fold-const.c (fold_binary_loc): Move sqrt(x)*sqrt(x) as x to match.pd.
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p
33 integer_pow2p
34 HONOR_NANS)
35
36 /* Operator lists. */
37 (define_operator_list tcc_comparison
38 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
39 (define_operator_list inverted_tcc_comparison
40 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list inverted_tcc_comparison_with_nans
42 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
43 (define_operator_list swapped_tcc_comparison
44 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
45 (define_operator_list simple_comparison lt le eq ne ge gt)
46 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
47
48 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
49 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
50 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
51 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
52 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
53 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
54 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
55 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
56 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
57 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
58 (define_operator_list SIN BUILT_IN_SIN BUILT_IN_SINL BUILT_IN_SINF)
59 (define_operator_list COS BUILT_IN_COS BUILT_IN_COSL BUILT_IN_COSF)
60 (define_operator_list TAN BUILT_IN_TAN BUILT_IN_TANL BUILT_IN_TANF)
61 (define_operator_list COSH BUILT_IN_COSH BUILT_IN_COSHL BUILT_IN_COSHF)
62
63 /* Simplifications of operations with one constant operand and
64 simplifications to constants or single values. */
65
66 (for op (plus pointer_plus minus bit_ior bit_xor)
67 (simplify
68 (op @0 integer_zerop)
69 (non_lvalue @0)))
70
71 /* 0 +p index -> (type)index */
72 (simplify
73 (pointer_plus integer_zerop @1)
74 (non_lvalue (convert @1)))
75
76 /* See if ARG1 is zero and X + ARG1 reduces to X.
77 Likewise if the operands are reversed. */
78 (simplify
79 (plus:c @0 real_zerop@1)
80 (if (fold_real_zero_addition_p (type, @1, 0))
81 (non_lvalue @0)))
82
83 /* See if ARG1 is zero and X - ARG1 reduces to X. */
84 (simplify
85 (minus @0 real_zerop@1)
86 (if (fold_real_zero_addition_p (type, @1, 1))
87 (non_lvalue @0)))
88
89 /* Simplify x - x.
90 This is unsafe for certain floats even in non-IEEE formats.
91 In IEEE, it is unsafe because it does wrong for NaNs.
92 Also note that operand_equal_p is always false if an operand
93 is volatile. */
94 (simplify
95 (minus @0 @0)
96 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
97 { build_zero_cst (type); }))
98
99 (simplify
100 (mult @0 integer_zerop@1)
101 @1)
102
103 /* Maybe fold x * 0 to 0. The expressions aren't the same
104 when x is NaN, since x * 0 is also NaN. Nor are they the
105 same in modes with signed zeros, since multiplying a
106 negative value by 0 gives -0, not +0. */
107 (simplify
108 (mult @0 real_zerop@1)
109 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
110 @1))
111
112 /* In IEEE floating point, x*1 is not equivalent to x for snans.
113 Likewise for complex arithmetic with signed zeros. */
114 (simplify
115 (mult @0 real_onep)
116 (if (!HONOR_SNANS (type)
117 && (!HONOR_SIGNED_ZEROS (type)
118 || !COMPLEX_FLOAT_TYPE_P (type)))
119 (non_lvalue @0)))
120
121 /* Transform x * -1.0 into -x. */
122 (simplify
123 (mult @0 real_minus_onep)
124 (if (!HONOR_SNANS (type)
125 && (!HONOR_SIGNED_ZEROS (type)
126 || !COMPLEX_FLOAT_TYPE_P (type)))
127 (negate @0)))
128
129 /* Make sure to preserve divisions by zero. This is the reason why
130 we don't simplify x / x to 1 or 0 / x to 0. */
131 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
132 (simplify
133 (op @0 integer_onep)
134 (non_lvalue @0)))
135
136 /* X / -1 is -X. */
137 (for div (trunc_div ceil_div floor_div round_div exact_div)
138 (simplify
139 (div @0 integer_minus_onep@1)
140 (if (!TYPE_UNSIGNED (type))
141 (negate @0))))
142
143 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
144 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
145 (simplify
146 (floor_div @0 @1)
147 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
148 && TYPE_UNSIGNED (type))
149 (trunc_div @0 @1)))
150
151 /* Combine two successive divisions. Note that combining ceil_div
152 and floor_div is trickier and combining round_div even more so. */
153 (for div (trunc_div exact_div)
154 (simplify
155 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
156 (with {
157 bool overflow_p;
158 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
159 }
160 (if (!overflow_p)
161 (div @0 { wide_int_to_tree (type, mul); })
162 (if (TYPE_UNSIGNED (type)
163 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
164 { build_zero_cst (type); })))))
165
166 /* Optimize A / A to 1.0 if we don't care about
167 NaNs or Infinities. */
168 (simplify
169 (rdiv @0 @0)
170 (if (FLOAT_TYPE_P (type)
171 && ! HONOR_NANS (type)
172 && ! HONOR_INFINITIES (type))
173 { build_one_cst (type); }))
174
175 /* Optimize -A / A to -1.0 if we don't care about
176 NaNs or Infinities. */
177 (simplify
178 (rdiv:c @0 (negate @0))
179 (if (FLOAT_TYPE_P (type)
180 && ! HONOR_NANS (type)
181 && ! HONOR_INFINITIES (type))
182 { build_minus_one_cst (type); }))
183
184 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
185 (simplify
186 (rdiv @0 real_onep)
187 (if (!HONOR_SNANS (type))
188 (non_lvalue @0)))
189
190 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
191 (simplify
192 (rdiv @0 real_minus_onep)
193 (if (!HONOR_SNANS (type))
194 (negate @0)))
195
196 /* If ARG1 is a constant, we can convert this to a multiply by the
197 reciprocal. This does not have the same rounding properties,
198 so only do this if -freciprocal-math. We can actually
199 always safely do it if ARG1 is a power of two, but it's hard to
200 tell if it is or not in a portable manner. */
201 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
202 (simplify
203 (rdiv @0 cst@1)
204 (if (optimize)
205 (if (flag_reciprocal_math
206 && !real_zerop (@1))
207 (with
208 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
209 (if (tem)
210 (mult @0 { tem; } )))
211 (if (cst != COMPLEX_CST)
212 (with { tree inverse = exact_inverse (type, @1); }
213 (if (inverse)
214 (mult @0 { inverse; } ))))))))
215
216 /* Same applies to modulo operations, but fold is inconsistent here
217 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
218 (for mod (ceil_mod floor_mod round_mod trunc_mod)
219 /* 0 % X is always zero. */
220 (simplify
221 (mod integer_zerop@0 @1)
222 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
223 (if (!integer_zerop (@1))
224 @0))
225 /* X % 1 is always zero. */
226 (simplify
227 (mod @0 integer_onep)
228 { build_zero_cst (type); })
229 /* X % -1 is zero. */
230 (simplify
231 (mod @0 integer_minus_onep@1)
232 (if (!TYPE_UNSIGNED (type))
233 { build_zero_cst (type); }))
234 /* (X % Y) % Y is just X % Y. */
235 (simplify
236 (mod (mod@2 @0 @1) @1)
237 @2)
238 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
239 (simplify
240 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
241 (if (ANY_INTEGRAL_TYPE_P (type)
242 && TYPE_OVERFLOW_UNDEFINED (type)
243 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
244 { build_zero_cst (type); })))
245
246 /* X % -C is the same as X % C. */
247 (simplify
248 (trunc_mod @0 INTEGER_CST@1)
249 (if (TYPE_SIGN (type) == SIGNED
250 && !TREE_OVERFLOW (@1)
251 && wi::neg_p (@1)
252 && !TYPE_OVERFLOW_TRAPS (type)
253 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
254 && !sign_bit_p (@1, @1))
255 (trunc_mod @0 (negate @1))))
256
257 /* X % -Y is the same as X % Y. */
258 (simplify
259 (trunc_mod @0 (convert? (negate @1)))
260 (if (!TYPE_UNSIGNED (type)
261 && !TYPE_OVERFLOW_TRAPS (type)
262 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
263 (trunc_mod @0 (convert @1))))
264
265 /* X - (X / Y) * Y is the same as X % Y. */
266 (simplify
267 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
268 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
269 (trunc_mod (convert @0) (convert @1))))
270
271 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
272 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
273 Also optimize A % (C << N) where C is a power of 2,
274 to A & ((C << N) - 1). */
275 (match (power_of_two_cand @1)
276 INTEGER_CST@1)
277 (match (power_of_two_cand @1)
278 (lshift INTEGER_CST@1 @2))
279 (for mod (trunc_mod floor_mod)
280 (simplify
281 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
282 (if ((TYPE_UNSIGNED (type)
283 || tree_expr_nonnegative_p (@0))
284 && tree_nop_conversion_p (type, TREE_TYPE (@3))
285 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
