fold-const.c (fold_comparison): Move X - Y CMP 0 -> X CMP Y...
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43
44
45 /* Simplifications of operations with one constant operand and
46 simplifications to constants or single values. */
47
48 (for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
53 /* 0 +p index -> (type)index */
54 (simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
58 /* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60 (simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65 /* See if ARG1 is zero and X - ARG1 reduces to X. */
66 (simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
71 /* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76 (simplify
77 (minus @0 @0)
78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
79 { build_zero_cst (type); }))
80
81 (simplify
82 (mult @0 integer_zerop@1)
83 @1)
84
85 /* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89 (simplify
90 (mult @0 real_zerop@1)
91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
92 @1))
93
94 /* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96 (simplify
97 (mult @0 real_onep)
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103 /* Transform x * -1.0 into -x. */
104 (simplify
105 (mult @0 real_minus_onep)
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
110
111 /* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
118 /* X / -1 is -X. */
119 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
123 (negate @0))))
124
125 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127 (simplify
128 (floor_div @0 @1)
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
131 (trunc_div @0 @1)))
132
133 /* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135 (for div (trunc_div exact_div)
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
147 { build_zero_cst (type); }))))
148
149 /* Optimize A / A to 1.0 if we don't care about
150 NaNs or Infinities. */
151 (simplify
152 (rdiv @0 @0)
153 (if (FLOAT_TYPE_P (type)
154 && ! HONOR_NANS (type)
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158 /* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160 (simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
163 && ! HONOR_NANS (type)
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
166
167 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
168 (simplify
169 (rdiv @0 real_onep)
170 (if (!HONOR_SNANS (element_mode (type)))
171 (non_lvalue @0)))
172
173 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174 (simplify
175 (rdiv @0 real_minus_onep)
176 (if (!HONOR_SNANS (element_mode (type)))
177 (negate @0)))
178
179 /* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
190 (with
191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
199 /* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
201 (for mod (ceil_mod floor_mod round_mod trunc_mod)
202 /* 0 % X is always zero. */
203 (simplify
204 (mod integer_zerop@0 @1)
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
221
222 /* X % -C is the same as X % C. */
223 (simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
232
233 /* X % -Y is the same as X % Y. */
234 (simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241 /* X - (X / Y) * Y is the same as X % Y. */
242 (simplify
243 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
244 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
245 (trunc_mod (convert @0) (convert @1))))
246
247 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
248 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
249 Also optimize A % (C << N) where C is a power of 2,
250 to A & ((C << N) - 1). */
251 (match (power_of_two_cand @1)
252 INTEGER_CST@1)
253 (match (power_of_two_cand @1)
254 (lshift INTEGER_CST@1 @2))
255 (for mod (trunc_mod floor_mod)
256 (simplify
257 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
258 (if ((TYPE_UNSIGNED (type)
259 || tree_expr_nonnegative_p (@0))
260 && tree_nop_conversion_p (type, TREE_TYPE (@3))
261 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
262 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
263
264 /* X % Y is smaller than Y. */
265 (for cmp (lt ge)
266 (simplify
267 (cmp (trunc_mod @0 @1) @1)
268 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
269 { constant_boolean_node (cmp == LT_EXPR, type); })))
270 (for cmp (gt le)
271 (simplify
272 (cmp @1 (trunc_mod @0 @1))
273 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
274 { constant_boolean_node (cmp == GT_EXPR, type); })))
275
276 /* x | ~0 -> ~0 */
277 (simplify
278 (bit_ior @0 integer_all_onesp@1)
279 @1)
280
281 /* x & 0 -> 0 */
282 (simplify
283 (bit_and @0 integer_zerop@1)
284 @1)
285
286 /* ~x | x -> -1 */
287 (simplify
288 (bit_ior:c (convert? @0) (convert? (bit_not @0)))
289 (convert { build_all_ones_cst (TREE_TYPE (@0)); }))
290
291 /* x ^ x -> 0 */
292 (simplify
293 (bit_xor @0 @0)
294 { build_zero_cst (type); })
295
296 /* Canonicalize X ^ ~0 to ~X. */
297 (simplify
298 (bit_xor @0 integer_all_onesp@1)
299 (bit_not @0))
300
301 /* ~X ^ X is -1. */
302 (simplify
303 (bit_xor:c (bit_not @0) @0)
304 { build_all_ones_cst (type); })
305
306 /* x & ~0 -> x */
307 (simplify
308 (bit_and @0 integer_all_onesp)
309 (non_lvalue @0))
310
311 /* x & x -> x, x | x -> x */
312 (for bitop (bit_and bit_ior)
313 (simplify
314 (bitop @0 @0)
315 (non_lvalue @0)))
316
317 /* x + (x & 1) -> (x + 1) & ~1 */
318 (simplify
