fold-const.c (maybe_canonicalize_comparison_1): Move A code CST canonicalization ...
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p
33 integer_pow2p)
34
35 /* Operator lists. */
36 (define_operator_list tcc_comparison
37 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
38 (define_operator_list inverted_tcc_comparison
39 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
40 (define_operator_list inverted_tcc_comparison_with_nans
41 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
42 (define_operator_list swapped_tcc_comparison
43 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
44 (define_operator_list simple_comparison lt le eq ne ge gt)
45 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
46
47 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
48 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
49 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
50 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
51 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
52 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
53 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
54 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
55 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
56 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
57
58
59 /* Simplifications of operations with one constant operand and
60 simplifications to constants or single values. */
61
62 (for op (plus pointer_plus minus bit_ior bit_xor)
63 (simplify
64 (op @0 integer_zerop)
65 (non_lvalue @0)))
66
67 /* 0 +p index -> (type)index */
68 (simplify
69 (pointer_plus integer_zerop @1)
70 (non_lvalue (convert @1)))
71
72 /* See if ARG1 is zero and X + ARG1 reduces to X.
73 Likewise if the operands are reversed. */
74 (simplify
75 (plus:c @0 real_zerop@1)
76 (if (fold_real_zero_addition_p (type, @1, 0))
77 (non_lvalue @0)))
78
79 /* See if ARG1 is zero and X - ARG1 reduces to X. */
80 (simplify
81 (minus @0 real_zerop@1)
82 (if (fold_real_zero_addition_p (type, @1, 1))
83 (non_lvalue @0)))
84
85 /* Simplify x - x.
86 This is unsafe for certain floats even in non-IEEE formats.
87 In IEEE, it is unsafe because it does wrong for NaNs.
88 Also note that operand_equal_p is always false if an operand
89 is volatile. */
90 (simplify
91 (minus @0 @0)
92 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
93 { build_zero_cst (type); }))
94
95 (simplify
96 (mult @0 integer_zerop@1)
97 @1)
98
99 /* Maybe fold x * 0 to 0. The expressions aren't the same
100 when x is NaN, since x * 0 is also NaN. Nor are they the
101 same in modes with signed zeros, since multiplying a
102 negative value by 0 gives -0, not +0. */
103 (simplify
104 (mult @0 real_zerop@1)
105 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
106 @1))
107
108 /* In IEEE floating point, x*1 is not equivalent to x for snans.
109 Likewise for complex arithmetic with signed zeros. */
110 (simplify
111 (mult @0 real_onep)
112 (if (!HONOR_SNANS (type)
113 && (!HONOR_SIGNED_ZEROS (type)
114 || !COMPLEX_FLOAT_TYPE_P (type)))
115 (non_lvalue @0)))
116
117 /* Transform x * -1.0 into -x. */
118 (simplify
119 (mult @0 real_minus_onep)
120 (if (!HONOR_SNANS (type)
121 && (!HONOR_SIGNED_ZEROS (type)
122 || !COMPLEX_FLOAT_TYPE_P (type)))
123 (negate @0)))
124
125 /* Make sure to preserve divisions by zero. This is the reason why
126 we don't simplify x / x to 1 or 0 / x to 0. */
127 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
128 (simplify
129 (op @0 integer_onep)
130 (non_lvalue @0)))
131
132 /* X / -1 is -X. */
133 (for div (trunc_div ceil_div floor_div round_div exact_div)
134 (simplify
135 (div @0 integer_minus_onep@1)
136 (if (!TYPE_UNSIGNED (type))
137 (negate @0))))
138
139 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
140 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
141 (simplify
142 (floor_div @0 @1)
143 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
144 && TYPE_UNSIGNED (type))
145 (trunc_div @0 @1)))
146
147 /* Combine two successive divisions. Note that combining ceil_div
148 and floor_div is trickier and combining round_div even more so. */
149 (for div (trunc_div exact_div)
150 (simplify
151 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
152 (with {
153 bool overflow_p;
154 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
155 }
156 (if (!overflow_p)
157 (div @0 { wide_int_to_tree (type, mul); })
158 (if (TYPE_UNSIGNED (type)
159 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
160 { build_zero_cst (type); })))))
161
162 /* Optimize A / A to 1.0 if we don't care about
163 NaNs or Infinities. */
164 (simplify
165 (rdiv @0 @0)
166 (if (FLOAT_TYPE_P (type)
167 && ! HONOR_NANS (type)
168 && ! HONOR_INFINITIES (type))
169 { build_one_cst (type); }))
170
171 /* Optimize -A / A to -1.0 if we don't care about
172 NaNs or Infinities. */
173 (simplify
174 (rdiv:c @0 (negate @0))
175 (if (FLOAT_TYPE_P (type)
176 && ! HONOR_NANS (type)
177 && ! HONOR_INFINITIES (type))
178 { build_minus_one_cst (type); }))
179
180 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
181 (simplify
182 (rdiv @0 real_onep)
183 (if (!HONOR_SNANS (type))
184 (non_lvalue @0)))
185
186 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
187 (simplify
188 (rdiv @0 real_minus_onep)
189 (if (!HONOR_SNANS (type))
190 (negate @0)))
191
192 /* If ARG1 is a constant, we can convert this to a multiply by the
193 reciprocal. This does not have the same rounding properties,
194 so only do this if -freciprocal-math. We can actually
195 always safely do it if ARG1 is a power of two, but it's hard to
196 tell if it is or not in a portable manner. */
197 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
198 (simplify
199 (rdiv @0 cst@1)
200 (if (optimize)
201 (if (flag_reciprocal_math
202 && !real_zerop (@1))
203 (with
204 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
205 (if (tem)
206 (mult @0 { tem; } )))
207 (if (cst != COMPLEX_CST)
208 (with { tree inverse = exact_inverse (type, @1); }
209 (if (inverse)
210 (mult @0 { inverse; } ))))))))
211
212 /* Same applies to modulo operations, but fold is inconsistent here
213 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
214 (for mod (ceil_mod floor_mod round_mod trunc_mod)
215 /* 0 % X is always zero. */
216 (simplify
217 (mod integer_zerop@0 @1)
218 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
219 (if (!integer_zerop (@1))
220 @0))
221 /* X % 1 is always zero. */
222 (simplify
223 (mod @0 integer_onep)
224 { build_zero_cst (type); })
225 /* X % -1 is zero. */
226 (simplify
227 (mod @0 integer_minus_onep@1)
228 (if (!TYPE_UNSIGNED (type))
229 { build_zero_cst (type); }))
230 /* (X % Y) % Y is just X % Y. */
231 (simplify
232 (mod (mod@2 @0 @1) @1)
233 @2)
234 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
235 (simplify
236 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
237 (if (ANY_INTEGRAL_TYPE_P (type)
238 && TYPE_OVERFLOW_UNDEFINED (type)
239 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
240 { build_zero_cst (type); })))
241
242 /* X % -C is the same as X % C. */
243 (simplify
244 (trunc_mod @0 INTEGER_CST@1)
245 (if (TYPE_SIGN (type) == SIGNED
246 && !TREE_OVERFLOW (@1)
247 && wi::neg_p (@1)
248 && !TYPE_OVERFLOW_TRAPS (type)
249 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
250 && !sign_bit_p (@1, @1))
251 (trunc_mod @0 (negate @1))))
252
253 /* X % -Y is the same as X % Y. */
254 (simplify
255 (trunc_mod @0 (convert? (negate @1)))
256 (if (!TYPE_UNSIGNED (type)
257 && !TYPE_OVERFLOW_TRAPS (type)
258 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
259 (trunc_mod @0 (convert @1))))
260
261 /* X - (X / Y) * Y is the same as X % Y. */
262 (simplify
263 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
264 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
265 (trunc_mod (convert @0) (convert @1))))
266
267 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
268 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
269 Also optimize A % (C << N) where C is a power of 2,
270 to A & ((C << N) - 1). */
271 (match (power_of_two_cand @1)
272 INTEGER_CST@1)
