fold-const.c (fold_mathfn_compare): Remove.
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43 (define_operator_list simple_comparison lt le eq ne ge gt)
44 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
45
46 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
47 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
48 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
49 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
50 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
51 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
52 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
53 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
54 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
55 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
56
57
58 /* Simplifications of operations with one constant operand and
59 simplifications to constants or single values. */
60
61 (for op (plus pointer_plus minus bit_ior bit_xor)
62 (simplify
63 (op @0 integer_zerop)
64 (non_lvalue @0)))
65
66 /* 0 +p index -> (type)index */
67 (simplify
68 (pointer_plus integer_zerop @1)
69 (non_lvalue (convert @1)))
70
71 /* See if ARG1 is zero and X + ARG1 reduces to X.
72 Likewise if the operands are reversed. */
73 (simplify
74 (plus:c @0 real_zerop@1)
75 (if (fold_real_zero_addition_p (type, @1, 0))
76 (non_lvalue @0)))
77
78 /* See if ARG1 is zero and X - ARG1 reduces to X. */
79 (simplify
80 (minus @0 real_zerop@1)
81 (if (fold_real_zero_addition_p (type, @1, 1))
82 (non_lvalue @0)))
83
84 /* Simplify x - x.
85 This is unsafe for certain floats even in non-IEEE formats.
86 In IEEE, it is unsafe because it does wrong for NaNs.
87 Also note that operand_equal_p is always false if an operand
88 is volatile. */
89 (simplify
90 (minus @0 @0)
91 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
92 { build_zero_cst (type); }))
93
94 (simplify
95 (mult @0 integer_zerop@1)
96 @1)
97
98 /* Maybe fold x * 0 to 0. The expressions aren't the same
99 when x is NaN, since x * 0 is also NaN. Nor are they the
100 same in modes with signed zeros, since multiplying a
101 negative value by 0 gives -0, not +0. */
102 (simplify
103 (mult @0 real_zerop@1)
104 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
105 @1))
106
107 /* In IEEE floating point, x*1 is not equivalent to x for snans.
108 Likewise for complex arithmetic with signed zeros. */
109 (simplify
110 (mult @0 real_onep)
111 (if (!HONOR_SNANS (element_mode (type))
112 && (!HONOR_SIGNED_ZEROS (element_mode (type))
113 || !COMPLEX_FLOAT_TYPE_P (type)))
114 (non_lvalue @0)))
115
116 /* Transform x * -1.0 into -x. */
117 (simplify
118 (mult @0 real_minus_onep)
119 (if (!HONOR_SNANS (element_mode (type))
120 && (!HONOR_SIGNED_ZEROS (element_mode (type))
121 || !COMPLEX_FLOAT_TYPE_P (type)))
122 (negate @0)))
123
124 /* Make sure to preserve divisions by zero. This is the reason why
125 we don't simplify x / x to 1 or 0 / x to 0. */
126 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
127 (simplify
128 (op @0 integer_onep)
129 (non_lvalue @0)))
130
131 /* X / -1 is -X. */
132 (for div (trunc_div ceil_div floor_div round_div exact_div)
133 (simplify
134 (div @0 integer_minus_onep@1)
135 (if (!TYPE_UNSIGNED (type))
136 (negate @0))))
137
138 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
139 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
140 (simplify
141 (floor_div @0 @1)
142 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
143 && TYPE_UNSIGNED (type))
144 (trunc_div @0 @1)))
145
146 /* Combine two successive divisions. Note that combining ceil_div
147 and floor_div is trickier and combining round_div even more so. */
148 (for div (trunc_div exact_div)
149 (simplify
150 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
151 (with {
152 bool overflow_p;
153 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
154 }
155 (if (!overflow_p)
156 (div @0 { wide_int_to_tree (type, mul); }))
157 (if (overflow_p
158 && (TYPE_UNSIGNED (type)
159 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
160 { build_zero_cst (type); }))))
161
162 /* Optimize A / A to 1.0 if we don't care about
163 NaNs or Infinities. */
164 (simplify
165 (rdiv @0 @0)
166 (if (FLOAT_TYPE_P (type)
167 && ! HONOR_NANS (type)
168 && ! HONOR_INFINITIES (element_mode (type)))
169 { build_one_cst (type); }))
170
171 /* Optimize -A / A to -1.0 if we don't care about
172 NaNs or Infinities. */
173 (simplify
174 (rdiv:c @0 (negate @0))
175 (if (FLOAT_TYPE_P (type)
176 && ! HONOR_NANS (type)
177 && ! HONOR_INFINITIES (element_mode (type)))
178 { build_minus_one_cst (type); }))
179
180 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
181 (simplify
182 (rdiv @0 real_onep)
183 (if (!HONOR_SNANS (element_mode (type)))
184 (non_lvalue @0)))
185
186 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
187 (simplify
188 (rdiv @0 real_minus_onep)
189 (if (!HONOR_SNANS (element_mode (type)))
190 (negate @0)))
191
192 /* If ARG1 is a constant, we can convert this to a multiply by the
193 reciprocal. This does not have the same rounding properties,
194 so only do this if -freciprocal-math. We can actually
195 always safely do it if ARG1 is a power of two, but it's hard to
196 tell if it is or not in a portable manner. */
197 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
198 (simplify
199 (rdiv @0 cst@1)
200 (if (optimize)
201 (if (flag_reciprocal_math
202 && !real_zerop (@1))
203 (with
204 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
205 (if (tem)
206 (mult @0 { tem; } ))))
207 (if (cst != COMPLEX_CST)
208 (with { tree inverse = exact_inverse (type, @1); }
209 (if (inverse)
210 (mult @0 { inverse; } )))))))
211
212 /* Same applies to modulo operations, but fold is inconsistent here
213 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
214 (for mod (ceil_mod floor_mod round_mod trunc_mod)
215 /* 0 % X is always zero. */
216 (simplify
217 (mod integer_zerop@0 @1)
218 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
219 (if (!integer_zerop (@1))
220 @0))
221 /* X % 1 is always zero. */
222 (simplify
223 (mod @0 integer_onep)
224 { build_zero_cst (type); })
225 /* X % -1 is zero. */
226 (simplify
227 (mod @0 integer_minus_onep@1)
228 (if (!TYPE_UNSIGNED (type))
229 { build_zero_cst (type); }))
230 /* (X % Y) % Y is just X % Y. */
231 (simplify
232 (mod (mod@2 @0 @1) @1)
233 @2))
234
235 /* X % -C is the same as X % C. */
236 (simplify
237 (trunc_mod @0 INTEGER_CST@1)
238 (if (TYPE_SIGN (type) == SIGNED
239 && !TREE_OVERFLOW (@1)
240 && wi::neg_p (@1)
241 && !TYPE_OVERFLOW_TRAPS (type)
242 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
243 && !sign_bit_p (@1, @1))
244 (trunc_mod @0 (negate @1))))
245
246 /* X % -Y is the same as X % Y. */
247 (simplify
248 (trunc_mod @0 (convert? (negate @1)))
249 (if (!TYPE_UNSIGNED (type)
250 && !TYPE_OVERFLOW_TRAPS (type)
251 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
