re PR tree-optimization/87287 (Move signed (x % pow2) == 0 optimization to gimple)
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
80 plus minus
81 mult trunc_div trunc_mod rdiv
82 min max
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
89
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
95
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
99 (convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
102 (view_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
109 @0)
110
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
120
121
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
124
125 (for op (plus pointer_plus minus bit_ior bit_xor)
126 (simplify
127 (op @0 integer_zerop)
128 (non_lvalue @0)))
129
130 /* 0 +p index -> (type)index */
131 (simplify
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
134
135 /* ptr - 0 -> (type)ptr */
136 (simplify
137 (pointer_diff @0 integer_zerop)
138 (convert @0))
139
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
142 (simplify
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
145 (non_lvalue @0)))
146
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
148 (simplify
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
151 (non_lvalue @0)))
152
153 /* Simplify x - x.
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
157 is volatile. */
158 (simplify
159 (minus @0 @0)
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
162 (simplify
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
165
166 (simplify
167 (mult @0 integer_zerop@1)
168 @1)
169
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
174 (simplify
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
177 @1))
178
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
181 (simplify
182 (mult @0 real_onep)
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
186 (non_lvalue @0)))
187
188 /* Transform x * -1.0 into -x. */
189 (simplify
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
194 (negate @0)))
195
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
203 (simplify
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
207 (switch
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
218 (simplify
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
222 (switch
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
229
230 /* Transform X * copysign (1.0, X) into abs(X). */
231 (simplify
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
234 (abs @0)))
235
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
237 (simplify
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
240 (negate (abs @0))))
241
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
243 (simplify
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
247
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
250 (simplify
251 (op @0 integer_onep)
252 (non_lvalue @0)))
253
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
256 toward zero.
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
258 (simplify
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
264 (rshift @0 @2)))
265
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
271 (simplify
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
275 @0))
276 /* X / -1 is -X. */
277 (simplify
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
280 (negate @0)))
281 /* X / X is one. */
282 (simplify
283 (div @0 @0)
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
289 (simplify
290 (div:C @0 (abs @0))
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
295 /* X / -X is -1. */
296 (simplify
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
301
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
304 (simplify
305 (floor_div @0 @1)
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
308 (trunc_div @0 @1)))
309
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
313 (simplify
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
315 (with {
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
319 }
320 (if (!overflow)
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
325
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
328 (simplify
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
330 (with {
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
334 }
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
339
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
342 (simplify
343 (rdiv @0 @0)
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
348
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
351 (simplify
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
357
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
359 (simplify
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
364 (switch
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
371
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
373 (simplify
374 (rdiv @0 real_onep)
375 (if (!HONOR_SNANS (type))
376 (non_lvalue @0)))
377
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
379 (simplify
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
382 (negate @0)))
383
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
386 (simplify
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
389
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
391 (simplify
392 (rdiv @0 (mult:s @1 REAL_CST@2))
393 (with
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
395 (if (tem)
396 (rdiv (mult @0 { tem; } ) @1))))
397
398 /* Convert A/(B/C) to (A/B)*C */
399 (simplify
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
402
403 /* Simplify x / (- y) to -x / y. */
404 (simplify
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
407
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
410 (simplify
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
416 (rshift (convert @0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
419
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
426 (simplify
427 (rdiv @0 cst@1)
428 (if (optimize)
429 (if (flag_reciprocal_math
430 && !real_zerop (@1))
431 (with
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
433 (if (tem)
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
437 (if (inverse)
438 (mult @0 { inverse; } ))))))))
439
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
442 (simplify
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
446 @0))
447 /* X % 1 is always zero. */
448 (simplify
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
452 (simplify
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
456 /* X % X is zero. */
457 (simplify
458 (mod @0 @0)
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
463 (simplify
464 (mod (mod@2 @0 @1) @1)
465 @2)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
467 (simplify
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
472 TYPE_SIGN (type)))
473 { build_zero_cst (type); }))
474 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
475 modulo and comparison, since it is simpler and equivalent. */
476 (for cmp (eq ne)
477 (simplify
478 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
479 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
480 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
481 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
482
483 /* X % -C is the same as X % C. */
484 (simplify
485 (trunc_mod @0 INTEGER_CST@1)
486 (if (TYPE_SIGN (type) == SIGNED
487 && !TREE_OVERFLOW (@1)
488 && wi::neg_p (wi::to_wide (@1))
489 && !TYPE_OVERFLOW_TRAPS (type)
490 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
491 && !sign_bit_p (@1, @1))
492 (trunc_mod @0 (negate @1))))
493
494 /* X % -Y is the same as X % Y. */
495 (simplify
496 (trunc_mod @0 (convert? (negate @1)))
497 (if (INTEGRAL_TYPE_P (type)
498 && !TYPE_UNSIGNED (type)
499 && !TYPE_OVERFLOW_TRAPS (type)
500 && tree_nop_conversion_p (type, TREE_TYPE (@1))
501 /* Avoid this transformation if X might be INT_MIN or
502 Y might be -1, because we would then change valid
503 INT_MIN % -(-1) into invalid INT_MIN % -1. */
504 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
505 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
506 (TREE_TYPE (@1))))))
507 (trunc_mod @0 (convert @1))))
508
509 /* X - (X / Y) * Y is the same as X % Y. */
510 (simplify
511 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
512 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
513 (convert (trunc_mod @0 @1))))
514
515 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
516 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
517 Also optimize A % (C << N) where C is a power of 2,
518 to A & ((C << N) - 1). */
519 (match (power_of_two_cand @1)
520 INTEGER_CST@1)
521 (match (power_of_two_cand @1)
522 (lshift INTEGER_CST@1 @2))
523 (for mod (trunc_mod floor_mod)
524 (simplify
525 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
526 (if ((TYPE_UNSIGNED (type)
527 || tree_expr_nonnegative_p (@0))
528 && tree_nop_conversion_p (type, TREE_TYPE (@3))
529 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
530 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
531
532 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
533 (simplify
534 (trunc_div (mult @0 integer_pow2p@1) @1)
535 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
536 (bit_and @0 { wide_int_to_tree
537 (type, wi::mask (TYPE_PRECISION (type)
538 - wi::exact_log2 (wi::to_wide (@1)),
539 false, TYPE_PRECISION (type))); })))
540
541 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
542 (simplify
543 (mult (trunc_div @0 integer_pow2p@1) @1)
544 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
545 (bit_and @0 (negate @1))))
546
547 /* Simplify (t * 2) / 2) -> t. */
548 (for div (trunc_div ceil_div floor_div round_div exact_div)
549 (simplify
550 (div (mult:c @0 @1) @1)
551 (if (ANY_INTEGRAL_TYPE_P (type)
552 && TYPE_OVERFLOW_UNDEFINED (type))
553 @0)))
554
555 (for op (negate abs)
556 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
557 (for coss (COS COSH)
558 (simplify
559 (coss (op @0))
560 (coss @0)))
561 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
562 (for pows (POW)
563 (simplify
564 (pows (op @0) REAL_CST@1)
565 (with { HOST_WIDE_INT n; }
566 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
567 (pows @0 @1)))))
568 /* Likewise for powi. */
569 (for pows (POWI)
570 (simplify
571 (pows (op @0) INTEGER_CST@1)
572 (if ((wi::to_wide (@1) & 1) == 0)
573 (pows @0 @1))))
574 /* Strip negate and abs from both operands of hypot. */
575 (for hypots (HYPOT)
576 (simplify
577 (hypots (op @0) @1)
578 (hypots @0 @1))
579 (simplify
580 (hypots @0 (op @1))
581 (hypots @0 @1)))
582 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
583 (for copysigns (COPYSIGN_ALL)
584 (simplify
585 (copysigns (op @0) @1)
586 (copysigns @0 @1))))
587
588 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
589 (simplify
590 (mult (abs@1 @0) @1)
591 (mult @0 @0))
592
593 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
594 (for coss (COS COSH)
595 copysigns (COPYSIGN)
596 (simplify
597 (coss (copysigns @0 @1))
598 (coss @0)))
599
600 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
601 (for pows (POW)
602 copysigns (COPYSIGN)
603 (simplify
604 (pows (copysigns @0 @2) REAL_CST@1)
605 (with { HOST_WIDE_INT n; }
606 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
607 (pows @0 @1)))))
608 /* Likewise for powi. */
609 (for pows (POWI)
610 copysigns (COPYSIGN)
611 (simplify
612 (pows (copysigns @0 @2) INTEGER_CST@1)
613 (if ((wi::to_wide (@1) & 1) == 0)
614 (pows @0 @1))))
615
616 (for hypots (HYPOT)
617 copysigns (COPYSIGN)
618 /* hypot(copysign(x, y), z) -> hypot(x, z). */
619 (simplify
620 (hypots (copysigns @0 @1) @2)
621 (hypots @0 @2))
622 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
623 (simplify
624 (hypots @0 (copysigns @1 @2))
625 (hypots @0 @1)))
626
627 /* copysign(x, CST) -> [-]abs (x). */
628 (for copysigns (COPYSIGN_ALL)
629 (simplify
630 (copysigns @0 REAL_CST@1)
631 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
632 (negate (abs @0))
633 (abs @0))))
634
635 /* copysign(copysign(x, y), z) -> copysign(x, z). */
636 (for copysigns (COPYSIGN_ALL)
637 (simplify
638 (copysigns (copysigns @0 @1) @2)
639 (copysigns @0 @2)))
640
641 /* copysign(x,y)*copysign(x,y) -> x*x. */
642 (for copysigns (COPYSIGN_ALL)
643 (simplify
644 (mult (copysigns@2 @0 @1) @2)
645 (mult @0 @0)))
646
647 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
648 (for ccoss (CCOS CCOSH)
649 (simplify
650 (ccoss (negate @0))
651 (ccoss @0)))
652
653 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
654 (for ops (conj negate)
655 (for cabss (CABS)
656 (simplify
657 (cabss (ops @0))
658 (cabss @0))))
659
660 /* Fold (a * (1 << b)) into (a << b) */
661 (simplify
662 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
663 (if (! FLOAT_TYPE_P (type)
664 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
665 (lshift @0 @2)))
666
667 /* Fold (1 << (C - x)) where C = precision(type) - 1
668 into ((1 << C) >> x). */
669 (simplify
670 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
671 (if (INTEGRAL_TYPE_P (type)
672 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
673 && single_use (@1))
674 (if (TYPE_UNSIGNED (type))
675 (rshift (lshift @0 @2) @3)
676 (with
677 { tree utype = unsigned_type_for (type); }
678 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
679
680 /* Fold (C1/X)*C2 into (C1*C2)/X. */
681 (simplify
682 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
683 (if (flag_associative_math
684 && single_use (@3))
685 (with
686 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
687 (if (tem)
688 (rdiv { tem; } @1)))))
689
690 /* Simplify ~X & X as zero. */
691 (simplify
692 (bit_and:c (convert? @0) (convert? (bit_not @0)))
693 { build_zero_cst (type); })
694
695 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
696 (simplify
697 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
698 (if (TYPE_UNSIGNED (type))
699 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
700
701 (for bitop (bit_and bit_ior)
702 cmp (eq ne)
703 /* PR35691: Transform
704 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
705 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
706 (simplify
707 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
708 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
709 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
710 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
711 (cmp (bit_ior @0 (convert @1)) @2)))
712 /* Transform:
713 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
714 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
715 (simplify
716 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
717 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
718 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
719 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
720 (cmp (bit_and @0 (convert @1)) @2))))
721
722 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
723 (simplify
724 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
725 (minus (bit_xor @0 @1) @1))
726 (simplify
727 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
728 (if (~wi::to_wide (@2) == wi::to_wide (@1))
729 (minus (bit_xor @0 @1) @1)))
730
731 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
732 (simplify
733 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
734 (minus @1 (bit_xor @0 @1)))
735
736 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
737 (for op (bit_ior bit_xor plus)
738 (simplify
739 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
740 (bit_xor @0 @1))
741 (simplify
742 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
743 (if (~wi::to_wide (@2) == wi::to_wide (@1))
744 (bit_xor @0 @1))))
745
746 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
747 (simplify
748 (bit_ior:c (bit_xor:c @0 @1) @0)
749 (bit_ior @0 @1))
750
751 /* (a & ~b) | (a ^ b) --> a ^ b */
752 (simplify
753 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
754 @2)
755
756 /* (a & ~b) ^ ~a --> ~(a & b) */
757 (simplify
758 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
759 (bit_not (bit_and @0 @1)))
760
761 /* (a | b) & ~(a ^ b) --> a & b */
762 (simplify
763 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
764 (bit_and @0 @1))
765
766 /* a | ~(a ^ b) --> a | ~b */
767 (simplify
768 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
769 (bit_ior @0 (bit_not @1)))
770
771 /* (a | b) | (a &^ b) --> a | b */
772 (for op (bit_and bit_xor)
773 (simplify
774 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
775 @2))
776
777 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
778 (simplify
779 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
780 @2)
781
782 /* ~(~a & b) --> a | ~b */
783 (simplify
784 (bit_not (bit_and:cs (bit_not @0) @1))
785 (bit_ior @0 (bit_not @1)))
786
787 /* ~(~a | b) --> a & ~b */
788 (simplify
789 (bit_not (bit_ior:cs (bit_not @0) @1))
790 (bit_and @0 (bit_not @1)))
791
792 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
793 #if GIMPLE
794 (simplify
795 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
796 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
797 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
798 (bit_xor @0 @1)))
799 #endif
800
801 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
802 ((A & N) + B) & M -> (A + B) & M
803 Similarly if (N & M) == 0,
804 ((A | N) + B) & M -> (A + B) & M
805 and for - instead of + (or unary - instead of +)
806 and/or ^ instead of |.
