cp-tree.h (LOOKUP_SEEN_P, [...]): New.
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2017 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Simplifications of operations with one constant operand and
79 simplifications to constants or single values. */
80
81 (for op (plus pointer_plus minus bit_ior bit_xor)
82 (simplify
83 (op @0 integer_zerop)
84 (non_lvalue @0)))
85
86 /* 0 +p index -> (type)index */
87 (simplify
88 (pointer_plus integer_zerop @1)
89 (non_lvalue (convert @1)))
90
91 /* See if ARG1 is zero and X + ARG1 reduces to X.
92 Likewise if the operands are reversed. */
93 (simplify
94 (plus:c @0 real_zerop@1)
95 (if (fold_real_zero_addition_p (type, @1, 0))
96 (non_lvalue @0)))
97
98 /* See if ARG1 is zero and X - ARG1 reduces to X. */
99 (simplify
100 (minus @0 real_zerop@1)
101 (if (fold_real_zero_addition_p (type, @1, 1))
102 (non_lvalue @0)))
103
104 /* Simplify x - x.
105 This is unsafe for certain floats even in non-IEEE formats.
106 In IEEE, it is unsafe because it does wrong for NaNs.
107 Also note that operand_equal_p is always false if an operand
108 is volatile. */
109 (simplify
110 (minus @0 @0)
111 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
112 { build_zero_cst (type); }))
113
114 (simplify
115 (mult @0 integer_zerop@1)
116 @1)
117
118 /* Maybe fold x * 0 to 0. The expressions aren't the same
119 when x is NaN, since x * 0 is also NaN. Nor are they the
120 same in modes with signed zeros, since multiplying a
121 negative value by 0 gives -0, not +0. */
122 (simplify
123 (mult @0 real_zerop@1)
124 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
125 @1))
126
127 /* In IEEE floating point, x*1 is not equivalent to x for snans.
128 Likewise for complex arithmetic with signed zeros. */
129 (simplify
130 (mult @0 real_onep)
131 (if (!HONOR_SNANS (type)
132 && (!HONOR_SIGNED_ZEROS (type)
133 || !COMPLEX_FLOAT_TYPE_P (type)))
134 (non_lvalue @0)))
135
136 /* Transform x * -1.0 into -x. */
137 (simplify
138 (mult @0 real_minus_onep)
139 (if (!HONOR_SNANS (type)
140 && (!HONOR_SIGNED_ZEROS (type)
141 || !COMPLEX_FLOAT_TYPE_P (type)))
142 (negate @0)))
143
144 /* X * 1, X / 1 -> X. */
145 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
146 (simplify
147 (op @0 integer_onep)
148 (non_lvalue @0)))
149
150 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
151 undefined behavior in constexpr evaluation, and assuming that the division
152 traps enables better optimizations than these anyway. */
153 (for div (trunc_div ceil_div floor_div round_div exact_div)
154 /* 0 / X is always zero. */
155 (simplify
156 (div integer_zerop@0 @1)
157 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
158 (if (!integer_zerop (@1))
159 @0))
160 /* X / -1 is -X. */
161 (simplify
162 (div @0 integer_minus_onep@1)
163 (if (!TYPE_UNSIGNED (type))
164 (negate @0)))
165 /* X / X is one. */
166 (simplify
167 (div @0 @0)
168 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
169 (if (!integer_zerop (@0))
170 { build_one_cst (type); }))
171 /* X / abs (X) is X < 0 ? -1 : 1. */
172 (simplify
173 (div:C @0 (abs @0))
174 (if (INTEGRAL_TYPE_P (type)
175 && TYPE_OVERFLOW_UNDEFINED (type))
176 (cond (lt @0 { build_zero_cst (type); })
177 { build_minus_one_cst (type); } { build_one_cst (type); })))
178 /* X / -X is -1. */
179 (simplify
180 (div:C @0 (negate @0))
181 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
182 && TYPE_OVERFLOW_UNDEFINED (type))
183 { build_minus_one_cst (type); })))
184
185 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
186 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
187 (simplify
188 (floor_div @0 @1)
189 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
190 && TYPE_UNSIGNED (type))
191 (trunc_div @0 @1)))
192
193 /* Combine two successive divisions. Note that combining ceil_div
194 and floor_div is trickier and combining round_div even more so. */
195 (for div (trunc_div exact_div)
196 (simplify
197 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
198 (with {
199 bool overflow_p;
200 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
201 }
202 (if (!overflow_p)
203 (div @0 { wide_int_to_tree (type, mul); })
204 (if (TYPE_UNSIGNED (type)
205 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
206 { build_zero_cst (type); })))))
207
208 /* Optimize A / A to 1.0 if we don't care about
209 NaNs or Infinities. */
210 (simplify
211 (rdiv @0 @0)
212 (if (FLOAT_TYPE_P (type)
213 && ! HONOR_NANS (type)
214 && ! HONOR_INFINITIES (type))
215 { build_one_cst (type); }))
216
217 /* Optimize -A / A to -1.0 if we don't care about
218 NaNs or Infinities. */
219 (simplify
220 (rdiv:C @0 (negate @0))
221 (if (FLOAT_TYPE_P (type)
222 && ! HONOR_NANS (type)
223 && ! HONOR_INFINITIES (type))
224 { build_minus_one_cst (type); }))
225
226 /* PR71078: x / abs(x) -> copysign (1.0, x) */
227 (simplify
228 (rdiv:C (convert? @0) (convert? (abs @0)))
229 (if (SCALAR_FLOAT_TYPE_P (type)
230 && ! HONOR_NANS (type)
231 && ! HONOR_INFINITIES (type))
232 (switch
233 (if (types_match (type, float_type_node))
234 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
235 (if (types_match (type, double_type_node))
236 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
237 (if (types_match (type, long_double_type_node))
238 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
239
240 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
241 (simplify
242 (rdiv @0 real_onep)
243 (if (!HONOR_SNANS (type))
244 (non_lvalue @0)))
245
246 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
247 (simplify
248 (rdiv @0 real_minus_onep)
249 (if (!HONOR_SNANS (type))
250 (negate @0)))
251
252 (if (flag_reciprocal_math)
253 /* Convert (A/B)/C to A/(B*C) */
254 (simplify
255 (rdiv (rdiv:s @0 @1) @2)
256 (rdiv @0 (mult @1 @2)))
257
258 /* Convert A/(B/C) to (A/B)*C */
259 (simplify
260 (rdiv @0 (rdiv:s @1 @2))
261 (mult (rdiv @0 @1) @2)))
262
263 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
264 (for div (trunc_div ceil_div floor_div round_div exact_div)
265 (simplify
266 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
267 (if (integer_pow2p (@2)
268 && tree_int_cst_sgn (@2) > 0
269 && wi::add (@2, @1) == 0
270 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
271 (rshift (convert @0) { build_int_cst (integer_type_node,
272 wi::exact_log2 (@2)); }))))
273
274 /* If ARG1 is a constant, we can convert this to a multiply by the
275 reciprocal. This does not have the same rounding properties,
276 so only do this if -freciprocal-math. We can actually
277 always safely do it if ARG1 is a power of two, but it's hard to
278 tell if it is or not in a portable manner. */
279 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
280 (simplify
281 (rdiv @0 cst@1)
282 (if (optimize)
283 (if (flag_reciprocal_math
284 && !real_zerop (@1))
285 (with
286 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
287 (if (tem)
288 (mult @0 { tem; } )))
289 (if (cst != COMPLEX_CST)
290 (with { tree inverse = exact_inverse (type, @1); }
291 (if (inverse)
292 (mult @0 { inverse; } ))))))))
293
294 (for mod (ceil_mod floor_mod round_mod trunc_mod)
295 /* 0 % X is always zero. */
296 (simplify
297 (mod integer_zerop@0 @1)
298 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
299 (if (!integer_zerop (@1))
300 @0))
301 /* X % 1 is always zero. */
302 (simplify
303 (mod @0 integer_onep)
304 { build_zero_cst (type); })
305 /* X % -1 is zero. */
306 (simplify
307 (mod @0 integer_minus_onep@1)
308 (if (!TYPE_UNSIGNED (type))
309 { build_zero_cst (type); }))
310 /* X % X is zero. */
311 (simplify
312 (mod @0 @0)
313 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
314 (if (!integer_zerop (@0))
315 { build_zero_cst (type); }))
316 /* (X % Y) % Y is just X % Y. */
317 (simplify
318 (mod (mod@2 @0 @1) @1)
319 @2)
320 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
321 (simplify
322 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
323 (if (ANY_INTEGRAL_TYPE_P (type)
324 && TYPE_OVERFLOW_UNDEFINED (type)
325 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
326 { build_zero_cst (type); })))
327
328 /* X % -C is the same as X % C. */
329 (simplify
330 (trunc_mod @0 INTEGER_CST@1)
331 (if (TYPE_SIGN (type) == SIGNED
332 && !TREE_OVERFLOW (@1)
333 && wi::neg_p (@1)
334 && !TYPE_OVERFLOW_TRAPS (type)
335 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
336 && !sign_bit_p (@1, @1))
337 (trunc_mod @0 (negate @1))))
338
339 /* X % -Y is the same as X % Y. */
340 (simplify
341 (trunc_mod @0 (convert? (negate @1)))
342 (if (INTEGRAL_TYPE_P (type)
343 && !TYPE_UNSIGNED (type)
344 && !TYPE_OVERFLOW_TRAPS (type)
345 && tree_nop_conversion_p (type, TREE_TYPE (@1))
346 /* Avoid this transformation if X might be INT_MIN or
347 Y might be -1, because we would then change valid
348 INT_MIN % -(-1) into invalid INT_MIN % -1. */
349 && (expr_not_equal_to (@0, TYPE_MIN_VALUE (type))
350 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
351 (TREE_TYPE (@1))))))
352 (trunc_mod @0 (convert @1))))
353
354 /* X - (X / Y) * Y is the same as X % Y. */
355 (simplify
356 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
357 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
358 (convert (trunc_mod @0 @1))))
359
360 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
361 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
362 Also optimize A % (C << N) where C is a power of 2,
363 to A & ((C << N) - 1). */
364 (match (power_of_two_cand @1)
365 INTEGER_CST@1)
366 (match (power_of_two_cand @1)
367 (lshift INTEGER_CST@1 @2))
368 (for mod (trunc_mod floor_mod)
369 (simplify
370 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
371 (if ((TYPE_UNSIGNED (type)
372 || tree_expr_nonnegative_p (@0))
373 && tree_nop_conversion_p (type, TREE_TYPE (@3))
374 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
375 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
376
377 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
378 (simplify
379 (trunc_div (mult @0 integer_pow2p@1) @1)
380 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
381 (bit_and @0 { wide_int_to_tree
382 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
383 false, TYPE_PRECISION (type))); })))
384
385 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
386 (simplify
387 (mult (trunc_div @0 integer_pow2p@1) @1)
388 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
389 (bit_and @0 (negate @1))))
390
391 /* Simplify (t * 2) / 2) -> t. */
392 (for div (trunc_div ceil_div floor_div round_div exact_div)
393 (simplify
394 (div (mult @0 @1) @1)
395 (if (ANY_INTEGRAL_TYPE_P (type)
396 && TYPE_OVERFLOW_UNDEFINED (type))
397 @0)))
398
399 (for op (negate abs)
400 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
401 (for coss (COS COSH)
402 (simplify
403 (coss (op @0))
404 (coss @0)))
405 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
406 (for pows (POW)
407 (simplify
408 (pows (op @0) REAL_CST@1)
409 (with { HOST_WIDE_INT n; }
410 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
411 (pows @0 @1)))))
412 /* Likewise for powi. */
413 (for pows (POWI)
414 (simplify
415 (pows (op @0) INTEGER_CST@1)
416 (if (wi::bit_and (@1, 1) == 0)
417 (pows @0 @1))))
418 /* Strip negate and abs from both operands of hypot. */
419 (for hypots (HYPOT)
420 (simplify
421 (hypots (op @0) @1)
422 (hypots @0 @1))
423 (simplify
424 (hypots @0 (op @1))
425 (hypots @0 @1)))
426 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
427 (for copysigns (COPYSIGN)
428 (simplify
429 (copysigns (op @0) @1)
430 (copysigns @0 @1))))
431
432 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
433 (simplify
434 (mult (abs@1 @0) @1)
435 (mult @0 @0))
436
437 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
438 (for coss (COS COSH)
439 copysigns (COPYSIGN)
440 (simplify
441 (coss (copysigns @0 @1))
442 (coss @0)))
443
444 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
445 (for pows (POW)
446 copysigns (COPYSIGN)
447 (simplify
448 (pows (copysigns @0 @2) REAL_CST@1)
449 (with { HOST_WIDE_INT n; }
450 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
451 (pows @0 @1)))))
452 /* Likewise for powi. */
453 (for pows (POWI)
454 copysigns (COPYSIGN)
455 (simplify
456 (pows (copysigns @0 @2) INTEGER_CST@1)
457 (if (wi::bit_and (@1, 1) == 0)
458 (pows @0 @1))))
459
460 (for hypots (HYPOT)
461 copysigns (COPYSIGN)
462 /* hypot(copysign(x, y), z) -> hypot(x, z). */
463 (simplify
464 (hypots (copysigns @0 @1) @2)
465 (hypots @0 @2))
466 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
467 (simplify
468 (hypots @0 (copysigns @1 @2))
469 (hypots @0 @1)))
470
471 /* copysign(x, CST) -> [-]abs (x). */
472 (for copysigns (COPYSIGN)
473 (simplify
474 (copysigns @0 REAL_CST@1)
475 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
476 (negate (abs @0))
477 (abs @0))))
478
479 /* copysign(copysign(x, y), z) -> copysign(x, z). */
480 (for copysigns (COPYSIGN)
481 (simplify
482 (copysigns (copysigns @0 @1) @2)
483 (copysigns @0 @2)))
484
485 /* copysign(x,y)*copysign(x,y) -> x*x. */
486 (for copysigns (COPYSIGN)
487 (simplify
488 (mult (copysigns@2 @0 @1) @2)
489 (mult @0 @0)))
490
491 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
492 (for ccoss (CCOS CCOSH)
493 (simplify
494 (ccoss (negate @0))
495 (ccoss @0)))
496
497 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
498 (for ops (conj negate)
499 (for cabss (CABS)
500 (simplify
501 (cabss (ops @0))
502 (cabss @0))))
503
504 /* Fold (a * (1 << b)) into (a << b) */
505 (simplify
506 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
507 (if (! FLOAT_TYPE_P (type)
508 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
509 (lshift @0 @2)))
510
511 /* Fold (C1/X)*C2 into (C1*C2)/X. */
512 (simplify
513 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
514 (if (flag_associative_math
515 && single_use (@3))
516 (with
517 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
518 (if (tem)
519 (rdiv { tem; } @1)))))
520
521 /* Convert C1/(X*C2) into (C1/C2)/X */
522 (simplify
523 (rdiv REAL_CST@0 (mult @1 REAL_CST@2))
524 (if (flag_reciprocal_math)
525 (with
526 { tree tem = const_binop (RDIV_EXPR, type, @0, @2); }
527 (if (tem)
528 (rdiv { tem; } @1)))))
529
530 /* Simplify ~X & X as zero. */
531 (simplify
532 (bit_and:c (convert? @0) (convert? (bit_not @0)))
533 { build_zero_cst (type); })
534
535 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
536 (simplify
537 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
538 (if (TYPE_UNSIGNED (type))
539 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
540
541 /* PR35691: Transform
542 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
543 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
544 (for bitop (bit_and bit_ior)
545 cmp (eq ne)
546 (simplify
547 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
548 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
549 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
550 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
551 (cmp (bit_ior @0 (convert @1)) @2))))
552
553 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
554 (simplify
555 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
556 (minus (bit_xor @0 @1) @1))
557 (simplify
558 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
559 (if (wi::bit_not (@2) == @1)
560 (minus (bit_xor @0 @1) @1)))
561
562 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
563 (simplify
564 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
565 (minus @1 (bit_xor @0 @1)))
566
567 /* Simplify (X & ~Y) | (~X & Y) -> X ^ Y. */
568 (simplify
569 (bit_ior (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
570 (bit_xor @0 @1))
571 (simplify
572 (bit_ior:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
573 (if (wi::bit_not (@2) == @1)
574 (bit_xor @0 @1)))
575
576 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
577 (simplify
578 (bit_ior:c (bit_xor:c @0 @1) @0)
579 (bit_ior @0 @1))
580
581 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
582 #if GIMPLE
583 (simplify
584 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
585 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
586 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
587 (bit_xor @0 @1)))
588 #endif
589
590 /* X % Y is smaller than Y. */
591 (for cmp (lt ge)
592 (simplify
593 (cmp (trunc_mod @0 @1) @1)
594 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
595 { constant_boolean_node (cmp == LT_EXPR, type); })))
596 (for cmp (gt le)
597 (simplify
598 (cmp @1 (trunc_mod @0 @1))
599 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
600 { constant_boolean_node (cmp == GT_EXPR, type); })))
601
602 /* x | ~0 -> ~0 */
603 (simplify
604 (bit_ior @0 integer_all_onesp@1)
605 @1)
606
607 /* x | 0 -> x */
608 (simplify
609 (bit_ior @0 integer_zerop)
610 @0)
611
612 /* x & 0 -> 0 */
613 (simplify
614 (bit_and @0 integer_zerop@1)
615 @1)
616
617 /* ~x | x -> -1 */
618 /* ~x ^ x -> -1 */
619 /* ~x + x -> -1 */
620 (for op (bit_ior bit_xor plus)
621 (simplify
622 (op:c (convert? @0) (convert? (bit_not @0)))
623 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
624
625 /* x ^ x -> 0 */
626 (simplify
627 (bit_xor @0 @0)
628 { build_zero_cst (type); })
629
630 /* Canonicalize X ^ ~0 to ~X. */
631 (simplify
632 (bit_xor @0 integer_all_onesp@1)
633 (bit_not @0))
634
635 /* x & ~0 -> x */
636 (simplify
637 (bit_and @0 integer_all_onesp)