252 (trunc_mod @0 (convert @1))))
253
254 /* X - (X / Y) * Y is the same as X % Y. */
255 (simplify
256 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
257 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
258 (trunc_mod (convert @0) (convert @1))))
259
260 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
261 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
262 Also optimize A % (C << N) where C is a power of 2,
263 to A & ((C << N) - 1). */
264 (match (power_of_two_cand @1)
265 INTEGER_CST@1)
266 (match (power_of_two_cand @1)
267 (lshift INTEGER_CST@1 @2))
268 (for mod (trunc_mod floor_mod)
269 (simplify
270 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
271 (if ((TYPE_UNSIGNED (type)
272 || tree_expr_nonnegative_p (@0))
273 && tree_nop_conversion_p (type, TREE_TYPE (@3))
274 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
275 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
276
277 /* X % Y is smaller than Y. */
278 (for cmp (lt ge)
279 (simplify
280 (cmp (trunc_mod @0 @1) @1)
281 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
282 { constant_boolean_node (cmp == LT_EXPR, type); })))
283 (for cmp (gt le)
284 (simplify
285 (cmp @1 (trunc_mod @0 @1))
286 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
287 { constant_boolean_node (cmp == GT_EXPR, type); })))
288
289 /* x | ~0 -> ~0 */
290 (simplify
291 (bit_ior @0 integer_all_onesp@1)
292 @1)
293
294 /* x & 0 -> 0 */
295 (simplify
296 (bit_and @0 integer_zerop@1)
297 @1)
298
299 /* ~x | x -> -1 */
300 (simplify
301 (bit_ior:c (convert? @0) (convert? (bit_not @0)))
302 (convert { build_all_ones_cst (TREE_TYPE (@0)); }))
303
304 /* x ^ x -> 0 */
305 (simplify
306 (bit_xor @0 @0)
307 { build_zero_cst (type); })
308
309 /* Canonicalize X ^ ~0 to ~X. */
310 (simplify
311 (bit_xor @0 integer_all_onesp@1)
312 (bit_not @0))
313
314 /* ~X ^ X is -1. */
315 (simplify
316 (bit_xor:c (bit_not @0) @0)
317 { build_all_ones_cst (type); })
318
319 /* x & ~0 -> x */
320 (simplify
321 (bit_and @0 integer_all_onesp)
322 (non_lvalue @0))
323
324 /* x & x -> x, x | x -> x */
325 (for bitop (bit_and bit_ior)
326 (simplify
327 (bitop @0 @0)
328 (non_lvalue @0)))
329
330 /* x + (x & 1) -> (x + 1) & ~1 */
331 (simplify
332 (plus:c @0 (bit_and@2 @0 integer_onep@1))
333 (if (single_use (@2))
334 (bit_and (plus @0 @1) (bit_not @1))))
335
336 /* x & ~(x & y) -> x & ~y */
337 /* x | ~(x | y) -> x | ~y */
338 (for bitop (bit_and bit_ior)
339 (simplify
340 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
341 (if (single_use (@2))
342 (bitop @0 (bit_not @1)))))
343
344 /* (x | y) & ~x -> y & ~x */
345 /* (x & y) | ~x -> y | ~x */
346 (for bitop (bit_and bit_ior)
347 rbitop (bit_ior bit_and)
348 (simplify
349 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
350 (bitop @1 @2)))
351
352 /* (x & y) ^ (x | y) -> x ^ y */
353 (simplify
354 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
355 (bit_xor @0 @1))
356
357 /* (x ^ y) ^ (x | y) -> x & y */
358 (simplify
359 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
360 (bit_and @0 @1))
361
362 /* (x & y) + (x ^ y) -> x | y */
363 /* (x & y) | (x ^ y) -> x | y */
364 /* (x & y) ^ (x ^ y) -> x | y */
365 (for op (plus bit_ior bit_xor)
366 (simplify
367 (op:c (bit_and @0 @1) (bit_xor @0 @1))
368 (bit_ior @0 @1)))
369
370 /* (x & y) + (x | y) -> x + y */
371 (simplify
372 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
373 (plus @0 @1))
374
375 /* (x + y) - (x | y) -> x & y */
376 (simplify
377 (minus (plus @0 @1) (bit_ior @0 @1))
378 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
379 && !TYPE_SATURATING (type))
380 (bit_and @0 @1)))
381
382 /* (x + y) - (x & y) -> x | y */
383 (simplify
384 (minus (plus @0 @1) (bit_and @0 @1))
385 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
386 && !TYPE_SATURATING (type))
387 (bit_ior @0 @1)))
388
389 /* (x | y) - (x ^ y) -> x & y */
390 (simplify
391 (minus (bit_ior @0 @1) (bit_xor @0 @1))
392 (bit_and @0 @1))
393
394 /* (x | y) - (x & y) -> x ^ y */
395 (simplify
396 (minus (bit_ior @0 @1) (bit_and @0 @1))
397 (bit_xor @0 @1))
398
399 /* (x | y) & ~(x & y) -> x ^ y */
400 (simplify
401 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
402 (bit_xor @0 @1))
403
404 /* (x | y) & (~x ^ y) -> x & y */
405 (simplify
406 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
407 (bit_and @0 @1))
408
409 /* ~x & ~y -> ~(x | y)
410 ~x | ~y -> ~(x & y) */
411 (for op (bit_and bit_ior)
412 rop (bit_ior bit_and)
413 (simplify
414 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
415 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
416 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
417 (bit_not (rop (convert @0) (convert @1))))))
418
419 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
420 with a constant, and the two constants have no bits in common,
421 we should treat this as a BIT_IOR_EXPR since this may produce more
422 simplifications. */
423 (simplify
424 (bit_xor (convert1? (bit_and@4 @0 INTEGER_CST@1))
425 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
426 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
427 && tree_nop_conversion_p (type, TREE_TYPE (@2))
428 && wi::bit_and (@1, @3) == 0)
429 (bit_ior (convert @4) (convert @5))))
430
431 /* (X | Y) ^ X -> Y & ~ X*/
432 (simplify
433 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
434 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
435 (convert (bit_and @1 (bit_not @0)))))
436
437 /* Convert ~X ^ ~Y to X ^ Y. */
438 (simplify
439 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
440 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
441 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
442 (bit_xor (convert @0) (convert @1))))
443
444 /* Convert ~X ^ C to X ^ ~C. */
445 (simplify
446 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
447 (bit_xor (convert @0) (bit_not @1)))
448
449 /* Fold (X & Y) ^ Y as ~X & Y. */
450 (simplify
451 (bit_xor:c (bit_and:c @0 @1) @1)
452 (bit_and (bit_not @0) @1))
453
454
455 (simplify
456 (abs (abs@1 @0))
457 @1)
458 (simplify
459 (abs (negate @0))
460 (abs @0))
461 (simplify
462 (abs tree_expr_nonnegative_p@0)
463 @0)
464
465 /* A - B -> A + (-B) if B is easily negatable. This just covers
466 very few cases of "easily negatable", effectively inlining negate_expr_p. */
467 (simplify
468 (minus @0 INTEGER_CST@1)
469 (if ((INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_WRAPS (type))
471 || (!TYPE_OVERFLOW_SANITIZED (type)
472 && may_negate_without_overflow_p (@1)))
473 (plus @0 (negate @1))))
474 (simplify
475 (minus @0 REAL_CST@1)
476 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
477 (plus @0 (negate @1))))
478 (simplify
479 (minus @0 VECTOR_CST@1)
480 (if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
481 (plus @0 (negate @1))))
482
483
484 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
485 when profitable.