273 (match (power_of_two_cand @1)
274 (lshift INTEGER_CST@1 @2))
275 (for mod (trunc_mod floor_mod)
276 (simplify
277 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
278 (if ((TYPE_UNSIGNED (type)
279 || tree_expr_nonnegative_p (@0))
280 && tree_nop_conversion_p (type, TREE_TYPE (@3))
281 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
282 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
283
284 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
285 (simplify
286 (trunc_div (mult @0 integer_pow2p@1) @1)
287 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
288 (bit_and @0 { wide_int_to_tree
289 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
290 false, TYPE_PRECISION (type))); })))
291
292 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
293 (simplify
294 (mult (trunc_div @0 integer_pow2p@1) @1)
295 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
296 (bit_and @0 (negate @1))))
297
298 /* X % Y is smaller than Y. */
299 (for cmp (lt ge)
300 (simplify
301 (cmp (trunc_mod @0 @1) @1)
302 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
303 { constant_boolean_node (cmp == LT_EXPR, type); })))
304 (for cmp (gt le)
305 (simplify
306 (cmp @1 (trunc_mod @0 @1))
307 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
308 { constant_boolean_node (cmp == GT_EXPR, type); })))
309
310 /* x | ~0 -> ~0 */
311 (simplify
312 (bit_ior @0 integer_all_onesp@1)
313 @1)
314
315 /* x & 0 -> 0 */
316 (simplify
317 (bit_and @0 integer_zerop@1)
318 @1)
319
320 /* ~x | x -> -1 */
321 /* ~x ^ x -> -1 */
322 /* ~x + x -> -1 */
323 (for op (bit_ior bit_xor plus)
324 (simplify
325 (op:c (convert? @0) (convert? (bit_not @0)))
326 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
327
328 /* x ^ x -> 0 */
329 (simplify
330 (bit_xor @0 @0)
331 { build_zero_cst (type); })
332
333 /* Canonicalize X ^ ~0 to ~X. */
334 (simplify
335 (bit_xor @0 integer_all_onesp@1)
336 (bit_not @0))
337
338 /* x & ~0 -> x */
339 (simplify
340 (bit_and @0 integer_all_onesp)
341 (non_lvalue @0))
342
343 /* x & x -> x, x | x -> x */
344 (for bitop (bit_and bit_ior)
345 (simplify
346 (bitop @0 @0)
347 (non_lvalue @0)))
348
349 /* x + (x & 1) -> (x + 1) & ~1 */
350 (simplify
351 (plus:c @0 (bit_and:s @0 integer_onep@1))
352 (bit_and (plus @0 @1) (bit_not @1)))
353
354 /* x & ~(x & y) -> x & ~y */
355 /* x | ~(x | y) -> x | ~y */
356 (for bitop (bit_and bit_ior)
357 (simplify
358 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
359 (bitop @0 (bit_not @1))))
360
361 /* (x | y) & ~x -> y & ~x */
362 /* (x & y) | ~x -> y | ~x */
363 (for bitop (bit_and bit_ior)
364 rbitop (bit_ior bit_and)
365 (simplify
366 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
367 (bitop @1 @2)))
368
369 /* (x & y) ^ (x | y) -> x ^ y */
370 (simplify
371 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
372 (bit_xor @0 @1))
373
374 /* (x ^ y) ^ (x | y) -> x & y */
375 (simplify
376 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
377 (bit_and @0 @1))
378
379 /* (x & y) + (x ^ y) -> x | y */
380 /* (x & y) | (x ^ y) -> x | y */
381 /* (x & y) ^ (x ^ y) -> x | y */
382 (for op (plus bit_ior bit_xor)
383 (simplify
384 (op:c (bit_and @0 @1) (bit_xor @0 @1))
385 (bit_ior @0 @1)))
386
387 /* (x & y) + (x | y) -> x + y */
388 (simplify
389 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
390 (plus @0 @1))
391
392 /* (x + y) - (x | y) -> x & y */
393 (simplify
394 (minus (plus @0 @1) (bit_ior @0 @1))
395 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
396 && !TYPE_SATURATING (type))
397 (bit_and @0 @1)))
398
399 /* (x + y) - (x & y) -> x | y */
400 (simplify
401 (minus (plus @0 @1) (bit_and @0 @1))
402 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
403 && !TYPE_SATURATING (type))
404 (bit_ior @0 @1)))
405
406 /* (x | y) - (x ^ y) -> x & y */
407 (simplify
408 (minus (bit_ior @0 @1) (bit_xor @0 @1))
409 (bit_and @0 @1))
410
411 /* (x | y) - (x & y) -> x ^ y */
412 (simplify
413 (minus (bit_ior @0 @1) (bit_and @0 @1))
414 (bit_xor @0 @1))
415
416 /* (x | y) & ~(x & y) -> x ^ y */
417 (simplify
418 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
419 (bit_xor @0 @1))
420
421 /* (x | y) & (~x ^ y) -> x & y */
422 (simplify
423 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
424 (bit_and @0 @1))
425
426 /* ~x & ~y -> ~(x | y)
427 ~x | ~y -> ~(x & y) */
428 (for op (bit_and bit_ior)
429 rop (bit_ior bit_and)
430 (simplify
431 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
432 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
433 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
434 (bit_not (rop (convert @0) (convert @1))))))
435
436 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
437 with a constant, and the two constants have no bits in common,
438 we should treat this as a BIT_IOR_EXPR since this may produce more
439 simplifications. */
440 (for op (bit_xor plus)
441 (simplify
442 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
443 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
444 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
445 && tree_nop_conversion_p (type, TREE_TYPE (@2))
446 && wi::bit_and (@1, @3) == 0)
447 (bit_ior (convert @4) (convert @5)))))
448
449 /* (X | Y) ^ X -> Y & ~ X*/
450 (simplify
451 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
452 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
453 (convert (bit_and @1 (bit_not @0)))))
454
455 /* Convert ~X ^ ~Y to X ^ Y. */
456 (simplify
457 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
458 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
459 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
460 (bit_xor (convert @0) (convert @1))))
461
462 /* Convert ~X ^ C to X ^ ~C. */
463 (simplify
464 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
465 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
466 (bit_xor (convert @0) (bit_not @1))))
467
468 /* Fold (X & Y) ^ Y as ~X & Y. */
469 (simplify
470 (bit_xor:c (bit_and:c @0 @1) @1)
471 (bit_and (bit_not @0) @1))
472
473 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
474 operands are another bit-wise operation with a common input. If so,
475 distribute the bit operations to save an operation and possibly two if
476 constants are involved. For example, convert
477 (A | B) & (A | C) into A | (B & C)
478 Further simplification will occur if B and C are constants. */
479 (for op (bit_and bit_ior)
480 rop (bit_ior bit_and)
481 (simplify
482 (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
483 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
484 (rop (convert @0) (op (convert @1) (convert @2))))))
485
486
487 (simplify
488 (abs (abs@1 @0))
489 @1)
490 (simplify
491 (abs (negate @0))
492 (abs @0))
493 (simplify
494 (abs tree_expr_nonnegative_p@0)
495 @0)
496
497 /* A few cases of fold-const.c negate_expr_p predicate. */
498 (match negate_expr_p
499 INTEGER_CST
500 (if ((INTEGRAL_TYPE_P (type)
501 && TYPE_OVERFLOW_WRAPS (type))
502 || (!TYPE_OVERFLOW_SANITIZED (type)
503 && may_negate_without_overflow_p (t)))))
504 (match negate_expr_p
505 FIXED_CST)
506 (match negate_expr_p
507 (negate @0)
508 (if (!TYPE_OVERFLOW_SANITIZED (type))))
509 (match negate_expr_p
510 REAL_CST
511 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
512 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
513 ways. */
514 (match negate_expr_p
515 VECTOR_CST
516 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
517
518 /* -(A + B) -> (-B) - A. */
519 (simplify
520 (negate (plus:c @0 negate_expr_p@1))
521 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
522 && !HONOR_SIGNED_ZEROS (element_mode (type)))
523 (minus (negate @1) @0)))
524
525 /* A - B -> A + (-B) if B is easily negatable. */
526 (simplify
527 (minus @0 negate_expr_p@1)
528 (if (!FIXED_POINT_TYPE_P (type))
529 (plus @0 (negate @1))))
530
531 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
532 when profitable.
533 For bitwise binary operations apply operand conversions to the
534 binary operation result instead of to the operands. This allows
535 to combine successive conversions and bitwise binary operations.
