match.pd (bit_and (plus/minus (convert @0) (convert @1) mask): New simplifier to...
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41
42
43 /* Simplifications of operations with one constant operand and
44 simplifications to constants or single values. */
45
46 (for op (plus pointer_plus minus bit_ior bit_xor)
47 (simplify
48 (op @0 integer_zerop)
49 (non_lvalue @0)))
50
51 /* 0 +p index -> (type)index */
52 (simplify
53 (pointer_plus integer_zerop @1)
54 (non_lvalue (convert @1)))
55
56 /* See if ARG1 is zero and X + ARG1 reduces to X.
57 Likewise if the operands are reversed. */
58 (simplify
59 (plus:c @0 real_zerop@1)
60 (if (fold_real_zero_addition_p (type, @1, 0))
61 (non_lvalue @0)))
62
63 /* See if ARG1 is zero and X - ARG1 reduces to X. */
64 (simplify
65 (minus @0 real_zerop@1)
66 (if (fold_real_zero_addition_p (type, @1, 1))
67 (non_lvalue @0)))
68
69 /* Simplify x - x.
70 This is unsafe for certain floats even in non-IEEE formats.
71 In IEEE, it is unsafe because it does wrong for NaNs.
72 Also note that operand_equal_p is always false if an operand
73 is volatile. */
74 (simplify
75 (minus @0 @0)
76 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
77 { build_zero_cst (type); }))
78
79 (simplify
80 (mult @0 integer_zerop@1)
81 @1)
82
83 /* Maybe fold x * 0 to 0. The expressions aren't the same
84 when x is NaN, since x * 0 is also NaN. Nor are they the
85 same in modes with signed zeros, since multiplying a
86 negative value by 0 gives -0, not +0. */
87 (simplify
88 (mult @0 real_zerop@1)
89 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
90 @1))
91
92 /* In IEEE floating point, x*1 is not equivalent to x for snans.
93 Likewise for complex arithmetic with signed zeros. */
94 (simplify
95 (mult @0 real_onep)
96 (if (!HONOR_SNANS (element_mode (type))
97 && (!HONOR_SIGNED_ZEROS (element_mode (type))
98 || !COMPLEX_FLOAT_TYPE_P (type)))
99 (non_lvalue @0)))
100
101 /* Transform x * -1.0 into -x. */
102 (simplify
103 (mult @0 real_minus_onep)
104 (if (!HONOR_SNANS (element_mode (type))
105 && (!HONOR_SIGNED_ZEROS (element_mode (type))
106 || !COMPLEX_FLOAT_TYPE_P (type)))
107 (negate @0)))
108
109 /* Make sure to preserve divisions by zero. This is the reason why
110 we don't simplify x / x to 1 or 0 / x to 0. */
111 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
112 (simplify
113 (op @0 integer_onep)
114 (non_lvalue @0)))
115
116 /* X / -1 is -X. */
117 (for div (trunc_div ceil_div floor_div round_div exact_div)
118 (simplify
119 (div @0 integer_minus_onep@1)
120 (if (!TYPE_UNSIGNED (type))
121 (negate @0))))
122
123 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
124 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
125 (simplify
126 (floor_div @0 @1)
127 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
128 && TYPE_UNSIGNED (type))
129 (trunc_div @0 @1)))
130
131 /* Combine two successive divisions. Note that combining ceil_div
132 and floor_div is trickier and combining round_div even more so. */
133 (for div (trunc_div exact_div)
134 (simplify
135 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
136 (with {
137 bool overflow_p;
138 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
139 }
140 (if (!overflow_p)
141 (div @0 { wide_int_to_tree (type, mul); }))
142 (if (overflow_p
143 && (TYPE_UNSIGNED (type)
144 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
145 { build_zero_cst (type); }))))
146
147 /* Optimize A / A to 1.0 if we don't care about
148 NaNs or Infinities. */
149 (simplify
150 (rdiv @0 @0)
151 (if (FLOAT_TYPE_P (type)
152 && ! HONOR_NANS (type)
153 && ! HONOR_INFINITIES (element_mode (type)))
154 { build_one_cst (type); }))
155
156 /* Optimize -A / A to -1.0 if we don't care about
157 NaNs or Infinities. */
158 (simplify
159 (rdiv:c @0 (negate @0))
160 (if (FLOAT_TYPE_P (type)
161 && ! HONOR_NANS (type)
162 && ! HONOR_INFINITIES (element_mode (type)))
163 { build_minus_one_cst (type); }))
164
165 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
