re PR other/63387 (Optimize pairs of isnan() calls into a single isunordered())
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41
42
43 /* Simplifications of operations with one constant operand and
44 simplifications to constants or single values. */
45
46 (for op (plus pointer_plus minus bit_ior bit_xor)
47 (simplify
48 (op @0 integer_zerop)
49 (non_lvalue @0)))
50
51 /* 0 +p index -> (type)index */
52 (simplify
53 (pointer_plus integer_zerop @1)
54 (non_lvalue (convert @1)))
55
56 /* See if ARG1 is zero and X + ARG1 reduces to X.
57 Likewise if the operands are reversed. */
58 (simplify
59 (plus:c @0 real_zerop@1)
60 (if (fold_real_zero_addition_p (type, @1, 0))
61 (non_lvalue @0)))
62
63 /* See if ARG1 is zero and X - ARG1 reduces to X. */
64 (simplify
65 (minus @0 real_zerop@1)
66 (if (fold_real_zero_addition_p (type, @1, 1))
67 (non_lvalue @0)))
68
69 /* Simplify x - x.
70 This is unsafe for certain floats even in non-IEEE formats.
71 In IEEE, it is unsafe because it does wrong for NaNs.
72 Also note that operand_equal_p is always false if an operand
73 is volatile. */
74 (simplify
75 (minus @0 @0)
76 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
77 { build_zero_cst (type); }))
78
79 (simplify
80 (mult @0 integer_zerop@1)
81 @1)
82
83 /* Maybe fold x * 0 to 0. The expressions aren't the same
84 when x is NaN, since x * 0 is also NaN. Nor are they the
85 same in modes with signed zeros, since multiplying a
86 negative value by 0 gives -0, not +0. */
87 (simplify
88 (mult @0 real_zerop@1)
89 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
90 @1))
91
92 /* In IEEE floating point, x*1 is not equivalent to x for snans.
93 Likewise for complex arithmetic with signed zeros. */
94 (simplify
95 (mult @0 real_onep)
96 (if (!HONOR_SNANS (element_mode (type))
97 && (!HONOR_SIGNED_ZEROS (element_mode (type))
98 || !COMPLEX_FLOAT_TYPE_P (type)))
99 (non_lvalue @0)))
100
101 /* Transform x * -1.0 into -x. */
102 (simplify
103 (mult @0 real_minus_onep)
104 (if (!HONOR_SNANS (element_mode (type))
105 && (!HONOR_SIGNED_ZEROS (element_mode (type))
106 || !COMPLEX_FLOAT_TYPE_P (type)))
107 (negate @0)))
108
109 /* Make sure to preserve divisions by zero. This is the reason why
110 we don't simplify x / x to 1 or 0 / x to 0. */
111 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
112 (simplify
113 (op @0 integer_onep)
114 (non_lvalue @0)))
115
116 /* X / -1 is -X. */
117 (for div (trunc_div ceil_div floor_div round_div exact_div)
118 (simplify
119 (div @0 integer_minus_onep@1)
120 (if (!TYPE_UNSIGNED (type))
121 (negate @0))))
122
123 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
124 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
125 (simplify
126 (floor_div @0 @1)
127 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
128 && TYPE_UNSIGNED (type))
129 (trunc_div @0 @1)))
130
131 /* Combine two successive divisions. Note that combining ceil_div
132 and floor_div is trickier and combining round_div even more so. */
133 (for div (trunc_div exact_div)
134 (simplify
135 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
136 (with {
137 bool overflow_p;
138 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
139 }
140 (if (!overflow_p)
141 (div @0 { wide_int_to_tree (type, mul); }))
142 (if (overflow_p
143 && (TYPE_UNSIGNED (type)
144 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
145 { build_zero_cst (type); }))))
146
147 /* Optimize A / A to 1.0 if we don't care about
148 NaNs or Infinities. */
149 (simplify
150 (rdiv @0 @0)
151 (if (FLOAT_TYPE_P (type)
152 && ! HONOR_NANS (type)
153 && ! HONOR_INFINITIES (element_mode (type)))
154 { build_one_cst (type); }))
155
156 /* Optimize -A / A to -1.0 if we don't care about
157 NaNs or Infinities. */
158 (simplify
159 (rdiv:c @0 (negate @0))
160 (if (FLOAT_TYPE_P (type)
161 && ! HONOR_NANS (type)
162 && ! HONOR_INFINITIES (element_mode (type)))
163 { build_minus_one_cst (type); }))
164
165 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
166 (simplify
167 (rdiv @0 real_onep)