807 If B is constant and (B & M) == 0, fold into A & M. */
808 (for op (plus minus)
809 (for bitop (bit_and bit_ior bit_xor)
810 (simplify
811 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
812 (with
813 { tree pmop[2];
814 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
815 @3, @4, @1, ERROR_MARK, NULL_TREE,
816 NULL_TREE, pmop); }
817 (if (utype)
818 (convert (bit_and (op (convert:utype { pmop[0]; })
819 (convert:utype { pmop[1]; }))
820 (convert:utype @2))))))
821 (simplify
822 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
823 (with
824 { tree pmop[2];
825 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
826 NULL_TREE, NULL_TREE, @1, bitop, @3,
827 @4, pmop); }
828 (if (utype)
829 (convert (bit_and (op (convert:utype { pmop[0]; })
830 (convert:utype { pmop[1]; }))
831 (convert:utype @2)))))))
832 (simplify
833 (bit_and (op:s @0 @1) INTEGER_CST@2)
834 (with
835 { tree pmop[2];
836 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
837 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
838 NULL_TREE, NULL_TREE, pmop); }
839 (if (utype)
840 (convert (bit_and (op (convert:utype { pmop[0]; })
841 (convert:utype { pmop[1]; }))
842 (convert:utype @2)))))))
843 (for bitop (bit_and bit_ior bit_xor)
844 (simplify
845 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
846 (with
847 { tree pmop[2];
848 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
849 bitop, @2, @3, NULL_TREE, ERROR_MARK,
850 NULL_TREE, NULL_TREE, pmop); }
851 (if (utype)
852 (convert (bit_and (negate (convert:utype { pmop[0]; }))
853 (convert:utype @1)))))))
854
855 /* X % Y is smaller than Y. */
856 (for cmp (lt ge)
857 (simplify
858 (cmp (trunc_mod @0 @1) @1)
859 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
860 { constant_boolean_node (cmp == LT_EXPR, type); })))
861 (for cmp (gt le)
862 (simplify
863 (cmp @1 (trunc_mod @0 @1))
864 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
865 { constant_boolean_node (cmp == GT_EXPR, type); })))
866
867 /* x | ~0 -> ~0 */
868 (simplify
869 (bit_ior @0 integer_all_onesp@1)
870 @1)
871
872 /* x | 0 -> x */
873 (simplify
874 (bit_ior @0 integer_zerop)
875 @0)
876
877 /* x & 0 -> 0 */
878 (simplify
879 (bit_and @0 integer_zerop@1)
880 @1)
881
882 /* ~x | x -> -1 */
883 /* ~x ^ x -> -1 */
884 /* ~x + x -> -1 */
885 (for op (bit_ior bit_xor plus)
886 (simplify
887 (op:c (convert? @0) (convert? (bit_not @0)))
888 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
889
890 /* x ^ x -> 0 */
891 (simplify
892 (bit_xor @0 @0)
893 { build_zero_cst (type); })
894
895 /* Canonicalize X ^ ~0 to ~X. */
896 (simplify
897 (bit_xor @0 integer_all_onesp@1)
898 (bit_not @0))
899
900 /* x & ~0 -> x */
901 (simplify
902 (bit_and @0 integer_all_onesp)
903 (non_lvalue @0))
904
905 /* x & x -> x, x | x -> x */
906 (for bitop (bit_and bit_ior)
907 (simplify
908 (bitop @0 @0)
909 (non_lvalue @0)))
910
911 /* x & C -> x if we know that x & ~C == 0. */
912 #if GIMPLE
913 (simplify
914 (bit_and SSA_NAME@0 INTEGER_CST@1)
915 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
916 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
917 @0))
918 #endif
919
920 /* x + (x & 1) -> (x + 1) & ~1 */
921 (simplify
922 (plus:c @0 (bit_and:s @0 integer_onep@1))
923 (bit_and (plus @0 @1) (bit_not @1)))
924
925 /* x & ~(x & y) -> x & ~y */
926 /* x | ~(x | y) -> x | ~y */
927 (for bitop (bit_and bit_ior)
928 (simplify
929 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
930 (bitop @0 (bit_not @1))))
931
932 /* (x | y) & ~x -> y & ~x */
933 /* (x & y) | ~x -> y | ~x */
934 (for bitop (bit_and bit_ior)
935 rbitop (bit_ior bit_and)
936 (simplify
937 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
938 (bitop @1 @2)))
939
940 /* (x & y) ^ (x | y) -> x ^ y */
941 (simplify
942 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
943 (bit_xor @0 @1))
944
945 /* (x ^ y) ^ (x | y) -> x & y */
946 (simplify
947 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
948 (bit_and @0 @1))
949
950 /* (x & y) + (x ^ y) -> x | y */
951 /* (x & y) | (x ^ y) -> x | y */
952 /* (x & y) ^ (x ^ y) -> x | y */
953 (for op (plus bit_ior bit_xor)
954 (simplify
955 (op:c (bit_and @0 @1) (bit_xor @0 @1))
956 (bit_ior @0 @1)))
957
958 /* (x & y) + (x | y) -> x + y */
959 (simplify
960 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
961 (plus @0 @1))
962
963 /* (x + y) - (x | y) -> x & y */
964 (simplify
965 (minus (plus @0 @1) (bit_ior @0 @1))
966 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
967 && !TYPE_SATURATING (type))
968 (bit_and @0 @1)))
969
970 /* (x + y) - (x & y) -> x | y */
971 (simplify
972 (minus (plus @0 @1) (bit_and @0 @1))
973 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
974 && !TYPE_SATURATING (type))
975 (bit_ior @0 @1)))
976
977 /* (x | y) - (x ^ y) -> x & y */
978 (simplify
979 (minus (bit_ior @0 @1) (bit_xor @0 @1))
980 (bit_and @0 @1))
981
982 /* (x | y) - (x & y) -> x ^ y */
983 (simplify
984 (minus (bit_ior @0 @1) (bit_and @0 @1))
985 (bit_xor @0 @1))
986
987 /* (x | y) & ~(x & y) -> x ^ y */
988 (simplify
989 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
990 (bit_xor @0 @1))
991
992 /* (x | y) & (~x ^ y) -> x & y */
993 (simplify
994 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
995 (bit_and @0 @1))
996
997 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
998 (simplify
999 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1000 (bit_not (bit_xor @0 @1)))
1001
1002 /* (~x | y) ^ (x | ~y) -> x ^ y */
1003 (simplify
1004 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1005 (bit_xor @0 @1))
1006
1007 /* ~x & ~y -> ~(x | y)
1008 ~x | ~y -> ~(x & y) */
1009 (for op (bit_and bit_ior)
1010 rop (bit_ior bit_and)
1011 (simplify
1012 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1013 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1014 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1015 (bit_not (rop (convert @0) (convert @1))))))
1016
1017 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1018 with a constant, and the two constants have no bits in common,
1019 we should treat this as a BIT_IOR_EXPR since this may produce more
1020 simplifications. */
1021 (for op (bit_xor plus)
1022 (simplify
1023 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1024 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1025 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1026 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1027 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1028 (bit_ior (convert @4) (convert @5)))))
1029
1030 /* (X | Y) ^ X -> Y & ~ X*/
1031 (simplify
1032 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1034 (convert (bit_and @1 (bit_not @0)))))
1035
1036 /* Convert ~X ^ ~Y to X ^ Y. */
1037 (simplify
1038 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1039 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1040 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1041 (bit_xor (convert @0) (convert @1))))
1042
1043 /* Convert ~X ^ C to X ^ ~C. */
1044 (simplify
1045 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1046 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1047 (bit_xor (convert @0) (bit_not @1))))
1048
1049 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1050 (for opo (bit_and bit_xor)
1051 opi (bit_xor bit_and)
1052 (simplify
1053 (opo:c (opi:cs @0 @1) @1)
1054 (bit_and (bit_not @0) @1)))
1055
1056 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1057 operands are another bit-wise operation with a common input. If so,
1058 distribute the bit operations to save an operation and possibly two if
1059 constants are involved. For example, convert
1060 (A | B) & (A | C) into A | (B & C)
1061 Further simplification will occur if B and C are constants. */
1062 (for op (bit_and bit_ior bit_xor)
1063 rop (bit_ior bit_and bit_and)
1064 (simplify
1065 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1066 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1067 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1068 (rop (convert @0) (op (convert @1) (convert @2))))))
1069
1070 /* Some simple reassociation for bit operations, also handled in reassoc. */
1071 /* (X & Y) & Y -> X & Y
1072 (X | Y) | Y -> X | Y */
1073 (for op (bit_and bit_ior)
1074 (simplify
1075 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1076 @2))
1077 /* (X ^ Y) ^ Y -> X */
1078 (simplify
1079 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1080 (convert @0))
1081 /* (X & Y) & (X & Z) -> (X & Y) & Z
1082 (X | Y) | (X | Z) -> (X | Y) | Z */
1083 (for op (bit_and bit_ior)
1084 (simplify
1085 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1086 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1087 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1088 (if (single_use (@5) && single_use (@6))
1089 (op @3 (convert @2))
1090 (if (single_use (@3) && single_use (@4))
1091 (op (convert @1) @5))))))
1092 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1093 (simplify
1094 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1095 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1096 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1097 (bit_xor (convert @1) (convert @2))))
1098
1099 (simplify
1100 (abs (abs@1 @0))
1101 @1)
1102 (simplify
1103 (abs (negate @0))
1104 (abs @0))
1105 (simplify
1106 (abs tree_expr_nonnegative_p@0)
1107 @0)
1108
1109 /* A few cases of fold-const.c negate_expr_p predicate. */
1110 (match negate_expr_p
1111 INTEGER_CST
1112 (if ((INTEGRAL_TYPE_P (type)
1113 && TYPE_UNSIGNED (type))
1114 || (!TYPE_OVERFLOW_SANITIZED (type)
1115 && may_negate_without_overflow_p (t)))))
1116 (match negate_expr_p
1117 FIXED_CST)
1118 (match negate_expr_p
1119 (negate @0)
1120 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1121 (match negate_expr_p
1122 REAL_CST
1123 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1124 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1125 ways. */
1126 (match negate_expr_p
1127 VECTOR_CST
1128 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1129 (match negate_expr_p
1130 (minus @0 @1)
1131 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1132 || (FLOAT_TYPE_P (type)
1133 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1134 && !HONOR_SIGNED_ZEROS (type)))))
1135
1136 /* (-A) * (-B) -> A * B */
1137 (simplify
1138 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1139 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1140 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1141 (mult (convert @0) (convert (negate @1)))))
1142
1143 /* -(A + B) -> (-B) - A. */
1144 (simplify
1145 (negate (plus:c @0 negate_expr_p@1))
1146 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1147 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1148 (minus (negate @1) @0)))
1149
1150 /* -(A - B) -> B - A. */
1151 (simplify
1152 (negate (minus @0 @1))
1153 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1154 || (FLOAT_TYPE_P (type)
1155 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1156 && !HONOR_SIGNED_ZEROS (type)))
1157 (minus @1 @0)))
1158 (simplify
1159 (negate (pointer_diff @0 @1))
1160 (if (TYPE_OVERFLOW_UNDEFINED (type))
1161 (pointer_diff @1 @0)))
1162
1163 /* A - B -> A + (-B) if B is easily negatable. */
1164 (simplify
1165 (minus @0 negate_expr_p@1)
1166 (if (!FIXED_POINT_TYPE_P (type))
1167 (plus @0 (negate @1))))
1168
1169 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1170 when profitable.
1171 For bitwise binary operations apply operand conversions to the
1172 binary operation result instead of to the operands. This allows
1173 to combine successive conversions and bitwise binary operations.
1174 We combine the above two cases by using a conditional convert. */
1175 (for bitop (bit_and bit_ior bit_xor)
1176 (simplify
1177 (bitop (convert @0) (convert? @1))
1178 (if (((TREE_CODE (@1) == INTEGER_CST
1179 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1180 && int_fits_type_p (@1, TREE_TYPE (@0)))
1181 || types_match (@0, @1))
1182 /* ??? This transform conflicts with fold-const.c doing
1183 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1184 constants (if x has signed type, the sign bit cannot be set
1185 in c). This folds extension into the BIT_AND_EXPR.
1186 Restrict it to GIMPLE to avoid endless recursions. */
1187 && (bitop != BIT_AND_EXPR || GIMPLE)
1188 && (/* That's a good idea if the conversion widens the operand, thus
1189 after hoisting the conversion the operation will be narrower. */
1190 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1191 /* It's also a good idea if the conversion is to a non-integer
1192 mode. */
1193 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1194 /* Or if the precision of TO is not the same as the precision
1195 of its mode. */
1196 || !type_has_mode_precision_p (type)))
1197 (convert (bitop @0 (convert @1))))))
1198
1199 (for bitop (bit_and bit_ior)
1200 rbitop (bit_ior bit_and)
1201 /* (x | y) & x -> x */
1202 /* (x & y) | x -> x */
1203 (simplify
1204 (bitop:c (rbitop:c @0 @1) @0)
1205 @0)
1206 /* (~x | y) & x -> x & y */
1207 /* (~x & y) | x -> x | y */
1208 (simplify
1209 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1210 (bitop @0 @1)))
1211
1212 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1213 (simplify
1214 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1215 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1216
1217 /* Combine successive equal operations with constants. */
1218 (for bitop (bit_and bit_ior bit_xor)
1219 (simplify
1220 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1221 (if (!CONSTANT_CLASS_P (@0))
1222 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1223 folded to a constant. */
1224 (bitop @0 (bitop @1 @2))
1225 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1226 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1227 the values involved are such that the operation can't be decided at
1228 compile time. Try folding one of @0 or @1 with @2 to see whether
1229 that combination can be decided at compile time.
1230
1231 Keep the existing form if both folds fail, to avoid endless
1232 oscillation. */
1233 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1234 (if (cst1)
1235 (bitop @1 { cst1; })
1236 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1237 (if (cst2)
1238 (bitop @0 { cst2; }))))))))
1239
1240 /* Try simple folding for X op !X, and X op X with the help
1241 of the truth_valued_p and logical_inverted_value predicates. */
1242 (match truth_valued_p
1243 @0
1244 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1245 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1246 (match truth_valued_p
1247 (op @0 @1)))
1248 (match truth_valued_p
1249 (truth_not @0))
1250
1251 (match (logical_inverted_value @0)
1252 (truth_not @0))
1253 (match (logical_inverted_value @0)
1254 (bit_not truth_valued_p@0))
1255 (match (logical_inverted_value @0)
1256 (eq @0 integer_zerop))
1257 (match (logical_inverted_value @0)
1258 (ne truth_valued_p@0 integer_truep))
1259 (match (logical_inverted_value @0)
1260 (bit_xor truth_valued_p@0 integer_truep))
1261
1262 /* X & !X -> 0. */
1263 (simplify
1264 (bit_and:c @0 (logical_inverted_value @0))
1265 { build_zero_cst (type); })
1266 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1267 (for op (bit_ior bit_xor)
1268 (simplify
1269 (op:c truth_valued_p@0 (logical_inverted_value @0))
1270 { constant_boolean_node (true, type); }))
1271 /* X ==/!= !X is false/true. */
1272 (for op (eq ne)
1273 (simplify
1274 (op:c truth_valued_p@0 (logical_inverted_value @0))
1275 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1276
1277 /* ~~x -> x */
1278 (simplify
1279 (bit_not (bit_not @0))
1280 @0)
1281
1282 /* Convert ~ (-A) to A - 1. */
1283 (simplify
1284 (bit_not (convert? (negate @0)))
1285 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1286 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1287 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1288
1289 /* Convert - (~A) to A + 1. */
1290 (simplify
1291 (negate (nop_convert (bit_not @0)))
1292 (plus (view_convert @0) { build_each_one_cst (type); }))
1293
1294 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1295 (simplify
1296 (bit_not (convert? (minus @0 integer_each_onep)))
1297 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1298 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1299 (convert (negate @0))))
1300 (simplify
1301 (bit_not (convert? (plus @0 integer_all_onesp)))
1302 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1303 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1304 (convert (negate @0))))
1305
1306 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1307 (simplify
1308 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1309 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1310 (convert (bit_xor @0 (bit_not @1)))))
1311 (simplify
1312 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1313 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1314 (convert (bit_xor @0 @1))))
1315
1316 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1317 (simplify
1318 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1319 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1320 (bit_not (bit_xor (view_convert @0) @1))))
1321
1322 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1323 (simplify
1324 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1325 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1326
1327 /* Fold A - (A & B) into ~B & A. */
1328 (simplify
1329 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1330 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1331 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1332 (convert (bit_and (bit_not @1) @0))))
1333
1334 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1335 (for cmp (gt lt ge le)
1336 (simplify
1337 (mult (convert (cmp @0 @1)) @2)
1338 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1339
1340 /* For integral types with undefined overflow and C != 0 fold
1341 x * C EQ/NE y * C into x EQ/NE y. */
1342 (for cmp (eq ne)
1343 (simplify
1344 (cmp (mult:c @0 @1) (mult:c @2 @1))
1345 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1346 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1347 && tree_expr_nonzero_p (@1))
1348 (cmp @0 @2))))
1349
1350 /* For integral types with wrapping overflow and C odd fold
1351 x * C EQ/NE y * C into x EQ/NE y. */
1352 (for cmp (eq ne)
1353 (simplify
1354 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1355 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1356 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1357 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1358 (cmp @0 @2))))
1359
1360 /* For integral types with undefined overflow and C != 0 fold
1361 x * C RELOP y * C into:
1362
1363 x RELOP y for nonnegative C
1364 y RELOP x for negative C */
1365 (for cmp (lt gt le ge)
1366 (simplify
1367 (cmp (mult:c @0 @1) (mult:c @2 @1))
1368 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1369 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1370 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1371 (cmp @0 @2)
1372 (if (TREE_CODE (@1) == INTEGER_CST
1373 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1374 (cmp @2 @0))))))
1375
1376 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1377 (for cmp (le gt)
1378 icmp (gt le)
1379 (simplify
1380 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1381 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1382 && TYPE_UNSIGNED (TREE_TYPE (@0))
1383 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1384 && (wi::to_wide (@2)
1385 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1386 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1387 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1388
1389 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1390 (for cmp (simple_comparison)
1391 (simplify
1392 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1393 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1394 (cmp @0 @1))))
1395
1396 /* X / C1 op C2 into a simple range test. */
1397 (for cmp (simple_comparison)
1398 (simplify
1399 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1400 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1401 && integer_nonzerop (@1)
1402 && !TREE_OVERFLOW (@1)
1403 && !TREE_OVERFLOW (@2))
1404 (with { tree lo, hi; bool neg_overflow;
1405 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1406 &neg_overflow); }
1407 (switch
1408 (if (code == LT_EXPR || code == GE_EXPR)
1409 (if (TREE_OVERFLOW (lo))
1410 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1411 (if (code == LT_EXPR)
1412 (lt @0 { lo; })
1413 (ge @0 { lo; }))))
1414 (if (code == LE_EXPR || code == GT_EXPR)
1415 (if (TREE_OVERFLOW (hi))
1416 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1417 (if (code == LE_EXPR)
1418 (le @0 { hi; })
1419 (gt @0 { hi; }))))
1420 (if (!lo && !hi)
1421 { build_int_cst (type, code == NE_EXPR); })
1422 (if (code == EQ_EXPR && !hi)
1423 (ge @0 { lo; }))
1424 (if (code == EQ_EXPR && !lo)
1425 (le @0 { hi; }))
1426 (if (code == NE_EXPR && !hi)
1427 (lt @0 { lo; }))
1428 (if (code == NE_EXPR && !lo)
1429 (gt @0 { hi; }))
1430 (if (GENERIC)
1431 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1432 lo, hi); })
1433 (with
1434 {
1435 tree etype = range_check_type (TREE_TYPE (@0));
1436 if (etype)
1437 {
1438 if (! TYPE_UNSIGNED (etype))
1439 etype = unsigned_type_for (etype);
1440 hi = fold_convert (etype, hi);
1441 lo = fold_convert (etype, lo);
1442 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1443 }
1444 }
1445 (if (etype && hi && !TREE_OVERFLOW (hi))
1446 (if (code == EQ_EXPR)
1447 (le (minus (convert:etype @0) { lo; }) { hi; })
1448 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1449
1450 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1451 (for op (lt le ge gt)
1452 (simplify
1453 (op (plus:c @0 @2) (plus:c @1 @2))
1454 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1455 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1456 (op @0 @1))))
1457 /* For equality and subtraction, this is also true with wrapping overflow. */
1458 (for op (eq ne minus)
1459 (simplify
1460 (op (plus:c @0 @2) (plus:c @1 @2))
1461 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1462 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1463 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1464 (op @0 @1))))
1465
1466 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1467 (for op (lt le ge gt)
1468 (simplify
1469 (op (minus @0 @2) (minus @1 @2))
1470 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1471 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1472 (op @0 @1))))
1473 /* For equality and subtraction, this is also true with wrapping overflow. */
1474 (for op (eq ne minus)
1475 (simplify
1476 (op (minus @0 @2) (minus @1 @2))
1477 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1478 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1479 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1480 (op @0 @1))))
1481 /* And for pointers... */
1482 (for op (simple_comparison)
1483 (simplify
1484 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1485 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1486 (op @0 @1))))
1487 (simplify
1488 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1489 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1490 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1491 (pointer_diff @0 @1)))
1492
1493 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1494 (for op (lt le ge gt)
1495 (simplify
1496 (op (minus @2 @0) (minus @2 @1))
1497 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1498 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1499 (op @1 @0))))
1500 /* For equality and subtraction, this is also true with wrapping overflow. */
1501 (for op (eq ne minus)
1502 (simplify
1503 (op (minus @2 @0) (minus @2 @1))
1504 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1505 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1506 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1507 (op @1 @0))))
1508 /* And for pointers... */
1509 (for op (simple_comparison)
1510 (simplify
1511 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1512 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1513 (op @1 @0))))
1514 (simplify
1515 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1516 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1517 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1518 (pointer_diff @1 @0)))
1519
1520 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1521 (for op (lt le gt ge)
1522 (simplify
1523 (op:c (plus:c@2 @0 @1) @1)
1524 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1525 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1526 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1527 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1528 /* For equality, this is also true with wrapping overflow. */
1529 (for op (eq ne)
1530 (simplify
1531 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1532 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1533 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1534 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1535 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1536 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1537 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1538 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1539 (simplify
1540 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1541 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1542 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1543 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1544 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1545
1546 /* X - Y < X is the same as Y > 0 when there is no overflow.
1547 For equality, this is also true with wrapping overflow. */
1548 (for op (simple_comparison)
1549 (simplify
1550 (op:c @0 (minus@2 @0 @1))
1551 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1552 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1553 || ((op == EQ_EXPR || op == NE_EXPR)
1554 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1555 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1556 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1557
1558 /* Transform:
1559 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1560 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1561 (for cmp (eq ne)
1562 ocmp (lt ge)
1563 (simplify
1564 (cmp (trunc_div @0 @1) integer_zerop)
1565 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1566 /* Complex ==/!= is allowed, but not </>=. */
1567 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1568 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1569 (ocmp @0 @1))))
1570
1571 /* X == C - X can never be true if C is odd. */
1572 (for cmp (eq ne)
1573 (simplify
1574 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1575 (if (TREE_INT_CST_LOW (@1) & 1)
1576 { constant_boolean_node (cmp == NE_EXPR, type); })))
1577
1578 /* Arguments on which one can call get_nonzero_bits to get the bits
1579 possibly set. */
1580 (match with_possible_nonzero_bits
1581 INTEGER_CST@0)
1582 (match with_possible_nonzero_bits
1583 SSA_NAME@0
1584 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1585 /* Slightly extended version, do not make it recursive to keep it cheap. */
1586 (match (with_possible_nonzero_bits2 @0)
1587 with_possible_nonzero_bits@0)
1588 (match (with_possible_nonzero_bits2 @0)
1589 (bit_and:c with_possible_nonzero_bits@0 @2))
1590
1591 /* Same for bits that are known to be set, but we do not have
1592 an equivalent to get_nonzero_bits yet. */
1593 (match (with_certain_nonzero_bits2 @0)
1594 INTEGER_CST@0)
1595 (match (with_certain_nonzero_bits2 @0)
1596 (bit_ior @1 INTEGER_CST@0))
1597
1598 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1599 (for cmp (eq ne)
1600 (simplify
1601 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1602 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1603 { constant_boolean_node (cmp == NE_EXPR, type); })))
1604
1605 /* ((X inner_op C0) outer_op C1)
1606 With X being a tree where value_range has reasoned certain bits to always be
1607 zero throughout its computed value range,
1608 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1609 where zero_mask has 1's for all bits that are sure to be 0 in
1610 and 0's otherwise.