166 (simplify
167 (rdiv @0 real_onep)
168 (if (!HONOR_SNANS (element_mode (type)))
169 (non_lvalue @0)))
170
171 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
172 (simplify
173 (rdiv @0 real_minus_onep)
174 (if (!HONOR_SNANS (element_mode (type)))
175 (negate @0)))
176
177 /* If ARG1 is a constant, we can convert this to a multiply by the
178 reciprocal. This does not have the same rounding properties,
179 so only do this if -freciprocal-math. We can actually
180 always safely do it if ARG1 is a power of two, but it's hard to
181 tell if it is or not in a portable manner. */
182 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
183 (simplify
184 (rdiv @0 cst@1)
185 (if (optimize)
186 (if (flag_reciprocal_math
187 && !real_zerop (@1))
188 (with
189 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
190 (if (tem)
191 (mult @0 { tem; } ))))
192 (if (cst != COMPLEX_CST)
193 (with { tree inverse = exact_inverse (type, @1); }
194 (if (inverse)
195 (mult @0 { inverse; } )))))))
196
197 /* Same applies to modulo operations, but fold is inconsistent here
198 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
199 (for mod (ceil_mod floor_mod round_mod trunc_mod)
200 /* 0 % X is always zero. */
201 (simplify
202 (mod integer_zerop@0 @1)
203 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
204 (if (!integer_zerop (@1))
205 @0))
206 /* X % 1 is always zero. */
207 (simplify
208 (mod @0 integer_onep)
209 { build_zero_cst (type); })
210 /* X % -1 is zero. */
211 (simplify
212 (mod @0 integer_minus_onep@1)
213 (if (!TYPE_UNSIGNED (type))
214 { build_zero_cst (type); })))
215
216 /* X % -C is the same as X % C. */
217 (simplify
218 (trunc_mod @0 INTEGER_CST@1)
219 (if (TYPE_SIGN (type) == SIGNED
220 && !TREE_OVERFLOW (@1)
221 && wi::neg_p (@1)
222 && !TYPE_OVERFLOW_TRAPS (type)
223 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
224 && !sign_bit_p (@1, @1))
225 (trunc_mod @0 (negate @1))))
226
227 /* x | ~0 -> ~0 */
228 (simplify
229 (bit_ior @0 integer_all_onesp@1)
230 @1)
231
232 /* x & 0 -> 0 */
233 (simplify
234 (bit_and @0 integer_zerop@1)
235 @1)
236
237 /* x ^ x -> 0 */
238 (simplify
239 (bit_xor @0 @0)
240 { build_zero_cst (type); })
241
242 /* Canonicalize X ^ ~0 to ~X. */
243 (simplify
244 (bit_xor @0 integer_all_onesp@1)
245 (bit_not @0))
246
247 /* x & ~0 -> x */
248 (simplify
249 (bit_and @0 integer_all_onesp)
250 (non_lvalue @0))
251
252 /* x & x -> x, x | x -> x */
253 (for bitop (bit_and bit_ior)
254 (simplify
255 (bitop @0 @0)
256 (non_lvalue @0)))
257
258 /* x + (x & 1) -> (x + 1) & ~1 */
259 (simplify
260 (plus:c @0 (bit_and@2 @0 integer_onep@1))
261 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
262 (bit_and (plus @0 @1) (bit_not @1))))
263
264 /* x & ~(x & y) -> x & ~y */
265 /* x | ~(x | y) -> x | ~y */
266 (for bitop (bit_and bit_ior)
267 (simplify
268 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
269 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
270 (bitop @0 (bit_not @1)))))
271
272 (simplify
273 (abs (negate @0))
274 (abs @0))
275 (simplify
276 (abs tree_expr_nonnegative_p@0)
277 @0)
278
279
280 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
281 when profitable.
282 For bitwise binary operations apply operand conversions to the
283 binary operation result instead of to the operands. This allows
284 to combine successive conversions and bitwise binary operations.
285 We combine the above two cases by using a conditional convert. */
286 (for bitop (bit_and bit_ior bit_xor)
287 (simplify
288 (bitop (convert @0) (convert? @1))
289 (if (((TREE_CODE (@1) == INTEGER_CST
290 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
291 && int_fits_type_p (@1, TREE_TYPE (@0)))
292 || types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
293 /* ??? This transform conflicts with fold-const.c doing
294 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
295 constants (if x has signed type, the sign bit cannot be set
296 in c). This folds extension into the BIT_AND_EXPR.