536 We combine the above two cases by using a conditional convert. */
537 (for bitop (bit_and bit_ior bit_xor)
538 (simplify
539 (bitop (convert @0) (convert? @1))
540 (if (((TREE_CODE (@1) == INTEGER_CST
541 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
542 && int_fits_type_p (@1, TREE_TYPE (@0)))
543 || types_match (@0, @1))
544 /* ??? This transform conflicts with fold-const.c doing
545 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
546 constants (if x has signed type, the sign bit cannot be set
547 in c). This folds extension into the BIT_AND_EXPR.
548 Restrict it to GIMPLE to avoid endless recursions. */
549 && (bitop != BIT_AND_EXPR || GIMPLE)
550 && (/* That's a good idea if the conversion widens the operand, thus
551 after hoisting the conversion the operation will be narrower. */
552 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
553 /* It's also a good idea if the conversion is to a non-integer
554 mode. */
555 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
556 /* Or if the precision of TO is not the same as the precision
557 of its mode. */
558 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
559 (convert (bitop @0 (convert @1))))))
560
561 (for bitop (bit_and bit_ior)
562 rbitop (bit_ior bit_and)
563 /* (x | y) & x -> x */
564 /* (x & y) | x -> x */
565 (simplify
566 (bitop:c (rbitop:c @0 @1) @0)
567 @0)
568 /* (~x | y) & x -> x & y */
569 /* (~x & y) | x -> x | y */
570 (simplify
571 (bitop:c (rbitop:c (bit_not @0) @1) @0)
572 (bitop @0 @1)))
573
574 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
575 (for bitop (bit_and bit_ior bit_xor)
576 (simplify
577 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
578 (bit_and (bitop @0 @2) @1)))
579
580 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
581 (simplify
582 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
583 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
584
585 /* Combine successive equal operations with constants. */
586 (for bitop (bit_and bit_ior bit_xor)
587 (simplify
588 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
589 (bitop @0 (bitop @1 @2))))
590
591 /* Try simple folding for X op !X, and X op X with the help
592 of the truth_valued_p and logical_inverted_value predicates. */
593 (match truth_valued_p
594 @0
595 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
596 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
597 (match truth_valued_p
598 (op @0 @1)))
599 (match truth_valued_p
600 (truth_not @0))
601
602 (match (logical_inverted_value @0)
603 (bit_not truth_valued_p@0))
604 (match (logical_inverted_value @0)
605 (eq @0 integer_zerop))
606 (match (logical_inverted_value @0)
607 (ne truth_valued_p@0 integer_truep))
608 (match (logical_inverted_value @0)
609 (bit_xor truth_valued_p@0 integer_truep))
610
611 /* X & !X -> 0. */
612 (simplify
613 (bit_and:c @0 (logical_inverted_value @0))
614 { build_zero_cst (type); })
615 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
616 (for op (bit_ior bit_xor)
617 (simplify
618 (op:c truth_valued_p@0 (logical_inverted_value @0))
619 { constant_boolean_node (true, type); }))
620
621 /* If arg1 and arg2 are booleans (or any single bit type)
622 then try to simplify:
623
624 (~X & Y) -> X < Y
625 (X & ~Y) -> Y < X
626 (~X | Y) -> X <= Y
627 (X | ~Y) -> Y <= X
628
629 But only do this if our result feeds into a comparison as
630 this transformation is not always a win, particularly on
631 targets with and-not instructions.
632 -> simplify_bitwise_binary_boolean */
633 (simplify
634 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
635 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
636 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
637 (lt @0 @1)))
638 (simplify
639 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
640 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
641 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
642 (le @0 @1)))
643
644 /* ~~x -> x */
645 (simplify
646 (bit_not (bit_not @0))
647 @0)
648
649 /* Convert ~ (-A) to A - 1. */
650 (simplify
651 (bit_not (convert? (negate @0)))
652 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
653 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
654
655 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
656 (simplify
657 (bit_not (convert? (minus @0 integer_each_onep)))
658 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
659 (convert (negate @0))))
660 (simplify
661 (bit_not (convert? (plus @0 integer_all_onesp)))
662 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
663 (convert (negate @0))))
664
665 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
666 (simplify
667 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
668 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
669 (convert (bit_xor @0 (bit_not @1)))))
670 (simplify
671 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
672 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
673 (convert (bit_xor @0 @1))))
674
675 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
676 (simplify
677 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
678 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
679
680 /* Fold A - (A & B) into ~B & A. */
681 (simplify
682 (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
683 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
684 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
685 (convert (bit_and (bit_not @1) @0))))
686
687 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
688 (simplify
689 (pointer_plus (pointer_plus:s @0 @1) @3)
690 (pointer_plus @0 (plus @1 @3)))
691
692 /* Pattern match
693 tem1 = (long) ptr1;
694 tem2 = (long) ptr2;
695 tem3 = tem2 - tem1;
696 tem4 = (unsigned long) tem3;
697 tem5 = ptr1 + tem4;
698 and produce
699 tem5 = ptr2; */
700 (simplify
701 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
702 /* Conditionally look through a sign-changing conversion. */
703 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
704 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
705 || (GENERIC && type == TREE_TYPE (@1))))
706 @1))
707
708 /* Pattern match
709 tem = (sizetype) ptr;
710 tem = tem & algn;
711 tem = -tem;
712 ... = ptr p+ tem;
713 and produce the simpler and easier to analyze with respect to alignment
714 ... = ptr & ~algn; */
715 (simplify
716 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
717 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
718 (bit_and @0 { algn; })))
719
720 /* Try folding difference of addresses. */
721 (simplify
722 (minus (convert ADDR_EXPR@0) (convert @1))
723 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
724 (with { HOST_WIDE_INT diff; }
725 (if (ptr_difference_const (@0, @1, &diff))
726 { build_int_cst_type (type, diff); }))))
727 (simplify
728 (minus (convert @0) (convert ADDR_EXPR@1))
729 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
730 (with { HOST_WIDE_INT diff; }
731 (if (ptr_difference_const (@0, @1, &diff))
732 { build_int_cst_type (type, diff); }))))
733
734 /* If arg0 is derived from the address of an object or function, we may
735 be able to fold this expression using the object or function's
736 alignment. */
737 (simplify
738 (bit_and (convert? @0) INTEGER_CST@1)
739 (if (POINTER_TYPE_P (TREE_TYPE (@0))
740 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
741 (with
742 {
743 unsigned int align;
744 unsigned HOST_WIDE_INT bitpos;
745 get_pointer_alignment_1 (@0, &align, &bitpos);
746 }
747 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
748 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
749
750
751 /* We can't reassociate at all for saturating types. */
752 (if (!TYPE_SATURATING (type))
753
754 /* Contract negates. */
755 /* A + (-B) -> A - B */
756 (simplify
757 (plus:c (convert1? @0) (convert2? (negate @1)))
758 /* Apply STRIP_NOPS on @0 and the negate. */
759 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
760 && tree_nop_conversion_p (type, TREE_TYPE (@1))
761 && !TYPE_OVERFLOW_SANITIZED (type))
762 (minus (convert @0) (convert @1))))
763 /* A - (-B) -> A + B */
764 (simplify
765 (minus (convert1? @0) (convert2? (negate @1)))
766 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
767 && tree_nop_conversion_p (type, TREE_TYPE (@1))
768 && !TYPE_OVERFLOW_SANITIZED (type))
769 (plus (convert @0) (convert @1))))
770 /* -(-A) -> A */
771 (simplify
772 (negate (convert? (negate @1)))
773 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
774 && !TYPE_OVERFLOW_SANITIZED (type))
775 (convert @1)))
776
777 /* We can't reassociate floating-point unless -fassociative-math
778 or fixed-point plus or minus because of saturation to +-Inf. */
779 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
780 && !FIXED_POINT_TYPE_P (type))
781
782 /* Match patterns that allow contracting a plus-minus pair
783 irrespective of overflow issues. */
784 /* (A +- B) - A -> +- B */
785 /* (A +- B) -+ B -> A */
786 /* A - (A +- B) -> -+ B */
787 /* A +- (B -+ A) -> +- B */
788 (simplify
789 (minus (plus:c @0 @1) @0)
790 @1)
791 (simplify
792 (minus (minus @0 @1) @0)
793 (negate @1))
794 (simplify
795 (plus:c (minus @0 @1) @1)
796 @0)
797 (simplify
798 (minus @0 (plus:c @0 @1))
799 (negate @1))
800 (simplify
801 (minus @0 (minus @0 @1))
802 @1)
803
804 /* (A +- CST) +- CST -> A + CST */
805 (for outer_op (plus minus)
806 (for inner_op (plus minus)
807 (simplify
808 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
809 /* If the constant operation overflows we cannot do the transform
810 as we would introduce undefined overflow, for example
811 with (a - 1) + INT_MIN. */
812 (with { tree cst = fold_binary (outer_op == inner_op
813 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
814 (if (cst && !TREE_OVERFLOW (cst))
815 (inner_op @0 { cst; } ))))))
816
817 /* (CST - A) +- CST -> CST - A */
818 (for outer_op (plus minus)
819 (simplify
820 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
821 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
822 (if (cst && !TREE_OVERFLOW (cst))
823 (minus { cst; } @0)))))
824
825 /* ~A + A -> -1 */
826 (simplify
827 (plus:c (bit_not @0) @0)
828 (if (!TYPE_OVERFLOW_TRAPS (type))
829 { build_all_ones_cst (type); }))
830
831 /* ~A + 1 -> -A */
832 (simplify
833 (plus (convert? (bit_not @0)) integer_each_onep)
834 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
835 (negate (convert @0))))
836
837 /* -A - 1 -> ~A */
838 (simplify
839 (minus (convert? (negate @0)) integer_each_onep)
840 (if (!TYPE_OVERFLOW_TRAPS (type)
841 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
842 (bit_not (convert @0))))
843
844 /* -1 - A -> ~A */
845 (simplify
846 (minus integer_all_onesp @0)
847 (bit_not @0))
848
849 /* (T)(P + A) - (T)P -> (T) A */
850 (for add (plus pointer_plus)
851 (simplify
852 (minus (convert (add @0 @1))
853 (convert @0))
854 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
855 /* For integer types, if A has a smaller type
856 than T the result depends on the possible
857 overflow in P + A.