638 (non_lvalue @0))
639
640 /* x & x -> x, x | x -> x */
641 (for bitop (bit_and bit_ior)
642 (simplify
643 (bitop @0 @0)
644 (non_lvalue @0)))
645
646 /* x & C -> x if we know that x & ~C == 0. */
647 #if GIMPLE
648 (simplify
649 (bit_and SSA_NAME@0 INTEGER_CST@1)
650 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
651 && (get_nonzero_bits (@0) & wi::bit_not (@1)) == 0)
652 @0))
653 #endif
654
655 /* x + (x & 1) -> (x + 1) & ~1 */
656 (simplify
657 (plus:c @0 (bit_and:s @0 integer_onep@1))
658 (bit_and (plus @0 @1) (bit_not @1)))
659
660 /* x & ~(x & y) -> x & ~y */
661 /* x | ~(x | y) -> x | ~y */
662 (for bitop (bit_and bit_ior)
663 (simplify
664 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
665 (bitop @0 (bit_not @1))))
666
667 /* (x | y) & ~x -> y & ~x */
668 /* (x & y) | ~x -> y | ~x */
669 (for bitop (bit_and bit_ior)
670 rbitop (bit_ior bit_and)
671 (simplify
672 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
673 (bitop @1 @2)))
674
675 /* (x & y) ^ (x | y) -> x ^ y */
676 (simplify
677 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
678 (bit_xor @0 @1))
679
680 /* (x ^ y) ^ (x | y) -> x & y */
681 (simplify
682 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
683 (bit_and @0 @1))
684
685 /* (x & y) + (x ^ y) -> x | y */
686 /* (x & y) | (x ^ y) -> x | y */
687 /* (x & y) ^ (x ^ y) -> x | y */
688 (for op (plus bit_ior bit_xor)
689 (simplify
690 (op:c (bit_and @0 @1) (bit_xor @0 @1))
691 (bit_ior @0 @1)))
692
693 /* (x & y) + (x | y) -> x + y */
694 (simplify
695 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
696 (plus @0 @1))
697
698 /* (x + y) - (x | y) -> x & y */
699 (simplify
700 (minus (plus @0 @1) (bit_ior @0 @1))
701 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
702 && !TYPE_SATURATING (type))
703 (bit_and @0 @1)))
704
705 /* (x + y) - (x & y) -> x | y */
706 (simplify
707 (minus (plus @0 @1) (bit_and @0 @1))
708 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
709 && !TYPE_SATURATING (type))
710 (bit_ior @0 @1)))
711
712 /* (x | y) - (x ^ y) -> x & y */
713 (simplify
714 (minus (bit_ior @0 @1) (bit_xor @0 @1))
715 (bit_and @0 @1))
716
717 /* (x | y) - (x & y) -> x ^ y */
718 (simplify
719 (minus (bit_ior @0 @1) (bit_and @0 @1))
720 (bit_xor @0 @1))
721
722 /* (x | y) & ~(x & y) -> x ^ y */
723 (simplify
724 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
725 (bit_xor @0 @1))
726
727 /* (x | y) & (~x ^ y) -> x & y */
728 (simplify
729 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
730 (bit_and @0 @1))
731
732 /* ~x & ~y -> ~(x | y)
733 ~x | ~y -> ~(x & y) */
734 (for op (bit_and bit_ior)
735 rop (bit_ior bit_and)
736 (simplify
737 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
738 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
739 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
740 (bit_not (rop (convert @0) (convert @1))))))
741
742 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
743 with a constant, and the two constants have no bits in common,
744 we should treat this as a BIT_IOR_EXPR since this may produce more
745 simplifications. */
746 (for op (bit_xor plus)
747 (simplify
748 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
749 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
750 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
751 && tree_nop_conversion_p (type, TREE_TYPE (@2))
752 && wi::bit_and (@1, @3) == 0)
753 (bit_ior (convert @4) (convert @5)))))
754
755 /* (X | Y) ^ X -> Y & ~ X*/
756 (simplify
757 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
758 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
759 (convert (bit_and @1 (bit_not @0)))))
760
761 /* Convert ~X ^ ~Y to X ^ Y. */
762 (simplify
763 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
764 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
765 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
766 (bit_xor (convert @0) (convert @1))))
767
768 /* Convert ~X ^ C to X ^ ~C. */
769 (simplify
770 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
771 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
772 (bit_xor (convert @0) (bit_not @1))))
773
774 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
775 (for opo (bit_and bit_xor)
776 opi (bit_xor bit_and)
777 (simplify
778 (opo:c (opi:c @0 @1) @1)
779 (bit_and (bit_not @0) @1)))
780
781 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
782 operands are another bit-wise operation with a common input. If so,
783 distribute the bit operations to save an operation and possibly two if
784 constants are involved. For example, convert
785 (A | B) & (A | C) into A | (B & C)
786 Further simplification will occur if B and C are constants. */
787 (for op (bit_and bit_ior bit_xor)
788 rop (bit_ior bit_and bit_and)
789 (simplify
790 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
791 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
792 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
793 (rop (convert @0) (op (convert @1) (convert @2))))))
794
795 /* Some simple reassociation for bit operations, also handled in reassoc. */
796 /* (X & Y) & Y -> X & Y
797 (X | Y) | Y -> X | Y */
798 (for op (bit_and bit_ior)
799 (simplify
800 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
801 @2))
802 /* (X ^ Y) ^ Y -> X */
803 (simplify
804 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
805 (convert @0))
806 /* (X & Y) & (X & Z) -> (X & Y) & Z
807 (X | Y) | (X | Z) -> (X | Y) | Z */
808 (for op (bit_and bit_ior)
809 (simplify
810 (op:c (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
811 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
812 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
813 (if (single_use (@5) && single_use (@6))
814 (op @3 (convert @2))
815 (if (single_use (@3) && single_use (@4))
816 (op (convert @1) @5))))))
817 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
818 (simplify
819 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
820 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
821 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
822 (bit_xor (convert @1) (convert @2))))
823
824 (simplify
825 (abs (abs@1 @0))
826 @1)
827 (simplify
828 (abs (negate @0))
829 (abs @0))
830 (simplify
831 (abs tree_expr_nonnegative_p@0)
832 @0)
833
834 /* A few cases of fold-const.c negate_expr_p predicate. */
835 (match negate_expr_p
836 INTEGER_CST
837 (if ((INTEGRAL_TYPE_P (type)
838 && TYPE_OVERFLOW_WRAPS (type))
839 || (!TYPE_OVERFLOW_SANITIZED (type)
840 && may_negate_without_overflow_p (t)))))
841 (match negate_expr_p
842 FIXED_CST)
843 (match negate_expr_p
844 (negate @0)
845 (if (!TYPE_OVERFLOW_SANITIZED (type))))
846 (match negate_expr_p
847 REAL_CST
848 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
849 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
850 ways. */
851 (match negate_expr_p
852 VECTOR_CST
853 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
854
855 /* (-A) * (-B) -> A * B */
856 (simplify
857 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
858 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
859 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
860 (mult (convert @0) (convert (negate @1)))))
861
862 /* -(A + B) -> (-B) - A. */
863 (simplify
864 (negate (plus:c @0 negate_expr_p@1))
865 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
866 && !HONOR_SIGNED_ZEROS (element_mode (type)))
867 (minus (negate @1) @0)))
868
869 /* A - B -> A + (-B) if B is easily negatable. */
870 (simplify
871 (minus @0 negate_expr_p@1)
872 (if (!FIXED_POINT_TYPE_P (type))
873 (plus @0 (negate @1))))
874
875 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
876 when profitable.
877 For bitwise binary operations apply operand conversions to the
878 binary operation result instead of to the operands. This allows
879 to combine successive conversions and bitwise binary operations.
880 We combine the above two cases by using a conditional convert. */
881 (for bitop (bit_and bit_ior bit_xor)
882 (simplify
883 (bitop (convert @0) (convert? @1))
884 (if (((TREE_CODE (@1) == INTEGER_CST
885 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
886 && int_fits_type_p (@1, TREE_TYPE (@0)))
887 || types_match (@0, @1))
888 /* ??? This transform conflicts with fold-const.c doing
889 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
890 constants (if x has signed type, the sign bit cannot be set
891 in c). This folds extension into the BIT_AND_EXPR.
892 Restrict it to GIMPLE to avoid endless recursions. */
893 && (bitop != BIT_AND_EXPR || GIMPLE)
894 && (/* That's a good idea if the conversion widens the operand, thus
895 after hoisting the conversion the operation will be narrower. */
896 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
897 /* It's also a good idea if the conversion is to a non-integer
898 mode. */
899 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
900 /* Or if the precision of TO is not the same as the precision
901 of its mode. */
902 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
903 (convert (bitop @0 (convert @1))))))
904
905 (for bitop (bit_and bit_ior)
906 rbitop (bit_ior bit_and)
907 /* (x | y) & x -> x */
908 /* (x & y) | x -> x */
909 (simplify
910 (bitop:c (rbitop:c @0 @1) @0)
911 @0)
912 /* (~x | y) & x -> x & y */
913 /* (~x & y) | x -> x | y */
914 (simplify
915 (bitop:c (rbitop:c (bit_not @0) @1) @0)
916 (bitop @0 @1)))
917
918 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
919 (simplify
920 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
921 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
922
923 /* Combine successive equal operations with constants. */
924 (for bitop (bit_and bit_ior bit_xor)
925 (simplify
926 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
927 (bitop @0 (bitop @1 @2))))
928
929 /* Try simple folding for X op !X, and X op X with the help
930 of the truth_valued_p and logical_inverted_value predicates. */
931 (match truth_valued_p
932 @0
933 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
934 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
935 (match truth_valued_p
936 (op @0 @1)))
937 (match truth_valued_p
938 (truth_not @0))
939
940 (match (logical_inverted_value @0)
941 (truth_not @0))
942 (match (logical_inverted_value @0)
943 (bit_not truth_valued_p@0))
944 (match (logical_inverted_value @0)
945 (eq @0 integer_zerop))
946 (match (logical_inverted_value @0)
947 (ne truth_valued_p@0 integer_truep))
948 (match (logical_inverted_value @0)
949 (bit_xor truth_valued_p@0 integer_truep))
950
951 /* X & !X -> 0. */
952 (simplify
953 (bit_and:c @0 (logical_inverted_value @0))
954 { build_zero_cst (type); })
955 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
956 (for op (bit_ior bit_xor)
957 (simplify
958 (op:c truth_valued_p@0 (logical_inverted_value @0))
959 { constant_boolean_node (true, type); }))
960 /* X ==/!= !X is false/true. */
961 (for op (eq ne)
962 (simplify
963 (op:c truth_valued_p@0 (logical_inverted_value @0))
964 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
965
966 /* ~~x -> x */
967 (simplify
968 (bit_not (bit_not @0))
969 @0)
970
971 /* Convert ~ (-A) to A - 1. */
972 (simplify
973 (bit_not (convert? (negate @0)))
974 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
975 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
976 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
977
978 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
979 (simplify
980 (bit_not (convert? (minus @0 integer_each_onep)))
981 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
982 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
983 (convert (negate @0))))
984 (simplify
985 (bit_not (convert? (plus @0 integer_all_onesp)))
986 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
987 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
988 (convert (negate @0))))
989
990 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
991 (simplify
992 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
993 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
994 (convert (bit_xor @0 (bit_not @1)))))
995 (simplify
996 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
997 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
998 (convert (bit_xor @0 @1))))
999
1000 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1001 (simplify
1002 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1003 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1004
1005 /* Fold A - (A & B) into ~B & A. */
1006 (simplify
1007 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1008 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1009 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1010 (convert (bit_and (bit_not @1) @0))))
1011
1012 /* For integral types with undefined overflow and C != 0 fold
1013 x * C EQ/NE y * C into x EQ/NE y. */
1014 (for cmp (eq ne)
1015 (simplify
1016 (cmp (mult:c @0 @1) (mult:c @2 @1))
1017 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1019 && tree_expr_nonzero_p (@1))
1020 (cmp @0 @2))))
1021
1022 /* For integral types with undefined overflow and C != 0 fold
1023 x * C RELOP y * C into:
1024
1025 x RELOP y for nonnegative C
1026 y RELOP x for negative C */
1027 (for cmp (lt gt le ge)
1028 (simplify
1029 (cmp (mult:c @0 @1) (mult:c @2 @1))
1030 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1031 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1032 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1033 (cmp @0 @2)
1034 (if (TREE_CODE (@1) == INTEGER_CST
1035 && wi::neg_p (@1, TYPE_SIGN (TREE_TYPE (@1))))
1036 (cmp @2 @0))))))
1037
1038 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1039 (for cmp (simple_comparison)
1040 (simplify
1041 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1042 (if (wi::gt_p(@2, 0, TYPE_SIGN (TREE_TYPE (@2))))
1043 (cmp @0 @1))))
1044
1045 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1046 (for op (lt le ge gt)
1047 (simplify
1048 (op (plus:c @0 @2) (plus:c @1 @2))
1049 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1050 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1051 (op @0 @1))))
1052 /* For equality and subtraction, this is also true with wrapping overflow. */
1053 (for op (eq ne minus)
1054 (simplify
1055 (op (plus:c @0 @2) (plus:c @1 @2))
1056 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1057 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1058 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1059 (op @0 @1))))
1060
1061 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1062 (for op (lt le ge gt)
1063 (simplify
1064 (op (minus @0 @2) (minus @1 @2))
1065 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1066 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1067 (op @0 @1))))
1068 /* For equality and subtraction, this is also true with wrapping overflow. */
1069 (for op (eq ne minus)
1070 (simplify
1071 (op (minus @0 @2) (minus @1 @2))
1072 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1073 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1074 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1075 (op @0 @1))))
1076
1077 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1078 (for op (lt le ge gt)
1079 (simplify
1080 (op (minus @2 @0) (minus @2 @1))
1081 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1082 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1083 (op @1 @0))))
1084 /* For equality and subtraction, this is also true with wrapping overflow. */
1085 (for op (eq ne minus)
1086 (simplify
1087 (op (minus @2 @0) (minus @2 @1))
1088 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1089 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1090 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1091 (op @1 @0))))
1092
1093 /* X == C - X can never be true if C is odd. */
1094 (for cmp (eq ne)
1095 (simplify
1096 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1097 (if (TREE_INT_CST_LOW (@1) & 1)
1098 { constant_boolean_node (cmp == NE_EXPR, type); })))
1099
1100 /* Arguments on which one can call get_nonzero_bits to get the bits
1101 possibly set. */
1102 (match with_possible_nonzero_bits
1103 INTEGER_CST@0)
1104 (match with_possible_nonzero_bits
1105 SSA_NAME@0
1106 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1107 /* Slightly extended version, do not make it recursive to keep it cheap. */
1108 (match (with_possible_nonzero_bits2 @0)
1109 with_possible_nonzero_bits@0)
1110 (match (with_possible_nonzero_bits2 @0)
1111 (bit_and:c with_possible_nonzero_bits@0 @2))
1112
1113 /* Same for bits that are known to be set, but we do not have
1114 an equivalent to get_nonzero_bits yet. */
1115 (match (with_certain_nonzero_bits2 @0)
1116 INTEGER_CST@0)
1117 (match (with_certain_nonzero_bits2 @0)
1118 (bit_ior @1 INTEGER_CST@0))
1119
1120 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1121 (for cmp (eq ne)
1122 (simplify
1123 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1124 (if ((~get_nonzero_bits (@0) & @1) != 0)
1125 { constant_boolean_node (cmp == NE_EXPR, type); })))
1126
1127 /* ((X inner_op C0) outer_op C1)
1128 With X being a tree where value_range has reasoned certain bits to always be
1129 zero throughout its computed value range,
1130 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1131 where zero_mask has 1's for all bits that are sure to be 0 in
1132 and 0's otherwise.