297 Restrict it to GIMPLE to avoid endless recursions. */
298 && (bitop != BIT_AND_EXPR || GIMPLE)
299 && (/* That's a good idea if the conversion widens the operand, thus
300 after hoisting the conversion the operation will be narrower. */
301 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
302 /* It's also a good idea if the conversion is to a non-integer
303 mode. */
304 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
305 /* Or if the precision of TO is not the same as the precision
306 of its mode. */
307 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
308 (convert (bitop @0 (convert @1))))))
309
310 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
311 (for bitop (bit_and bit_ior bit_xor)
312 (simplify
313 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
314 (bit_and (bitop @0 @2) @1)))
315
316 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
317 (simplify
318 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
319 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
320
321 /* Combine successive equal operations with constants. */
322 (for bitop (bit_and bit_ior bit_xor)
323 (simplify
324 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
325 (bitop @0 (bitop @1 @2))))
326
327 /* Try simple folding for X op !X, and X op X with the help
328 of the truth_valued_p and logical_inverted_value predicates. */
329 (match truth_valued_p
330 @0
331 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
332 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
333 (match truth_valued_p
334 (op @0 @1)))
335 (match truth_valued_p
336 (truth_not @0))
337
338 (match (logical_inverted_value @0)
339 (bit_not truth_valued_p@0))
340 (match (logical_inverted_value @0)
341 (eq @0 integer_zerop))
342 (match (logical_inverted_value @0)
343 (ne truth_valued_p@0 integer_truep))
344 (match (logical_inverted_value @0)
345 (bit_xor truth_valued_p@0 integer_truep))
346
347 /* X & !X -> 0. */
348 (simplify
349 (bit_and:c @0 (logical_inverted_value @0))
350 { build_zero_cst (type); })
351 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
352 (for op (bit_ior bit_xor)
353 (simplify
354 (op:c truth_valued_p@0 (logical_inverted_value @0))
355 { constant_boolean_node (true, type); }))
356
357 (for bitop (bit_and bit_ior)
358 rbitop (bit_ior bit_and)
359 /* (x | y) & x -> x */
360 /* (x & y) | x -> x */
361 (simplify
362 (bitop:c (rbitop:c @0 @1) @0)
363 @0)
364 /* (~x | y) & x -> x & y */
365 /* (~x & y) | x -> x | y */
366 (simplify
367 (bitop:c (rbitop:c (bit_not @0) @1) @0)
368 (bitop @0 @1)))
369
370 /* If arg1 and arg2 are booleans (or any single bit type)
371 then try to simplify:
372
373 (~X & Y) -> X < Y
374 (X & ~Y) -> Y < X
375 (~X | Y) -> X <= Y
376 (X | ~Y) -> Y <= X
377
378 But only do this if our result feeds into a comparison as
379 this transformation is not always a win, particularly on
380 targets with and-not instructions.
381 -> simplify_bitwise_binary_boolean */
382 (simplify
383 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
384 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
385 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
386 (lt @0 @1)))
387 (simplify
388 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
389 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
390 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
391 (le @0 @1)))
392
393 /* ~~x -> x */
394 (simplify
395 (bit_not (bit_not @0))
396 @0)
397
398 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
399 (simplify
400 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
401 (if ((TREE_CODE (@3) != SSA_NAME || has_single_use (@3))
402 && (TREE_CODE (@4) != SSA_NAME || has_single_use (@4)))
403 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
404
405
406 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
407 (simplify
408 (pointer_plus (pointer_plus@2 @0 @1) @3)
409 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
410 (pointer_plus @0 (plus @1 @3))))
411
412 /* Pattern match
413 tem1 = (long) ptr1;
414 tem2 = (long) ptr2;
415 tem3 = tem2 - tem1;
416 tem4 = (unsigned long) tem3;
417 tem5 = ptr1 + tem4;