319 (plus:c @0 (bit_and@2 @0 integer_onep@1))
320 (if (single_use (@2))
321 (bit_and (plus @0 @1) (bit_not @1))))
322
323 /* x & ~(x & y) -> x & ~y */
324 /* x | ~(x | y) -> x | ~y */
325 (for bitop (bit_and bit_ior)
326 (simplify
327 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
328 (if (single_use (@2))
329 (bitop @0 (bit_not @1)))))
330
331 /* (x | y) & ~x -> y & ~x */
332 /* (x & y) | ~x -> y | ~x */
333 (for bitop (bit_and bit_ior)
334 rbitop (bit_ior bit_and)
335 (simplify
336 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
337 (bitop @1 @2)))
338
339 /* (x & y) ^ (x | y) -> x ^ y */
340 (simplify
341 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
342 (bit_xor @0 @1))
343
344 /* (x ^ y) ^ (x | y) -> x & y */
345 (simplify
346 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
347 (bit_and @0 @1))
348
349 /* (x & y) + (x ^ y) -> x | y */
350 /* (x & y) | (x ^ y) -> x | y */
351 /* (x & y) ^ (x ^ y) -> x | y */
352 (for op (plus bit_ior bit_xor)
353 (simplify
354 (op:c (bit_and @0 @1) (bit_xor @0 @1))
355 (bit_ior @0 @1)))
356
357 /* (x & y) + (x | y) -> x + y */
358 (simplify
359 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
360 (plus @0 @1))
361
362 /* (x + y) - (x | y) -> x & y */
363 (simplify
364 (minus (plus @0 @1) (bit_ior @0 @1))
365 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
366 && !TYPE_SATURATING (type))
367 (bit_and @0 @1)))
368
369 /* (x + y) - (x & y) -> x | y */
370 (simplify
371 (minus (plus @0 @1) (bit_and @0 @1))
372 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
373 && !TYPE_SATURATING (type))
374 (bit_ior @0 @1)))
375
376 /* (x | y) - (x ^ y) -> x & y */
377 (simplify
378 (minus (bit_ior @0 @1) (bit_xor @0 @1))
379 (bit_and @0 @1))
380
381 /* (x | y) - (x & y) -> x ^ y */
382 (simplify
383 (minus (bit_ior @0 @1) (bit_and @0 @1))
384 (bit_xor @0 @1))
385
386 /* (x | y) & ~(x & y) -> x ^ y */
387 (simplify
388 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
389 (bit_xor @0 @1))
390
391 /* (x | y) & (~x ^ y) -> x & y */
392 (simplify
393 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
394 (bit_and @0 @1))
395
396 /* ~x & ~y -> ~(x | y)
397 ~x | ~y -> ~(x & y) */
398 (for op (bit_and bit_ior)
399 rop (bit_ior bit_and)
400 (simplify
401 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
402 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
403 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
404 (bit_not (rop (convert @0) (convert @1))))))
405
406 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
407 with a constant, and the two constants have no bits in common,
408 we should treat this as a BIT_IOR_EXPR since this may produce more
409 simplifications. */
410 (simplify
411 (bit_xor (convert1? (bit_and@4 @0 INTEGER_CST@1))
412 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
413 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
414 && tree_nop_conversion_p (type, TREE_TYPE (@2))
415 && wi::bit_and (@1, @3) == 0)
416 (bit_ior (convert @4) (convert @5))))
417
418 /* (X | Y) ^ X -> Y & ~ X*/
419 (simplify
420 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
421 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
422 (convert (bit_and @1 (bit_not @0)))))
423
424 /* Convert ~X ^ ~Y to X ^ Y. */
425 (simplify
426 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
427 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
428 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
429 (bit_xor (convert @0) (convert @1))))
430
431 /* Convert ~X ^ C to X ^ ~C. */
432 (simplify
433 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
434 (bit_xor (convert @0) (bit_not @1)))
435
436 /* Fold (X & Y) ^ Y as ~X & Y. */
437 (simplify
438 (bit_xor:c (bit_and:c @0 @1) @1)
439 (bit_and (bit_not @0) @1))
440
441
442 (simplify
443 (abs (abs@1 @0))
444 @1)
445 (simplify
446 (abs (negate @0))
447 (abs @0))
448 (simplify
449 (abs tree_expr_nonnegative_p@0)
450 @0)
451
452 /* A - B -> A + (-B) if B is easily negatable. This just covers
453 very few cases of "easily negatable", effectively inlining negate_expr_p. */
454 (simplify
455 (minus @0 INTEGER_CST@1)
456 (if ((INTEGRAL_TYPE_P (type)
457 && TYPE_OVERFLOW_WRAPS (type))
458 || (!TYPE_OVERFLOW_SANITIZED (type)
459 && may_negate_without_overflow_p (@1)))
460 (plus @0 (negate @1))))
461 (simplify
462 (minus @0 REAL_CST@1)
463 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
464 (plus @0 (negate @1))))
465 (simplify
466 (minus @0 VECTOR_CST@1)
467 (if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
468 (plus @0 (negate @1))))
469
470
471 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
472 when profitable.
473 For bitwise binary operations apply operand conversions to the
474 binary operation result instead of to the operands. This allows
475 to combine successive conversions and bitwise binary operations.
476 We combine the above two cases by using a conditional convert. */
477 (for bitop (bit_and bit_ior bit_xor)
478 (simplify
479 (bitop (convert @0) (convert? @1))
480 (if (((TREE_CODE (@1) == INTEGER_CST
481 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
482 && int_fits_type_p (@1, TREE_TYPE (@0)))
483 || types_match (@0, @1))
484 /* ??? This transform conflicts with fold-const.c doing
485 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
486 constants (if x has signed type, the sign bit cannot be set
487 in c). This folds extension into the BIT_AND_EXPR.