858 E.g. T=size_t, A=(unsigned)429497295, P>0.
859 However, if an overflow in P + A would cause
860 undefined behavior, we can assume that there
861 is no overflow. */
862 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
863 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
864 /* For pointer types, if the conversion of A to the
865 final type requires a sign- or zero-extension,
866 then we have to punt - it is not defined which
867 one is correct. */
868 || (POINTER_TYPE_P (TREE_TYPE (@0))
869 && TREE_CODE (@1) == INTEGER_CST
870 && tree_int_cst_sign_bit (@1) == 0))
871 (convert @1))))))
872
873
874 /* Simplifications of MIN_EXPR and MAX_EXPR. */
875
876 (for minmax (min max)
877 (simplify
878 (minmax @0 @0)
879 @0))
880 (simplify
881 (min @0 @1)
882 (if (INTEGRAL_TYPE_P (type)
883 && TYPE_MIN_VALUE (type)
884 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
885 @1))
886 (simplify
887 (max @0 @1)
888 (if (INTEGRAL_TYPE_P (type)
889 && TYPE_MAX_VALUE (type)
890 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
891 @1))
892
893
894 /* Simplifications of shift and rotates. */
895
896 (for rotate (lrotate rrotate)
897 (simplify
898 (rotate integer_all_onesp@0 @1)
899 @0))
900
901 /* Optimize -1 >> x for arithmetic right shifts. */
902 (simplify
903 (rshift integer_all_onesp@0 @1)
904 (if (!TYPE_UNSIGNED (type)
905 && tree_expr_nonnegative_p (@1))
906 @0))
907
908 (for shiftrotate (lrotate rrotate lshift rshift)
909 (simplify
910 (shiftrotate @0 integer_zerop)
911 (non_lvalue @0))
912 (simplify
913 (shiftrotate integer_zerop@0 @1)
914 @0)
915 /* Prefer vector1 << scalar to vector1 << vector2
916 if vector2 is uniform. */
917 (for vec (VECTOR_CST CONSTRUCTOR)
918 (simplify
919 (shiftrotate @0 vec@1)
920 (with { tree tem = uniform_vector_p (@1); }
921 (if (tem)
922 (shiftrotate @0 { tem; }))))))
923
924 /* Rewrite an LROTATE_EXPR by a constant into an
925 RROTATE_EXPR by a new constant. */
926 (simplify
927 (lrotate @0 INTEGER_CST@1)
928 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
929 build_int_cst (TREE_TYPE (@1),
930 element_precision (type)), @1); }))
931
932 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
933 (for op (lrotate rrotate rshift lshift)
934 (simplify
935 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
936 (with { unsigned int prec = element_precision (type); }
937 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
938 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
939 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
940 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
941 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
942 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
943 being well defined. */
944 (if (low >= prec)
945 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
946 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
947 (if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
948 { build_zero_cst (type); }
949 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
950 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
951
952
953 /* ((1 << A) & 1) != 0 -> A == 0
954 ((1 << A) & 1) == 0 -> A != 0 */
955 (for cmp (ne eq)
956 icmp (eq ne)
957 (simplify
958 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
959 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
960
961 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
962 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
963 if CST2 != 0. */
964 (for cmp (ne eq)
965 (simplify
966 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
967 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
968 (if (cand < 0
969 || (!integer_zerop (@2)
970 && wi::ne_p (wi::lshift (@0, cand), @2)))
971 { constant_boolean_node (cmp == NE_EXPR, type); }
972 (if (!integer_zerop (@2)
973 && wi::eq_p (wi::lshift (@0, cand), @2))
974 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
975
976 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
977 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
978 if the new mask might be further optimized. */
979 (for shift (lshift rshift)
980 (simplify
981 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
982 INTEGER_CST@2)
983 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
984 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
985 && tree_fits_uhwi_p (@1)
986 && tree_to_uhwi (@1) > 0
987 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
988 (with
989 {
990 unsigned int shiftc = tree_to_uhwi (@1);
991 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
992 unsigned HOST_WIDE_INT newmask, zerobits = 0;
993 tree shift_type = TREE_TYPE (@3);
994 unsigned int prec;
995
996 if (shift == LSHIFT_EXPR)
997 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
998 else if (shift == RSHIFT_EXPR
999 && (TYPE_PRECISION (shift_type)
1000 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1001 {
1002 prec = TYPE_PRECISION (TREE_TYPE (@3));
1003 tree arg00 = @0;
1004 /* See if more bits can be proven as zero because of
1005 zero extension. */
1006 if (@3 != @0
1007 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1008 {
1009 tree inner_type = TREE_TYPE (@0);
1010 if ((TYPE_PRECISION (inner_type)
1011 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1012 && TYPE_PRECISION (inner_type) < prec)
1013 {
1014 prec = TYPE_PRECISION (inner_type);
1015 /* See if we can shorten the right shift. */
1016 if (shiftc < prec)
1017 shift_type = inner_type;
1018 /* Otherwise X >> C1 is all zeros, so we'll optimize
1019 it into (X, 0) later on by making sure zerobits
1020 is all ones. */
1021 }
1022 }
1023 zerobits = ~(unsigned HOST_WIDE_INT) 0;
1024 if (shiftc < prec)
1025 {
1026 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1027 zerobits <<= prec - shiftc;
1028 }
1029 /* For arithmetic shift if sign bit could be set, zerobits
1030 can contain actually sign bits, so no transformation is
1031 possible, unless MASK masks them all away. In that
1032 case the shift needs to be converted into logical shift. */
1033 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1034 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1035 {
1036 if ((mask & zerobits) == 0)
1037 shift_type = unsigned_type_for (TREE_TYPE (@3));
1038 else
1039 zerobits = 0;
1040 }
1041 }
1042 }
1043 /* ((X << 16) & 0xff00) is (X, 0). */
1044 (if ((mask & zerobits) == mask)
1045 { build_int_cst (type, 0); }
1046 (with { newmask = mask | zerobits; }
1047 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1048 (with
1049 {
1050 /* Only do the transformation if NEWMASK is some integer
1051 mode's mask. */
1052 for (prec = BITS_PER_UNIT;
1053 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1054 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1055 break;
1056 }
1057 (if (prec < HOST_BITS_PER_WIDE_INT
1058 || newmask == ~(unsigned HOST_WIDE_INT) 0)
1059 (with
1060 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1061 (if (!tree_int_cst_equal (newmaskt, @2))
1062 (if (shift_type != TREE_TYPE (@3))
1063 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1064 (bit_and @4 { newmaskt; })))))))))))))
1065
1066 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
1067 (X & C2) >> C1 into (X >> C1) & (C2 >> C1). */
1068 (for shift (lshift rshift)
1069 (simplify
1070 (shift (convert?:s (bit_and:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1071 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1072 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1073 (bit_and (shift (convert @0) @1) { mask; })))))
1074
1075
1076 /* Simplifications of conversions. */
1077
1078 /* Basic strip-useless-type-conversions / strip_nops. */
1079 (for cvt (convert view_convert float fix_trunc)
1080 (simplify
1081 (cvt @0)
1082 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1083 || (GENERIC && type == TREE_TYPE (@0)))
1084 @0)))
1085
1086 /* Contract view-conversions. */
1087 (simplify
1088 (view_convert (view_convert @0))
1089 (view_convert @0))
1090
1091 /* For integral conversions with the same precision or pointer
1092 conversions use a NOP_EXPR instead. */
1093 (simplify
1094 (view_convert @0)
