match.pd (swapped_tcc_comparison): New operator list.
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43
44
45 /* Simplifications of operations with one constant operand and
46 simplifications to constants or single values. */
47
48 (for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
53 /* 0 +p index -> (type)index */
54 (simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
58 /* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60 (simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65 /* See if ARG1 is zero and X - ARG1 reduces to X. */
66 (simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
71 /* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76 (simplify
77 (minus @0 @0)
78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
79 { build_zero_cst (type); }))
80
81 (simplify
82 (mult @0 integer_zerop@1)
83 @1)
84
85 /* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89 (simplify
90 (mult @0 real_zerop@1)
91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
92 @1))
93
94 /* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96 (simplify
97 (mult @0 real_onep)
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103 /* Transform x * -1.0 into -x. */
104 (simplify
105 (mult @0 real_minus_onep)
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
110
111 /* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
118 /* X / -1 is -X. */
119 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
123 (negate @0))))
124
125 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127 (simplify
128 (floor_div @0 @1)
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
131 (trunc_div @0 @1)))
132
133 /* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135 (for div (trunc_div exact_div)
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
147 { build_zero_cst (type); }))))
148
149 /* Optimize A / A to 1.0 if we don't care about
150 NaNs or Infinities. */
151 (simplify
152 (rdiv @0 @0)
153 (if (FLOAT_TYPE_P (type)
154 && ! HONOR_NANS (type)
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158 /* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160 (simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
163 && ! HONOR_NANS (type)
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
166
167 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
168 (simplify
169 (rdiv @0 real_onep)
170 (if (!HONOR_SNANS (element_mode (type)))
171 (non_lvalue @0)))
172
173 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174 (simplify
175 (rdiv @0 real_minus_onep)
176 (if (!HONOR_SNANS (element_mode (type)))
177 (negate @0)))
178
179 /* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
190 (with
191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
199 /* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
201 (for mod (ceil_mod floor_mod round_mod trunc_mod)
202 /* 0 % X is always zero. */
203 (simplify
204 (mod integer_zerop@0 @1)
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
221
222 /* X % -C is the same as X % C. */
223 (simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
232
233 /* X % Y is smaller than Y. */
234 (for cmp (lt ge)
235 (simplify
236 (cmp (trunc_mod @0 @1) @1)
237 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
238 { constant_boolean_node (cmp == LT_EXPR, type); })))
239 (for cmp (gt le)
240 (simplify
241 (cmp @1 (trunc_mod @0 @1))
242 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
243 { constant_boolean_node (cmp == GT_EXPR, type); })))
244
245 /* x | ~0 -> ~0 */
246 (simplify
247 (bit_ior @0 integer_all_onesp@1)
248 @1)
249
250 /* x & 0 -> 0 */
251 (simplify
252 (bit_and @0 integer_zerop@1)
253 @1)
254
255 /* x ^ x -> 0 */
256 (simplify
257 (bit_xor @0 @0)
258 { build_zero_cst (type); })
259
260 /* Canonicalize X ^ ~0 to ~X. */
261 (simplify
262 (bit_xor @0 integer_all_onesp@1)
263 (bit_not @0))
264
265 /* x & ~0 -> x */
266 (simplify
267 (bit_and @0 integer_all_onesp)
268 (non_lvalue @0))
269
270 /* x & x -> x, x | x -> x */
271 (for bitop (bit_and bit_ior)
272 (simplify
273 (bitop @0 @0)
274 (non_lvalue @0)))
275
276 /* x + (x & 1) -> (x + 1) & ~1 */
277 (simplify
278 (plus:c @0 (bit_and@2 @0 integer_onep@1))
279 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
280 (bit_and (plus @0 @1) (bit_not @1))))
281
282 /* x & ~(x & y) -> x & ~y */
283 /* x | ~(x | y) -> x | ~y */
284 (for bitop (bit_and bit_ior)
285 (simplify
286 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
287 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
288 (bitop @0 (bit_not @1)))))
289
290 /* (x | y) & ~x -> y & ~x */
291 /* (x & y) | ~x -> y | ~x */
292 (for bitop (bit_and bit_ior)
293 rbitop (bit_ior bit_and)
294 (simplify
295 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
296 (bitop @1 @2)))
297
298 (simplify
299 (abs (negate @0))
300 (abs @0))
301 (simplify
302 (abs tree_expr_nonnegative_p@0)
303 @0)
304
305
306 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
307 when profitable.