1133 if (inner_op == '^') C0 &= ~C1;
1134 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1135 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1136 */
1137 (for inner_op (bit_ior bit_xor)
1138 outer_op (bit_xor bit_ior)
1139 (simplify
1140 (outer_op
1141 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1142 (with
1143 {
1144 bool fail = false;
1145 wide_int zero_mask_not;
1146 wide_int C0;
1147 wide_int cst_emit;
1148
1149 if (TREE_CODE (@2) == SSA_NAME)
1150 zero_mask_not = get_nonzero_bits (@2);
1151 else
1152 fail = true;
1153
1154 if (inner_op == BIT_XOR_EXPR)
1155 {
1156 C0 = wi::bit_and_not (@0, @1);
1157 cst_emit = wi::bit_or (C0, @1);
1158 }
1159 else
1160 {
1161 C0 = @0;
1162 cst_emit = wi::bit_xor (@0, @1);
1163 }
1164 }
1165 (if (!fail && wi::bit_and (C0, zero_mask_not) == 0)
1166 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1167 (if (!fail && wi::bit_and (@1, zero_mask_not) == 0)
1168 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1169
1170 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1171 (simplify
1172 (pointer_plus (pointer_plus:s @0 @1) @3)
1173 (pointer_plus @0 (plus @1 @3)))
1174
1175 /* Pattern match
1176 tem1 = (long) ptr1;
1177 tem2 = (long) ptr2;
1178 tem3 = tem2 - tem1;
1179 tem4 = (unsigned long) tem3;
1180 tem5 = ptr1 + tem4;
1181 and produce
1182 tem5 = ptr2; */
1183 (simplify
1184 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1185 /* Conditionally look through a sign-changing conversion. */
1186 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1187 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1188 || (GENERIC && type == TREE_TYPE (@1))))
1189 @1))
1190
1191 /* Pattern match
1192 tem = (sizetype) ptr;
1193 tem = tem & algn;
1194 tem = -tem;
1195 ... = ptr p+ tem;
1196 and produce the simpler and easier to analyze with respect to alignment
1197 ... = ptr & ~algn; */
1198 (simplify
1199 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1200 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
1201 (bit_and @0 { algn; })))
1202
1203 /* Try folding difference of addresses. */
1204 (simplify
1205 (minus (convert ADDR_EXPR@0) (convert @1))
1206 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1207 (with { HOST_WIDE_INT diff; }
1208 (if (ptr_difference_const (@0, @1, &diff))
1209 { build_int_cst_type (type, diff); }))))
1210 (simplify
1211 (minus (convert @0) (convert ADDR_EXPR@1))
1212 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1213 (with { HOST_WIDE_INT diff; }
1214 (if (ptr_difference_const (@0, @1, &diff))
1215 { build_int_cst_type (type, diff); }))))
1216
1217 /* If arg0 is derived from the address of an object or function, we may
1218 be able to fold this expression using the object or function's
1219 alignment. */
1220 (simplify
1221 (bit_and (convert? @0) INTEGER_CST@1)
1222 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1223 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1224 (with
1225 {
1226 unsigned int align;
1227 unsigned HOST_WIDE_INT bitpos;
1228 get_pointer_alignment_1 (@0, &align, &bitpos);
1229 }
1230 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
1231 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
1232
1233
1234 /* We can't reassociate at all for saturating types. */
1235 (if (!TYPE_SATURATING (type))
1236
1237 /* Contract negates. */
1238 /* A + (-B) -> A - B */
1239 (simplify
1240 (plus:c @0 (convert? (negate @1)))
1241 /* Apply STRIP_NOPS on the negate. */
1242 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1243 && !TYPE_OVERFLOW_SANITIZED (type))
1244 (with
1245 {
1246 tree t1 = type;
1247 if (INTEGRAL_TYPE_P (type)
1248 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1249 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1250 }
1251 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1252 /* A - (-B) -> A + B */
1253 (simplify
1254 (minus @0 (convert? (negate @1)))
1255 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1256 && !TYPE_OVERFLOW_SANITIZED (type))
1257 (with
1258 {
1259 tree t1 = type;
1260 if (INTEGRAL_TYPE_P (type)
1261 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1262 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1263 }
1264 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1265 /* -(-A) -> A */
1266 (simplify
1267 (negate (convert? (negate @1)))
1268 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1269 && !TYPE_OVERFLOW_SANITIZED (type))
1270 (convert @1)))
1271
1272 /* We can't reassociate floating-point unless -fassociative-math
1273 or fixed-point plus or minus because of saturation to +-Inf. */
1274 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1275 && !FIXED_POINT_TYPE_P (type))
1276
1277 /* Match patterns that allow contracting a plus-minus pair
1278 irrespective of overflow issues. */
1279 /* (A +- B) - A -> +- B */
1280 /* (A +- B) -+ B -> A */
1281 /* A - (A +- B) -> -+ B */
1282 /* A +- (B -+ A) -> +- B */
1283 (simplify
1284 (minus (plus:c @0 @1) @0)
1285 @1)
1286 (simplify
1287 (minus (minus @0 @1) @0)
1288 (negate @1))
1289 (simplify
1290 (plus:c (minus @0 @1) @1)
1291 @0)
1292 (simplify
1293 (minus @0 (plus:c @0 @1))
1294 (negate @1))
1295 (simplify
1296 (minus @0 (minus @0 @1))
1297 @1)
1298
1299 /* (A +- CST1) +- CST2 -> A + CST3 */
1300 (for outer_op (plus minus)
1301 (for inner_op (plus minus)
1302 neg_inner_op (minus plus)
1303 (simplify
1304 (outer_op (convert? (inner_op @0 CONSTANT_CLASS_P@1)) CONSTANT_CLASS_P@2)
1305 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1306 /* If one of the types wraps, use that one. */
1307 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1308 (if (outer_op == PLUS_EXPR)
1309 (plus (convert @0) (inner_op @2 (convert @1)))
1310 (minus (convert @0) (neg_inner_op @2 (convert @1))))
1311 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1312 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1313 (if (outer_op == PLUS_EXPR)
1314 (convert (plus @0 (inner_op (convert @2) @1)))
1315 (convert (minus @0 (neg_inner_op (convert @2) @1))))
1316 /* If the constant operation overflows we cannot do the transform
1317 directly as we would introduce undefined overflow, for example
1318 with (a - 1) + INT_MIN. */
1319 (if (types_match (type, @0))
1320 (with { tree cst = const_binop (outer_op == inner_op
1321 ? PLUS_EXPR : MINUS_EXPR,
1322 type, @1, @2); }
1323 (if (cst && !TREE_OVERFLOW (cst))
1324 (inner_op @0 { cst; } )
1325 /* X+INT_MAX+1 is X-INT_MIN. */
1326 (if (INTEGRAL_TYPE_P (type) && cst
1327 && wi::eq_p (cst, wi::min_value (type)))
1328 (neg_inner_op @0 { wide_int_to_tree (type, cst); })
1329 /* Last resort, use some unsigned type. */
1330 (with { tree utype = unsigned_type_for (type); }
1331 (convert (inner_op
1332 (convert:utype @0)
1333 (convert:utype
1334 { drop_tree_overflow (cst); }))))))))))))))
1335
1336 /* (CST1 - A) +- CST2 -> CST3 - A */
1337 (for outer_op (plus minus)
1338 (simplify
1339 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1340 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1341 (if (cst && !TREE_OVERFLOW (cst))
1342 (minus { cst; } @0)))))
1343
1344 /* CST1 - (CST2 - A) -> CST3 + A */
1345 (simplify
1346 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1347 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1348 (if (cst && !TREE_OVERFLOW (cst))
1349 (plus { cst; } @0))))
1350
1351 /* ~A + A -> -1 */
1352 (simplify
1353 (plus:c (bit_not @0) @0)
1354 (if (!TYPE_OVERFLOW_TRAPS (type))
1355 { build_all_ones_cst (type); }))
1356
1357 /* ~A + 1 -> -A */
1358 (simplify
1359 (plus (convert? (bit_not @0)) integer_each_onep)
1360 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1361 (negate (convert @0))))
1362
1363 /* -A - 1 -> ~A */
1364 (simplify
1365 (minus (convert? (negate @0)) integer_each_onep)
1366 (if (!TYPE_OVERFLOW_TRAPS (type)
1367 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1368 (bit_not (convert @0))))
1369
1370 /* -1 - A -> ~A */
1371 (simplify
1372 (minus integer_all_onesp @0)
1373 (bit_not @0))
1374
1375 /* (T)(P + A) - (T)P -> (T) A */
1376 (for add (plus pointer_plus)
1377 (simplify
1378 (minus (convert (add @@0 @1))
1379 (convert @0))
1380 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1381 /* For integer types, if A has a smaller type
1382 than T the result depends on the possible
1383 overflow in P + A.
1384 E.g. T=size_t, A=(unsigned)429497295, P>0.
1385 However, if an overflow in P + A would cause
1386 undefined behavior, we can assume that there
1387 is no overflow. */
1388 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1389 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1390 /* For pointer types, if the conversion of A to the
1391 final type requires a sign- or zero-extension,
1392 then we have to punt - it is not defined which
1393 one is correct. */
1394 || (POINTER_TYPE_P (TREE_TYPE (@0))
1395 && TREE_CODE (@1) == INTEGER_CST
1396 && tree_int_cst_sign_bit (@1) == 0))
1397 (convert @1))))
1398
1399 /* (T)P - (T)(P + A) -> -(T) A */
1400 (for add (plus pointer_plus)
1401 (simplify
1402 (minus (convert @0)
1403 (convert (add @@0 @1)))
1404 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1405 /* For integer types, if A has a smaller type
1406 than T the result depends on the possible
1407 overflow in P + A.
1408 E.g. T=size_t, A=(unsigned)429497295, P>0.
1409 However, if an overflow in P + A would cause
1410 undefined behavior, we can assume that there
1411 is no overflow. */
1412 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1413 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1414 /* For pointer types, if the conversion of A to the
1415 final type requires a sign- or zero-extension,
1416 then we have to punt - it is not defined which
1417 one is correct. */
1418 || (POINTER_TYPE_P (TREE_TYPE (@0))
1419 && TREE_CODE (@1) == INTEGER_CST
1420 && tree_int_cst_sign_bit (@1) == 0))
1421 (negate (convert @1)))))
1422
1423 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1424 (for add (plus pointer_plus)
1425 (simplify
1426 (minus (convert (add @@0 @1))
1427 (convert (add @0 @2)))
1428 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1429 /* For integer types, if A has a smaller type
1430 than T the result depends on the possible
1431 overflow in P + A.
1432 E.g. T=size_t, A=(unsigned)429497295, P>0.
1433 However, if an overflow in P + A would cause
1434 undefined behavior, we can assume that there
1435 is no overflow. */
1436 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1437 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1438 /* For pointer types, if the conversion of A to the
1439 final type requires a sign- or zero-extension,
1440 then we have to punt - it is not defined which
1441 one is correct. */
1442 || (POINTER_TYPE_P (TREE_TYPE (@0))
1443 && TREE_CODE (@1) == INTEGER_CST
1444 && tree_int_cst_sign_bit (@1) == 0
1445 && TREE_CODE (@2) == INTEGER_CST
1446 && tree_int_cst_sign_bit (@2) == 0))
1447 (minus (convert @1) (convert @2)))))))
1448
1449
1450 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1451
1452 (for minmax (min max FMIN FMAX)
1453 (simplify
1454 (minmax @0 @0)
1455 @0))
1456 /* min(max(x,y),y) -> y. */
1457 (simplify
1458 (min:c (max:c @0 @1) @1)
1459 @1)
1460 /* max(min(x,y),y) -> y. */
1461 (simplify
1462 (max:c (min:c @0 @1) @1)
1463 @1)
1464 /* max(a,-a) -> abs(a). */
1465 (simplify
1466 (max:c @0 (negate @0))
1467 (if (TREE_CODE (type) != COMPLEX_TYPE
1468 && (! ANY_INTEGRAL_TYPE_P (type)
1469 || TYPE_OVERFLOW_UNDEFINED (type)))
1470 (abs @0)))
1471 /* min(a,-a) -> -abs(a). */
1472 (simplify
1473 (min:c @0 (negate @0))
1474 (if (TREE_CODE (type) != COMPLEX_TYPE
1475 && (! ANY_INTEGRAL_TYPE_P (type)
1476 || TYPE_OVERFLOW_UNDEFINED (type)))
1477 (negate (abs @0))))
1478 (simplify
1479 (min @0 @1)
1480 (switch
1481 (if (INTEGRAL_TYPE_P (type)
1482 && TYPE_MIN_VALUE (type)
1483 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1484 @1)
1485 (if (INTEGRAL_TYPE_P (type)
1486 && TYPE_MAX_VALUE (type)
1487 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1488 @0)))
1489 (simplify
1490 (max @0 @1)
1491 (switch
1492 (if (INTEGRAL_TYPE_P (type)
1493 && TYPE_MAX_VALUE (type)
1494 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
1495 @1)
1496 (if (INTEGRAL_TYPE_P (type)
1497 && TYPE_MIN_VALUE (type)
1498 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
1499 @0)))
1500
1501 /* max (a, a + CST) -> a + CST where CST is positive. */
1502 /* max (a, a + CST) -> a where CST is negative. */
1503 (simplify
1504 (max:c @0 (plus@2 @0 INTEGER_CST@1))
1505 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1506 (if (tree_int_cst_sgn (@1) > 0)
1507 @2
1508 @0)))
1509
1510 /* min (a, a + CST) -> a where CST is positive. */
1511 /* min (a, a + CST) -> a + CST where CST is negative. */
1512 (simplify
1513 (min:c @0 (plus@2 @0 INTEGER_CST@1))
1514 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1515 (if (tree_int_cst_sgn (@1) > 0)
1516 @0
1517 @2)))
1518
1519 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
1520 and the outer convert demotes the expression back to x's type. */
1521 (for minmax (min max)
1522 (simplify
1523 (convert (minmax@0 (convert @1) INTEGER_CST@2))
1524 (if (INTEGRAL_TYPE_P (type)
1525 && types_match (@1, type) && int_fits_type_p (@2, type)
1526 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
1527 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
1528 (minmax @1 (convert @2)))))
1529
1530 (for minmax (FMIN FMAX)
1531 /* If either argument is NaN, return the other one. Avoid the
1532 transformation if we get (and honor) a signalling NaN. */
1533 (simplify
1534 (minmax:c @0 REAL_CST@1)
1535 (if (real_isnan (TREE_REAL_CST_PTR (@1))
1536 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
1537 @0)))
1538 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
1539 functions to return the numeric arg if the other one is NaN.