168 (if (!HONOR_SNANS (element_mode (type)))
169 (non_lvalue @0)))
170
171 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
172 (simplify
173 (rdiv @0 real_minus_onep)
174 (if (!HONOR_SNANS (element_mode (type)))
175 (negate @0)))
176
177 /* If ARG1 is a constant, we can convert this to a multiply by the
178 reciprocal. This does not have the same rounding properties,
179 so only do this if -freciprocal-math. We can actually
180 always safely do it if ARG1 is a power of two, but it's hard to
181 tell if it is or not in a portable manner. */
182 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
183 (simplify
184 (rdiv @0 cst@1)
185 (if (optimize)
186 (if (flag_reciprocal_math
187 && !real_zerop (@1))
188 (with
189 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
190 (if (tem)
191 (mult @0 { tem; } ))))
192 (if (cst != COMPLEX_CST)
193 (with { tree inverse = exact_inverse (type, @1); }
194 (if (inverse)
195 (mult @0 { inverse; } )))))))
196
197 /* Same applies to modulo operations, but fold is inconsistent here
198 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
199 (for mod (ceil_mod floor_mod round_mod trunc_mod)
200 /* 0 % X is always zero. */
201 (simplify
202 (mod integer_zerop@0 @1)
203 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
204 (if (!integer_zerop (@1))
205 @0))
206 /* X % 1 is always zero. */
207 (simplify
208 (mod @0 integer_onep)
209 { build_zero_cst (type); })
210 /* X % -1 is zero. */
211 (simplify
212 (mod @0 integer_minus_onep@1)
213 (if (!TYPE_UNSIGNED (type))
214 { build_zero_cst (type); }))
215 /* (X % Y) % Y is just X % Y. */
216 (simplify
217 (mod (mod@2 @0 @1) @1)
218 @2))
219
220 /* X % -C is the same as X % C. */
221 (simplify
222 (trunc_mod @0 INTEGER_CST@1)
223 (if (TYPE_SIGN (type) == SIGNED
224 && !TREE_OVERFLOW (@1)
225 && wi::neg_p (@1)
226 && !TYPE_OVERFLOW_TRAPS (type)
227 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
228 && !sign_bit_p (@1, @1))
229 (trunc_mod @0 (negate @1))))
230
231 /* X % Y is smaller than Y. */
232 (for cmp (lt ge)
233 (simplify
234 (cmp (trunc_mod @0 @1) @1)
235 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
236 { constant_boolean_node (cmp == LT_EXPR, type); })))
237 (for cmp (gt le)
238 (simplify
239 (cmp @1 (trunc_mod @0 @1))
240 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
241 { constant_boolean_node (cmp == GT_EXPR, type); })))
242
243 /* x | ~0 -> ~0 */
244 (simplify
245 (bit_ior @0 integer_all_onesp@1)
246 @1)
247
248 /* x & 0 -> 0 */
249 (simplify
250 (bit_and @0 integer_zerop@1)
251 @1)
252
253 /* x ^ x -> 0 */
254 (simplify
255 (bit_xor @0 @0)
256 { build_zero_cst (type); })
257
258 /* Canonicalize X ^ ~0 to ~X. */
259 (simplify
260 (bit_xor @0 integer_all_onesp@1)
261 (bit_not @0))
262
263 /* x & ~0 -> x */
264 (simplify
265 (bit_and @0 integer_all_onesp)
266 (non_lvalue @0))
267
268 /* x & x -> x, x | x -> x */
269 (for bitop (bit_and bit_ior)
270 (simplify
271 (bitop @0 @0)
272 (non_lvalue @0)))
273
274 /* x + (x & 1) -> (x + 1) & ~1 */
275 (simplify
276 (plus:c @0 (bit_and@2 @0 integer_onep@1))
277 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
278 (bit_and (plus @0 @1) (bit_not @1))))
279
280 /* x & ~(x & y) -> x & ~y */
281 /* x | ~(x | y) -> x | ~y */
282 (for bitop (bit_and bit_ior)
283 (simplify
284 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
285 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
286 (bitop @0 (bit_not @1)))))
287
288 /* (x | y) & ~x -> y & ~x */
289 /* (x & y) | ~x -> y | ~x */
290 (for bitop (bit_and bit_ior)
291 rbitop (bit_ior bit_and)
292 (simplify
293 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
294 (bitop @1 @2)))
295
296 (simplify
297 (abs (negate @0))
298 (abs @0))
299 (simplify
300 (abs tree_expr_nonnegative_p@0)
301 @0)
302
303
304 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
305 when profitable.
306 For bitwise binary operations apply operand conversions to the
307 binary operation result instead of to the operands. This allows
308 to combine successive conversions and bitwise binary operations.