308 For bitwise binary operations apply operand conversions to the
309 binary operation result instead of to the operands. This allows
310 to combine successive conversions and bitwise binary operations.
311 We combine the above two cases by using a conditional convert. */
312 (for bitop (bit_and bit_ior bit_xor)
313 (simplify
314 (bitop (convert @0) (convert? @1))
315 (if (((TREE_CODE (@1) == INTEGER_CST
316 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
317 && int_fits_type_p (@1, TREE_TYPE (@0)))
318 || types_match (@0, @1))
319 /* ??? This transform conflicts with fold-const.c doing
320 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
321 constants (if x has signed type, the sign bit cannot be set
322 in c). This folds extension into the BIT_AND_EXPR.
323 Restrict it to GIMPLE to avoid endless recursions. */
324 && (bitop != BIT_AND_EXPR || GIMPLE)
325 && (/* That's a good idea if the conversion widens the operand, thus
326 after hoisting the conversion the operation will be narrower. */
327 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
328 /* It's also a good idea if the conversion is to a non-integer
329 mode. */
330 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
331 /* Or if the precision of TO is not the same as the precision
332 of its mode. */
333 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
334 (convert (bitop @0 (convert @1))))))
335
336 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
337 (for bitop (bit_and bit_ior bit_xor)
338 (simplify
339 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
340 (bit_and (bitop @0 @2) @1)))
341
342 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
343 (simplify
344 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
345 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
346
347 /* Combine successive equal operations with constants. */
348 (for bitop (bit_and bit_ior bit_xor)
349 (simplify
350 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
351 (bitop @0 (bitop @1 @2))))
352
353 /* Try simple folding for X op !X, and X op X with the help
354 of the truth_valued_p and logical_inverted_value predicates. */
355 (match truth_valued_p
356 @0
357 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
358 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
359 (match truth_valued_p
360 (op @0 @1)))
361 (match truth_valued_p
362 (truth_not @0))
363
364 (match (logical_inverted_value @0)
365 (bit_not truth_valued_p@0))
366 (match (logical_inverted_value @0)
367 (eq @0 integer_zerop))
368 (match (logical_inverted_value @0)
369 (ne truth_valued_p@0 integer_truep))
370 (match (logical_inverted_value @0)
371 (bit_xor truth_valued_p@0 integer_truep))
372
373 /* X & !X -> 0. */
374 (simplify
375 (bit_and:c @0 (logical_inverted_value @0))
376 { build_zero_cst (type); })
377 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
378 (for op (bit_ior bit_xor)
379 (simplify
380 (op:c truth_valued_p@0 (logical_inverted_value @0))
381 { constant_boolean_node (true, type); }))
382
383 (for bitop (bit_and bit_ior)
384 rbitop (bit_ior bit_and)
385 /* (x | y) & x -> x */
386 /* (x & y) | x -> x */
387 (simplify
388 (bitop:c (rbitop:c @0 @1) @0)
389 @0)
390 /* (~x | y) & x -> x & y */
391 /* (~x & y) | x -> x | y */
392 (simplify
393 (bitop:c (rbitop:c (bit_not @0) @1) @0)
394 (bitop @0 @1)))
395
396 /* If arg1 and arg2 are booleans (or any single bit type)
397 then try to simplify:
398
399 (~X & Y) -> X < Y
400 (X & ~Y) -> Y < X
401 (~X | Y) -> X <= Y
402 (X | ~Y) -> Y <= X
403
404 But only do this if our result feeds into a comparison as
405 this transformation is not always a win, particularly on
406 targets with and-not instructions.
