* config/nvptx/nvptx.md (call_operation): Remove unused variables.
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43
44
45 /* Simplifications of operations with one constant operand and
46 simplifications to constants or single values. */
47
48 (for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
53 /* 0 +p index -> (type)index */
54 (simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
58 /* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60 (simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65 /* See if ARG1 is zero and X - ARG1 reduces to X. */
66 (simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
71 /* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76 (simplify
77 (minus @0 @0)
78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
79 { build_zero_cst (type); }))
80
81 (simplify
82 (mult @0 integer_zerop@1)
83 @1)
84
85 /* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89 (simplify
90 (mult @0 real_zerop@1)
91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
92 @1))
93
94 /* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96 (simplify
97 (mult @0 real_onep)
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103 /* Transform x * -1.0 into -x. */
104 (simplify
105 (mult @0 real_minus_onep)
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
110
111 /* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
118 /* X / -1 is -X. */
119 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
123 (negate @0))))
124
125 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127 (simplify
128 (floor_div @0 @1)
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
131 (trunc_div @0 @1)))
132
133 /* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135 (for div (trunc_div exact_div)
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
147 { build_zero_cst (type); }))))
148
149 /* Optimize A / A to 1.0 if we don't care about
150 NaNs or Infinities. */
151 (simplify
152 (rdiv @0 @0)
153 (if (FLOAT_TYPE_P (type)
154 && ! HONOR_NANS (type)
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158 /* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160 (simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
163 && ! HONOR_NANS (type)
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
166
167 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
168 (simplify
169 (rdiv @0 real_onep)
170 (if (!HONOR_SNANS (element_mode (type)))
171 (non_lvalue @0)))
172
173 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174 (simplify
175 (rdiv @0 real_minus_onep)
176 (if (!HONOR_SNANS (element_mode (type)))
177 (negate @0)))
178
179 /* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
190 (with
191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
199 /* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
201 (for mod (ceil_mod floor_mod round_mod trunc_mod)
202 /* 0 % X is always zero. */
203 (simplify
204 (mod integer_zerop@0 @1)
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
221
222 /* X % -C is the same as X % C. */
223 (simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
232
233 /* X % -Y is the same as X % Y. */
234 (simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
242 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
243 Also optimize A % (C << N) where C is a power of 2,
244 to A & ((C << N) - 1). */
245 (match (power_of_two_cand @1)
246 INTEGER_CST@1)
247 (match (power_of_two_cand @1)
248 (lshift INTEGER_CST@1 @2))
249 (for mod (trunc_mod floor_mod)
250 (simplify
251 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
252 (if ((TYPE_UNSIGNED (type)
253 || tree_expr_nonnegative_p (@0))
254 && tree_nop_conversion_p (type, TREE_TYPE (@3))
255 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
256 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
257
258 /* X % Y is smaller than Y. */
259 (for cmp (lt ge)
260 (simplify
261 (cmp (trunc_mod @0 @1) @1)
262 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
263 { constant_boolean_node (cmp == LT_EXPR, type); })))
264 (for cmp (gt le)
265 (simplify
266 (cmp @1 (trunc_mod @0 @1))
267 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
268 { constant_boolean_node (cmp == GT_EXPR, type); })))
269
270 /* x | ~0 -> ~0 */
271 (simplify
272 (bit_ior @0 integer_all_onesp@1)
273 @1)
274
275 /* x & 0 -> 0 */
276 (simplify
277 (bit_and @0 integer_zerop@1)
278 @1)
279
280 /* x ^ x -> 0 */
281 (simplify
282 (bit_xor @0 @0)
283 { build_zero_cst (type); })
284
285 /* Canonicalize X ^ ~0 to ~X. */
286 (simplify
287 (bit_xor @0 integer_all_onesp@1)
288 (bit_not @0))
289
290 /* x & ~0 -> x */
291 (simplify
292 (bit_and @0 integer_all_onesp)
293 (non_lvalue @0))
294
295 /* x & x -> x, x | x -> x */
296 (for bitop (bit_and bit_ior)
297 (simplify
298 (bitop @0 @0)
299 (non_lvalue @0)))
300
301 /* x + (x & 1) -> (x + 1) & ~1 */
302 (simplify
303 (plus:c @0 (bit_and@2 @0 integer_onep@1))
304 (if (single_use (@2))
305 (bit_and (plus @0 @1) (bit_not @1))))
306
307 /* x & ~(x & y) -> x & ~y */
308 /* x | ~(x | y) -> x | ~y */
309 (for bitop (bit_and bit_ior)
310 (simplify
311 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
312 (if (single_use (@2))
313 (bitop @0 (bit_not @1)))))
314
315 /* (x | y) & ~x -> y & ~x */
316 /* (x & y) | ~x -> y | ~x */
317 (for bitop (bit_and bit_ior)
318 rbitop (bit_ior bit_and)
319 (simplify
320 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
321 (bitop @1 @2)))
322