309 We combine the above two cases by using a conditional convert. */
310 (for bitop (bit_and bit_ior bit_xor)
311 (simplify
312 (bitop (convert @0) (convert? @1))
313 (if (((TREE_CODE (@1) == INTEGER_CST
314 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
315 && int_fits_type_p (@1, TREE_TYPE (@0)))
316 || types_match (@0, @1))
317 /* ??? This transform conflicts with fold-const.c doing
318 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
319 constants (if x has signed type, the sign bit cannot be set
320 in c). This folds extension into the BIT_AND_EXPR.
321 Restrict it to GIMPLE to avoid endless recursions. */
322 && (bitop != BIT_AND_EXPR || GIMPLE)
323 && (/* That's a good idea if the conversion widens the operand, thus
324 after hoisting the conversion the operation will be narrower. */
325 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
326 /* It's also a good idea if the conversion is to a non-integer
327 mode. */
328 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
329 /* Or if the precision of TO is not the same as the precision
330 of its mode. */
331 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
332 (convert (bitop @0 (convert @1))))))
333
334 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
335 (for bitop (bit_and bit_ior bit_xor)
336 (simplify
337 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
338 (bit_and (bitop @0 @2) @1)))
339
340 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
341 (simplify
342 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
343 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
344
345 /* Combine successive equal operations with constants. */
346 (for bitop (bit_and bit_ior bit_xor)
347 (simplify
348 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
349 (bitop @0 (bitop @1 @2))))
350
351 /* Try simple folding for X op !X, and X op X with the help
352 of the truth_valued_p and logical_inverted_value predicates. */
353 (match truth_valued_p
354 @0
355 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
356 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
357 (match truth_valued_p
358 (op @0 @1)))
359 (match truth_valued_p
360 (truth_not @0))
361
362 (match (logical_inverted_value @0)
363 (bit_not truth_valued_p@0))
364 (match (logical_inverted_value @0)
365 (eq @0 integer_zerop))
366 (match (logical_inverted_value @0)
367 (ne truth_valued_p@0 integer_truep))
368 (match (logical_inverted_value @0)
369 (bit_xor truth_valued_p@0 integer_truep))
370
371 /* X & !X -> 0. */
372 (simplify
373 (bit_and:c @0 (logical_inverted_value @0))
374 { build_zero_cst (type); })
375 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
376 (for op (bit_ior bit_xor)
377 (simplify
378 (op:c truth_valued_p@0 (logical_inverted_value @0))
379 { constant_boolean_node (true, type); }))
380
381 (for bitop (bit_and bit_ior)
382 rbitop (bit_ior bit_and)
383 /* (x | y) & x -> x */
384 /* (x & y) | x -> x */
385 (simplify
386 (bitop:c (rbitop:c @0 @1) @0)
387 @0)
388 /* (~x | y) & x -> x & y */
389 /* (~x & y) | x -> x | y */
390 (simplify
391 (bitop:c (rbitop:c (bit_not @0) @1) @0)
392 (bitop @0 @1)))
393
394 /* If arg1 and arg2 are booleans (or any single bit type)
395 then try to simplify:
396
397 (~X & Y) -> X < Y
398 (X & ~Y) -> Y < X
399 (~X | Y) -> X <= Y
400 (X | ~Y) -> Y <= X
401
402 But only do this if our result feeds into a comparison as
403 this transformation is not always a win, particularly on
404 targets with and-not instructions.
405 -> simplify_bitwise_binary_boolean */
406 (simplify
407 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
408 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
409 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
410 (lt @0 @1)))
411 (simplify
412 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
413 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
414 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
415 (le @0 @1)))
416
417 /* ~~x -> x */
418 (simplify
419 (bit_not (bit_not @0))
420 @0)
421
422 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
423 (simplify
424 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
425 (if ((TREE_CODE (@3) != SSA_NAME || has_single_use (@3))
426 && (TREE_CODE (@4) != SSA_NAME || has_single_use (@4)))
427 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
428
429
430 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