1540 MIN and MAX don't honor that, so only transform if -ffinite-math-only
1541 is set. C99 doesn't require -0.0 to be handled, so we don't have to
1542 worry about it either. */
1543 (if (flag_finite_math_only)
1544 (simplify
1545 (FMIN @0 @1)
1546 (min @0 @1))
1547 (simplify
1548 (FMAX @0 @1)
1549 (max @0 @1)))
1550 /* min (-A, -B) -> -max (A, B) */
1551 (for minmax (min max FMIN FMAX)
1552 maxmin (max min FMAX FMIN)
1553 (simplify
1554 (minmax (negate:s@2 @0) (negate:s@3 @1))
1555 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1556 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1557 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1558 (negate (maxmin @0 @1)))))
1559 /* MIN (~X, ~Y) -> ~MAX (X, Y)
1560 MAX (~X, ~Y) -> ~MIN (X, Y) */
1561 (for minmax (min max)
1562 maxmin (max min)
1563 (simplify
1564 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
1565 (bit_not (maxmin @0 @1))))
1566
1567 /* MIN (X, Y) == X -> X <= Y */
1568 (for minmax (min min max max)
1569 cmp (eq ne eq ne )
1570 out (le gt ge lt )
1571 (simplify
1572 (cmp:c (minmax:c @0 @1) @0)
1573 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
1574 (out @0 @1))))
1575 /* MIN (X, 5) == 0 -> X == 0
1576 MIN (X, 5) == 7 -> false */
1577 (for cmp (eq ne)
1578 (simplify
1579 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
1580 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1581 { constant_boolean_node (cmp == NE_EXPR, type); }
1582 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1583 (cmp @0 @2)))))
1584 (for cmp (eq ne)
1585 (simplify
1586 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
1587 (if (wi::gt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1588 { constant_boolean_node (cmp == NE_EXPR, type); }
1589 (if (wi::lt_p (@1, @2, TYPE_SIGN (TREE_TYPE (@0))))
1590 (cmp @0 @2)))))
1591 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
1592 (for minmax (min min max max min min max max )
1593 cmp (lt le gt ge gt ge lt le )
1594 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
1595 (simplify
1596 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
1597 (comb (cmp @0 @2) (cmp @1 @2))))
1598
1599 /* Simplifications of shift and rotates. */
1600
1601 (for rotate (lrotate rrotate)
1602 (simplify
1603 (rotate integer_all_onesp@0 @1)
1604 @0))
1605
1606 /* Optimize -1 >> x for arithmetic right shifts. */
1607 (simplify
1608 (rshift integer_all_onesp@0 @1)
1609 (if (!TYPE_UNSIGNED (type)
1610 && tree_expr_nonnegative_p (@1))
1611 @0))
1612
1613 /* Optimize (x >> c) << c into x & (-1<<c). */
1614 (simplify
1615 (lshift (rshift @0 INTEGER_CST@1) @1)
1616 (if (wi::ltu_p (@1, element_precision (type)))
1617 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
1618
1619 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
1620 types. */
1621 (simplify
1622 (rshift (lshift @0 INTEGER_CST@1) @1)
1623 (if (TYPE_UNSIGNED (type)
1624 && (wi::ltu_p (@1, element_precision (type))))
1625 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
1626
1627 (for shiftrotate (lrotate rrotate lshift rshift)
1628 (simplify
1629 (shiftrotate @0 integer_zerop)
1630 (non_lvalue @0))
1631 (simplify
1632 (shiftrotate integer_zerop@0 @1)
1633 @0)
1634 /* Prefer vector1 << scalar to vector1 << vector2
1635 if vector2 is uniform. */
1636 (for vec (VECTOR_CST CONSTRUCTOR)
1637 (simplify
1638 (shiftrotate @0 vec@1)
1639 (with { tree tem = uniform_vector_p (@1); }
1640 (if (tem)
1641 (shiftrotate @0 { tem; }))))))
1642
1643 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
1644 Y is 0. Similarly for X >> Y. */
1645 #if GIMPLE
1646 (for shift (lshift rshift)
1647 (simplify
1648 (shift @0 SSA_NAME@1)
1649 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
1650 (with {
1651 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
1652 int prec = TYPE_PRECISION (TREE_TYPE (@1));
1653 }
1654 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
1655 @0)))))
1656 #endif
1657
1658 /* Rewrite an LROTATE_EXPR by a constant into an
1659 RROTATE_EXPR by a new constant. */
1660 (simplify
1661 (lrotate @0 INTEGER_CST@1)
1662 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
1663 build_int_cst (TREE_TYPE (@1),
1664 element_precision (type)), @1); }))
1665
1666 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
1667 (for op (lrotate rrotate rshift lshift)
1668 (simplify
1669 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
1670 (with { unsigned int prec = element_precision (type); }
1671 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
1672 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
1673 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
1674 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
1675 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
1676 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
1677 being well defined. */
1678 (if (low >= prec)
1679 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
1680 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
1681 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
1682 { build_zero_cst (type); }
1683 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
1684 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
1685
1686
1687 /* ((1 << A) & 1) != 0 -> A == 0
1688 ((1 << A) & 1) == 0 -> A != 0 */
1689 (for cmp (ne eq)
1690 icmp (eq ne)
1691 (simplify
1692 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
1693 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
1694
1695 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
1696 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
1697 if CST2 != 0. */
1698 (for cmp (ne eq)
1699 (simplify
1700 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
1701 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
1702 (if (cand < 0
1703 || (!integer_zerop (@2)
1704 && wi::ne_p (wi::lshift (@0, cand), @2)))
1705 { constant_boolean_node (cmp == NE_EXPR, type); }
1706 (if (!integer_zerop (@2)
1707 && wi::eq_p (wi::lshift (@0, cand), @2))
1708 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
1709
1710 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1711 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1712 if the new mask might be further optimized. */
1713 (for shift (lshift rshift)
1714 (simplify
1715 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1716 INTEGER_CST@2)
1717 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1718 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1719 && tree_fits_uhwi_p (@1)
1720 && tree_to_uhwi (@1) > 0
1721 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1722 (with
1723 {
1724 unsigned int shiftc = tree_to_uhwi (@1);
1725 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1726 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1727 tree shift_type = TREE_TYPE (@3);
1728 unsigned int prec;
1729
1730 if (shift == LSHIFT_EXPR)
1731 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
1732 else if (shift == RSHIFT_EXPR
1733 && (TYPE_PRECISION (shift_type)
1734 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1735 {
1736 prec = TYPE_PRECISION (TREE_TYPE (@3));
1737 tree arg00 = @0;
1738 /* See if more bits can be proven as zero because of
1739 zero extension. */
1740 if (@3 != @0
1741 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1742 {
1743 tree inner_type = TREE_TYPE (@0);
1744 if ((TYPE_PRECISION (inner_type)
1745 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1746 && TYPE_PRECISION (inner_type) < prec)
1747 {
1748 prec = TYPE_PRECISION (inner_type);
1749 /* See if we can shorten the right shift. */
1750 if (shiftc < prec)
1751 shift_type = inner_type;
1752 /* Otherwise X >> C1 is all zeros, so we'll optimize
1753 it into (X, 0) later on by making sure zerobits
1754 is all ones. */
1755 }
1756 }
1757 zerobits = HOST_WIDE_INT_M1U;
1758 if (shiftc < prec)
1759 {
1760 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1761 zerobits <<= prec - shiftc;
1762 }
1763 /* For arithmetic shift if sign bit could be set, zerobits
1764 can contain actually sign bits, so no transformation is
1765 possible, unless MASK masks them all away. In that
1766 case the shift needs to be converted into logical shift. */
1767 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1768 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1769 {
1770 if ((mask & zerobits) == 0)
1771 shift_type = unsigned_type_for (TREE_TYPE (@3));
1772 else
1773 zerobits = 0;
1774 }
1775 }
1776 }
1777 /* ((X << 16) & 0xff00) is (X, 0). */
1778 (if ((mask & zerobits) == mask)
1779 { build_int_cst (type, 0); }
1780 (with { newmask = mask | zerobits; }
1781 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1782 (with
1783 {
1784 /* Only do the transformation if NEWMASK is some integer
1785 mode's mask. */
1786 for (prec = BITS_PER_UNIT;
1787 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1788 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
1789 break;
1790 }
1791 (if (prec < HOST_BITS_PER_WIDE_INT
1792 || newmask == HOST_WIDE_INT_M1U)
1793 (with
1794 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1795 (if (!tree_int_cst_equal (newmaskt, @2))
1796 (if (shift_type != TREE_TYPE (@3))
1797 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1798 (bit_and @4 { newmaskt; })))))))))))))
1799
1800 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
1801 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
1802 (for shift (lshift rshift)
1803 (for bit_op (bit_and bit_xor bit_ior)
1804 (simplify
1805 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1806 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1807 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1808 (bit_op (shift (convert @0) @1) { mask; }))))))
1809
1810 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
1811 (simplify
1812 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
1813 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
1814 && (element_precision (TREE_TYPE (@0))
1815 <= element_precision (TREE_TYPE (@1))
1816 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
1817 (with
1818 { tree shift_type = TREE_TYPE (@0); }
1819 (convert (rshift (convert:shift_type @1) @2)))))
1820
1821 /* ~(~X >>r Y) -> X >>r Y
1822 ~(~X <<r Y) -> X <<r Y */
1823 (for rotate (lrotate rrotate)
1824 (simplify
1825 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
1826 (if ((element_precision (TREE_TYPE (@0))
1827 <= element_precision (TREE_TYPE (@1))
1828 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
1829 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
1830 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
1831 (with
1832 { tree rotate_type = TREE_TYPE (@0); }
1833 (convert (rotate (convert:rotate_type @1) @2))))))
1834
1835 /* Simplifications of conversions. */
1836
1837 /* Basic strip-useless-type-conversions / strip_nops. */
1838 (for cvt (convert view_convert float fix_trunc)
1839 (simplify
1840 (cvt @0)
1841 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1842 || (GENERIC && type == TREE_TYPE (@0)))
1843 @0)))
1844
1845 /* Contract view-conversions. */
1846 (simplify
1847 (view_convert (view_convert @0))
1848 (view_convert @0))
1849
1850 /* For integral conversions with the same precision or pointer
1851 conversions use a NOP_EXPR instead. */
1852 (simplify
1853 (view_convert @0)
1854 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1855 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1856 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1857 (convert @0)))
1858
1859 /* Strip inner integral conversions that do not change precision or size, or
1860 zero-extend while keeping the same size (for bool-to-char). */
1861 (simplify
1862 (view_convert (convert@0 @1))
1863 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1864 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1865 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
1866 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
1867 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
1868 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
1869 (view_convert @1)))
1870
1871 /* Re-association barriers around constants and other re-association
1872 barriers can be removed. */
1873 (simplify
1874 (paren CONSTANT_CLASS_P@0)
1875 @0)
1876 (simplify
1877 (paren (paren@1 @0))
1878 @1)
1879
1880 /* Handle cases of two conversions in a row. */
1881 (for ocvt (convert float fix_trunc)
1882 (for icvt (convert float)
1883 (simplify
1884 (ocvt (icvt@1 @0))
1885 (with
1886 {
1887 tree inside_type = TREE_TYPE (@0);
1888 tree inter_type = TREE_TYPE (@1);
1889 int inside_int = INTEGRAL_TYPE_P (inside_type);
1890 int inside_ptr = POINTER_TYPE_P (inside_type);
1891 int inside_float = FLOAT_TYPE_P (inside_type);
1892 int inside_vec = VECTOR_TYPE_P (inside_type);
1893 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1894 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1895 int inter_int = INTEGRAL_TYPE_P (inter_type);
1896 int inter_ptr = POINTER_TYPE_P (inter_type);
1897 int inter_float = FLOAT_TYPE_P (inter_type);
1898 int inter_vec = VECTOR_TYPE_P (inter_type);
1899 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1900 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1901 int final_int = INTEGRAL_TYPE_P (type);
1902 int final_ptr = POINTER_TYPE_P (type);
1903 int final_float = FLOAT_TYPE_P (type);
1904 int final_vec = VECTOR_TYPE_P (type);
1905 unsigned int final_prec = TYPE_PRECISION (type);
1906 int final_unsignedp = TYPE_UNSIGNED (type);
1907 }
1908 (switch
1909 /* In addition to the cases of two conversions in a row
1910 handled below, if we are converting something to its own
1911 type via an object of identical or wider precision, neither
1912 conversion is needed. */
1913 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1914 || (GENERIC
1915 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1916 && (((inter_int || inter_ptr) && final_int)
1917 || (inter_float && final_float))
1918 && inter_prec >= final_prec)
1919 (ocvt @0))
1920
1921 /* Likewise, if the intermediate and initial types are either both
1922 float or both integer, we don't need the middle conversion if the
1923 former is wider than the latter and doesn't change the signedness
1924 (for integers). Avoid this if the final type is a pointer since
1925 then we sometimes need the middle conversion. */
1926 (if (((inter_int && inside_int) || (inter_float && inside_float))
1927 && (final_int || final_float)
1928 && inter_prec >= inside_prec
1929 && (inter_float || inter_unsignedp == inside_unsignedp))
1930 (ocvt @0))
1931
1932 /* If we have a sign-extension of a zero-extended value, we can
1933 replace that by a single zero-extension. Likewise if the
1934 final conversion does not change precision we can drop the
1935 intermediate conversion. */
1936 (if (inside_int && inter_int && final_int
1937 && ((inside_prec < inter_prec && inter_prec < final_prec
1938 && inside_unsignedp && !inter_unsignedp)
1939 || final_prec == inter_prec))
1940 (ocvt @0))
1941
1942 /* Two conversions in a row are not needed unless:
1943 - some conversion is floating-point (overstrict for now), or
1944 - some conversion is a vector (overstrict for now), or
1945 - the intermediate type is narrower than both initial and
1946 final, or
1947 - the intermediate type and innermost type differ in signedness,
1948 and the outermost type is wider than the intermediate, or
1949 - the initial type is a pointer type and the precisions of the
1950 intermediate and final types differ, or
1951 - the final type is a pointer type and the precisions of the
1952 initial and intermediate types differ. */
1953 (if (! inside_float && ! inter_float && ! final_float
1954 && ! inside_vec && ! inter_vec && ! final_vec
1955 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1956 && ! (inside_int && inter_int
1957 && inter_unsignedp != inside_unsignedp
1958 && inter_prec < final_prec)
1959 && ((inter_unsignedp && inter_prec > inside_prec)
1960 == (final_unsignedp && final_prec > inter_prec))
1961 && ! (inside_ptr && inter_prec != final_prec)
1962 && ! (final_ptr && inside_prec != inter_prec))
1963 (ocvt @0))
1964
1965 /* A truncation to an unsigned type (a zero-extension) should be
1966 canonicalized as bitwise and of a mask. */
1967 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
1968 && final_int && inter_int && inside_int
1969 && final_prec == inside_prec
1970 && final_prec > inter_prec
1971 && inter_unsignedp)
1972 (convert (bit_and @0 { wide_int_to_tree
1973 (inside_type,
1974 wi::mask (inter_prec, false,
1975 TYPE_PRECISION (inside_type))); })))
1976
1977 /* If we are converting an integer to a floating-point that can
1978 represent it exactly and back to an integer, we can skip the
1979 floating-point conversion. */
1980 (if (GIMPLE /* PR66211 */
1981 && inside_int && inter_float && final_int &&
1982 (unsigned) significand_size (TYPE_MODE (inter_type))
1983 >= inside_prec - !inside_unsignedp)
1984 (convert @0)))))))
1985
1986 /* If we have a narrowing conversion to an integral type that is fed by a
1987 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1988 masks off bits outside the final type (and nothing else). */
1989 (simplify
1990 (convert (bit_and @0 INTEGER_CST@1))
1991 (if (INTEGRAL_TYPE_P (type)
1992 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1993 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1994 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1995 TYPE_PRECISION (type)), 0))
1996 (convert @0)))
1997
1998
1999 /* (X /[ex] A) * A -> X. */
2000 (simplify
2001 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2002 (convert @0))
2003
2004 /* Canonicalization of binary operations. */
2005
2006 /* Convert X + -C into X - C. */
2007 (simplify
2008 (plus @0 REAL_CST@1)
2009 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2010 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2011 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2012 (minus @0 { tem; })))))
2013
2014 /* Convert x+x into x*2. */
2015 (simplify
2016 (plus @0 @0)
2017 (if (SCALAR_FLOAT_TYPE_P (type))
2018 (mult @0 { build_real (type, dconst2); })
2019 (if (INTEGRAL_TYPE_P (type))
2020 (mult @0 { build_int_cst (type, 2); }))))
2021
2022 (simplify
2023 (minus integer_zerop @1)
2024 (negate @1))
2025
2026 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2027 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2028 (-ARG1 + ARG0) reduces to -ARG1. */
2029 (simplify
2030 (minus real_zerop@0 @1)
2031 (if (fold_real_zero_addition_p (type, @0, 0))
2032 (negate @1)))
2033
2034 /* Transform x * -1 into -x. */
2035 (simplify
2036 (mult @0 integer_minus_onep)
2037 (negate @0))
2038
2039 /* True if we can easily extract the real and imaginary parts of a complex
2040 number. */
2041 (match compositional_complex
2042 (convert? (complex @0 @1)))
2043
2044 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2045 (simplify
2046 (complex (realpart @0) (imagpart @0))
2047 @0)
2048 (simplify
2049 (realpart (complex @0 @1))
2050 @0)
2051 (simplify
2052 (imagpart (complex @0 @1))
2053 @1)
2054
2055 /* Sometimes we only care about half of a complex expression. */
2056 (simplify
2057 (realpart (convert?:s (conj:s @0)))
2058 (convert (realpart @0)))
2059 (simplify
2060 (imagpart (convert?:s (conj:s @0)))
2061 (convert (negate (imagpart @0))))
2062 (for part (realpart imagpart)
2063 (for op (plus minus)
2064 (simplify
2065 (part (convert?:s@2 (op:s @0 @1)))
2066 (convert (op (part @0) (part @1))))))
2067 (simplify
2068 (realpart (convert?:s (CEXPI:s @0)))
2069 (convert (COS @0)))
2070 (simplify
2071 (imagpart (convert?:s (CEXPI:s @0)))
2072 (convert (SIN @0)))
2073
2074 /* conj(conj(x)) -> x */
2075 (simplify
2076 (conj (convert? (conj @0)))
2077 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2078 (convert @0)))
2079
2080 /* conj({x,y}) -> {x,-y} */
2081 (simplify
2082 (conj (convert?:s (complex:s @0 @1)))
2083 (with { tree itype = TREE_TYPE (type); }
2084 (complex (convert:itype @0) (negate (convert:itype @1)))))
2085
2086 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2087 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2088 (simplify
2089 (bswap (bswap @0))
2090 @0)
2091 (simplify
2092 (bswap (bit_not (bswap @0)))
2093 (bit_not @0))
2094 (for bitop (bit_xor bit_ior bit_and)
2095 (simplify
2096 (bswap (bitop:c (bswap @0) @1))
2097 (bitop @0 (bswap @1)))))
2098
2099
2100 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2101
2102 /* Simplify constant conditions.