286 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
287
288 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
289 (simplify
290 (trunc_div (mult @0 integer_pow2p@1) @1)
291 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
292 (bit_and @0 { wide_int_to_tree
293 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
294 false, TYPE_PRECISION (type))); })))
295
296 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
297 (simplify
298 (mult (trunc_div @0 integer_pow2p@1) @1)
299 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
300 (bit_and @0 (negate @1))))
301
302 /* Simplify (t * 2) / 2) -> t. */
303 (for div (trunc_div ceil_div floor_div round_div exact_div)
304 (simplify
305 (div (mult @0 @1) @1)
306 (if (ANY_INTEGRAL_TYPE_P (type)
307 && TYPE_OVERFLOW_UNDEFINED (type))
308 @0)))
309
310 /* Simplify cos (-x) -> cos (x). */
311 (for op (negate abs)
312 (for coss (COS COSH)
313 (simplify
314 (coss (op @0))
315 (coss @0))))
316
317 /* X % Y is smaller than Y. */
318 (for cmp (lt ge)
319 (simplify
320 (cmp (trunc_mod @0 @1) @1)
321 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
322 { constant_boolean_node (cmp == LT_EXPR, type); })))
323 (for cmp (gt le)
324 (simplify
325 (cmp @1 (trunc_mod @0 @1))
326 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
327 { constant_boolean_node (cmp == GT_EXPR, type); })))
328
329 /* x | ~0 -> ~0 */
330 (simplify
331 (bit_ior @0 integer_all_onesp@1)
332 @1)
333
334 /* x & 0 -> 0 */
335 (simplify
336 (bit_and @0 integer_zerop@1)
337 @1)
338
339 /* ~x | x -> -1 */
340 /* ~x ^ x -> -1 */
341 /* ~x + x -> -1 */
342 (for op (bit_ior bit_xor plus)
343 (simplify
344 (op:c (convert? @0) (convert? (bit_not @0)))
345 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
346
347 /* x ^ x -> 0 */
348 (simplify
349 (bit_xor @0 @0)
350 { build_zero_cst (type); })
351
352 /* Canonicalize X ^ ~0 to ~X. */
353 (simplify
354 (bit_xor @0 integer_all_onesp@1)
355 (bit_not @0))
356
357 /* x & ~0 -> x */
358 (simplify
359 (bit_and @0 integer_all_onesp)
360 (non_lvalue @0))
361
362 /* x & x -> x, x | x -> x */
363 (for bitop (bit_and bit_ior)
364 (simplify
365 (bitop @0 @0)
366 (non_lvalue @0)))
367
368 /* x + (x & 1) -> (x + 1) & ~1 */
369 (simplify
370 (plus:c @0 (bit_and:s @0 integer_onep@1))
371 (bit_and (plus @0 @1) (bit_not @1)))
372
373 /* x & ~(x & y) -> x & ~y */
374 /* x | ~(x | y) -> x | ~y */
375 (for bitop (bit_and bit_ior)
376 (simplify
377 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
378 (bitop @0 (bit_not @1))))
379
380 /* (x | y) & ~x -> y & ~x */
381 /* (x & y) | ~x -> y | ~x */
382 (for bitop (bit_and bit_ior)
383 rbitop (bit_ior bit_and)
384 (simplify
385 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
386 (bitop @1 @2)))
387
388 /* (x & y) ^ (x | y) -> x ^ y */
389 (simplify
390 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
391 (bit_xor @0 @1))
392
393 /* (x ^ y) ^ (x | y) -> x & y */
394 (simplify
395 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
396 (bit_and @0 @1))
397
398 /* (x & y) + (x ^ y) -> x | y */
399 /* (x & y) | (x ^ y) -> x | y */
400 /* (x & y) ^ (x ^ y) -> x | y */
401 (for op (plus bit_ior bit_xor)
402 (simplify
403 (op:c (bit_and @0 @1) (bit_xor @0 @1))
404 (bit_ior @0 @1)))
405
406 /* (x & y) + (x | y) -> x + y */
407 (simplify
408 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
409 (plus @0 @1))
410
411 /* (x + y) - (x | y) -> x & y */
412 (simplify
413 (minus (plus @0 @1) (bit_ior @0 @1))
414 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
415 && !TYPE_SATURATING (type))
416 (bit_and @0 @1)))
417
418 /* (x + y) - (x & y) -> x | y */
419 (simplify
420 (minus (plus @0 @1) (bit_and @0 @1))
421 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
422 && !TYPE_SATURATING (type))
423 (bit_ior @0 @1)))
424
425 /* (x | y) - (x ^ y) -> x & y */
426 (simplify
427 (minus (bit_ior @0 @1) (bit_xor @0 @1))
428 (bit_and @0 @1))
429
430 /* (x | y) - (x & y) -> x ^ y */
431 (simplify
432 (minus (bit_ior @0 @1) (bit_and @0 @1))
433 (bit_xor @0 @1))
434
435 /* (x | y) & ~(x & y) -> x ^ y */
436 (simplify
437 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
438 (bit_xor @0 @1))
439
440 /* (x | y) & (~x ^ y) -> x & y */
441 (simplify
442 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
443 (bit_and @0 @1))
444
445 /* ~x & ~y -> ~(x | y)
446 ~x | ~y -> ~(x & y) */
447 (for op (bit_and bit_ior)
448 rop (bit_ior bit_and)
449 (simplify
450 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
451 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
452 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
453 (bit_not (rop (convert @0) (convert @1))))))
454
455 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
456 with a constant, and the two constants have no bits in common,
457 we should treat this as a BIT_IOR_EXPR since this may produce more
458 simplifications. */
459 (for op (bit_xor plus)
460 (simplify
461 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
462 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
463 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
464 && tree_nop_conversion_p (type, TREE_TYPE (@2))
465 && wi::bit_and (@1, @3) == 0)
466 (bit_ior (convert @4) (convert @5)))))
467
468 /* (X | Y) ^ X -> Y & ~ X*/
469 (simplify
470 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
471 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
472 (convert (bit_and @1 (bit_not @0)))))
473
474 /* Convert ~X ^ ~Y to X ^ Y. */
475 (simplify
476 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
477 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
478 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
479 (bit_xor (convert @0) (convert @1))))
480
481 /* Convert ~X ^ C to X ^ ~C. */
482 (simplify
483 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
484 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
485 (bit_xor (convert @0) (bit_not @1))))
486
487 /* Fold (X & Y) ^ Y as ~X & Y. */
488 (simplify
489 (bit_xor:c (bit_and:c @0 @1) @1)
490 (bit_and (bit_not @0) @1))
491
492 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
493 operands are another bit-wise operation with a common input. If so,
494 distribute the bit operations to save an operation and possibly two if
495 constants are involved. For example, convert
496 (A | B) & (A | C) into A | (B & C)
497 Further simplification will occur if B and C are constants. */
498 (for op (bit_and bit_ior)
499 rop (bit_ior bit_and)
500 (simplify
501 (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
502 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
503 (rop (convert @0) (op (convert @1) (convert @2))))))
504
505
506 (simplify
507 (abs (abs@1 @0))
508 @1)
509 (simplify
510 (abs (negate @0))
511 (abs @0))
512 (simplify
513 (abs tree_expr_nonnegative_p@0)
514 @0)
515
516 /* A few cases of fold-const.c negate_expr_p predicate. */
517 (match negate_expr_p
518 INTEGER_CST
519 (if ((INTEGRAL_TYPE_P (type)
520 && TYPE_OVERFLOW_WRAPS (type))
521 || (!TYPE_OVERFLOW_SANITIZED (type)
522 && may_negate_without_overflow_p (t)))))
523 (match negate_expr_p
524 FIXED_CST)
525 (match negate_expr_p
526 (negate @0)
527 (if (!TYPE_OVERFLOW_SANITIZED (type))))
528 (match negate_expr_p
529 REAL_CST
530 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
531 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
532 ways. */
533 (match negate_expr_p
534 VECTOR_CST
535 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
536
537 /* -(A + B) -> (-B) - A. */
538 (simplify
539 (negate (plus:c @0 negate_expr_p@1))
540 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
541 && !HONOR_SIGNED_ZEROS (element_mode (type)))
542 (minus (negate @1) @0)))
543
544 /* A - B -> A + (-B) if B is easily negatable. */
545 (simplify
546 (minus @0 negate_expr_p@1)
547 (if (!FIXED_POINT_TYPE_P (type))
548 (plus @0 (negate @1))))
549
550 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
551 when profitable.
552 For bitwise binary operations apply operand conversions to the
553 binary operation result instead of to the operands. This allows
554 to combine successive conversions and bitwise binary operations.
555 We combine the above two cases by using a conditional convert. */
556 (for bitop (bit_and bit_ior bit_xor)
557 (simplify
558 (bitop (convert @0) (convert? @1))
559 (if (((TREE_CODE (@1) == INTEGER_CST
560 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
561 && int_fits_type_p (@1, TREE_TYPE (@0)))
562 || types_match (@0, @1))
563 /* ??? This transform conflicts with fold-const.c doing
564 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
565 constants (if x has signed type, the sign bit cannot be set
566 in c). This folds extension into the BIT_AND_EXPR.