431 (simplify
432 (pointer_plus (pointer_plus@2 @0 @1) @3)
433 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
434 (pointer_plus @0 (plus @1 @3))))
435
436 /* Pattern match
437 tem1 = (long) ptr1;
438 tem2 = (long) ptr2;
439 tem3 = tem2 - tem1;
440 tem4 = (unsigned long) tem3;
441 tem5 = ptr1 + tem4;
442 and produce
443 tem5 = ptr2; */
444 (simplify
445 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
446 /* Conditionally look through a sign-changing conversion. */
447 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
448 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
449 || (GENERIC && type == TREE_TYPE (@1))))
450 @1))
451
452 /* Pattern match
453 tem = (sizetype) ptr;
454 tem = tem & algn;
455 tem = -tem;
456 ... = ptr p+ tem;
457 and produce the simpler and easier to analyze with respect to alignment
458 ... = ptr & ~algn; */
459 (simplify
460 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
461 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
462 (bit_and @0 { algn; })))
463
464
465 /* We can't reassociate at all for saturating types. */
466 (if (!TYPE_SATURATING (type))
467
468 /* Contract negates. */
469 /* A + (-B) -> A - B */
470 (simplify
471 (plus:c (convert1? @0) (convert2? (negate @1)))
472 /* Apply STRIP_NOPS on @0 and the negate. */
473 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
474 && tree_nop_conversion_p (type, TREE_TYPE (@1))
475 && !TYPE_OVERFLOW_SANITIZED (type))
476 (minus (convert @0) (convert @1))))
477 /* A - (-B) -> A + B */
478 (simplify
479 (minus (convert1? @0) (convert2? (negate @1)))
480 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
481 && tree_nop_conversion_p (type, TREE_TYPE (@1))
482 && !TYPE_OVERFLOW_SANITIZED (type))
483 (plus (convert @0) (convert @1))))
484 /* -(-A) -> A */
485 (simplify
486 (negate (convert? (negate @1)))
487 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
488 && !TYPE_OVERFLOW_SANITIZED (type))
489 (convert @1)))
490
491 /* We can't reassociate floating-point or fixed-point plus or minus
492 because of saturation to +-Inf. */
493 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
494
495 /* Match patterns that allow contracting a plus-minus pair
496 irrespective of overflow issues. */
497 /* (A +- B) - A -> +- B */
498 /* (A +- B) -+ B -> A */
499 /* A - (A +- B) -> -+ B */
500 /* A +- (B -+ A) -> +- B */
501 (simplify
502 (minus (plus:c @0 @1) @0)
503 @1)
504 (simplify
505 (minus (minus @0 @1) @0)
506 (negate @1))
507 (simplify
508 (plus:c (minus @0 @1) @1)
509 @0)
510 (simplify
511 (minus @0 (plus:c @0 @1))
512 (negate @1))
513 (simplify
514 (minus @0 (minus @0 @1))
515 @1)
516
517 /* (A +- CST) +- CST -> A + CST */
518 (for outer_op (plus minus)
519 (for inner_op (plus minus)
520 (simplify
521 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
522 /* If the constant operation overflows we cannot do the transform
523 as we would introduce undefined overflow, for example
524 with (a - 1) + INT_MIN. */
525 (with { tree cst = fold_binary (outer_op == inner_op
526 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
527 (if (cst && !TREE_OVERFLOW (cst))
528 (inner_op @0 { cst; } ))))))
529
530 /* (CST - A) +- CST -> CST - A */
531 (for outer_op (plus minus)
532 (simplify
533 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
534 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
535 (if (cst && !TREE_OVERFLOW (cst))
536 (minus { cst; } @0)))))
537
538 /* ~A + A -> -1 */
539 (simplify
540 (plus:c (bit_not @0) @0)
541 (if (!TYPE_OVERFLOW_TRAPS (type))
542 { build_all_ones_cst (type); }))
543
544 /* ~A + 1 -> -A */
545 (simplify
546 (plus (convert? (bit_not @0)) integer_each_onep)
547 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
548 (negate (convert @0))))
549
550 /* -A - 1 -> ~A */
551 (simplify
552 (minus (convert? (negate @0)) integer_each_onep)
553 (if (!TYPE_OVERFLOW_TRAPS (type)
554 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
555 (bit_not (convert @0))))
556
557 /* -1 - A -> ~A */
558 (simplify
559 (minus integer_all_onesp @0)
560 (bit_not @0))
561
562 /* (T)(P + A) - (T)P -> (T) A */
563 (for add (plus pointer_plus)
564 (simplify
565 (minus (convert (add @0 @1))
566 (convert @0))
567 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
568 /* For integer types, if A has a smaller type
569 than T the result depends on the possible
570 overflow in P + A.