1611 if (inner_op == '^') C0 &= ~C1;
1612 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1613 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1614 */
1615 (for inner_op (bit_ior bit_xor)
1616 outer_op (bit_xor bit_ior)
1617 (simplify
1618 (outer_op
1619 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1620 (with
1621 {
1622 bool fail = false;
1623 wide_int zero_mask_not;
1624 wide_int C0;
1625 wide_int cst_emit;
1626
1627 if (TREE_CODE (@2) == SSA_NAME)
1628 zero_mask_not = get_nonzero_bits (@2);
1629 else
1630 fail = true;
1631
1632 if (inner_op == BIT_XOR_EXPR)
1633 {
1634 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1635 cst_emit = C0 | wi::to_wide (@1);
1636 }
1637 else
1638 {
1639 C0 = wi::to_wide (@0);
1640 cst_emit = C0 ^ wi::to_wide (@1);
1641 }
1642 }
1643 (if (!fail && (C0 & zero_mask_not) == 0)
1644 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1645 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1646 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1647
1648 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1649 (simplify
1650 (pointer_plus (pointer_plus:s @0 @1) @3)
1651 (pointer_plus @0 (plus @1 @3)))
1652
1653 /* Pattern match
1654 tem1 = (long) ptr1;
1655 tem2 = (long) ptr2;
1656 tem3 = tem2 - tem1;
1657 tem4 = (unsigned long) tem3;
1658 tem5 = ptr1 + tem4;
1659 and produce
1660 tem5 = ptr2; */
1661 (simplify
1662 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1663 /* Conditionally look through a sign-changing conversion. */
1664 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1665 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1666 || (GENERIC && type == TREE_TYPE (@1))))
1667 @1))
1668 (simplify
1669 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1670 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1671 (convert @1)))
1672
1673 /* Pattern match
1674 tem = (sizetype) ptr;
1675 tem = tem & algn;
1676 tem = -tem;
1677 ... = ptr p+ tem;
1678 and produce the simpler and easier to analyze with respect to alignment
1679 ... = ptr & ~algn; */
1680 (simplify
1681 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1682 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1683 (bit_and @0 { algn; })))
1684
1685 /* Try folding difference of addresses. */
1686 (simplify
1687 (minus (convert ADDR_EXPR@0) (convert @1))
1688 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1689 (with { poly_int64 diff; }
1690 (if (ptr_difference_const (@0, @1, &diff))
1691 { build_int_cst_type (type, diff); }))))
1692 (simplify
1693 (minus (convert @0) (convert ADDR_EXPR@1))
1694 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1695 (with { poly_int64 diff; }
1696 (if (ptr_difference_const (@0, @1, &diff))
1697 { build_int_cst_type (type, diff); }))))
1698 (simplify
1699 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1700 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1701 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1702 (with { poly_int64 diff; }
1703 (if (ptr_difference_const (@0, @1, &diff))
1704 { build_int_cst_type (type, diff); }))))
1705 (simplify
1706 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1707 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1708 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1709 (with { poly_int64 diff; }
1710 (if (ptr_difference_const (@0, @1, &diff))
1711 { build_int_cst_type (type, diff); }))))
1712
1713 /* If arg0 is derived from the address of an object or function, we may
1714 be able to fold this expression using the object or function's
1715 alignment. */
1716 (simplify
1717 (bit_and (convert? @0) INTEGER_CST@1)
1718 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1719 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1720 (with
1721 {
1722 unsigned int align;
1723 unsigned HOST_WIDE_INT bitpos;
1724 get_pointer_alignment_1 (@0, &align, &bitpos);
1725 }
1726 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1727 { wide_int_to_tree (type, (wi::to_wide (@1)
1728 & (bitpos / BITS_PER_UNIT))); }))))
1729
1730
1731 /* We can't reassociate at all for saturating types. */
1732 (if (!TYPE_SATURATING (type))
1733
1734 /* Contract negates. */
1735 /* A + (-B) -> A - B */
1736 (simplify
1737 (plus:c @0 (convert? (negate @1)))
1738 /* Apply STRIP_NOPS on the negate. */
1739 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1740 && !TYPE_OVERFLOW_SANITIZED (type))
1741 (with
1742 {
1743 tree t1 = type;
1744 if (INTEGRAL_TYPE_P (type)
1745 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1746 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1747 }
1748 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1749 /* A - (-B) -> A + B */
1750 (simplify
1751 (minus @0 (convert? (negate @1)))
1752 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1753 && !TYPE_OVERFLOW_SANITIZED (type))
1754 (with
1755 {
1756 tree t1 = type;
1757 if (INTEGRAL_TYPE_P (type)
1758 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1759 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1760 }
1761 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1762 /* -(T)(-A) -> (T)A
1763 Sign-extension is ok except for INT_MIN, which thankfully cannot
1764 happen without overflow. */
1765 (simplify
1766 (negate (convert (negate @1)))
1767 (if (INTEGRAL_TYPE_P (type)
1768 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1769 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1770 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1771 && !TYPE_OVERFLOW_SANITIZED (type)
1772 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1773 (convert @1)))
1774 (simplify
1775 (negate (convert negate_expr_p@1))
1776 (if (SCALAR_FLOAT_TYPE_P (type)
1777 && ((DECIMAL_FLOAT_TYPE_P (type)
1778 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1779 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1780 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1781 (convert (negate @1))))
1782 (simplify
1783 (negate (nop_convert (negate @1)))
1784 (if (!TYPE_OVERFLOW_SANITIZED (type)
1785 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1786 (view_convert @1)))
1787
1788 /* We can't reassociate floating-point unless -fassociative-math
1789 or fixed-point plus or minus because of saturation to +-Inf. */
1790 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1791 && !FIXED_POINT_TYPE_P (type))
1792
1793 /* Match patterns that allow contracting a plus-minus pair
1794 irrespective of overflow issues. */
1795 /* (A +- B) - A -> +- B */
1796 /* (A +- B) -+ B -> A */
1797 /* A - (A +- B) -> -+ B */
1798 /* A +- (B -+ A) -> +- B */
1799 (simplify
1800 (minus (plus:c @0 @1) @0)
1801 @1)
1802 (simplify
1803 (minus (minus @0 @1) @0)
1804 (negate @1))
1805 (simplify
1806 (plus:c (minus @0 @1) @1)
1807 @0)
1808 (simplify
1809 (minus @0 (plus:c @0 @1))
1810 (negate @1))
1811 (simplify
1812 (minus @0 (minus @0 @1))
1813 @1)
1814 /* (A +- B) + (C - A) -> C +- B */
1815 /* (A + B) - (A - C) -> B + C */
1816 /* More cases are handled with comparisons. */
1817 (simplify
1818 (plus:c (plus:c @0 @1) (minus @2 @0))
1819 (plus @2 @1))
1820 (simplify
1821 (plus:c (minus @0 @1) (minus @2 @0))
1822 (minus @2 @1))
1823 (simplify
1824 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1825 (if (TYPE_OVERFLOW_UNDEFINED (type)
1826 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1827 (pointer_diff @2 @1)))
1828 (simplify
1829 (minus (plus:c @0 @1) (minus @0 @2))
1830 (plus @1 @2))
1831
1832 /* (A +- CST1) +- CST2 -> A + CST3
1833 Use view_convert because it is safe for vectors and equivalent for
1834 scalars. */
1835 (for outer_op (plus minus)
1836 (for inner_op (plus minus)
1837 neg_inner_op (minus plus)
1838 (simplify
1839 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1840 CONSTANT_CLASS_P@2)
1841 /* If one of the types wraps, use that one. */
1842 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1843 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1844 forever if something doesn't simplify into a constant. */
1845 (if (!CONSTANT_CLASS_P (@0))
1846 (if (outer_op == PLUS_EXPR)
1847 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1848 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1849 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1850 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1851 (if (outer_op == PLUS_EXPR)
1852 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1853 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1854 /* If the constant operation overflows we cannot do the transform
1855 directly as we would introduce undefined overflow, for example
1856 with (a - 1) + INT_MIN. */
1857 (if (types_match (type, @0))
1858 (with { tree cst = const_binop (outer_op == inner_op
1859 ? PLUS_EXPR : MINUS_EXPR,
1860 type, @1, @2); }
1861 (if (cst && !TREE_OVERFLOW (cst))
1862 (inner_op @0 { cst; } )
1863 /* X+INT_MAX+1 is X-INT_MIN. */
1864 (if (INTEGRAL_TYPE_P (type) && cst
1865 && wi::to_wide (cst) == wi::min_value (type))
1866 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1867 /* Last resort, use some unsigned type. */
1868 (with { tree utype = unsigned_type_for (type); }
1869 (if (utype)
1870 (view_convert (inner_op
1871 (view_convert:utype @0)
1872 (view_convert:utype
1873 { drop_tree_overflow (cst); }))))))))))))))
1874
1875 /* (CST1 - A) +- CST2 -> CST3 - A */
1876 (for outer_op (plus minus)
1877 (simplify
1878 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1879 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1880 (if (cst && !TREE_OVERFLOW (cst))
1881 (minus { cst; } @0)))))
1882
1883 /* CST1 - (CST2 - A) -> CST3 + A */
1884 (simplify
1885 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1886 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1887 (if (cst && !TREE_OVERFLOW (cst))
1888 (plus { cst; } @0))))
1889
1890 /* ~A + A -> -1 */
1891 (simplify
1892 (plus:c (bit_not @0) @0)
1893 (if (!TYPE_OVERFLOW_TRAPS (type))
1894 { build_all_ones_cst (type); }))
1895
1896 /* ~A + 1 -> -A */
1897 (simplify
1898 (plus (convert? (bit_not @0)) integer_each_onep)
1899 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1900 (negate (convert @0))))
1901
1902 /* -A - 1 -> ~A */
1903 (simplify
1904 (minus (convert? (negate @0)) integer_each_onep)
1905 (if (!TYPE_OVERFLOW_TRAPS (type)
1906 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1907 (bit_not (convert @0))))
1908
1909 /* -1 - A -> ~A */
1910 (simplify
1911 (minus integer_all_onesp @0)
1912 (bit_not @0))
1913
1914 /* (T)(P + A) - (T)P -> (T) A */
1915 (simplify
1916 (minus (convert (plus:c @@0 @1))
1917 (convert? @0))
1918 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1919 /* For integer types, if A has a smaller type
1920 than T the result depends on the possible
1921 overflow in P + A.
1922 E.g. T=size_t, A=(unsigned)429497295, P>0.
1923 However, if an overflow in P + A would cause
1924 undefined behavior, we can assume that there
1925 is no overflow. */
1926 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1927 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1928 (convert @1)))
1929 (simplify
1930 (minus (convert (pointer_plus @@0 @1))
1931 (convert @0))
1932 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1933 /* For pointer types, if the conversion of A to the
1934 final type requires a sign- or zero-extension,
1935 then we have to punt - it is not defined which
1936 one is correct. */
1937 || (POINTER_TYPE_P (TREE_TYPE (@0))
1938 && TREE_CODE (@1) == INTEGER_CST
1939 && tree_int_cst_sign_bit (@1) == 0))
1940 (convert @1)))
1941 (simplify
1942 (pointer_diff (pointer_plus @@0 @1) @0)
1943 /* The second argument of pointer_plus must be interpreted as signed, and
1944 thus sign-extended if necessary. */
1945 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1946 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1947 second arg is unsigned even when we need to consider it as signed,
1948 we don't want to diagnose overflow here. */
1949 (convert (view_convert:stype @1))))
1950
1951 /* (T)P - (T)(P + A) -> -(T) A */
1952 (simplify
1953 (minus (convert? @0)
1954 (convert (plus:c @@0 @1)))
1955 (if (INTEGRAL_TYPE_P (type)
1956 && TYPE_OVERFLOW_UNDEFINED (type)
1957 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1958 (with { tree utype = unsigned_type_for (type); }
1959 (convert (negate (convert:utype @1))))
1960 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1961 /* For integer types, if A has a smaller type
1962 than T the result depends on the possible
1963 overflow in P + A.
1964 E.g. T=size_t, A=(unsigned)429497295, P>0.
1965 However, if an overflow in P + A would cause
1966 undefined behavior, we can assume that there
1967 is no overflow. */
1968 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1969 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1970 (negate (convert @1)))))
1971 (simplify
1972 (minus (convert @0)
1973 (convert (pointer_plus @@0 @1)))
1974 (if (INTEGRAL_TYPE_P (type)
1975 && TYPE_OVERFLOW_UNDEFINED (type)
1976 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1977 (with { tree utype = unsigned_type_for (type); }
1978 (convert (negate (convert:utype @1))))
1979 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1980 /* For pointer types, if the conversion of A to the
1981 final type requires a sign- or zero-extension,
1982 then we have to punt - it is not defined which
1983 one is correct. */
1984 || (POINTER_TYPE_P (TREE_TYPE (@0))
1985 && TREE_CODE (@1) == INTEGER_CST
1986 && tree_int_cst_sign_bit (@1) == 0))
1987 (negate (convert @1)))))
1988 (simplify
1989 (pointer_diff @0 (pointer_plus @@0 @1))
1990 /* The second argument of pointer_plus must be interpreted as signed, and
1991 thus sign-extended if necessary. */
1992 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1993 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1994 second arg is unsigned even when we need to consider it as signed,
1995 we don't want to diagnose overflow here. */
1996 (negate (convert (view_convert:stype @1)))))
1997
1998 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1999 (simplify
2000 (minus (convert (plus:c @@0 @1))
2001 (convert (plus:c @0 @2)))
2002 (if (INTEGRAL_TYPE_P (type)
2003 && TYPE_OVERFLOW_UNDEFINED (type)
2004 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2005 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2006 (with { tree utype = unsigned_type_for (type); }
2007 (convert (minus (convert:utype @1) (convert:utype @2))))
2008 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2009 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2010 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2011 /* For integer types, if A has a smaller type
2012 than T the result depends on the possible
2013 overflow in P + A.
2014 E.g. T=size_t, A=(unsigned)429497295, P>0.
2015 However, if an overflow in P + A would cause
2016 undefined behavior, we can assume that there
2017 is no overflow. */
2018 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2019 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2020 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2021 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2022 (minus (convert @1) (convert @2)))))
2023 (simplify
2024 (minus (convert (pointer_plus @@0 @1))
2025 (convert (pointer_plus @0 @2)))
2026 (if (INTEGRAL_TYPE_P (type)
2027 && TYPE_OVERFLOW_UNDEFINED (type)
2028 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2029 (with { tree utype = unsigned_type_for (type); }
2030 (convert (minus (convert:utype @1) (convert:utype @2))))
2031 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2032 /* For pointer types, if the conversion of A to the
2033 final type requires a sign- or zero-extension,
2034 then we have to punt - it is not defined which
2035 one is correct. */
2036 || (POINTER_TYPE_P (TREE_TYPE (@0))
2037 && TREE_CODE (@1) == INTEGER_CST
2038 && tree_int_cst_sign_bit (@1) == 0
2039 && TREE_CODE (@2) == INTEGER_CST
2040 && tree_int_cst_sign_bit (@2) == 0))
2041 (minus (convert @1) (convert @2)))))
2042 (simplify
2043 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2044 /* The second argument of pointer_plus must be interpreted as signed, and
2045 thus sign-extended if necessary. */
2046 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2047 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2048 second arg is unsigned even when we need to consider it as signed,
2049 we don't want to diagnose overflow here. */
2050 (minus (convert (view_convert:stype @1))
2051 (convert (view_convert:stype @2)))))))
2052
2053 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2054 Modeled after fold_plusminus_mult_expr. */
2055 (if (!TYPE_SATURATING (type)
2056 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2057 (for plusminus (plus minus)
2058 (simplify
2059 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2060 (if ((!ANY_INTEGRAL_TYPE_P (type)
2061 || TYPE_OVERFLOW_WRAPS (type)
2062 || (INTEGRAL_TYPE_P (type)
2063 && tree_expr_nonzero_p (@0)
2064 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2065 /* If @1 +- @2 is constant require a hard single-use on either
2066 original operand (but not on both). */
2067 && (single_use (@3) || single_use (@4)))
2068 (mult (plusminus @1 @2) @0)))
2069 /* We cannot generate constant 1 for fract. */
2070 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2071 (simplify
2072 (plusminus @0 (mult:c@3 @0 @2))
2073 (if ((!ANY_INTEGRAL_TYPE_P (type)
2074 || TYPE_OVERFLOW_WRAPS (type)
2075 || (INTEGRAL_TYPE_P (type)
2076 && tree_expr_nonzero_p (@0)
2077 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2078 && single_use (@3))
2079 (mult (plusminus { build_one_cst (type); } @2) @0)))
2080 (simplify
2081 (plusminus (mult:c@3 @0 @2) @0)
2082 (if ((!ANY_INTEGRAL_TYPE_P (type)
2083 || TYPE_OVERFLOW_WRAPS (type)
2084 || (INTEGRAL_TYPE_P (type)
2085 && tree_expr_nonzero_p (@0)
2086 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2087 && single_use (@3))
2088 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2089
2090 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2091
2092 (for minmax (min max FMIN_ALL FMAX_ALL)
2093 (simplify
2094 (minmax @0 @0)
2095 @0))
2096 /* min(max(x,y),y) -> y. */
2097 (simplify
2098 (min:c (max:c @0 @1) @1)
2099 @1)
2100 /* max(min(x,y),y) -> y. */
2101 (simplify
2102 (max:c (min:c @0 @1) @1)
2103 @1)
2104 /* max(a,-a) -> abs(a). */
2105 (simplify
2106 (max:c @0 (negate @0))
2107 (if (TREE_CODE (type) != COMPLEX_TYPE
2108 && (! ANY_INTEGRAL_TYPE_P (type)
2109 || TYPE_OVERFLOW_UNDEFINED (type)))
2110 (abs @0)))
2111 /* min(a,-a) -> -abs(a). */
2112 (simplify
2113 (min:c @0 (negate @0))
2114 (if (TREE_CODE (type) != COMPLEX_TYPE
2115 && (! ANY_INTEGRAL_TYPE_P (type)
2116 || TYPE_OVERFLOW_UNDEFINED (type)))
2117 (negate (abs @0))))
2118 (simplify
2119 (min @0 @1)
2120 (switch
2121 (if (INTEGRAL_TYPE_P (type)
2122 && TYPE_MIN_VALUE (type)
2123 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2124 @1)
2125 (if (INTEGRAL_TYPE_P (type)
2126 && TYPE_MAX_VALUE (type)
2127 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2128 @0)))
2129 (simplify
2130 (max @0 @1)
2131 (switch
2132 (if (INTEGRAL_TYPE_P (type)
2133 && TYPE_MAX_VALUE (type)
2134 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2135 @1)
2136 (if (INTEGRAL_TYPE_P (type)
2137 && TYPE_MIN_VALUE (type)
2138 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2139 @0)))
2140
2141 /* max (a, a + CST) -> a + CST where CST is positive. */
2142 /* max (a, a + CST) -> a where CST is negative. */
2143 (simplify
2144 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2145 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2146 (if (tree_int_cst_sgn (@1) > 0)
2147 @2
2148 @0)))
2149
2150 /* min (a, a + CST) -> a where CST is positive. */
2151 /* min (a, a + CST) -> a + CST where CST is negative. */
2152 (simplify
2153 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2154 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2155 (if (tree_int_cst_sgn (@1) > 0)
2156 @0
2157 @2)))
2158
2159 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2160 and the outer convert demotes the expression back to x's type. */
2161 (for minmax (min max)
2162 (simplify
2163 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2164 (if (INTEGRAL_TYPE_P (type)
2165 && types_match (@1, type) && int_fits_type_p (@2, type)
2166 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2167 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2168 (minmax @1 (convert @2)))))
2169
2170 (for minmax (FMIN_ALL FMAX_ALL)
2171 /* If either argument is NaN, return the other one. Avoid the
2172 transformation if we get (and honor) a signalling NaN. */
2173 (simplify
2174 (minmax:c @0 REAL_CST@1)
2175 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2176 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2177 @0)))
2178 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2179 functions to return the numeric arg if the other one is NaN.
