Revert:
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41
42
43 /* Simplifications of operations with one constant operand and
44 simplifications to constants or single values. */
45
46 (for op (plus pointer_plus minus bit_ior bit_xor)
47 (simplify
48 (op @0 integer_zerop)
49 (non_lvalue @0)))
50
51 /* 0 +p index -> (type)index */
52 (simplify
53 (pointer_plus integer_zerop @1)
54 (non_lvalue (convert @1)))
55
56 /* See if ARG1 is zero and X + ARG1 reduces to X.
57 Likewise if the operands are reversed. */
58 (simplify
59 (plus:c @0 real_zerop@1)
60 (if (fold_real_zero_addition_p (type, @1, 0))
61 (non_lvalue @0)))
62
63 /* See if ARG1 is zero and X - ARG1 reduces to X. */
64 (simplify
65 (minus @0 real_zerop@1)
66 (if (fold_real_zero_addition_p (type, @1, 1))
67 (non_lvalue @0)))
68
69 /* Simplify x - x.
70 This is unsafe for certain floats even in non-IEEE formats.
71 In IEEE, it is unsafe because it does wrong for NaNs.
72 Also note that operand_equal_p is always false if an operand
73 is volatile. */
74 (simplify
75 (minus @0 @0)
76 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
77 { build_zero_cst (type); }))
78
79 (simplify
80 (mult @0 integer_zerop@1)
81 @1)
82
83 /* Maybe fold x * 0 to 0. The expressions aren't the same
84 when x is NaN, since x * 0 is also NaN. Nor are they the
85 same in modes with signed zeros, since multiplying a
86 negative value by 0 gives -0, not +0. */
87 (simplify
88 (mult @0 real_zerop@1)
89 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
90 @1))
91
92 /* In IEEE floating point, x*1 is not equivalent to x for snans.
93 Likewise for complex arithmetic with signed zeros. */
94 (simplify
95 (mult @0 real_onep)
96 (if (!HONOR_SNANS (element_mode (type))
97 && (!HONOR_SIGNED_ZEROS (element_mode (type))
98 || !COMPLEX_FLOAT_TYPE_P (type)))
99 (non_lvalue @0)))
100
101 /* Transform x * -1.0 into -x. */
102 (simplify
103 (mult @0 real_minus_onep)
104 (if (!HONOR_SNANS (element_mode (type))
105 && (!HONOR_SIGNED_ZEROS (element_mode (type))
106 || !COMPLEX_FLOAT_TYPE_P (type)))
107 (negate @0)))
108
109 /* Make sure to preserve divisions by zero. This is the reason why
110 we don't simplify x / x to 1 or 0 / x to 0. */
111 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
112 (simplify
113 (op @0 integer_onep)
114 (non_lvalue @0)))
115
116 /* X / -1 is -X. */
117 (for div (trunc_div ceil_div floor_div round_div exact_div)
118 (simplify
119 (div @0 integer_minus_onep@1)
120 (if (!TYPE_UNSIGNED (type))
121 (negate @0))))
122
123 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
124 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
125 (simplify
126 (floor_div @0 @1)
127 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
128 && TYPE_UNSIGNED (type))
129 (trunc_div @0 @1)))
130
131 /* Combine two successive divisions. Note that combining ceil_div
132 and floor_div is trickier and combining round_div even more so. */
133 (for div (trunc_div exact_div)
134 (simplify
135 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
136 (with {
137 bool overflow_p;
138 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
139 }
140 (if (!overflow_p)
141 (div @0 { wide_int_to_tree (type, mul); }))
142 (if (overflow_p
143 && (TYPE_UNSIGNED (type)
144 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
145 { build_zero_cst (type); }))))
146
147 /* Optimize A / A to 1.0 if we don't care about
148 NaNs or Infinities. */
149 (simplify
150 (rdiv @0 @0)
151 (if (FLOAT_TYPE_P (type)
152 && ! HONOR_NANS (type)
153 && ! HONOR_INFINITIES (element_mode (type)))
154 { build_one_cst (type); }))
155
156 /* Optimize -A / A to -1.0 if we don't care about
157 NaNs or Infinities. */
158 (simplify
159 (rdiv:c @0 (negate @0))
160 (if (FLOAT_TYPE_P (type)
161 && ! HONOR_NANS (type)
162 && ! HONOR_INFINITIES (element_mode (type)))
163 { build_minus_one_cst (type); }))
164
165 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
166 (simplify
167 (rdiv @0 real_onep)
168 (if (!HONOR_SNANS (element_mode (type)))