323 /* (x & y) ^ (x | y) -> x ^ y */
324 (simplify
325 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
326 (bit_xor @0 @1))
327
328 /* (x ^ y) ^ (x | y) -> x & y */
329 (simplify
330 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
331 (bit_and @0 @1))
332
333 /* (x & y) + (x ^ y) -> x | y */
334 /* (x & y) | (x ^ y) -> x | y */
335 /* (x & y) ^ (x ^ y) -> x | y */
336 (for op (plus bit_ior bit_xor)
337 (simplify
338 (op:c (bit_and @0 @1) (bit_xor @0 @1))
339 (bit_ior @0 @1)))
340
341 /* (x & y) + (x | y) -> x + y */
342 (simplify
343 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
344 (plus @0 @1))
345
346 /* (x + y) - (x | y) -> x & y */
347 (simplify
348 (minus (plus @0 @1) (bit_ior @0 @1))
349 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
350 && !TYPE_SATURATING (type))
351 (bit_and @0 @1)))
352
353 /* (x + y) - (x & y) -> x | y */
354 (simplify
355 (minus (plus @0 @1) (bit_and @0 @1))
356 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
357 && !TYPE_SATURATING (type))
358 (bit_ior @0 @1)))
359
360 /* (x | y) - (x ^ y) -> x & y */
361 (simplify
362 (minus (bit_ior @0 @1) (bit_xor @0 @1))
363 (bit_and @0 @1))
364
365 /* (x | y) - (x & y) -> x ^ y */
366 (simplify
367 (minus (bit_ior @0 @1) (bit_and @0 @1))
368 (bit_xor @0 @1))
369
370 /* (x | y) & ~(x & y) -> x ^ y */
371 (simplify
372 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
373 (bit_xor @0 @1))
374
375 /* (x | y) & (~x ^ y) -> x & y */
376 (simplify
377 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
378 (bit_and @0 @1))
379
380 (simplify
381 (abs (negate @0))
382 (abs @0))
383 (simplify
384 (abs tree_expr_nonnegative_p@0)
385 @0)
386
387
388 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
389 when profitable.
390 For bitwise binary operations apply operand conversions to the
391 binary operation result instead of to the operands. This allows
392 to combine successive conversions and bitwise binary operations.
393 We combine the above two cases by using a conditional convert. */
394 (for bitop (bit_and bit_ior bit_xor)
395 (simplify
396 (bitop (convert @0) (convert? @1))
397 (if (((TREE_CODE (@1) == INTEGER_CST
398 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
399 && int_fits_type_p (@1, TREE_TYPE (@0)))
400 || types_match (@0, @1))
401 /* ??? This transform conflicts with fold-const.c doing
402 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
403 constants (if x has signed type, the sign bit cannot be set
404 in c). This folds extension into the BIT_AND_EXPR.
405 Restrict it to GIMPLE to avoid endless recursions. */
406 && (bitop != BIT_AND_EXPR || GIMPLE)
407 && (/* That's a good idea if the conversion widens the operand, thus
408 after hoisting the conversion the operation will be narrower. */
409 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
410 /* It's also a good idea if the conversion is to a non-integer
411 mode. */
412 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
413 /* Or if the precision of TO is not the same as the precision
414 of its mode. */
415 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
416 (convert (bitop @0 (convert @1))))))
417
418 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
419 (for bitop (bit_and bit_ior bit_xor)
420 (simplify
421 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
422 (bit_and (bitop @0 @2) @1)))
423
424 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
425 (simplify
426 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
427 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
428
429 /* Combine successive equal operations with constants. */
430 (for bitop (bit_and bit_ior bit_xor)
431 (simplify
432 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
433 (bitop @0 (bitop @1 @2))))
434
435 /* Try simple folding for X op !X, and X op X with the help
436 of the truth_valued_p and logical_inverted_value predicates. */
437 (match truth_valued_p
438 @0
439 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
440 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
441 (match truth_valued_p
442 (op @0 @1)))
443 (match truth_valued_p
444 (truth_not @0))
445
446 (match (logical_inverted_value @0)
447 (bit_not truth_valued_p@0))
448 (match (logical_inverted_value @0)
449 (eq @0 integer_zerop))
450 (match (logical_inverted_value @0)
451 (ne truth_valued_p@0 integer_truep))
452 (match (logical_inverted_value @0)
453 (bit_xor truth_valued_p@0 integer_truep))
454
455 /* X & !X -> 0. */
456 (simplify
457 (bit_and:c @0 (logical_inverted_value @0))
458 { build_zero_cst (type); })
459 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
460 (for op (bit_ior bit_xor)
461 (simplify
462 (op:c truth_valued_p@0 (logical_inverted_value @0))
463 { constant_boolean_node (true, type); }))
464
465 (for bitop (bit_and bit_ior)
466 rbitop (bit_ior bit_and)
467 /* (x | y) & x -> x */
468 /* (x & y) | x -> x */
469 (simplify
470 (bitop:c (rbitop:c @0 @1) @0)
471 @0)
472 /* (~x | y) & x -> x & y */
473 /* (~x & y) | x -> x | y */
474 (simplify
475 (bitop:c (rbitop:c (bit_not @0) @1) @0)
476 (bitop @0 @1)))
477
478 /* If arg1 and arg2 are booleans (or any single bit type)
479 then try to simplify:
480
481 (~X & Y) -> X < Y
482 (X & ~Y) -> Y < X
483 (~X | Y) -> X <= Y
484 (X | ~Y) -> Y <= X
485
486 But only do this if our result feeds into a comparison as
487 this transformation is not always a win, particularly on
488 targets with and-not instructions.