486 For bitwise binary operations apply operand conversions to the
487 binary operation result instead of to the operands. This allows
488 to combine successive conversions and bitwise binary operations.
489 We combine the above two cases by using a conditional convert. */
490 (for bitop (bit_and bit_ior bit_xor)
491 (simplify
492 (bitop (convert @0) (convert? @1))
493 (if (((TREE_CODE (@1) == INTEGER_CST
494 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
495 && int_fits_type_p (@1, TREE_TYPE (@0)))
496 || types_match (@0, @1))
497 /* ??? This transform conflicts with fold-const.c doing
498 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
499 constants (if x has signed type, the sign bit cannot be set
500 in c). This folds extension into the BIT_AND_EXPR.
501 Restrict it to GIMPLE to avoid endless recursions. */
502 && (bitop != BIT_AND_EXPR || GIMPLE)
503 && (/* That's a good idea if the conversion widens the operand, thus
504 after hoisting the conversion the operation will be narrower. */
505 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
506 /* It's also a good idea if the conversion is to a non-integer
507 mode. */
508 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
509 /* Or if the precision of TO is not the same as the precision
510 of its mode. */
511 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
512 (convert (bitop @0 (convert @1))))))
513
514 (for bitop (bit_and bit_ior)
515 rbitop (bit_ior bit_and)
516 /* (x | y) & x -> x */
517 /* (x & y) | x -> x */
518 (simplify
519 (bitop:c (rbitop:c @0 @1) @0)
520 @0)
521 /* (~x | y) & x -> x & y */
522 /* (~x & y) | x -> x | y */
523 (simplify
524 (bitop:c (rbitop:c (bit_not @0) @1) @0)
525 (bitop @0 @1)))
526
527 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
528 (for bitop (bit_and bit_ior bit_xor)
529 (simplify
530 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
531 (bit_and (bitop @0 @2) @1)))
532
533 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
534 (simplify
535 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
536 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
537
538 /* Combine successive equal operations with constants. */
539 (for bitop (bit_and bit_ior bit_xor)
540 (simplify
541 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
542 (bitop @0 (bitop @1 @2))))
543
544 /* Try simple folding for X op !X, and X op X with the help
545 of the truth_valued_p and logical_inverted_value predicates. */
546 (match truth_valued_p
547 @0
548 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
549 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
550 (match truth_valued_p
551 (op @0 @1)))
552 (match truth_valued_p
553 (truth_not @0))
554
555 (match (logical_inverted_value @0)
556 (bit_not truth_valued_p@0))
557 (match (logical_inverted_value @0)
558 (eq @0 integer_zerop))
559 (match (logical_inverted_value @0)
560 (ne truth_valued_p@0 integer_truep))
561 (match (logical_inverted_value @0)
562 (bit_xor truth_valued_p@0 integer_truep))
563
564 /* X & !X -> 0. */
565 (simplify
566 (bit_and:c @0 (logical_inverted_value @0))
567 { build_zero_cst (type); })
568 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
569 (for op (bit_ior bit_xor)
570 (simplify
571 (op:c truth_valued_p@0 (logical_inverted_value @0))
572 { constant_boolean_node (true, type); }))
573
574 /* If arg1 and arg2 are booleans (or any single bit type)
575 then try to simplify:
576
577 (~X & Y) -> X < Y
578 (X & ~Y) -> Y < X
579 (~X | Y) -> X <= Y
580 (X | ~Y) -> Y <= X
581
582 But only do this if our result feeds into a comparison as
583 this transformation is not always a win, particularly on
584 targets with and-not instructions.
585 -> simplify_bitwise_binary_boolean */
586 (simplify
587 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
588 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
589 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
590 (lt @0 @1)))
591 (simplify
592 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
593 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
594 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
595 (le @0 @1)))
596
597 /* ~~x -> x */
598 (simplify
599 (bit_not (bit_not @0))
600 @0)
601
602 /* Convert ~ (-A) to A - 1. */
603 (simplify
604 (bit_not (convert? (negate @0)))
605 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
606 (convert (minus @0 { build_one_cst (TREE_TYPE (@0)); }))))
607
608 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
609 (simplify
610 (bit_not (convert? (minus @0 integer_onep)))
611 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
612 (convert (negate @0))))
613 (simplify
614 (bit_not (convert? (plus @0 integer_all_onesp)))
615 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
616 (convert (negate @0))))
617
618 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
619 (simplify
620 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
621 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
622 (convert (bit_xor @0 (bit_not @1)))))
623 (simplify
624 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
625 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
626 (convert (bit_xor @0 @1))))
627
628 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
629 (simplify
630 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
631 (if (single_use (@3) && single_use (@4))
632 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
633
634
635 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
636 (simplify
637 (pointer_plus (pointer_plus@2 @0 @1) @3)
638 (if (single_use (@2)
639 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
640 (pointer_plus @0 (plus @1 @3))))
641
642 /* Pattern match
643 tem1 = (long) ptr1;
644 tem2 = (long) ptr2;
645 tem3 = tem2 - tem1;
646 tem4 = (unsigned long) tem3;
647 tem5 = ptr1 + tem4;
648 and produce
649 tem5 = ptr2; */
650 (simplify
651 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
652 /* Conditionally look through a sign-changing conversion. */
653 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
654 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
655 || (GENERIC && type == TREE_TYPE (@1))))
656 @1))
657
658 /* Pattern match
659 tem = (sizetype) ptr;
660 tem = tem & algn;
661 tem = -tem;
662 ... = ptr p+ tem;
663 and produce the simpler and easier to analyze with respect to alignment
664 ... = ptr & ~algn; */
665 (simplify
666 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
667 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
668 (bit_and @0 { algn; })))
669
670 /* Try folding difference of addresses. */
671 (simplify
672 (minus (convert ADDR_EXPR@0) (convert @1))
673 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
674 (with { HOST_WIDE_INT diff; }
675 (if (ptr_difference_const (@0, @1, &diff))
676 { build_int_cst_type (type, diff); }))))
677 (simplify
678 (minus (convert @0) (convert ADDR_EXPR@1))
679 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
680 (with { HOST_WIDE_INT diff; }
681 (if (ptr_difference_const (@0, @1, &diff))
682 { build_int_cst_type (type, diff); }))))
683
684 /* If arg0 is derived from the address of an object or function, we may