169 (non_lvalue @0)))
170
171 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
172 (simplify
173 (rdiv @0 real_minus_onep)
174 (if (!HONOR_SNANS (element_mode (type)))
175 (negate @0)))
176
177 /* If ARG1 is a constant, we can convert this to a multiply by the
178 reciprocal. This does not have the same rounding properties,
179 so only do this if -freciprocal-math. We can actually
180 always safely do it if ARG1 is a power of two, but it's hard to
181 tell if it is or not in a portable manner. */
182 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
183 (simplify
184 (rdiv @0 cst@1)
185 (if (optimize)
186 (if (flag_reciprocal_math
187 && !real_zerop (@1))
188 (with
189 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
190 (if (tem)
191 (mult @0 { tem; } ))))
192 (if (cst != COMPLEX_CST)
193 (with { tree inverse = exact_inverse (type, @1); }
194 (if (inverse)
195 (mult @0 { inverse; } )))))))
196
197 /* Same applies to modulo operations, but fold is inconsistent here
198 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
199 (for mod (ceil_mod floor_mod round_mod trunc_mod)
200 /* 0 % X is always zero. */
201 (simplify
202 (mod integer_zerop@0 @1)
203 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
204 (if (!integer_zerop (@1))
205 @0))
206 /* X % 1 is always zero. */
207 (simplify
208 (mod @0 integer_onep)
209 { build_zero_cst (type); })
210 /* X % -1 is zero. */
211 (simplify
212 (mod @0 integer_minus_onep@1)
213 (if (!TYPE_UNSIGNED (type))
214 { build_zero_cst (type); })))
215
216 /* X % -C is the same as X % C. */
217 (simplify
218 (trunc_mod @0 INTEGER_CST@1)
219 (if (TYPE_SIGN (type) == SIGNED
220 && !TREE_OVERFLOW (@1)
221 && wi::neg_p (@1)
222 && !TYPE_OVERFLOW_TRAPS (type)
223 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
224 && !sign_bit_p (@1, @1))
225 (trunc_mod @0 (negate @1))))
226
227 /* x | ~0 -> ~0 */
228 (simplify
229 (bit_ior @0 integer_all_onesp@1)
230 @1)
231
232 /* x & 0 -> 0 */
233 (simplify
234 (bit_and @0 integer_zerop@1)
235 @1)
236
237 /* x ^ x -> 0 */
238 (simplify
239 (bit_xor @0 @0)
240 { build_zero_cst (type); })
241
242 /* Canonicalize X ^ ~0 to ~X. */
243 (simplify
244 (bit_xor @0 integer_all_onesp@1)
245 (bit_not @0))
246
247 /* x & ~0 -> x */
248 (simplify
249 (bit_and @0 integer_all_onesp)
250 (non_lvalue @0))
251
252 /* x & x -> x, x | x -> x */
253 (for bitop (bit_and bit_ior)
254 (simplify
255 (bitop @0 @0)
256 (non_lvalue @0)))
257
258 /* x + (x & 1) -> (x + 1) & ~1 */
259 (simplify
260 (plus:c @0 (bit_and@2 @0 integer_onep@1))
261 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
262 (bit_and (plus @0 @1) (bit_not @1))))
263
264 /* x & ~(x & y) -> x & ~y */
265 /* x | ~(x | y) -> x | ~y */
266 (for bitop (bit_and bit_ior)
267 (simplify
268 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
269 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
270 (bitop @0 (bit_not @1)))))
271
272 (simplify
273 (abs (negate @0))
274 (abs @0))
275 (simplify
276 (abs tree_expr_nonnegative_p@0)
277 @0)
278
279
280 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
281 when profitable.
282 For bitwise binary operations apply operand conversions to the
283 binary operation result instead of to the operands. This allows
284 to combine successive conversions and bitwise binary operations.
285 We combine the above two cases by using a conditional convert. */
286 (for bitop (bit_and bit_ior bit_xor)
287 (simplify
288 (bitop (convert @0) (convert? @1))
289 (if (((TREE_CODE (@1) == INTEGER_CST
290 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
291 && int_fits_type_p (@1, TREE_TYPE (@0)))
292 || (GIMPLE && types_compatible_p (TREE_TYPE (@0), TREE_TYPE (@1)))
293 || (GENERIC && TREE_TYPE (@0) == TREE_TYPE (@1)))
294 /* ??? This transform conflicts with fold-const.c doing
295 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
296 constants (if x has signed type, the sign bit cannot be set
297 in c). This folds extension into the BIT_AND_EXPR.