1095 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1096 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1097 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1098 (convert @0)))
1099
1100 /* Strip inner integral conversions that do not change precision or size. */
1101 (simplify
1102 (view_convert (convert@0 @1))
1103 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1104 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1105 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1106 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1107 (view_convert @1)))
1108
1109 /* Re-association barriers around constants and other re-association
1110 barriers can be removed. */
1111 (simplify
1112 (paren CONSTANT_CLASS_P@0)
1113 @0)
1114 (simplify
1115 (paren (paren@1 @0))
1116 @1)
1117
1118 /* Handle cases of two conversions in a row. */
1119 (for ocvt (convert float fix_trunc)
1120 (for icvt (convert float)
1121 (simplify
1122 (ocvt (icvt@1 @0))
1123 (with
1124 {
1125 tree inside_type = TREE_TYPE (@0);
1126 tree inter_type = TREE_TYPE (@1);
1127 int inside_int = INTEGRAL_TYPE_P (inside_type);
1128 int inside_ptr = POINTER_TYPE_P (inside_type);
1129 int inside_float = FLOAT_TYPE_P (inside_type);
1130 int inside_vec = VECTOR_TYPE_P (inside_type);
1131 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1132 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1133 int inter_int = INTEGRAL_TYPE_P (inter_type);
1134 int inter_ptr = POINTER_TYPE_P (inter_type);
1135 int inter_float = FLOAT_TYPE_P (inter_type);
1136 int inter_vec = VECTOR_TYPE_P (inter_type);
1137 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1138 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1139 int final_int = INTEGRAL_TYPE_P (type);
1140 int final_ptr = POINTER_TYPE_P (type);
1141 int final_float = FLOAT_TYPE_P (type);
1142 int final_vec = VECTOR_TYPE_P (type);
1143 unsigned int final_prec = TYPE_PRECISION (type);
1144 int final_unsignedp = TYPE_UNSIGNED (type);
1145 }
1146 (switch
1147 /* In addition to the cases of two conversions in a row
1148 handled below, if we are converting something to its own
1149 type via an object of identical or wider precision, neither
1150 conversion is needed. */
1151 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1152 || (GENERIC
1153 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1154 && (((inter_int || inter_ptr) && final_int)
1155 || (inter_float && final_float))
1156 && inter_prec >= final_prec)
1157 (ocvt @0))
1158
1159 /* Likewise, if the intermediate and initial types are either both
1160 float or both integer, we don't need the middle conversion if the
1161 former is wider than the latter and doesn't change the signedness
1162 (for integers). Avoid this if the final type is a pointer since
1163 then we sometimes need the middle conversion. Likewise if the
1164 final type has a precision not equal to the size of its mode. */
1165 (if (((inter_int && inside_int) || (inter_float && inside_float))
1166 && (final_int || final_float)
1167 && inter_prec >= inside_prec
1168 && (inter_float || inter_unsignedp == inside_unsignedp)
1169 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1170 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1171 (ocvt @0))
1172
1173 /* If we have a sign-extension of a zero-extended value, we can
1174 replace that by a single zero-extension. Likewise if the
1175 final conversion does not change precision we can drop the
1176 intermediate conversion. */
1177 (if (inside_int && inter_int && final_int
1178 && ((inside_prec < inter_prec && inter_prec < final_prec
1179 && inside_unsignedp && !inter_unsignedp)
1180 || final_prec == inter_prec))
1181 (ocvt @0))
1182
1183 /* Two conversions in a row are not needed unless:
1184 - some conversion is floating-point (overstrict for now), or
1185 - some conversion is a vector (overstrict for now), or
1186 - the intermediate type is narrower than both initial and
1187 final, or
1188 - the intermediate type and innermost type differ in signedness,
1189 and the outermost type is wider than the intermediate, or
1190 - the initial type is a pointer type and the precisions of the
1191 intermediate and final types differ, or
1192 - the final type is a pointer type and the precisions of the
1193 initial and intermediate types differ. */
1194 (if (! inside_float && ! inter_float && ! final_float
1195 && ! inside_vec && ! inter_vec && ! final_vec
1196 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1197 && ! (inside_int && inter_int
1198 && inter_unsignedp != inside_unsignedp
1199 && inter_prec < final_prec)
1200 && ((inter_unsignedp && inter_prec > inside_prec)
1201 == (final_unsignedp && final_prec > inter_prec))
1202 && ! (inside_ptr && inter_prec != final_prec)
1203 && ! (final_ptr && inside_prec != inter_prec)
1204 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1205 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1206 (ocvt @0))
1207
1208 /* A truncation to an unsigned type (a zero-extension) should be
1209 canonicalized as bitwise and of a mask. */
1210 (if (final_int && inter_int && inside_int
1211 && final_prec == inside_prec
1212 && final_prec > inter_prec
1213 && inter_unsignedp)
1214 (convert (bit_and @0 { wide_int_to_tree
1215 (inside_type,
1216 wi::mask (inter_prec, false,
1217 TYPE_PRECISION (inside_type))); })))
1218
1219 /* If we are converting an integer to a floating-point that can
1220 represent it exactly and back to an integer, we can skip the
1221 floating-point conversion. */
1222 (if (GIMPLE /* PR66211 */
1223 && inside_int && inter_float && final_int &&
1224 (unsigned) significand_size (TYPE_MODE (inter_type))
1225 >= inside_prec - !inside_unsignedp)
1226 (convert @0)))))))
1227
1228 /* If we have a narrowing conversion to an integral type that is fed by a
1229 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1230 masks off bits outside the final type (and nothing else). */
1231 (simplify
1232 (convert (bit_and @0 INTEGER_CST@1))
1233 (if (INTEGRAL_TYPE_P (type)
1234 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1235 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1236 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1237 TYPE_PRECISION (type)), 0))
1238 (convert @0)))
1239
1240
1241 /* (X /[ex] A) * A -> X. */
1242 (simplify
1243 (mult (convert? (exact_div @0 @1)) @1)
1244 /* Look through a sign-changing conversion. */
1245 (convert @0))
1246
1247 /* Canonicalization of binary operations. */
1248
1249 /* Convert X + -C into X - C. */
1250 (simplify
1251 (plus @0 REAL_CST@1)
1252 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1253 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1254 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1255 (minus @0 { tem; })))))
1256
1257 /* Convert x+x into x*2.0. */
1258 (simplify
1259 (plus @0 @0)
1260 (if (SCALAR_FLOAT_TYPE_P (type))
1261 (mult @0 { build_real (type, dconst2); })))
1262
1263 (simplify
1264 (minus integer_zerop @1)
1265 (negate @1))
1266
1267 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1268 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1269 (-ARG1 + ARG0) reduces to -ARG1. */
1270 (simplify
1271 (minus real_zerop@0 @1)
1272 (if (fold_real_zero_addition_p (type, @0, 0))
1273 (negate @1)))
1274
1275 /* Transform x * -1 into -x. */
1276 (simplify
1277 (mult @0 integer_minus_onep)
1278 (negate @0))
1279
1280 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1281 (simplify
1282 (complex (realpart @0) (imagpart @0))
1283 @0)
1284 (simplify
1285 (realpart (complex @0 @1))
1286 @0)
1287 (simplify
1288 (imagpart (complex @0 @1))
1289 @1)
1290
1291
1292 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1293 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1294 (simplify
1295 (bswap (bswap @0))
1296 @0)
1297 (simplify
1298 (bswap (bit_not (bswap @0)))
1299 (bit_not @0))
1300 (for bitop (bit_xor bit_ior bit_and)
1301 (simplify
1302 (bswap (bitop:c (bswap @0) @1))
1303 (bitop @0 (bswap @1)))))
1304
1305
1306 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1307
1308 /* Simplify constant conditions.