407 -> simplify_bitwise_binary_boolean */
408 (simplify
409 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
410 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
411 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
412 (lt @0 @1)))
413 (simplify
414 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
415 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
416 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
417 (le @0 @1)))
418
419 /* ~~x -> x */
420 (simplify
421 (bit_not (bit_not @0))
422 @0)
423
424 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
425 (simplify
426 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
427 (if ((TREE_CODE (@3) != SSA_NAME || has_single_use (@3))
428 && (TREE_CODE (@4) != SSA_NAME || has_single_use (@4)))
429 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
430
431
432 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
433 (simplify
434 (pointer_plus (pointer_plus@2 @0 @1) @3)
435 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
436 (pointer_plus @0 (plus @1 @3))))
437
438 /* Pattern match
439 tem1 = (long) ptr1;
440 tem2 = (long) ptr2;
441 tem3 = tem2 - tem1;
442 tem4 = (unsigned long) tem3;
443 tem5 = ptr1 + tem4;
444 and produce
445 tem5 = ptr2; */
446 (simplify
447 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
448 /* Conditionally look through a sign-changing conversion. */
449 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
450 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
451 || (GENERIC && type == TREE_TYPE (@1))))
452 @1))
453
454 /* Pattern match
455 tem = (sizetype) ptr;
456 tem = tem & algn;
457 tem = -tem;
458 ... = ptr p+ tem;
459 and produce the simpler and easier to analyze with respect to alignment
460 ... = ptr & ~algn; */
461 (simplify
462 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
463 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
464 (bit_and @0 { algn; })))
465
466
467 /* We can't reassociate at all for saturating types. */
468 (if (!TYPE_SATURATING (type))
469
470 /* Contract negates. */
471 /* A + (-B) -> A - B */
472 (simplify
473 (plus:c (convert1? @0) (convert2? (negate @1)))
474 /* Apply STRIP_NOPS on @0 and the negate. */
475 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
476 && tree_nop_conversion_p (type, TREE_TYPE (@1))
477 && !TYPE_OVERFLOW_SANITIZED (type))
478 (minus (convert @0) (convert @1))))
479 /* A - (-B) -> A + B */
480 (simplify
481 (minus (convert1? @0) (convert2? (negate @1)))
482 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
483 && tree_nop_conversion_p (type, TREE_TYPE (@1))
484 && !TYPE_OVERFLOW_SANITIZED (type))
485 (plus (convert @0) (convert @1))))
486 /* -(-A) -> A */
487 (simplify
488 (negate (convert? (negate @1)))
489 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
490 && !TYPE_OVERFLOW_SANITIZED (type))
491 (convert @1)))
492
493 /* We can't reassociate floating-point or fixed-point plus or minus
494 because of saturation to +-Inf. */
495 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
496
497 /* Match patterns that allow contracting a plus-minus pair
498 irrespective of overflow issues. */
499 /* (A +- B) - A -> +- B */
500 /* (A +- B) -+ B -> A */
501 /* A - (A +- B) -> -+ B */
502 /* A +- (B -+ A) -> +- B */
503 (simplify
504 (minus (plus:c @0 @1) @0)
505 @1)
506 (simplify
507 (minus (minus @0 @1) @0)
508 (negate @1))
509 (simplify
510 (plus:c (minus @0 @1) @1)
511 @0)
512 (simplify
513 (minus @0 (plus:c @0 @1))
514 (negate @1))
515 (simplify
516 (minus @0 (minus @0 @1))
517 @1)
518
519 /* (A +- CST) +- CST -> A + CST */
520 (for outer_op (plus minus)
521 (for inner_op (plus minus)
522 (simplify
523 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
524 /* If the constant operation overflows we cannot do the transform
525 as we would introduce undefined overflow, for example
526 with (a - 1) + INT_MIN. */
527 (with { tree cst = fold_binary (outer_op == inner_op
528 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
529 (if (cst && !TREE_OVERFLOW (cst))
530 (inner_op @0 { cst; } ))))))
531
532 /* (CST - A) +- CST -> CST - A */
533 (for outer_op (plus minus)
534 (simplify
535 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
536 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
537 (if (cst && !TREE_OVERFLOW (cst))
538 (minus { cst; } @0)))))
539
540 /* ~A + A -> -1 */
541 (simplify
542 (plus:c (bit_not @0) @0)
543 (if (!TYPE_OVERFLOW_TRAPS (type))
544 { build_all_ones_cst (type); }))
545
546 /* ~A + 1 -> -A */
547 (simplify
548 (plus (convert? (bit_not @0)) integer_each_onep)
549 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
550 (negate (convert @0))))
551
552 /* -A - 1 -> ~A */
553 (simplify
554 (minus (convert? (negate @0)) integer_each_onep)
555 (if (!TYPE_OVERFLOW_TRAPS (type)
556 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
557 (bit_not (convert @0))))
558
559 /* -1 - A -> ~A */
560 (simplify
561 (minus integer_all_onesp @0)
562 (bit_not @0))
563
564 /* (T)(P + A) - (T)P -> (T) A */
565 (for add (plus pointer_plus)
566 (simplify
567 (minus (convert (add @0 @1))
568 (convert @0))
569 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
570 /* For integer types, if A has a smaller type
571 than T the result depends on the possible
572 overflow in P + A.