2103 Only optimize constant conditions when the selected branch
2104 has the same type as the COND_EXPR. This avoids optimizing
2105 away "c ? x : throw", where the throw has a void type.
2106 Note that we cannot throw away the fold-const.c variant nor
2107 this one as we depend on doing this transform before possibly
2108 A ? B : B -> B triggers and the fold-const.c one can optimize
2109 0 ? A : B to B even if A has side-effects. Something
2110 genmatch cannot handle. */
2111 (simplify
2112 (cond INTEGER_CST@0 @1 @2)
2113 (if (integer_zerop (@0))
2114 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2115 @2)
2116 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2117 @1)))
2118 (simplify
2119 (vec_cond VECTOR_CST@0 @1 @2)
2120 (if (integer_all_onesp (@0))
2121 @1
2122 (if (integer_zerop (@0))
2123 @2)))
2124
2125 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2126 be extended. */
2127 /* This pattern implements two kinds simplification:
2128
2129 Case 1)
2130 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2131 1) Conversions are type widening from smaller type.
2132 2) Const c1 equals to c2 after canonicalizing comparison.
2133 3) Comparison has tree code LT, LE, GT or GE.
2134 This specific pattern is needed when (cmp (convert x) c) may not
2135 be simplified by comparison patterns because of multiple uses of
2136 x. It also makes sense here because simplifying across multiple
2137 referred var is always benefitial for complicated cases.
2138
2139 Case 2)
2140 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2141 (for cmp (lt le gt ge eq)
2142 (simplify
2143 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2144 (with
2145 {
2146 tree from_type = TREE_TYPE (@1);
2147 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2148 enum tree_code code = ERROR_MARK;
2149
2150 if (INTEGRAL_TYPE_P (from_type)
2151 && int_fits_type_p (@2, from_type)
2152 && (types_match (c1_type, from_type)
2153 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2154 && (TYPE_UNSIGNED (from_type)
2155 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2156 && (types_match (c2_type, from_type)
2157 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2158 && (TYPE_UNSIGNED (from_type)
2159 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2160 {
2161 if (cmp != EQ_EXPR)
2162 {
2163 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2164 {
2165 /* X <= Y - 1 equals to X < Y. */
2166 if (cmp == LE_EXPR)
2167 code = LT_EXPR;
2168 /* X > Y - 1 equals to X >= Y. */
2169 if (cmp == GT_EXPR)
2170 code = GE_EXPR;
2171 }
2172 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2173 {
2174 /* X < Y + 1 equals to X <= Y. */
2175 if (cmp == LT_EXPR)
2176 code = LE_EXPR;
2177 /* X >= Y + 1 equals to X > Y. */
2178 if (cmp == GE_EXPR)
2179 code = GT_EXPR;
2180 }
2181 if (code != ERROR_MARK
2182 || wi::to_widest (@2) == wi::to_widest (@3))
2183 {
2184 if (cmp == LT_EXPR || cmp == LE_EXPR)
2185 code = MIN_EXPR;
2186 if (cmp == GT_EXPR || cmp == GE_EXPR)
2187 code = MAX_EXPR;
2188 }
2189 }
2190 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2191 else if (int_fits_type_p (@3, from_type))
2192 code = EQ_EXPR;
2193 }
2194 }
2195 (if (code == MAX_EXPR)
2196 (convert (max @1 (convert @2)))
2197 (if (code == MIN_EXPR)
2198 (convert (min @1 (convert @2)))
2199 (if (code == EQ_EXPR)
2200 (convert (cond (eq @1 (convert @3))
2201 (convert:from_type @3) (convert:from_type @2)))))))))
2202
2203 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2204
2205 1) OP is PLUS or MINUS.
2206 2) CMP is LT, LE, GT or GE.
2207 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2208
2209 This pattern also handles special cases like:
2210
2211 A) Operand x is a unsigned to signed type conversion and c1 is
2212 integer zero. In this case,
2213 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2214 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2215 B) Const c1 may not equal to (C3 op' C2). In this case we also
2216 check equality for (c1+1) and (c1-1) by adjusting comparison
2217 code.
2218
2219 TODO: Though signed type is handled by this pattern, it cannot be
2220 simplified at the moment because C standard requires additional
2221 type promotion. In order to match&simplify it here, the IR needs
2222 to be cleaned up by other optimizers, i.e, VRP. */
2223 (for op (plus minus)
2224 (for cmp (lt le gt ge)
2225 (simplify
2226 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2227 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2228 (if (types_match (from_type, to_type)
2229 /* Check if it is special case A). */
2230 || (TYPE_UNSIGNED (from_type)
2231 && !TYPE_UNSIGNED (to_type)
2232 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2233 && integer_zerop (@1)
2234 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2235 (with
2236 {
2237 bool overflow = false;
2238 enum tree_code code, cmp_code = cmp;
2239 wide_int real_c1, c1 = @1, c2 = @2, c3 = @3;
2240 signop sgn = TYPE_SIGN (from_type);
2241
2242 /* Handle special case A), given x of unsigned type:
2243 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2244 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2245 if (!types_match (from_type, to_type))
2246 {
2247 if (cmp_code == LT_EXPR)
2248 cmp_code = GT_EXPR;
2249 if (cmp_code == GE_EXPR)
2250 cmp_code = LE_EXPR;
2251 c1 = wi::max_value (to_type);
2252 }
2253 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2254 compute (c3 op' c2) and check if it equals to c1 with op' being
2255 the inverted operator of op. Make sure overflow doesn't happen
2256 if it is undefined. */
2257 if (op == PLUS_EXPR)
2258 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2259 else
2260 real_c1 = wi::add (c3, c2, sgn, &overflow);
2261
2262 code = cmp_code;
2263 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2264 {
2265 /* Check if c1 equals to real_c1. Boundary condition is handled
2266 by adjusting comparison operation if necessary. */
2267 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2268 && !overflow)
2269 {
2270 /* X <= Y - 1 equals to X < Y. */
2271 if (cmp_code == LE_EXPR)
2272 code = LT_EXPR;
2273 /* X > Y - 1 equals to X >= Y. */
2274 if (cmp_code == GT_EXPR)
2275 code = GE_EXPR;
2276 }
2277 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2278 && !overflow)
2279 {
2280 /* X < Y + 1 equals to X <= Y. */
2281 if (cmp_code == LT_EXPR)
2282 code = LE_EXPR;
2283 /* X >= Y + 1 equals to X > Y. */
2284 if (cmp_code == GE_EXPR)
2285 code = GT_EXPR;
2286 }
2287 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2288 {
2289 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2290 code = MIN_EXPR;
2291 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2292 code = MAX_EXPR;
2293 }
2294 }
2295 }
2296 (if (code == MAX_EXPR)
2297 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2298 { wide_int_to_tree (from_type, c2); })
2299 (if (code == MIN_EXPR)
2300 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2301 { wide_int_to_tree (from_type, c2); })))))))))
2302
2303 (for cnd (cond vec_cond)
2304 /* A ? B : (A ? X : C) -> A ? B : C. */
2305 (simplify
2306 (cnd @0 (cnd @0 @1 @2) @3)
2307 (cnd @0 @1 @3))
2308 (simplify
2309 (cnd @0 @1 (cnd @0 @2 @3))
2310 (cnd @0 @1 @3))
2311 /* A ? B : (!A ? C : X) -> A ? B : C. */
2312 /* ??? This matches embedded conditions open-coded because genmatch
2313 would generate matching code for conditions in separate stmts only.
2314 The following is still important to merge then and else arm cases
2315 from if-conversion. */
2316 (simplify
2317 (cnd @0 @1 (cnd @2 @3 @4))
2318 (if (COMPARISON_CLASS_P (@0)
2319 && COMPARISON_CLASS_P (@2)
2320 && invert_tree_comparison
2321 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2322 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2323 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2324 (cnd @0 @1 @3)))
2325 (simplify
2326 (cnd @0 (cnd @1 @2 @3) @4)
2327 (if (COMPARISON_CLASS_P (@0)
2328 && COMPARISON_CLASS_P (@1)
2329 && invert_tree_comparison
2330 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2331 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2332 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2333 (cnd @0 @3 @4)))
2334
2335 /* A ? B : B -> B. */
2336 (simplify
2337 (cnd @0 @1 @1)
2338 @1)
2339
2340 /* !A ? B : C -> A ? C : B. */
2341 (simplify
2342 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2343 (cnd @0 @2 @1)))
2344
2345 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2346 return all -1 or all 0 results. */
2347 /* ??? We could instead convert all instances of the vec_cond to negate,
2348 but that isn't necessarily a win on its own. */
2349 (simplify
2350 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2351 (if (VECTOR_TYPE_P (type)
2352 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
2353 && (TYPE_MODE (TREE_TYPE (type))
2354 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2355 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2356
2357 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2358 (simplify
2359 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2360 (if (VECTOR_TYPE_P (type)
2361 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1))
2362 && (TYPE_MODE (TREE_TYPE (type))
2363 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2364 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2365
2366
2367 /* Simplifications of comparisons. */
2368
2369 /* See if we can reduce the magnitude of a constant involved in a
2370 comparison by changing the comparison code. This is a canonicalization
2371 formerly done by maybe_canonicalize_comparison_1. */
2372 (for cmp (le gt)
2373 acmp (lt ge)
2374 (simplify
2375 (cmp @0 INTEGER_CST@1)
2376 (if (tree_int_cst_sgn (@1) == -1)
2377 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2378 (for cmp (ge lt)
2379 acmp (gt le)
2380 (simplify
2381 (cmp @0 INTEGER_CST@1)
2382 (if (tree_int_cst_sgn (@1) == 1)
2383 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2384
2385
2386 /* We can simplify a logical negation of a comparison to the
2387 inverted comparison. As we cannot compute an expression
2388 operator using invert_tree_comparison we have to simulate
2389 that with expression code iteration. */
2390 (for cmp (tcc_comparison)
2391 icmp (inverted_tcc_comparison)
2392 ncmp (inverted_tcc_comparison_with_nans)
2393 /* Ideally we'd like to combine the following two patterns
2394 and handle some more cases by using
2395 (logical_inverted_value (cmp @0 @1))
2396 here but for that genmatch would need to "inline" that.
2397 For now implement what forward_propagate_comparison did. */
2398 (simplify
2399 (bit_not (cmp @0 @1))
2400 (if (VECTOR_TYPE_P (type)
2401 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2402 /* Comparison inversion may be impossible for trapping math,
2403 invert_tree_comparison will tell us. But we can't use
2404 a computed operator in the replacement tree thus we have
2405 to play the trick below. */
2406 (with { enum tree_code ic = invert_tree_comparison
2407 (cmp, HONOR_NANS (@0)); }
2408 (if (ic == icmp)
2409 (icmp @0 @1)
2410 (if (ic == ncmp)
2411 (ncmp @0 @1))))))
2412 (simplify
2413 (bit_xor (cmp @0 @1) integer_truep)
2414 (with { enum tree_code ic = invert_tree_comparison
2415 (cmp, HONOR_NANS (@0)); }
2416 (if (ic == icmp)
2417 (icmp @0 @1)
2418 (if (ic == ncmp)
2419 (ncmp @0 @1))))))
2420
2421 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2422 ??? The transformation is valid for the other operators if overflow
2423 is undefined for the type, but performing it here badly interacts
2424 with the transformation in fold_cond_expr_with_comparison which
2425 attempts to synthetize ABS_EXPR. */
2426 (for cmp (eq ne)
2427 (simplify
2428 (cmp (minus@2 @0 @1) integer_zerop)
2429 (if (single_use (@2))
2430 (cmp @0 @1))))
2431
2432 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2433 signed arithmetic case. That form is created by the compiler
2434 often enough for folding it to be of value. One example is in
2435 computing loop trip counts after Operator Strength Reduction. */
2436 (for cmp (simple_comparison)
2437 scmp (swapped_simple_comparison)
2438 (simplify
2439 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2440 /* Handle unfolded multiplication by zero. */
2441 (if (integer_zerop (@1))
2442 (cmp @1 @2)
2443 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2444 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2445 && single_use (@3))
2446 /* If @1 is negative we swap the sense of the comparison. */
2447 (if (tree_int_cst_sgn (@1) < 0)
2448 (scmp @0 @2)
2449 (cmp @0 @2))))))
2450
2451 /* Simplify comparison of something with itself. For IEEE
2452 floating-point, we can only do some of these simplifications. */
2453 (for cmp (eq ge le)
2454 (simplify
2455 (cmp @0 @0)
2456 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
2457 || ! HONOR_NANS (@0))
2458 { constant_boolean_node (true, type); }
2459 (if (cmp != EQ_EXPR)
2460 (eq @0 @0)))))
2461 (for cmp (ne gt lt)
2462 (simplify
2463 (cmp @0 @0)
2464 (if (cmp != NE_EXPR
2465 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
2466 || ! HONOR_NANS (@0))
2467 { constant_boolean_node (false, type); })))
2468 (for cmp (unle unge uneq)
2469 (simplify
2470 (cmp @0 @0)
2471 { constant_boolean_node (true, type); }))
2472 (for cmp (unlt ungt)
2473 (simplify
2474 (cmp @0 @0)
2475 (unordered @0 @0)))
2476 (simplify
2477 (ltgt @0 @0)
2478 (if (!flag_trapping_math)
2479 { constant_boolean_node (false, type); }))
2480
2481 /* Fold ~X op ~Y as Y op X. */
2482 (for cmp (simple_comparison)
2483 (simplify
2484 (cmp (bit_not@2 @0) (bit_not@3 @1))
2485 (if (single_use (@2) && single_use (@3))
2486 (cmp @1 @0))))
2487
2488 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
2489 (for cmp (simple_comparison)
2490 scmp (swapped_simple_comparison)
2491 (simplify
2492 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
2493 (if (single_use (@2)
2494 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
2495 (scmp @0 (bit_not @1)))))
2496
2497 (for cmp (simple_comparison)
2498 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
2499 (simplify
2500 (cmp (convert@2 @0) (convert? @1))
2501 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2502 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2503 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
2504 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
2505 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
2506 (with
2507 {
2508 tree type1 = TREE_TYPE (@1);
2509 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
2510 {
2511 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
2512 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
2513 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
2514 type1 = float_type_node;
2515 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
2516 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
2517 type1 = double_type_node;
2518 }
2519 tree newtype
2520 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
2521 ? TREE_TYPE (@0) : type1);
2522 }
2523 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
2524 (cmp (convert:newtype @0) (convert:newtype @1))))))
2525
2526 (simplify
2527 (cmp @0 REAL_CST@1)
2528 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
2529 (switch
2530 /* a CMP (-0) -> a CMP 0 */
2531 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
2532 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
2533 /* x != NaN is always true, other ops are always false. */
2534 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2535 && ! HONOR_SNANS (@1))
2536 { constant_boolean_node (cmp == NE_EXPR, type); })
2537 /* Fold comparisons against infinity. */
2538 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
2539 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
2540 (with
2541 {
2542 REAL_VALUE_TYPE max;
2543 enum tree_code code = cmp;
2544 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
2545 if (neg)
2546 code = swap_tree_comparison (code);
2547 }
2548 (switch
2549 /* x > +Inf is always false, if with ignore sNANs. */
2550 (if (code == GT_EXPR
2551 && ! HONOR_SNANS (@0))
2552 { constant_boolean_node (false, type); })
2553 (if (code == LE_EXPR)
2554 /* x <= +Inf is always true, if we don't case about NaNs. */
2555 (if (! HONOR_NANS (@0))
2556 { constant_boolean_node (true, type); }
2557 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
2558 (eq @0 @0)))
2559 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
2560 (if (code == EQ_EXPR || code == GE_EXPR)
2561 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2562 (if (neg)
2563 (lt @0 { build_real (TREE_TYPE (@0), max); })
2564 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
2565 /* x < +Inf is always equal to x <= DBL_MAX. */
2566 (if (code == LT_EXPR)
2567 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2568 (if (neg)
2569 (ge @0 { build_real (TREE_TYPE (@0), max); })
2570 (le @0 { build_real (TREE_TYPE (@0), max); }))))
2571 /* x != +Inf is always equal to !(x > DBL_MAX). */
2572 (if (code == NE_EXPR)
2573 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
2574 (if (! HONOR_NANS (@0))
2575 (if (neg)
2576 (ge @0 { build_real (TREE_TYPE (@0), max); })
2577 (le @0 { build_real (TREE_TYPE (@0), max); }))
2578 (if (neg)
2579 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
2580 { build_one_cst (type); })
2581 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
2582 { build_one_cst (type); }))))))))))
2583
2584 /* If this is a comparison of a real constant with a PLUS_EXPR
2585 or a MINUS_EXPR of a real constant, we can convert it into a
2586 comparison with a revised real constant as long as no overflow
2587 occurs when unsafe_math_optimizations are enabled. */
2588 (if (flag_unsafe_math_optimizations)
2589 (for op (plus minus)
2590 (simplify
2591 (cmp (op @0 REAL_CST@1) REAL_CST@2)
2592 (with
2593 {
2594 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
2595 TREE_TYPE (@1), @2, @1);
2596 }
2597 (if (tem && !TREE_OVERFLOW (tem))
2598 (cmp @0 { tem; }))))))
2599
2600 /* Likewise, we can simplify a comparison of a real constant with
2601 a MINUS_EXPR whose first operand is also a real constant, i.e.