567 Restrict it to GIMPLE to avoid endless recursions. */
568 && (bitop != BIT_AND_EXPR || GIMPLE)
569 && (/* That's a good idea if the conversion widens the operand, thus
570 after hoisting the conversion the operation will be narrower. */
571 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
572 /* It's also a good idea if the conversion is to a non-integer
573 mode. */
574 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
575 /* Or if the precision of TO is not the same as the precision
576 of its mode. */
577 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
578 (convert (bitop @0 (convert @1))))))
579
580 (for bitop (bit_and bit_ior)
581 rbitop (bit_ior bit_and)
582 /* (x | y) & x -> x */
583 /* (x & y) | x -> x */
584 (simplify
585 (bitop:c (rbitop:c @0 @1) @0)
586 @0)
587 /* (~x | y) & x -> x & y */
588 /* (~x & y) | x -> x | y */
589 (simplify
590 (bitop:c (rbitop:c (bit_not @0) @1) @0)
591 (bitop @0 @1)))
592
593 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
594 (for bitop (bit_and bit_ior bit_xor)
595 (simplify
596 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
597 (bit_and (bitop @0 @2) @1)))
598
599 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
600 (simplify
601 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
602 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
603
604 /* Combine successive equal operations with constants. */
605 (for bitop (bit_and bit_ior bit_xor)
606 (simplify
607 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
608 (bitop @0 (bitop @1 @2))))
609
610 /* Try simple folding for X op !X, and X op X with the help
611 of the truth_valued_p and logical_inverted_value predicates. */
612 (match truth_valued_p
613 @0
614 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
615 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
616 (match truth_valued_p
617 (op @0 @1)))
618 (match truth_valued_p
619 (truth_not @0))
620
621 (match (logical_inverted_value @0)
622 (bit_not truth_valued_p@0))
623 (match (logical_inverted_value @0)
624 (eq @0 integer_zerop))
625 (match (logical_inverted_value @0)
626 (ne truth_valued_p@0 integer_truep))
627 (match (logical_inverted_value @0)
628 (bit_xor truth_valued_p@0 integer_truep))
629
630 /* X & !X -> 0. */
631 (simplify
632 (bit_and:c @0 (logical_inverted_value @0))
633 { build_zero_cst (type); })
634 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
635 (for op (bit_ior bit_xor)
636 (simplify
637 (op:c truth_valued_p@0 (logical_inverted_value @0))
638 { constant_boolean_node (true, type); }))
639 /* X ==/!= !X is false/true. */
640 (for op (eq ne)
641 (simplify
642 (op:c truth_valued_p@0 (logical_inverted_value @0))
643 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
644
645 /* If arg1 and arg2 are booleans (or any single bit type)
646 then try to simplify:
647
648 (~X & Y) -> X < Y
649 (X & ~Y) -> Y < X
650 (~X | Y) -> X <= Y
651 (X | ~Y) -> Y <= X
652
653 But only do this if our result feeds into a comparison as
654 this transformation is not always a win, particularly on
655 targets with and-not instructions.
656 -> simplify_bitwise_binary_boolean */
657 (simplify
658 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
659 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
660 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
661 (lt @0 @1)))
662 (simplify
663 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
664 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
665 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
666 (le @0 @1)))
667
668 /* ~~x -> x */
669 (simplify
670 (bit_not (bit_not @0))
671 @0)
672
673 /* Convert ~ (-A) to A - 1. */
674 (simplify
675 (bit_not (convert? (negate @0)))
676 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
677 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
678
679 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
680 (simplify
681 (bit_not (convert? (minus @0 integer_each_onep)))
682 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
683 (convert (negate @0))))
684 (simplify
685 (bit_not (convert? (plus @0 integer_all_onesp)))
686 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
687 (convert (negate @0))))
688
689 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
690 (simplify
691 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
692 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
693 (convert (bit_xor @0 (bit_not @1)))))
694 (simplify
695 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
696 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
697 (convert (bit_xor @0 @1))))
698
699 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
700 (simplify
701 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
702 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
703
704 /* Fold A - (A & B) into ~B & A. */
705 (simplify
706 (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
707 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
708 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
709 (convert (bit_and (bit_not @1) @0))))
710
711 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
712 (simplify
713 (pointer_plus (pointer_plus:s @0 @1) @3)
714 (pointer_plus @0 (plus @1 @3)))
715
716 /* Pattern match
717 tem1 = (long) ptr1;
718 tem2 = (long) ptr2;
719 tem3 = tem2 - tem1;
720 tem4 = (unsigned long) tem3;
721 tem5 = ptr1 + tem4;
722 and produce
723 tem5 = ptr2; */
724 (simplify
725 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
726 /* Conditionally look through a sign-changing conversion. */
727 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
728 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
729 || (GENERIC && type == TREE_TYPE (@1))))
730 @1))
731
732 /* Pattern match
733 tem = (sizetype) ptr;
734 tem = tem & algn;
735 tem = -tem;
736 ... = ptr p+ tem;
737 and produce the simpler and easier to analyze with respect to alignment
738 ... = ptr & ~algn; */
739 (simplify
740 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
741 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
742 (bit_and @0 { algn; })))
743
744 /* Try folding difference of addresses. */
745 (simplify
746 (minus (convert ADDR_EXPR@0) (convert @1))
747 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
748 (with { HOST_WIDE_INT diff; }
749 (if (ptr_difference_const (@0, @1, &diff))
750 { build_int_cst_type (type, diff); }))))
751 (simplify
752 (minus (convert @0) (convert ADDR_EXPR@1))
753 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
754 (with { HOST_WIDE_INT diff; }
755 (if (ptr_difference_const (@0, @1, &diff))
756 { build_int_cst_type (type, diff); }))))
757
758 /* If arg0 is derived from the address of an object or function, we may
759 be able to fold this expression using the object or function's
760 alignment. */
761 (simplify
762 (bit_and (convert? @0) INTEGER_CST@1)
763 (if (POINTER_TYPE_P (TREE_TYPE (@0))
764 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
765 (with
766 {
767 unsigned int align;
768 unsigned HOST_WIDE_INT bitpos;
769 get_pointer_alignment_1 (@0, &align, &bitpos);
770 }
771 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
772 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
773
774
775 /* We can't reassociate at all for saturating types. */
776 (if (!TYPE_SATURATING (type))
777
778 /* Contract negates. */
779 /* A + (-B) -> A - B */
780 (simplify
781 (plus:c (convert1? @0) (convert2? (negate @1)))
782 /* Apply STRIP_NOPS on @0 and the negate. */
783 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
784 && tree_nop_conversion_p (type, TREE_TYPE (@1))
785 && !TYPE_OVERFLOW_SANITIZED (type))
786 (minus (convert @0) (convert @1))))
787 /* A - (-B) -> A + B */
788 (simplify
789 (minus (convert1? @0) (convert2? (negate @1)))
790 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
791 && tree_nop_conversion_p (type, TREE_TYPE (@1))
792 && !TYPE_OVERFLOW_SANITIZED (type))
793 (plus (convert @0) (convert @1))))
794 /* -(-A) -> A */
795 (simplify
796 (negate (convert? (negate @1)))
797 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
798 && !TYPE_OVERFLOW_SANITIZED (type))
799 (convert @1)))
800
801 /* We can't reassociate floating-point unless -fassociative-math
802 or fixed-point plus or minus because of saturation to +-Inf. */
803 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
804 && !FIXED_POINT_TYPE_P (type))
805
806 /* Match patterns that allow contracting a plus-minus pair
807 irrespective of overflow issues. */
808 /* (A +- B) - A -> +- B */
809 /* (A +- B) -+ B -> A */
810 /* A - (A +- B) -> -+ B */
811 /* A +- (B -+ A) -> +- B */
812 (simplify
813 (minus (plus:c @0 @1) @0)
814 @1)
815 (simplify
816 (minus (minus @0 @1) @0)
817 (negate @1))
818 (simplify
819 (plus:c (minus @0 @1) @1)
820 @0)
821 (simplify
822 (minus @0 (plus:c @0 @1))
823 (negate @1))
824 (simplify
825 (minus @0 (minus @0 @1))
826 @1)
827
828 /* (A +- CST) +- CST -> A + CST */
829 (for outer_op (plus minus)
830 (for inner_op (plus minus)
831 (simplify
832 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
833 /* If the constant operation overflows we cannot do the transform
834 as we would introduce undefined overflow, for example
835 with (a - 1) + INT_MIN. */
836 (with { tree cst = fold_binary (outer_op == inner_op
837 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
838 (if (cst && !TREE_OVERFLOW (cst))
839 (inner_op @0 { cst; } ))))))
840
841 /* (CST - A) +- CST -> CST - A */
842 (for outer_op (plus minus)
843 (simplify
844 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
845 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
846 (if (cst && !TREE_OVERFLOW (cst))
847 (minus { cst; } @0)))))
848
849 /* ~A + A -> -1 */
850 (simplify
851 (plus:c (bit_not @0) @0)
852 (if (!TYPE_OVERFLOW_TRAPS (type))
853 { build_all_ones_cst (type); }))
854
855 /* ~A + 1 -> -A */
856 (simplify
857 (plus (convert? (bit_not @0)) integer_each_onep)
858 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
859 (negate (convert @0))))
860
861 /* -A - 1 -> ~A */
862 (simplify
863 (minus (convert? (negate @0)) integer_each_onep)
864 (if (!TYPE_OVERFLOW_TRAPS (type)
865 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
866 (bit_not (convert @0))))
867
868 /* -1 - A -> ~A */
869 (simplify
870 (minus integer_all_onesp @0)
871 (bit_not @0))
872
873 /* (T)(P + A) - (T)P -> (T) A */
874 (for add (plus pointer_plus)
875 (simplify
876 (minus (convert (add @0 @1))
877 (convert @0))
878 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
879 /* For integer types, if A has a smaller type
880 than T the result depends on the possible
881 overflow in P + A.