1309 Only optimize constant conditions when the selected branch
1310 has the same type as the COND_EXPR. This avoids optimizing
1311 away "c ? x : throw", where the throw has a void type.
1312 Note that we cannot throw away the fold-const.c variant nor
1313 this one as we depend on doing this transform before possibly
1314 A ? B : B -> B triggers and the fold-const.c one can optimize
1315 0 ? A : B to B even if A has side-effects. Something
1316 genmatch cannot handle. */
1317 (simplify
1318 (cond INTEGER_CST@0 @1 @2)
1319 (if (integer_zerop (@0))
1320 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1321 @2)
1322 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1323 @1)))
1324 (simplify
1325 (vec_cond VECTOR_CST@0 @1 @2)
1326 (if (integer_all_onesp (@0))
1327 @1
1328 (if (integer_zerop (@0))
1329 @2)))
1330
1331 (for cnd (cond vec_cond)
1332 /* A ? B : (A ? X : C) -> A ? B : C. */
1333 (simplify
1334 (cnd @0 (cnd @0 @1 @2) @3)
1335 (cnd @0 @1 @3))
1336 (simplify
1337 (cnd @0 @1 (cnd @0 @2 @3))
1338 (cnd @0 @1 @3))
1339
1340 /* A ? B : B -> B. */
1341 (simplify
1342 (cnd @0 @1 @1)
1343 @1)
1344
1345 /* !A ? B : C -> A ? C : B. */
1346 (simplify
1347 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1348 (cnd @0 @2 @1)))
1349
1350 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1351 return all-1 or all-0 results. */
1352 /* ??? We could instead convert all instances of the vec_cond to negate,
1353 but that isn't necessarily a win on its own. */
1354 (simplify
1355 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1356 (if (VECTOR_TYPE_P (type)
1357 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1358 && (TYPE_MODE (TREE_TYPE (type))
1359 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1360 (minus @3 (view_convert @0))))
1361
1362 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1363 (simplify
1364 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1365 (if (VECTOR_TYPE_P (type)
1366 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1367 && (TYPE_MODE (TREE_TYPE (type))
1368 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1369 (plus @3 (view_convert @0))))
1370
1371
1372 /* Simplifications of comparisons. */
1373
1374 /* See if we can reduce the magnitude of a constant involved in a
1375 comparison by changing the comparison code. This is a canonicalization
1376 formerly done by maybe_canonicalize_comparison_1. */
1377 (for cmp (le gt)
1378 acmp (lt ge)
1379 (simplify
1380 (cmp @0 INTEGER_CST@1)
1381 (if (tree_int_cst_sgn (@1) == -1)
1382 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1383 (for cmp (ge lt)
1384 acmp (gt le)
1385 (simplify
1386 (cmp @0 INTEGER_CST@1)
1387 (if (tree_int_cst_sgn (@1) == 1)
1388 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1389
1390
1391 /* We can simplify a logical negation of a comparison to the
1392 inverted comparison. As we cannot compute an expression
1393 operator using invert_tree_comparison we have to simulate
1394 that with expression code iteration. */
1395 (for cmp (tcc_comparison)
1396 icmp (inverted_tcc_comparison)
1397 ncmp (inverted_tcc_comparison_with_nans)
1398 /* Ideally we'd like to combine the following two patterns
1399 and handle some more cases by using
1400 (logical_inverted_value (cmp @0 @1))
1401 here but for that genmatch would need to "inline" that.
1402 For now implement what forward_propagate_comparison did. */
1403 (simplify
1404 (bit_not (cmp @0 @1))
1405 (if (VECTOR_TYPE_P (type)
1406 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1407 /* Comparison inversion may be impossible for trapping math,
1408 invert_tree_comparison will tell us. But we can't use
1409 a computed operator in the replacement tree thus we have
1410 to play the trick below. */
1411 (with { enum tree_code ic = invert_tree_comparison
1412 (cmp, HONOR_NANS (@0)); }
1413 (if (ic == icmp)
1414 (icmp @0 @1)
1415 (if (ic == ncmp)
1416 (ncmp @0 @1))))))
1417 (simplify
1418 (bit_xor (cmp @0 @1) integer_truep)
1419 (with { enum tree_code ic = invert_tree_comparison
1420 (cmp, HONOR_NANS (@0)); }
1421 (if (ic == icmp)
1422 (icmp @0 @1)
1423 (if (ic == ncmp)
1424 (ncmp @0 @1))))))
1425
1426 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1427 ??? The transformation is valid for the other operators if overflow
1428 is undefined for the type, but performing it here badly interacts
1429 with the transformation in fold_cond_expr_with_comparison which
1430 attempts to synthetize ABS_EXPR. */
1431 (for cmp (eq ne)
1432 (simplify
1433 (cmp (minus@2 @0 @1) integer_zerop)
1434 (if (single_use (@2))
1435 (cmp @0 @1))))
1436
1437 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1438 signed arithmetic case. That form is created by the compiler
1439 often enough for folding it to be of value. One example is in
1440 computing loop trip counts after Operator Strength Reduction. */
1441 (for cmp (simple_comparison)
1442 scmp (swapped_simple_comparison)
1443 (simplify
1444 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1445 /* Handle unfolded multiplication by zero. */
1446 (if (integer_zerop (@1))
1447 (cmp @1 @2)
1448 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1449 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1450 /* If @1 is negative we swap the sense of the comparison. */
1451 (if (tree_int_cst_sgn (@1) < 0)
1452 (scmp @0 @2)
1453 (cmp @0 @2))))))
1454
1455 /* Simplify comparison of something with itself. For IEEE
1456 floating-point, we can only do some of these simplifications. */
1457 (simplify
1458 (eq @0 @0)
1459 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1460 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1461 { constant_boolean_node (true, type); }))
1462 (for cmp (ge le)
1463 (simplify
1464 (cmp @0 @0)
1465 (eq @0 @0)))
1466 (for cmp (ne gt lt)
1467 (simplify
1468 (cmp @0 @0)
1469 (if (cmp != NE_EXPR
1470 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1471 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1472 { constant_boolean_node (false, type); })))
1473
1474 /* Fold ~X op ~Y as Y op X. */
1475 (for cmp (simple_comparison)
1476 (simplify
1477 (cmp (bit_not @0) (bit_not @1))
1478 (cmp @1 @0)))
1479
1480 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1481 (for cmp (simple_comparison)
1482 scmp (swapped_simple_comparison)
1483 (simplify
1484 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1485 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1486 (scmp @0 (bit_not @1)))))
1487
1488 (for cmp (simple_comparison)
1489 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1490 (simplify
1491 (cmp (convert@2 @0) (convert? @1))
1492 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1493 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1494 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1495 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1496 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1497 (with
1498 {
1499 tree type1 = TREE_TYPE (@1);
1500 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1501 {
1502 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1503 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1504 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1505 type1 = float_type_node;
1506 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1507 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1508 type1 = double_type_node;
1509 }
1510 tree newtype
1511 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1512 ? TREE_TYPE (@0) : type1);
1513 }
1514 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1515 (cmp (convert:newtype @0) (convert:newtype @1))))))
1516
1517 (simplify
1518 (cmp @0 REAL_CST@1)
1519 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1520 (switch
1521 /* a CMP (-0) -> a CMP 0 */
1522 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1523 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1524 /* x != NaN is always true, other ops are always false. */
1525 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1526 && ! HONOR_SNANS (@1))
1527 { constant_boolean_node (cmp == NE_EXPR, type); })
1528 /* Fold comparisons against infinity. */
1529 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1530 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1531 (with
1532 {
1533 REAL_VALUE_TYPE max;
1534 enum tree_code code = cmp;
1535 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1536 if (neg)
1537 code = swap_tree_comparison (code);
1538 }
1539 (switch
1540 /* x > +Inf is always false, if with ignore sNANs. */
1541 (if (code == GT_EXPR
1542 && ! HONOR_SNANS (@0))
1543 { constant_boolean_node (false, type); })
1544 (if (code == LE_EXPR)
1545 /* x <= +Inf is always true, if we don't case about NaNs. */
1546 (if (! HONOR_NANS (@0))
1547 { constant_boolean_node (true, type); }
1548 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
1549 (eq @0 @0)))
1550 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1551 (if (code == EQ_EXPR || code == GE_EXPR)