2180 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2181 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2182 worry about it either. */
2183 (if (flag_finite_math_only)
2184 (simplify
2185 (FMIN_ALL @0 @1)
2186 (min @0 @1))
2187 (simplify
2188 (FMAX_ALL @0 @1)
2189 (max @0 @1)))
2190 /* min (-A, -B) -> -max (A, B) */
2191 (for minmax (min max FMIN_ALL FMAX_ALL)
2192 maxmin (max min FMAX_ALL FMIN_ALL)
2193 (simplify
2194 (minmax (negate:s@2 @0) (negate:s@3 @1))
2195 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2196 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2197 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2198 (negate (maxmin @0 @1)))))
2199 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2200 MAX (~X, ~Y) -> ~MIN (X, Y) */
2201 (for minmax (min max)
2202 maxmin (max min)
2203 (simplify
2204 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2205 (bit_not (maxmin @0 @1))))
2206
2207 /* MIN (X, Y) == X -> X <= Y */
2208 (for minmax (min min max max)
2209 cmp (eq ne eq ne )
2210 out (le gt ge lt )
2211 (simplify
2212 (cmp:c (minmax:c @0 @1) @0)
2213 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2214 (out @0 @1))))
2215 /* MIN (X, 5) == 0 -> X == 0
2216 MIN (X, 5) == 7 -> false */
2217 (for cmp (eq ne)
2218 (simplify
2219 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2220 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2221 TYPE_SIGN (TREE_TYPE (@0))))
2222 { constant_boolean_node (cmp == NE_EXPR, type); }
2223 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2224 TYPE_SIGN (TREE_TYPE (@0))))
2225 (cmp @0 @2)))))
2226 (for cmp (eq ne)
2227 (simplify
2228 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2229 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2230 TYPE_SIGN (TREE_TYPE (@0))))
2231 { constant_boolean_node (cmp == NE_EXPR, type); }
2232 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2233 TYPE_SIGN (TREE_TYPE (@0))))
2234 (cmp @0 @2)))))
2235 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2236 (for minmax (min min max max min min max max )
2237 cmp (lt le gt ge gt ge lt le )
2238 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2239 (simplify
2240 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2241 (comb (cmp @0 @2) (cmp @1 @2))))
2242
2243 /* Simplifications of shift and rotates. */
2244
2245 (for rotate (lrotate rrotate)
2246 (simplify
2247 (rotate integer_all_onesp@0 @1)
2248 @0))
2249
2250 /* Optimize -1 >> x for arithmetic right shifts. */
2251 (simplify
2252 (rshift integer_all_onesp@0 @1)
2253 (if (!TYPE_UNSIGNED (type)
2254 && tree_expr_nonnegative_p (@1))
2255 @0))
2256
2257 /* Optimize (x >> c) << c into x & (-1<<c). */
2258 (simplify
2259 (lshift (rshift @0 INTEGER_CST@1) @1)
2260 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2261 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2262
2263 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2264 types. */
2265 (simplify
2266 (rshift (lshift @0 INTEGER_CST@1) @1)
2267 (if (TYPE_UNSIGNED (type)
2268 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2269 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2270
2271 (for shiftrotate (lrotate rrotate lshift rshift)
2272 (simplify
2273 (shiftrotate @0 integer_zerop)
2274 (non_lvalue @0))
2275 (simplify
2276 (shiftrotate integer_zerop@0 @1)
2277 @0)
2278 /* Prefer vector1 << scalar to vector1 << vector2
2279 if vector2 is uniform. */
2280 (for vec (VECTOR_CST CONSTRUCTOR)
2281 (simplify
2282 (shiftrotate @0 vec@1)
2283 (with { tree tem = uniform_vector_p (@1); }
2284 (if (tem)
2285 (shiftrotate @0 { tem; }))))))
2286
2287 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2288 Y is 0. Similarly for X >> Y. */
2289 #if GIMPLE
2290 (for shift (lshift rshift)
2291 (simplify
2292 (shift @0 SSA_NAME@1)
2293 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2294 (with {
2295 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2296 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2297 }
2298 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2299 @0)))))
2300 #endif
2301
2302 /* Rewrite an LROTATE_EXPR by a constant into an
2303 RROTATE_EXPR by a new constant. */
2304 (simplify
2305 (lrotate @0 INTEGER_CST@1)
2306 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2307 build_int_cst (TREE_TYPE (@1),
2308 element_precision (type)), @1); }))
2309
2310 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2311 (for op (lrotate rrotate rshift lshift)
2312 (simplify
2313 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2314 (with { unsigned int prec = element_precision (type); }
2315 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2316 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2317 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2318 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2319 (with { unsigned int low = (tree_to_uhwi (@1)
2320 + tree_to_uhwi (@2)); }
2321 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2322 being well defined. */
2323 (if (low >= prec)
2324 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2325 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2326 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2327 { build_zero_cst (type); }
2328 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2329 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2330
2331
2332 /* ((1 << A) & 1) != 0 -> A == 0
2333 ((1 << A) & 1) == 0 -> A != 0 */
2334 (for cmp (ne eq)
2335 icmp (eq ne)
2336 (simplify
2337 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2338 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2339
2340 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2341 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2342 if CST2 != 0. */
2343 (for cmp (ne eq)
2344 (simplify
2345 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2346 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2347 (if (cand < 0
2348 || (!integer_zerop (@2)
2349 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2350 { constant_boolean_node (cmp == NE_EXPR, type); }
2351 (if (!integer_zerop (@2)
2352 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2353 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2354
2355 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2356 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2357 if the new mask might be further optimized. */
2358 (for shift (lshift rshift)
2359 (simplify
2360 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2361 INTEGER_CST@2)
2362 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2363 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2364 && tree_fits_uhwi_p (@1)
2365 && tree_to_uhwi (@1) > 0
2366 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2367 (with
2368 {
2369 unsigned int shiftc = tree_to_uhwi (@1);
2370 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2371 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2372 tree shift_type = TREE_TYPE (@3);
2373 unsigned int prec;
2374
2375 if (shift == LSHIFT_EXPR)
2376 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2377 else if (shift == RSHIFT_EXPR
2378 && type_has_mode_precision_p (shift_type))
2379 {
2380 prec = TYPE_PRECISION (TREE_TYPE (@3));
2381 tree arg00 = @0;
2382 /* See if more bits can be proven as zero because of
2383 zero extension. */
2384 if (@3 != @0
2385 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2386 {
2387 tree inner_type = TREE_TYPE (@0);
2388 if (type_has_mode_precision_p (inner_type)
2389 && TYPE_PRECISION (inner_type) < prec)
2390 {
2391 prec = TYPE_PRECISION (inner_type);
2392 /* See if we can shorten the right shift. */
2393 if (shiftc < prec)
2394 shift_type = inner_type;
2395 /* Otherwise X >> C1 is all zeros, so we'll optimize
2396 it into (X, 0) later on by making sure zerobits
2397 is all ones. */
2398 }
2399 }
2400 zerobits = HOST_WIDE_INT_M1U;
2401 if (shiftc < prec)
2402 {
2403 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2404 zerobits <<= prec - shiftc;
2405 }
2406 /* For arithmetic shift if sign bit could be set, zerobits
2407 can contain actually sign bits, so no transformation is
2408 possible, unless MASK masks them all away. In that
2409 case the shift needs to be converted into logical shift. */
2410 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2411 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2412 {
2413 if ((mask & zerobits) == 0)
2414 shift_type = unsigned_type_for (TREE_TYPE (@3));
2415 else
2416 zerobits = 0;
2417 }
2418 }
2419 }
2420 /* ((X << 16) & 0xff00) is (X, 0). */
2421 (if ((mask & zerobits) == mask)
2422 { build_int_cst (type, 0); }
2423 (with { newmask = mask | zerobits; }
2424 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2425 (with
2426 {
2427 /* Only do the transformation if NEWMASK is some integer
2428 mode's mask. */
2429 for (prec = BITS_PER_UNIT;
2430 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2431 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2432 break;
2433 }
2434 (if (prec < HOST_BITS_PER_WIDE_INT
2435 || newmask == HOST_WIDE_INT_M1U)
2436 (with
2437 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2438 (if (!tree_int_cst_equal (newmaskt, @2))
2439 (if (shift_type != TREE_TYPE (@3))
2440 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2441 (bit_and @4 { newmaskt; })))))))))))))
2442
2443 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2444 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2445 (for shift (lshift rshift)
2446 (for bit_op (bit_and bit_xor bit_ior)
2447 (simplify
2448 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2449 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2450 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2451 (bit_op (shift (convert @0) @1) { mask; }))))))
2452
2453 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2454 (simplify
2455 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2456 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2457 && (element_precision (TREE_TYPE (@0))
2458 <= element_precision (TREE_TYPE (@1))
2459 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2460 (with
2461 { tree shift_type = TREE_TYPE (@0); }
2462 (convert (rshift (convert:shift_type @1) @2)))))
2463
2464 /* ~(~X >>r Y) -> X >>r Y
2465 ~(~X <<r Y) -> X <<r Y */
2466 (for rotate (lrotate rrotate)
2467 (simplify
2468 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2469 (if ((element_precision (TREE_TYPE (@0))
2470 <= element_precision (TREE_TYPE (@1))
2471 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2472 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2473 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2474 (with
2475 { tree rotate_type = TREE_TYPE (@0); }
2476 (convert (rotate (convert:rotate_type @1) @2))))))
2477
2478 /* Simplifications of conversions. */
2479
2480 /* Basic strip-useless-type-conversions / strip_nops. */
2481 (for cvt (convert view_convert float fix_trunc)
2482 (simplify
2483 (cvt @0)
2484 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2485 || (GENERIC && type == TREE_TYPE (@0)))
2486 @0)))
2487
2488 /* Contract view-conversions. */
2489 (simplify
2490 (view_convert (view_convert @0))
2491 (view_convert @0))
2492
2493 /* For integral conversions with the same precision or pointer
2494 conversions use a NOP_EXPR instead. */
2495 (simplify
2496 (view_convert @0)
2497 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2498 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2499 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2500 (convert @0)))
2501
2502 /* Strip inner integral conversions that do not change precision or size, or
2503 zero-extend while keeping the same size (for bool-to-char). */
2504 (simplify
2505 (view_convert (convert@0 @1))
2506 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2507 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2508 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2509 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2510 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2511 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2512 (view_convert @1)))
2513
2514 /* Re-association barriers around constants and other re-association
2515 barriers can be removed. */
2516 (simplify
2517 (paren CONSTANT_CLASS_P@0)
2518 @0)
2519 (simplify
2520 (paren (paren@1 @0))
2521 @1)
2522
2523 /* Handle cases of two conversions in a row. */
2524 (for ocvt (convert float fix_trunc)
2525 (for icvt (convert float)
2526 (simplify
2527 (ocvt (icvt@1 @0))
2528 (with
2529 {
2530 tree inside_type = TREE_TYPE (@0);
2531 tree inter_type = TREE_TYPE (@1);
2532 int inside_int = INTEGRAL_TYPE_P (inside_type);
2533 int inside_ptr = POINTER_TYPE_P (inside_type);
2534 int inside_float = FLOAT_TYPE_P (inside_type);
2535 int inside_vec = VECTOR_TYPE_P (inside_type);
2536 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2537 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2538 int inter_int = INTEGRAL_TYPE_P (inter_type);
2539 int inter_ptr = POINTER_TYPE_P (inter_type);
2540 int inter_float = FLOAT_TYPE_P (inter_type);
2541 int inter_vec = VECTOR_TYPE_P (inter_type);
2542 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2543 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2544 int final_int = INTEGRAL_TYPE_P (type);
2545 int final_ptr = POINTER_TYPE_P (type);
2546 int final_float = FLOAT_TYPE_P (type);
2547 int final_vec = VECTOR_TYPE_P (type);
2548 unsigned int final_prec = TYPE_PRECISION (type);
2549 int final_unsignedp = TYPE_UNSIGNED (type);
2550 }
2551 (switch
2552 /* In addition to the cases of two conversions in a row
2553 handled below, if we are converting something to its own
2554 type via an object of identical or wider precision, neither
2555 conversion is needed. */
2556 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2557 || (GENERIC
2558 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2559 && (((inter_int || inter_ptr) && final_int)
2560 || (inter_float && final_float))
2561 && inter_prec >= final_prec)
2562 (ocvt @0))
2563
2564 /* Likewise, if the intermediate and initial types are either both
2565 float or both integer, we don't need the middle conversion if the
2566 former is wider than the latter and doesn't change the signedness
2567 (for integers). Avoid this if the final type is a pointer since
2568 then we sometimes need the middle conversion. */
2569 (if (((inter_int && inside_int) || (inter_float && inside_float))
2570 && (final_int || final_float)
2571 && inter_prec >= inside_prec
2572 && (inter_float || inter_unsignedp == inside_unsignedp))
2573 (ocvt @0))
2574
2575 /* If we have a sign-extension of a zero-extended value, we can
2576 replace that by a single zero-extension. Likewise if the
2577 final conversion does not change precision we can drop the
2578 intermediate conversion. */
2579 (if (inside_int && inter_int && final_int
2580 && ((inside_prec < inter_prec && inter_prec < final_prec
2581 && inside_unsignedp && !inter_unsignedp)
2582 || final_prec == inter_prec))
2583 (ocvt @0))
2584
2585 /* Two conversions in a row are not needed unless:
2586 - some conversion is floating-point (overstrict for now), or
2587 - some conversion is a vector (overstrict for now), or
2588 - the intermediate type is narrower than both initial and
2589 final, or
2590 - the intermediate type and innermost type differ in signedness,
2591 and the outermost type is wider than the intermediate, or
2592 - the initial type is a pointer type and the precisions of the
2593 intermediate and final types differ, or
2594 - the final type is a pointer type and the precisions of the
2595 initial and intermediate types differ. */
2596 (if (! inside_float && ! inter_float && ! final_float
2597 && ! inside_vec && ! inter_vec && ! final_vec
2598 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2599 && ! (inside_int && inter_int
2600 && inter_unsignedp != inside_unsignedp
2601 && inter_prec < final_prec)
2602 && ((inter_unsignedp && inter_prec > inside_prec)
2603 == (final_unsignedp && final_prec > inter_prec))
2604 && ! (inside_ptr && inter_prec != final_prec)
2605 && ! (final_ptr && inside_prec != inter_prec))
2606 (ocvt @0))
2607
2608 /* A truncation to an unsigned type (a zero-extension) should be
2609 canonicalized as bitwise and of a mask. */
2610 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2611 && final_int && inter_int && inside_int
2612 && final_prec == inside_prec
2613 && final_prec > inter_prec
2614 && inter_unsignedp)
2615 (convert (bit_and @0 { wide_int_to_tree
2616 (inside_type,
2617 wi::mask (inter_prec, false,
2618 TYPE_PRECISION (inside_type))); })))
2619
2620 /* If we are converting an integer to a floating-point that can
2621 represent it exactly and back to an integer, we can skip the
2622 floating-point conversion. */
2623 (if (GIMPLE /* PR66211 */
2624 && inside_int && inter_float && final_int &&
2625 (unsigned) significand_size (TYPE_MODE (inter_type))
2626 >= inside_prec - !inside_unsignedp)
2627 (convert @0)))))))
2628
2629 /* If we have a narrowing conversion to an integral type that is fed by a
2630 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2631 masks off bits outside the final type (and nothing else). */
2632 (simplify
2633 (convert (bit_and @0 INTEGER_CST@1))
2634 (if (INTEGRAL_TYPE_P (type)
2635 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2636 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2637 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2638 TYPE_PRECISION (type)), 0))
2639 (convert @0)))
2640
2641
2642 /* (X /[ex] A) * A -> X. */
2643 (simplify
2644 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2645 (convert @0))
2646
2647 /* Canonicalization of binary operations. */
2648
2649 /* Convert X + -C into X - C. */
2650 (simplify
2651 (plus @0 REAL_CST@1)
2652 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2653 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2654 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2655 (minus @0 { tem; })))))
2656
2657 /* Convert x+x into x*2. */
2658 (simplify
2659 (plus @0 @0)
2660 (if (SCALAR_FLOAT_TYPE_P (type))
2661 (mult @0 { build_real (type, dconst2); })
2662 (if (INTEGRAL_TYPE_P (type))
2663 (mult @0 { build_int_cst (type, 2); }))))
2664
2665 /* 0 - X -> -X. */
2666 (simplify
2667 (minus integer_zerop @1)
2668 (negate @1))
2669 (simplify
2670 (pointer_diff integer_zerop @1)
2671 (negate (convert @1)))
2672
2673 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2674 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2675 (-ARG1 + ARG0) reduces to -ARG1. */
2676 (simplify
2677 (minus real_zerop@0 @1)
2678 (if (fold_real_zero_addition_p (type, @0, 0))
2679 (negate @1)))
2680
2681 /* Transform x * -1 into -x. */
2682 (simplify
2683 (mult @0 integer_minus_onep)
2684 (negate @0))
2685
2686 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2687 signed overflow for CST != 0 && CST != -1. */
2688 (simplify
2689 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2690 (if (TREE_CODE (@2) != INTEGER_CST
2691 && single_use (@3)
2692 && !integer_zerop (@1) && !integer_minus_onep (@1))
2693 (mult (mult @0 @2) @1)))
2694
2695 /* True if we can easily extract the real and imaginary parts of a complex
2696 number. */
2697 (match compositional_complex
2698 (convert? (complex @0 @1)))
2699
2700 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2701 (simplify
2702 (complex (realpart @0) (imagpart @0))
2703 @0)
2704 (simplify
2705 (realpart (complex @0 @1))
2706 @0)
2707 (simplify
2708 (imagpart (complex @0 @1))
2709 @1)
2710
2711 /* Sometimes we only care about half of a complex expression. */
2712 (simplify
2713 (realpart (convert?:s (conj:s @0)))
2714 (convert (realpart @0)))
2715 (simplify
2716 (imagpart (convert?:s (conj:s @0)))
2717 (convert (negate (imagpart @0))))
2718 (for part (realpart imagpart)
2719 (for op (plus minus)
2720 (simplify
2721 (part (convert?:s@2 (op:s @0 @1)))
2722 (convert (op (part @0) (part @1))))))
2723 (simplify
2724 (realpart (convert?:s (CEXPI:s @0)))
2725 (convert (COS @0)))
2726 (simplify
2727 (imagpart (convert?:s (CEXPI:s @0)))
2728 (convert (SIN @0)))
2729
2730 /* conj(conj(x)) -> x */
2731 (simplify
2732 (conj (convert? (conj @0)))
2733 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2734 (convert @0)))
2735
2736 /* conj({x,y}) -> {x,-y} */
2737 (simplify
2738 (conj (convert?:s (complex:s @0 @1)))
2739 (with { tree itype = TREE_TYPE (type); }
2740 (complex (convert:itype @0) (negate (convert:itype @1)))))
2741
2742 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2743 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2744 (simplify
2745 (bswap (bswap @0))
2746 @0)
2747 (simplify
2748 (bswap (bit_not (bswap @0)))
2749 (bit_not @0))
2750 (for bitop (bit_xor bit_ior bit_and)
2751 (simplify
2752 (bswap (bitop:c (bswap @0) @1))
2753 (bitop @0 (bswap @1)))))
2754
2755
2756 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2757
2758 /* Simplify constant conditions.