685 be able to fold this expression using the object or function's
686 alignment. */
687 (simplify
688 (bit_and (convert? @0) INTEGER_CST@1)
689 (if (POINTER_TYPE_P (TREE_TYPE (@0))
690 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
691 (with
692 {
693 unsigned int align;
694 unsigned HOST_WIDE_INT bitpos;
695 get_pointer_alignment_1 (@0, &align, &bitpos);
696 }
697 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
698 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
699
700
701 /* We can't reassociate at all for saturating types. */
702 (if (!TYPE_SATURATING (type))
703
704 /* Contract negates. */
705 /* A + (-B) -> A - B */
706 (simplify
707 (plus:c (convert1? @0) (convert2? (negate @1)))
708 /* Apply STRIP_NOPS on @0 and the negate. */
709 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
710 && tree_nop_conversion_p (type, TREE_TYPE (@1))
711 && !TYPE_OVERFLOW_SANITIZED (type))
712 (minus (convert @0) (convert @1))))
713 /* A - (-B) -> A + B */
714 (simplify
715 (minus (convert1? @0) (convert2? (negate @1)))
716 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
717 && tree_nop_conversion_p (type, TREE_TYPE (@1))
718 && !TYPE_OVERFLOW_SANITIZED (type))
719 (plus (convert @0) (convert @1))))
720 /* -(-A) -> A */
721 (simplify
722 (negate (convert? (negate @1)))
723 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
724 && !TYPE_OVERFLOW_SANITIZED (type))
725 (convert @1)))
726
727 /* We can't reassociate floating-point unless -fassociative-math
728 or fixed-point plus or minus because of saturation to +-Inf. */
729 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
730 && !FIXED_POINT_TYPE_P (type))
731
732 /* Match patterns that allow contracting a plus-minus pair
733 irrespective of overflow issues. */
734 /* (A +- B) - A -> +- B */
735 /* (A +- B) -+ B -> A */
736 /* A - (A +- B) -> -+ B */
737 /* A +- (B -+ A) -> +- B */
738 (simplify
739 (minus (plus:c @0 @1) @0)
740 @1)
741 (simplify
742 (minus (minus @0 @1) @0)
743 (negate @1))
744 (simplify
745 (plus:c (minus @0 @1) @1)
746 @0)
747 (simplify
748 (minus @0 (plus:c @0 @1))
749 (negate @1))
750 (simplify
751 (minus @0 (minus @0 @1))
752 @1)
753
754 /* (A +- CST) +- CST -> A + CST */
755 (for outer_op (plus minus)
756 (for inner_op (plus minus)
757 (simplify
758 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
759 /* If the constant operation overflows we cannot do the transform
760 as we would introduce undefined overflow, for example
761 with (a - 1) + INT_MIN. */
762 (with { tree cst = fold_binary (outer_op == inner_op
763 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
764 (if (cst && !TREE_OVERFLOW (cst))
765 (inner_op @0 { cst; } ))))))
766
767 /* (CST - A) +- CST -> CST - A */
768 (for outer_op (plus minus)
769 (simplify
770 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
771 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
772 (if (cst && !TREE_OVERFLOW (cst))
773 (minus { cst; } @0)))))
774
775 /* ~A + A -> -1 */
776 (simplify
777 (plus:c (bit_not @0) @0)
778 (if (!TYPE_OVERFLOW_TRAPS (type))
779 { build_all_ones_cst (type); }))
780
781 /* ~A + 1 -> -A */
782 (simplify
783 (plus (convert? (bit_not @0)) integer_each_onep)
784 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
785 (negate (convert @0))))
786
787 /* -A - 1 -> ~A */
788 (simplify
789 (minus (convert? (negate @0)) integer_each_onep)
790 (if (!TYPE_OVERFLOW_TRAPS (type)
791 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
792 (bit_not (convert @0))))
793
794 /* -1 - A -> ~A */
795 (simplify
796 (minus integer_all_onesp @0)
797 (bit_not @0))
798
799 /* (T)(P + A) - (T)P -> (T) A */
800 (for add (plus pointer_plus)
801 (simplify
802 (minus (convert (add @0 @1))
803 (convert @0))
804 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
805 /* For integer types, if A has a smaller type
806 than T the result depends on the possible
807 overflow in P + A.
808 E.g. T=size_t, A=(unsigned)429497295, P>0.
809 However, if an overflow in P + A would cause
810 undefined behavior, we can assume that there
811 is no overflow. */
812 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
813 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
814 /* For pointer types, if the conversion of A to the
815 final type requires a sign- or zero-extension,
816 then we have to punt - it is not defined which
817 one is correct. */
818 || (POINTER_TYPE_P (TREE_TYPE (@0))
819 && TREE_CODE (@1) == INTEGER_CST
820 && tree_int_cst_sign_bit (@1) == 0))
821 (convert @1))))))
822
823
824 /* Simplifications of MIN_EXPR and MAX_EXPR. */
825
826 (for minmax (min max)
827 (simplify
828 (minmax @0 @0)
829 @0))
830 (simplify
831 (min @0 @1)
832 (if (INTEGRAL_TYPE_P (type)
833 && TYPE_MIN_VALUE (type)
834 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
835 @1))
836 (simplify
837 (max @0 @1)
838 (if (INTEGRAL_TYPE_P (type)
839 && TYPE_MAX_VALUE (type)
840 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
841 @1))
842
843
844 /* Simplifications of shift and rotates. */
845
846 (for rotate (lrotate rrotate)
847 (simplify
848 (rotate integer_all_onesp@0 @1)
849 @0))
850
851 /* Optimize -1 >> x for arithmetic right shifts. */
852 (simplify
853 (rshift integer_all_onesp@0 @1)
854 (if (!TYPE_UNSIGNED (type)
855 && tree_expr_nonnegative_p (@1))
856 @0))
857
858 (for shiftrotate (lrotate rrotate lshift rshift)
859 (simplify
860 (shiftrotate @0 integer_zerop)
861 (non_lvalue @0))
862 (simplify
863 (shiftrotate integer_zerop@0 @1)
864 @0)
865 /* Prefer vector1 << scalar to vector1 << vector2
866 if vector2 is uniform. */
867 (for vec (VECTOR_CST CONSTRUCTOR)
868 (simplify
869 (shiftrotate @0 vec@1)
870 (with { tree tem = uniform_vector_p (@1); }
871 (if (tem)
872 (shiftrotate @0 { tem; }))))))
873
874 /* Rewrite an LROTATE_EXPR by a constant into an
875 RROTATE_EXPR by a new constant. */
876 (simplify
877 (lrotate @0 INTEGER_CST@1)
878 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
879 build_int_cst (TREE_TYPE (@1),
880 element_precision (type)), @1); }))
881
882 /* ((1 << A) & 1) != 0 -> A == 0
883 ((1 << A) & 1) == 0 -> A != 0 */
884 (for cmp (ne eq)
885 icmp (eq ne)
886 (simplify
887 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
888 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
889
890 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
891 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
892 if CST2 != 0. */
893 (for cmp (ne eq)
894 (simplify
895 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
896 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
897 (if (cand < 0
898 || (!integer_zerop (@2)
899 && wi::ne_p (wi::lshift (@0, cand), @2)))
900 { constant_boolean_node (cmp == NE_EXPR, type); })
901 (if (!integer_zerop (@2)
902 && wi::eq_p (wi::lshift (@0, cand), @2))
903 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
904
905 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
906 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
907 if the new mask might be further optimized. */
908 (for shift (lshift rshift)
909 (simplify
910 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
911 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