882 E.g. T=size_t, A=(unsigned)429497295, P>0.
883 However, if an overflow in P + A would cause
884 undefined behavior, we can assume that there
885 is no overflow. */
886 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
887 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
888 /* For pointer types, if the conversion of A to the
889 final type requires a sign- or zero-extension,
890 then we have to punt - it is not defined which
891 one is correct. */
892 || (POINTER_TYPE_P (TREE_TYPE (@0))
893 && TREE_CODE (@1) == INTEGER_CST
894 && tree_int_cst_sign_bit (@1) == 0))
895 (convert @1))))))
896
897
898 /* Simplifications of MIN_EXPR and MAX_EXPR. */
899
900 (for minmax (min max)
901 (simplify
902 (minmax @0 @0)
903 @0))
904 (simplify
905 (min @0 @1)
906 (if (INTEGRAL_TYPE_P (type)
907 && TYPE_MIN_VALUE (type)
908 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
909 @1))
910 (simplify
911 (max @0 @1)
912 (if (INTEGRAL_TYPE_P (type)
913 && TYPE_MAX_VALUE (type)
914 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
915 @1))
916
917
918 /* Simplifications of shift and rotates. */
919
920 (for rotate (lrotate rrotate)
921 (simplify
922 (rotate integer_all_onesp@0 @1)
923 @0))
924
925 /* Optimize -1 >> x for arithmetic right shifts. */
926 (simplify
927 (rshift integer_all_onesp@0 @1)
928 (if (!TYPE_UNSIGNED (type)
929 && tree_expr_nonnegative_p (@1))
930 @0))
931
932 (for shiftrotate (lrotate rrotate lshift rshift)
933 (simplify
934 (shiftrotate @0 integer_zerop)
935 (non_lvalue @0))
936 (simplify
937 (shiftrotate integer_zerop@0 @1)
938 @0)
939 /* Prefer vector1 << scalar to vector1 << vector2
940 if vector2 is uniform. */
941 (for vec (VECTOR_CST CONSTRUCTOR)
942 (simplify
943 (shiftrotate @0 vec@1)
944 (with { tree tem = uniform_vector_p (@1); }
945 (if (tem)
946 (shiftrotate @0 { tem; }))))))
947
948 /* Rewrite an LROTATE_EXPR by a constant into an
949 RROTATE_EXPR by a new constant. */
950 (simplify
951 (lrotate @0 INTEGER_CST@1)
952 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
953 build_int_cst (TREE_TYPE (@1),
954 element_precision (type)), @1); }))
955
956 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
957 (for op (lrotate rrotate rshift lshift)
958 (simplify
959 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
960 (with { unsigned int prec = element_precision (type); }
961 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
962 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
963 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
964 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
965 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
966 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
967 being well defined. */
968 (if (low >= prec)
969 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
970 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
971 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
972 { build_zero_cst (type); }
973 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
974 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
975
976
977 /* ((1 << A) & 1) != 0 -> A == 0
978 ((1 << A) & 1) == 0 -> A != 0 */
979 (for cmp (ne eq)
980 icmp (eq ne)
981 (simplify
982 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
983 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
984
985 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
986 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
987 if CST2 != 0. */
988 (for cmp (ne eq)
989 (simplify
990 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
991 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
992 (if (cand < 0
993 || (!integer_zerop (@2)
994 && wi::ne_p (wi::lshift (@0, cand), @2)))
995 { constant_boolean_node (cmp == NE_EXPR, type); }
996 (if (!integer_zerop (@2)
997 && wi::eq_p (wi::lshift (@0, cand), @2))
998 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
999
1000 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1001 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1002 if the new mask might be further optimized. */
1003 (for shift (lshift rshift)
1004 (simplify
1005 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1006 INTEGER_CST@2)
1007 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1008 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1009 && tree_fits_uhwi_p (@1)
1010 && tree_to_uhwi (@1) > 0
1011 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1012 (with
1013 {
1014 unsigned int shiftc = tree_to_uhwi (@1);
1015 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1016 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1017 tree shift_type = TREE_TYPE (@3);
1018 unsigned int prec;
1019
1020 if (shift == LSHIFT_EXPR)
1021 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
1022 else if (shift == RSHIFT_EXPR
1023 && (TYPE_PRECISION (shift_type)
1024 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1025 {
1026 prec = TYPE_PRECISION (TREE_TYPE (@3));
1027 tree arg00 = @0;
1028 /* See if more bits can be proven as zero because of
1029 zero extension. */
1030 if (@3 != @0
1031 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1032 {
1033 tree inner_type = TREE_TYPE (@0);
1034 if ((TYPE_PRECISION (inner_type)
1035 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1036 && TYPE_PRECISION (inner_type) < prec)
1037 {
1038 prec = TYPE_PRECISION (inner_type);
1039 /* See if we can shorten the right shift. */
1040 if (shiftc < prec)
1041 shift_type = inner_type;
1042 /* Otherwise X >> C1 is all zeros, so we'll optimize
1043 it into (X, 0) later on by making sure zerobits
1044 is all ones. */
1045 }
1046 }
1047 zerobits = ~(unsigned HOST_WIDE_INT) 0;
1048 if (shiftc < prec)
1049 {
1050 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1051 zerobits <<= prec - shiftc;
1052 }
1053 /* For arithmetic shift if sign bit could be set, zerobits
1054 can contain actually sign bits, so no transformation is
1055 possible, unless MASK masks them all away. In that
1056 case the shift needs to be converted into logical shift. */
1057 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1058 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1059 {
1060 if ((mask & zerobits) == 0)
1061 shift_type = unsigned_type_for (TREE_TYPE (@3));
1062 else
1063 zerobits = 0;
1064 }
1065 }
1066 }
1067 /* ((X << 16) & 0xff00) is (X, 0). */
1068 (if ((mask & zerobits) == mask)
1069 { build_int_cst (type, 0); }
1070 (with { newmask = mask | zerobits; }
1071 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1072 (with
1073 {
1074 /* Only do the transformation if NEWMASK is some integer
1075 mode's mask. */
1076 for (prec = BITS_PER_UNIT;
1077 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1078 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1079 break;
1080 }
1081 (if (prec < HOST_BITS_PER_WIDE_INT
1082 || newmask == ~(unsigned HOST_WIDE_INT) 0)
1083 (with
1084 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1085 (if (!tree_int_cst_equal (newmaskt, @2))
1086 (if (shift_type != TREE_TYPE (@3))
1087 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1088 (bit_and @4 { newmaskt; })))))))))))))
1089
1090 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
1091 (X & C2) >> C1 into (X >> C1) & (C2 >> C1). */
1092 (for shift (lshift rshift)
1093 (simplify
1094 (shift (convert?:s (bit_and:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1095 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1096 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1097 (bit_and (shift (convert @0) @1) { mask; })))))
1098
1099
1100 /* Simplifications of conversions. */
1101
1102 /* Basic strip-useless-type-conversions / strip_nops. */
1103 (for cvt (convert view_convert float fix_trunc)
1104 (simplify
1105 (cvt @0)
1106 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1107 || (GENERIC && type == TREE_TYPE (@0)))
1108 @0)))
1109
1110 /* Contract view-conversions. */
1111 (simplify
1112 (view_convert (view_convert @0))
1113 (view_convert @0))
1114
1115 /* For integral conversions with the same precision or pointer
1116 conversions use a NOP_EXPR instead. */
1117 (simplify
1118 (view_convert @0)
1119 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1120 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1121 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1122 (convert @0)))
1123
1124 /* Strip inner integral conversions that do not change precision or size. */
1125 (simplify
1126 (view_convert (convert@0 @1))
1127 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1128 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1129 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1130 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1131 (view_convert @1)))
1132
1133 /* Re-association barriers around constants and other re-association
1134 barriers can be removed. */
1135 (simplify
1136 (paren CONSTANT_CLASS_P@0)
1137 @0)
1138 (simplify
1139 (paren (paren@1 @0))
1140 @1)
1141
1142 /* Handle cases of two conversions in a row. */
1143 (for ocvt (convert float fix_trunc)
1144 (for icvt (convert float)
1145 (simplify
1146 (ocvt (icvt@1 @0))
1147 (with
1148 {
1149 tree inside_type = TREE_TYPE (@0);
1150 tree inter_type = TREE_TYPE (@1);
1151 int inside_int = INTEGRAL_TYPE_P (inside_type);
1152 int inside_ptr = POINTER_TYPE_P (inside_type);
1153 int inside_float = FLOAT_TYPE_P (inside_type);
1154 int inside_vec = VECTOR_TYPE_P (inside_type);
1155 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1156 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1157 int inter_int = INTEGRAL_TYPE_P (inter_type);
1158 int inter_ptr = POINTER_TYPE_P (inter_type);
1159 int inter_float = FLOAT_TYPE_P (inter_type);
1160 int inter_vec = VECTOR_TYPE_P (inter_type);