489 -> simplify_bitwise_binary_boolean */
490 (simplify
491 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
492 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
493 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
494 (lt @0 @1)))
495 (simplify
496 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
497 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
498 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
499 (le @0 @1)))
500
501 /* ~~x -> x */
502 (simplify
503 (bit_not (bit_not @0))
504 @0)
505
506 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
507 (simplify
508 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
509 (if (single_use (@3) && single_use (@4))
510 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
511
512
513 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
514 (simplify
515 (pointer_plus (pointer_plus@2 @0 @1) @3)
516 (if (single_use (@2)
517 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
518 (pointer_plus @0 (plus @1 @3))))
519
520 /* Pattern match
521 tem1 = (long) ptr1;
522 tem2 = (long) ptr2;
523 tem3 = tem2 - tem1;
524 tem4 = (unsigned long) tem3;
525 tem5 = ptr1 + tem4;
526 and produce
527 tem5 = ptr2; */
528 (simplify
529 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
530 /* Conditionally look through a sign-changing conversion. */
531 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
532 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
533 || (GENERIC && type == TREE_TYPE (@1))))
534 @1))
535
536 /* Pattern match
537 tem = (sizetype) ptr;
538 tem = tem & algn;
539 tem = -tem;
540 ... = ptr p+ tem;
541 and produce the simpler and easier to analyze with respect to alignment
542 ... = ptr & ~algn; */
543 (simplify
544 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
545 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
546 (bit_and @0 { algn; })))
547
548
549 /* We can't reassociate at all for saturating types. */
550 (if (!TYPE_SATURATING (type))
551
552 /* Contract negates. */
553 /* A + (-B) -> A - B */
554 (simplify
555 (plus:c (convert1? @0) (convert2? (negate @1)))
556 /* Apply STRIP_NOPS on @0 and the negate. */
557 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
558 && tree_nop_conversion_p (type, TREE_TYPE (@1))
559 && !TYPE_OVERFLOW_SANITIZED (type))
560 (minus (convert @0) (convert @1))))
561 /* A - (-B) -> A + B */
562 (simplify
563 (minus (convert1? @0) (convert2? (negate @1)))
564 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
565 && tree_nop_conversion_p (type, TREE_TYPE (@1))
566 && !TYPE_OVERFLOW_SANITIZED (type))
567 (plus (convert @0) (convert @1))))
568 /* -(-A) -> A */
569 (simplify
570 (negate (convert? (negate @1)))
571 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
572 && !TYPE_OVERFLOW_SANITIZED (type))
573 (convert @1)))
574
575 /* We can't reassociate floating-point unless -fassociative-math
576 or fixed-point plus or minus because of saturation to +-Inf. */
577 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
578 && !FIXED_POINT_TYPE_P (type))
579
580 /* Match patterns that allow contracting a plus-minus pair
581 irrespective of overflow issues. */
582 /* (A +- B) - A -> +- B */
583 /* (A +- B) -+ B -> A */
584 /* A - (A +- B) -> -+ B */
585 /* A +- (B -+ A) -> +- B */
586 (simplify
587 (minus (plus:c @0 @1) @0)
588 @1)
589 (simplify
590 (minus (minus @0 @1) @0)
591 (negate @1))
592 (simplify
593 (plus:c (minus @0 @1) @1)
594 @0)
595 (simplify
596 (minus @0 (plus:c @0 @1))
597 (negate @1))
598 (simplify
599 (minus @0 (minus @0 @1))
600 @1)
601
602 /* (A +- CST) +- CST -> A + CST */
603 (for outer_op (plus minus)
604 (for inner_op (plus minus)
605 (simplify
606 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
607 /* If the constant operation overflows we cannot do the transform
608 as we would introduce undefined overflow, for example
609 with (a - 1) + INT_MIN. */
610 (with { tree cst = fold_binary (outer_op == inner_op
611 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
612 (if (cst && !TREE_OVERFLOW (cst))
613 (inner_op @0 { cst; } ))))))
614
615 /* (CST - A) +- CST -> CST - A */
616 (for outer_op (plus minus)
617 (simplify
618 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
619 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
620 (if (cst && !TREE_OVERFLOW (cst))
621 (minus { cst; } @0)))))
622
623 /* ~A + A -> -1 */
624 (simplify
625 (plus:c (bit_not @0) @0)
626 (if (!TYPE_OVERFLOW_TRAPS (type))
627 { build_all_ones_cst (type); }))
628
629 /* ~A + 1 -> -A */
630 (simplify
631 (plus (convert? (bit_not @0)) integer_each_onep)
632 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
633 (negate (convert @0))))
634
635 /* -A - 1 -> ~A */
636 (simplify
637 (minus (convert? (negate @0)) integer_each_onep)
638 (if (!TYPE_OVERFLOW_TRAPS (type)
639 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
640 (bit_not (convert @0))))
641
642 /* -1 - A -> ~A */
643 (simplify
644 (minus integer_all_onesp @0)
645 (bit_not @0))
646
647 /* (T)(P + A) - (T)P -> (T) A */
648 (for add (plus pointer_plus)
649 (simplify
650 (minus (convert (add @0 @1))
651 (convert @0))
652 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
653 /* For integer types, if A has a smaller type
654 than T the result depends on the possible
655 overflow in P + A.