488 Restrict it to GIMPLE to avoid endless recursions. */
489 && (bitop != BIT_AND_EXPR || GIMPLE)
490 && (/* That's a good idea if the conversion widens the operand, thus
491 after hoisting the conversion the operation will be narrower. */
492 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
493 /* It's also a good idea if the conversion is to a non-integer
494 mode. */
495 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
496 /* Or if the precision of TO is not the same as the precision
497 of its mode. */
498 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
499 (convert (bitop @0 (convert @1))))))
500
501 (for bitop (bit_and bit_ior)
502 rbitop (bit_ior bit_and)
503 /* (x | y) & x -> x */
504 /* (x & y) | x -> x */
505 (simplify
506 (bitop:c (rbitop:c @0 @1) @0)
507 @0)
508 /* (~x | y) & x -> x & y */
509 /* (~x & y) | x -> x | y */
510 (simplify
511 (bitop:c (rbitop:c (bit_not @0) @1) @0)
512 (bitop @0 @1)))
513
514 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
515 (for bitop (bit_and bit_ior bit_xor)
516 (simplify
517 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
518 (bit_and (bitop @0 @2) @1)))
519
520 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
521 (simplify
522 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
523 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
524
525 /* Combine successive equal operations with constants. */
526 (for bitop (bit_and bit_ior bit_xor)
527 (simplify
528 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
529 (bitop @0 (bitop @1 @2))))
530
531 /* Try simple folding for X op !X, and X op X with the help
532 of the truth_valued_p and logical_inverted_value predicates. */
533 (match truth_valued_p
534 @0
535 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
536 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
537 (match truth_valued_p
538 (op @0 @1)))
539 (match truth_valued_p
540 (truth_not @0))
541
542 (match (logical_inverted_value @0)
543 (bit_not truth_valued_p@0))
544 (match (logical_inverted_value @0)
545 (eq @0 integer_zerop))
546 (match (logical_inverted_value @0)
547 (ne truth_valued_p@0 integer_truep))
548 (match (logical_inverted_value @0)
549 (bit_xor truth_valued_p@0 integer_truep))
550
551 /* X & !X -> 0. */
552 (simplify
553 (bit_and:c @0 (logical_inverted_value @0))
554 { build_zero_cst (type); })
555 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
556 (for op (bit_ior bit_xor)
557 (simplify
558 (op:c truth_valued_p@0 (logical_inverted_value @0))
559 { constant_boolean_node (true, type); }))
560
561 /* If arg1 and arg2 are booleans (or any single bit type)
562 then try to simplify:
563
564 (~X & Y) -> X < Y
565 (X & ~Y) -> Y < X
566 (~X | Y) -> X <= Y
567 (X | ~Y) -> Y <= X
568
569 But only do this if our result feeds into a comparison as
570 this transformation is not always a win, particularly on
571 targets with and-not instructions.
572 -> simplify_bitwise_binary_boolean */
573 (simplify
574 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
575 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
576 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
577 (lt @0 @1)))
578 (simplify
579 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
580 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
581 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
582 (le @0 @1)))
583
584 /* ~~x -> x */
585 (simplify
586 (bit_not (bit_not @0))
587 @0)
588
589 /* Convert ~ (-A) to A - 1. */
590 (simplify
591 (bit_not (convert? (negate @0)))
592 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
593 (convert (minus @0 { build_one_cst (TREE_TYPE (@0)); }))))
594
595 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
596 (simplify
597 (bit_not (convert? (minus @0 integer_onep)))
598 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
599 (convert (negate @0))))
600 (simplify
601 (bit_not (convert? (plus @0 integer_all_onesp)))
602 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
603 (convert (negate @0))))
604
605 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
606 (simplify
607 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
608 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
609 (convert (bit_xor @0 (bit_not @1)))))
610 (simplify
611 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
612 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
613 (convert (bit_xor @0 @1))))
614
615 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
616 (simplify
617 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
618 (if (single_use (@3) && single_use (@4))
619 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
620
621
622 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
623 (simplify
624 (pointer_plus (pointer_plus@2 @0 @1) @3)
625 (if (single_use (@2)
626 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
627 (pointer_plus @0 (plus @1 @3))))
628
629 /* Pattern match
630 tem1 = (long) ptr1;
631 tem2 = (long) ptr2;
632 tem3 = tem2 - tem1;
633 tem4 = (unsigned long) tem3;
634 tem5 = ptr1 + tem4;
635 and produce
636 tem5 = ptr2; */
637 (simplify
638 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
639 /* Conditionally look through a sign-changing conversion. */
640 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
641 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
642 || (GENERIC && type == TREE_TYPE (@1))))
643 @1))
644
645 /* Pattern match
646 tem = (sizetype) ptr;
647 tem = tem & algn;
648 tem = -tem;
649 ... = ptr p+ tem;
650 and produce the simpler and easier to analyze with respect to alignment
651 ... = ptr & ~algn; */
652 (simplify
653 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
654 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
655 (bit_and @0 { algn; })))
656
657 /* Try folding difference of addresses. */
658 (simplify
659 (minus (convert ADDR_EXPR@0) (convert @1))
660 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
661 (with { HOST_WIDE_INT diff; }
662 (if (ptr_difference_const (@0, @1, &diff))
663 { build_int_cst_type (type, diff); }))))
664 (simplify
665 (minus (convert @0) (convert ADDR_EXPR@1))
666 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