1161 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1162 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1163 int final_int = INTEGRAL_TYPE_P (type);
1164 int final_ptr = POINTER_TYPE_P (type);
1165 int final_float = FLOAT_TYPE_P (type);
1166 int final_vec = VECTOR_TYPE_P (type);
1167 unsigned int final_prec = TYPE_PRECISION (type);
1168 int final_unsignedp = TYPE_UNSIGNED (type);
1169 }
1170 (switch
1171 /* In addition to the cases of two conversions in a row
1172 handled below, if we are converting something to its own
1173 type via an object of identical or wider precision, neither
1174 conversion is needed. */
1175 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1176 || (GENERIC
1177 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1178 && (((inter_int || inter_ptr) && final_int)
1179 || (inter_float && final_float))
1180 && inter_prec >= final_prec)
1181 (ocvt @0))
1182
1183 /* Likewise, if the intermediate and initial types are either both
1184 float or both integer, we don't need the middle conversion if the
1185 former is wider than the latter and doesn't change the signedness
1186 (for integers). Avoid this if the final type is a pointer since
1187 then we sometimes need the middle conversion. Likewise if the
1188 final type has a precision not equal to the size of its mode. */
1189 (if (((inter_int && inside_int) || (inter_float && inside_float))
1190 && (final_int || final_float)
1191 && inter_prec >= inside_prec
1192 && (inter_float || inter_unsignedp == inside_unsignedp)
1193 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1194 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1195 (ocvt @0))
1196
1197 /* If we have a sign-extension of a zero-extended value, we can
1198 replace that by a single zero-extension. Likewise if the
1199 final conversion does not change precision we can drop the
1200 intermediate conversion. */
1201 (if (inside_int && inter_int && final_int
1202 && ((inside_prec < inter_prec && inter_prec < final_prec
1203 && inside_unsignedp && !inter_unsignedp)
1204 || final_prec == inter_prec))
1205 (ocvt @0))
1206
1207 /* Two conversions in a row are not needed unless:
1208 - some conversion is floating-point (overstrict for now), or
1209 - some conversion is a vector (overstrict for now), or
1210 - the intermediate type is narrower than both initial and
1211 final, or
1212 - the intermediate type and innermost type differ in signedness,
1213 and the outermost type is wider than the intermediate, or
1214 - the initial type is a pointer type and the precisions of the
1215 intermediate and final types differ, or
1216 - the final type is a pointer type and the precisions of the
1217 initial and intermediate types differ. */
1218 (if (! inside_float && ! inter_float && ! final_float
1219 && ! inside_vec && ! inter_vec && ! final_vec
1220 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1221 && ! (inside_int && inter_int
1222 && inter_unsignedp != inside_unsignedp
1223 && inter_prec < final_prec)
1224 && ((inter_unsignedp && inter_prec > inside_prec)
1225 == (final_unsignedp && final_prec > inter_prec))
1226 && ! (inside_ptr && inter_prec != final_prec)
1227 && ! (final_ptr && inside_prec != inter_prec)
1228 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1229 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1230 (ocvt @0))
1231
1232 /* A truncation to an unsigned type (a zero-extension) should be
1233 canonicalized as bitwise and of a mask. */
1234 (if (final_int && inter_int && inside_int
1235 && final_prec == inside_prec
1236 && final_prec > inter_prec
1237 && inter_unsignedp)
1238 (convert (bit_and @0 { wide_int_to_tree
1239 (inside_type,
1240 wi::mask (inter_prec, false,
1241 TYPE_PRECISION (inside_type))); })))
1242
1243 /* If we are converting an integer to a floating-point that can
1244 represent it exactly and back to an integer, we can skip the
1245 floating-point conversion. */
1246 (if (GIMPLE /* PR66211 */
1247 && inside_int && inter_float && final_int &&
1248 (unsigned) significand_size (TYPE_MODE (inter_type))
1249 >= inside_prec - !inside_unsignedp)
1250 (convert @0)))))))
1251
1252 /* If we have a narrowing conversion to an integral type that is fed by a
1253 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1254 masks off bits outside the final type (and nothing else). */
1255 (simplify
1256 (convert (bit_and @0 INTEGER_CST@1))
1257 (if (INTEGRAL_TYPE_P (type)
1258 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1259 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1260 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1261 TYPE_PRECISION (type)), 0))
1262 (convert @0)))
1263
1264
1265 /* (X /[ex] A) * A -> X. */
1266 (simplify
1267 (mult (convert? (exact_div @0 @1)) @1)
1268 /* Look through a sign-changing conversion. */
1269 (convert @0))
1270
1271 /* Canonicalization of binary operations. */
1272
1273 /* Convert X + -C into X - C. */
1274 (simplify
1275 (plus @0 REAL_CST@1)
1276 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1277 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1278 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1279 (minus @0 { tem; })))))
1280
1281 /* Convert x+x into x*2.0. */
1282 (simplify
1283 (plus @0 @0)
1284 (if (SCALAR_FLOAT_TYPE_P (type))
1285 (mult @0 { build_real (type, dconst2); })))
1286
1287 (simplify
1288 (minus integer_zerop @1)
1289 (negate @1))
1290
1291 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1292 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1293 (-ARG1 + ARG0) reduces to -ARG1. */
1294 (simplify
1295 (minus real_zerop@0 @1)
1296 (if (fold_real_zero_addition_p (type, @0, 0))
1297 (negate @1)))
1298
1299 /* Transform x * -1 into -x. */
1300 (simplify
1301 (mult @0 integer_minus_onep)
1302 (negate @0))
1303
1304 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1305 (simplify
1306 (complex (realpart @0) (imagpart @0))
1307 @0)
1308 (simplify
1309 (realpart (complex @0 @1))
1310 @0)
1311 (simplify
1312 (imagpart (complex @0 @1))
1313 @1)
1314
1315
1316 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1317 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1318 (simplify
1319 (bswap (bswap @0))
1320 @0)
1321 (simplify
1322 (bswap (bit_not (bswap @0)))
1323 (bit_not @0))
1324 (for bitop (bit_xor bit_ior bit_and)
1325 (simplify
1326 (bswap (bitop:c (bswap @0) @1))
1327 (bitop @0 (bswap @1)))))
1328
1329
1330 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1331
1332 /* Simplify constant conditions.
1333 Only optimize constant conditions when the selected branch
1334 has the same type as the COND_EXPR. This avoids optimizing
1335 away "c ? x : throw", where the throw has a void type.
1336 Note that we cannot throw away the fold-const.c variant nor
1337 this one as we depend on doing this transform before possibly
1338 A ? B : B -> B triggers and the fold-const.c one can optimize
1339 0 ? A : B to B even if A has side-effects. Something
1340 genmatch cannot handle. */
1341 (simplify
1342 (cond INTEGER_CST@0 @1 @2)
1343 (if (integer_zerop (@0))
1344 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1345 @2)
1346 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1347 @1)))
1348 (simplify
1349 (vec_cond VECTOR_CST@0 @1 @2)
1350 (if (integer_all_onesp (@0))
1351 @1
1352 (if (integer_zerop (@0))
1353 @2)))
1354
1355 (for cnd (cond vec_cond)
1356 /* A ? B : (A ? X : C) -> A ? B : C. */
1357 (simplify
1358 (cnd @0 (cnd @0 @1 @2) @3)
1359 (cnd @0 @1 @3))
1360 (simplify
1361 (cnd @0 @1 (cnd @0 @2 @3))
1362 (cnd @0 @1 @3))
1363
1364 /* A ? B : B -> B. */
1365 (simplify
1366 (cnd @0 @1 @1)
1367 @1)
1368
1369 /* !A ? B : C -> A ? C : B. */
1370 (simplify
1371 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1372 (cnd @0 @2 @1)))
1373
1374 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1375 return all-1 or all-0 results. */
1376 /* ??? We could instead convert all instances of the vec_cond to negate,
1377 but that isn't necessarily a win on its own. */
1378 (simplify
1379 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1380 (if (VECTOR_TYPE_P (type)
1381 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1382 && (TYPE_MODE (TREE_TYPE (type))
1383 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1384 (minus @3 (view_convert @0))))
1385
1386 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1387 (simplify
1388 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1389 (if (VECTOR_TYPE_P (type)
1390 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1391 && (TYPE_MODE (TREE_TYPE (type))
1392 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1393 (plus @3 (view_convert @0))))
1394
1395
1396 /* Simplifications of comparisons. */
1397
1398 /* See if we can reduce the magnitude of a constant involved in a
1399 comparison by changing the comparison code. This is a canonicalization
1400 formerly done by maybe_canonicalize_comparison_1. */
1401 (for cmp (le gt)
1402 acmp (lt ge)
1403 (simplify
1404 (cmp @0 INTEGER_CST@1)
1405 (if (tree_int_cst_sgn (@1) == -1)
1406 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1407 (for cmp (ge lt)
1408 acmp (gt le)
1409 (simplify
1410 (cmp @0 INTEGER_CST@1)
1411 (if (tree_int_cst_sgn (@1) == 1)
1412 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1413
1414
1415 /* We can simplify a logical negation of a comparison to the
1416 inverted comparison. As we cannot compute an expression
1417 operator using invert_tree_comparison we have to simulate
1418 that with expression code iteration. */
1419 (for cmp (tcc_comparison)
1420 icmp (inverted_tcc_comparison)
1421 ncmp (inverted_tcc_comparison_with_nans)
1422 /* Ideally we'd like to combine the following two patterns
1423 and handle some more cases by using
1424 (logical_inverted_value (cmp @0 @1))
1425 here but for that genmatch would need to "inline" that.