298 Restrict it to GIMPLE to avoid endless recursions. */
299 && (bitop != BIT_AND_EXPR || GIMPLE)
300 && (/* That's a good idea if the conversion widens the operand, thus
301 after hoisting the conversion the operation will be narrower. */
302 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
303 /* It's also a good idea if the conversion is to a non-integer
304 mode. */
305 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
306 /* Or if the precision of TO is not the same as the precision
307 of its mode. */
308 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
309 (convert (bitop @0 (convert @1))))))
310
311 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
312 (for bitop (bit_and bit_ior bit_xor)
313 (simplify
314 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
315 (bit_and (bitop @0 @2) @1)))
316
317 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
318 (simplify
319 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
320 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
321
322 /* Combine successive equal operations with constants. */
323 (for bitop (bit_and bit_ior bit_xor)
324 (simplify
325 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
326 (bitop @0 (bitop @1 @2))))
327
328 /* Try simple folding for X op !X, and X op X with the help
329 of the truth_valued_p and logical_inverted_value predicates. */
330 (match truth_valued_p
331 @0
332 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
333 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
334 (match truth_valued_p
335 (op @0 @1)))
336 (match truth_valued_p
337 (truth_not @0))
338
339 (match (logical_inverted_value @0)
340 (bit_not truth_valued_p@0))
341 (match (logical_inverted_value @0)
342 (eq @0 integer_zerop))
343 (match (logical_inverted_value @0)
344 (ne truth_valued_p@0 integer_truep))
345 (match (logical_inverted_value @0)
346 (bit_xor truth_valued_p@0 integer_truep))
347
348 /* X & !X -> 0. */
349 (simplify
350 (bit_and:c @0 (logical_inverted_value @0))
351 { build_zero_cst (type); })
352 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
353 (for op (bit_ior bit_xor)
354 (simplify
355 (op:c truth_valued_p@0 (logical_inverted_value @0))
356 { constant_boolean_node (true, type); }))
357
358 (for bitop (bit_and bit_ior)
359 rbitop (bit_ior bit_and)
360 /* (x | y) & x -> x */
361 /* (x & y) | x -> x */
362 (simplify
363 (bitop:c (rbitop:c @0 @1) @0)
364 @0)
365 /* (~x | y) & x -> x & y */
366 /* (~x & y) | x -> x | y */
367 (simplify
368 (bitop:c (rbitop:c (bit_not @0) @1) @0)
369 (bitop @0 @1)))
370
371 /* If arg1 and arg2 are booleans (or any single bit type)
372 then try to simplify:
373
374 (~X & Y) -> X < Y
375 (X & ~Y) -> Y < X
376 (~X | Y) -> X <= Y
377 (X | ~Y) -> Y <= X
378
379 But only do this if our result feeds into a comparison as
380 this transformation is not always a win, particularly on
381 targets with and-not instructions.
382 -> simplify_bitwise_binary_boolean */
383 (simplify
384 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
385 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
386 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
387 (lt @0 @1)))
388 (simplify
389 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
390 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
391 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
392 (le @0 @1)))
393
394 /* ~~x -> x */
395 (simplify
396 (bit_not (bit_not @0))
397 @0)
398
399 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
400 (simplify
401 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
402 (if ((TREE_CODE (@3) != SSA_NAME || has_single_use (@3))
403 && (TREE_CODE (@4) != SSA_NAME || has_single_use (@4)))
404 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
405
406
407 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
408 (simplify
409 (pointer_plus (pointer_plus@2 @0 @1) @3)
410 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
411 (pointer_plus @0 (plus @1 @3))))
412
413 /* Pattern match
414 tem1 = (long) ptr1;
415 tem2 = (long) ptr2;
416 tem3 = tem2 - tem1;
417 tem4 = (unsigned long) tem3;
418 tem5 = ptr1 + tem4;