912 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
913 && tree_fits_uhwi_p (@1)
914 && tree_to_uhwi (@1) > 0
915 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
916 (with
917 {
918 unsigned int shiftc = tree_to_uhwi (@1);
919 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
920 unsigned HOST_WIDE_INT newmask, zerobits = 0;
921 tree shift_type = TREE_TYPE (@3);
922 unsigned int prec;
923
924 if (shift == LSHIFT_EXPR)
925 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
926 else if (shift == RSHIFT_EXPR
927 && (TYPE_PRECISION (shift_type)
928 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
929 {
930 prec = TYPE_PRECISION (TREE_TYPE (@3));
931 tree arg00 = @0;
932 /* See if more bits can be proven as zero because of
933 zero extension. */
934 if (@3 != @0
935 && TYPE_UNSIGNED (TREE_TYPE (@0)))
936 {
937 tree inner_type = TREE_TYPE (@0);
938 if ((TYPE_PRECISION (inner_type)
939 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
940 && TYPE_PRECISION (inner_type) < prec)
941 {
942 prec = TYPE_PRECISION (inner_type);
943 /* See if we can shorten the right shift. */
944 if (shiftc < prec)
945 shift_type = inner_type;
946 /* Otherwise X >> C1 is all zeros, so we'll optimize
947 it into (X, 0) later on by making sure zerobits
948 is all ones. */
949 }
950 }
951 zerobits = ~(unsigned HOST_WIDE_INT) 0;
952 if (shiftc < prec)
953 {
954 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
955 zerobits <<= prec - shiftc;
956 }
957 /* For arithmetic shift if sign bit could be set, zerobits
958 can contain actually sign bits, so no transformation is
959 possible, unless MASK masks them all away. In that
960 case the shift needs to be converted into logical shift. */
961 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
962 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
963 {
964 if ((mask & zerobits) == 0)
965 shift_type = unsigned_type_for (TREE_TYPE (@3));
966 else
967 zerobits = 0;
968 }
969 }
970 }
971 /* ((X << 16) & 0xff00) is (X, 0). */
972 (if ((mask & zerobits) == mask)
973 { build_int_cst (type, 0); })
974 (with { newmask = mask | zerobits; }
975 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
976 (with
977 {
978 /* Only do the transformation if NEWMASK is some integer
979 mode's mask. */
980 for (prec = BITS_PER_UNIT;
981 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
982 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
983 break;
984 }
985 (if (prec < HOST_BITS_PER_WIDE_INT
986 || newmask == ~(unsigned HOST_WIDE_INT) 0)
987 (with
988 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
989 (if (!tree_int_cst_equal (newmaskt, @2))
990 (if (shift_type != TREE_TYPE (@3)
991 && single_use (@4) && single_use (@5))
992 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
993 (if (shift_type == TREE_TYPE (@3))
994 (bit_and @4 { newmaskt; }))))))))))))
995
996 /* Simplifications of conversions. */
997
998 /* Basic strip-useless-type-conversions / strip_nops. */
999 (for cvt (convert view_convert float fix_trunc)
1000 (simplify
1001 (cvt @0)
1002 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1003 || (GENERIC && type == TREE_TYPE (@0)))
1004 @0)))
1005
1006 /* Contract view-conversions. */
1007 (simplify
1008 (view_convert (view_convert @0))
1009 (view_convert @0))
1010
1011 /* For integral conversions with the same precision or pointer
1012 conversions use a NOP_EXPR instead. */
1013 (simplify
1014 (view_convert @0)
1015 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1016 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1017 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1018 (convert @0)))
1019
1020 /* Strip inner integral conversions that do not change precision or size. */
1021 (simplify
1022 (view_convert (convert@0 @1))
1023 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1024 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1025 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1026 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1027 (view_convert @1)))
1028
1029 /* Re-association barriers around constants and other re-association
1030 barriers can be removed. */
1031 (simplify
1032 (paren CONSTANT_CLASS_P@0)
1033 @0)
1034 (simplify
1035 (paren (paren@1 @0))
1036 @1)
1037
1038 /* Handle cases of two conversions in a row. */
1039 (for ocvt (convert float fix_trunc)
1040 (for icvt (convert float)
1041 (simplify
1042 (ocvt (icvt@1 @0))
1043 (with
1044 {
1045 tree inside_type = TREE_TYPE (@0);
1046 tree inter_type = TREE_TYPE (@1);
1047 int inside_int = INTEGRAL_TYPE_P (inside_type);
1048 int inside_ptr = POINTER_TYPE_P (inside_type);
1049 int inside_float = FLOAT_TYPE_P (inside_type);
1050 int inside_vec = VECTOR_TYPE_P (inside_type);
1051 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1052 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1053 int inter_int = INTEGRAL_TYPE_P (inter_type);
1054 int inter_ptr = POINTER_TYPE_P (inter_type);
1055 int inter_float = FLOAT_TYPE_P (inter_type);
1056 int inter_vec = VECTOR_TYPE_P (inter_type);
1057 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1058 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1059 int final_int = INTEGRAL_TYPE_P (type);
1060 int final_ptr = POINTER_TYPE_P (type);
1061 int final_float = FLOAT_TYPE_P (type);
1062 int final_vec = VECTOR_TYPE_P (type);
1063 unsigned int final_prec = TYPE_PRECISION (type);
1064 int final_unsignedp = TYPE_UNSIGNED (type);
1065 }
1066 /* In addition to the cases of two conversions in a row
1067 handled below, if we are converting something to its own
1068 type via an object of identical or wider precision, neither
1069 conversion is needed. */
1070 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1071 || (GENERIC
1072 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1073 && (((inter_int || inter_ptr) && final_int)
1074 || (inter_float && final_float))
1075 && inter_prec >= final_prec)
1076 (ocvt @0))
1077
1078 /* Likewise, if the intermediate and initial types are either both
1079 float or both integer, we don't need the middle conversion if the
1080 former is wider than the latter and doesn't change the signedness
1081 (for integers). Avoid this if the final type is a pointer since
1082 then we sometimes need the middle conversion. Likewise if the
1083 final type has a precision not equal to the size of its mode. */
1084 (if (((inter_int && inside_int) || (inter_float && inside_float))
1085 && (final_int || final_float)
1086 && inter_prec >= inside_prec
1087 && (inter_float || inter_unsignedp == inside_unsignedp)
1088 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1089 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1090 (ocvt @0))
1091
1092 /* If we have a sign-extension of a zero-extended value, we can
1093 replace that by a single zero-extension. Likewise if the
1094 final conversion does not change precision we can drop the
1095 intermediate conversion. */
1096 (if (inside_int && inter_int && final_int
1097 && ((inside_prec < inter_prec && inter_prec < final_prec
1098 && inside_unsignedp && !inter_unsignedp)
1099 || final_prec == inter_prec))
1100 (ocvt @0))
1101
1102 /* Two conversions in a row are not needed unless:
1103 - some conversion is floating-point (overstrict for now), or
1104 - some conversion is a vector (overstrict for now), or
1105 - the intermediate type is narrower than both initial and
1106 final, or
1107 - the intermediate type and innermost type differ in signedness,
1108 and the outermost type is wider than the intermediate, or
1109 - the initial type is a pointer type and the precisions of the
1110 intermediate and final types differ, or
1111 - the final type is a pointer type and the precisions of the
1112 initial and intermediate types differ. */
1113 (if (! inside_float && ! inter_float && ! final_float
1114 && ! inside_vec && ! inter_vec && ! final_vec
1115 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1116 && ! (inside_int && inter_int
1117 && inter_unsignedp != inside_unsignedp
1118 && inter_prec < final_prec)
1119 && ((inter_unsignedp && inter_prec > inside_prec)
1120 == (final_unsignedp && final_prec > inter_prec))
1121 && ! (inside_ptr && inter_prec != final_prec)
1122 && ! (final_ptr && inside_prec != inter_prec)
1123 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1124 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1125 (ocvt @0))
1126
1127 /* A truncation to an unsigned type (a zero-extension) should be
1128 canonicalized as bitwise and of a mask. */
1129 (if (final_int && inter_int && inside_int
1130 && final_prec == inside_prec
1131 && final_prec > inter_prec
1132 && inter_unsignedp)
1133 (convert (bit_and @0 { wide_int_to_tree
1134 (inside_type,
1135 wi::mask (inter_prec, false,
1136 TYPE_PRECISION (inside_type))); })))
1137
1138 /* If we are converting an integer to a floating-point that can
1139 represent it exactly and back to an integer, we can skip the
1140 floating-point conversion. */
1141 (if (GIMPLE /* PR66211 */
1142 && inside_int && inter_float && final_int &&
1143 (unsigned) significand_size (TYPE_MODE (inter_type))
1144 >= inside_prec - !inside_unsignedp)
1145 (convert @0))))))
1146
1147 /* If we have a narrowing conversion to an integral type that is fed by a
1148 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1149 masks off bits outside the final type (and nothing else). */
1150 (simplify
1151 (convert (bit_and @0 INTEGER_CST@1))
1152 (if (INTEGRAL_TYPE_P (type)
1153 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1154 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1155 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1156 TYPE_PRECISION (type)), 0))
1157 (convert @0)))
1158
1159
1160 /* (X /[ex] A) * A -> X. */
1161 (simplify
1162 (mult (convert? (exact_div @0 @1)) @1)
1163 /* Look through a sign-changing conversion. */
1164 (convert @0))
1165
1166 /* Canonicalization of binary operations. */
1167
1168 /* Convert X + -C into X - C. */
1169 (simplify
1170 (plus @0 REAL_CST@1)
1171 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1172 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1173 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1174 (minus @0 { tem; })))))
1175
1176 /* Convert x+x into x*2.0. */
1177 (simplify
1178 (plus @0 @0)
1179 (if (SCALAR_FLOAT_TYPE_P (type))
1180 (mult @0 { build_real (type, dconst2); })))
1181
1182 (simplify
1183 (minus integer_zerop @1)
1184 (negate @1))
1185
1186 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1187 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1188 (-ARG1 + ARG0) reduces to -ARG1. */
1189 (simplify
1190 (minus real_zerop@0 @1)
1191 (if (fold_real_zero_addition_p (type, @0, 0))
1192 (negate @1)))
1193
1194 /* Transform x * -1 into -x. */
1195 (simplify
1196 (mult @0 integer_minus_onep)
1197 (negate @0))
1198
1199 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1200 (simplify
1201 (complex (realpart @0) (imagpart @0))
1202 @0)
1203 (simplify
1204 (realpart (complex @0 @1))
1205 @0)
1206 (simplify
1207 (imagpart (complex @0 @1))
1208 @1)
1209
1210
1211 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1212 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1213 (simplify
1214 (bswap (bswap @0))
1215 @0)
1216 (simplify
1217 (bswap (bit_not (bswap @0)))
1218 (bit_not @0))
1219 (for bitop (bit_xor bit_ior bit_and)
1220 (simplify
1221 (bswap (bitop:c (bswap @0) @1))
1222 (bitop @0 (bswap @1)))))
1223
1224
1225 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1226
1227 /* Simplify constant conditions.
1228 Only optimize constant conditions when the selected branch
1229 has the same type as the COND_EXPR. This avoids optimizing
1230 away "c ? x : throw", where the throw has a void type.
1231 Note that we cannot throw away the fold-const.c variant nor
1232 this one as we depend on doing this transform before possibly
1233 A ? B : B -> B triggers and the fold-const.c one can optimize
1234 0 ? A : B to B even if A has side-effects. Something
1235 genmatch cannot handle. */
1236 (simplify
1237 (cond INTEGER_CST@0 @1 @2)
1238 (if (integer_zerop (@0)
1239 && (!VOID_TYPE_P (TREE_TYPE (@2))
1240 || VOID_TYPE_P (type)))
1241 @2)
1242 (if (!integer_zerop (@0)
1243 && (!VOID_TYPE_P (TREE_TYPE (@1))
1244 || VOID_TYPE_P (type)))
1245 @1))
1246 (simplify
1247 (vec_cond VECTOR_CST@0 @1 @2)
1248 (if (integer_all_onesp (@0))
1249 @1)
1250 (if (integer_zerop (@0))
1251 @2))
1252
1253 (for cnd (cond vec_cond)
1254 /* A ? B : (A ? X : C) -> A ? B : C. */
1255 (simplify
1256 (cnd @0 (cnd @0 @1 @2) @3)
1257 (cnd @0 @1 @3))
1258 (simplify
1259 (cnd @0 @1 (cnd @0 @2 @3))
1260 (cnd @0 @1 @3))
1261
1262 /* A ? B : B -> B. */
1263 (simplify
1264 (cnd @0 @1 @1)
1265 @1)
1266
1267 /* !A ? B : C -> A ? C : B. */
1268 (simplify
1269 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1270 (cnd @0 @2 @1)))
1271
1272 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1273 return all-1 or all-0 results. */
1274 /* ??? We could instead convert all instances of the vec_cond to negate,
1275 but that isn't necessarily a win on its own. */
1276 (simplify
1277 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1278 (if (VECTOR_TYPE_P (type)
1279 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1280 && (TYPE_MODE (TREE_TYPE (type))
1281 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1282 (minus @3 (view_convert @0))))
1283
1284 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1285 (simplify
1286 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1287 (if (VECTOR_TYPE_P (type)
1288 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1289 && (TYPE_MODE (TREE_TYPE (type))
1290 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1291 (plus @3 (view_convert @0))))
1292
1293
1294 /* Simplifications of comparisons. */
1295
1296 /* We can simplify a logical negation of a comparison to the
1297 inverted comparison. As we cannot compute an expression
1298 operator using invert_tree_comparison we have to simulate
1299 that with expression code iteration. */
1300 (for cmp (tcc_comparison)
1301 icmp (inverted_tcc_comparison)
1302 ncmp (inverted_tcc_comparison_with_nans)
1303 /* Ideally we'd like to combine the following two patterns
1304 and handle some more cases by using
1305 (logical_inverted_value (cmp @0 @1))
1306 here but for that genmatch would need to "inline" that.