1426 For now implement what forward_propagate_comparison did. */
1427 (simplify
1428 (bit_not (cmp @0 @1))
1429 (if (VECTOR_TYPE_P (type)
1430 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1431 /* Comparison inversion may be impossible for trapping math,
1432 invert_tree_comparison will tell us. But we can't use
1433 a computed operator in the replacement tree thus we have
1434 to play the trick below. */
1435 (with { enum tree_code ic = invert_tree_comparison
1436 (cmp, HONOR_NANS (@0)); }
1437 (if (ic == icmp)
1438 (icmp @0 @1)
1439 (if (ic == ncmp)
1440 (ncmp @0 @1))))))
1441 (simplify
1442 (bit_xor (cmp @0 @1) integer_truep)
1443 (with { enum tree_code ic = invert_tree_comparison
1444 (cmp, HONOR_NANS (@0)); }
1445 (if (ic == icmp)
1446 (icmp @0 @1)
1447 (if (ic == ncmp)
1448 (ncmp @0 @1))))))
1449
1450 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1451 ??? The transformation is valid for the other operators if overflow
1452 is undefined for the type, but performing it here badly interacts
1453 with the transformation in fold_cond_expr_with_comparison which
1454 attempts to synthetize ABS_EXPR. */
1455 (for cmp (eq ne)
1456 (simplify
1457 (cmp (minus@2 @0 @1) integer_zerop)
1458 (if (single_use (@2))
1459 (cmp @0 @1))))
1460
1461 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1462 signed arithmetic case. That form is created by the compiler
1463 often enough for folding it to be of value. One example is in
1464 computing loop trip counts after Operator Strength Reduction. */
1465 (for cmp (simple_comparison)
1466 scmp (swapped_simple_comparison)
1467 (simplify
1468 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1469 /* Handle unfolded multiplication by zero. */
1470 (if (integer_zerop (@1))
1471 (cmp @1 @2)
1472 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1473 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1474 /* If @1 is negative we swap the sense of the comparison. */
1475 (if (tree_int_cst_sgn (@1) < 0)
1476 (scmp @0 @2)
1477 (cmp @0 @2))))))
1478
1479 /* Simplify comparison of something with itself. For IEEE
1480 floating-point, we can only do some of these simplifications. */
1481 (simplify
1482 (eq @0 @0)
1483 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1484 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1485 { constant_boolean_node (true, type); }))
1486 (for cmp (ge le)
1487 (simplify
1488 (cmp @0 @0)
1489 (eq @0 @0)))
1490 (for cmp (ne gt lt)
1491 (simplify
1492 (cmp @0 @0)
1493 (if (cmp != NE_EXPR
1494 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1495 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1496 { constant_boolean_node (false, type); })))
1497 (for cmp (unle unge uneq)
1498 (simplify
1499 (cmp @0 @0)
1500 { constant_boolean_node (true, type); }))
1501 (simplify
1502 (ltgt @0 @0)
1503 (if (!flag_trapping_math)
1504 { constant_boolean_node (false, type); }))
1505
1506 /* Fold ~X op ~Y as Y op X. */
1507 (for cmp (simple_comparison)
1508 (simplify
1509 (cmp (bit_not @0) (bit_not @1))
1510 (cmp @1 @0)))
1511
1512 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1513 (for cmp (simple_comparison)
1514 scmp (swapped_simple_comparison)
1515 (simplify
1516 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1517 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1518 (scmp @0 (bit_not @1)))))
1519
1520 (for cmp (simple_comparison)
1521 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1522 (simplify
1523 (cmp (convert@2 @0) (convert? @1))
1524 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1525 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1526 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1527 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1528 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1529 (with
1530 {
1531 tree type1 = TREE_TYPE (@1);
1532 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1533 {
1534 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1535 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1536 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1537 type1 = float_type_node;
1538 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1539 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1540 type1 = double_type_node;
1541 }
1542 tree newtype
1543 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1544 ? TREE_TYPE (@0) : type1);
1545 }
1546 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1547 (cmp (convert:newtype @0) (convert:newtype @1))))))
1548
1549 (simplify
1550 (cmp @0 REAL_CST@1)
1551 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1552 (switch
1553 /* a CMP (-0) -> a CMP 0 */
1554 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1555 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1556 /* x != NaN is always true, other ops are always false. */
1557 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1558 && ! HONOR_SNANS (@1))
1559 { constant_boolean_node (cmp == NE_EXPR, type); })
1560 /* Fold comparisons against infinity. */
1561 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1562 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1563 (with
1564 {
1565 REAL_VALUE_TYPE max;
1566 enum tree_code code = cmp;
1567 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1568 if (neg)
1569 code = swap_tree_comparison (code);
1570 }
1571 (switch
1572 /* x > +Inf is always false, if with ignore sNANs. */
1573 (if (code == GT_EXPR
1574 && ! HONOR_SNANS (@0))
1575 { constant_boolean_node (false, type); })
1576 (if (code == LE_EXPR)
1577 /* x <= +Inf is always true, if we don't case about NaNs. */
1578 (if (! HONOR_NANS (@0))
1579 { constant_boolean_node (true, type); }
1580 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
1581 (eq @0 @0)))
1582 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1583 (if (code == EQ_EXPR || code == GE_EXPR)
1584 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1585 (if (neg)
1586 (lt @0 { build_real (TREE_TYPE (@0), max); })
1587 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
1588 /* x < +Inf is always equal to x <= DBL_MAX. */
1589 (if (code == LT_EXPR)
1590 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1591 (if (neg)
1592 (ge @0 { build_real (TREE_TYPE (@0), max); })
1593 (le @0 { build_real (TREE_TYPE (@0), max); }))))
1594 /* x != +Inf is always equal to !(x > DBL_MAX). */
1595 (if (code == NE_EXPR)
1596 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1597 (if (! HONOR_NANS (@0))
1598 (if (neg)
1599 (ge @0 { build_real (TREE_TYPE (@0), max); })
1600 (le @0 { build_real (TREE_TYPE (@0), max); }))
1601 (if (neg)
1602 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1603 { build_one_cst (type); })
1604 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1605 { build_one_cst (type); }))))))))))
1606
1607 /* If this is a comparison of a real constant with a PLUS_EXPR
1608 or a MINUS_EXPR of a real constant, we can convert it into a
1609 comparison with a revised real constant as long as no overflow
1610 occurs when unsafe_math_optimizations are enabled. */
1611 (if (flag_unsafe_math_optimizations)
1612 (for op (plus minus)
1613 (simplify
1614 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1615 (with
1616 {
1617 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1618 TREE_TYPE (@1), @2, @1);
1619 }
1620 (if (tem && !TREE_OVERFLOW (tem))
1621 (cmp @0 { tem; }))))))
1622
1623 /* Likewise, we can simplify a comparison of a real constant with
1624 a MINUS_EXPR whose first operand is also a real constant, i.e.
1625 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1626 floating-point types only if -fassociative-math is set. */
1627 (if (flag_associative_math)
1628 (simplify
1629 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
1630 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1631 (if (tem && !TREE_OVERFLOW (tem))
1632 (cmp { tem; } @1)))))
1633
1634 /* Fold comparisons against built-in math functions. */
1635 (if (flag_unsafe_math_optimizations
1636 && ! flag_errno_math)
1637 (for sq (SQRT)
1638 (simplify
1639 (cmp (sq @0) REAL_CST@1)
1640 (switch
1641 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1642 (switch
1643 /* sqrt(x) < y is always false, if y is negative. */
1644 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1645 { constant_boolean_node (false, type); })
1646 /* sqrt(x) > y is always true, if y is negative and we
1647 don't care about NaNs, i.e. negative values of x. */
1648 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1649 { constant_boolean_node (true, type); })
1650 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1651 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
1652 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1653 (with
1654 {
1655 REAL_VALUE_TYPE c2;
1656 REAL_ARITHMETIC (c2, MULT_EXPR,
1657 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1658 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1659 }
1660 (if (REAL_VALUE_ISINF (c2))
1661 /* sqrt(x) > y is x == +Inf, when y is very large. */
1662 (if (HONOR_INFINITIES (@0))
1663 (eq @0 { build_real (TREE_TYPE (@0), c2); })
1664 { constant_boolean_node (false, type); })
1665 /* sqrt(x) > c is the same as x > c*c. */
1666 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
1667 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1668 (with
1669 {
1670 REAL_VALUE_TYPE c2;
1671 REAL_ARITHMETIC (c2, MULT_EXPR,
1672 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1673 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1674 }
1675 (if (REAL_VALUE_ISINF (c2))
1676 (switch
1677 /* sqrt(x) < y is always true, when y is a very large
1678 value and we don't care about NaNs or Infinities. */
1679 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1680 { constant_boolean_node (true, type); })
1681 /* sqrt(x) < y is x != +Inf when y is very large and we
1682 don't care about NaNs. */
1683 (if (! HONOR_NANS (@0))
1684 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1685 /* sqrt(x) < y is x >= 0 when y is very large and we
1686 don't care about Infinities. */
1687 (if (! HONOR_INFINITIES (@0))
1688 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1689 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1690 (if (GENERIC)
1691 (truth_andif
1692 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1693 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1694 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1695 (if (! HONOR_NANS (@0))
1696 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
1697 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1698 (if (GENERIC)
1699 (truth_andif
1700 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1701 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
1702
1703 /* Unordered tests if either argument is a NaN. */
1704 (simplify
1705 (bit_ior (unordered @0 @0) (unordered @1 @1))
1706 (if (types_match (@0, @1))
1707 (unordered @0 @1)))
1708 (simplify
1709 (bit_and (ordered @0 @0) (ordered @1 @1))
1710 (if (types_match (@0, @1))
1711 (ordered @0 @1)))
1712 (simplify
1713 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1714 @2)
1715 (simplify
1716 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1717 @2)
1718
1719 /* -A CMP -B -> B CMP A. */
1720 (for cmp (tcc_comparison)
1721 scmp (swapped_tcc_comparison)
1722 (simplify
1723 (cmp (negate @0) (negate @1))
1724 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1725 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1726 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1727 (scmp @0 @1)))
1728 (simplify
1729 (cmp (negate @0) CONSTANT_CLASS_P@1)
1730 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1731 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1732 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1733 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1734 (if (tem && !TREE_OVERFLOW (tem))
1735 (scmp @0 { tem; }))))))
1736
1737 /* From fold_sign_changed_comparison and fold_widened_comparison. */
1738 (for cmp (simple_comparison)
1739 (simplify
1740 (cmp (convert@0 @00) (convert?@1 @10))
1741 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
1742 /* Disable this optimization if we're casting a function pointer
1743 type on targets that require function pointer canonicalization. */
1744 && !(targetm.have_canonicalize_funcptr_for_compare ()
1745 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
1746 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
1747 && single_use (@0))
1748 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
1749 && (TREE_CODE (@10) == INTEGER_CST
1750 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
1751 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
1752 || cmp == NE_EXPR
1753 || cmp == EQ_EXPR)
1754 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
1755 /* ??? The special-casing of INTEGER_CST conversion was in the original
1756 code and here to avoid a spurious overflow flag on the resulting
1757 constant which fold_convert produces. */
1758 (if (TREE_CODE (@1) == INTEGER_CST)
1759 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
1760 TREE_OVERFLOW (@1)); })
1761 (cmp @00 (convert @1)))
1762
1763 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
1764 /* If possible, express the comparison in the shorter mode. */
1765 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
1766 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
1767 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
1768 || ((TYPE_PRECISION (TREE_TYPE (@00))
1769 >= TYPE_PRECISION (TREE_TYPE (@10)))
1770 && (TYPE_UNSIGNED (TREE_TYPE (@00))
1771 == TYPE_UNSIGNED (TREE_TYPE (@10))))
1772 || (TREE_CODE (@10) == INTEGER_CST
1773 && (TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1774 || TREE_CODE (TREE_TYPE (@00)) == BOOLEAN_TYPE)
1775 && int_fits_type_p (@10, TREE_TYPE (@00)))))
1776 (cmp @00 (convert @10))
1777 (if (TREE_CODE (@10) == INTEGER_CST
1778 && TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1779 && !int_fits_type_p (@10, TREE_TYPE (@00)))
1780 (with
1781 {
1782 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1783 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1784 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
1785 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
1786 }
1787 (if (above || below)
1788 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
1789 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
1790 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1791 { constant_boolean_node (above ? true : false, type); }
1792 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1793 { constant_boolean_node (above ? false : true, type); }))))))))))))
1794
1795 (for cmp (eq ne)
1796 /* A local variable can never be pointed to by
1797 the default SSA name of an incoming parameter.