667 (with { HOST_WIDE_INT diff; }
668 (if (ptr_difference_const (@0, @1, &diff))
669 { build_int_cst_type (type, diff); }))))
670
671
672
673 /* We can't reassociate at all for saturating types. */
674 (if (!TYPE_SATURATING (type))
675
676 /* Contract negates. */
677 /* A + (-B) -> A - B */
678 (simplify
679 (plus:c (convert1? @0) (convert2? (negate @1)))
680 /* Apply STRIP_NOPS on @0 and the negate. */
681 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
682 && tree_nop_conversion_p (type, TREE_TYPE (@1))
683 && !TYPE_OVERFLOW_SANITIZED (type))
684 (minus (convert @0) (convert @1))))
685 /* A - (-B) -> A + B */
686 (simplify
687 (minus (convert1? @0) (convert2? (negate @1)))
688 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
689 && tree_nop_conversion_p (type, TREE_TYPE (@1))
690 && !TYPE_OVERFLOW_SANITIZED (type))
691 (plus (convert @0) (convert @1))))
692 /* -(-A) -> A */
693 (simplify
694 (negate (convert? (negate @1)))
695 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
696 && !TYPE_OVERFLOW_SANITIZED (type))
697 (convert @1)))
698
699 /* We can't reassociate floating-point unless -fassociative-math
700 or fixed-point plus or minus because of saturation to +-Inf. */
701 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
702 && !FIXED_POINT_TYPE_P (type))
703
704 /* Match patterns that allow contracting a plus-minus pair
705 irrespective of overflow issues. */
706 /* (A +- B) - A -> +- B */
707 /* (A +- B) -+ B -> A */
708 /* A - (A +- B) -> -+ B */
709 /* A +- (B -+ A) -> +- B */
710 (simplify
711 (minus (plus:c @0 @1) @0)
712 @1)
713 (simplify
714 (minus (minus @0 @1) @0)
715 (negate @1))
716 (simplify
717 (plus:c (minus @0 @1) @1)
718 @0)
719 (simplify
720 (minus @0 (plus:c @0 @1))
721 (negate @1))
722 (simplify
723 (minus @0 (minus @0 @1))
724 @1)
725
726 /* (A +- CST) +- CST -> A + CST */
727 (for outer_op (plus minus)
728 (for inner_op (plus minus)
729 (simplify
730 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
731 /* If the constant operation overflows we cannot do the transform
732 as we would introduce undefined overflow, for example
733 with (a - 1) + INT_MIN. */
734 (with { tree cst = fold_binary (outer_op == inner_op
735 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
736 (if (cst && !TREE_OVERFLOW (cst))
737 (inner_op @0 { cst; } ))))))
738
739 /* (CST - A) +- CST -> CST - A */
740 (for outer_op (plus minus)
741 (simplify
742 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
743 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
744 (if (cst && !TREE_OVERFLOW (cst))
745 (minus { cst; } @0)))))
746
747 /* ~A + A -> -1 */
748 (simplify
749 (plus:c (bit_not @0) @0)
750 (if (!TYPE_OVERFLOW_TRAPS (type))
751 { build_all_ones_cst (type); }))
752
753 /* ~A + 1 -> -A */
754 (simplify
755 (plus (convert? (bit_not @0)) integer_each_onep)
756 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
757 (negate (convert @0))))
758
759 /* -A - 1 -> ~A */
760 (simplify
761 (minus (convert? (negate @0)) integer_each_onep)
762 (if (!TYPE_OVERFLOW_TRAPS (type)
763 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
764 (bit_not (convert @0))))
765
766 /* -1 - A -> ~A */
767 (simplify
768 (minus integer_all_onesp @0)
769 (bit_not @0))
770
771 /* (T)(P + A) - (T)P -> (T) A */
772 (for add (plus pointer_plus)
773 (simplify
774 (minus (convert (add @0 @1))
775 (convert @0))
776 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
777 /* For integer types, if A has a smaller type
778 than T the result depends on the possible
779 overflow in P + A.
780 E.g. T=size_t, A=(unsigned)429497295, P>0.
781 However, if an overflow in P + A would cause
782 undefined behavior, we can assume that there
783 is no overflow. */
784 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
785 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
786 /* For pointer types, if the conversion of A to the
787 final type requires a sign- or zero-extension,
788 then we have to punt - it is not defined which
789 one is correct. */
790 || (POINTER_TYPE_P (TREE_TYPE (@0))
791 && TREE_CODE (@1) == INTEGER_CST
792 && tree_int_cst_sign_bit (@1) == 0))
793 (convert @1))))))
794
795
796 /* Simplifications of MIN_EXPR and MAX_EXPR. */
797
798 (for minmax (min max)
799 (simplify
800 (minmax @0 @0)
801 @0))
802 (simplify
803 (min @0 @1)
804 (if (INTEGRAL_TYPE_P (type)
805 && TYPE_MIN_VALUE (type)
806 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
807 @1))
808 (simplify
809 (max @0 @1)
810 (if (INTEGRAL_TYPE_P (type)
811 && TYPE_MAX_VALUE (type)
812 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
813 @1))
814
815
816 /* Simplifications of shift and rotates. */
817
818 (for rotate (lrotate rrotate)
819 (simplify
820 (rotate integer_all_onesp@0 @1)
821 @0))
822
823 /* Optimize -1 >> x for arithmetic right shifts. */
824 (simplify
825 (rshift integer_all_onesp@0 @1)
826 (if (!TYPE_UNSIGNED (type)
827 && tree_expr_nonnegative_p (@1))
828 @0))
829
830 (for shiftrotate (lrotate rrotate lshift rshift)
831 (simplify
832 (shiftrotate @0 integer_zerop)
833 (non_lvalue @0))
834 (simplify
835 (shiftrotate integer_zerop@0 @1)
836 @0)
837 /* Prefer vector1 << scalar to vector1 << vector2
838 if vector2 is uniform. */
839 (for vec (VECTOR_CST CONSTRUCTOR)
840 (simplify
841 (shiftrotate @0 vec@1)
842 (with { tree tem = uniform_vector_p (@1); }
843 (if (tem)
844 (shiftrotate @0 { tem; }))))))
845
846 /* Rewrite an LROTATE_EXPR by a constant into an
847 RROTATE_EXPR by a new constant. */
848 (simplify
849 (lrotate @0 INTEGER_CST@1)
850 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
851 build_int_cst (TREE_TYPE (@1),
852 element_precision (type)), @1); }))
853
854 /* ((1 << A) & 1) != 0 -> A == 0
855 ((1 << A) & 1) == 0 -> A != 0 */
856 (for cmp (ne eq)
857 icmp (eq ne)
858 (simplify
859 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
860 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
861
862 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
863 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
864 if CST2 != 0. */
865 (for cmp (ne eq)
866 (simplify
867 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