656 E.g. T=size_t, A=(unsigned)429497295, P>0.
657 However, if an overflow in P + A would cause
658 undefined behavior, we can assume that there
659 is no overflow. */
660 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
661 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
662 /* For pointer types, if the conversion of A to the
663 final type requires a sign- or zero-extension,
664 then we have to punt - it is not defined which
665 one is correct. */
666 || (POINTER_TYPE_P (TREE_TYPE (@0))
667 && TREE_CODE (@1) == INTEGER_CST
668 && tree_int_cst_sign_bit (@1) == 0))
669 (convert @1))))))
670
671
672 /* Simplifications of MIN_EXPR and MAX_EXPR. */
673
674 (for minmax (min max)
675 (simplify
676 (minmax @0 @0)
677 @0))
678 (simplify
679 (min @0 @1)
680 (if (INTEGRAL_TYPE_P (type)
681 && TYPE_MIN_VALUE (type)
682 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
683 @1))
684 (simplify
685 (max @0 @1)
686 (if (INTEGRAL_TYPE_P (type)
687 && TYPE_MAX_VALUE (type)
688 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
689 @1))
690
691
692 /* Simplifications of shift and rotates. */
693
694 (for rotate (lrotate rrotate)
695 (simplify
696 (rotate integer_all_onesp@0 @1)
697 @0))
698
699 /* Optimize -1 >> x for arithmetic right shifts. */
700 (simplify
701 (rshift integer_all_onesp@0 @1)
702 (if (!TYPE_UNSIGNED (type)
703 && tree_expr_nonnegative_p (@1))
704 @0))
705
706 (for shiftrotate (lrotate rrotate lshift rshift)
707 (simplify
708 (shiftrotate @0 integer_zerop)
709 (non_lvalue @0))
710 (simplify
711 (shiftrotate integer_zerop@0 @1)
712 @0)
713 /* Prefer vector1 << scalar to vector1 << vector2
714 if vector2 is uniform. */
715 (for vec (VECTOR_CST CONSTRUCTOR)
716 (simplify
717 (shiftrotate @0 vec@1)
718 (with { tree tem = uniform_vector_p (@1); }
719 (if (tem)
720 (shiftrotate @0 { tem; }))))))
721
722 /* Rewrite an LROTATE_EXPR by a constant into an
723 RROTATE_EXPR by a new constant. */
724 (simplify
725 (lrotate @0 INTEGER_CST@1)
726 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
727 build_int_cst (TREE_TYPE (@1),
728 element_precision (type)), @1); }))
729
730 /* ((1 << A) & 1) != 0 -> A == 0
731 ((1 << A) & 1) == 0 -> A != 0 */
732 (for cmp (ne eq)
733 icmp (eq ne)
734 (simplify
735 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
736 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
737
738 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
739 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
740 if CST2 != 0. */
741 (for cmp (ne eq)
742 (simplify
743 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
744 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
745 (if (cand < 0
746 || (!integer_zerop (@2)
747 && wi::ne_p (wi::lshift (@0, cand), @2)))
748 { constant_boolean_node (cmp == NE_EXPR, type); })
749 (if (!integer_zerop (@2)
750 && wi::eq_p (wi::lshift (@0, cand), @2))
751 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
752
753 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
754 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
755 if the new mask might be further optimized. */
756 (for shift (lshift rshift)
757 (simplify
758 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
759 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
760 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
761 && tree_fits_uhwi_p (@1)
762 && tree_to_uhwi (@1) > 0
763 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
764 (with
765 {
766 unsigned int shiftc = tree_to_uhwi (@1);
767 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
768 unsigned HOST_WIDE_INT newmask, zerobits = 0;
769 tree shift_type = TREE_TYPE (@3);
770 unsigned int prec;
771
772 if (shift == LSHIFT_EXPR)
773 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
774 else if (shift == RSHIFT_EXPR
775 && (TYPE_PRECISION (shift_type)
776 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
777 {
778 prec = TYPE_PRECISION (TREE_TYPE (@3));
779 tree arg00 = @0;
780 /* See if more bits can be proven as zero because of
781 zero extension. */
782 if (@3 != @0
783 && TYPE_UNSIGNED (TREE_TYPE (@0)))
784 {
785 tree inner_type = TREE_TYPE (@0);
786 if ((TYPE_PRECISION (inner_type)
787 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
788 && TYPE_PRECISION (inner_type) < prec)
789 {
790 prec = TYPE_PRECISION (inner_type);
791 /* See if we can shorten the right shift. */
792 if (shiftc < prec)
793 shift_type = inner_type;
794 /* Otherwise X >> C1 is all zeros, so we'll optimize
795 it into (X, 0) later on by making sure zerobits
796 is all ones. */
797 }
798 }
799 zerobits = ~(unsigned HOST_WIDE_INT) 0;
800 if (shiftc < prec)
801 {
802 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
803 zerobits <<= prec - shiftc;
804 }
805 /* For arithmetic shift if sign bit could be set, zerobits
806 can contain actually sign bits, so no transformation is
807 possible, unless MASK masks them all away. In that
808 case the shift needs to be converted into logical shift. */