571 E.g. T=size_t, A=(unsigned)429497295, P>0.
572 However, if an overflow in P + A would cause
573 undefined behavior, we can assume that there
574 is no overflow. */
575 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
576 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
577 /* For pointer types, if the conversion of A to the
578 final type requires a sign- or zero-extension,
579 then we have to punt - it is not defined which
580 one is correct. */
581 || (POINTER_TYPE_P (TREE_TYPE (@0))
582 && TREE_CODE (@1) == INTEGER_CST
583 && tree_int_cst_sign_bit (@1) == 0))
584 (convert @1))))))
585
586
587 /* Simplifications of MIN_EXPR and MAX_EXPR. */
588
589 (for minmax (min max)
590 (simplify
591 (minmax @0 @0)
592 @0))
593 (simplify
594 (min @0 @1)
595 (if (INTEGRAL_TYPE_P (type)
596 && TYPE_MIN_VALUE (type)
597 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
598 @1))
599 (simplify
600 (max @0 @1)
601 (if (INTEGRAL_TYPE_P (type)
602 && TYPE_MAX_VALUE (type)
603 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
604 @1))
605
606
607 /* Simplifications of shift and rotates. */
608
609 (for rotate (lrotate rrotate)
610 (simplify
611 (rotate integer_all_onesp@0 @1)
612 @0))
613
614 /* Optimize -1 >> x for arithmetic right shifts. */
615 (simplify
616 (rshift integer_all_onesp@0 @1)
617 (if (!TYPE_UNSIGNED (type)
618 && tree_expr_nonnegative_p (@1))
619 @0))
620
621 (for shiftrotate (lrotate rrotate lshift rshift)
622 (simplify
623 (shiftrotate @0 integer_zerop)
624 (non_lvalue @0))
625 (simplify
626 (shiftrotate integer_zerop@0 @1)
627 @0)
628 /* Prefer vector1 << scalar to vector1 << vector2
629 if vector2 is uniform. */
630 (for vec (VECTOR_CST CONSTRUCTOR)
631 (simplify
632 (shiftrotate @0 vec@1)
633 (with { tree tem = uniform_vector_p (@1); }
634 (if (tem)
635 (shiftrotate @0 { tem; }))))))
636
637 /* Rewrite an LROTATE_EXPR by a constant into an
638 RROTATE_EXPR by a new constant. */
639 (simplify
640 (lrotate @0 INTEGER_CST@1)
641 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
642 build_int_cst (TREE_TYPE (@1),
643 element_precision (type)), @1); }))
644
645 /* ((1 << A) & 1) != 0 -> A == 0
646 ((1 << A) & 1) == 0 -> A != 0 */
647 (for cmp (ne eq)
648 icmp (eq ne)
649 (simplify
650 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
651 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
652
653 /* Simplifications of conversions. */
654
655 /* Basic strip-useless-type-conversions / strip_nops. */
656 (for cvt (convert view_convert float fix_trunc)
657 (simplify
658 (cvt @0)
659 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
660 || (GENERIC && type == TREE_TYPE (@0)))
661 @0)))
662
663 /* Contract view-conversions. */
664 (simplify
665 (view_convert (view_convert @0))
666 (view_convert @0))
667
668 /* For integral conversions with the same precision or pointer
669 conversions use a NOP_EXPR instead. */
670 (simplify
671 (view_convert @0)
672 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
673 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
674 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
675 (convert @0)))
676
677 /* Strip inner integral conversions that do not change precision or size. */
678 (simplify
679 (view_convert (convert@0 @1))
680 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
681 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
682 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
684 (view_convert @1)))
685
686 /* Re-association barriers around constants and other re-association
687 barriers can be removed. */
688 (simplify
689 (paren CONSTANT_CLASS_P@0)
690 @0)
691 (simplify
692 (paren (paren@1 @0))
693 @1)
694
695 /* Handle cases of two conversions in a row. */
696 (for ocvt (convert float fix_trunc)
697 (for icvt (convert float)
698 (simplify
699 (ocvt (icvt@1 @0))
700 (with
701 {
702 tree inside_type = TREE_TYPE (@0);
703 tree inter_type = TREE_TYPE (@1);
704 int inside_int = INTEGRAL_TYPE_P (inside_type);
705 int inside_ptr = POINTER_TYPE_P (inside_type);
706 int inside_float = FLOAT_TYPE_P (inside_type);
707 int inside_vec = VECTOR_TYPE_P (inside_type);
708 unsigned int inside_prec = TYPE_PRECISION (inside_type);
709 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
710 int inter_int = INTEGRAL_TYPE_P (inter_type);
711 int inter_ptr = POINTER_TYPE_P (inter_type);
712 int inter_float = FLOAT_TYPE_P (inter_type);
713 int inter_vec = VECTOR_TYPE_P (inter_type);
714 unsigned int inter_prec = TYPE_PRECISION (inter_type);
715 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
716 int final_int = INTEGRAL_TYPE_P (type);
717 int final_ptr = POINTER_TYPE_P (type);
718 int final_float = FLOAT_TYPE_P (type);
719 int final_vec = VECTOR_TYPE_P (type);
720 unsigned int final_prec = TYPE_PRECISION (type);
721 int final_unsignedp = TYPE_UNSIGNED (type);
722 }
723 /* In addition to the cases of two conversions in a row
724 handled below, if we are converting something to its own
725 type via an object of identical or wider precision, neither
726 conversion is needed. */
727 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
728 || (GENERIC
729 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
730 && (((inter_int || inter_ptr) && final_int)
731 || (inter_float && final_float))
732 && inter_prec >= final_prec)
733 (ocvt @0))
734
735 /* Likewise, if the intermediate and initial types are either both