868 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
869 (if (cand < 0
870 || (!integer_zerop (@2)
871 && wi::ne_p (wi::lshift (@0, cand), @2)))
872 { constant_boolean_node (cmp == NE_EXPR, type); })
873 (if (!integer_zerop (@2)
874 && wi::eq_p (wi::lshift (@0, cand), @2))
875 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
876
877 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
878 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
879 if the new mask might be further optimized. */
880 (for shift (lshift rshift)
881 (simplify
882 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
883 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
884 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
885 && tree_fits_uhwi_p (@1)
886 && tree_to_uhwi (@1) > 0
887 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
888 (with
889 {
890 unsigned int shiftc = tree_to_uhwi (@1);
891 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
892 unsigned HOST_WIDE_INT newmask, zerobits = 0;
893 tree shift_type = TREE_TYPE (@3);
894 unsigned int prec;
895
896 if (shift == LSHIFT_EXPR)
897 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
898 else if (shift == RSHIFT_EXPR
899 && (TYPE_PRECISION (shift_type)
900 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
901 {
902 prec = TYPE_PRECISION (TREE_TYPE (@3));
903 tree arg00 = @0;
904 /* See if more bits can be proven as zero because of
905 zero extension. */
906 if (@3 != @0
907 && TYPE_UNSIGNED (TREE_TYPE (@0)))
908 {
909 tree inner_type = TREE_TYPE (@0);
910 if ((TYPE_PRECISION (inner_type)
911 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
912 && TYPE_PRECISION (inner_type) < prec)
913 {
914 prec = TYPE_PRECISION (inner_type);
915 /* See if we can shorten the right shift. */
916 if (shiftc < prec)
917 shift_type = inner_type;
918 /* Otherwise X >> C1 is all zeros, so we'll optimize
919 it into (X, 0) later on by making sure zerobits
920 is all ones. */
921 }
922 }
923 zerobits = ~(unsigned HOST_WIDE_INT) 0;
924 if (shiftc < prec)
925 {
926 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
927 zerobits <<= prec - shiftc;
928 }
929 /* For arithmetic shift if sign bit could be set, zerobits
930 can contain actually sign bits, so no transformation is
931 possible, unless MASK masks them all away. In that
932 case the shift needs to be converted into logical shift. */
933 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
934 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
935 {
936 if ((mask & zerobits) == 0)
937 shift_type = unsigned_type_for (TREE_TYPE (@3));
938 else
939 zerobits = 0;
940 }
941 }
942 }
943 /* ((X << 16) & 0xff00) is (X, 0). */
944 (if ((mask & zerobits) == mask)
945 { build_int_cst (type, 0); })
946 (with { newmask = mask | zerobits; }
947 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
948 (with
949 {
950 /* Only do the transformation if NEWMASK is some integer
951 mode's mask. */
952 for (prec = BITS_PER_UNIT;
953 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
954 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
955 break;
956 }
957 (if (prec < HOST_BITS_PER_WIDE_INT
958 || newmask == ~(unsigned HOST_WIDE_INT) 0)
959 (with
960 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
961 (if (!tree_int_cst_equal (newmaskt, @2))
962 (if (shift_type != TREE_TYPE (@3)
963 && single_use (@4) && single_use (@5))
964 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
965 (if (shift_type == TREE_TYPE (@3))
966 (bit_and @4 { newmaskt; }))))))))))))
967
968 /* Simplifications of conversions. */
969
970 /* Basic strip-useless-type-conversions / strip_nops. */
971 (for cvt (convert view_convert float fix_trunc)
972 (simplify
973 (cvt @0)
974 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
975 || (GENERIC && type == TREE_TYPE (@0)))
976 @0)))
977
978 /* Contract view-conversions. */
979 (simplify
980 (view_convert (view_convert @0))
981 (view_convert @0))
982
983 /* For integral conversions with the same precision or pointer
984 conversions use a NOP_EXPR instead. */
985 (simplify
986 (view_convert @0)
987 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
988 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
989 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
990 (convert @0)))
991
992 /* Strip inner integral conversions that do not change precision or size. */
993 (simplify
994 (view_convert (convert@0 @1))
995 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
996 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
997 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
998 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
999 (view_convert @1)))
1000
1001 /* Re-association barriers around constants and other re-association
1002 barriers can be removed. */
1003 (simplify
1004 (paren CONSTANT_CLASS_P@0)
1005 @0)
1006 (simplify
1007 (paren (paren@1 @0))
1008 @1)
1009
1010 /* Handle cases of two conversions in a row. */
1011 (for ocvt (convert float fix_trunc)
1012 (for icvt (convert float)
1013 (simplify
1014 (ocvt (icvt@1 @0))
1015 (with
1016 {
1017 tree inside_type = TREE_TYPE (@0);
1018 tree inter_type = TREE_TYPE (@1);
1019 int inside_int = INTEGRAL_TYPE_P (inside_type);
1020 int inside_ptr = POINTER_TYPE_P (inside_type);
1021 int inside_float = FLOAT_TYPE_P (inside_type);
1022 int inside_vec = VECTOR_TYPE_P (inside_type);
1023 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1024 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1025 int inter_int = INTEGRAL_TYPE_P (inter_type);
1026 int inter_ptr = POINTER_TYPE_P (inter_type);
1027 int inter_float = FLOAT_TYPE_P (inter_type);
1028 int inter_vec = VECTOR_TYPE_P (inter_type);
1029 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1030 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1031 int final_int = INTEGRAL_TYPE_P (type);
1032 int final_ptr = POINTER_TYPE_P (type);
1033 int final_float = FLOAT_TYPE_P (type);
1034 int final_vec = VECTOR_TYPE_P (type);
1035 unsigned int final_prec = TYPE_PRECISION (type);
1036 int final_unsignedp = TYPE_UNSIGNED (type);
1037 }
1038 /* In addition to the cases of two conversions in a row
1039 handled below, if we are converting something to its own