809 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
810 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
811 {
812 if ((mask & zerobits) == 0)
813 shift_type = unsigned_type_for (TREE_TYPE (@3));
814 else
815 zerobits = 0;
816 }
817 }
818 }
819 /* ((X << 16) & 0xff00) is (X, 0). */
820 (if ((mask & zerobits) == mask)
821 { build_int_cst (type, 0); })
822 (with { newmask = mask | zerobits; }
823 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
824 (with
825 {
826 /* Only do the transformation if NEWMASK is some integer
827 mode's mask. */
828 for (prec = BITS_PER_UNIT;
829 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
830 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
831 break;
832 }
833 (if (prec < HOST_BITS_PER_WIDE_INT
834 || newmask == ~(unsigned HOST_WIDE_INT) 0)
835 (with
836 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
837 (if (!tree_int_cst_equal (newmaskt, @2))
838 (if (shift_type != TREE_TYPE (@3)
839 && single_use (@4) && single_use (@5))
840 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
841 (if (shift_type == TREE_TYPE (@3))
842 (bit_and @4 { newmaskt; }))))))))))))
843
844 /* Simplifications of conversions. */
845
846 /* Basic strip-useless-type-conversions / strip_nops. */
847 (for cvt (convert view_convert float fix_trunc)
848 (simplify
849 (cvt @0)
850 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
851 || (GENERIC && type == TREE_TYPE (@0)))
852 @0)))
853
854 /* Contract view-conversions. */
855 (simplify
856 (view_convert (view_convert @0))
857 (view_convert @0))
858
859 /* For integral conversions with the same precision or pointer
860 conversions use a NOP_EXPR instead. */
861 (simplify
862 (view_convert @0)
863 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
864 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
865 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
866 (convert @0)))
867
868 /* Strip inner integral conversions that do not change precision or size. */
869 (simplify
870 (view_convert (convert@0 @1))
871 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
872 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
873 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
874 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
875 (view_convert @1)))
876
877 /* Re-association barriers around constants and other re-association
878 barriers can be removed. */
879 (simplify
880 (paren CONSTANT_CLASS_P@0)
881 @0)
882 (simplify
883 (paren (paren@1 @0))
884 @1)
885
886 /* Handle cases of two conversions in a row. */
887 (for ocvt (convert float fix_trunc)
888 (for icvt (convert float)
889 (simplify
890 (ocvt (icvt@1 @0))
891 (with
892 {
893 tree inside_type = TREE_TYPE (@0);
894 tree inter_type = TREE_TYPE (@1);
895 int inside_int = INTEGRAL_TYPE_P (inside_type);
896 int inside_ptr = POINTER_TYPE_P (inside_type);
897 int inside_float = FLOAT_TYPE_P (inside_type);
898 int inside_vec = VECTOR_TYPE_P (inside_type);
899 unsigned int inside_prec = TYPE_PRECISION (inside_type);
900 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
901 int inter_int = INTEGRAL_TYPE_P (inter_type);
902 int inter_ptr = POINTER_TYPE_P (inter_type);
903 int inter_float = FLOAT_TYPE_P (inter_type);
904 int inter_vec = VECTOR_TYPE_P (inter_type);
905 unsigned int inter_prec = TYPE_PRECISION (inter_type);
906 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
907 int final_int = INTEGRAL_TYPE_P (type);
908 int final_ptr = POINTER_TYPE_P (type);
909 int final_float = FLOAT_TYPE_P (type);
910 int final_vec = VECTOR_TYPE_P (type);
911 unsigned int final_prec = TYPE_PRECISION (type);
912 int final_unsignedp = TYPE_UNSIGNED (type);
913 }
914 /* In addition to the cases of two conversions in a row
915 handled below, if we are converting something to its own
916 type via an object of identical or wider precision, neither
917 conversion is needed. */
918 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
919 || (GENERIC
920 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
921 && (((inter_int || inter_ptr) && final_int)
922 || (inter_float && final_float))
923 && inter_prec >= final_prec)
924 (ocvt @0))
925
926 /* Likewise, if the intermediate and initial types are either both
927 float or both integer, we don't need the middle conversion if the
928 former is wider than the latter and doesn't change the signedness
929 (for integers). Avoid this if the final type is a pointer since
930 then we sometimes need the middle conversion. Likewise if the
931 final type has a precision not equal to the size of its mode. */
932 (if (((inter_int && inside_int) || (inter_float && inside_float))
933 && (final_int || final_float)
934 && inter_prec >= inside_prec
935 && (inter_float || inter_unsignedp == inside_unsignedp)
936 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
937 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
938 (ocvt @0))
939