2602 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
2603 floating-point types only if -fassociative-math is set. */
2604 (if (flag_associative_math)
2605 (simplify
2606 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
2607 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
2608 (if (tem && !TREE_OVERFLOW (tem))
2609 (cmp { tem; } @1)))))
2610
2611 /* Fold comparisons against built-in math functions. */
2612 (if (flag_unsafe_math_optimizations
2613 && ! flag_errno_math)
2614 (for sq (SQRT)
2615 (simplify
2616 (cmp (sq @0) REAL_CST@1)
2617 (switch
2618 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2619 (switch
2620 /* sqrt(x) < y is always false, if y is negative. */
2621 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
2622 { constant_boolean_node (false, type); })
2623 /* sqrt(x) > y is always true, if y is negative and we
2624 don't care about NaNs, i.e. negative values of x. */
2625 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
2626 { constant_boolean_node (true, type); })
2627 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
2628 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
2629 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
2630 (switch
2631 /* sqrt(x) < 0 is always false. */
2632 (if (cmp == LT_EXPR)
2633 { constant_boolean_node (false, type); })
2634 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
2635 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
2636 { constant_boolean_node (true, type); })
2637 /* sqrt(x) <= 0 -> x == 0. */
2638 (if (cmp == LE_EXPR)
2639 (eq @0 @1))
2640 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
2641 == or !=. In the last case:
2642
2643 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
2644
2645 if x is negative or NaN. Due to -funsafe-math-optimizations,
2646 the results for other x follow from natural arithmetic. */
2647 (cmp @0 @1)))
2648 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2649 (with
2650 {
2651 REAL_VALUE_TYPE c2;
2652 real_arithmetic (&c2, MULT_EXPR,
2653 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2654 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2655 }
2656 (if (REAL_VALUE_ISINF (c2))
2657 /* sqrt(x) > y is x == +Inf, when y is very large. */
2658 (if (HONOR_INFINITIES (@0))
2659 (eq @0 { build_real (TREE_TYPE (@0), c2); })
2660 { constant_boolean_node (false, type); })
2661 /* sqrt(x) > c is the same as x > c*c. */
2662 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
2663 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2664 (with
2665 {
2666 REAL_VALUE_TYPE c2;
2667 real_arithmetic (&c2, MULT_EXPR,
2668 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
2669 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
2670 }
2671 (if (REAL_VALUE_ISINF (c2))
2672 (switch
2673 /* sqrt(x) < y is always true, when y is a very large
2674 value and we don't care about NaNs or Infinities. */
2675 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
2676 { constant_boolean_node (true, type); })
2677 /* sqrt(x) < y is x != +Inf when y is very large and we
2678 don't care about NaNs. */
2679 (if (! HONOR_NANS (@0))
2680 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
2681 /* sqrt(x) < y is x >= 0 when y is very large and we
2682 don't care about Infinities. */
2683 (if (! HONOR_INFINITIES (@0))
2684 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
2685 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
2686 (if (GENERIC)
2687 (truth_andif
2688 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2689 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
2690 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
2691 (if (! HONOR_NANS (@0))
2692 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
2693 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
2694 (if (GENERIC)
2695 (truth_andif
2696 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
2697 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
2698 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
2699 (simplify
2700 (cmp (sq @0) (sq @1))
2701 (if (! HONOR_NANS (@0))
2702 (cmp @0 @1))))))
2703
2704 /* Fold A /[ex] B CMP C to A CMP B * C. */
2705 (for cmp (eq ne)
2706 (simplify
2707 (cmp (exact_div @0 @1) INTEGER_CST@2)
2708 (if (!integer_zerop (@1))
2709 (if (wi::eq_p (@2, 0))
2710 (cmp @0 @2)
2711 (if (TREE_CODE (@1) == INTEGER_CST)
2712 (with
2713 {
2714 bool ovf;
2715 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2716 }
2717 (if (ovf)
2718 { constant_boolean_node (cmp == NE_EXPR, type); }
2719 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
2720 (for cmp (lt le gt ge)
2721 (simplify
2722 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
2723 (if (wi::gt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1))))
2724 (with
2725 {
2726 bool ovf;
2727 wide_int prod = wi::mul (@2, @1, TYPE_SIGN (TREE_TYPE (@1)), &ovf);
2728 }
2729 (if (ovf)
2730 { constant_boolean_node (wi::lt_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
2731 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
2732 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
2733
2734 /* Unordered tests if either argument is a NaN. */
2735 (simplify
2736 (bit_ior (unordered @0 @0) (unordered @1 @1))
2737 (if (types_match (@0, @1))
2738 (unordered @0 @1)))
2739 (simplify
2740 (bit_and (ordered @0 @0) (ordered @1 @1))
2741 (if (types_match (@0, @1))
2742 (ordered @0 @1)))
2743 (simplify
2744 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
2745 @2)
2746 (simplify
2747 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
2748 @2)
2749
2750 /* Simple range test simplifications. */
2751 /* A < B || A >= B -> true. */
2752 (for test1 (lt le le le ne ge)
2753 test2 (ge gt ge ne eq ne)
2754 (simplify
2755 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
2756 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2757 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2758 { constant_boolean_node (true, type); })))
2759 /* A < B && A >= B -> false. */
2760 (for test1 (lt lt lt le ne eq)
2761 test2 (ge gt eq gt eq gt)
2762 (simplify
2763 (bit_and:c (test1 @0 @1) (test2 @0 @1))
2764 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2765 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
2766 { constant_boolean_node (false, type); })))
2767
2768 /* -A CMP -B -> B CMP A. */
2769 (for cmp (tcc_comparison)
2770 scmp (swapped_tcc_comparison)
2771 (simplify
2772 (cmp (negate @0) (negate @1))
2773 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2774 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2775 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2776 (scmp @0 @1)))
2777 (simplify
2778 (cmp (negate @0) CONSTANT_CLASS_P@1)
2779 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2780 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2781 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2782 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
2783 (if (tem && !TREE_OVERFLOW (tem))
2784 (scmp @0 { tem; }))))))
2785
2786 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
2787 (for op (eq ne)
2788 (simplify
2789 (op (abs @0) zerop@1)
2790 (op @0 @1)))
2791
2792 /* From fold_sign_changed_comparison and fold_widened_comparison. */
2793 (for cmp (simple_comparison)
2794 (simplify
2795 (cmp (convert@0 @00) (convert?@1 @10))
2796 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2797 /* Disable this optimization if we're casting a function pointer
2798 type on targets that require function pointer canonicalization. */
2799 && !(targetm.have_canonicalize_funcptr_for_compare ()
2800 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
2801 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
2802 && single_use (@0))
2803 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
2804 && (TREE_CODE (@10) == INTEGER_CST
2805 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
2806 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
2807 || cmp == NE_EXPR
2808 || cmp == EQ_EXPR)
2809 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
2810 /* ??? The special-casing of INTEGER_CST conversion was in the original
2811 code and here to avoid a spurious overflow flag on the resulting
2812 constant which fold_convert produces. */
2813 (if (TREE_CODE (@1) == INTEGER_CST)
2814 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
2815 TREE_OVERFLOW (@1)); })
2816 (cmp @00 (convert @1)))
2817
2818 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
2819 /* If possible, express the comparison in the shorter mode. */
2820 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
2821 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
2822 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
2823 && TYPE_UNSIGNED (TREE_TYPE (@00))))
2824 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
2825 || ((TYPE_PRECISION (TREE_TYPE (@00))
2826 >= TYPE_PRECISION (TREE_TYPE (@10)))
2827 && (TYPE_UNSIGNED (TREE_TYPE (@00))
2828 == TYPE_UNSIGNED (TREE_TYPE (@10))))
2829 || (TREE_CODE (@10) == INTEGER_CST
2830 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2831 && int_fits_type_p (@10, TREE_TYPE (@00)))))
2832 (cmp @00 (convert @10))
2833 (if (TREE_CODE (@10) == INTEGER_CST
2834 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
2835 && !int_fits_type_p (@10, TREE_TYPE (@00)))
2836 (with
2837 {
2838 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2839 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
2840 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
2841 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
2842 }
2843 (if (above || below)
2844 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
2845 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
2846 (if (cmp == LT_EXPR || cmp == LE_EXPR)
2847 { constant_boolean_node (above ? true : false, type); }
2848 (if (cmp == GT_EXPR || cmp == GE_EXPR)
2849 { constant_boolean_node (above ? false : true, type); }))))))))))))
2850
2851 (for cmp (eq ne)
2852 /* A local variable can never be pointed to by
2853 the default SSA name of an incoming parameter.
2854 SSA names are canonicalized to 2nd place. */
2855 (simplify
2856 (cmp addr@0 SSA_NAME@1)
2857 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
2858 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
2859 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
2860 (if (TREE_CODE (base) == VAR_DECL
2861 && auto_var_in_fn_p (base, current_function_decl))
2862 (if (cmp == NE_EXPR)
2863 { constant_boolean_node (true, type); }
2864 { constant_boolean_node (false, type); }))))))
2865
2866 /* Equality compare simplifications from fold_binary */
2867 (for cmp (eq ne)
2868
2869 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
2870 Similarly for NE_EXPR. */
2871 (simplify
2872 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
2873 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2874 && wi::bit_and_not (@1, @2) != 0)
2875 { constant_boolean_node (cmp == NE_EXPR, type); }))
2876
2877 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
2878 (simplify
2879 (cmp (bit_xor @0 @1) integer_zerop)
2880 (cmp @0 @1))
2881
2882 /* (X ^ Y) == Y becomes X == 0.
2883 Likewise (X ^ Y) == X becomes Y == 0. */
2884 (simplify
2885 (cmp:c (bit_xor:c @0 @1) @0)
2886 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
2887
2888 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
2889 (simplify
2890 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
2891 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
2892 (cmp @0 (bit_xor @1 (convert @2)))))
2893
2894 (simplify
2895 (cmp (convert? addr@0) integer_zerop)
2896 (if (tree_single_nonzero_warnv_p (@0, NULL))
2897 { constant_boolean_node (cmp == NE_EXPR, type); })))
2898
2899 /* If we have (A & C) == C where C is a power of 2, convert this into
2900 (A & C) != 0. Similarly for NE_EXPR. */
2901 (for cmp (eq ne)
2902 icmp (ne eq)
2903 (simplify
2904 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
2905 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
2906
2907 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
2908 convert this into a shift followed by ANDing with D. */
2909 (simplify
2910 (cond
2911 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
2912 integer_pow2p@2 integer_zerop)
2913 (with {
2914 int shift = wi::exact_log2 (@2) - wi::exact_log2 (@1);
2915 }
2916 (if (shift > 0)
2917 (bit_and
2918 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
2919 (bit_and
2920 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
2921
2922 /* If we have (A & C) != 0 where C is the sign bit of A, convert
2923 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
2924 (for cmp (eq ne)
2925 ncmp (ge lt)
2926 (simplify
2927 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
2928 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2929 && (TYPE_PRECISION (TREE_TYPE (@0))
2930 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2931 && element_precision (@2) >= element_precision (@0)
2932 && wi::only_sign_bit_p (@1, element_precision (@0)))
2933 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2934 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
2935
2936 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
2937 this into a right shift or sign extension followed by ANDing with C. */
2938 (simplify
2939 (cond
2940 (lt @0 integer_zerop)
2941 integer_pow2p@1 integer_zerop)
2942 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
2943 (with {
2944 int shift = element_precision (@0) - wi::exact_log2 (@1) - 1;
2945 }
2946 (if (shift >= 0)
2947 (bit_and
2948 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
2949 @1)
2950 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
2951 sign extension followed by AND with C will achieve the effect. */
2952 (bit_and (convert @0) @1)))))
2953
2954 /* When the addresses are not directly of decls compare base and offset.
2955 This implements some remaining parts of fold_comparison address
2956 comparisons but still no complete part of it. Still it is good
2957 enough to make fold_stmt not regress when not dispatching to fold_binary. */
2958 (for cmp (simple_comparison)
2959 (simplify
2960 (cmp (convert1?@2 addr@0) (convert2? addr@1))
2961 (with
2962 {
2963 HOST_WIDE_INT off0, off1;
2964 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
2965 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
2966 if (base0 && TREE_CODE (base0) == MEM_REF)
2967 {
2968 off0 += mem_ref_offset (base0).to_short_addr ();
2969 base0 = TREE_OPERAND (base0, 0);
2970 }
2971 if (base1 && TREE_CODE (base1) == MEM_REF)
2972 {
2973 off1 += mem_ref_offset (base1).to_short_addr ();
2974 base1 = TREE_OPERAND (base1, 0);
2975 }
2976 }
2977 (if (base0 && base1)
2978 (with
2979 {
2980 int equal = 2;
2981 /* Punt in GENERIC on variables with value expressions;
2982 the value expressions might point to fields/elements
2983 of other vars etc. */
2984 if (GENERIC
2985 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
2986 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
2987 ;
2988 else if (decl_in_symtab_p (base0)
2989 && decl_in_symtab_p (base1))
2990 equal = symtab_node::get_create (base0)
2991 ->equal_address_to (symtab_node::get_create (base1));
2992 else if ((DECL_P (base0)
2993 || TREE_CODE (base0) == SSA_NAME
2994 || TREE_CODE (base0) == STRING_CST)
2995 && (DECL_P (base1)
2996 || TREE_CODE (base1) == SSA_NAME
2997 || TREE_CODE (base1) == STRING_CST))
2998 equal = (base0 == base1);
2999 }
3000 (if (equal == 1
3001 && (cmp == EQ_EXPR || cmp == NE_EXPR
3002 /* If the offsets are equal we can ignore overflow. */
3003 || off0 == off1
3004 || POINTER_TYPE_OVERFLOW_UNDEFINED
3005 /* Or if we compare using pointers to decls or strings. */
3006 || (POINTER_TYPE_P (TREE_TYPE (@2))
3007 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3008 (switch
3009 (if (cmp == EQ_EXPR)
3010 { constant_boolean_node (off0 == off1, type); })
3011 (if (cmp == NE_EXPR)
3012 { constant_boolean_node (off0 != off1, type); })
3013 (if (cmp == LT_EXPR)
3014 { constant_boolean_node (off0 < off1, type); })
3015 (if (cmp == LE_EXPR)
3016 { constant_boolean_node (off0 <= off1, type); })
3017 (if (cmp == GE_EXPR)
3018 { constant_boolean_node (off0 >= off1, type); })
3019 (if (cmp == GT_EXPR)
3020 { constant_boolean_node (off0 > off1, type); }))
3021 (if (equal == 0
3022 && DECL_P (base0) && DECL_P (base1)
3023 /* If we compare this as integers require equal offset. */
3024 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3025 || off0 == off1))
3026 (switch
3027 (if (cmp == EQ_EXPR)
3028 { constant_boolean_node (false, type); })
3029 (if (cmp == NE_EXPR)
3030 { constant_boolean_node (true, type); })))))))))
3031
3032 /* Simplify pointer equality compares using PTA. */
3033 (for neeq (ne eq)
3034 (simplify
3035 (neeq @0 @1)
3036 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3037 && ptrs_compare_unequal (@0, @1))
3038 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3039
3040 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3041 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3042 Disable the transform if either operand is pointer to function.