1040 type via an object of identical or wider precision, neither
1041 conversion is needed. */
1042 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1043 || (GENERIC
1044 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1045 && (((inter_int || inter_ptr) && final_int)
1046 || (inter_float && final_float))
1047 && inter_prec >= final_prec)
1048 (ocvt @0))
1049
1050 /* Likewise, if the intermediate and initial types are either both
1051 float or both integer, we don't need the middle conversion if the
1052 former is wider than the latter and doesn't change the signedness
1053 (for integers). Avoid this if the final type is a pointer since
1054 then we sometimes need the middle conversion. Likewise if the
1055 final type has a precision not equal to the size of its mode. */
1056 (if (((inter_int && inside_int) || (inter_float && inside_float))
1057 && (final_int || final_float)
1058 && inter_prec >= inside_prec
1059 && (inter_float || inter_unsignedp == inside_unsignedp)
1060 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1061 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1062 (ocvt @0))
1063
1064 /* If we have a sign-extension of a zero-extended value, we can
1065 replace that by a single zero-extension. Likewise if the
1066 final conversion does not change precision we can drop the
1067 intermediate conversion. */
1068 (if (inside_int && inter_int && final_int
1069 && ((inside_prec < inter_prec && inter_prec < final_prec
1070 && inside_unsignedp && !inter_unsignedp)
1071 || final_prec == inter_prec))
1072 (ocvt @0))
1073
1074 /* Two conversions in a row are not needed unless:
1075 - some conversion is floating-point (overstrict for now), or
1076 - some conversion is a vector (overstrict for now), or
1077 - the intermediate type is narrower than both initial and
1078 final, or
1079 - the intermediate type and innermost type differ in signedness,
1080 and the outermost type is wider than the intermediate, or
1081 - the initial type is a pointer type and the precisions of the
1082 intermediate and final types differ, or
1083 - the final type is a pointer type and the precisions of the
1084 initial and intermediate types differ. */
1085 (if (! inside_float && ! inter_float && ! final_float
1086 && ! inside_vec && ! inter_vec && ! final_vec
1087 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1088 && ! (inside_int && inter_int
1089 && inter_unsignedp != inside_unsignedp
1090 && inter_prec < final_prec)
1091 && ((inter_unsignedp && inter_prec > inside_prec)
1092 == (final_unsignedp && final_prec > inter_prec))
1093 && ! (inside_ptr && inter_prec != final_prec)
1094 && ! (final_ptr && inside_prec != inter_prec)
1095 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1096 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1097 (ocvt @0))
1098
1099 /* A truncation to an unsigned type (a zero-extension) should be
1100 canonicalized as bitwise and of a mask. */
1101 (if (final_int && inter_int && inside_int
1102 && final_prec == inside_prec
1103 && final_prec > inter_prec
1104 && inter_unsignedp)
1105 (convert (bit_and @0 { wide_int_to_tree
1106 (inside_type,
1107 wi::mask (inter_prec, false,
1108 TYPE_PRECISION (inside_type))); })))
1109
1110 /* If we are converting an integer to a floating-point that can
1111 represent it exactly and back to an integer, we can skip the
1112 floating-point conversion. */
1113 (if (GIMPLE /* PR66211 */
1114 && inside_int && inter_float && final_int &&
1115 (unsigned) significand_size (TYPE_MODE (inter_type))
1116 >= inside_prec - !inside_unsignedp)
1117 (convert @0))))))
1118
1119 /* If we have a narrowing conversion to an integral type that is fed by a
1120 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1121 masks off bits outside the final type (and nothing else). */
1122 (simplify
1123 (convert (bit_and @0 INTEGER_CST@1))
1124 (if (INTEGRAL_TYPE_P (type)
1125 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1126 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1127 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1128 TYPE_PRECISION (type)), 0))
1129 (convert @0)))
1130
1131
1132 /* (X /[ex] A) * A -> X. */
1133 (simplify
1134 (mult (convert? (exact_div @0 @1)) @1)
1135 /* Look through a sign-changing conversion. */
1136 (convert @0))
1137
1138 /* Canonicalization of binary operations. */
1139
1140 /* Convert X + -C into X - C. */
1141 (simplify
1142 (plus @0 REAL_CST@1)
1143 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1144 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1145 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1146 (minus @0 { tem; })))))
1147
1148 /* Convert x+x into x*2.0. */
1149 (simplify
1150 (plus @0 @0)
1151 (if (SCALAR_FLOAT_TYPE_P (type))
1152 (mult @0 { build_real (type, dconst2); })))
1153
1154 (simplify
1155 (minus integer_zerop @1)
1156 (negate @1))
1157
1158 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1159 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1160 (-ARG1 + ARG0) reduces to -ARG1. */
1161 (simplify
1162 (minus real_zerop@0 @1)
1163 (if (fold_real_zero_addition_p (type, @0, 0))
1164 (negate @1)))
1165
1166 /* Transform x * -1 into -x. */
1167 (simplify
1168 (mult @0 integer_minus_onep)
1169 (negate @0))
1170
1171 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1172 (simplify
1173 (complex (realpart @0) (imagpart @0))
1174 @0)
1175 (simplify
1176 (realpart (complex @0 @1))
1177 @0)
1178 (simplify
1179 (imagpart (complex @0 @1))
1180 @1)
1181
1182
1183 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1184 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1185 (simplify
1186 (bswap (bswap @0))
1187 @0)
1188 (simplify
1189 (bswap (bit_not (bswap @0)))
1190 (bit_not @0))
1191 (for bitop (bit_xor bit_ior bit_and)
1192 (simplify
1193 (bswap (bitop:c (bswap @0) @1))
1194 (bitop @0 (bswap @1)))))
1195
1196
1197 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1198
1199 /* Simplify constant conditions.
1200 Only optimize constant conditions when the selected branch
1201 has the same type as the COND_EXPR. This avoids optimizing
1202 away "c ? x : throw", where the throw has a void type.