940 /* If we have a sign-extension of a zero-extended value, we can
941 replace that by a single zero-extension. Likewise if the
942 final conversion does not change precision we can drop the
943 intermediate conversion. */
944 (if (inside_int && inter_int && final_int
945 && ((inside_prec < inter_prec && inter_prec < final_prec
946 && inside_unsignedp && !inter_unsignedp)
947 || final_prec == inter_prec))
948 (ocvt @0))
949
950 /* Two conversions in a row are not needed unless:
951 - some conversion is floating-point (overstrict for now), or
952 - some conversion is a vector (overstrict for now), or
953 - the intermediate type is narrower than both initial and
954 final, or
955 - the intermediate type and innermost type differ in signedness,
956 and the outermost type is wider than the intermediate, or
957 - the initial type is a pointer type and the precisions of the
958 intermediate and final types differ, or
959 - the final type is a pointer type and the precisions of the
960 initial and intermediate types differ. */
961 (if (! inside_float && ! inter_float && ! final_float
962 && ! inside_vec && ! inter_vec && ! final_vec
963 && (inter_prec >= inside_prec || inter_prec >= final_prec)
964 && ! (inside_int && inter_int
965 && inter_unsignedp != inside_unsignedp
966 && inter_prec < final_prec)
967 && ((inter_unsignedp && inter_prec > inside_prec)
968 == (final_unsignedp && final_prec > inter_prec))
969 && ! (inside_ptr && inter_prec != final_prec)
970 && ! (final_ptr && inside_prec != inter_prec)
971 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
972 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
973 (ocvt @0))
974
975 /* A truncation to an unsigned type (a zero-extension) should be
976 canonicalized as bitwise and of a mask. */
977 (if (final_int && inter_int && inside_int
978 && final_prec == inside_prec
979 && final_prec > inter_prec
980 && inter_unsignedp)
981 (convert (bit_and @0 { wide_int_to_tree
982 (inside_type,
983 wi::mask (inter_prec, false,
984 TYPE_PRECISION (inside_type))); })))
985
986 /* If we are converting an integer to a floating-point that can
987 represent it exactly and back to an integer, we can skip the
988 floating-point conversion. */
989 (if (GIMPLE /* PR66211 */
990 && inside_int && inter_float && final_int &&
991 (unsigned) significand_size (TYPE_MODE (inter_type))
992 >= inside_prec - !inside_unsignedp)
993 (convert @0))))))
994
995 /* If we have a narrowing conversion to an integral type that is fed by a
996 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
997 masks off bits outside the final type (and nothing else). */
998 (simplify
999 (convert (bit_and @0 INTEGER_CST@1))
1000 (if (INTEGRAL_TYPE_P (type)
1001 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1002 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1003 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1004 TYPE_PRECISION (type)), 0))
1005 (convert @0)))
1006
1007
1008 /* (X /[ex] A) * A -> X. */
1009 (simplify
1010 (mult (convert? (exact_div @0 @1)) @1)
1011 /* Look through a sign-changing conversion. */
1012 (convert @0))
1013
1014 /* Canonicalization of binary operations. */
1015
1016 /* Convert X + -C into X - C. */
1017 (simplify
1018 (plus @0 REAL_CST@1)
1019 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1020 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1021 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1022 (minus @0 { tem; })))))
1023
1024 /* Convert x+x into x*2.0. */
1025 (simplify
1026 (plus @0 @0)
1027 (if (SCALAR_FLOAT_TYPE_P (type))
1028 (mult @0 { build_real (type, dconst2); })))
1029
1030 (simplify
1031 (minus integer_zerop @1)
1032 (negate @1))
1033
1034 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1035 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1036 (-ARG1 + ARG0) reduces to -ARG1. */
1037 (simplify
1038 (minus real_zerop@0 @1)
1039 (if (fold_real_zero_addition_p (type, @0, 0))
1040 (negate @1)))
1041
1042 /* Transform x * -1 into -x. */
1043 (simplify
1044 (mult @0 integer_minus_onep)
1045 (negate @0))
1046
1047 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1048 (simplify
1049 (complex (realpart @0) (imagpart @0))
1050 @0)
1051 (simplify
1052 (realpart (complex @0 @1))
1053 @0)
1054 (simplify
1055 (imagpart (complex @0 @1))
1056 @1)
1057
1058
1059 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1060 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1061 (simplify
1062 (bswap (bswap @0))
1063 @0)
1064 (simplify
1065 (bswap (bit_not (bswap @0)))
1066 (bit_not @0))
1067 (for bitop (bit_xor bit_ior bit_and)
1068 (simplify
1069 (bswap (bitop:c (bswap @0) @1))
1070 (bitop @0 (bswap @1)))))
1071
1072
1073 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1074
1075 /* Simplify constant conditions.
1076 Only optimize constant conditions when the selected branch
1077 has the same type as the COND_EXPR. This avoids optimizing
1078 away "c ? x : throw", where the throw has a void type.