419 and produce
420 tem5 = ptr2; */
421 (simplify
422 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
423 /* Conditionally look through a sign-changing conversion. */
424 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
425 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
426 || (GENERIC && type == TREE_TYPE (@1))))
427 @1))
428
429 /* Pattern match
430 tem = (sizetype) ptr;
431 tem = tem & algn;
432 tem = -tem;
433 ... = ptr p+ tem;
434 and produce the simpler and easier to analyze with respect to alignment
435 ... = ptr & ~algn; */
436 (simplify
437 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
438 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
439 (bit_and @0 { algn; })))
440
441
442 /* We can't reassociate at all for saturating types. */
443 (if (!TYPE_SATURATING (type))
444
445 /* Contract negates. */
446 /* A + (-B) -> A - B */
447 (simplify
448 (plus:c (convert1? @0) (convert2? (negate @1)))
449 /* Apply STRIP_NOPS on @0 and the negate. */
450 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
451 && tree_nop_conversion_p (type, TREE_TYPE (@1))
452 && !TYPE_OVERFLOW_SANITIZED (type))
453 (minus (convert @0) (convert @1))))
454 /* A - (-B) -> A + B */
455 (simplify
456 (minus (convert1? @0) (convert2? (negate @1)))
457 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
458 && tree_nop_conversion_p (type, TREE_TYPE (@1))
459 && !TYPE_OVERFLOW_SANITIZED (type))
460 (plus (convert @0) (convert @1))))
461 /* -(-A) -> A */
462 (simplify
463 (negate (convert? (negate @1)))
464 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
465 && !TYPE_OVERFLOW_SANITIZED (type))
466 (convert @1)))
467
468 /* We can't reassociate floating-point or fixed-point plus or minus
469 because of saturation to +-Inf. */
470 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
471
472 /* Match patterns that allow contracting a plus-minus pair
473 irrespective of overflow issues. */
474 /* (A +- B) - A -> +- B */
475 /* (A +- B) -+ B -> A */
476 /* A - (A +- B) -> -+ B */
477 /* A +- (B -+ A) -> +- B */
478 (simplify
479 (minus (plus:c @0 @1) @0)
480 @1)
481 (simplify
482 (minus (minus @0 @1) @0)
483 (negate @1))
484 (simplify
485 (plus:c (minus @0 @1) @1)
486 @0)
487 (simplify
488 (minus @0 (plus:c @0 @1))
489 (negate @1))
490 (simplify
491 (minus @0 (minus @0 @1))
492 @1)
493
494 /* (A +- CST) +- CST -> A + CST */
495 (for outer_op (plus minus)
496 (for inner_op (plus minus)
497 (simplify
498 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
499 /* If the constant operation overflows we cannot do the transform
500 as we would introduce undefined overflow, for example
501 with (a - 1) + INT_MIN. */
502 (with { tree cst = fold_binary (outer_op == inner_op
503 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
504 (if (cst && !TREE_OVERFLOW (cst))
505 (inner_op @0 { cst; } ))))))
506
507 /* (CST - A) +- CST -> CST - A */
508 (for outer_op (plus minus)
509 (simplify
510 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
511 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
512 (if (cst && !TREE_OVERFLOW (cst))
513 (minus { cst; } @0)))))
514
515 /* ~A + A -> -1 */
516 (simplify
517 (plus:c (bit_not @0) @0)
518 (if (!TYPE_OVERFLOW_TRAPS (type))
519 { build_all_ones_cst (type); }))
520
521 /* ~A + 1 -> -A */
522 (simplify
523 (plus (convert? (bit_not @0)) integer_each_onep)
524 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
525 (negate (convert @0))))
526
527 /* -A - 1 -> ~A */
528 (simplify
529 (minus (convert? (negate @0)) integer_each_onep)
530 (if (!TYPE_OVERFLOW_TRAPS (type)
531 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
532 (bit_not (convert @0))))
533
534 /* -1 - A -> ~A */
535 (simplify
536 (minus integer_all_onesp @0)
537 (if (TREE_CODE (type) != COMPLEX_TYPE)
538 (bit_not @0)))
539
540 /* (T)(P + A) - (T)P -> (T) A */
541 (for add (plus pointer_plus)
542 (simplify
543 (minus (convert (add @0 @1))
544 (convert @0))
545 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
546 /* For integer types, if A has a smaller type
547 than T the result depends on the possible
548 overflow in P + A.