573 E.g. T=size_t, A=(unsigned)429497295, P>0.
574 However, if an overflow in P + A would cause
575 undefined behavior, we can assume that there
576 is no overflow. */
577 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
578 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
579 /* For pointer types, if the conversion of A to the
580 final type requires a sign- or zero-extension,
581 then we have to punt - it is not defined which
582 one is correct. */
583 || (POINTER_TYPE_P (TREE_TYPE (@0))
584 && TREE_CODE (@1) == INTEGER_CST
585 && tree_int_cst_sign_bit (@1) == 0))
586 (convert @1))))))
587
588
589 /* Simplifications of MIN_EXPR and MAX_EXPR. */
590
591 (for minmax (min max)
592 (simplify
593 (minmax @0 @0)
594 @0))
595 (simplify
596 (min @0 @1)
597 (if (INTEGRAL_TYPE_P (type)
598 && TYPE_MIN_VALUE (type)
599 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
600 @1))
601 (simplify
602 (max @0 @1)
603 (if (INTEGRAL_TYPE_P (type)
604 && TYPE_MAX_VALUE (type)
605 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
606 @1))
607
608
609 /* Simplifications of shift and rotates. */
610
611 (for rotate (lrotate rrotate)
612 (simplify
613 (rotate integer_all_onesp@0 @1)
614 @0))
615
616 /* Optimize -1 >> x for arithmetic right shifts. */
617 (simplify
618 (rshift integer_all_onesp@0 @1)
619 (if (!TYPE_UNSIGNED (type)
620 && tree_expr_nonnegative_p (@1))
621 @0))
622
623 (for shiftrotate (lrotate rrotate lshift rshift)
624 (simplify
625 (shiftrotate @0 integer_zerop)
626 (non_lvalue @0))
627 (simplify
628 (shiftrotate integer_zerop@0 @1)
629 @0)
630 /* Prefer vector1 << scalar to vector1 << vector2
631 if vector2 is uniform. */
632 (for vec (VECTOR_CST CONSTRUCTOR)
633 (simplify
634 (shiftrotate @0 vec@1)
635 (with { tree tem = uniform_vector_p (@1); }
636 (if (tem)
637 (shiftrotate @0 { tem; }))))))
638
639 /* Rewrite an LROTATE_EXPR by a constant into an
640 RROTATE_EXPR by a new constant. */
641 (simplify
642 (lrotate @0 INTEGER_CST@1)
643 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
644 build_int_cst (TREE_TYPE (@1),
645 element_precision (type)), @1); }))
646
647 /* ((1 << A) & 1) != 0 -> A == 0
648 ((1 << A) & 1) == 0 -> A != 0 */
649 (for cmp (ne eq)
650 icmp (eq ne)
651 (simplify
652 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
653 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
654
655 /* Simplifications of conversions. */
656
657 /* Basic strip-useless-type-conversions / strip_nops. */
658 (for cvt (convert view_convert float fix_trunc)
659 (simplify
660 (cvt @0)
661 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
662 || (GENERIC && type == TREE_TYPE (@0)))
663 @0)))
664
665 /* Contract view-conversions. */
666 (simplify
667 (view_convert (view_convert @0))
668 (view_convert @0))
669
670 /* For integral conversions with the same precision or pointer
671 conversions use a NOP_EXPR instead. */
672 (simplify
673 (view_convert @0)
674 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
675 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
676 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
677 (convert @0)))
678
679 /* Strip inner integral conversions that do not change precision or size. */
680 (simplify
681 (view_convert (convert@0 @1))
682 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
683 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
684 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
685 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
686 (view_convert @1)))
687
688 /* Re-association barriers around constants and other re-association
689 barriers can be removed. */
690 (simplify
691 (paren CONSTANT_CLASS_P@0)
692 @0)
693 (simplify
694 (paren (paren@1 @0))
695 @1)
696
697 /* Handle cases of two conversions in a row. */
698 (for ocvt (convert float fix_trunc)
699 (for icvt (convert float)
700 (simplify
701 (ocvt (icvt@1 @0))
702 (with
703 {
704 tree inside_type = TREE_TYPE (@0);
705 tree inter_type = TREE_TYPE (@1);
706 int inside_int = INTEGRAL_TYPE_P (inside_type);
707 int inside_ptr = POINTER_TYPE_P (inside_type);
708 int inside_float = FLOAT_TYPE_P (inside_type);
709 int inside_vec = VECTOR_TYPE_P (inside_type);
710 unsigned int inside_prec = TYPE_PRECISION (inside_type);