2759 Only optimize constant conditions when the selected branch
2760 has the same type as the COND_EXPR. This avoids optimizing
2761 away "c ? x : throw", where the throw has a void type.
2762 Note that we cannot throw away the fold-const.c variant nor
2763 this one as we depend on doing this transform before possibly
2764 A ? B : B -> B triggers and the fold-const.c one can optimize
2765 0 ? A : B to B even if A has side-effects. Something
2766 genmatch cannot handle. */
2767 (simplify
2768 (cond INTEGER_CST@0 @1 @2)
2769 (if (integer_zerop (@0))
2770 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2771 @2)
2772 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2773 @1)))
2774 (simplify
2775 (vec_cond VECTOR_CST@0 @1 @2)
2776 (if (integer_all_onesp (@0))
2777 @1
2778 (if (integer_zerop (@0))
2779 @2)))
2780
2781 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2782 be extended. */
2783 /* This pattern implements two kinds simplification:
2784
2785 Case 1)
2786 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2787 1) Conversions are type widening from smaller type.
2788 2) Const c1 equals to c2 after canonicalizing comparison.
2789 3) Comparison has tree code LT, LE, GT or GE.
2790 This specific pattern is needed when (cmp (convert x) c) may not
2791 be simplified by comparison patterns because of multiple uses of
2792 x. It also makes sense here because simplifying across multiple
2793 referred var is always benefitial for complicated cases.
2794
2795 Case 2)
2796 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2797 (for cmp (lt le gt ge eq)
2798 (simplify
2799 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2800 (with
2801 {
2802 tree from_type = TREE_TYPE (@1);
2803 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2804 enum tree_code code = ERROR_MARK;
2805
2806 if (INTEGRAL_TYPE_P (from_type)
2807 && int_fits_type_p (@2, from_type)
2808 && (types_match (c1_type, from_type)
2809 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2810 && (TYPE_UNSIGNED (from_type)
2811 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2812 && (types_match (c2_type, from_type)
2813 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2814 && (TYPE_UNSIGNED (from_type)
2815 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2816 {
2817 if (cmp != EQ_EXPR)
2818 {
2819 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2820 {
2821 /* X <= Y - 1 equals to X < Y. */
2822 if (cmp == LE_EXPR)
2823 code = LT_EXPR;
2824 /* X > Y - 1 equals to X >= Y. */
2825 if (cmp == GT_EXPR)
2826 code = GE_EXPR;
2827 }
2828 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2829 {
2830 /* X < Y + 1 equals to X <= Y. */
2831 if (cmp == LT_EXPR)
2832 code = LE_EXPR;
2833 /* X >= Y + 1 equals to X > Y. */
2834 if (cmp == GE_EXPR)
2835 code = GT_EXPR;
2836 }
2837 if (code != ERROR_MARK
2838 || wi::to_widest (@2) == wi::to_widest (@3))
2839 {
2840 if (cmp == LT_EXPR || cmp == LE_EXPR)
2841 code = MIN_EXPR;
2842 if (cmp == GT_EXPR || cmp == GE_EXPR)
2843 code = MAX_EXPR;
2844 }
2845 }
2846 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2847 else if (int_fits_type_p (@3, from_type))
2848 code = EQ_EXPR;
2849 }
2850 }
2851 (if (code == MAX_EXPR)
2852 (convert (max @1 (convert @2)))
2853 (if (code == MIN_EXPR)
2854 (convert (min @1 (convert @2)))
2855 (if (code == EQ_EXPR)
2856 (convert (cond (eq @1 (convert @3))
2857 (convert:from_type @3) (convert:from_type @2)))))))))
2858
2859 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2860
2861 1) OP is PLUS or MINUS.
2862 2) CMP is LT, LE, GT or GE.
2863 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2864
2865 This pattern also handles special cases like:
2866
2867 A) Operand x is a unsigned to signed type conversion and c1 is
2868 integer zero. In this case,
2869 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2870 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2871 B) Const c1 may not equal to (C3 op' C2). In this case we also
2872 check equality for (c1+1) and (c1-1) by adjusting comparison
2873 code.
2874
2875 TODO: Though signed type is handled by this pattern, it cannot be
2876 simplified at the moment because C standard requires additional
2877 type promotion. In order to match&simplify it here, the IR needs
2878 to be cleaned up by other optimizers, i.e, VRP. */
2879 (for op (plus minus)
2880 (for cmp (lt le gt ge)
2881 (simplify
2882 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2883 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2884 (if (types_match (from_type, to_type)
2885 /* Check if it is special case A). */
2886 || (TYPE_UNSIGNED (from_type)
2887 && !TYPE_UNSIGNED (to_type)
2888 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2889 && integer_zerop (@1)
2890 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2891 (with
2892 {
2893 wi::overflow_type overflow = wi::OVF_NONE;
2894 enum tree_code code, cmp_code = cmp;
2895 wide_int real_c1;
2896 wide_int c1 = wi::to_wide (@1);
2897 wide_int c2 = wi::to_wide (@2);
2898 wide_int c3 = wi::to_wide (@3);
2899 signop sgn = TYPE_SIGN (from_type);
2900
2901 /* Handle special case A), given x of unsigned type:
2902 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2903 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2904 if (!types_match (from_type, to_type))
2905 {
2906 if (cmp_code == LT_EXPR)
2907 cmp_code = GT_EXPR;
2908 if (cmp_code == GE_EXPR)
2909 cmp_code = LE_EXPR;
2910 c1 = wi::max_value (to_type);
2911 }
2912 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2913 compute (c3 op' c2) and check if it equals to c1 with op' being
2914 the inverted operator of op. Make sure overflow doesn't happen
2915 if it is undefined. */
2916 if (op == PLUS_EXPR)
2917 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2918 else
2919 real_c1 = wi::add (c3, c2, sgn, &overflow);
2920
2921 code = cmp_code;
2922 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2923 {
2924 /* Check if c1 equals to real_c1. Boundary condition is handled
2925 by adjusting comparison operation if necessary. */
2926 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2927 && !overflow)
2928 {
2929 /* X <= Y - 1 equals to X < Y. */
2930 if (cmp_code == LE_EXPR)
2931 code = LT_EXPR;
2932 /* X > Y - 1 equals to X >= Y. */
2933 if (cmp_code == GT_EXPR)
2934 code = GE_EXPR;
2935 }
2936 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2937 && !overflow)
2938 {
2939 /* X < Y + 1 equals to X <= Y. */
2940 if (cmp_code == LT_EXPR)
2941 code = LE_EXPR;
2942 /* X >= Y + 1 equals to X > Y. */
2943 if (cmp_code == GE_EXPR)
2944 code = GT_EXPR;
2945 }
2946 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2947 {
2948 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2949 code = MIN_EXPR;
2950 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2951 code = MAX_EXPR;
2952 }
2953 }
2954 }
2955 (if (code == MAX_EXPR)
2956 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2957 { wide_int_to_tree (from_type, c2); })
2958 (if (code == MIN_EXPR)
2959 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2960 { wide_int_to_tree (from_type, c2); })))))))))
2961
2962 (for cnd (cond vec_cond)
2963 /* A ? B : (A ? X : C) -> A ? B : C. */
2964 (simplify
2965 (cnd @0 (cnd @0 @1 @2) @3)
2966 (cnd @0 @1 @3))
2967 (simplify
2968 (cnd @0 @1 (cnd @0 @2 @3))
2969 (cnd @0 @1 @3))
2970 /* A ? B : (!A ? C : X) -> A ? B : C. */
2971 /* ??? This matches embedded conditions open-coded because genmatch
2972 would generate matching code for conditions in separate stmts only.
2973 The following is still important to merge then and else arm cases
2974 from if-conversion. */
2975 (simplify
2976 (cnd @0 @1 (cnd @2 @3 @4))
2977 (if (inverse_conditions_p (@0, @2))
2978 (cnd @0 @1 @3)))
2979 (simplify
2980 (cnd @0 (cnd @1 @2 @3) @4)
2981 (if (inverse_conditions_p (@0, @1))
2982 (cnd @0 @3 @4)))
2983
2984 /* A ? B : B -> B. */
2985 (simplify
2986 (cnd @0 @1 @1)
2987 @1)
2988
2989 /* !A ? B : C -> A ? C : B. */
2990 (simplify
2991 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2992 (cnd @0 @2 @1)))
2993
2994 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2995 return all -1 or all 0 results. */
2996 /* ??? We could instead convert all instances of the vec_cond to negate,
2997 but that isn't necessarily a win on its own. */
2998 (simplify
2999 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3000 (if (VECTOR_TYPE_P (type)
3001 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3002 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3003 && (TYPE_MODE (TREE_TYPE (type))
3004 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3005 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3006
3007 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3008 (simplify
3009 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3010 (if (VECTOR_TYPE_P (type)
3011 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3012 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3013 && (TYPE_MODE (TREE_TYPE (type))
3014 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3015 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3016
3017
3018 /* Simplifications of comparisons. */
3019
3020 /* See if we can reduce the magnitude of a constant involved in a
3021 comparison by changing the comparison code. This is a canonicalization
3022 formerly done by maybe_canonicalize_comparison_1. */
3023 (for cmp (le gt)
3024 acmp (lt ge)
3025 (simplify
3026 (cmp @0 INTEGER_CST@1)
3027 (if (tree_int_cst_sgn (@1) == -1)
3028 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3029 (for cmp (ge lt)
3030 acmp (gt le)
3031 (simplify
3032 (cmp @0 INTEGER_CST@1)
3033 (if (tree_int_cst_sgn (@1) == 1)
3034 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3035
3036
3037 /* We can simplify a logical negation of a comparison to the
3038 inverted comparison. As we cannot compute an expression
3039 operator using invert_tree_comparison we have to simulate
3040 that with expression code iteration. */
3041 (for cmp (tcc_comparison)
3042 icmp (inverted_tcc_comparison)
3043 ncmp (inverted_tcc_comparison_with_nans)
3044 /* Ideally we'd like to combine the following two patterns
3045 and handle some more cases by using
3046 (logical_inverted_value (cmp @0 @1))
3047 here but for that genmatch would need to "inline" that.
3048 For now implement what forward_propagate_comparison did. */
3049 (simplify
3050 (bit_not (cmp @0 @1))
3051 (if (VECTOR_TYPE_P (type)
3052 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3053 /* Comparison inversion may be impossible for trapping math,
3054 invert_tree_comparison will tell us. But we can't use
3055 a computed operator in the replacement tree thus we have
3056 to play the trick below. */
3057 (with { enum tree_code ic = invert_tree_comparison
3058 (cmp, HONOR_NANS (@0)); }
3059 (if (ic == icmp)
3060 (icmp @0 @1)
3061 (if (ic == ncmp)
3062 (ncmp @0 @1))))))
3063 (simplify
3064 (bit_xor (cmp @0 @1) integer_truep)
3065 (with { enum tree_code ic = invert_tree_comparison
3066 (cmp, HONOR_NANS (@0)); }
3067 (if (ic == icmp)
3068 (icmp @0 @1)
3069 (if (ic == ncmp)
3070 (ncmp @0 @1))))))
3071
3072 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3073 ??? The transformation is valid for the other operators if overflow
3074 is undefined for the type, but performing it here badly interacts
3075 with the transformation in fold_cond_expr_with_comparison which
3076 attempts to synthetize ABS_EXPR. */
3077 (for cmp (eq ne)
3078 (for sub (minus pointer_diff)
3079 (simplify
3080 (cmp (sub@2 @0 @1) integer_zerop)
3081 (if (single_use (@2))
3082 (cmp @0 @1)))))
3083
3084 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3085 signed arithmetic case. That form is created by the compiler
3086 often enough for folding it to be of value. One example is in
3087 computing loop trip counts after Operator Strength Reduction. */
3088 (for cmp (simple_comparison)
3089 scmp (swapped_simple_comparison)
3090 (simplify
3091 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3092 /* Handle unfolded multiplication by zero. */
3093 (if (integer_zerop (@1))
3094 (cmp @1 @2)
3095 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3096 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3097 && single_use (@3))
3098 /* If @1 is negative we swap the sense of the comparison. */
3099 (if (tree_int_cst_sgn (@1) < 0)
3100 (scmp @0 @2)
3101 (cmp @0 @2))))))
3102
3103 /* Simplify comparison of something with itself. For IEEE
3104 floating-point, we can only do some of these simplifications. */
3105 (for cmp (eq ge le)
3106 (simplify
3107 (cmp @0 @0)
3108 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3109 || ! HONOR_NANS (@0))
3110 { constant_boolean_node (true, type); }
3111 (if (cmp != EQ_EXPR)
3112 (eq @0 @0)))))
3113 (for cmp (ne gt lt)
3114 (simplify
3115 (cmp @0 @0)
3116 (if (cmp != NE_EXPR
3117 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3118 || ! HONOR_NANS (@0))
3119 { constant_boolean_node (false, type); })))
3120 (for cmp (unle unge uneq)
3121 (simplify
3122 (cmp @0 @0)
3123 { constant_boolean_node (true, type); }))
3124 (for cmp (unlt ungt)
3125 (simplify
3126 (cmp @0 @0)
3127 (unordered @0 @0)))
3128 (simplify
3129 (ltgt @0 @0)
3130 (if (!flag_trapping_math)
3131 { constant_boolean_node (false, type); }))
3132
3133 /* Fold ~X op ~Y as Y op X. */
3134 (for cmp (simple_comparison)
3135 (simplify
3136 (cmp (bit_not@2 @0) (bit_not@3 @1))
3137 (if (single_use (@2) && single_use (@3))
3138 (cmp @1 @0))))
3139
3140 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3141 (for cmp (simple_comparison)
3142 scmp (swapped_simple_comparison)
3143 (simplify
3144 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3145 (if (single_use (@2)
3146 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3147 (scmp @0 (bit_not @1)))))
3148
3149 (for cmp (simple_comparison)
3150 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3151 (simplify
3152 (cmp (convert@2 @0) (convert? @1))
3153 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3154 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3155 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3156 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3157 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3158 (with
3159 {
3160 tree type1 = TREE_TYPE (@1);
3161 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3162 {
3163 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3164 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3165 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3166 type1 = float_type_node;
3167 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3168 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3169 type1 = double_type_node;
3170 }
3171 tree newtype
3172 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3173 ? TREE_TYPE (@0) : type1);
3174 }
3175 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3176 (cmp (convert:newtype @0) (convert:newtype @1))))))
3177
3178 (simplify
3179 (cmp @0 REAL_CST@1)
3180 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3181 (switch
3182 /* a CMP (-0) -> a CMP 0 */
3183 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3184 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3185 /* x != NaN is always true, other ops are always false. */
3186 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3187 && ! HONOR_SNANS (@1))
3188 { constant_boolean_node (cmp == NE_EXPR, type); })
3189 /* Fold comparisons against infinity. */
3190 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3191 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3192 (with
3193 {
3194 REAL_VALUE_TYPE max;
3195 enum tree_code code = cmp;
3196 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3197 if (neg)
3198 code = swap_tree_comparison (code);
3199 }
3200 (switch
3201 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3202 (if (code == GT_EXPR
3203 && !(HONOR_NANS (@0) && flag_trapping_math))
3204 { constant_boolean_node (false, type); })
3205 (if (code == LE_EXPR)
3206 /* x <= +Inf is always true, if we don't care about NaNs. */
3207 (if (! HONOR_NANS (@0))
3208 { constant_boolean_node (true, type); }
3209 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3210 an "invalid" exception. */
3211 (if (!flag_trapping_math)
3212 (eq @0 @0))))
3213 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3214 for == this introduces an exception for x a NaN. */
3215 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3216 || code == GE_EXPR)
3217 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3218 (if (neg)
3219 (lt @0 { build_real (TREE_TYPE (@0), max); })
3220 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3221 /* x < +Inf is always equal to x <= DBL_MAX. */
3222 (if (code == LT_EXPR)
3223 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3224 (if (neg)
3225 (ge @0 { build_real (TREE_TYPE (@0), max); })
3226 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3227 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3228 an exception for x a NaN so use an unordered comparison. */
3229 (if (code == NE_EXPR)
3230 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3231 (if (! HONOR_NANS (@0))
3232 (if (neg)
3233 (ge @0 { build_real (TREE_TYPE (@0), max); })
3234 (le @0 { build_real (TREE_TYPE (@0), max); }))
3235 (if (neg)
3236 (unge @0 { build_real (TREE_TYPE (@0), max); })
3237 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3238
3239 /* If this is a comparison of a real constant with a PLUS_EXPR
3240 or a MINUS_EXPR of a real constant, we can convert it into a
3241 comparison with a revised real constant as long as no overflow
3242 occurs when unsafe_math_optimizations are enabled. */
3243 (if (flag_unsafe_math_optimizations)
3244 (for op (plus minus)
3245 (simplify
3246 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3247 (with
3248 {
3249 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3250 TREE_TYPE (@1), @2, @1);
3251 }
3252 (if (tem && !TREE_OVERFLOW (tem))
3253 (cmp @0 { tem; }))))))
3254
3255 /* Likewise, we can simplify a comparison of a real constant with
3256 a MINUS_EXPR whose first operand is also a real constant, i.e.