1552 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1553 (if (neg)
1554 (lt @0 { build_real (TREE_TYPE (@0), max); })
1555 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
1556 /* x < +Inf is always equal to x <= DBL_MAX. */
1557 (if (code == LT_EXPR)
1558 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1559 (if (neg)
1560 (ge @0 { build_real (TREE_TYPE (@0), max); })
1561 (le @0 { build_real (TREE_TYPE (@0), max); }))))
1562 /* x != +Inf is always equal to !(x > DBL_MAX). */
1563 (if (code == NE_EXPR)
1564 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1565 (if (! HONOR_NANS (@0))
1566 (if (neg)
1567 (ge @0 { build_real (TREE_TYPE (@0), max); })
1568 (le @0 { build_real (TREE_TYPE (@0), max); }))
1569 (if (neg)
1570 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1571 { build_one_cst (type); })
1572 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1573 { build_one_cst (type); }))))))))))
1574
1575 /* If this is a comparison of a real constant with a PLUS_EXPR
1576 or a MINUS_EXPR of a real constant, we can convert it into a
1577 comparison with a revised real constant as long as no overflow
1578 occurs when unsafe_math_optimizations are enabled. */
1579 (if (flag_unsafe_math_optimizations)
1580 (for op (plus minus)
1581 (simplify
1582 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1583 (with
1584 {
1585 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1586 TREE_TYPE (@1), @2, @1);
1587 }
1588 (if (!TREE_OVERFLOW (tem))
1589 (cmp @0 { tem; }))))))
1590
1591 /* Likewise, we can simplify a comparison of a real constant with
1592 a MINUS_EXPR whose first operand is also a real constant, i.e.
1593 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1594 floating-point types only if -fassociative-math is set. */
1595 (if (flag_associative_math)
1596 (simplify
1597 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
1598 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1599 (if (!TREE_OVERFLOW (tem))
1600 (cmp { tem; } @1)))))
1601
1602 /* Fold comparisons against built-in math functions. */
1603 (if (flag_unsafe_math_optimizations
1604 && ! flag_errno_math)
1605 (for sq (SQRT)
1606 (simplify
1607 (cmp (sq @0) REAL_CST@1)
1608 (switch
1609 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1610 (switch
1611 /* sqrt(x) < y is always false, if y is negative. */
1612 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1613 { constant_boolean_node (false, type); })
1614 /* sqrt(x) > y is always true, if y is negative and we
1615 don't care about NaNs, i.e. negative values of x. */
1616 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1617 { constant_boolean_node (true, type); })
1618 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1619 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
1620 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1621 (with
1622 {
1623 REAL_VALUE_TYPE c2;
1624 REAL_ARITHMETIC (c2, MULT_EXPR,
1625 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1626 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1627 }
1628 (if (REAL_VALUE_ISINF (c2))
1629 /* sqrt(x) > y is x == +Inf, when y is very large. */
1630 (if (HONOR_INFINITIES (@0))
1631 (eq @0 { build_real (TREE_TYPE (@0), c2); })
1632 { constant_boolean_node (false, type); })
1633 /* sqrt(x) > c is the same as x > c*c. */
1634 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
1635 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1636 (with
1637 {
1638 REAL_VALUE_TYPE c2;
1639 REAL_ARITHMETIC (c2, MULT_EXPR,
1640 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1641 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1642 }
1643 (if (REAL_VALUE_ISINF (c2))
1644 (switch
1645 /* sqrt(x) < y is always true, when y is a very large
1646 value and we don't care about NaNs or Infinities. */
1647 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1648 { constant_boolean_node (true, type); })
1649 /* sqrt(x) < y is x != +Inf when y is very large and we
1650 don't care about NaNs. */
1651 (if (! HONOR_NANS (@0))
1652 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1653 /* sqrt(x) < y is x >= 0 when y is very large and we
1654 don't care about Infinities. */
1655 (if (! HONOR_INFINITIES (@0))
1656 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1657 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1658 (if (GENERIC)
1659 (truth_andif
1660 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1661 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1662 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1663 (if (! HONOR_NANS (@0))
1664 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
1665 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1666 (if (GENERIC)
1667 (truth_andif
1668 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1669 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
1670
1671 /* Unordered tests if either argument is a NaN. */
1672 (simplify
1673 (bit_ior (unordered @0 @0) (unordered @1 @1))
1674 (if (types_match (@0, @1))
1675 (unordered @0 @1)))
1676 (simplify
1677 (bit_and (ordered @0 @0) (ordered @1 @1))
1678 (if (types_match (@0, @1))
1679 (ordered @0 @1)))
1680 (simplify
1681 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1682 @2)
1683 (simplify
1684 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1685 @2)
1686
1687 /* -A CMP -B -> B CMP A. */
1688 (for cmp (tcc_comparison)
1689 scmp (swapped_tcc_comparison)
1690 (simplify
1691 (cmp (negate @0) (negate @1))
1692 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1693 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1694 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1695 (scmp @0 @1)))
1696 (simplify
1697 (cmp (negate @0) CONSTANT_CLASS_P@1)
1698 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1699 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1700 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1701 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1702 (if (tem && !TREE_OVERFLOW (tem))
1703 (scmp @0 { tem; }))))))
1704
1705 /* From fold_sign_changed_comparison and fold_widened_comparison. */
1706 (for cmp (simple_comparison)
1707 (simplify
1708 (cmp (convert@0 @00) (convert?@1 @10))
1709 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
1710 /* Disable this optimization if we're casting a function pointer
1711 type on targets that require function pointer canonicalization. */
1712 && !(targetm.have_canonicalize_funcptr_for_compare ()
1713 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
1714 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
1715 && single_use (@0))
1716 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
1717 && (TREE_CODE (@10) == INTEGER_CST
1718 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
1719 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
1720 || cmp == NE_EXPR
1721 || cmp == EQ_EXPR)
1722 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
1723 /* ??? The special-casing of INTEGER_CST conversion was in the original
1724 code and here to avoid a spurious overflow flag on the resulting
1725 constant which fold_convert produces. */
1726 (if (TREE_CODE (@1) == INTEGER_CST)
1727 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
1728 TREE_OVERFLOW (@1)); })
1729 (cmp @00 (convert @1)))
1730
1731 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
1732 /* If possible, express the comparison in the shorter mode. */
1733 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
1734 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
1735 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
1736 || ((TYPE_PRECISION (TREE_TYPE (@00))
1737 >= TYPE_PRECISION (TREE_TYPE (@10)))
1738 && (TYPE_UNSIGNED (TREE_TYPE (@00))
1739 == TYPE_UNSIGNED (TREE_TYPE (@10))))
1740 || (TREE_CODE (@10) == INTEGER_CST
1741 && (TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1742 || TREE_CODE (TREE_TYPE (@00)) == BOOLEAN_TYPE)
1743 && int_fits_type_p (@10, TREE_TYPE (@00)))))
1744 (cmp @00 (convert @10))
1745 (if (TREE_CODE (@10) == INTEGER_CST
1746 && TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1747 && !int_fits_type_p (@10, TREE_TYPE (@00)))
1748 (with
1749 {
1750 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1751 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1752 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
1753 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
1754 }
1755 (if (above || below)
1756 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
1757 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
1758 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1759 { constant_boolean_node (above ? true : false, type); }
1760 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1761 { constant_boolean_node (above ? false : true, type); }))))))))))))
1762
1763 (for cmp (eq ne)
1764 /* A local variable can never be pointed to by
1765 the default SSA name of an incoming parameter.