711 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
712 int inter_int = INTEGRAL_TYPE_P (inter_type);
713 int inter_ptr = POINTER_TYPE_P (inter_type);
714 int inter_float = FLOAT_TYPE_P (inter_type);
715 int inter_vec = VECTOR_TYPE_P (inter_type);
716 unsigned int inter_prec = TYPE_PRECISION (inter_type);
717 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
718 int final_int = INTEGRAL_TYPE_P (type);
719 int final_ptr = POINTER_TYPE_P (type);
720 int final_float = FLOAT_TYPE_P (type);
721 int final_vec = VECTOR_TYPE_P (type);
722 unsigned int final_prec = TYPE_PRECISION (type);
723 int final_unsignedp = TYPE_UNSIGNED (type);
724 }
725 /* In addition to the cases of two conversions in a row
726 handled below, if we are converting something to its own
727 type via an object of identical or wider precision, neither
728 conversion is needed. */
729 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
730 || (GENERIC
731 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
732 && (((inter_int || inter_ptr) && final_int)
733 || (inter_float && final_float))
734 && inter_prec >= final_prec)
735 (ocvt @0))
736
737 /* Likewise, if the intermediate and initial types are either both
738 float or both integer, we don't need the middle conversion if the
739 former is wider than the latter and doesn't change the signedness
740 (for integers). Avoid this if the final type is a pointer since
741 then we sometimes need the middle conversion. Likewise if the
742 final type has a precision not equal to the size of its mode. */
743 (if (((inter_int && inside_int) || (inter_float && inside_float))
744 && (final_int || final_float)
745 && inter_prec >= inside_prec
746 && (inter_float || inter_unsignedp == inside_unsignedp)
747 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
748 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
749 (ocvt @0))
750
751 /* If we have a sign-extension of a zero-extended value, we can
752 replace that by a single zero-extension. Likewise if the
753 final conversion does not change precision we can drop the
754 intermediate conversion. */
755 (if (inside_int && inter_int && final_int
756 && ((inside_prec < inter_prec && inter_prec < final_prec
757 && inside_unsignedp && !inter_unsignedp)
758 || final_prec == inter_prec))
759 (ocvt @0))
760
761 /* Two conversions in a row are not needed unless:
762 - some conversion is floating-point (overstrict for now), or
763 - some conversion is a vector (overstrict for now), or
764 - the intermediate type is narrower than both initial and
765 final, or
766 - the intermediate type and innermost type differ in signedness,
767 and the outermost type is wider than the intermediate, or
768 - the initial type is a pointer type and the precisions of the
769 intermediate and final types differ, or
770 - the final type is a pointer type and the precisions of the
771 initial and intermediate types differ. */
772 (if (! inside_float && ! inter_float && ! final_float
773 && ! inside_vec && ! inter_vec && ! final_vec
774 && (inter_prec >= inside_prec || inter_prec >= final_prec)
775 && ! (inside_int && inter_int
776 && inter_unsignedp != inside_unsignedp
777 && inter_prec < final_prec)
778 && ((inter_unsignedp && inter_prec > inside_prec)
779 == (final_unsignedp && final_prec > inter_prec))
780 && ! (inside_ptr && inter_prec != final_prec)
781 && ! (final_ptr && inside_prec != inter_prec)
782 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
783 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
784 (ocvt @0))
785
786 /* A truncation to an unsigned type (a zero-extension) should be
787 canonicalized as bitwise and of a mask. */
788 (if (final_int && inter_int && inside_int
789 && final_prec == inside_prec
790 && final_prec > inter_prec
791 && inter_unsignedp)
792 (convert (bit_and @0 { wide_int_to_tree
793 (inside_type,
794 wi::mask (inter_prec, false,
795 TYPE_PRECISION (inside_type))); })))
796
797 /* If we are converting an integer to a floating-point that can
798 represent it exactly and back to an integer, we can skip the
799 floating-point conversion. */
800 (if (GIMPLE /* PR66211 */
801 && inside_int && inter_float && final_int &&
802 (unsigned) significand_size (TYPE_MODE (inter_type))