736 float or both integer, we don't need the middle conversion if the
737 former is wider than the latter and doesn't change the signedness
738 (for integers). Avoid this if the final type is a pointer since
739 then we sometimes need the middle conversion. Likewise if the
740 final type has a precision not equal to the size of its mode. */
741 (if (((inter_int && inside_int) || (inter_float && inside_float))
742 && (final_int || final_float)
743 && inter_prec >= inside_prec
744 && (inter_float || inter_unsignedp == inside_unsignedp)
745 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
746 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
747 (ocvt @0))
748
749 /* If we have a sign-extension of a zero-extended value, we can
750 replace that by a single zero-extension. Likewise if the
751 final conversion does not change precision we can drop the
752 intermediate conversion. */
753 (if (inside_int && inter_int && final_int
754 && ((inside_prec < inter_prec && inter_prec < final_prec
755 && inside_unsignedp && !inter_unsignedp)
756 || final_prec == inter_prec))
757 (ocvt @0))
758
759 /* Two conversions in a row are not needed unless:
760 - some conversion is floating-point (overstrict for now), or
761 - some conversion is a vector (overstrict for now), or
762 - the intermediate type is narrower than both initial and
763 final, or
764 - the intermediate type and innermost type differ in signedness,
765 and the outermost type is wider than the intermediate, or
766 - the initial type is a pointer type and the precisions of the
767 intermediate and final types differ, or
768 - the final type is a pointer type and the precisions of the
769 initial and intermediate types differ. */
770 (if (! inside_float && ! inter_float && ! final_float
771 && ! inside_vec && ! inter_vec && ! final_vec
772 && (inter_prec >= inside_prec || inter_prec >= final_prec)
773 && ! (inside_int && inter_int
774 && inter_unsignedp != inside_unsignedp
775 && inter_prec < final_prec)
776 && ((inter_unsignedp && inter_prec > inside_prec)
777 == (final_unsignedp && final_prec > inter_prec))
778 && ! (inside_ptr && inter_prec != final_prec)
779 && ! (final_ptr && inside_prec != inter_prec)
780 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
781 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
782 (ocvt @0))
783
784 /* A truncation to an unsigned type (a zero-extension) should be
785 canonicalized as bitwise and of a mask. */
786 (if (final_int && inter_int && inside_int
787 && final_prec == inside_prec
788 && final_prec > inter_prec
789 && inter_unsignedp)
790 (convert (bit_and @0 { wide_int_to_tree
791 (inside_type,
792 wi::mask (inter_prec, false,
793 TYPE_PRECISION (inside_type))); })))
794
795 /* If we are converting an integer to a floating-point that can
796 represent it exactly and back to an integer, we can skip the
797 floating-point conversion. */
798 (if (GIMPLE /* PR66211 */
799 && inside_int && inter_float && final_int &&
800 (unsigned) significand_size (TYPE_MODE (inter_type))
801 >= inside_prec - !inside_unsignedp)
802 (convert @0))))))
803
804 /* If we have a narrowing conversion to an integral type that is fed by a
805 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
806 masks off bits outside the final type (and nothing else). */
807 (simplify
808 (convert (bit_and @0 INTEGER_CST@1))
809 (if (INTEGRAL_TYPE_P (type)
810 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
811 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
812 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
813 TYPE_PRECISION (type)), 0))
814 (convert @0)))
815
816
817 /* (X /[ex] A) * A -> X. */
818 (simplify
819 (mult (convert? (exact_div @0 @1)) @1)
820 /* Look through a sign-changing conversion. */
821 (convert @0))
822
823 /* Canonicalization of binary operations. */
824
825 /* Convert X + -C into X - C. */
826 (simplify
827 (plus @0 REAL_CST@1)
828 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
829 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
830 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
831 (minus @0 { tem; })))))
832
833 /* Convert x+x into x*2.0. */
834 (simplify
835 (plus @0 @0)
836 (if (SCALAR_FLOAT_TYPE_P (type))
837 (mult @0 { build_real (type, dconst2); })))
838
839 (simplify
840 (minus integer_zerop @1)
841 (negate @1))
842
843 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
844 ARG0 is zero and X + ARG0 reduces to X, since that would mean
845 (-ARG1 + ARG0) reduces to -ARG1. */
846 (simplify
847 (minus real_zerop@0 @1)
848 (if (fold_real_zero_addition_p (type, @0, 0))
849 (negate @1)))
850
851 /* Transform x * -1 into -x. */
852 (simplify
853 (mult @0 integer_minus_onep)
854 (negate @0))
855
856 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
857 (simplify
858 (complex (realpart @0) (imagpart @0))
859 @0)
860 (simplify
861 (realpart (complex @0 @1))
862 @0)
863 (simplify
864 (imagpart (complex @0 @1))
865 @1)
866
867
868 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
869 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
870 (simplify
871 (bswap (bswap @0))
872 @0)
873 (simplify
874 (bswap (bit_not (bswap @0)))
875 (bit_not @0))
876 (for bitop (bit_xor bit_ior bit_and)
877 (simplify
878 (bswap (bitop:c (bswap @0) @1))
879 (bitop @0 (bswap @1)))))
880
881
882 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
883
884 /* Simplify constant conditions.