1766 SSA names are canonicalized to 2nd place. */
1767 (simplify
1768 (cmp addr@0 SSA_NAME@1)
1769 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
1770 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
1771 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
1772 (if (TREE_CODE (base) == VAR_DECL
1773 && auto_var_in_fn_p (base, current_function_decl))
1774 (if (cmp == NE_EXPR)
1775 { constant_boolean_node (true, type); }
1776 { constant_boolean_node (false, type); }))))))
1777
1778 /* Equality compare simplifications from fold_binary */
1779 (for cmp (eq ne)
1780
1781 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1782 Similarly for NE_EXPR. */
1783 (simplify
1784 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1785 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1786 && wi::bit_and_not (@1, @2) != 0)
1787 { constant_boolean_node (cmp == NE_EXPR, type); }))
1788
1789 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1790 (simplify
1791 (cmp (bit_xor @0 @1) integer_zerop)
1792 (cmp @0 @1))
1793
1794 /* (X ^ Y) == Y becomes X == 0.
1795 Likewise (X ^ Y) == X becomes Y == 0. */
1796 (simplify
1797 (cmp:c (bit_xor:c @0 @1) @0)
1798 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1799
1800 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1801 (simplify
1802 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1803 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1804 (cmp @0 (bit_xor @1 (convert @2)))))
1805
1806 /* If this is an equality comparison of the address of two non-weak,
1807 unaliased symbols neither of which are extern (since we do not
1808 have access to attributes for externs), then we know the result. */
1809 (simplify
1810 (cmp (convert? addr@0) (convert? addr@1))
1811 (if (decl_in_symtab_p (TREE_OPERAND (@0, 0))
1812 && decl_in_symtab_p (TREE_OPERAND (@1, 0)))
1813 (with
1814 {
1815 int equal = symtab_node::get_create (TREE_OPERAND (@0, 0))
1816 ->equal_address_to (symtab_node::get_create (TREE_OPERAND (@1, 0)));
1817 }
1818 (if (equal != 2)
1819 { constant_boolean_node (equal ? cmp == EQ_EXPR : cmp != EQ_EXPR, type); }))))
1820
1821 (simplify
1822 (cmp (convert? addr@0) integer_zerop)
1823 (if (tree_single_nonzero_warnv_p (@0, NULL))
1824 { constant_boolean_node (cmp == NE_EXPR, type); })))
1825
1826
1827 /* bool_var != 0 becomes bool_var. */
1828 (simplify
1829 (ne @0 integer_zerop@1)
1830 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
1831 && types_match (type, TREE_TYPE (@0)))
1832 (non_lvalue @0)))
1833 /* bool_var == 1 becomes bool_var. */
1834 (simplify
1835 (eq @0 integer_onep@1)
1836 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
1837 && types_match (type, TREE_TYPE (@0)))
1838 (non_lvalue @0)))
1839
1840
1841 /* Simplification of math builtins. */
1842
1843 /* fold_builtin_logarithm */
1844 (if (flag_unsafe_math_optimizations)
1845 /* Special case, optimize logN(expN(x)) = x. */
1846 (for logs (LOG LOG2 LOG10)
1847 exps (EXP EXP2 EXP10)
1848 (simplify
1849 (logs (exps @0))
1850 @0))
1851 /* Optimize logN(func()) for various exponential functions. We
1852 want to determine the value "x" and the power "exponent" in
1853 order to transform logN(x**exponent) into exponent*logN(x). */
1854 (for logs (LOG LOG LOG LOG
1855 LOG2 LOG2 LOG2 LOG2
1856 LOG10 LOG10 LOG10 LOG10)
1857 exps (EXP EXP2 EXP10 POW10)
1858 (simplify
1859 (logs (exps @0))
1860 (with {
1861 tree x;
1862 switch (exps)
1863 {
1864 CASE_FLT_FN (BUILT_IN_EXP):
1865 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1866 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1867 dconst_e ()));
1868 break;
1869 CASE_FLT_FN (BUILT_IN_EXP2):
1870 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1871 x = build_real (type, dconst2);
1872 break;
1873 CASE_FLT_FN (BUILT_IN_EXP10):
1874 CASE_FLT_FN (BUILT_IN_POW10):
1875 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1876 {
1877 REAL_VALUE_TYPE dconst10;
1878 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1879 x = build_real (type, dconst10);
1880 }
1881 break;
1882 }
1883 }
1884 (mult (logs { x; }) @0))))
1885 (for logs (LOG LOG
1886 LOG2 LOG2
1887 LOG10 LOG10)
1888 exps (SQRT CBRT)
1889 (simplify
1890 (logs (exps @0))
1891 (with {
1892 tree x;
1893 switch (exps)
1894 {
1895 CASE_FLT_FN (BUILT_IN_SQRT):
1896 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1897 x = build_real (type, dconsthalf);
1898 break;
1899 CASE_FLT_FN (BUILT_IN_CBRT):
1900 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1901 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1902 dconst_third ()));
1903 break;
1904 }
1905 }
1906 (mult { x; } (logs @0)))))
1907 /* logN(pow(x,exponent) -> exponent*logN(x). */
1908 (for logs (LOG LOG2 LOG10)
1909 pows (POW)
1910 (simplify
1911 (logs (pows @0 @1))
1912 (mult @1 (logs @0)))))
1913
1914 /* Narrowing of arithmetic and logical operations.
1915
1916 These are conceptually similar to the transformations performed for
1917 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1918 term we want to move all that code out of the front-ends into here. */
1919
1920 /* If we have a narrowing conversion of an arithmetic operation where
1921 both operands are widening conversions from the same type as the outer
1922 narrowing conversion. Then convert the innermost operands to a suitable
1923 unsigned type (to avoid introducing undefined behaviour), perform the
1924 operation and convert the result to the desired type. */
1925 (for op (plus minus)
1926 (simplify
1927 (convert (op:s (convert@2 @0) (convert@3 @1)))
1928 (if (INTEGRAL_TYPE_P (type)
1929 /* We check for type compatibility between @0 and @1 below,
1930 so there's no need to check that @1/@3 are integral types. */
1931 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1932 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1933 /* The precision of the type of each operand must match the
1934 precision of the mode of each operand, similarly for the
1935 result. */
1936 && (TYPE_PRECISION (TREE_TYPE (@0))
1937 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1938 && (TYPE_PRECISION (TREE_TYPE (@1))
1939 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1940 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1941 /* The inner conversion must be a widening conversion. */
1942 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1943 && types_match (@0, @1)
1944 && types_match (@0, type))
1945 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1946 (convert (op @0 @1))
1947 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1948 (convert (op (convert:utype @0) (convert:utype @1))))))))
1949
1950 /* This is another case of narrowing, specifically when there's an outer
1951 BIT_AND_EXPR which masks off bits outside the type of the innermost
1952 operands. Like the previous case we have to convert the operands
1953 to unsigned types to avoid introducing undefined behaviour for the
1954 arithmetic operation. */
1955 (for op (minus plus)
1956 (simplify
1957 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1958 (if (INTEGRAL_TYPE_P (type)
1959 /* We check for type compatibility between @0 and @1 below,
1960 so there's no need to check that @1/@3 are integral types. */
1961 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1962 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1963 /* The precision of the type of each operand must match the
1964 precision of the mode of each operand, similarly for the
1965 result. */
1966 && (TYPE_PRECISION (TREE_TYPE (@0))
1967 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1968 && (TYPE_PRECISION (TREE_TYPE (@1))
1969 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1970 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1971 /* The inner conversion must be a widening conversion. */
1972 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1973 && types_match (@0, @1)
1974 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1975 <= TYPE_PRECISION (TREE_TYPE (@0)))
1976 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1977 || tree_int_cst_sgn (@4) >= 0))
1978 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1979 (with { tree ntype = TREE_TYPE (@0); }
1980 (convert (bit_and (op @0 @1) (convert:ntype @4))))
1981 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1982 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1983 (convert:utype @4))))))))