803 >= inside_prec - !inside_unsignedp)
804 (convert @0))))))
805
806 /* If we have a narrowing conversion to an integral type that is fed by a
807 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
808 masks off bits outside the final type (and nothing else). */
809 (simplify
810 (convert (bit_and @0 INTEGER_CST@1))
811 (if (INTEGRAL_TYPE_P (type)
812 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
813 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
814 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
815 TYPE_PRECISION (type)), 0))
816 (convert @0)))
817
818
819 /* (X /[ex] A) * A -> X. */
820 (simplify
821 (mult (convert? (exact_div @0 @1)) @1)
822 /* Look through a sign-changing conversion. */
823 (convert @0))
824
825 /* Canonicalization of binary operations. */
826
827 /* Convert X + -C into X - C. */
828 (simplify
829 (plus @0 REAL_CST@1)
830 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
831 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
832 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
833 (minus @0 { tem; })))))
834
835 /* Convert x+x into x*2.0. */
836 (simplify
837 (plus @0 @0)
838 (if (SCALAR_FLOAT_TYPE_P (type))
839 (mult @0 { build_real (type, dconst2); })))
840
841 (simplify
842 (minus integer_zerop @1)
843 (negate @1))
844
845 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
846 ARG0 is zero and X + ARG0 reduces to X, since that would mean
847 (-ARG1 + ARG0) reduces to -ARG1. */
848 (simplify
849 (minus real_zerop@0 @1)
850 (if (fold_real_zero_addition_p (type, @0, 0))
851 (negate @1)))
852
853 /* Transform x * -1 into -x. */
854 (simplify
855 (mult @0 integer_minus_onep)
856 (negate @0))
857
858 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
859 (simplify
860 (complex (realpart @0) (imagpart @0))
861 @0)
862 (simplify
863 (realpart (complex @0 @1))
864 @0)
865 (simplify
866 (imagpart (complex @0 @1))
867 @1)
868
869
870 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
871 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
872 (simplify
873 (bswap (bswap @0))
874 @0)
875 (simplify
876 (bswap (bit_not (bswap @0)))
877 (bit_not @0))
878 (for bitop (bit_xor bit_ior bit_and)
879 (simplify
880 (bswap (bitop:c (bswap @0) @1))
881 (bitop @0 (bswap @1)))))
882
883
884 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
885
886 /* Simplify constant conditions.
887 Only optimize constant conditions when the selected branch
888 has the same type as the COND_EXPR. This avoids optimizing
889 away "c ? x : throw", where the throw has a void type.
890 Note that we cannot throw away the fold-const.c variant nor
891 this one as we depend on doing this transform before possibly
892 A ? B : B -> B triggers and the fold-const.c one can optimize
893 0 ? A : B to B even if A has side-effects. Something
894 genmatch cannot handle. */
895 (simplify
896 (cond INTEGER_CST@0 @1 @2)
897 (if (integer_zerop (@0)
898 && (!VOID_TYPE_P (TREE_TYPE (@2))
899 || VOID_TYPE_P (type)))
900 @2)
901 (if (!integer_zerop (@0)
902 && (!VOID_TYPE_P (TREE_TYPE (@1))
903 || VOID_TYPE_P (type)))
904 @1))
905 (simplify
906 (vec_cond VECTOR_CST@0 @1 @2)
907 (if (integer_all_onesp (@0))
908 @1)
909 (if (integer_zerop (@0))
910 @2))
911
912 (for cnd (cond vec_cond)
913 /* A ? B : (A ? X : C) -> A ? B : C. */
914 (simplify
915 (cnd @0 (cnd @0 @1 @2) @3)
916 (cnd @0 @1 @3))
917 (simplify
918 (cnd @0 @1 (cnd @0 @2 @3))
919 (cnd @0 @1 @3))
920
921 /* A ? B : B -> B. */
922 (simplify
923 (cnd @0 @1 @1)
924 @1)
925
926 /* !A ? B : C -> A ? C : B. */
927 (simplify
928 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
929 (cnd @0 @2 @1)))
930
931
932 /* Simplifications of comparisons. */
933
934 /* We can simplify a logical negation of a comparison to the
935 inverted comparison. As we cannot compute an expression
936 operator using invert_tree_comparison we have to simulate
937 that with expression code iteration. */
938 (for cmp (tcc_comparison)
939 icmp (inverted_tcc_comparison)
940 ncmp (inverted_tcc_comparison_with_nans)
941 /* Ideally we'd like to combine the following two patterns
942 and handle some more cases by using
943 (logical_inverted_value (cmp @0 @1))
944 here but for that genmatch would need to "inline" that.