885 Only optimize constant conditions when the selected branch
886 has the same type as the COND_EXPR. This avoids optimizing
887 away "c ? x : throw", where the throw has a void type.
888 Note that we cannot throw away the fold-const.c variant nor
889 this one as we depend on doing this transform before possibly
890 A ? B : B -> B triggers and the fold-const.c one can optimize
891 0 ? A : B to B even if A has side-effects. Something
892 genmatch cannot handle. */
893 (simplify
894 (cond INTEGER_CST@0 @1 @2)
895 (if (integer_zerop (@0)
896 && (!VOID_TYPE_P (TREE_TYPE (@2))
897 || VOID_TYPE_P (type)))
898 @2)
899 (if (!integer_zerop (@0)
900 && (!VOID_TYPE_P (TREE_TYPE (@1))
901 || VOID_TYPE_P (type)))
902 @1))
903 (simplify
904 (vec_cond VECTOR_CST@0 @1 @2)
905 (if (integer_all_onesp (@0))
906 @1)
907 (if (integer_zerop (@0))
908 @2))
909
910 (for cnd (cond vec_cond)
911 /* A ? B : (A ? X : C) -> A ? B : C. */
912 (simplify
913 (cnd @0 (cnd @0 @1 @2) @3)
914 (cnd @0 @1 @3))
915 (simplify
916 (cnd @0 @1 (cnd @0 @2 @3))
917 (cnd @0 @1 @3))
918
919 /* A ? B : B -> B. */
920 (simplify
921 (cnd @0 @1 @1)
922 @1)
923
924 /* !A ? B : C -> A ? C : B. */
925 (simplify
926 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
927 (cnd @0 @2 @1)))
928
929
930 /* Simplifications of comparisons. */
931
932 /* We can simplify a logical negation of a comparison to the
933 inverted comparison. As we cannot compute an expression
934 operator using invert_tree_comparison we have to simulate
935 that with expression code iteration. */
936 (for cmp (tcc_comparison)
937 icmp (inverted_tcc_comparison)
938 ncmp (inverted_tcc_comparison_with_nans)
939 /* Ideally we'd like to combine the following two patterns
940 and handle some more cases by using
941 (logical_inverted_value (cmp @0 @1))
942 here but for that genmatch would need to "inline" that.
943 For now implement what forward_propagate_comparison did. */
944 (simplify
945 (bit_not (cmp @0 @1))
946 (if (VECTOR_TYPE_P (type)
947 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
948 /* Comparison inversion may be impossible for trapping math,
949 invert_tree_comparison will tell us. But we can't use
950 a computed operator in the replacement tree thus we have
951 to play the trick below. */
952 (with { enum tree_code ic = invert_tree_comparison
953 (cmp, HONOR_NANS (@0)); }
954 (if (ic == icmp)
955 (icmp @0 @1))
956 (if (ic == ncmp)
957 (ncmp @0 @1)))))
958 (simplify
959 (bit_xor (cmp @0 @1) integer_truep)
960 (with { enum tree_code ic = invert_tree_comparison
961 (cmp, HONOR_NANS (@0)); }
962 (if (ic == icmp)
963 (icmp @0 @1))
964 (if (ic == ncmp)
965 (ncmp @0 @1)))))
966
967 /* Unordered tests if either argument is a NaN. */
968 (simplify
969 (bit_ior (unordered @0 @0) (unordered @1 @1))
970 (if (types_match (@0, @1))
971 (unordered @0 @1)))
972 (simplify
973 (bit_and (ordered @0 @0) (ordered @1 @1))
974 (if (types_match (@0, @1))
975 (ordered @0 @1)))
976 (simplify
977 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
978 @2)
979 (simplify
980 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
981 @2)
982
983 /* Simplification of math builtins. */
984
985 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
986 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
987 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
988 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
989 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
990 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
991 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
992 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
993 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
994 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
995
996
997 /* fold_builtin_logarithm */
998 (if (flag_unsafe_math_optimizations)
999 /* Special case, optimize logN(expN(x)) = x. */
1000 (for logs (LOG LOG2 LOG10)
1001 exps (EXP EXP2 EXP10)
1002 (simplify
1003 (logs (exps @0))
1004 @0))
1005 /* Optimize logN(func()) for various exponential functions. We
1006 want to determine the value "x" and the power "exponent" in
1007 order to transform logN(x**exponent) into exponent*logN(x). */
1008 (for logs (LOG LOG LOG LOG
1009 LOG2 LOG2 LOG2 LOG2
1010 LOG10 LOG10 LOG10 LOG10)
1011 exps (EXP EXP2 EXP10 POW10)
1012 (simplify
1013 (logs (exps @0))
1014 (with {
1015 tree x;
1016 switch (exps)
1017 {
1018 CASE_FLT_FN (BUILT_IN_EXP):
1019 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1020 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1021 dconst_e ()));
1022 break;
1023 CASE_FLT_FN (BUILT_IN_EXP2):
1024 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1025 x = build_real (type, dconst2);