418 and produce
419 tem5 = ptr2; */
420 (simplify
421 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
422 /* Conditionally look through a sign-changing conversion. */
423 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
424 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
425 || (GENERIC && type == TREE_TYPE (@1))))
426 @1))
427
428 /* Pattern match
429 tem = (sizetype) ptr;
430 tem = tem & algn;
431 tem = -tem;
432 ... = ptr p+ tem;
433 and produce the simpler and easier to analyze with respect to alignment
434 ... = ptr & ~algn; */
435 (simplify
436 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
437 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
438 (bit_and @0 { algn; })))
439
440
441 /* We can't reassociate at all for saturating types. */
442 (if (!TYPE_SATURATING (type))
443
444 /* Contract negates. */
445 /* A + (-B) -> A - B */
446 (simplify
447 (plus:c (convert1? @0) (convert2? (negate @1)))
448 /* Apply STRIP_NOPS on @0 and the negate. */
449 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
450 && tree_nop_conversion_p (type, TREE_TYPE (@1))
451 && !TYPE_OVERFLOW_SANITIZED (type))
452 (minus (convert @0) (convert @1))))
453 /* A - (-B) -> A + B */
454 (simplify
455 (minus (convert1? @0) (convert2? (negate @1)))
456 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
457 && tree_nop_conversion_p (type, TREE_TYPE (@1))
458 && !TYPE_OVERFLOW_SANITIZED (type))
459 (plus (convert @0) (convert @1))))
460 /* -(-A) -> A */
461 (simplify
462 (negate (convert? (negate @1)))
463 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
464 && !TYPE_OVERFLOW_SANITIZED (type))
465 (convert @1)))
466
467 /* We can't reassociate floating-point or fixed-point plus or minus
468 because of saturation to +-Inf. */
469 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
470
471 /* Match patterns that allow contracting a plus-minus pair
472 irrespective of overflow issues. */
473 /* (A +- B) - A -> +- B */
474 /* (A +- B) -+ B -> A */
475 /* A - (A +- B) -> -+ B */
476 /* A +- (B -+ A) -> +- B */
477 (simplify
478 (minus (plus:c @0 @1) @0)
479 @1)
480 (simplify
481 (minus (minus @0 @1) @0)
482 (negate @1))
483 (simplify
484 (plus:c (minus @0 @1) @1)
485 @0)
486 (simplify
487 (minus @0 (plus:c @0 @1))
488 (negate @1))
489 (simplify
490 (minus @0 (minus @0 @1))
491 @1)
492
493 /* (A +- CST) +- CST -> A + CST */
494 (for outer_op (plus minus)
495 (for inner_op (plus minus)
496 (simplify
497 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
498 /* If the constant operation overflows we cannot do the transform
499 as we would introduce undefined overflow, for example
500 with (a - 1) + INT_MIN. */
501 (with { tree cst = fold_binary (outer_op == inner_op
502 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
503 (if (cst && !TREE_OVERFLOW (cst))
504 (inner_op @0 { cst; } ))))))
505
506 /* (CST - A) +- CST -> CST - A */
507 (for outer_op (plus minus)
508 (simplify
509 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
510 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
511 (if (cst && !TREE_OVERFLOW (cst))
512 (minus { cst; } @0)))))
513
514 /* ~A + A -> -1 */
515 (simplify
516 (plus:c (bit_not @0) @0)
517 (if (!TYPE_OVERFLOW_TRAPS (type))
518 { build_all_ones_cst (type); }))
519
520 /* ~A + 1 -> -A */
521 (simplify
522 (plus (convert? (bit_not @0)) integer_each_onep)
523 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
524 (negate (convert @0))))
525
526 /* -A - 1 -> ~A */
527 (simplify
528 (minus (convert? (negate @0)) integer_each_onep)
529 (if (!TYPE_OVERFLOW_TRAPS (type)
530 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
531 (bit_not (convert @0))))
532
533 /* -1 - A -> ~A */
534 (simplify
535 (minus integer_all_onesp @0)
536 (if (TREE_CODE (type) != COMPLEX_TYPE)
537 (bit_not @0)))
538
539 /* (T)(P + A) - (T)P -> (T) A */
540 (for add (plus pointer_plus)
541 (simplify
542 (minus (convert (add @0 @1))
543 (convert @0))
544 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
545 /* For integer types, if A has a smaller type
546 than T the result depends on the possible
547 overflow in P + A.