549 E.g. T=size_t, A=(unsigned)429497295, P>0.
550 However, if an overflow in P + A would cause
551 undefined behavior, we can assume that there
552 is no overflow. */
553 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
554 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
555 /* For pointer types, if the conversion of A to the
556 final type requires a sign- or zero-extension,
557 then we have to punt - it is not defined which
558 one is correct. */
559 || (POINTER_TYPE_P (TREE_TYPE (@0))
560 && TREE_CODE (@1) == INTEGER_CST
561 && tree_int_cst_sign_bit (@1) == 0))
562 (convert @1))))))
563
564
565 /* Simplifications of MIN_EXPR and MAX_EXPR. */
566
567 (for minmax (min max)
568 (simplify
569 (minmax @0 @0)
570 @0))
571 (simplify
572 (min @0 @1)
573 (if (INTEGRAL_TYPE_P (type)
574 && TYPE_MIN_VALUE (type)
575 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
576 @1))
577 (simplify
578 (max @0 @1)
579 (if (INTEGRAL_TYPE_P (type)
580 && TYPE_MAX_VALUE (type)
581 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
582 @1))
583
584
585 /* Simplifications of shift and rotates. */
586
587 (for rotate (lrotate rrotate)
588 (simplify
589 (rotate integer_all_onesp@0 @1)
590 @0))
591
592 /* Optimize -1 >> x for arithmetic right shifts. */
593 (simplify
594 (rshift integer_all_onesp@0 @1)
595 (if (!TYPE_UNSIGNED (type)
596 && tree_expr_nonnegative_p (@1))
597 @0))
598
599 (for shiftrotate (lrotate rrotate lshift rshift)
600 (simplify
601 (shiftrotate @0 integer_zerop)
602 (non_lvalue @0))
603 (simplify
604 (shiftrotate integer_zerop@0 @1)
605 @0)
606 /* Prefer vector1 << scalar to vector1 << vector2
607 if vector2 is uniform. */
608 (for vec (VECTOR_CST CONSTRUCTOR)
609 (simplify
610 (shiftrotate @0 vec@1)
611 (with { tree tem = uniform_vector_p (@1); }
612 (if (tem)
613 (shiftrotate @0 { tem; }))))))
614
615 /* Rewrite an LROTATE_EXPR by a constant into an
616 RROTATE_EXPR by a new constant. */
617 (simplify
618 (lrotate @0 INTEGER_CST@1)
619 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
620 build_int_cst (TREE_TYPE (@1),
621 element_precision (type)), @1); }))
622
623 /* ((1 << A) & 1) != 0 -> A == 0
624 ((1 << A) & 1) == 0 -> A != 0 */
625 (for cmp (ne eq)
626 icmp (eq ne)
627 (simplify
628 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
629 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
630
631 /* Simplifications of conversions. */
632
633 /* Basic strip-useless-type-conversions / strip_nops. */
634 (for cvt (convert view_convert float fix_trunc)
635 (simplify
636 (cvt @0)
637 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
638 || (GENERIC && type == TREE_TYPE (@0)))
639 @0)))
640
641 /* Contract view-conversions. */
642 (simplify
643 (view_convert (view_convert @0))
644 (view_convert @0))
645
646 /* For integral conversions with the same precision or pointer
647 conversions use a NOP_EXPR instead. */
648 (simplify
649 (view_convert @0)
650 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
651 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
652 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
653 (convert @0)))
654
655 /* Strip inner integral conversions that do not change precision or size. */
656 (simplify
657 (view_convert (convert@0 @1))
658 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
659 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
660 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
661 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
662 (view_convert @1)))
663
664 /* Re-association barriers around constants and other re-association
665 barriers can be removed. */
666 (simplify
667 (paren CONSTANT_CLASS_P@0)
668 @0)
669 (simplify
670 (paren (paren@1 @0))
671 @1)
672
673 /* Handle cases of two conversions in a row. */
674 (for ocvt (convert float fix_trunc)
675 (for icvt (convert float)
676 (simplify
677 (ocvt (icvt@1 @0))
678 (with
679 {
680 tree inside_type = TREE_TYPE (@0);
681 tree inter_type = TREE_TYPE (@1);
682 int inside_int = INTEGRAL_TYPE_P (inside_type);
683 int inside_ptr = POINTER_TYPE_P (inside_type);
684 int inside_float = FLOAT_TYPE_P (inside_type);
685 int inside_vec = VECTOR_TYPE_P (inside_type);
686 unsigned int inside_prec = TYPE_PRECISION (inside_type);
687 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
688 int inter_int = INTEGRAL_TYPE_P (inter_type);
689 int inter_ptr = POINTER_TYPE_P (inter_type);
690 int inter_float = FLOAT_TYPE_P (inter_type);
691 int inter_vec = VECTOR_TYPE_P (inter_type);
692 unsigned int inter_prec = TYPE_PRECISION (inter_type);
693 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
694 int final_int = INTEGRAL_TYPE_P (type);
695 int final_ptr = POINTER_TYPE_P (type);
696 int final_float = FLOAT_TYPE_P (type);
697 int final_vec = VECTOR_TYPE_P (type);
698 unsigned int final_prec = TYPE_PRECISION (type);
699 int final_unsignedp = TYPE_UNSIGNED (type);
700 }
701 /* In addition to the cases of two conversions in a row
702 handled below, if we are converting something to its own
703 type via an object of identical or wider precision, neither
704 conversion is needed. */
705 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
706 || (GENERIC
707 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
708 && (((inter_int || inter_ptr) && final_int)
709 || (inter_float && final_float))
710 && inter_prec >= final_prec)
711 (ocvt @0))
712
713 /* Likewise, if the intermediate and initial types are either both
714 float or both integer, we don't need the middle conversion if the