1798 SSA names are canonicalized to 2nd place. */
1799 (simplify
1800 (cmp addr@0 SSA_NAME@1)
1801 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
1802 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
1803 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
1804 (if (TREE_CODE (base) == VAR_DECL
1805 && auto_var_in_fn_p (base, current_function_decl))
1806 (if (cmp == NE_EXPR)
1807 { constant_boolean_node (true, type); }
1808 { constant_boolean_node (false, type); }))))))
1809
1810 /* Equality compare simplifications from fold_binary */
1811 (for cmp (eq ne)
1812
1813 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1814 Similarly for NE_EXPR. */
1815 (simplify
1816 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1817 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1818 && wi::bit_and_not (@1, @2) != 0)
1819 { constant_boolean_node (cmp == NE_EXPR, type); }))
1820
1821 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1822 (simplify
1823 (cmp (bit_xor @0 @1) integer_zerop)
1824 (cmp @0 @1))
1825
1826 /* (X ^ Y) == Y becomes X == 0.
1827 Likewise (X ^ Y) == X becomes Y == 0. */
1828 (simplify
1829 (cmp:c (bit_xor:c @0 @1) @0)
1830 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1831
1832 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1833 (simplify
1834 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1835 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1836 (cmp @0 (bit_xor @1 (convert @2)))))
1837
1838 (simplify
1839 (cmp (convert? addr@0) integer_zerop)
1840 (if (tree_single_nonzero_warnv_p (@0, NULL))
1841 { constant_boolean_node (cmp == NE_EXPR, type); })))
1842
1843 /* When the addresses are not directly of decls compare base and offset.
1844 This implements some remaining parts of fold_comparison address
1845 comparisons but still no complete part of it. Still it is good
1846 enough to make fold_stmt not regress when not dispatching to fold_binary. */
1847 (for cmp (simple_comparison)
1848 (simplify
1849 (cmp (convert1?@2 addr@0) (convert2? addr@1))
1850 (with
1851 {
1852 HOST_WIDE_INT off0, off1;
1853 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
1854 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
1855 if (base0 && TREE_CODE (base0) == MEM_REF)
1856 {
1857 off0 += mem_ref_offset (base0).to_short_addr ();
1858 base0 = TREE_OPERAND (base0, 0);
1859 }
1860 if (base1 && TREE_CODE (base1) == MEM_REF)
1861 {
1862 off1 += mem_ref_offset (base1).to_short_addr ();
1863 base1 = TREE_OPERAND (base1, 0);
1864 }
1865 }
1866 (if (base0 && base1)
1867 (with
1868 {
1869 int equal = 2;
1870 if (decl_in_symtab_p (base0)
1871 && decl_in_symtab_p (base1))
1872 equal = symtab_node::get_create (base0)
1873 ->equal_address_to (symtab_node::get_create (base1));
1874 else if ((DECL_P (base0) || TREE_CODE (base0) == SSA_NAME)
1875 && (DECL_P (base1) || TREE_CODE (base1) == SSA_NAME))
1876 equal = (base0 == base1);
1877 }
1878 (if (equal == 1
1879 && (cmp == EQ_EXPR || cmp == NE_EXPR
1880 /* If the offsets are equal we can ignore overflow. */
1881 || off0 == off1
1882 || POINTER_TYPE_OVERFLOW_UNDEFINED
1883 /* Or if we compare using pointers to decls. */
1884 || (POINTER_TYPE_P (TREE_TYPE (@2))
1885 && DECL_P (base0))))
1886 (switch
1887 (if (cmp == EQ_EXPR)
1888 { constant_boolean_node (off0 == off1, type); })
1889 (if (cmp == NE_EXPR)
1890 { constant_boolean_node (off0 != off1, type); })
1891 (if (cmp == LT_EXPR)
1892 { constant_boolean_node (off0 < off1, type); })
1893 (if (cmp == LE_EXPR)
1894 { constant_boolean_node (off0 <= off1, type); })
1895 (if (cmp == GE_EXPR)
1896 { constant_boolean_node (off0 >= off1, type); })
1897 (if (cmp == GT_EXPR)
1898 { constant_boolean_node (off0 > off1, type); }))
1899 (if (equal == 0
1900 && DECL_P (base0) && DECL_P (base1)
1901 /* If we compare this as integers require equal offset. */
1902 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
1903 || off0 == off1))
1904 (switch
1905 (if (cmp == EQ_EXPR)
1906 { constant_boolean_node (false, type); })
1907 (if (cmp == NE_EXPR)
1908 { constant_boolean_node (true, type); })))))))))
1909
1910 /* Non-equality compare simplifications from fold_binary */
1911 (for cmp (lt gt le ge)
1912 /* Comparisons with the highest or lowest possible integer of
1913 the specified precision will have known values. */
1914 (simplify
1915 (cmp (convert?@2 @0) INTEGER_CST@1)
1916 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1917 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
1918 (with
1919 {
1920 tree arg1_type = TREE_TYPE (@1);
1921 unsigned int prec = TYPE_PRECISION (arg1_type);
1922 wide_int max = wi::max_value (arg1_type);
1923 wide_int signed_max = wi::max_value (prec, SIGNED);
1924 wide_int min = wi::min_value (arg1_type);
1925 }
1926 (switch
1927 (if (wi::eq_p (@1, max))
1928 (switch
1929 (if (cmp == GT_EXPR)
1930 { constant_boolean_node (false, type); })
1931 (if (cmp == GE_EXPR)
1932 (eq @2 @1))
1933 (if (cmp == LE_EXPR)
1934 { constant_boolean_node (true, type); })
1935 (if (cmp == LT_EXPR)
1936 (ne @2 @1))))
1937 (if (wi::eq_p (@1, min))
1938 (switch
1939 (if (cmp == LT_EXPR)
1940 { constant_boolean_node (false, type); })
1941 (if (cmp == LE_EXPR)
1942 (eq @2 @1))
1943 (if (cmp == GE_EXPR)
1944 { constant_boolean_node (true, type); })
1945 (if (cmp == GT_EXPR)
1946 (ne @2 @1))))
1947 (if (wi::eq_p (@1, max - 1))
1948 (switch
1949 (if (cmp == GT_EXPR)
1950 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
1951 (if (cmp == LE_EXPR)
1952 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1953 (if (wi::eq_p (@1, min + 1))
1954 (switch
1955 (if (cmp == GE_EXPR)
1956 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
1957 (if (cmp == LT_EXPR)
1958 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1959 (if (wi::eq_p (@1, signed_max)
1960 && TYPE_UNSIGNED (arg1_type)
1961 /* We will flip the signedness of the comparison operator
1962 associated with the mode of @1, so the sign bit is
1963 specified by this mode. Check that @1 is the signed
1964 max associated with this sign bit. */
1965 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
1966 /* signed_type does not work on pointer types. */
1967 && INTEGRAL_TYPE_P (arg1_type))
1968 /* The following case also applies to X < signed_max+1
1969 and X >= signed_max+1 because previous transformations. */
1970 (if (cmp == LE_EXPR || cmp == GT_EXPR)
1971 (with { tree st = signed_type_for (arg1_type); }
1972 (if (cmp == LE_EXPR)
1973 (ge (convert:st @0) { build_zero_cst (st); })
1974 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
1975
1976 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
1977 /* If the second operand is NaN, the result is constant. */
1978 (simplify
1979 (cmp @0 REAL_CST@1)
1980 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1981 && (cmp != LTGT_EXPR || ! flag_trapping_math))
1982 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
1983 ? false : true, type); })))
1984
1985 /* bool_var != 0 becomes bool_var. */
1986 (simplify
1987 (ne @0 integer_zerop)
1988 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
1989 && types_match (type, TREE_TYPE (@0)))
1990 (non_lvalue @0)))
1991 /* bool_var == 1 becomes bool_var. */
1992 (simplify
1993 (eq @0 integer_onep)
1994 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
1995 && types_match (type, TREE_TYPE (@0)))
1996 (non_lvalue @0)))
1997 /* Do not handle
1998 bool_var == 0 becomes !bool_var or
1999 bool_var != 1 becomes !bool_var
2000 here because that only is good in assignment context as long
2001 as we require a tcc_comparison in GIMPLE_CONDs where we'd