548 E.g. T=size_t, A=(unsigned)429497295, P>0.
549 However, if an overflow in P + A would cause
550 undefined behavior, we can assume that there
551 is no overflow. */
552 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
553 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
554 /* For pointer types, if the conversion of A to the
555 final type requires a sign- or zero-extension,
556 then we have to punt - it is not defined which
557 one is correct. */
558 || (POINTER_TYPE_P (TREE_TYPE (@0))
559 && TREE_CODE (@1) == INTEGER_CST
560 && tree_int_cst_sign_bit (@1) == 0))
561 (convert @1))))))
562
563
564 /* Simplifications of MIN_EXPR and MAX_EXPR. */
565
566 (for minmax (min max)
567 (simplify
568 (minmax @0 @0)
569 @0))
570 (simplify
571 (min @0 @1)
572 (if (INTEGRAL_TYPE_P (type)
573 && TYPE_MIN_VALUE (type)
574 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
575 @1))
576 (simplify
577 (max @0 @1)
578 (if (INTEGRAL_TYPE_P (type)
579 && TYPE_MAX_VALUE (type)
580 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
581 @1))
582
583
584 /* Simplifications of shift and rotates. */
585
586 (for rotate (lrotate rrotate)
587 (simplify
588 (rotate integer_all_onesp@0 @1)
589 @0))
590
591 /* Optimize -1 >> x for arithmetic right shifts. */
592 (simplify
593 (rshift integer_all_onesp@0 @1)
594 (if (!TYPE_UNSIGNED (type)
595 && tree_expr_nonnegative_p (@1))
596 @0))
597
598 (for shiftrotate (lrotate rrotate lshift rshift)
599 (simplify
600 (shiftrotate @0 integer_zerop)
601 (non_lvalue @0))
602 (simplify
603 (shiftrotate integer_zerop@0 @1)
604 @0)
605 /* Prefer vector1 << scalar to vector1 << vector2
606 if vector2 is uniform. */
607 (for vec (VECTOR_CST CONSTRUCTOR)
608 (simplify
609 (shiftrotate @0 vec@1)
610 (with { tree tem = uniform_vector_p (@1); }
611 (if (tem)
612 (shiftrotate @0 { tem; }))))))
613
614 /* Rewrite an LROTATE_EXPR by a constant into an
615 RROTATE_EXPR by a new constant. */
616 (simplify
617 (lrotate @0 INTEGER_CST@1)
618 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
619 build_int_cst (TREE_TYPE (@1),
620 element_precision (type)), @1); }))
621
622 /* ((1 << A) & 1) != 0 -> A == 0
623 ((1 << A) & 1) == 0 -> A != 0 */
624 (for cmp (ne eq)
625 icmp (eq ne)
626 (simplify
627 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
628 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
629
630 /* Simplifications of conversions. */
631
632 /* Basic strip-useless-type-conversions / strip_nops. */
633 (for cvt (convert view_convert float fix_trunc)
634 (simplify
635 (cvt @0)
636 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
637 || (GENERIC && type == TREE_TYPE (@0)))
638 @0)))
639
640 /* Contract view-conversions. */
641 (simplify
642 (view_convert (view_convert @0))
643 (view_convert @0))
644
645 /* For integral conversions with the same precision or pointer
646 conversions use a NOP_EXPR instead. */
647 (simplify
648 (view_convert @0)
649 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
650 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
651 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
652 (convert @0)))
653
654 /* Strip inner integral conversions that do not change precision or size. */
655 (simplify
656 (view_convert (convert@0 @1))
657 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
658 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
659 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
660 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
661 (view_convert @1)))
662
663 /* Re-association barriers around constants and other re-association
664 barriers can be removed. */
665 (simplify
666 (paren CONSTANT_CLASS_P@0)
667 @0)
668 (simplify
669 (paren (paren@1 @0))
670 @1)
671
672 /* Handle cases of two conversions in a row. */
673 (for ocvt (convert float fix_trunc)
674 (for icvt (convert float)
675 (simplify
676 (ocvt (icvt@1 @0))
677 (with
678 {
679 tree inside_type = TREE_TYPE (@0);
680 tree inter_type = TREE_TYPE (@1);
681 int inside_int = INTEGRAL_TYPE_P (inside_type);
682 int inside_ptr = POINTER_TYPE_P (inside_type);
683 int inside_float = FLOAT_TYPE_P (inside_type);
684 int inside_vec = VECTOR_TYPE_P (inside_type);
685 unsigned int inside_prec = TYPE_PRECISION (inside_type);
686 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
687 int inter_int = INTEGRAL_TYPE_P (inter_type);
688 int inter_ptr = POINTER_TYPE_P (inter_type);
689 int inter_float = FLOAT_TYPE_P (inter_type);
690 int inter_vec = VECTOR_TYPE_P (inter_type);
691 unsigned int inter_prec = TYPE_PRECISION (inter_type);
692 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
693 int final_int = INTEGRAL_TYPE_P (type);
694 int final_ptr = POINTER_TYPE_P (type);
695 int final_float = FLOAT_TYPE_P (type);
696 int final_vec = VECTOR_TYPE_P (type);
697 unsigned int final_prec = TYPE_PRECISION (type);
698 int final_unsignedp = TYPE_UNSIGNED (type);
699 }
700 /* In addition to the cases of two conversions in a row
701 handled below, if we are converting something to its own
702 type via an object of identical or wider precision, neither
703 conversion is needed. */
704 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
705 || (GENERIC
706 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
707 && (((inter_int || inter_ptr) && final_int)
708 || (inter_float && final_float))
709 && inter_prec >= final_prec)
710 (ocvt @0))
711
712 /* Likewise, if the intermediate and initial types are either both
713 float or both integer, we don't need the middle conversion if the