715 former is wider than the latter and doesn't change the signedness
716 (for integers). Avoid this if the final type is a pointer since
717 then we sometimes need the middle conversion. Likewise if the
718 final type has a precision not equal to the size of its mode. */
719 (if (((inter_int && inside_int)
720 || (inter_float && inside_float)
721 || (inter_vec && inside_vec))
722 && inter_prec >= inside_prec
723 && (inter_float || inter_vec
724 || inter_unsignedp == inside_unsignedp)
725 && ! (final_prec != GET_MODE_PRECISION (element_mode (type))
726 && element_mode (type) == element_mode (inter_type))
727 && ! final_ptr
728 && (! final_vec || inter_prec == inside_prec))
729 (ocvt @0))
730
731 /* If we have a sign-extension of a zero-extended value, we can
732 replace that by a single zero-extension. Likewise if the
733 final conversion does not change precision we can drop the
734 intermediate conversion. */
735 (if (inside_int && inter_int && final_int
736 && ((inside_prec < inter_prec && inter_prec < final_prec
737 && inside_unsignedp && !inter_unsignedp)
738 || final_prec == inter_prec))
739 (ocvt @0))
740
741 /* Two conversions in a row are not needed unless:
742 - some conversion is floating-point (overstrict for now), or
743 - some conversion is a vector (overstrict for now), or
744 - the intermediate type is narrower than both initial and
745 final, or
746 - the intermediate type and innermost type differ in signedness,
747 and the outermost type is wider than the intermediate, or
748 - the initial type is a pointer type and the precisions of the
749 intermediate and final types differ, or
750 - the final type is a pointer type and the precisions of the
751 initial and intermediate types differ. */
752 (if (! inside_float && ! inter_float && ! final_float
753 && ! inside_vec && ! inter_vec && ! final_vec
754 && (inter_prec >= inside_prec || inter_prec >= final_prec)
755 && ! (inside_int && inter_int
756 && inter_unsignedp != inside_unsignedp
757 && inter_prec < final_prec)
758 && ((inter_unsignedp && inter_prec > inside_prec)
759 == (final_unsignedp && final_prec > inter_prec))
760 && ! (inside_ptr && inter_prec != final_prec)
761 && ! (final_ptr && inside_prec != inter_prec)
762 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
763 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
764 (ocvt @0))
765
766 /* A truncation to an unsigned type (a zero-extension) should be
767 canonicalized as bitwise and of a mask. */
768 (if (final_int && inter_int && inside_int
769 && final_prec == inside_prec
770 && final_prec > inter_prec
771 && inter_unsignedp)
772 (convert (bit_and @0 { wide_int_to_tree
773 (inside_type,
774 wi::mask (inter_prec, false,
775 TYPE_PRECISION (inside_type))); })))
776
777 /* If we are converting an integer to a floating-point that can
778 represent it exactly and back to an integer, we can skip the
779 floating-point conversion. */
780 (if (inside_int && inter_float && final_int &&
781 (unsigned) significand_size (TYPE_MODE (inter_type))
782 >= inside_prec - !inside_unsignedp)
783 (convert @0))))))
784
785 /* If we have a narrowing conversion to an integral type that is fed by a
786 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
787 masks off bits outside the final type (and nothing else). */
788 (simplify
789 (convert (bit_and @0 INTEGER_CST@1))
790 (if (INTEGRAL_TYPE_P (type)
791 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
792 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
793 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
794 TYPE_PRECISION (type)), 0))
795 (convert @0)))
796
797
798 /* (X /[ex] A) * A -> X. */
799 (simplify
800 (mult (convert? (exact_div @0 @1)) @1)
801 /* Look through a sign-changing conversion. */
802 (if (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
803 (convert @0)))
804
805 /* Canonicalization of binary operations. */
806
807 /* Convert X + -C into X - C. */
808 (simplify
809 (plus @0 REAL_CST@1)
810 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
811 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
812 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
813 (minus @0 { tem; })))))
814
815 /* Convert x+x into x*2.0. */
816 (simplify
817 (plus @0 @0)
818 (if (SCALAR_FLOAT_TYPE_P (type))
819 (mult @0 { build_real (type, dconst2); })))
820
821 (simplify
822 (minus integer_zerop @1)
823 (negate @1))
824
825 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
826 ARG0 is zero and X + ARG0 reduces to X, since that would mean
827 (-ARG1 + ARG0) reduces to -ARG1. */
828 (simplify
829 (minus real_zerop@0 @1)
830 (if (fold_real_zero_addition_p (type, @0, 0))
831 (negate @1)))
832
833 /* Transform x * -1 into -x. */
834 (simplify
835 (mult @0 integer_minus_onep)
836 (negate @0))
837
838 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
839 (simplify
840 (complex (realpart @0) (imagpart @0))
841 @0)
842 (simplify
843 (realpart (complex @0 @1))
844 @0)
845 (simplify
846 (imagpart (complex @0 @1))
847 @1)
848
849
850 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
851 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
852 (simplify
853 (bswap (bswap @0))
854 @0)
855 (simplify
856 (bswap (bit_not (bswap @0)))
857 (bit_not @0))
858 (for bitop (bit_xor bit_ior bit_and)
859 (simplify
860 (bswap (bitop:c (bswap @0) @1))
861 (bitop @0 (bswap @1)))))
862
863
864 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
865
866 /* Simplify constant conditions.