2002 replace if (x == 0) with tem = ~x; if (tem != 0) which is
2003 clearly less optimal and which we'll transform again in forwprop. */
2004
2005
2006 /* Simplification of math builtins. */
2007
2008 /* fold_builtin_logarithm */
2009 (if (flag_unsafe_math_optimizations)
2010
2011 /* Simplify sqrt(x) * sqrt(x) -> x. */
2012 (simplify
2013 (mult (SQRT@1 @0) @1)
2014 (if (!HONOR_SNANS (type))
2015 @0))
2016
2017 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
2018 (simplify
2019 (mult (POW:s @0 @1) (POW:s @2 @1))
2020 (POW (mult @0 @2) @1))
2021
2022 /* Simplify tan(x) * cos(x) -> sin(x). */
2023 (simplify
2024 (mult:c (TAN:s @0) (COS:s @0))
2025 (SIN @0))
2026
2027 /* Simplify x * pow(x,c) -> pow(x,c+1). */
2028 (simplify
2029 (mult @0 (POW:s @0 REAL_CST@1))
2030 (if (!TREE_OVERFLOW (@1))
2031 (POW @0 (plus @1 { build_one_cst (type); }))))
2032
2033 /* Simplify sin(x) / cos(x) -> tan(x). */
2034 (simplify
2035 (rdiv (SIN:s @0) (COS:s @0))
2036 (TAN @0))
2037
2038 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
2039 (simplify
2040 (rdiv (COS:s @0) (SIN:s @0))
2041 (rdiv { build_one_cst (type); } (TAN @0)))
2042
2043 /* Simplify sin(x) / tan(x) -> cos(x). */
2044 (simplify
2045 (rdiv (SIN:s @0) (TAN:s @0))
2046 (if (! HONOR_NANS (@0)
2047 && ! HONOR_INFINITIES (@0))
2048 (cos @0)))
2049
2050 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
2051 (simplify
2052 (rdiv (TAN:s @0) (SIN:s @0))
2053 (if (! HONOR_NANS (@0)
2054 && ! HONOR_INFINITIES (@0))
2055 (rdiv { build_one_cst (type); } (COS @0))))
2056
2057 /* Simplify pow(x,c) / x -> pow(x,c-1). */
2058 (simplify
2059 (rdiv (POW:s @0 REAL_CST@1) @0)
2060 (if (!TREE_OVERFLOW (@1))
2061 (POW @0 (minus @1 { build_one_cst (type); }))))
2062
2063 /* Simplify a/root(b/c) into a*root(c/b). */
2064 (simplify
2065 (rdiv @0 (SQRT:s (rdiv:s @1 @2)))
2066 (mult @0 (SQRT (rdiv @2 @1))))
2067
2068 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
2069 (simplify
2070 (rdiv @0 (POW:s @1 @2))
2071 (mult @0 (POW @1 (negate @2))))
2072
2073 /* Special case, optimize logN(expN(x)) = x. */
2074 (for logs (LOG LOG2 LOG10)
2075 exps (EXP EXP2 EXP10)
2076 (simplify
2077 (logs (exps @0))
2078 @0))
2079 /* Optimize logN(func()) for various exponential functions. We
2080 want to determine the value "x" and the power "exponent" in
2081 order to transform logN(x**exponent) into exponent*logN(x). */
2082 (for logs (LOG LOG LOG LOG
2083 LOG2 LOG2 LOG2 LOG2
2084 LOG10 LOG10 LOG10 LOG10)
2085 exps (EXP EXP2 EXP10 POW10)
2086 (simplify
2087 (logs (exps @0))
2088 (with {
2089 tree x;
2090 switch (exps)
2091 {
2092 CASE_FLT_FN (BUILT_IN_EXP):
2093 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
2094 x = build_real (type, real_value_truncate (TYPE_MODE (type),
2095 dconst_e ()));
2096 break;
2097 CASE_FLT_FN (BUILT_IN_EXP2):
2098 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
2099 x = build_real (type, dconst2);
2100 break;
2101 CASE_FLT_FN (BUILT_IN_EXP10):
2102 CASE_FLT_FN (BUILT_IN_POW10):
2103 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
2104 {
2105 REAL_VALUE_TYPE dconst10;
2106 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
2107 x = build_real (type, dconst10);
2108 }
2109 break;
2110 default:
2111 gcc_unreachable ();
2112 }
2113 }
2114 (mult (logs { x; }) @0))))
2115 (for logs (LOG LOG
2116 LOG2 LOG2
2117 LOG10 LOG10)
2118 exps (SQRT CBRT)
2119 (simplify
2120 (logs (exps @0))
2121 (with {
2122 tree x;
2123 switch (exps)
2124 {
2125 CASE_FLT_FN (BUILT_IN_SQRT):
2126 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
2127 x = build_real (type, dconsthalf);
2128 break;
2129 CASE_FLT_FN (BUILT_IN_CBRT):
2130 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
2131 x = build_real (type, real_value_truncate (TYPE_MODE (type),
2132 dconst_third ()));
2133 break;
2134 default:
2135 gcc_unreachable ();
2136 }
2137 }
2138 (mult { x; } (logs @0)))))
2139 /* logN(pow(x,exponent) -> exponent*logN(x). */
2140 (for logs (LOG LOG2 LOG10)
2141 pows (POW)
2142 (simplify
2143 (logs (pows @0 @1))
2144 (mult @1 (logs @0)))))
2145
2146 /* Narrowing of arithmetic and logical operations.
2147
2148 These are conceptually similar to the transformations performed for
2149 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
2150 term we want to move all that code out of the front-ends into here. */
2151
2152 /* If we have a narrowing conversion of an arithmetic operation where
2153 both operands are widening conversions from the same type as the outer
2154 narrowing conversion. Then convert the innermost operands to a suitable
2155 unsigned type (to avoid introducing undefined behaviour), perform the
2156 operation and convert the result to the desired type. */
2157 (for op (plus minus)
2158 (simplify
2159 (convert (op:s (convert@2 @0) (convert@3 @1)))
2160 (if (INTEGRAL_TYPE_P (type)
2161 /* We check for type compatibility between @0 and @1 below,
2162 so there's no need to check that @1/@3 are integral types. */
2163 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2164 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2165 /* The precision of the type of each operand must match the
2166 precision of the mode of each operand, similarly for the
2167 result. */
2168 && (TYPE_PRECISION (TREE_TYPE (@0))
2169 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2170 && (TYPE_PRECISION (TREE_TYPE (@1))
2171 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2172 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2173 /* The inner conversion must be a widening conversion. */
2174 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
2175 && types_match (@0, @1)
2176 && types_match (@0, type))
2177 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2178 (convert (op @0 @1))
2179 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2180 (convert (op (convert:utype @0) (convert:utype @1))))))))
2181
2182 /* This is another case of narrowing, specifically when there's an outer
2183 BIT_AND_EXPR which masks off bits outside the type of the innermost
2184 operands. Like the previous case we have to convert the operands
2185 to unsigned types to avoid introducing undefined behaviour for the
2186 arithmetic operation. */
2187 (for op (minus plus)
2188 (simplify
2189 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
2190 (if (INTEGRAL_TYPE_P (type)
2191 /* We check for type compatibility between @0 and @1 below,
2192 so there's no need to check that @1/@3 are integral types. */
2193 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2194 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2195 /* The precision of the type of each operand must match the
2196 precision of the mode of each operand, similarly for the
2197 result. */
2198 && (TYPE_PRECISION (TREE_TYPE (@0))
2199 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2200 && (TYPE_PRECISION (TREE_TYPE (@1))
2201 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2202 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2203 /* The inner conversion must be a widening conversion. */
2204 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
2205 && types_match (@0, @1)
2206 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
2207 <= TYPE_PRECISION (TREE_TYPE (@0)))
2208 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2209 || tree_int_cst_sgn (@4) >= 0))
2210 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2211 (with { tree ntype = TREE_TYPE (@0); }
2212 (convert (bit_and (op @0 @1) (convert:ntype @4))))
2213 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2214 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
2215 (convert:utype @4))))))))