1203 Note that we cannot throw away the fold-const.c variant nor
1204 this one as we depend on doing this transform before possibly
1205 A ? B : B -> B triggers and the fold-const.c one can optimize
1206 0 ? A : B to B even if A has side-effects. Something
1207 genmatch cannot handle. */
1208 (simplify
1209 (cond INTEGER_CST@0 @1 @2)
1210 (if (integer_zerop (@0)
1211 && (!VOID_TYPE_P (TREE_TYPE (@2))
1212 || VOID_TYPE_P (type)))
1213 @2)
1214 (if (!integer_zerop (@0)
1215 && (!VOID_TYPE_P (TREE_TYPE (@1))
1216 || VOID_TYPE_P (type)))
1217 @1))
1218 (simplify
1219 (vec_cond VECTOR_CST@0 @1 @2)
1220 (if (integer_all_onesp (@0))
1221 @1)
1222 (if (integer_zerop (@0))
1223 @2))
1224
1225 (for cnd (cond vec_cond)
1226 /* A ? B : (A ? X : C) -> A ? B : C. */
1227 (simplify
1228 (cnd @0 (cnd @0 @1 @2) @3)
1229 (cnd @0 @1 @3))
1230 (simplify
1231 (cnd @0 @1 (cnd @0 @2 @3))
1232 (cnd @0 @1 @3))
1233
1234 /* A ? B : B -> B. */
1235 (simplify
1236 (cnd @0 @1 @1)
1237 @1)
1238
1239 /* !A ? B : C -> A ? C : B. */
1240 (simplify
1241 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1242 (cnd @0 @2 @1)))
1243
1244 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1245 return all-1 or all-0 results. */
1246 /* ??? We could instead convert all instances of the vec_cond to negate,
1247 but that isn't necessarily a win on its own. */
1248 (simplify
1249 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1250 (if (VECTOR_TYPE_P (type)
1251 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1252 && (TYPE_MODE (TREE_TYPE (type))
1253 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1254 (minus @3 (view_convert @0))))
1255
1256 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1257 (simplify
1258 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1259 (if (VECTOR_TYPE_P (type)
1260 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1261 && (TYPE_MODE (TREE_TYPE (type))
1262 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1263 (plus @3 (view_convert @0))))
1264
1265
1266 /* Simplifications of comparisons. */
1267
1268 /* We can simplify a logical negation of a comparison to the
1269 inverted comparison. As we cannot compute an expression
1270 operator using invert_tree_comparison we have to simulate
1271 that with expression code iteration. */
1272 (for cmp (tcc_comparison)
1273 icmp (inverted_tcc_comparison)
1274 ncmp (inverted_tcc_comparison_with_nans)
1275 /* Ideally we'd like to combine the following two patterns
1276 and handle some more cases by using
1277 (logical_inverted_value (cmp @0 @1))
1278 here but for that genmatch would need to "inline" that.
1279 For now implement what forward_propagate_comparison did. */
1280 (simplify
1281 (bit_not (cmp @0 @1))
1282 (if (VECTOR_TYPE_P (type)
1283 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1284 /* Comparison inversion may be impossible for trapping math,
1285 invert_tree_comparison will tell us. But we can't use
1286 a computed operator in the replacement tree thus we have
1287 to play the trick below. */
1288 (with { enum tree_code ic = invert_tree_comparison
1289 (cmp, HONOR_NANS (@0)); }
1290 (if (ic == icmp)
1291 (icmp @0 @1))
1292 (if (ic == ncmp)
1293 (ncmp @0 @1)))))
1294 (simplify
1295 (bit_xor (cmp @0 @1) integer_truep)
1296 (with { enum tree_code ic = invert_tree_comparison
1297 (cmp, HONOR_NANS (@0)); }
1298 (if (ic == icmp)
1299 (icmp @0 @1))
1300 (if (ic == ncmp)
1301 (ncmp @0 @1)))))
1302
1303 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1304 ??? The transformation is valid for the other operators if overflow
1305 is undefined for the type, but performing it here badly interacts
1306 with the transformation in fold_cond_expr_with_comparison which
1307 attempts to synthetize ABS_EXPR. */
1308 (for cmp (eq ne)
1309 (simplify
1310 (cmp (minus @0 @1) integer_zerop)
1311 (cmp @0 @1)))
1312
1313 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1314 signed arithmetic case. That form is created by the compiler
1315 often enough for folding it to be of value. One example is in
1316 computing loop trip counts after Operator Strength Reduction. */
1317 (for cmp (tcc_comparison)
1318 scmp (swapped_tcc_comparison)
1319 (simplify
1320 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1321 /* Handle unfolded multiplication by zero. */
1322 (if (integer_zerop (@1))
1323 (cmp @1 @2))
1324 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1325 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1326 /* If @1 is negative we swap the sense of the comparison. */
1327 (if (tree_int_cst_sgn (@1) < 0)
1328 (scmp @0 @2))
1329 (cmp @0 @2))))
1330
1331 /* Simplify comparison of something with itself. For IEEE
1332 floating-point, we can only do some of these simplifications. */
1333 (simplify
1334 (eq @0 @0)
1335 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1336 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1337 { constant_boolean_node (true, type); }))
1338 (for cmp (ge le)
1339 (simplify
1340 (cmp @0 @0)
1341 (eq @0 @0)))
1342 (for cmp (ne gt lt)
1343 (simplify
1344 (cmp @0 @0)
1345 (if (cmp != NE_EXPR
1346 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1347 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1348 { constant_boolean_node (false, type); })))
1349
1350 /* Fold ~X op ~Y as Y op X. */
1351 (for cmp (tcc_comparison)
1352 (simplify
1353 (cmp (bit_not @0) (bit_not @1))
1354 (cmp @1 @0)))
1355
1356 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1357 (for cmp (tcc_comparison)
1358 scmp (swapped_tcc_comparison)
1359 (simplify
1360 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1361 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1362 (scmp @0 (bit_not @1)))))
1363
1364
1365 /* Unordered tests if either argument is a NaN. */
1366 (simplify
1367 (bit_ior (unordered @0 @0) (unordered @1 @1))
1368 (if (types_match (@0, @1))
1369 (unordered @0 @1)))
1370 (simplify
1371 (bit_and (ordered @0 @0) (ordered @1 @1))
1372 (if (types_match (@0, @1))
1373 (ordered @0 @1)))
1374 (simplify
1375 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1376 @2)
1377 (simplify
1378 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1379 @2)
1380
1381 /* -A CMP -B -> B CMP A. */
1382 (for cmp (tcc_comparison)
1383 scmp (swapped_tcc_comparison)
1384 (simplify
1385 (cmp (negate @0) (negate @1))
1386 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1387 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1388 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1389 (scmp @0 @1)))
1390 (simplify
1391 (cmp (negate @0) CONSTANT_CLASS_P@1)
1392 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1393 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1394 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1395 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1396 (if (tem && !TREE_OVERFLOW (tem))
1397 (scmp @0 { tem; }))))))
1398
1399
1400 /* Equality compare simplifications from fold_binary */
1401 (for cmp (eq ne)
1402
1403 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1404 Similarly for NE_EXPR. */
1405 (simplify
1406 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1407 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1408 && wi::bit_and_not (@1, @2) != 0)
1409 { constant_boolean_node (cmp == NE_EXPR, type); }))
1410
1411 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1412 (simplify
1413 (cmp (bit_xor @0 @1) integer_zerop)
1414 (cmp @0 @1))
1415
1416 /* (X ^ Y) == Y becomes X == 0.