867 Only optimize constant conditions when the selected branch
868 has the same type as the COND_EXPR. This avoids optimizing
869 away "c ? x : throw", where the throw has a void type.
870 Note that we cannot throw away the fold-const.c variant nor
871 this one as we depend on doing this transform before possibly
872 A ? B : B -> B triggers and the fold-const.c one can optimize
873 0 ? A : B to B even if A has side-effects. Something
874 genmatch cannot handle. */
875 (simplify
876 (cond INTEGER_CST@0 @1 @2)
877 (if (integer_zerop (@0)
878 && (!VOID_TYPE_P (TREE_TYPE (@2))
879 || VOID_TYPE_P (type)))
880 @2)
881 (if (!integer_zerop (@0)
882 && (!VOID_TYPE_P (TREE_TYPE (@1))
883 || VOID_TYPE_P (type)))
884 @1))
885 (simplify
886 (vec_cond VECTOR_CST@0 @1 @2)
887 (if (integer_all_onesp (@0))
888 @1)
889 (if (integer_zerop (@0))
890 @2))
891
892 (for cnd (cond vec_cond)
893 /* A ? B : (A ? X : C) -> A ? B : C. */
894 (simplify
895 (cnd @0 (cnd @0 @1 @2) @3)
896 (cnd @0 @1 @3))
897 (simplify
898 (cnd @0 @1 (cnd @0 @2 @3))
899 (cnd @0 @1 @3))
900
901 /* A ? B : B -> B. */
902 (simplify
903 (cnd @0 @1 @1)
904 @1)
905
906 /* !A ? B : C -> A ? C : B. */
907 (simplify
908 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
909 (cnd @0 @2 @1)))
910
911
912 /* Simplifications of comparisons. */
913
914 /* We can simplify a logical negation of a comparison to the
915 inverted comparison. As we cannot compute an expression
916 operator using invert_tree_comparison we have to simulate
917 that with expression code iteration. */
918 (for cmp (tcc_comparison)
919 icmp (inverted_tcc_comparison)
920 ncmp (inverted_tcc_comparison_with_nans)
921 /* Ideally we'd like to combine the following two patterns
922 and handle some more cases by using
923 (logical_inverted_value (cmp @0 @1))
924 here but for that genmatch would need to "inline" that.