1307 For now implement what forward_propagate_comparison did. */
1308 (simplify
1309 (bit_not (cmp @0 @1))
1310 (if (VECTOR_TYPE_P (type)
1311 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1312 /* Comparison inversion may be impossible for trapping math,
1313 invert_tree_comparison will tell us. But we can't use
1314 a computed operator in the replacement tree thus we have
1315 to play the trick below. */
1316 (with { enum tree_code ic = invert_tree_comparison
1317 (cmp, HONOR_NANS (@0)); }
1318 (if (ic == icmp)
1319 (icmp @0 @1))
1320 (if (ic == ncmp)
1321 (ncmp @0 @1)))))
1322 (simplify
1323 (bit_xor (cmp @0 @1) integer_truep)
1324 (with { enum tree_code ic = invert_tree_comparison
1325 (cmp, HONOR_NANS (@0)); }
1326 (if (ic == icmp)
1327 (icmp @0 @1))
1328 (if (ic == ncmp)
1329 (ncmp @0 @1)))))
1330
1331 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1332 ??? The transformation is valid for the other operators if overflow
1333 is undefined for the type, but performing it here badly interacts
1334 with the transformation in fold_cond_expr_with_comparison which
1335 attempts to synthetize ABS_EXPR. */
1336 (for cmp (eq ne)
1337 (simplify
1338 (cmp (minus @0 @1) integer_zerop)
1339 (cmp @0 @1)))
1340
1341 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1342 signed arithmetic case. That form is created by the compiler
1343 often enough for folding it to be of value. One example is in
1344 computing loop trip counts after Operator Strength Reduction. */
1345 (for cmp (simple_comparison)
1346 scmp (swapped_simple_comparison)
1347 (simplify
1348 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1349 /* Handle unfolded multiplication by zero. */
1350 (if (integer_zerop (@1))
1351 (cmp @1 @2))
1352 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1353 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1354 /* If @1 is negative we swap the sense of the comparison. */
1355 (if (tree_int_cst_sgn (@1) < 0)
1356 (scmp @0 @2))
1357 (cmp @0 @2))))
1358
1359 /* Simplify comparison of something with itself. For IEEE
1360 floating-point, we can only do some of these simplifications. */
1361 (simplify
1362 (eq @0 @0)
1363 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1364 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1365 { constant_boolean_node (true, type); }))
1366 (for cmp (ge le)
1367 (simplify
1368 (cmp @0 @0)
1369 (eq @0 @0)))
1370 (for cmp (ne gt lt)
1371 (simplify
1372 (cmp @0 @0)
1373 (if (cmp != NE_EXPR
1374 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1375 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1376 { constant_boolean_node (false, type); })))
1377
1378 /* Fold ~X op ~Y as Y op X. */
1379 (for cmp (simple_comparison)
1380 (simplify
1381 (cmp (bit_not @0) (bit_not @1))
1382 (cmp @1 @0)))
1383
1384 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1385 (for cmp (simple_comparison)
1386 scmp (swapped_simple_comparison)
1387 (simplify
1388 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1389 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1390 (scmp @0 (bit_not @1)))))
1391
1392 (for cmp (simple_comparison)
1393 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1394 (simplify
1395 (cmp (convert@2 @0) (convert? @1))
1396 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1397 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1398 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1399 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1400 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1401 (with
1402 {
1403 tree type1 = TREE_TYPE (@1);
1404 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1405 {
1406 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1407 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1408 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1409 type1 = float_type_node;
1410 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1411 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1412 type1 = double_type_node;
1413 }
1414 tree newtype
1415 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1416 ? TREE_TYPE (@0) : type1);
1417 }
1418 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1419 (cmp (convert:newtype @0) (convert:newtype @1))))))
1420
1421 (simplify
1422 (cmp @0 REAL_CST@1)
1423 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1424 /* a CMP (-0) -> a CMP 0 */
1425 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1426 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1427 /* x != NaN is always true, other ops are always false. */
1428 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1429 && ! HONOR_SNANS (@1))
1430 { constant_boolean_node (cmp == NE_EXPR, type); })
1431 /* Fold comparisons against infinity. */
1432 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1433 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1434 (with
1435 {
1436 REAL_VALUE_TYPE max;
1437 enum tree_code code = cmp;
1438 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1439 if (neg)
1440 code = swap_tree_comparison (code);
1441 }
1442 /* x > +Inf is always false, if with ignore sNANs. */
1443 (if (code == GT_EXPR
1444 && ! HONOR_SNANS (@0))
1445 { constant_boolean_node (false, type); })
1446 (if (code == LE_EXPR)
1447 /* x <= +Inf is always true, if we don't case about NaNs. */
1448 (if (! HONOR_NANS (@0))
1449 { constant_boolean_node (true, type); })
1450 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
1451 (eq @0 @0))
1452 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1453 (if (code == EQ_EXPR || code == GE_EXPR)
1454 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1455 (if (neg)
1456 (lt @0 { build_real (TREE_TYPE (@0), max); }))
1457 (gt @0 { build_real (TREE_TYPE (@0), max); })))
1458 /* x < +Inf is always equal to x <= DBL_MAX. */
1459 (if (code == LT_EXPR)
1460 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1461 (if (neg)
1462 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1463 (le @0 { build_real (TREE_TYPE (@0), max); })))
1464 /* x != +Inf is always equal to !(x > DBL_MAX). */
1465 (if (code == NE_EXPR)
1466 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1467 (if (! HONOR_NANS (@0))
1468 (if (neg)
1469 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1470 (le @0 { build_real (TREE_TYPE (@0), max); }))
1471 (if (neg)
1472 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1473 { build_one_cst (type); }))
1474 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1475 { build_one_cst (type); }))))))
1476
1477 /* If this is a comparison of a real constant with a PLUS_EXPR
1478 or a MINUS_EXPR of a real constant, we can convert it into a
1479 comparison with a revised real constant as long as no overflow
1480 occurs when unsafe_math_optimizations are enabled. */
1481 (if (flag_unsafe_math_optimizations)
1482 (for op (plus minus)
1483 (simplify
1484 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1485 (with
1486 {
1487 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1488 TREE_TYPE (@1), @2, @1);
1489 }
1490 (if (!TREE_OVERFLOW (tem))
1491 (cmp @0 { tem; }))))))
1492
1493 /* Likewise, we can simplify a comparison of a real constant with
1494 a MINUS_EXPR whose first operand is also a real constant, i.e.
1495 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1496 floating-point types only if -fassociative-math is set. */
1497 (if (flag_associative_math)
1498 (simplify
1499 (cmp (minus REAL_CST@0 @1) @2)
1500 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1501 (if (!TREE_OVERFLOW (tem))
1502 (cmp { tem; } @1)))))
1503
1504 /* Fold comparisons against built-in math functions. */
1505 (if (flag_unsafe_math_optimizations
1506 && ! flag_errno_math)
1507 (for sq (SQRT)
1508 (simplify
1509 (cmp (sq @0) REAL_CST@1)
1510 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1511 /* sqrt(x) < y is always false, if y is negative. */
1512 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1513 { constant_boolean_node (false, type); })
1514 /* sqrt(x) > y is always true, if y is negative and we
1515 don't care about NaNs, i.e. negative values of x. */
1516 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1517 { constant_boolean_node (true, type); })
1518 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1519 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1520 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1521 (with
1522 {
1523 REAL_VALUE_TYPE c2;
1524 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1525 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1526 }
1527 (if (REAL_VALUE_ISINF (c2))
1528 /* sqrt(x) > y is x == +Inf, when y is very large. */
1529 (if (HONOR_INFINITIES (@0))
1530 (eq @0 { build_real (TREE_TYPE (@0), c2); }))
1531 { constant_boolean_node (false, type); })
1532 /* sqrt(x) > c is the same as x > c*c. */
1533 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))
1534 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1535 (with
1536 {
1537 REAL_VALUE_TYPE c2;
1538 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1539 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1540 }
1541 (if (REAL_VALUE_ISINF (c2))
1542 /* sqrt(x) < y is always true, when y is a very large
1543 value and we don't care about NaNs or Infinities. */
1544 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1545 { constant_boolean_node (true, type); })
1546 /* sqrt(x) < y is x != +Inf when y is very large and we
1547 don't care about NaNs. */
1548 (if (! HONOR_NANS (@0))
1549 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1550 /* sqrt(x) < y is x >= 0 when y is very large and we
1551 don't care about Infinities. */
1552 (if (! HONOR_INFINITIES (@0))
1553 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1554 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1555 (if (GENERIC)
1556 (truth_andif
1557 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1558 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1559 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1560 (if (! REAL_VALUE_ISINF (c2)
1561 && ! HONOR_NANS (@0))
1562 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))
1563 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1564 (if (! REAL_VALUE_ISINF (c2)
1565 && GENERIC)
1566 (truth_andif
1567 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1568 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
1569
1570 /* Unordered tests if either argument is a NaN. */
1571 (simplify
1572 (bit_ior (unordered @0 @0) (unordered @1 @1))
1573 (if (types_match (@0, @1))
1574 (unordered @0 @1)))
1575 (simplify
1576 (bit_and (ordered @0 @0) (ordered @1 @1))
1577 (if (types_match (@0, @1))
1578 (ordered @0 @1)))
1579 (simplify
1580 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1581 @2)
1582 (simplify
1583 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1584 @2)
1585
1586 /* -A CMP -B -> B CMP A. */
1587 (for cmp (tcc_comparison)
1588 scmp (swapped_tcc_comparison)
1589 (simplify
1590 (cmp (negate @0) (negate @1))
1591 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1592 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1593 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1594 (scmp @0 @1)))
1595 (simplify
1596 (cmp (negate @0) CONSTANT_CLASS_P@1)
1597 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1598 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1599 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1600 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1601 (if (tem && !TREE_OVERFLOW (tem))
1602 (scmp @0 { tem; }))))))
1603
1604
1605 /* Equality compare simplifications from fold_binary */
1606 (for cmp (eq ne)
1607
1608 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1609 Similarly for NE_EXPR. */
1610 (simplify
1611 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1612 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1613 && wi::bit_and_not (@1, @2) != 0)
1614 { constant_boolean_node (cmp == NE_EXPR, type); }))
1615
1616 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1617 (simplify
1618 (cmp (bit_xor @0 @1) integer_zerop)
1619 (cmp @0 @1))
1620
1621 /* (X ^ Y) == Y becomes X == 0.