714 former is wider than the latter and doesn't change the signedness
715 (for integers). Avoid this if the final type is a pointer since
716 then we sometimes need the middle conversion. Likewise if the
717 final type has a precision not equal to the size of its mode. */
718 (if (((inter_int && inside_int)
719 || (inter_float && inside_float)
720 || (inter_vec && inside_vec))
721 && inter_prec >= inside_prec
722 && (inter_float || inter_vec
723 || inter_unsignedp == inside_unsignedp)
724 && ! (final_prec != GET_MODE_PRECISION (element_mode (type))
725 && element_mode (type) == element_mode (inter_type))
726 && ! final_ptr
727 && (! final_vec || inter_prec == inside_prec))
728 (ocvt @0))
729
730 /* If we have a sign-extension of a zero-extended value, we can
731 replace that by a single zero-extension. Likewise if the
732 final conversion does not change precision we can drop the
733 intermediate conversion. */
734 (if (inside_int && inter_int && final_int
735 && ((inside_prec < inter_prec && inter_prec < final_prec
736 && inside_unsignedp && !inter_unsignedp)
737 || final_prec == inter_prec))
738 (ocvt @0))
739
740 /* Two conversions in a row are not needed unless:
741 - some conversion is floating-point (overstrict for now), or
742 - some conversion is a vector (overstrict for now), or
743 - the intermediate type is narrower than both initial and
744 final, or
745 - the intermediate type and innermost type differ in signedness,
746 and the outermost type is wider than the intermediate, or
747 - the initial type is a pointer type and the precisions of the
748 intermediate and final types differ, or
749 - the final type is a pointer type and the precisions of the
750 initial and intermediate types differ. */
751 (if (! inside_float && ! inter_float && ! final_float
752 && ! inside_vec && ! inter_vec && ! final_vec
753 && (inter_prec >= inside_prec || inter_prec >= final_prec)
754 && ! (inside_int && inter_int
755 && inter_unsignedp != inside_unsignedp
756 && inter_prec < final_prec)
757 && ((inter_unsignedp && inter_prec > inside_prec)
758 == (final_unsignedp && final_prec > inter_prec))
759 && ! (inside_ptr && inter_prec != final_prec)
760 && ! (final_ptr && inside_prec != inter_prec)
761 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
762 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
763 (ocvt @0))
764
765 /* A truncation to an unsigned type (a zero-extension) should be
766 canonicalized as bitwise and of a mask. */
767 (if (final_int && inter_int && inside_int
768 && final_prec == inside_prec
769 && final_prec > inter_prec
770 && inter_unsignedp)
771 (convert (bit_and @0 { wide_int_to_tree
772 (inside_type,
773 wi::mask (inter_prec, false,
774 TYPE_PRECISION (inside_type))); })))
775
776 /* If we are converting an integer to a floating-point that can
777 represent it exactly and back to an integer, we can skip the
778 floating-point conversion. */
779 (if (inside_int && inter_float && final_int &&
780 (unsigned) significand_size (TYPE_MODE (inter_type))
781 >= inside_prec - !inside_unsignedp)
782 (convert @0))))))
783
784 /* If we have a narrowing conversion to an integral type that is fed by a
785 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
786 masks off bits outside the final type (and nothing else). */
787 (simplify
788 (convert (bit_and @0 INTEGER_CST@1))
789 (if (INTEGRAL_TYPE_P (type)
790 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
791 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
792 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
793 TYPE_PRECISION (type)), 0))
794 (convert @0)))
795
796
797 /* (X /[ex] A) * A -> X. */
798 (simplify
799 (mult (convert? (exact_div @0 @1)) @1)
800 /* Look through a sign-changing conversion. */
801 (if (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
802 (convert @0)))
803
804 /* Canonicalization of binary operations. */
805
806 /* Convert X + -C into X - C. */
807 (simplify
808 (plus @0 REAL_CST@1)
809 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
810 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
811 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
812 (minus @0 { tem; })))))
813
814 /* Convert x+x into x*2.0. */
815 (simplify
816 (plus @0 @0)
817 (if (SCALAR_FLOAT_TYPE_P (type))
818 (mult @0 { build_real (type, dconst2); })))
819
820 (simplify
821 (minus integer_zerop @1)
822 (negate @1))
823
824 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
825 ARG0 is zero and X + ARG0 reduces to X, since that would mean
826 (-ARG1 + ARG0) reduces to -ARG1. */
827 (simplify
828 (minus real_zerop@0 @1)
829 (if (fold_real_zero_addition_p (type, @0, 0))
830 (negate @1)))
831
832 /* Transform x * -1 into -x. */
833 (simplify
834 (mult @0 integer_minus_onep)
835 (negate @0))
836
837 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
838 (simplify
839 (complex (realpart @0) (imagpart @0))
840 @0)
841 (simplify
842 (realpart (complex @0 @1))
843 @0)
844 (simplify
845 (imagpart (complex @0 @1))
846 @1)
847
848
849 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
850 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
851 (simplify
852 (bswap (bswap @0))
853 @0)
854 (simplify
855 (bswap (bit_not (bswap @0)))
856 (bit_not @0))
857 (for bitop (bit_xor bit_ior bit_and)
858 (simplify
859 (bswap (bitop:c (bswap @0) @1))
860 (bitop @0 (bswap @1)))))
861
862
863 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
864
865 /* Simplify constant conditions.