1079 Note that we cannot throw away the fold-const.c variant nor
1080 this one as we depend on doing this transform before possibly
1081 A ? B : B -> B triggers and the fold-const.c one can optimize
1082 0 ? A : B to B even if A has side-effects. Something
1083 genmatch cannot handle. */
1084 (simplify
1085 (cond INTEGER_CST@0 @1 @2)
1086 (if (integer_zerop (@0)
1087 && (!VOID_TYPE_P (TREE_TYPE (@2))
1088 || VOID_TYPE_P (type)))
1089 @2)
1090 (if (!integer_zerop (@0)
1091 && (!VOID_TYPE_P (TREE_TYPE (@1))
1092 || VOID_TYPE_P (type)))
1093 @1))
1094 (simplify
1095 (vec_cond VECTOR_CST@0 @1 @2)
1096 (if (integer_all_onesp (@0))
1097 @1)
1098 (if (integer_zerop (@0))
1099 @2))
1100
1101 (for cnd (cond vec_cond)
1102 /* A ? B : (A ? X : C) -> A ? B : C. */
1103 (simplify
1104 (cnd @0 (cnd @0 @1 @2) @3)
1105 (cnd @0 @1 @3))
1106 (simplify
1107 (cnd @0 @1 (cnd @0 @2 @3))
1108 (cnd @0 @1 @3))
1109
1110 /* A ? B : B -> B. */
1111 (simplify
1112 (cnd @0 @1 @1)
1113 @1)
1114
1115 /* !A ? B : C -> A ? C : B. */
1116 (simplify
1117 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1118 (cnd @0 @2 @1)))
1119
1120 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1121 return all-1 or all-0 results. */
1122 /* ??? We could instead convert all instances of the vec_cond to negate,
1123 but that isn't necessarily a win on its own. */
1124 (simplify
1125 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1126 (if (VECTOR_TYPE_P (type)
1127 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1128 && (TYPE_MODE (TREE_TYPE (type))
1129 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1130 (minus @3 (view_convert @0))))
1131
1132 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1133 (simplify
1134 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1135 (if (VECTOR_TYPE_P (type)
1136 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1137 && (TYPE_MODE (TREE_TYPE (type))
1138 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1139 (plus @3 (view_convert @0))))
1140
1141 /* Simplifications of comparisons. */
1142
1143 /* We can simplify a logical negation of a comparison to the
1144 inverted comparison. As we cannot compute an expression
1145 operator using invert_tree_comparison we have to simulate
1146 that with expression code iteration. */
1147 (for cmp (tcc_comparison)
1148 icmp (inverted_tcc_comparison)
1149 ncmp (inverted_tcc_comparison_with_nans)
1150 /* Ideally we'd like to combine the following two patterns
1151 and handle some more cases by using
1152 (logical_inverted_value (cmp @0 @1))
1153 here but for that genmatch would need to "inline" that.
1154 For now implement what forward_propagate_comparison did. */
1155 (simplify
1156 (bit_not (cmp @0 @1))
1157 (if (VECTOR_TYPE_P (type)
1158 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1159 /* Comparison inversion may be impossible for trapping math,
1160 invert_tree_comparison will tell us. But we can't use
1161 a computed operator in the replacement tree thus we have
1162 to play the trick below. */
1163 (with { enum tree_code ic = invert_tree_comparison
1164 (cmp, HONOR_NANS (@0)); }
1165 (if (ic == icmp)
1166 (icmp @0 @1))
1167 (if (ic == ncmp)
1168 (ncmp @0 @1)))))
1169 (simplify
1170 (bit_xor (cmp @0 @1) integer_truep)
1171 (with { enum tree_code ic = invert_tree_comparison
1172 (cmp, HONOR_NANS (@0)); }
1173 (if (ic == icmp)
1174 (icmp @0 @1))
1175 (if (ic == ncmp)
1176 (ncmp @0 @1)))))
1177
1178 /* Unordered tests if either argument is a NaN. */
1179 (simplify
1180 (bit_ior (unordered @0 @0) (unordered @1 @1))
1181 (if (types_match (@0, @1))
1182 (unordered @0 @1)))
1183 (simplify
1184 (bit_and (ordered @0 @0) (ordered @1 @1))
1185 (if (types_match (@0, @1))
1186 (ordered @0 @1)))
1187 (simplify
1188 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1189 @2)
1190 (simplify
1191 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1192 @2)
1193
1194 /* -A CMP -B -> B CMP A. */
1195 (for cmp (tcc_comparison)
1196 scmp (swapped_tcc_comparison)
1197 (simplify
1198 (cmp (negate @0) (negate @1))
1199 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1200 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1201 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1202 (scmp @0 @1)))
1203 (simplify
1204 (cmp (negate @0) CONSTANT_CLASS_P@1)
1205 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1206 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1207 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1208 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1209 (if (tem && !TREE_OVERFLOW (tem))
1210 (scmp @0 { tem; }))))))
1211
1212
1213 /* Equality compare simplifications from fold_binary */
1214 (for cmp (eq ne)
1215
1216 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1217 Similarly for NE_EXPR. */
1218 (simplify
1219 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1220 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1221 && wi::bit_and_not (@1, @2) != 0)
1222 { constant_boolean_node (cmp == NE_EXPR, type); }))
1223
1224 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1225 (simplify
1226 (cmp (bit_xor @0 @1) integer_zerop)
1227 (cmp @0 @1))
1228
1229 /* (X ^ Y) == Y becomes X == 0.