3043 This broke pr22051-2.c for arm where function pointer
3044 canonicalizaion is not wanted. */
3045
3046 (for cmp (ne eq)
3047 (simplify
3048 (cmp (convert @0) INTEGER_CST@1)
3049 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3050 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3051 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3052 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3053 (cmp @0 (convert @1)))))
3054
3055 /* Non-equality compare simplifications from fold_binary */
3056 (for cmp (lt gt le ge)
3057 /* Comparisons with the highest or lowest possible integer of
3058 the specified precision will have known values. */
3059 (simplify
3060 (cmp (convert?@2 @0) INTEGER_CST@1)
3061 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3062 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3063 (with
3064 {
3065 tree arg1_type = TREE_TYPE (@1);
3066 unsigned int prec = TYPE_PRECISION (arg1_type);
3067 wide_int max = wi::max_value (arg1_type);
3068 wide_int signed_max = wi::max_value (prec, SIGNED);
3069 wide_int min = wi::min_value (arg1_type);
3070 }
3071 (switch
3072 (if (wi::eq_p (@1, max))
3073 (switch
3074 (if (cmp == GT_EXPR)
3075 { constant_boolean_node (false, type); })
3076 (if (cmp == GE_EXPR)
3077 (eq @2 @1))
3078 (if (cmp == LE_EXPR)
3079 { constant_boolean_node (true, type); })
3080 (if (cmp == LT_EXPR)
3081 (ne @2 @1))))
3082 (if (wi::eq_p (@1, min))
3083 (switch
3084 (if (cmp == LT_EXPR)
3085 { constant_boolean_node (false, type); })
3086 (if (cmp == LE_EXPR)
3087 (eq @2 @1))
3088 (if (cmp == GE_EXPR)
3089 { constant_boolean_node (true, type); })
3090 (if (cmp == GT_EXPR)
3091 (ne @2 @1))))
3092 (if (wi::eq_p (@1, max - 1))
3093 (switch
3094 (if (cmp == GT_EXPR)
3095 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
3096 (if (cmp == LE_EXPR)
3097 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
3098 (if (wi::eq_p (@1, min + 1))
3099 (switch
3100 (if (cmp == GE_EXPR)
3101 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
3102 (if (cmp == LT_EXPR)
3103 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
3104 (if (wi::eq_p (@1, signed_max)
3105 && TYPE_UNSIGNED (arg1_type)
3106 /* We will flip the signedness of the comparison operator
3107 associated with the mode of @1, so the sign bit is
3108 specified by this mode. Check that @1 is the signed
3109 max associated with this sign bit. */
3110 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
3111 /* signed_type does not work on pointer types. */
3112 && INTEGRAL_TYPE_P (arg1_type))
3113 /* The following case also applies to X < signed_max+1
3114 and X >= signed_max+1 because previous transformations. */
3115 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3116 (with { tree st = signed_type_for (arg1_type); }
3117 (if (cmp == LE_EXPR)
3118 (ge (convert:st @0) { build_zero_cst (st); })
3119 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3120
3121 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3122 /* If the second operand is NaN, the result is constant. */
3123 (simplify
3124 (cmp @0 REAL_CST@1)
3125 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3126 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3127 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3128 ? false : true, type); })))
3129
3130 /* bool_var != 0 becomes bool_var. */
3131 (simplify
3132 (ne @0 integer_zerop)
3133 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3134 && types_match (type, TREE_TYPE (@0)))
3135 (non_lvalue @0)))
3136 /* bool_var == 1 becomes bool_var. */
3137 (simplify
3138 (eq @0 integer_onep)
3139 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3140 && types_match (type, TREE_TYPE (@0)))
3141 (non_lvalue @0)))
3142 /* Do not handle
3143 bool_var == 0 becomes !bool_var or
3144 bool_var != 1 becomes !bool_var
3145 here because that only is good in assignment context as long
3146 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3147 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3148 clearly less optimal and which we'll transform again in forwprop. */
3149
3150 /* When one argument is a constant, overflow detection can be simplified.
3151 Currently restricted to single use so as not to interfere too much with
3152 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3153 A + CST CMP A -> A CMP' CST' */
3154 (for cmp (lt le ge gt)
3155 out (gt gt le le)
3156 (simplify
3157 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3158 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3159 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3160 && wi::ne_p (@1, 0)
3161 && single_use (@2))
3162 (out @0 { wide_int_to_tree (TREE_TYPE (@0), wi::max_value
3163 (TYPE_PRECISION (TREE_TYPE (@0)), UNSIGNED) - @1); }))))
3164
3165 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3166 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3167 expects the long form, so we restrict the transformation for now. */
3168 (for cmp (gt le)
3169 (simplify
3170 (cmp:c (minus@2 @0 @1) @0)
3171 (if (single_use (@2)
3172 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3173 && TYPE_UNSIGNED (TREE_TYPE (@0))
3174 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3175 (cmp @1 @0))))
3176
3177 /* Testing for overflow is unnecessary if we already know the result. */
3178 /* A - B > A */
3179 (for cmp (gt le)
3180 out (ne eq)
3181 (simplify
3182 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3183 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3184 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3185 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3186 /* A + B < A */
3187 (for cmp (lt ge)
3188 out (ne eq)
3189 (simplify
3190 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3191 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3192 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3193 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3194
3195 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3196 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3197 (for cmp (lt ge)
3198 out (ne eq)
3199 (simplify
3200 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3201 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3202 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3203 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3204
3205 /* Simplification of math builtins. These rules must all be optimizations
3206 as well as IL simplifications. If there is a possibility that the new
3207 form could be a pessimization, the rule should go in the canonicalization
3208 section that follows this one.
3209
3210 Rules can generally go in this section if they satisfy one of
3211 the following:
3212
3213 - the rule describes an identity
3214
3215 - the rule replaces calls with something as simple as addition or
3216 multiplication
3217
3218 - the rule contains unary calls only and simplifies the surrounding
3219 arithmetic. (The idea here is to exclude non-unary calls in which
3220 one operand is constant and in which the call is known to be cheap
3221 when the operand has that value.) */
3222
3223 (if (flag_unsafe_math_optimizations)
3224 /* Simplify sqrt(x) * sqrt(x) -> x. */
3225 (simplify
3226 (mult (SQRT@1 @0) @1)
3227 (if (!HONOR_SNANS (type))
3228 @0))
3229
3230 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3231 (for root (SQRT CBRT)
3232 (simplify
3233 (mult (root:s @0) (root:s @1))
3234 (root (mult @0 @1))))
3235
3236 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3237 (for exps (EXP EXP2 EXP10 POW10)
3238 (simplify
3239 (mult (exps:s @0) (exps:s @1))
3240 (exps (plus @0 @1))))
3241
3242 /* Simplify a/root(b/c) into a*root(c/b). */
3243 (for root (SQRT CBRT)
3244 (simplify
3245 (rdiv @0 (root:s (rdiv:s @1 @2)))
3246 (mult @0 (root (rdiv @2 @1)))))
3247
3248 /* Simplify x/expN(y) into x*expN(-y). */
3249 (for exps (EXP EXP2 EXP10 POW10)
3250 (simplify
3251 (rdiv @0 (exps:s @1))
3252 (mult @0 (exps (negate @1)))))
3253
3254 (for logs (LOG LOG2 LOG10 LOG10)
3255 exps (EXP EXP2 EXP10 POW10)
3256 /* logN(expN(x)) -> x. */
3257 (simplify
3258 (logs (exps @0))
3259 @0)
3260 /* expN(logN(x)) -> x. */
3261 (simplify
3262 (exps (logs @0))
3263 @0))
3264
3265 /* Optimize logN(func()) for various exponential functions. We
3266 want to determine the value "x" and the power "exponent" in
3267 order to transform logN(x**exponent) into exponent*logN(x). */
3268 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3269 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3270 (simplify
3271 (logs (exps @0))
3272 (if (SCALAR_FLOAT_TYPE_P (type))
3273 (with {
3274 tree x;
3275 switch (exps)
3276 {
3277 CASE_CFN_EXP:
3278 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3279 x = build_real_truncate (type, dconst_e ());
3280 break;
3281 CASE_CFN_EXP2:
3282 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3283 x = build_real (type, dconst2);
3284 break;
3285 CASE_CFN_EXP10:
3286 CASE_CFN_POW10:
3287 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3288 {
3289 REAL_VALUE_TYPE dconst10;
3290 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3291 x = build_real (type, dconst10);
3292 }
3293 break;
3294 default:
3295 gcc_unreachable ();
3296 }
3297 }
3298 (mult (logs { x; }) @0)))))
3299
3300 (for logs (LOG LOG
3301 LOG2 LOG2
3302 LOG10 LOG10)
3303 exps (SQRT CBRT)
3304 (simplify
3305 (logs (exps @0))
3306 (if (SCALAR_FLOAT_TYPE_P (type))
3307 (with {
3308 tree x;
3309 switch (exps)
3310 {
3311 CASE_CFN_SQRT:
3312 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3313 x = build_real (type, dconsthalf);
3314 break;
3315 CASE_CFN_CBRT:
3316 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3317 x = build_real_truncate (type, dconst_third ());
3318 break;
3319 default:
3320 gcc_unreachable ();
3321 }
3322 }
3323 (mult { x; } (logs @0))))))
3324
3325 /* logN(pow(x,exponent)) -> exponent*logN(x). */
3326 (for logs (LOG LOG2 LOG10)
3327 pows (POW)
3328 (simplify
3329 (logs (pows @0 @1))
3330 (mult @1 (logs @0))))
3331
3332 (for sqrts (SQRT)
3333 cbrts (CBRT)
3334 pows (POW)
3335 exps (EXP EXP2 EXP10 POW10)
3336 /* sqrt(expN(x)) -> expN(x*0.5). */
3337 (simplify
3338 (sqrts (exps @0))
3339 (exps (mult @0 { build_real (type, dconsthalf); })))
3340 /* cbrt(expN(x)) -> expN(x/3). */
3341 (simplify
3342 (cbrts (exps @0))
3343 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
3344 /* pow(expN(x), y) -> expN(x*y). */
3345 (simplify
3346 (pows (exps @0) @1)
3347 (exps (mult @0 @1))))
3348
3349 /* tan(atan(x)) -> x. */
3350 (for tans (TAN)
3351 atans (ATAN)
3352 (simplify
3353 (tans (atans @0))
3354 @0)))
3355
3356 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
3357 (simplify
3358 (CABS (complex:C @0 real_zerop@1))
3359 (abs @0))
3360
3361 /* trunc(trunc(x)) -> trunc(x), etc. */
3362 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3363 (simplify
3364 (fns (fns @0))
3365 (fns @0)))
3366 /* f(x) -> x if x is integer valued and f does nothing for such values. */
3367 (for fns (TRUNC FLOOR CEIL ROUND NEARBYINT RINT)
3368 (simplify
3369 (fns integer_valued_real_p@0)
3370 @0))
3371
3372 /* hypot(x,0) and hypot(0,x) -> abs(x). */
3373 (simplify
3374 (HYPOT:c @0 real_zerop@1)
3375 (abs @0))
3376
3377 /* pow(1,x) -> 1. */
3378 (simplify
3379 (POW real_onep@0 @1)
3380 @0)
3381
3382 (simplify
3383 /* copysign(x,x) -> x. */
3384 (COPYSIGN @0 @0)
3385 @0)
3386
3387 (simplify
3388 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
3389 (COPYSIGN @0 tree_expr_nonnegative_p@1)
3390 (abs @0))
3391
3392 (for scale (LDEXP SCALBN SCALBLN)
3393 /* ldexp(0, x) -> 0. */
3394 (simplify
3395 (scale real_zerop@0 @1)
3396 @0)
3397 /* ldexp(x, 0) -> x. */
3398 (simplify
3399 (scale @0 integer_zerop@1)
3400 @0)
3401 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
3402 (simplify
3403 (scale REAL_CST@0 @1)
3404 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
3405 @0)))
3406
3407 /* Canonicalization of sequences of math builtins. These rules represent
3408 IL simplifications but are not necessarily optimizations.
3409
3410 The sincos pass is responsible for picking "optimal" implementations
3411 of math builtins, which may be more complicated and can sometimes go
3412 the other way, e.g. converting pow into a sequence of sqrts.