866 Only optimize constant conditions when the selected branch
867 has the same type as the COND_EXPR. This avoids optimizing
868 away "c ? x : throw", where the throw has a void type.
869 Note that we cannot throw away the fold-const.c variant nor
870 this one as we depend on doing this transform before possibly
871 A ? B : B -> B triggers and the fold-const.c one can optimize
872 0 ? A : B to B even if A has side-effects. Something
873 genmatch cannot handle. */
874 (simplify
875 (cond INTEGER_CST@0 @1 @2)
876 (if (integer_zerop (@0)
877 && (!VOID_TYPE_P (TREE_TYPE (@2))
878 || VOID_TYPE_P (type)))
879 @2)
880 (if (!integer_zerop (@0)
881 && (!VOID_TYPE_P (TREE_TYPE (@1))
882 || VOID_TYPE_P (type)))
883 @1))
884 (simplify
885 (vec_cond VECTOR_CST@0 @1 @2)
886 (if (integer_all_onesp (@0))
887 @1)
888 (if (integer_zerop (@0))
889 @2))
890
891 (for cnd (cond vec_cond)
892 /* A ? B : (A ? X : C) -> A ? B : C. */
893 (simplify
894 (cnd @0 (cnd @0 @1 @2) @3)
895 (cnd @0 @1 @3))
896 (simplify
897 (cnd @0 @1 (cnd @0 @2 @3))
898 (cnd @0 @1 @3))
899
900 /* A ? B : B -> B. */
901 (simplify
902 (cnd @0 @1 @1)
903 @1)
904
905 /* !A ? B : C -> A ? C : B. */
906 (simplify
907 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
908 (cnd @0 @2 @1)))
909
910
911 /* Simplifications of comparisons. */
912
913 /* We can simplify a logical negation of a comparison to the
914 inverted comparison. As we cannot compute an expression
915 operator using invert_tree_comparison we have to simulate
916 that with expression code iteration. */
917 (for cmp (tcc_comparison)
918 icmp (inverted_tcc_comparison)
919 ncmp (inverted_tcc_comparison_with_nans)
920 /* Ideally we'd like to combine the following two patterns
921 and handle some more cases by using
922 (logical_inverted_value (cmp @0 @1))
923 here but for that genmatch would need to "inline" that.
924 For now implement what forward_propagate_comparison did. */
925 (simplify
926 (bit_not (cmp @0 @1))
927 (if (VECTOR_TYPE_P (type)
928 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
929 /* Comparison inversion may be impossible for trapping math,
930 invert_tree_comparison will tell us. But we can't use
931 a computed operator in the replacement tree thus we have
932 to play the trick below. */
933 (with { enum tree_code ic = invert_tree_comparison
934 (cmp, HONOR_NANS (@0)); }
935 (if (ic == icmp)
936 (icmp @0 @1))
937 (if (ic == ncmp)
938 (ncmp @0 @1)))))
939 (simplify
940 (bit_xor (cmp @0 @1) integer_truep)
941 (with { enum tree_code ic = invert_tree_comparison
942 (cmp, HONOR_NANS (@0)); }
943 (if (ic == icmp)
944 (icmp @0 @1))
945 (if (ic == ncmp)
946 (ncmp @0 @1)))))
947
948 /* Unordered tests if either argument is a NaN. */
949 (simplify
950 (bit_ior (unordered @0 @0) (unordered @1 @1))
951 (if (types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
952 (unordered @0 @1)))
953 (simplify
954 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
955 @2)
956
957 /* Simplification of math builtins. */
958
959 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
960 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
961 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
962 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
963 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
964 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
965 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
966 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
967 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
968 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
969
970
971 /* fold_builtin_logarithm */
972 (if (flag_unsafe_math_optimizations)
973 /* Special case, optimize logN(expN(x)) = x. */
974 (for logs (LOG LOG2 LOG10)
975 exps (EXP EXP2 EXP10)
976 (simplify
977 (logs (exps @0))
978 @0))
979 /* Optimize logN(func()) for various exponential functions. We
980 want to determine the value "x" and the power "exponent" in
981 order to transform logN(x**exponent) into exponent*logN(x). */
982 (for logs (LOG LOG LOG LOG
983 LOG2 LOG2 LOG2 LOG2
984 LOG10 LOG10 LOG10 LOG10)
985 exps (EXP EXP2 EXP10 POW10)
986 (simplify
987 (logs (exps @0))
988 (with {
989 tree x;
990 switch (exps)
991 {
992 CASE_FLT_FN (BUILT_IN_EXP):
993 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
994 x = build_real (type, real_value_truncate (TYPE_MODE (type),
995 dconst_e ()));
996 break;
997 CASE_FLT_FN (BUILT_IN_EXP2):
998 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
999 x = build_real (type, dconst2);
1000 break;
1001 CASE_FLT_FN (BUILT_IN_EXP10):