1622 Likewise (X ^ Y) == X becomes Y == 0. */
1623 (simplify
1624 (cmp:c (bit_xor:c @0 @1) @0)
1625 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1626
1627 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1628 (simplify
1629 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1630 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1631 (cmp @0 (bit_xor @1 (convert @2))))))
1632
1633 /* Simplification of math builtins. */
1634
1635 /* fold_builtin_logarithm */
1636 (if (flag_unsafe_math_optimizations)
1637 /* Special case, optimize logN(expN(x)) = x. */
1638 (for logs (LOG LOG2 LOG10)
1639 exps (EXP EXP2 EXP10)
1640 (simplify
1641 (logs (exps @0))
1642 @0))
1643 /* Optimize logN(func()) for various exponential functions. We
1644 want to determine the value "x" and the power "exponent" in
1645 order to transform logN(x**exponent) into exponent*logN(x). */
1646 (for logs (LOG LOG LOG LOG
1647 LOG2 LOG2 LOG2 LOG2
1648 LOG10 LOG10 LOG10 LOG10)
1649 exps (EXP EXP2 EXP10 POW10)
1650 (simplify
1651 (logs (exps @0))
1652 (with {
1653 tree x;
1654 switch (exps)
1655 {
1656 CASE_FLT_FN (BUILT_IN_EXP):
1657 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1658 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1659 dconst_e ()));
1660 break;
1661 CASE_FLT_FN (BUILT_IN_EXP2):
1662 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1663 x = build_real (type, dconst2);
1664 break;
1665 CASE_FLT_FN (BUILT_IN_EXP10):
1666 CASE_FLT_FN (BUILT_IN_POW10):
1667 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1668 {
1669 REAL_VALUE_TYPE dconst10;
1670 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1671 x = build_real (type, dconst10);
1672 }
1673 break;
1674 }
1675 }
1676 (mult (logs { x; }) @0))))
1677 (for logs (LOG LOG
1678 LOG2 LOG2
1679 LOG10 LOG10)
1680 exps (SQRT CBRT)
1681 (simplify
1682 (logs (exps @0))
1683 (with {
1684 tree x;
1685 switch (exps)
1686 {
1687 CASE_FLT_FN (BUILT_IN_SQRT):
1688 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1689 x = build_real (type, dconsthalf);
1690 break;
1691 CASE_FLT_FN (BUILT_IN_CBRT):
1692 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1693 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1694 dconst_third ()));
1695 break;
1696 }
1697 }
1698 (mult { x; } (logs @0)))))
1699 /* logN(pow(x,exponent) -> exponent*logN(x). */
1700 (for logs (LOG LOG2 LOG10)
1701 pows (POW)
1702 (simplify
1703 (logs (pows @0 @1))
1704 (mult @1 (logs @0)))))
1705
1706 /* Narrowing of arithmetic and logical operations.
1707
1708 These are conceptually similar to the transformations performed for
1709 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1710 term we want to move all that code out of the front-ends into here. */
1711
1712 /* If we have a narrowing conversion of an arithmetic operation where
1713 both operands are widening conversions from the same type as the outer
1714 narrowing conversion. Then convert the innermost operands to a suitable
1715 unsigned type (to avoid introducing undefined behaviour), perform the
1716 operation and convert the result to the desired type. */
1717 (for op (plus minus)
1718 (simplify
1719 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1720 (if (INTEGRAL_TYPE_P (type)
1721 /* We check for type compatibility between @0 and @1 below,
1722 so there's no need to check that @1/@3 are integral types. */
1723 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1724 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1725 /* The precision of the type of each operand must match the
1726 precision of the mode of each operand, similarly for the
1727 result. */
1728 && (TYPE_PRECISION (TREE_TYPE (@0))
1729 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1730 && (TYPE_PRECISION (TREE_TYPE (@1))
1731 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1732 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1733 /* The inner conversion must be a widening conversion. */
1734 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1735 && types_match (@0, @1)
1736 && types_match (@0, type)
1737 && single_use (@4))
1738 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1739 (convert (op @0 @1)))
1740 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1741 (convert (op (convert:utype @0) (convert:utype @1)))))))
1742
1743 /* This is another case of narrowing, specifically when there's an outer
1744 BIT_AND_EXPR which masks off bits outside the type of the innermost
1745 operands. Like the previous case we have to convert the operands
1746 to unsigned types to avoid introducing undefined behaviour for the
1747 arithmetic operation. */
1748 (for op (minus plus)
1749 (simplify
1750 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1751 (if (INTEGRAL_TYPE_P (type)
1752 /* We check for type compatibility between @0 and @1 below,
1753 so there's no need to check that @1/@3 are integral types. */
1754 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1755 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1756 /* The precision of the type of each operand must match the
1757 precision of the mode of each operand, similarly for the
1758 result. */
1759 && (TYPE_PRECISION (TREE_TYPE (@0))
1760 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1761 && (TYPE_PRECISION (TREE_TYPE (@1))
1762 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1763 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1764 /* The inner conversion must be a widening conversion. */
1765 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1766 && types_match (@0, @1)
1767 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1768 <= TYPE_PRECISION (TREE_TYPE (@0)))
1769 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1770 || tree_int_cst_sgn (@4) >= 0)
1771 && single_use (@5))
1772 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1773 (with { tree ntype = TREE_TYPE (@0); }
1774 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1775 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1776 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1777 (convert:utype @4)))))))
1778