x)) = x. */
1372 (for logs (LOG LOG2 LOG10)
1373 exps (EXP EXP2 EXP10)
1374 (simplify
1375 (logs (exps @0))
1376 @0))
1377 /* Optimize logN(func()) for various exponential functions. We
1378 want to determine the value "x" and the power "exponent" in
1379 order to transform logN(x**exponent) into exponent*logN(x). */
1380 (for logs (LOG LOG LOG LOG
1381 LOG2 LOG2 LOG2 LOG2
1382 LOG10 LOG10 LOG10 LOG10)
1383 exps (EXP EXP2 EXP10 POW10)
1384 (simplify
1385 (logs (exps @0))
1386 (with {
1387 tree x;
1388 switch (exps)
1389 {
1390 CASE_FLT_FN (BUILT_IN_EXP):
1391 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1392 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1393 dconst_e ()));
1394 break;
1395 CASE_FLT_FN (BUILT_IN_EXP2):
1396 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1397 x = build_real (type, dconst2);
1398 break;
1399 CASE_FLT_FN (BUILT_IN_EXP10):
1400 CASE_FLT_FN (BUILT_IN_POW10):
1401 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1402 {
1403 REAL_VALUE_TYPE dconst10;
1404 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1405 x = build_real (type, dconst10);
1406 }
1407 break;
1408 }
1409 }
1410 (mult (logs { x; }) @0))))
1411 (for logs (LOG LOG
1412 LOG2 LOG2
1413 LOG10 LOG10)
1414 exps (SQRT CBRT)
1415 (simplify
1416 (logs (exps @0))
1417 (with {
1418 tree x;
1419 switch (exps)
1420 {
1421 CASE_FLT_FN (BUILT_IN_SQRT):
1422 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1423 x = build_real (type, dconsthalf);
1424 break;
1425 CASE_FLT_FN (BUILT_IN_CBRT):
1426 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1427 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1428 dconst_third ()));
1429 break;
1430 }
1431 }
1432 (mult { x; } (logs @0)))))
1433 /* logN(pow(x,exponent) -> exponent*logN(x). */
1434 (for logs (LOG LOG2 LOG10)
1435 pows (POW)
1436 (simplify
1437 (logs (pows @0 @1))
1438 (mult @1 (logs @0)))))
1439
1440 /* Narrowing of arithmetic and logical operations.
1441
1442 These are conceptually similar to the transformations performed for
1443 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1444 term we want to move all that code out of the front-ends into here. */
1445
1446 /* If we have a narrowing conversion of an arithmetic operation where
1447 both operands are widening conversions from the same type as the outer
1448 narrowing conversion. Then convert the innermost operands to a suitable
1449 unsigned type (to avoid introducing undefined behaviour), perform the
1450 operation and convert the result to the desired type. */
1451 (for op (plus minus)
1452 (simplify
1453 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1454 (if (INTEGRAL_TYPE_P (type)
1455 /* We check for type compatibility between @0 and @1 below,
1456 so there's no need to check that @1/@3 are integral types. */
1457 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1458 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1459 /* The precision of the type of each operand must match the
1460 precision of the mode of each operand, similarly for the
1461 result. */
1462 && (TYPE_PRECISION (TREE_TYPE (@0))
1463 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1464 && (TYPE_PRECISION (TREE_TYPE (@1))
1465 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1466 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1467 /* The inner conversion must be a widening conversion. */
1468 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1469 && types_match (@0, @1)
1470 && types_match (@0, type)
1471 && single_use (@4))
1472 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1473 (convert (op @0 @1)))
1474 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1475 (convert (op (convert:utype @0) (convert:utype @1)))))))
1476
1477 /* This is another case of narrowing, specifically when there's an outer
1478 BIT_AND_EXPR which masks off bits outside the type of the innermost
1479 operands. Like the previous case we have to convert the operands
1480 to unsigned types to avoid introducing undefined behaviour for the
1481 arithmetic operation. */
1482 (for op (minus plus)
1483 (simplify
1484 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1485 (if (INTEGRAL_TYPE_P (type)
1486 /* We check for type compatibility between @0 and @1 below,
1487 so there's no need to check that @1/@3 are integral types. */
1488 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1489 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1490 /* The precision of the type of each operand must match the
1491 precision of the mode of each operand, similarly for the
1492 result. */
1493 && (TYPE_PRECISION (TREE_TYPE (@0))
1494 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1495 && (TYPE_PRECISION (TREE_TYPE (@1))
1496 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1497 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1498 /* The inner conversion must be a widening conversion. */
1499 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1500 && types_match (@0, @1)
1501 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1502 <= TYPE_PRECISION (TREE_TYPE (@0)))
1503 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1504 || tree_int_cst_sgn (@4) >= 0)
1505 && single_use (@5))
1506 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1507 (with { tree ntype = TREE_TYPE (@0); }
1508 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1509 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1510 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1511 (convert:utype @4)))))))
1512