3257 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3258 floating-point types only if -fassociative-math is set. */
3259 (if (flag_associative_math)
3260 (simplify
3261 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3262 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3263 (if (tem && !TREE_OVERFLOW (tem))
3264 (cmp { tem; } @1)))))
3265
3266 /* Fold comparisons against built-in math functions. */
3267 (if (flag_unsafe_math_optimizations
3268 && ! flag_errno_math)
3269 (for sq (SQRT)
3270 (simplify
3271 (cmp (sq @0) REAL_CST@1)
3272 (switch
3273 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3274 (switch
3275 /* sqrt(x) < y is always false, if y is negative. */
3276 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3277 { constant_boolean_node (false, type); })
3278 /* sqrt(x) > y is always true, if y is negative and we
3279 don't care about NaNs, i.e. negative values of x. */
3280 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3281 { constant_boolean_node (true, type); })
3282 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3283 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3284 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3285 (switch
3286 /* sqrt(x) < 0 is always false. */
3287 (if (cmp == LT_EXPR)
3288 { constant_boolean_node (false, type); })
3289 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3290 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3291 { constant_boolean_node (true, type); })
3292 /* sqrt(x) <= 0 -> x == 0. */
3293 (if (cmp == LE_EXPR)
3294 (eq @0 @1))
3295 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3296 == or !=. In the last case:
3297
3298 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3299
3300 if x is negative or NaN. Due to -funsafe-math-optimizations,
3301 the results for other x follow from natural arithmetic. */
3302 (cmp @0 @1)))
3303 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3304 (with
3305 {
3306 REAL_VALUE_TYPE c2;
3307 real_arithmetic (&c2, MULT_EXPR,
3308 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3309 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3310 }
3311 (if (REAL_VALUE_ISINF (c2))
3312 /* sqrt(x) > y is x == +Inf, when y is very large. */
3313 (if (HONOR_INFINITIES (@0))
3314 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3315 { constant_boolean_node (false, type); })
3316 /* sqrt(x) > c is the same as x > c*c. */
3317 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3318 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3319 (with
3320 {
3321 REAL_VALUE_TYPE c2;
3322 real_arithmetic (&c2, MULT_EXPR,
3323 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3324 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3325 }
3326 (if (REAL_VALUE_ISINF (c2))
3327 (switch
3328 /* sqrt(x) < y is always true, when y is a very large
3329 value and we don't care about NaNs or Infinities. */
3330 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3331 { constant_boolean_node (true, type); })
3332 /* sqrt(x) < y is x != +Inf when y is very large and we
3333 don't care about NaNs. */
3334 (if (! HONOR_NANS (@0))
3335 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3336 /* sqrt(x) < y is x >= 0 when y is very large and we
3337 don't care about Infinities. */
3338 (if (! HONOR_INFINITIES (@0))
3339 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3340 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3341 (if (GENERIC)
3342 (truth_andif
3343 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3344 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3345 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3346 (if (! HONOR_NANS (@0))
3347 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3348 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3349 (if (GENERIC)
3350 (truth_andif
3351 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3352 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3353 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3354 (simplify
3355 (cmp (sq @0) (sq @1))
3356 (if (! HONOR_NANS (@0))
3357 (cmp @0 @1))))))
3358
3359 /* Optimize various special cases of (FTYPE) N CMP CST. */
3360 (for cmp (lt le eq ne ge gt)
3361 icmp (le le eq ne ge ge)
3362 (simplify
3363 (cmp (float @0) REAL_CST@1)
3364 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3365 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3366 (with
3367 {
3368 tree itype = TREE_TYPE (@0);
3369 signop isign = TYPE_SIGN (itype);
3370 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3371 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3372 /* Be careful to preserve any potential exceptions due to
3373 NaNs. qNaNs are ok in == or != context.
3374 TODO: relax under -fno-trapping-math or
3375 -fno-signaling-nans. */
3376 bool exception_p
3377 = real_isnan (cst) && (cst->signalling
3378 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3379 /* INT?_MIN is power-of-two so it takes
3380 only one mantissa bit. */
3381 bool signed_p = isign == SIGNED;
3382 bool itype_fits_ftype_p
3383 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3384 }
3385 /* TODO: allow non-fitting itype and SNaNs when
3386 -fno-trapping-math. */
3387 (if (itype_fits_ftype_p && ! exception_p)
3388 (with
3389 {
3390 REAL_VALUE_TYPE imin, imax;
3391 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3392 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3393
3394 REAL_VALUE_TYPE icst;
3395 if (cmp == GT_EXPR || cmp == GE_EXPR)
3396 real_ceil (&icst, fmt, cst);
3397 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3398 real_floor (&icst, fmt, cst);
3399 else
3400 real_trunc (&icst, fmt, cst);
3401
3402 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3403
3404 bool overflow_p = false;
3405 wide_int icst_val
3406 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3407 }
3408 (switch
3409 /* Optimize cases when CST is outside of ITYPE's range. */
3410 (if (real_compare (LT_EXPR, cst, &imin))
3411 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3412 type); })
3413 (if (real_compare (GT_EXPR, cst, &imax))
3414 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3415 type); })
3416 /* Remove cast if CST is an integer representable by ITYPE. */
3417 (if (cst_int_p)
3418 (cmp @0 { gcc_assert (!overflow_p);
3419 wide_int_to_tree (itype, icst_val); })
3420 )
3421 /* When CST is fractional, optimize
3422 (FTYPE) N == CST -> 0
3423 (FTYPE) N != CST -> 1. */
3424 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3425 { constant_boolean_node (cmp == NE_EXPR, type); })
3426 /* Otherwise replace with sensible integer constant. */
3427 (with
3428 {
3429 gcc_checking_assert (!overflow_p);
3430 }
3431 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3432
3433 /* Fold A /[ex] B CMP C to A CMP B * C. */
3434 (for cmp (eq ne)
3435 (simplify
3436 (cmp (exact_div @0 @1) INTEGER_CST@2)
3437 (if (!integer_zerop (@1))
3438 (if (wi::to_wide (@2) == 0)
3439 (cmp @0 @2)
3440 (if (TREE_CODE (@1) == INTEGER_CST)
3441 (with
3442 {
3443 wi::overflow_type ovf;
3444 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3445 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3446 }
3447 (if (ovf)
3448 { constant_boolean_node (cmp == NE_EXPR, type); }
3449 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3450 (for cmp (lt le gt ge)
3451 (simplify
3452 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3453 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3454 (with
3455 {
3456 wi::overflow_type ovf;
3457 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3458 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3459 }
3460 (if (ovf)
3461 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3462 TYPE_SIGN (TREE_TYPE (@2)))
3463 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3464 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3465
3466 /* Unordered tests if either argument is a NaN. */
3467 (simplify
3468 (bit_ior (unordered @0 @0) (unordered @1 @1))
3469 (if (types_match (@0, @1))
3470 (unordered @0 @1)))
3471 (simplify
3472 (bit_and (ordered @0 @0) (ordered @1 @1))
3473 (if (types_match (@0, @1))
3474 (ordered @0 @1)))
3475 (simplify
3476 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3477 @2)
3478 (simplify
3479 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3480 @2)
3481
3482 /* Simple range test simplifications. */
3483 /* A < B || A >= B -> true. */
3484 (for test1 (lt le le le ne ge)
3485 test2 (ge gt ge ne eq ne)
3486 (simplify
3487 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3488 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3489 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3490 { constant_boolean_node (true, type); })))
3491 /* A < B && A >= B -> false. */
3492 (for test1 (lt lt lt le ne eq)
3493 test2 (ge gt eq gt eq gt)
3494 (simplify
3495 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3496 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3497 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3498 { constant_boolean_node (false, type); })))
3499
3500 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3501 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3502
3503 Note that comparisons
3504 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3505 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3506 will be canonicalized to above so there's no need to
3507 consider them here.
3508 */
3509
3510 (for cmp (le gt)
3511 eqcmp (eq ne)
3512 (simplify
3513 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3514 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3515 (with
3516 {
3517 tree ty = TREE_TYPE (@0);
3518 unsigned prec = TYPE_PRECISION (ty);
3519 wide_int mask = wi::to_wide (@2, prec);
3520 wide_int rhs = wi::to_wide (@3, prec);
3521 signop sgn = TYPE_SIGN (ty);
3522 }
3523 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3524 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3525 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3526 { build_zero_cst (ty); }))))))
3527
3528 /* -A CMP -B -> B CMP A. */
3529 (for cmp (tcc_comparison)
3530 scmp (swapped_tcc_comparison)
3531 (simplify
3532 (cmp (negate @0) (negate @1))
3533 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3534 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3535 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3536 (scmp @0 @1)))
3537 (simplify
3538 (cmp (negate @0) CONSTANT_CLASS_P@1)
3539 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3540 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3541 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3542 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3543 (if (tem && !TREE_OVERFLOW (tem))
3544 (scmp @0 { tem; }))))))
3545
3546 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3547 (for op (eq ne)
3548 (simplify
3549 (op (abs @0) zerop@1)
3550 (op @0 @1)))
3551
3552 /* From fold_sign_changed_comparison and fold_widened_comparison.
3553 FIXME: the lack of symmetry is disturbing. */
3554 (for cmp (simple_comparison)
3555 (simplify
3556 (cmp (convert@0 @00) (convert?@1 @10))
3557 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3558 /* Disable this optimization if we're casting a function pointer
3559 type on targets that require function pointer canonicalization. */
3560 && !(targetm.have_canonicalize_funcptr_for_compare ()
3561 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3562 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3563 && single_use (@0))
3564 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3565 && (TREE_CODE (@10) == INTEGER_CST
3566 || @1 != @10)
3567 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3568 || cmp == NE_EXPR
3569 || cmp == EQ_EXPR)
3570 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3571 /* ??? The special-casing of INTEGER_CST conversion was in the original
3572 code and here to avoid a spurious overflow flag on the resulting
3573 constant which fold_convert produces. */
3574 (if (TREE_CODE (@1) == INTEGER_CST)
3575 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3576 TREE_OVERFLOW (@1)); })
3577 (cmp @00 (convert @1)))
3578
3579 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3580 /* If possible, express the comparison in the shorter mode. */
3581 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3582 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3583 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3584 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3585 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3586 || ((TYPE_PRECISION (TREE_TYPE (@00))
3587 >= TYPE_PRECISION (TREE_TYPE (@10)))
3588 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3589 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3590 || (TREE_CODE (@10) == INTEGER_CST
3591 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3592 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3593 (cmp @00 (convert @10))
3594 (if (TREE_CODE (@10) == INTEGER_CST
3595 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3596 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3597 (with
3598 {
3599 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3600 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3601 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3602 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3603 }
3604 (if (above || below)
3605 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3606 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3607 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3608 { constant_boolean_node (above ? true : false, type); }
3609 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3610 { constant_boolean_node (above ? false : true, type); }))))))))))))
3611
3612 (for cmp (eq ne)
3613 /* A local variable can never be pointed to by
3614 the default SSA name of an incoming parameter.
3615 SSA names are canonicalized to 2nd place. */
3616 (simplify
3617 (cmp addr@0 SSA_NAME@1)
3618 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3619 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3620 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3621 (if (TREE_CODE (base) == VAR_DECL
3622 && auto_var_in_fn_p (base, current_function_decl))
3623 (if (cmp == NE_EXPR)
3624 { constant_boolean_node (true, type); }
3625 { constant_boolean_node (false, type); }))))))
3626
3627 /* Equality compare simplifications from fold_binary */
3628 (for cmp (eq ne)
3629
3630 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3631 Similarly for NE_EXPR. */
3632 (simplify
3633 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3634 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3635 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3636 { constant_boolean_node (cmp == NE_EXPR, type); }))
3637
3638 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3639 (simplify
3640 (cmp (bit_xor @0 @1) integer_zerop)
3641 (cmp @0 @1))
3642
3643 /* (X ^ Y) == Y becomes X == 0.
3644 Likewise (X ^ Y) == X becomes Y == 0. */
3645 (simplify
3646 (cmp:c (bit_xor:c @0 @1) @0)
3647 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3648
3649 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3650 (simplify
3651 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3652 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3653 (cmp @0 (bit_xor @1 (convert @2)))))
3654
3655 (simplify
3656 (cmp (convert? addr@0) integer_zerop)
3657 (if (tree_single_nonzero_warnv_p (@0, NULL))
3658 { constant_boolean_node (cmp == NE_EXPR, type); })))
3659
3660 /* If we have (A & C) == C where C is a power of 2, convert this into
3661 (A & C) != 0. Similarly for NE_EXPR. */
3662 (for cmp (eq ne)
3663 icmp (ne eq)
3664 (simplify
3665 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3666 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3667
3668 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3669 convert this into a shift followed by ANDing with D. */
3670 (simplify
3671 (cond
3672 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3673 INTEGER_CST@2 integer_zerop)
3674 (if (integer_pow2p (@2))
3675 (with {
3676 int shift = (wi::exact_log2 (wi::to_wide (@2))
3677 - wi::exact_log2 (wi::to_wide (@1)));
3678 }
3679 (if (shift > 0)
3680 (bit_and
3681 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3682 (bit_and
3683 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3684 @2)))))
3685
3686 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3687 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3688 (for cmp (eq ne)
3689 ncmp (ge lt)
3690 (simplify
3691 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3692 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3693 && type_has_mode_precision_p (TREE_TYPE (@0))
3694 && element_precision (@2) >= element_precision (@0)
3695 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3696 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3697 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3698
3699 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3700 this into a right shift or sign extension followed by ANDing with C. */
3701 (simplify
3702 (cond
3703 (lt @0 integer_zerop)
3704 INTEGER_CST@1 integer_zerop)
3705 (if (integer_pow2p (@1)
3706 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3707 (with {
3708 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3709 }
3710 (if (shift >= 0)
3711 (bit_and
3712 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3713 @1)
3714 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3715 sign extension followed by AND with C will achieve the effect. */
3716 (bit_and (convert @0) @1)))))
3717
3718 /* When the addresses are not directly of decls compare base and offset.
3719 This implements some remaining parts of fold_comparison address
3720 comparisons but still no complete part of it. Still it is good
3721 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3722 (for cmp (simple_comparison)
3723 (simplify
3724 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3725 (with
3726 {
3727 poly_int64 off0, off1;
3728 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3729 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3730 if (base0 && TREE_CODE (base0) == MEM_REF)
3731 {
3732 off0 += mem_ref_offset (base0).force_shwi ();
3733 base0 = TREE_OPERAND (base0, 0);
3734 }
3735 if (base1 && TREE_CODE (base1) == MEM_REF)
3736 {
3737 off1 += mem_ref_offset (base1).force_shwi ();
3738 base1 = TREE_OPERAND (base1, 0);
3739 }
3740 }
3741 (if (base0 && base1)
3742 (with
3743 {
3744 int equal = 2;
3745 /* Punt in GENERIC on variables with value expressions;
3746 the value expressions might point to fields/elements
3747 of other vars etc. */
3748 if (GENERIC
3749 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3750 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3751 ;
3752 else if (decl_in_symtab_p (base0)
3753 && decl_in_symtab_p (base1))
3754 equal = symtab_node::get_create (base0)
3755 ->equal_address_to (symtab_node::get_create (base1));
3756 else if ((DECL_P (base0)
3757 || TREE_CODE (base0) == SSA_NAME
3758 || TREE_CODE (base0) == STRING_CST)
3759 && (DECL_P (base1)
3760 || TREE_CODE (base1) == SSA_NAME
3761 || TREE_CODE (base1) == STRING_CST))
3762 equal = (base0 == base1);
3763 }
3764 (if (equal == 1
3765 && (cmp == EQ_EXPR || cmp == NE_EXPR
3766 /* If the offsets are equal we can ignore overflow. */
3767 || known_eq (off0, off1)
3768 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3769 /* Or if we compare using pointers to decls or strings. */
3770 || (POINTER_TYPE_P (TREE_TYPE (@2))
3771 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3772 (switch
3773 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3774 { constant_boolean_node (known_eq (off0, off1), type); })
3775 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3776 { constant_boolean_node (known_ne (off0, off1), type); })
3777 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3778 { constant_boolean_node (known_lt (off0, off1), type); })
3779 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3780 { constant_boolean_node (known_le (off0, off1), type); })
3781 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3782 { constant_boolean_node (known_ge (off0, off1), type); })
3783 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3784 { constant_boolean_node (known_gt (off0, off1), type); }))
3785 (if (equal == 0
3786 && DECL_P (base0) && DECL_P (base1)
3787 /* If we compare this as integers require equal offset. */
3788 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3789 || known_eq (off0, off1)))
3790 (switch
3791 (if (cmp == EQ_EXPR)
3792 { constant_boolean_node (false, type); })
3793 (if (cmp == NE_EXPR)
3794 { constant_boolean_node (true, type); })))))))))
3795
3796 /* Simplify pointer equality compares using PTA. */
3797 (for neeq (ne eq)
3798 (simplify
3799 (neeq @0 @1)
3800 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3801 && ptrs_compare_unequal (@0, @1))
3802 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3803
3804 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3805 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3806 Disable the transform if either operand is pointer to function.
3807 This broke pr22051-2.c for arm where function pointer
3808 canonicalizaion is not wanted. */
3809
3810 (for cmp (ne eq)
3811 (simplify
3812 (cmp (convert @0) INTEGER_CST@1)
3813 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3814 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3815 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3816 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3817 && POINTER_TYPE_P (TREE_TYPE (@1))
3818 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3819 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3820 (cmp @0 (convert @1)))))
3821
3822 /* Non-equality compare simplifications from fold_binary */
3823 (for cmp (lt gt le ge)
3824 /* Comparisons with the highest or lowest possible integer of
3825 the specified precision will have known values. */
3826 (simplify
3827 (cmp (convert?@2 @0) INTEGER_CST@1)
3828 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3829 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3830 (with
3831 {
3832 tree arg1_type = TREE_TYPE (@1);
3833 unsigned int prec = TYPE_PRECISION (arg1_type);
3834 wide_int max = wi::max_value (arg1_type);
3835 wide_int signed_max = wi::max_value (prec, SIGNED);
3836 wide_int min = wi::min_value (arg1_type);
3837 }
3838 (switch
3839 (if (wi::to_wide (@1) == max)
3840 (switch
3841 (if (cmp == GT_EXPR)
3842 { constant_boolean_node (false, type); })
3843 (if (cmp == GE_EXPR)
3844 (eq @2 @1))
3845 (if (cmp == LE_EXPR)
3846 { constant_boolean_node (true, type); })
3847 (if (cmp == LT_EXPR)
3848 (ne @2 @1))))
3849 (if (wi::to_wide (@1) == min)
3850 (switch
3851 (if (cmp == LT_EXPR)
3852 { constant_boolean_node (false, type); })
3853 (if (cmp == LE_EXPR)
3854 (eq @2 @1))
3855 (if (cmp == GE_EXPR)
3856 { constant_boolean_node (true, type); })
3857 (if (cmp == GT_EXPR)
3858 (ne @2 @1))))
3859 (if (wi::to_wide (@1) == max - 1)
3860 (switch
3861 (if (cmp == GT_EXPR)
3862 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3863 (if (cmp == LE_EXPR)
3864 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3865 (if (wi::to_wide (@1) == min + 1)
3866 (switch
3867 (if (cmp == GE_EXPR)
3868 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3869 (if (cmp == LT_EXPR)
3870 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3871 (if (wi::to_wide (@1) == signed_max
3872 && TYPE_UNSIGNED (arg1_type)
3873 /* We will flip the signedness of the comparison operator
3874 associated with the mode of @1, so the sign bit is
3875 specified by this mode. Check that @1 is the signed
3876 max associated with this sign bit. */
3877 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3878 /* signed_type does not work on pointer types. */
3879 && INTEGRAL_TYPE_P (arg1_type))
3880 /* The following case also applies to X < signed_max+1
3881 and X >= signed_max+1 because previous transformations. */
3882 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3883 (with { tree st = signed_type_for (arg1_type); }
3884 (if (cmp == LE_EXPR)
3885 (ge (convert:st @0) { build_zero_cst (st); })
3886 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3887
3888 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3889 /* If the second operand is NaN, the result is constant. */
3890 (simplify
3891 (cmp @0 REAL_CST@1)
3892 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3893 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3894 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3895 ? false : true, type); })))
3896
3897 /* bool_var != 0 becomes bool_var. */
3898 (simplify
3899 (ne @0 integer_zerop)
3900 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3901 && types_match (type, TREE_TYPE (@0)))
3902 (non_lvalue @0)))
3903 /* bool_var == 1 becomes bool_var. */
3904 (simplify
3905 (eq @0 integer_onep)
3906 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3907 && types_match (type, TREE_TYPE (@0)))
3908 (non_lvalue @0)))
3909 /* Do not handle
3910 bool_var == 0 becomes !bool_var or
3911 bool_var != 1 becomes !bool_var
3912 here because that only is good in assignment context as long
3913 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3914 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3915 clearly less optimal and which we'll transform again in forwprop. */
3916
3917 /* When one argument is a constant, overflow detection can be simplified.