1417 Likewise (X ^ Y) == X becomes Y == 0. */
1418 (simplify
1419 (cmp:c (bit_xor:c @0 @1) @0)
1420 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1421
1422 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1423 (simplify
1424 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1425 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1426 (cmp @0 (bit_xor @1 (convert @2))))))
1427
1428 /* Simplification of math builtins. */
1429
1430 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1431 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1432 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1433 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1434 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1435 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1436 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1437 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1438 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1439 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1440
1441
1442 /* fold_builtin_logarithm */
1443 (if (flag_unsafe_math_optimizations)
1444 /* Special case, optimize logN(expN(x)) = x. */
1445 (for logs (LOG LOG2 LOG10)
1446 exps (EXP EXP2 EXP10)
1447 (simplify
1448 (logs (exps @0))
1449 @0))
1450 /* Optimize logN(func()) for various exponential functions. We
1451 want to determine the value "x" and the power "exponent" in
1452 order to transform logN(x**exponent) into exponent*logN(x). */
1453 (for logs (LOG LOG LOG LOG
1454 LOG2 LOG2 LOG2 LOG2
1455 LOG10 LOG10 LOG10 LOG10)
1456 exps (EXP EXP2 EXP10 POW10)
1457 (simplify
1458 (logs (exps @0))
1459 (with {
1460 tree x;
1461 switch (exps)
1462 {
1463 CASE_FLT_FN (BUILT_IN_EXP):
1464 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1465 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1466 dconst_e ()));
1467 break;
1468 CASE_FLT_FN (BUILT_IN_EXP2):
1469 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1470 x = build_real (type, dconst2);
1471 break;
1472 CASE_FLT_FN (BUILT_IN_EXP10):
1473 CASE_FLT_FN (BUILT_IN_POW10):
1474 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1475 {
1476 REAL_VALUE_TYPE dconst10;
1477 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1478 x = build_real (type, dconst10);
1479 }
1480 break;
1481 }
1482 }
1483 (mult (logs { x; }) @0))))
1484 (for logs (LOG LOG
1485 LOG2 LOG2
1486 LOG10 LOG10)
1487 exps (SQRT CBRT)
1488 (simplify
1489 (logs (exps @0))
1490 (with {
1491 tree x;
1492 switch (exps)
1493 {
1494 CASE_FLT_FN (BUILT_IN_SQRT):
1495 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1496 x = build_real (type, dconsthalf);
1497 break;
1498 CASE_FLT_FN (BUILT_IN_CBRT):
1499 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1500 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1501 dconst_third ()));
1502 break;
1503 }
1504 }
1505 (mult { x; } (logs @0)))))
1506 /* logN(pow(x,exponent) -> exponent*logN(x). */
1507 (for logs (LOG LOG2 LOG10)
1508 pows (POW)
1509 (simplify
1510 (logs (pows @0 @1))
1511 (mult @1 (logs @0)))))
1512
1513 /* Narrowing of arithmetic and logical operations.
1514
1515 These are conceptually similar to the transformations performed for
1516 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1517 term we want to move all that code out of the front-ends into here. */
1518
1519 /* If we have a narrowing conversion of an arithmetic operation where
1520 both operands are widening conversions from the same type as the outer
1521 narrowing conversion. Then convert the innermost operands to a suitable
1522 unsigned type (to avoid introducing undefined behaviour), perform the
1523 operation and convert the result to the desired type. */
1524 (for op (plus minus)
1525 (simplify
1526 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1527 (if (INTEGRAL_TYPE_P (type)
1528 /* We check for type compatibility between @0 and @1 below,
1529 so there's no need to check that @1/@3 are integral types. */
1530 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1531 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1532 /* The precision of the type of each operand must match the
1533 precision of the mode of each operand, similarly for the
1534 result. */
1535 && (TYPE_PRECISION (TREE_TYPE (@0))
1536 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1537 && (TYPE_PRECISION (TREE_TYPE (@1))
1538 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1539 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1540 /* The inner conversion must be a widening conversion. */
1541 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1542 && types_match (@0, @1)
1543 && types_match (@0, type)
1544 && single_use (@4))
1545 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1546 (convert (op @0 @1)))
1547 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1548 (convert (op (convert:utype @0) (convert:utype @1)))))))
1549
1550 /* This is another case of narrowing, specifically when there's an outer
1551 BIT_AND_EXPR which masks off bits outside the type of the innermost
1552 operands. Like the previous case we have to convert the operands
1553 to unsigned types to avoid introducing undefined behaviour for the
1554 arithmetic operation. */
1555 (for op (minus plus)
1556 (simplify
1557 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1558 (if (INTEGRAL_TYPE_P (type)
1559 /* We check for type compatibility between @0 and @1 below,
1560 so there's no need to check that @1/@3 are integral types. */
1561 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1562 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1563 /* The precision of the type of each operand must match the
1564 precision of the mode of each operand, similarly for the
1565 result. */
1566 && (TYPE_PRECISION (TREE_TYPE (@0))
1567 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1568 && (TYPE_PRECISION (TREE_TYPE (@1))
1569 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1570 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1571 /* The inner conversion must be a widening conversion. */
1572 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1573 && types_match (@0, @1)
1574 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1575 <= TYPE_PRECISION (TREE_TYPE (@0)))
1576 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1577 || tree_int_cst_sgn (@4) >= 0)
1578 && single_use (@5))
1579 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1580 (with { tree ntype = TREE_TYPE (@0); }
1581 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1582 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1583 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1584 (convert:utype @4)))))))
1585