1026 break;
1027 CASE_FLT_FN (BUILT_IN_EXP10):
1028 CASE_FLT_FN (BUILT_IN_POW10):
1029 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1030 {
1031 REAL_VALUE_TYPE dconst10;
1032 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1033 x = build_real (type, dconst10);
1034 }
1035 break;
1036 }
1037 }
1038 (mult (logs { x; }) @0))))
1039 (for logs (LOG LOG
1040 LOG2 LOG2
1041 LOG10 LOG10)
1042 exps (SQRT CBRT)
1043 (simplify
1044 (logs (exps @0))
1045 (with {
1046 tree x;
1047 switch (exps)
1048 {
1049 CASE_FLT_FN (BUILT_IN_SQRT):
1050 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1051 x = build_real (type, dconsthalf);
1052 break;
1053 CASE_FLT_FN (BUILT_IN_CBRT):
1054 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1055 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1056 dconst_third ()));
1057 break;
1058 }
1059 }
1060 (mult { x; } (logs @0)))))
1061 /* logN(pow(x,exponent) -> exponent*logN(x). */
1062 (for logs (LOG LOG2 LOG10)
1063 pows (POW)
1064 (simplify
1065 (logs (pows @0 @1))
1066 (mult @1 (logs @0)))))
1067
1068 /* Narrowing of arithmetic and logical operations.
1069
1070 These are conceptually similar to the transformations performed for
1071 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1072 term we want to move all that code out of the front-ends into here. */
1073
1074 /* If we have a narrowing conversion of an arithmetic operation where
1075 both operands are widening conversions from the same type as the outer
1076 narrowing conversion. Then convert the innermost operands to a suitable
1077 unsigned type (to avoid introducing undefined behaviour), perform the
1078 operation and convert the result to the desired type. */
1079 (for op (plus minus)
1080 (simplify
1081 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1082 (if (INTEGRAL_TYPE_P (type)
1083 /* We check for type compatibility between @0 and @1 below,
1084 so there's no need to check that @1/@3 are integral types. */
1085 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1086 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1087 /* The precision of the type of each operand must match the
1088 precision of the mode of each operand, similarly for the
1089 result. */
1090 && (TYPE_PRECISION (TREE_TYPE (@0))
1091 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1092 && (TYPE_PRECISION (TREE_TYPE (@1))
1093 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1094 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1095 /* The inner conversion must be a widening conversion. */
1096 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1097 && types_match (@0, @1)
1098 && types_match (@0, type)
1099 && single_use (@4))
1100 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1101 (convert (op @0 @1)))
1102 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1103 (convert (op (convert:utype @0) (convert:utype @1)))))))
1104
1105 /* This is another case of narrowing, specifically when there's an outer
1106 BIT_AND_EXPR which masks off bits outside the type of the innermost
1107 operands. Like the previous case we have to convert the operands
1108 to unsigned types to avoid introducing undefined behaviour for the
1109 arithmetic operation. */
1110 (for op (minus plus)
1111 (simplify
1112 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1113 (if (INTEGRAL_TYPE_P (type)
1114 /* We check for type compatibility between @0 and @1 below,
1115 so there's no need to check that @1/@3 are integral types. */
1116 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1117 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1118 /* The precision of the type of each operand must match the
1119 precision of the mode of each operand, similarly for the
1120 result. */
1121 && (TYPE_PRECISION (TREE_TYPE (@0))
1122 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1123 && (TYPE_PRECISION (TREE_TYPE (@1))
1124 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1125 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1126 /* The inner conversion must be a widening conversion. */
1127 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1128 && types_match (@0, @1)
1129 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1130 <= TYPE_PRECISION (TREE_TYPE (@0)))
1131 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1132 || tree_int_cst_sgn (@4) >= 0)
1133 && single_use (@5))
1134 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1135 (with { tree ntype = TREE_TYPE (@0); }
1136 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1137 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1138 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1139 (convert:utype @4)))))))
1140