1002 CASE_FLT_FN (BUILT_IN_POW10):
1003 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1004 {
1005 REAL_VALUE_TYPE dconst10;
1006 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1007 x = build_real (type, dconst10);
1008 }
1009 break;
1010 }
1011 }
1012 (mult (logs { x; }) @0))))
1013 (for logs (LOG LOG
1014 LOG2 LOG2
1015 LOG10 LOG10)
1016 exps (SQRT CBRT)
1017 (simplify
1018 (logs (exps @0))
1019 (with {
1020 tree x;
1021 switch (exps)
1022 {
1023 CASE_FLT_FN (BUILT_IN_SQRT):
1024 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1025 x = build_real (type, dconsthalf);
1026 break;
1027 CASE_FLT_FN (BUILT_IN_CBRT):
1028 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1029 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1030 dconst_third ()));
1031 break;
1032 }
1033 }
1034 (mult { x; } (logs @0)))))
1035 /* logN(pow(x,exponent) -> exponent*logN(x). */
1036 (for logs (LOG LOG2 LOG10)
1037 pows (POW)
1038 (simplify
1039 (logs (pows @0 @1))
1040 (mult @1 (logs @0)))))
1041
1042 /* Narrowing of arithmetic and logical operations.
1043
1044 These are conceptually similar to the transformations performed for
1045 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1046 term we want to move all that code out of the front-ends into here. */
1047
1048 /* If we have a narrowing conversion of an arithmetic operation where
1049 both operands are widening conversions from the same type as the outer
1050 narrowing conversion. Then convert the innermost operands to a suitable
1051 unsigned type (to avoid introducing undefined behaviour), perform the
1052 operation and convert the result to the desired type. */
1053 (for op (plus minus)
1054 (simplify
1055 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1056 (if (INTEGRAL_TYPE_P (type)
1057 /* We check for type compatibility between @0 and @1 below,
1058 so there's no need to check that @1/@3 are integral types. */
1059 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1060 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1061 /* The precision of the type of each operand must match the
1062 precision of the mode of each operand, similarly for the
1063 result. */
1064 && (TYPE_PRECISION (TREE_TYPE (@0))
1065 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1066 && (TYPE_PRECISION (TREE_TYPE (@1))
1067 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1068 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1069 /* The inner conversion must be a widening conversion. */
1070 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1071 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
1072 && types_match (TREE_TYPE (@0), type)
1073 && single_use (@4))
1074 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1075 (convert (op @0 @1)))
1076 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1077 (convert (op (convert:utype @0) (convert:utype @1)))))))
1078
1079 /* This is another case of narrowing, specifically when there's an outer
1080 BIT_AND_EXPR which masks off bits outside the type of the innermost
1081 operands. Like the previous case we have to convert the operands
1082 to unsigned types to avoid introducing undefined behaviour for the
1083 arithmetic operation. */
1084 (for op (minus plus)
1085 (simplify
1086 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1087 (if (INTEGRAL_TYPE_P (type)
1088 /* We check for type compatibility between @0 and @1 below,
1089 so there's no need to check that @1/@3 are integral types. */
1090 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1091 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1092 /* The precision of the type of each operand must match the
1093 precision of the mode of each operand, similarly for the
1094 result. */
1095 && (TYPE_PRECISION (TREE_TYPE (@0))
1096 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1097 && (TYPE_PRECISION (TREE_TYPE (@1))
1098 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1099 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1100 /* The inner conversion must be a widening conversion. */
1101 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1102 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
1103 && (tree_int_cst_min_precision (@4, UNSIGNED)
1104 <= TYPE_PRECISION (TREE_TYPE (@0)))
1105 && single_use (@5))
1106 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1107 (with { tree ntype = TREE_TYPE (@0); }
1108 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1109 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1110 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1111 (convert:utype @4)))))))
1112