3918 Currently restricted to single use so as not to interfere too much with
3919 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3920 A + CST CMP A -> A CMP' CST' */
3921 (for cmp (lt le ge gt)
3922 out (gt gt le le)
3923 (simplify
3924 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3925 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3926 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3927 && wi::to_wide (@1) != 0
3928 && single_use (@2))
3929 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3930 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3931 wi::max_value (prec, UNSIGNED)
3932 - wi::to_wide (@1)); })))))
3933
3934 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3935 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3936 expects the long form, so we restrict the transformation for now. */
3937 (for cmp (gt le)
3938 (simplify
3939 (cmp:c (minus@2 @0 @1) @0)
3940 (if (single_use (@2)
3941 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3942 && TYPE_UNSIGNED (TREE_TYPE (@0))
3943 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3944 (cmp @1 @0))))
3945
3946 /* Testing for overflow is unnecessary if we already know the result. */
3947 /* A - B > A */
3948 (for cmp (gt le)
3949 out (ne eq)
3950 (simplify
3951 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3952 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3953 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3954 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3955 /* A + B < A */
3956 (for cmp (lt ge)
3957 out (ne eq)
3958 (simplify
3959 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3960 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3961 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3962 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3963
3964 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3965 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3966 (for cmp (lt ge)
3967 out (ne eq)
3968 (simplify
3969 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3970 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3971 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3972 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3973
3974 /* Simplification of math builtins. These rules must all be optimizations
3975 as well as IL simplifications. If there is a possibility that the new
3976 form could be a pessimization, the rule should go in the canonicalization
3977 section that follows this one.
3978
3979 Rules can generally go in this section if they satisfy one of
3980 the following:
3981
3982 - the rule describes an identity
3983
3984 - the rule replaces calls with something as simple as addition or
3985 multiplication
3986
3987 - the rule contains unary calls only and simplifies the surrounding
3988 arithmetic. (The idea here is to exclude non-unary calls in which
3989 one operand is constant and in which the call is known to be cheap
3990 when the operand has that value.) */
3991
3992 (if (flag_unsafe_math_optimizations)
3993 /* Simplify sqrt(x) * sqrt(x) -> x. */
3994 (simplify
3995 (mult (SQRT_ALL@1 @0) @1)
3996 (if (!HONOR_SNANS (type))
3997 @0))
3998
3999 (for op (plus minus)
4000 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4001 (simplify
4002 (op (rdiv @0 @1)
4003 (rdiv @2 @1))
4004 (rdiv (op @0 @2) @1)))
4005
4006 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4007 (for root (SQRT CBRT)
4008 (simplify
4009 (mult (root:s @0) (root:s @1))
4010 (root (mult @0 @1))))
4011
4012 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4013 (for exps (EXP EXP2 EXP10 POW10)
4014 (simplify
4015 (mult (exps:s @0) (exps:s @1))
4016 (exps (plus @0 @1))))
4017
4018 /* Simplify a/root(b/c) into a*root(c/b). */
4019 (for root (SQRT CBRT)
4020 (simplify
4021 (rdiv @0 (root:s (rdiv:s @1 @2)))
4022 (mult @0 (root (rdiv @2 @1)))))
4023
4024 /* Simplify x/expN(y) into x*expN(-y). */
4025 (for exps (EXP EXP2 EXP10 POW10)
4026 (simplify
4027 (rdiv @0 (exps:s @1))
4028 (mult @0 (exps (negate @1)))))
4029
4030 (for logs (LOG LOG2 LOG10 LOG10)
4031 exps (EXP EXP2 EXP10 POW10)
4032 /* logN(expN(x)) -> x. */
4033 (simplify
4034 (logs (exps @0))
4035 @0)
4036 /* expN(logN(x)) -> x. */
4037 (simplify
4038 (exps (logs @0))
4039 @0))
4040
4041 /* Optimize logN(func()) for various exponential functions. We
4042 want to determine the value "x" and the power "exponent" in
4043 order to transform logN(x**exponent) into exponent*logN(x). */
4044 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4045 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4046 (simplify
4047 (logs (exps @0))
4048 (if (SCALAR_FLOAT_TYPE_P (type))
4049 (with {
4050 tree x;
4051 switch (exps)
4052 {
4053 CASE_CFN_EXP:
4054 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4055 x = build_real_truncate (type, dconst_e ());
4056 break;
4057 CASE_CFN_EXP2:
4058 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4059 x = build_real (type, dconst2);
4060 break;
4061 CASE_CFN_EXP10:
4062 CASE_CFN_POW10:
4063 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4064 {
4065 REAL_VALUE_TYPE dconst10;
4066 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4067 x = build_real (type, dconst10);
4068 }
4069 break;
4070 default:
4071 gcc_unreachable ();
4072 }
4073 }
4074 (mult (logs { x; }) @0)))))
4075
4076 (for logs (LOG LOG
4077 LOG2 LOG2
4078 LOG10 LOG10)
4079 exps (SQRT CBRT)
4080 (simplify
4081 (logs (exps @0))
4082 (if (SCALAR_FLOAT_TYPE_P (type))
4083 (with {
4084 tree x;
4085 switch (exps)
4086 {
4087 CASE_CFN_SQRT:
4088 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4089 x = build_real (type, dconsthalf);
4090 break;
4091 CASE_CFN_CBRT:
4092 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4093 x = build_real_truncate (type, dconst_third ());
4094 break;
4095 default:
4096 gcc_unreachable ();
4097 }
4098 }
4099 (mult { x; } (logs @0))))))
4100
4101 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4102 (for logs (LOG LOG2 LOG10)
4103 pows (POW)
4104 (simplify
4105 (logs (pows @0 @1))
4106 (mult @1 (logs @0))))
4107
4108 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4109 or if C is a positive power of 2,
4110 pow(C,x) -> exp2(log2(C)*x). */
4111 #if GIMPLE
4112 (for pows (POW)
4113 exps (EXP)
4114 logs (LOG)
4115 exp2s (EXP2)
4116 log2s (LOG2)
4117 (simplify
4118 (pows REAL_CST@0 @1)
4119 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4120 && real_isfinite (TREE_REAL_CST_PTR (@0))
4121 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4122 the use_exp2 case until after vectorization. It seems actually
4123 beneficial for all constants to postpone this until later,
4124 because exp(log(C)*x), while faster, will have worse precision
4125 and if x folds into a constant too, that is unnecessary
4126 pessimization. */
4127 && canonicalize_math_after_vectorization_p ())
4128 (with {
4129 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4130 bool use_exp2 = false;
4131 if (targetm.libc_has_function (function_c99_misc)
4132 && value->cl == rvc_normal)
4133 {
4134 REAL_VALUE_TYPE frac_rvt = *value;
4135 SET_REAL_EXP (&frac_rvt, 1);
4136 if (real_equal (&frac_rvt, &dconst1))
4137 use_exp2 = true;
4138 }
4139 }
4140 (if (!use_exp2)
4141 (if (optimize_pow_to_exp (@0, @1))
4142 (exps (mult (logs @0) @1)))
4143 (exp2s (mult (log2s @0) @1)))))))
4144 #endif
4145
4146 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4147 (for pows (POW)
4148 exps (EXP EXP2 EXP10 POW10)
4149 logs (LOG LOG2 LOG10 LOG10)
4150 (simplify
4151 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4152 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4153 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4154 (exps (plus (mult (logs @0) @1) @2)))))
4155
4156 (for sqrts (SQRT)
4157 cbrts (CBRT)
4158 pows (POW)
4159 exps (EXP EXP2 EXP10 POW10)
4160 /* sqrt(expN(x)) -> expN(x*0.5). */
4161 (simplify
4162 (sqrts (exps @0))
4163 (exps (mult @0 { build_real (type, dconsthalf); })))
4164 /* cbrt(expN(x)) -> expN(x/3). */
4165 (simplify
4166 (cbrts (exps @0))
4167 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4168 /* pow(expN(x), y) -> expN(x*y). */
4169 (simplify
4170 (pows (exps @0) @1)
4171 (exps (mult @0 @1))))
4172
4173 /* tan(atan(x)) -> x. */
4174 (for tans (TAN)
4175 atans (ATAN)
4176 (simplify
4177 (tans (atans @0))
4178 @0)))
4179
4180 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4181 (simplify
4182 (CABS (complex:C @0 real_zerop@1))
4183 (abs @0))
4184
4185 /* trunc(trunc(x)) -> trunc(x), etc. */
4186 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4187 (simplify
4188 (fns (fns @0))
4189 (fns @0)))
4190 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4191 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4192 (simplify
4193 (fns integer_valued_real_p@0)
4194 @0))
4195
4196 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4197 (simplify
4198 (HYPOT:c @0 real_zerop@1)
4199 (abs @0))
4200
4201 /* pow(1,x) -> 1. */
4202 (simplify
4203 (POW real_onep@0 @1)
4204 @0)
4205
4206 (simplify
4207 /* copysign(x,x) -> x. */
4208 (COPYSIGN_ALL @0 @0)
4209 @0)
4210
4211 (simplify
4212 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4213 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4214 (abs @0))
4215
4216 (for scale (LDEXP SCALBN SCALBLN)
4217 /* ldexp(0, x) -> 0. */
4218 (simplify
4219 (scale real_zerop@0 @1)
4220 @0)
4221 /* ldexp(x, 0) -> x. */
4222 (simplify
4223 (scale @0 integer_zerop@1)
4224 @0)
4225 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4226 (simplify
4227 (scale REAL_CST@0 @1)
4228 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4229 @0)))
4230
4231 /* Canonicalization of sequences of math builtins. These rules represent
4232 IL simplifications but are not necessarily optimizations.
4233
4234 The sincos pass is responsible for picking "optimal" implementations
4235 of math builtins, which may be more complicated and can sometimes go
4236 the other way, e.g. converting pow into a sequence of sqrts.
4237 We only want to do these canonicalizations before the pass has run. */
4238
4239 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4240 /* Simplify tan(x) * cos(x) -> sin(x). */
4241 (simplify
4242 (mult:c (TAN:s @0) (COS:s @0))
4243 (SIN @0))
4244
4245 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4246 (simplify
4247 (mult:c @0 (POW:s @0 REAL_CST@1))
4248 (if (!TREE_OVERFLOW (@1))
4249 (POW @0 (plus @1 { build_one_cst (type); }))))
4250
4251 /* Simplify sin(x) / cos(x) -> tan(x). */
4252 (simplify
4253 (rdiv (SIN:s @0) (COS:s @0))
4254 (TAN @0))
4255
4256 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4257 (simplify
4258 (rdiv (COS:s @0) (SIN:s @0))
4259 (rdiv { build_one_cst (type); } (TAN @0)))
4260
4261 /* Simplify sin(x) / tan(x) -> cos(x). */
4262 (simplify
4263 (rdiv (SIN:s @0) (TAN:s @0))
4264 (if (! HONOR_NANS (@0)
4265 && ! HONOR_INFINITIES (@0))
4266 (COS @0)))
4267
4268 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4269 (simplify
4270 (rdiv (TAN:s @0) (SIN:s @0))
4271 (if (! HONOR_NANS (@0)
4272 && ! HONOR_INFINITIES (@0))
4273 (rdiv { build_one_cst (type); } (COS @0))))
4274
4275 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4276 (simplify
4277 (mult (POW:s @0 @1) (POW:s @0 @2))
4278 (POW @0 (plus @1 @2)))
4279
4280 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4281 (simplify
4282 (mult (POW:s @0 @1) (POW:s @2 @1))
4283 (POW (mult @0 @2) @1))
4284
4285 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4286 (simplify
4287 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4288 (POWI (mult @0 @2) @1))
4289
4290 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4291 (simplify
4292 (rdiv (POW:s @0 REAL_CST@1) @0)
4293 (if (!TREE_OVERFLOW (@1))
4294 (POW @0 (minus @1 { build_one_cst (type); }))))
4295
4296 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4297 (simplify
4298 (rdiv @0 (POW:s @1 @2))
4299 (mult @0 (POW @1 (negate @2))))
4300
4301 (for sqrts (SQRT)
4302 cbrts (CBRT)
4303 pows (POW)
4304 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4305 (simplify
4306 (sqrts (sqrts @0))
4307 (pows @0 { build_real (type, dconst_quarter ()); }))
4308 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4309 (simplify
4310 (sqrts (cbrts @0))
4311 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4312 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4313 (simplify
4314 (cbrts (sqrts @0))
4315 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4316 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4317 (simplify
4318 (cbrts (cbrts tree_expr_nonnegative_p@0))
4319 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4320 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4321 (simplify
4322 (sqrts (pows @0 @1))
4323 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4324 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4325 (simplify
4326 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4327 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4328 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4329 (simplify
4330 (pows (sqrts @0) @1)
4331 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4332 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4333 (simplify
4334 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4335 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4336 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4337 (simplify
4338 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4339 (pows @0 (mult @1 @2))))
4340
4341 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4342 (simplify
4343 (CABS (complex @0 @0))
4344 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4345
4346 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4347 (simplify
4348 (HYPOT @0 @0)
4349 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4350
4351 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4352 (for cexps (CEXP)
4353 exps (EXP)
4354 cexpis (CEXPI)
4355 (simplify
4356 (cexps compositional_complex@0)
4357 (if (targetm.libc_has_function (function_c99_math_complex))
4358 (complex
4359 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4360 (mult @1 (imagpart @2)))))))
4361
4362 (if (canonicalize_math_p ())
4363 /* floor(x) -> trunc(x) if x is nonnegative. */
4364 (for floors (FLOOR_ALL)
4365 truncs (TRUNC_ALL)
4366 (simplify
4367 (floors tree_expr_nonnegative_p@0)
4368 (truncs @0))))
4369
4370 (match double_value_p
4371 @0
4372 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4373 (for froms (BUILT_IN_TRUNCL
4374 BUILT_IN_FLOORL
4375 BUILT_IN_CEILL
4376 BUILT_IN_ROUNDL
4377 BUILT_IN_NEARBYINTL
4378 BUILT_IN_RINTL)
4379 tos (BUILT_IN_TRUNC
4380 BUILT_IN_FLOOR
4381 BUILT_IN_CEIL
4382 BUILT_IN_ROUND
4383 BUILT_IN_NEARBYINT
4384 BUILT_IN_RINT)
4385 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4386 (if (optimize && canonicalize_math_p ())
4387 (simplify
4388 (froms (convert double_value_p@0))
4389 (convert (tos @0)))))
4390
4391 (match float_value_p
4392 @0
4393 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4394 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4395 BUILT_IN_FLOORL BUILT_IN_FLOOR
4396 BUILT_IN_CEILL BUILT_IN_CEIL
4397 BUILT_IN_ROUNDL BUILT_IN_ROUND
4398 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4399 BUILT_IN_RINTL BUILT_IN_RINT)
4400 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4401 BUILT_IN_FLOORF BUILT_IN_FLOORF
4402 BUILT_IN_CEILF BUILT_IN_CEILF
4403 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4404 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4405 BUILT_IN_RINTF BUILT_IN_RINTF)
4406 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4407 if x is a float. */
4408 (if (optimize && canonicalize_math_p ()
4409 && targetm.libc_has_function (function_c99_misc))
4410 (simplify
4411 (froms (convert float_value_p@0))
4412 (convert (tos @0)))))
4413
4414 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4415 tos (XFLOOR XCEIL XROUND XRINT)
4416 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4417 (if (optimize && canonicalize_math_p ())
4418 (simplify
4419 (froms (convert double_value_p@0))
4420 (tos @0))))
4421
4422 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4423 XFLOOR XCEIL XROUND XRINT)
4424 tos (XFLOORF XCEILF XROUNDF XRINTF)
4425 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4426 if x is a float. */
4427 (if (optimize && canonicalize_math_p ())
4428 (simplify
4429 (froms (convert float_value_p@0))
4430 (tos @0))))
4431
4432 (if (canonicalize_math_p ())
4433 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4434 (for floors (IFLOOR LFLOOR LLFLOOR)
4435 (simplify
4436 (floors tree_expr_nonnegative_p@0)
4437 (fix_trunc @0))))
4438
4439 (if (canonicalize_math_p ())
4440 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4441 (for fns (IFLOOR LFLOOR LLFLOOR
4442 ICEIL LCEIL LLCEIL
4443 IROUND LROUND LLROUND)
4444 (simplify
4445 (fns integer_valued_real_p@0)
4446 (fix_trunc @0)))
4447 (if (!flag_errno_math)
4448 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4449 (for rints (IRINT LRINT LLRINT)
4450 (simplify
4451 (rints integer_valued_real_p@0)
4452 (fix_trunc @0)))))
4453
4454 (if (canonicalize_math_p ())
4455 (for ifn (IFLOOR ICEIL IROUND IRINT)
4456 lfn (LFLOOR LCEIL LROUND LRINT)
4457 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4458 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4459 sizeof (int) == sizeof (long). */
4460 (if (TYPE_PRECISION (integer_type_node)
4461 == TYPE_PRECISION (long_integer_type_node))
4462 (simplify
4463 (ifn @0)
4464 (lfn:long_integer_type_node @0)))
4465 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4466 sizeof (long long) == sizeof (long). */
4467 (if (TYPE_PRECISION (long_long_integer_type_node)
4468 == TYPE_PRECISION (long_integer_type_node))
4469 (simplify
4470 (llfn @0)
4471 (lfn:long_integer_type_node @0)))))
4472
4473 /* cproj(x) -> x if we're ignoring infinities. */
4474 (simplify
4475 (CPROJ @0)
4476 (if (!HONOR_INFINITIES (type))
4477 @0))
4478
4479 /* If the real part is inf and the imag part is known to be
4480 nonnegative, return (inf + 0i). */
4481 (simplify
4482 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4483 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4484 { build_complex_inf (type, false); }))
4485
4486 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4487 (simplify
4488 (CPROJ (complex @0 REAL_CST@1))
4489 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4490 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4491
4492 (for pows (POW)
4493 sqrts (SQRT)
4494 cbrts (CBRT)
4495 (simplify
4496 (pows @0 REAL_CST@1)
4497 (with {
4498 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4499 REAL_VALUE_TYPE tmp;
4500 }
4501 (switch
4502 /* pow(x,0) -> 1. */
4503 (if (real_equal (value, &dconst0))
4504 { build_real (type, dconst1); })
4505 /* pow(x,1) -> x. */
4506 (if (real_equal (value, &dconst1))
4507 @0)
4508 /* pow(x,-1) -> 1/x. */
4509 (if (real_equal (value, &dconstm1))
4510 (rdiv { build_real (type, dconst1); } @0))
4511 /* pow(x,0.5) -> sqrt(x). */
4512 (if (flag_unsafe_math_optimizations
4513 && canonicalize_math_p ()
4514 && real_equal (value, &dconsthalf))
4515 (sqrts @0))
4516 /* pow(x,1/3) -> cbrt(x). */
4517 (if (flag_unsafe_math_optimizations
4518 && canonicalize_math_p ()
4519 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4520 real_equal (value, &tmp)))
4521 (cbrts @0))))))
4522
4523 /* powi(1,x) -> 1. */
4524 (simplify
4525 (POWI real_onep@0 @1)
4526 @0)
4527
4528 (simplify
4529 (POWI @0 INTEGER_CST@1)
4530 (switch
4531 /* powi(x,0) -> 1. */
4532 (if (wi::to_wide (@1) == 0)
4533 { build_real (type, dconst1); })
4534 /* powi(x,1) -> x. */
4535 (if (wi::to_wide (@1) == 1)
4536 @0)
4537 /* powi(x,-1) -> 1/x. */
4538 (if (wi::to_wide (@1) == -1)
4539 (rdiv { build_real (type, dconst1); } @0))))
4540
4541 /* Narrowing of arithmetic and logical operations.