3413 We only want to do these canonicalizations before the pass has run. */
3414
3415 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
3416 /* Simplify tan(x) * cos(x) -> sin(x). */
3417 (simplify
3418 (mult:c (TAN:s @0) (COS:s @0))
3419 (SIN @0))
3420
3421 /* Simplify x * pow(x,c) -> pow(x,c+1). */
3422 (simplify
3423 (mult:c @0 (POW:s @0 REAL_CST@1))
3424 (if (!TREE_OVERFLOW (@1))
3425 (POW @0 (plus @1 { build_one_cst (type); }))))
3426
3427 /* Simplify sin(x) / cos(x) -> tan(x). */
3428 (simplify
3429 (rdiv (SIN:s @0) (COS:s @0))
3430 (TAN @0))
3431
3432 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
3433 (simplify
3434 (rdiv (COS:s @0) (SIN:s @0))
3435 (rdiv { build_one_cst (type); } (TAN @0)))
3436
3437 /* Simplify sin(x) / tan(x) -> cos(x). */
3438 (simplify
3439 (rdiv (SIN:s @0) (TAN:s @0))
3440 (if (! HONOR_NANS (@0)
3441 && ! HONOR_INFINITIES (@0))
3442 (COS @0)))
3443
3444 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
3445 (simplify
3446 (rdiv (TAN:s @0) (SIN:s @0))
3447 (if (! HONOR_NANS (@0)
3448 && ! HONOR_INFINITIES (@0))
3449 (rdiv { build_one_cst (type); } (COS @0))))
3450
3451 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
3452 (simplify
3453 (mult (POW:s @0 @1) (POW:s @0 @2))
3454 (POW @0 (plus @1 @2)))
3455
3456 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
3457 (simplify
3458 (mult (POW:s @0 @1) (POW:s @2 @1))
3459 (POW (mult @0 @2) @1))
3460
3461 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
3462 (simplify
3463 (mult (POWI:s @0 @1) (POWI:s @2 @1))
3464 (POWI (mult @0 @2) @1))
3465
3466 /* Simplify pow(x,c) / x -> pow(x,c-1). */
3467 (simplify
3468 (rdiv (POW:s @0 REAL_CST@1) @0)
3469 (if (!TREE_OVERFLOW (@1))
3470 (POW @0 (minus @1 { build_one_cst (type); }))))
3471
3472 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
3473 (simplify
3474 (rdiv @0 (POW:s @1 @2))
3475 (mult @0 (POW @1 (negate @2))))
3476
3477 (for sqrts (SQRT)
3478 cbrts (CBRT)
3479 pows (POW)
3480 /* sqrt(sqrt(x)) -> pow(x,1/4). */
3481 (simplify
3482 (sqrts (sqrts @0))
3483 (pows @0 { build_real (type, dconst_quarter ()); }))
3484 /* sqrt(cbrt(x)) -> pow(x,1/6). */
3485 (simplify
3486 (sqrts (cbrts @0))
3487 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3488 /* cbrt(sqrt(x)) -> pow(x,1/6). */
3489 (simplify
3490 (cbrts (sqrts @0))
3491 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
3492 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
3493 (simplify
3494 (cbrts (cbrts tree_expr_nonnegative_p@0))
3495 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
3496 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
3497 (simplify
3498 (sqrts (pows @0 @1))
3499 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
3500 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
3501 (simplify
3502 (cbrts (pows tree_expr_nonnegative_p@0 @1))
3503 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3504 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
3505 (simplify
3506 (pows (sqrts @0) @1)
3507 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
3508 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
3509 (simplify
3510 (pows (cbrts tree_expr_nonnegative_p@0) @1)
3511 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
3512 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
3513 (simplify
3514 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
3515 (pows @0 (mult @1 @2))))
3516
3517 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
3518 (simplify
3519 (CABS (complex @0 @0))
3520 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3521
3522 /* hypot(x,x) -> fabs(x)*sqrt(2). */
3523 (simplify
3524 (HYPOT @0 @0)
3525 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
3526
3527 /* cexp(x+yi) -> exp(x)*cexpi(y). */
3528 (for cexps (CEXP)
3529 exps (EXP)
3530 cexpis (CEXPI)
3531 (simplify
3532 (cexps compositional_complex@0)
3533 (if (targetm.libc_has_function (function_c99_math_complex))
3534 (complex
3535 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
3536 (mult @1 (imagpart @2)))))))
3537
3538 (if (canonicalize_math_p ())
3539 /* floor(x) -> trunc(x) if x is nonnegative. */
3540 (for floors (FLOOR)
3541 truncs (TRUNC)
3542 (simplify
3543 (floors tree_expr_nonnegative_p@0)
3544 (truncs @0))))
3545
3546 (match double_value_p
3547 @0
3548 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
3549 (for froms (BUILT_IN_TRUNCL
3550 BUILT_IN_FLOORL
3551 BUILT_IN_CEILL
3552 BUILT_IN_ROUNDL
3553 BUILT_IN_NEARBYINTL
3554 BUILT_IN_RINTL)
3555 tos (BUILT_IN_TRUNC
3556 BUILT_IN_FLOOR
3557 BUILT_IN_CEIL
3558 BUILT_IN_ROUND
3559 BUILT_IN_NEARBYINT
3560 BUILT_IN_RINT)
3561 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
3562 (if (optimize && canonicalize_math_p ())
3563 (simplify
3564 (froms (convert double_value_p@0))
3565 (convert (tos @0)))))
3566
3567 (match float_value_p
3568 @0
3569 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
3570 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
3571 BUILT_IN_FLOORL BUILT_IN_FLOOR
3572 BUILT_IN_CEILL BUILT_IN_CEIL
3573 BUILT_IN_ROUNDL BUILT_IN_ROUND
3574 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
3575 BUILT_IN_RINTL BUILT_IN_RINT)
3576 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
3577 BUILT_IN_FLOORF BUILT_IN_FLOORF
3578 BUILT_IN_CEILF BUILT_IN_CEILF
3579 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
3580 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
3581 BUILT_IN_RINTF BUILT_IN_RINTF)
3582 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
3583 if x is a float. */
3584 (if (optimize && canonicalize_math_p ()
3585 && targetm.libc_has_function (function_c99_misc))
3586 (simplify
3587 (froms (convert float_value_p@0))
3588 (convert (tos @0)))))
3589
3590 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
3591 tos (XFLOOR XCEIL XROUND XRINT)
3592 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
3593 (if (optimize && canonicalize_math_p ())
3594 (simplify
3595 (froms (convert double_value_p@0))
3596 (tos @0))))
3597
3598 (for froms (XFLOORL XCEILL XROUNDL XRINTL
3599 XFLOOR XCEIL XROUND XRINT)
3600 tos (XFLOORF XCEILF XROUNDF XRINTF)
3601 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
3602 if x is a float. */
3603 (if (optimize && canonicalize_math_p ())
3604 (simplify
3605 (froms (convert float_value_p@0))
3606 (tos @0))))
3607
3608 (if (canonicalize_math_p ())
3609 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
3610 (for floors (IFLOOR LFLOOR LLFLOOR)
3611 (simplify
3612 (floors tree_expr_nonnegative_p@0)
3613 (fix_trunc @0))))
3614
3615 (if (canonicalize_math_p ())
3616 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
3617 (for fns (IFLOOR LFLOOR LLFLOOR
3618 ICEIL LCEIL LLCEIL
3619 IROUND LROUND LLROUND)
3620 (simplify
3621 (fns integer_valued_real_p@0)
3622 (fix_trunc @0)))
3623 (if (!flag_errno_math)
3624 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
3625 (for rints (IRINT LRINT LLRINT)
3626 (simplify
3627 (rints integer_valued_real_p@0)
3628 (fix_trunc @0)))))
3629
3630 (if (canonicalize_math_p ())
3631 (for ifn (IFLOOR ICEIL IROUND IRINT)
3632 lfn (LFLOOR LCEIL LROUND LRINT)
3633 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
3634 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
3635 sizeof (int) == sizeof (long). */
3636 (if (TYPE_PRECISION (integer_type_node)
3637 == TYPE_PRECISION (long_integer_type_node))
3638 (simplify
3639 (ifn @0)
3640 (lfn:long_integer_type_node @0)))
3641 /* Canonicalize llround (x) to lround (x) on LP64 targets where
3642 sizeof (long long) == sizeof (long). */
3643 (if (TYPE_PRECISION (long_long_integer_type_node)
3644 == TYPE_PRECISION (long_integer_type_node))
3645 (simplify
3646 (llfn @0)
3647 (lfn:long_integer_type_node @0)))))
3648
3649 /* cproj(x) -> x if we're ignoring infinities. */
3650 (simplify
3651 (CPROJ @0)
3652 (if (!HONOR_INFINITIES (type))
3653 @0))
3654
3655 /* If the real part is inf and the imag part is known to be
3656 nonnegative, return (inf + 0i). */
3657 (simplify
3658 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
3659 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
3660 { build_complex_inf (type, false); }))
3661
3662 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
3663 (simplify
3664 (CPROJ (complex @0 REAL_CST@1))
3665 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
3666 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
3667
3668 (for pows (POW)
3669 sqrts (SQRT)
3670 cbrts (CBRT)
3671 (simplify
3672 (pows @0 REAL_CST@1)
3673 (with {
3674 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
3675 REAL_VALUE_TYPE tmp;
3676 }
3677 (switch
3678 /* pow(x,0) -> 1. */
3679 (if (real_equal (value, &dconst0))
3680 { build_real (type, dconst1); })
3681 /* pow(x,1) -> x. */
3682 (if (real_equal (value, &dconst1))
3683 @0)
3684 /* pow(x,-1) -> 1/x. */
3685 (if (real_equal (value, &dconstm1))
3686 (rdiv { build_real (type, dconst1); } @0))
3687 /* pow(x,0.5) -> sqrt(x). */
3688 (if (flag_unsafe_math_optimizations
3689 && canonicalize_math_p ()
3690 && real_equal (value, &dconsthalf))
3691 (sqrts @0))
3692 /* pow(x,1/3) -> cbrt(x). */
3693 (if (flag_unsafe_math_optimizations
3694 && canonicalize_math_p ()
3695 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
3696 real_equal (value, &tmp)))
3697 (cbrts @0))))))
3698
3699 /* powi(1,x) -> 1. */
3700 (simplify
3701 (POWI real_onep@0 @1)
3702 @0)
3703
3704 (simplify
3705 (POWI @0 INTEGER_CST@1)
3706 (switch
3707 /* powi(x,0) -> 1. */
3708 (if (wi::eq_p (@1, 0))
3709 { build_real (type, dconst1); })
3710 /* powi(x,1) -> x. */
3711 (if (wi::eq_p (@1, 1))
3712 @0)
3713 /* powi(x,-1) -> 1/x. */
3714 (if (wi::eq_p (@1, -1))
3715 (rdiv { build_real (type, dconst1); } @0))))
3716
3717 /* Narrowing of arithmetic and logical operations.
3718
3719 These are conceptually similar to the transformations performed for
3720 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
3721 term we want to move all that code out of the front-ends into here. */
3722
3723 /* If we have a narrowing conversion of an arithmetic operation where
3724 both operands are widening conversions from the same type as the outer
3725 narrowing conversion. Then convert the innermost operands to a suitable
3726 unsigned type (to avoid introducing undefined behavior), perform the
3727 operation and convert the result to the desired type. */
3728 (for op (plus minus)
3729 (simplify
3730 (convert (op:s (convert@2 @0) (convert?@3 @1)))
3731 (if (INTEGRAL_TYPE_P (type)
3732 /* We check for type compatibility between @0 and @1 below,
3733 so there's no need to check that @1/@3 are integral types. */
3734 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3735 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3736 /* The precision of the type of each operand must match the
3737 precision of the mode of each operand, similarly for the
3738 result. */
3739 && (TYPE_PRECISION (TREE_TYPE (@0))
3740 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3741 && (TYPE_PRECISION (TREE_TYPE (@1))
3742 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3743 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3744 /* The inner conversion must be a widening conversion. */
3745 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3746 && types_match (@0, type)
3747 && (types_match (@0, @1)
3748 /* Or the second operand is const integer or converted const
3749 integer from valueize. */
3750 || TREE_CODE (@1) == INTEGER_CST))
3751 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3752 (op @0 (convert @1))
3753 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3754 (convert (op (convert:utype @0)
3755 (convert:utype @1))))))))
3756
3757 /* This is another case of narrowing, specifically when there's an outer
3758 BIT_AND_EXPR which masks off bits outside the type of the innermost
3759 operands. Like the previous case we have to convert the operands
3760 to unsigned types to avoid introducing undefined behavior for the
3761 arithmetic operation. */
3762 (for op (minus plus)
3763 (simplify
3764 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
3765 (if (INTEGRAL_TYPE_P (type)
3766 /* We check for type compatibility between @0 and @1 below,
3767 so there's no need to check that @1/@3 are integral types. */
3768 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3769 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3770 /* The precision of the type of each operand must match the
3771 precision of the mode of each operand, similarly for the
3772 result. */
3773 && (TYPE_PRECISION (TREE_TYPE (@0))
3774 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
3775 && (TYPE_PRECISION (TREE_TYPE (@1))
3776 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
3777 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
3778 /* The inner conversion must be a widening conversion. */
3779 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
3780 && types_match (@0, @1)
3781 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
3782 <= TYPE_PRECISION (TREE_TYPE (@0)))
3783 && (wi::bit_and (@4, wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
3784 true, TYPE_PRECISION (type))) == 0))
3785 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3786 (with { tree ntype = TREE_TYPE (@0); }
3787 (convert (bit_and (op @0 @1) (convert:ntype @4))))
3788 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
3789 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
3790 (convert:utype @4))))))))
3791
3792 /* Transform (@0 < @1 and @0 < @2) to use min,
3793 (@0 > @1 and @0 > @2) to use max */
3794 (for op (lt le gt ge)
3795 ext (min min max max)
3796 (simplify
3797 (bit_and (op:cs @0 @1) (op:cs @0 @2))
3798 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3799 && TREE_CODE (@0) != INTEGER_CST)
3800 (op @0 (ext @1 @2)))))
3801
3802 (simplify
3803 /* signbit(x) -> 0 if x is nonnegative. */
3804 (SIGNBIT tree_expr_nonnegative_p@0)
3805 { integer_zero_node; })
3806
3807 (simplify
3808 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
3809 (SIGNBIT @0)
3810 (if (!HONOR_SIGNED_ZEROS (@0))
3811 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
3812
3813 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
3814 (for cmp (eq ne)
3815 (for op (plus minus)
3816 rop (minus plus)
3817 (simplify
3818 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3819 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3820 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3821 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
3822 && !TYPE_SATURATING (TREE_TYPE (@0)))
3823 (with { tree res = int_const_binop (rop, @2, @1); }
3824 (if (TREE_OVERFLOW (res)
3825 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3826 { constant_boolean_node (cmp == NE_EXPR, type); }
3827 (if (single_use (@3))
3828 (cmp @0 { res; }))))))))
3829 (for cmp (lt le gt ge)
3830 (for op (plus minus)
3831 rop (minus plus)
3832 (simplify
3833 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
3834 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
3835 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3836 (with { tree res = int_const_binop (rop, @2, @1); }
3837 (if (TREE_OVERFLOW (res))
3838 {
3839 fold_overflow_warning (("assuming signed overflow does not occur "
3840 "when simplifying conditional to constant"),
3841 WARN_STRICT_OVERFLOW_CONDITIONAL);
3842 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
3843 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
3844 bool ovf_high = wi::lt_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
3845 != (op == MINUS_EXPR);
3846 constant_boolean_node (less == ovf_high, type);
3847 }
3848 (if (single_use (@3))
3849 (with
3850 {
3851 fold_overflow_warning (("assuming signed overflow does not occur "
3852 "when changing X +- C1 cmp C2 to "
3853 "X cmp C2 -+ C1"),
3854 WARN_STRICT_OVERFLOW_COMPARISON);
3855 }
3856 (cmp @0 { res; })))))))))
3857
3858 /* Canonicalizations of BIT_FIELD_REFs. */
3859
3860 (simplify
3861 (BIT_FIELD_REF @0 @1 @2)
3862 (switch
3863 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
3864 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3865 (switch
3866 (if (integer_zerop (@2))
3867 (view_convert (realpart @0)))
3868 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
3869 (view_convert (imagpart @0)))))
3870 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3871 && INTEGRAL_TYPE_P (type)
3872 /* On GIMPLE this should only apply to register arguments. */
3873 && (! GIMPLE || is_gimple_reg (@0))
3874 /* A bit-field-ref that referenced the full argument can be stripped. */
3875 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
3876 && integer_zerop (@2))
3877 /* Low-parts can be reduced to integral conversions.
3878 ??? The following doesn't work for PDP endian. */
3879 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
3880 /* Don't even think about BITS_BIG_ENDIAN. */
3881 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
3882 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
3883 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
3884 ? (TYPE_PRECISION (TREE_TYPE (@0))
3885 - TYPE_PRECISION (type))
3886 : 0)) == 0)))
3887 (convert @0))))
3888
3889 /* Simplify vector extracts. */
3890
3891 (simplify
3892 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
3893 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
3894 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
3895 || (VECTOR_TYPE_P (type)
3896 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
3897 (with
3898 {
3899 tree ctor = (TREE_CODE (@0) == SSA_NAME
3900 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
3901 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
3902 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
3903 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
3904 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
3905 }
3906 (if (n != 0
3907 && (idx % width) == 0
3908 && (n % width) == 0
3909 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor)))
3910 (with
3911 {
3912 idx = idx / width;
3913 n = n / width;
3914 /* Constructor elements can be subvectors. */
3915 unsigned HOST_WIDE_INT k = 1;
3916 if (CONSTRUCTOR_NELTS (ctor) != 0)
3917 {
3918 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
3919 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
3920 k = TYPE_VECTOR_SUBPARTS (cons_elem);
3921 }
3922 }
3923 (switch
3924 /* We keep an exact subset of the constructor elements. */
3925 (if ((idx % k) == 0 && (n % k) == 0)
3926 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3927 { build_constructor (type, NULL); }
3928 (with
3929 {
3930 idx /= k;
3931 n /= k;
3932 }
3933 (if (n == 1)
3934 (if (idx < CONSTRUCTOR_NELTS (ctor))
3935 { CONSTRUCTOR_ELT (ctor, idx)->value; }
3936 { build_zero_cst (type); })
3937 {
3938 vec<constructor_elt, va_gc> *vals;
3939 vec_alloc (vals, n);
3940 for (unsigned i = 0;
3941 i < n && idx + i < CONSTRUCTOR_NELTS (ctor); ++i)
3942 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
3943 CONSTRUCTOR_ELT (ctor, idx + i)->value);
3944 build_constructor (type, vals);
3945 }))))
3946 /* The bitfield references a single constructor element. */
3947 (if (idx + n <= (idx / k + 1) * k)
3948 (switch
3949 (if (CONSTRUCTOR_NELTS (ctor) <= idx / k)
3950 { build_zero_cst (type); })
3951 (if (n == k)
3952 { CONSTRUCTOR_ELT (ctor, idx / k)->value; })
3953 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / k)->value; }
3954 @1 { bitsize_int ((idx % k) * width); })))))))))