925 For now implement what forward_propagate_comparison did. */
926 (simplify
927 (bit_not (cmp @0 @1))
928 (if (VECTOR_TYPE_P (type)
929 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
930 /* Comparison inversion may be impossible for trapping math,
931 invert_tree_comparison will tell us. But we can't use
932 a computed operator in the replacement tree thus we have
933 to play the trick below. */
934 (with { enum tree_code ic = invert_tree_comparison
935 (cmp, HONOR_NANS (@0)); }
936 (if (ic == icmp)
937 (icmp @0 @1))
938 (if (ic == ncmp)
939 (ncmp @0 @1)))))
940 (simplify
941 (bit_xor (cmp @0 @1) integer_truep)
942 (with { enum tree_code ic = invert_tree_comparison
943 (cmp, HONOR_NANS (@0)); }
944 (if (ic == icmp)
945 (icmp @0 @1))
946 (if (ic == ncmp)
947 (ncmp @0 @1)))))
948
949 /* Unordered tests if either argument is a NaN. */
950 (simplify
951 (bit_ior (unordered @0 @0) (unordered @1 @1))
952 (if ((GIMPLE && types_compatible_p (TREE_TYPE (@0), TREE_TYPE (@1)))
953 || (GENERIC && TREE_TYPE (@0) == TREE_TYPE (@1)))
954 (unordered @0 @1)))
955 (simplify
956 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
957 @2)
958
959 /* Simplification of math builtins. */
960
961 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
962 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
963 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
964 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
965 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
966 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
967 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
968 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
969 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
970 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
971
972
973 /* fold_builtin_logarithm */
974 (if (flag_unsafe_math_optimizations)
975 /* Special case, optimize logN(expN(x)) = x. */
976 (for logs (LOG LOG2 LOG10)
977 exps (EXP EXP2 EXP10)
978 (simplify
979 (logs (exps @0))
980 @0))
981 /* Optimize logN(func()) for various exponential functions. We
982 want to determine the value "x" and the power "exponent" in
983 order to transform logN(x**exponent) into exponent*logN(x). */
984 (for logs (LOG LOG LOG LOG
985 LOG2 LOG2 LOG2 LOG2
986 LOG10 LOG10 LOG10 LOG10)
987 exps (EXP EXP2 EXP10 POW10)
988 (simplify
989 (logs (exps @0))
990 (with {
991 tree x;
992 switch (exps)
993 {
994 CASE_FLT_FN (BUILT_IN_EXP):
995 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
996 x = build_real (type, real_value_truncate (TYPE_MODE (type),
997 dconst_e ()));
998 break;
999 CASE_FLT_FN (BUILT_IN_EXP2):
1000 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1001 x = build_real (type, dconst2);
1002 break;
1003 CASE_FLT_FN (BUILT_IN_EXP10):
1004 CASE_FLT_FN (BUILT_IN_POW10):
1005 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1006 {
1007 REAL_VALUE_TYPE dconst10;
1008 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1009 x = build_real (type, dconst10);
1010 }
1011 break;
1012 }
1013 }
1014 (mult (logs { x; }) @0))))
1015 (for logs (LOG LOG
1016 LOG2 LOG2
1017 LOG10 LOG10)
1018 exps (SQRT CBRT)
1019 (simplify
1020 (logs (exps @0))
1021 (with {
1022 tree x;
1023 switch (exps)
1024 {
1025 CASE_FLT_FN (BUILT_IN_SQRT):
1026 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1027 x = build_real (type, dconsthalf);
1028 break;
1029 CASE_FLT_FN (BUILT_IN_CBRT):
1030 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1031 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1032 dconst_third ()));
1033 break;
1034 }
1035 }
1036 (mult { x; } (logs @0)))))
1037 /* logN(pow(x,exponent) -> exponent*logN(x). */
1038 (for logs (LOG LOG2 LOG10)
1039 pows (POW)
1040 (simplify
1041 (logs (pows @0 @1))
1042 (mult @1 (logs @0)))))
1043
1044 /* Narrowing of arithmetic and logical operations.
1045
1046 These are conceptually similar to the transformations performed for
1047 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1048 term we want to move all that code out of the front-ends into here. */
1049
1050 /* If we have a narrowing conversion of an arithmetic operation where
1051 both operands are widening conversions from the same type as the outer
1052 narrowing conversion. Then convert the innermost operands to a suitable
1053 unsigned type (to avoid introducing undefined behaviour), perform the
1054 operation and convert the result to the desired type. */
1055 (for op (plus minus)
1056 (simplify
1057 (convert (op (convert@2 @0) (convert@3 @1)))
1058 (if (INTEGRAL_TYPE_P (type)
1059 /* We check for type compatibility between @0 and @1 below,
1060 so there's no need to check that @1/@3 are integral types. */
1061 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1062 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1063 /* The precision of the type of each operand must match the
1064 precision of the mode of each operand, similarly for the
1065 result. */
1066 && (TYPE_PRECISION (TREE_TYPE (@0))
1067 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1068 && (TYPE_PRECISION (TREE_TYPE (@1))
1069 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1070 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1071 /* The inner conversion must be a widening conversion. */
1072 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1073 && ((GENERIC
1074 && (TYPE_MAIN_VARIANT (TREE_TYPE (@0))
1075 == TYPE_MAIN_VARIANT (TREE_TYPE (@1)))
1076 && (TYPE_MAIN_VARIANT (TREE_TYPE (@0))
1077 == TYPE_MAIN_VARIANT (type)))
1078 || (GIMPLE
1079 && types_compatible_p (TREE_TYPE (@0), TREE_TYPE (@1))
1080 && types_compatible_p (TREE_TYPE (@0), type))))
1081 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1082 (convert (op @0 @1)))
1083 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1084 (convert (op (convert:utype @0) (convert:utype @1)))))))