4542
4543 These are conceptually similar to the transformations performed for
4544 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4545 term we want to move all that code out of the front-ends into here. */
4546
4547 /* If we have a narrowing conversion of an arithmetic operation where
4548 both operands are widening conversions from the same type as the outer
4549 narrowing conversion. Then convert the innermost operands to a suitable
4550 unsigned type (to avoid introducing undefined behavior), perform the
4551 operation and convert the result to the desired type. */
4552 (for op (plus minus)
4553 (simplify
4554 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4555 (if (INTEGRAL_TYPE_P (type)
4556 /* We check for type compatibility between @0 and @1 below,
4557 so there's no need to check that @1/@3 are integral types. */
4558 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4559 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4560 /* The precision of the type of each operand must match the
4561 precision of the mode of each operand, similarly for the
4562 result. */
4563 && type_has_mode_precision_p (TREE_TYPE (@0))
4564 && type_has_mode_precision_p (TREE_TYPE (@1))
4565 && type_has_mode_precision_p (type)
4566 /* The inner conversion must be a widening conversion. */
4567 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4568 && types_match (@0, type)
4569 && (types_match (@0, @1)
4570 /* Or the second operand is const integer or converted const
4571 integer from valueize. */
4572 || TREE_CODE (@1) == INTEGER_CST))
4573 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4574 (op @0 (convert @1))
4575 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4576 (convert (op (convert:utype @0)
4577 (convert:utype @1))))))))
4578
4579 /* This is another case of narrowing, specifically when there's an outer
4580 BIT_AND_EXPR which masks off bits outside the type of the innermost
4581 operands. Like the previous case we have to convert the operands
4582 to unsigned types to avoid introducing undefined behavior for the
4583 arithmetic operation. */
4584 (for op (minus plus)
4585 (simplify
4586 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4587 (if (INTEGRAL_TYPE_P (type)
4588 /* We check for type compatibility between @0 and @1 below,
4589 so there's no need to check that @1/@3 are integral types. */
4590 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4591 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4592 /* The precision of the type of each operand must match the
4593 precision of the mode of each operand, similarly for the
4594 result. */
4595 && type_has_mode_precision_p (TREE_TYPE (@0))
4596 && type_has_mode_precision_p (TREE_TYPE (@1))
4597 && type_has_mode_precision_p (type)
4598 /* The inner conversion must be a widening conversion. */
4599 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4600 && types_match (@0, @1)
4601 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4602 <= TYPE_PRECISION (TREE_TYPE (@0)))
4603 && (wi::to_wide (@4)
4604 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4605 true, TYPE_PRECISION (type))) == 0)
4606 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4607 (with { tree ntype = TREE_TYPE (@0); }
4608 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4609 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4610 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4611 (convert:utype @4))))))))
4612
4613 /* Transform (@0 < @1 and @0 < @2) to use min,
4614 (@0 > @1 and @0 > @2) to use max */
4615 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4616 op (lt le gt ge lt le gt ge )
4617 ext (min min max max max max min min )
4618 (simplify
4619 (logic (op:cs @0 @1) (op:cs @0 @2))
4620 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4621 && TREE_CODE (@0) != INTEGER_CST)
4622 (op @0 (ext @1 @2)))))
4623
4624 (simplify
4625 /* signbit(x) -> 0 if x is nonnegative. */
4626 (SIGNBIT tree_expr_nonnegative_p@0)
4627 { integer_zero_node; })
4628
4629 (simplify
4630 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4631 (SIGNBIT @0)
4632 (if (!HONOR_SIGNED_ZEROS (@0))
4633 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4634
4635 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4636 (for cmp (eq ne)
4637 (for op (plus minus)
4638 rop (minus plus)
4639 (simplify
4640 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4641 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4642 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4643 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4644 && !TYPE_SATURATING (TREE_TYPE (@0)))
4645 (with { tree res = int_const_binop (rop, @2, @1); }
4646 (if (TREE_OVERFLOW (res)
4647 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4648 { constant_boolean_node (cmp == NE_EXPR, type); }
4649 (if (single_use (@3))
4650 (cmp @0 { TREE_OVERFLOW (res)
4651 ? drop_tree_overflow (res) : res; }))))))))
4652 (for cmp (lt le gt ge)
4653 (for op (plus minus)
4654 rop (minus plus)
4655 (simplify
4656 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4657 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4658 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4659 (with { tree res = int_const_binop (rop, @2, @1); }
4660 (if (TREE_OVERFLOW (res))
4661 {
4662 fold_overflow_warning (("assuming signed overflow does not occur "
4663 "when simplifying conditional to constant"),
4664 WARN_STRICT_OVERFLOW_CONDITIONAL);
4665 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4666 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4667 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4668 TYPE_SIGN (TREE_TYPE (@1)))
4669 != (op == MINUS_EXPR);
4670 constant_boolean_node (less == ovf_high, type);
4671 }
4672 (if (single_use (@3))
4673 (with
4674 {
4675 fold_overflow_warning (("assuming signed overflow does not occur "
4676 "when changing X +- C1 cmp C2 to "
4677 "X cmp C2 -+ C1"),
4678 WARN_STRICT_OVERFLOW_COMPARISON);
4679 }
4680 (cmp @0 { res; })))))))))
4681
4682 /* Canonicalizations of BIT_FIELD_REFs. */
4683
4684 (simplify
4685 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4686 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4687
4688 (simplify
4689 (BIT_FIELD_REF (view_convert @0) @1 @2)
4690 (BIT_FIELD_REF @0 @1 @2))
4691
4692 (simplify
4693 (BIT_FIELD_REF @0 @1 integer_zerop)
4694 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4695 (view_convert @0)))
4696
4697 (simplify
4698 (BIT_FIELD_REF @0 @1 @2)
4699 (switch
4700 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4701 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4702 (switch
4703 (if (integer_zerop (@2))
4704 (view_convert (realpart @0)))
4705 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4706 (view_convert (imagpart @0)))))
4707 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4708 && INTEGRAL_TYPE_P (type)
4709 /* On GIMPLE this should only apply to register arguments. */
4710 && (! GIMPLE || is_gimple_reg (@0))
4711 /* A bit-field-ref that referenced the full argument can be stripped. */
4712 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4713 && integer_zerop (@2))
4714 /* Low-parts can be reduced to integral conversions.
4715 ??? The following doesn't work for PDP endian. */
4716 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4717 /* Don't even think about BITS_BIG_ENDIAN. */
4718 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4719 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4720 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4721 ? (TYPE_PRECISION (TREE_TYPE (@0))
4722 - TYPE_PRECISION (type))
4723 : 0)) == 0)))
4724 (convert @0))))
4725
4726 /* Simplify vector extracts. */
4727
4728 (simplify
4729 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4730 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4731 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4732 || (VECTOR_TYPE_P (type)
4733 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4734 (with
4735 {
4736 tree ctor = (TREE_CODE (@0) == SSA_NAME
4737 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4738 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4739 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4740 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4741 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4742 }
4743 (if (n != 0
4744 && (idx % width) == 0
4745 && (n % width) == 0
4746 && known_le ((idx + n) / width,
4747 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4748 (with
4749 {
4750 idx = idx / width;
4751 n = n / width;
4752 /* Constructor elements can be subvectors. */
4753 poly_uint64 k = 1;
4754 if (CONSTRUCTOR_NELTS (ctor) != 0)
4755 {
4756 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4757 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4758 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4759 }
4760 unsigned HOST_WIDE_INT elt, count, const_k;
4761 }
4762 (switch
4763 /* We keep an exact subset of the constructor elements. */
4764 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4765 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4766 { build_constructor (type, NULL); }
4767 (if (count == 1)
4768 (if (elt < CONSTRUCTOR_NELTS (ctor))
4769 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4770 { build_zero_cst (type); })
4771 {
4772 vec<constructor_elt, va_gc> *vals;
4773 vec_alloc (vals, count);
4774 for (unsigned i = 0;
4775 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4776 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4777 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4778 build_constructor (type, vals);
4779 })))
4780 /* The bitfield references a single constructor element. */
4781 (if (k.is_constant (&const_k)
4782 && idx + n <= (idx / const_k + 1) * const_k)
4783 (switch
4784 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4785 { build_zero_cst (type); })
4786 (if (n == const_k)
4787 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4788 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4789 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4790
4791 /* Simplify a bit extraction from a bit insertion for the cases with
4792 the inserted element fully covering the extraction or the insertion
4793 not touching the extraction. */
4794 (simplify
4795 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4796 (with
4797 {
4798 unsigned HOST_WIDE_INT isize;
4799 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4800 isize = TYPE_PRECISION (TREE_TYPE (@1));
4801 else
4802 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4803 }
4804 (switch
4805 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4806 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4807 wi::to_wide (@ipos) + isize))
4808 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4809 wi::to_wide (@rpos)
4810 - wi::to_wide (@ipos)); }))
4811 (if (wi::geu_p (wi::to_wide (@ipos),
4812 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4813 || wi::geu_p (wi::to_wide (@rpos),
4814 wi::to_wide (@ipos) + isize))
4815 (BIT_FIELD_REF @0 @rsize @rpos)))))
4816
4817 (if (canonicalize_math_after_vectorization_p ())
4818 (for fmas (FMA)
4819 (simplify
4820 (fmas:c (negate @0) @1 @2)
4821 (IFN_FNMA @0 @1 @2))
4822 (simplify
4823 (fmas @0 @1 (negate @2))
4824 (IFN_FMS @0 @1 @2))
4825 (simplify
4826 (fmas:c (negate @0) @1 (negate @2))
4827 (IFN_FNMS @0 @1 @2))
4828 (simplify
4829 (negate (fmas@3 @0 @1 @2))
4830 (if (single_use (@3))
4831 (IFN_FNMS @0 @1 @2))))
4832
4833 (simplify
4834 (IFN_FMS:c (negate @0) @1 @2)
4835 (IFN_FNMS @0 @1 @2))
4836 (simplify
4837 (IFN_FMS @0 @1 (negate @2))
4838 (IFN_FMA @0 @1 @2))
4839 (simplify
4840 (IFN_FMS:c (negate @0) @1 (negate @2))
4841 (IFN_FNMA @0 @1 @2))
4842 (simplify
4843 (negate (IFN_FMS@3 @0 @1 @2))
4844 (if (single_use (@3))
4845 (IFN_FNMA @0 @1 @2)))
4846
4847 (simplify
4848 (IFN_FNMA:c (negate @0) @1 @2)
4849 (IFN_FMA @0 @1 @2))
4850 (simplify
4851 (IFN_FNMA @0 @1 (negate @2))
4852 (IFN_FNMS @0 @1 @2))
4853 (simplify
4854 (IFN_FNMA:c (negate @0) @1 (negate @2))
4855 (IFN_FMS @0 @1 @2))
4856 (simplify
4857 (negate (IFN_FNMA@3 @0 @1 @2))
4858 (if (single_use (@3))
4859 (IFN_FMS @0 @1 @2)))
4860
4861 (simplify
4862 (IFN_FNMS:c (negate @0) @1 @2)
4863 (IFN_FMS @0 @1 @2))
4864 (simplify
4865 (IFN_FNMS @0 @1 (negate @2))
4866 (IFN_FNMA @0 @1 @2))
4867 (simplify
4868 (IFN_FNMS:c (negate @0) @1 (negate @2))
4869 (IFN_FMA @0 @1 @2))
4870 (simplify
4871 (negate (IFN_FNMS@3 @0 @1 @2))
4872 (if (single_use (@3))
4873 (IFN_FMA @0 @1 @2))))
4874
4875 /* POPCOUNT simplifications. */
4876 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4877 BUILT_IN_POPCOUNTIMAX)
4878 /* popcount(X&1) is nop_expr(X&1). */
4879 (simplify
4880 (popcount @0)
4881 (if (tree_nonzero_bits (@0) == 1)
4882 (convert @0)))
4883 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4884 (simplify
4885 (plus (popcount:s @0) (popcount:s @1))
4886 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4887 (popcount (bit_ior @0 @1))))
4888 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4889 (for cmp (le eq ne gt)
4890 rep (eq eq ne ne)
4891 (simplify
4892 (cmp (popcount @0) integer_zerop)
4893 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4894
4895 /* Simplify:
4896
4897 a = a1 op a2
4898 r = c ? a : b;
4899
4900 to:
4901
4902 r = c ? a1 op a2 : b;
4903
4904 if the target can do it in one go. This makes the operation conditional
4905 on c, so could drop potentially-trapping arithmetic, but that's a valid
4906 simplification if the result of the operation isn't needed. */
4907 (for uncond_op (UNCOND_BINARY)
4908 cond_op (COND_BINARY)
4909 (simplify
4910 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4911 (with { tree op_type = TREE_TYPE (@4); }
4912 (if (element_precision (type) == element_precision (op_type))
4913 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4914 (simplify
4915 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4916 (with { tree op_type = TREE_TYPE (@4); }
4917 (if (element_precision (type) == element_precision (op_type))
4918 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
4919
4920 /* Same for ternary operations. */
4921 (for uncond_op (UNCOND_TERNARY)
4922 cond_op (COND_TERNARY)
4923 (simplify
4924 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
4925 (with { tree op_type = TREE_TYPE (@5); }
4926 (if (element_precision (type) == element_precision (op_type))
4927 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
4928 (simplify
4929 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
4930 (with { tree op_type = TREE_TYPE (@5); }
4931 (if (element_precision (type) == element_precision (op_type))
4932 (view_convert (cond_op (bit_not @0) @2 @3 @4
4933 (view_convert:op_type @1)))))))
4934
4935 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
4936 "else" value of an IFN_COND_*. */
4937 (for cond_op (COND_BINARY)
4938 (simplify
4939 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
4940 (with { tree op_type = TREE_TYPE (@3); }
4941 (if (element_precision (type) == element_precision (op_type))
4942 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
4943 (simplify
4944 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
4945 (with { tree op_type = TREE_TYPE (@5); }
4946 (if (inverse_conditions_p (@0, @2)
4947 && element_precision (type) == element_precision (op_type))
4948 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
4949
4950 /* Same for ternary operations. */
4951 (for cond_op (COND_TERNARY)
4952 (simplify
4953 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
4954 (with { tree op_type = TREE_TYPE (@4); }
4955 (if (element_precision (type) == element_precision (op_type))
4956 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
4957 (simplify
4958 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
4959 (with { tree op_type = TREE_TYPE (@6); }
4960 (if (inverse_conditions_p (@0, @2)
4961 && element_precision (type) == element_precision (op_type))
4962 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
4963
4964 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
4965 expressions like:
4966
4967 A: (@0 + @1 < @2) | (@2 + @1 < @0)
4968 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
4969
4970 If pointers are known not to wrap, B checks whether @1 bytes starting
4971 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
4972 bytes. A is more efficiently tested as:
4973
4974 A: (sizetype) (@0 + @1 - @2) > @1 * 2
4975
4976 The equivalent expression for B is given by replacing @1 with @1 - 1:
4977
4978 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
4979
4980 @0 and @2 can be swapped in both expressions without changing the result.
4981
4982 The folds rely on sizetype's being unsigned (which is always true)
4983 and on its being the same width as the pointer (which we have to check).
4984
4985 The fold replaces two pointer_plus expressions, two comparisons and
4986 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
4987 the best case it's a saving of two operations. The A fold retains one
4988 of the original pointer_pluses, so is a win even if both pointer_pluses
4989 are used elsewhere. The B fold is a wash if both pointer_pluses are
4990 used elsewhere, since all we end up doing is replacing a comparison with
4991 a pointer_plus. We do still apply the fold under those circumstances
4992 though, in case applying it to other conditions eventually makes one of the
4993 pointer_pluses dead. */
4994 (for ior (truth_orif truth_or bit_ior)
4995 (for cmp (le lt)
4996 (simplify
4997 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
4998 (cmp:cs (pointer_plus@4 @2 @1) @0))
4999 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5000 && TYPE_OVERFLOW_WRAPS (sizetype)
5001 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5002 /* Calculate the rhs constant. */
5003 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5004 offset_int rhs = off * 2; }
5005 /* Always fails for negative values. */
5006 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5007 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5008 pick a canonical order. This increases the chances of using the
5009 same pointer_plus in multiple checks. */
5010 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5011 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5012 (if (cmp == LT_EXPR)
5013 (gt (convert:sizetype
5014 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5015 { swap_p ? @0 : @2; }))
5016 { rhs_tree; })
5017 (gt (convert:sizetype
5018 (pointer_diff:ssizetype
5019 (pointer_plus { swap_p ? @2 : @0; }
5020 { wide_int_to_tree (sizetype, off); })
5021 { swap_p ? @0 : @2; }))
5022 { rhs_tree; })))))))))