1230 Likewise (X ^ Y) == X becomes Y == 0. */
1231 (simplify
1232 (cmp (bit_xor:c @0 @1) @0)
1233 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1234
1235 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1236 (simplify
1237 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1238 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1239 (cmp @0 (bit_xor @1 (convert @2))))))
1240
1241 /* Simplification of math builtins. */
1242
1243 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1244 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1245 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1246 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1247 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1248 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1249 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1250 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1251 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1252 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1253
1254
1255 /* fold_builtin_logarithm */
1256 (if (flag_unsafe_math_optimizations)
1257 /* Special case, optimize logN(expN(x)) = x. */
1258 (for logs (LOG LOG2 LOG10)
1259 exps (EXP EXP2 EXP10)
1260 (simplify
1261 (logs (exps @0))
1262 @0))
1263 /* Optimize logN(func()) for various exponential functions. We
1264 want to determine the value "x" and the power "exponent" in
1265 order to transform logN(x**exponent) into exponent*logN(x). */
1266 (for logs (LOG LOG LOG LOG
1267 LOG2 LOG2 LOG2 LOG2
1268 LOG10 LOG10 LOG10 LOG10)
1269 exps (EXP EXP2 EXP10 POW10)
1270 (simplify
1271 (logs (exps @0))
1272 (with {
1273 tree x;
1274 switch (exps)
1275 {
1276 CASE_FLT_FN (BUILT_IN_EXP):
1277 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1278 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1279 dconst_e ()));
1280 break;
1281 CASE_FLT_FN (BUILT_IN_EXP2):
1282 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1283 x = build_real (type, dconst2);
1284 break;
1285 CASE_FLT_FN (BUILT_IN_EXP10):
1286 CASE_FLT_FN (BUILT_IN_POW10):
1287 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1288 {
1289 REAL_VALUE_TYPE dconst10;
1290 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1291 x = build_real (type, dconst10);
1292 }
1293 break;
1294 }
1295 }
1296 (mult (logs { x; }) @0))))
1297 (for logs (LOG LOG
1298 LOG2 LOG2
1299 LOG10 LOG10)
1300 exps (SQRT CBRT)
1301 (simplify
1302 (logs (exps @0))
1303 (with {
1304 tree x;
1305 switch (exps)
1306 {
1307 CASE_FLT_FN (BUILT_IN_SQRT):
1308 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1309 x = build_real (type, dconsthalf);
1310 break;
1311 CASE_FLT_FN (BUILT_IN_CBRT):
1312 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1313 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1314 dconst_third ()));
1315 break;
1316 }
1317 }
1318 (mult { x; } (logs @0)))))
1319 /* logN(pow(x,exponent) -> exponent*logN(x). */
1320 (for logs (LOG LOG2 LOG10)
1321 pows (POW)
1322 (simplify
1323 (logs (pows @0 @1))
1324 (mult @1 (logs @0)))))
1325
1326 /* Narrowing of arithmetic and logical operations.
1327
1328 These are conceptually similar to the transformations performed for
1329 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1330 term we want to move all that code out of the front-ends into here. */
1331
1332 /* If we have a narrowing conversion of an arithmetic operation where
1333 both operands are widening conversions from the same type as the outer
1334 narrowing conversion. Then convert the innermost operands to a suitable
1335 unsigned type (to avoid introducing undefined behaviour), perform the
1336 operation and convert the result to the desired type. */
1337 (for op (plus minus)
1338 (simplify
1339 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1340 (if (INTEGRAL_TYPE_P (type)
1341 /* We check for type compatibility between @0 and @1 below,
1342 so there's no need to check that @1/@3 are integral types. */
1343 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1344 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1345 /* The precision of the type of each operand must match the
1346 precision of the mode of each operand, similarly for the
1347 result. */
1348 && (TYPE_PRECISION (TREE_TYPE (@0))
1349 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1350 && (TYPE_PRECISION (TREE_TYPE (@1))
1351 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1352 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1353 /* The inner conversion must be a widening conversion. */
1354 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1355 && types_match (@0, @1)
1356 && types_match (@0, type)
1357 && single_use (@4))
1358 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1359 (convert (op @0 @1)))
1360 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1361 (convert (op (convert:utype @0) (convert:utype @1)))))))
1362
1363 /* This is another case of narrowing, specifically when there's an outer
1364 BIT_AND_EXPR which masks off bits outside the type of the innermost
1365 operands. Like the previous case we have to convert the operands
1366 to unsigned types to avoid introducing undefined behaviour for the
1367 arithmetic operation. */
1368 (for op (minus plus)
1369 (simplify
1370 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1371 (if (INTEGRAL_TYPE_P (type)
1372 /* We check for type compatibility between @0 and @1 below,
1373 so there's no need to check that @1/@3 are integral types. */
1374 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1375 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1376 /* The precision of the type of each operand must match the
1377 precision of the mode of each operand, similarly for the
1378 result. */
1379 && (TYPE_PRECISION (TREE_TYPE (@0))
1380 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1381 && (TYPE_PRECISION (TREE_TYPE (@1))
1382 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1383 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1384 /* The inner conversion must be a widening conversion. */
1385 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1386 && types_match (@0, @1)
1387 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1388 <= TYPE_PRECISION (TREE_TYPE (@0)))
1389 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1390 || tree_int_cst_sgn (@4) >= 0)
1391 && single_use (@5))
1392 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1393 (with { tree ntype = TREE_TYPE (@0); }
1394 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1395 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1396 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1397 (convert:utype @4)))))))
1398