945 For now implement what forward_propagate_comparison did. */
946 (simplify
947 (bit_not (cmp @0 @1))
948 (if (VECTOR_TYPE_P (type)
949 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
950 /* Comparison inversion may be impossible for trapping math,
951 invert_tree_comparison will tell us. But we can't use
952 a computed operator in the replacement tree thus we have
953 to play the trick below. */
954 (with { enum tree_code ic = invert_tree_comparison
955 (cmp, HONOR_NANS (@0)); }
956 (if (ic == icmp)
957 (icmp @0 @1))
958 (if (ic == ncmp)
959 (ncmp @0 @1)))))
960 (simplify
961 (bit_xor (cmp @0 @1) integer_truep)
962 (with { enum tree_code ic = invert_tree_comparison
963 (cmp, HONOR_NANS (@0)); }
964 (if (ic == icmp)
965 (icmp @0 @1))
966 (if (ic == ncmp)
967 (ncmp @0 @1)))))
968
969 /* Unordered tests if either argument is a NaN. */
970 (simplify
971 (bit_ior (unordered @0 @0) (unordered @1 @1))
972 (if (types_match (@0, @1))
973 (unordered @0 @1)))
974 (simplify
975 (bit_and (ordered @0 @0) (ordered @1 @1))
976 (if (types_match (@0, @1))
977 (ordered @0 @1)))
978 (simplify
979 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
980 @2)
981 (simplify
982 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
983 @2)
984
985 /* -A CMP -B -> B CMP A. */
986 (for cmp (tcc_comparison)
987 scmp (swapped_tcc_comparison)
988 (simplify
989 (cmp (negate @0) (negate @1))
990 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
991 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
992 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
993 (scmp @0 @1)))
994 (simplify
995 (cmp (negate @0) CONSTANT_CLASS_P@1)
996 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
997 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
999 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1000 (if (tem && !TREE_OVERFLOW (tem))
1001 (scmp @0 { tem; }))))))
1002
1003 /* Simplification of math builtins. */
1004
1005 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1006 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1007 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1008 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1009 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1010 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1011 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1012 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1013 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1014 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1015
1016
1017 /* fold_builtin_logarithm */
1018 (if (flag_unsafe_math_optimizations)
1019 /* Special case, optimize logN(expN(x)) = x. */
1020 (for logs (LOG LOG2 LOG10)
1021 exps (EXP EXP2 EXP10)
1022 (simplify
1023 (logs (exps @0))
1024 @0))
1025 /* Optimize logN(func()) for various exponential functions. We
1026 want to determine the value "x" and the power "exponent" in
1027 order to transform logN(x**exponent) into exponent*logN(x). */
1028 (for logs (LOG LOG LOG LOG
1029 LOG2 LOG2 LOG2 LOG2
1030 LOG10 LOG10 LOG10 LOG10)
1031 exps (EXP EXP2 EXP10 POW10)
1032 (simplify
1033 (logs (exps @0))
1034 (with {
1035 tree x;
1036 switch (exps)
1037 {
1038 CASE_FLT_FN (BUILT_IN_EXP):
1039 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1040 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1041 dconst_e ()));
1042 break;
1043 CASE_FLT_FN (BUILT_IN_EXP2):
1044 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1045 x = build_real (type, dconst2);
1046 break;
1047 CASE_FLT_FN (BUILT_IN_EXP10):
1048 CASE_FLT_FN (BUILT_IN_POW10):
1049 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1050 {
1051 REAL_VALUE_TYPE dconst10;
1052 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1053 x = build_real (type, dconst10);
1054 }
1055 break;
1056 }
1057 }
1058 (mult (logs { x; }) @0))))
1059 (for logs (LOG LOG
1060 LOG2 LOG2
1061 LOG10 LOG10)
1062 exps (SQRT CBRT)
1063 (simplify
1064 (logs (exps @0))
1065 (with {
1066 tree x;
1067 switch (exps)
1068 {
1069 CASE_FLT_FN (BUILT_IN_SQRT):
1070 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1071 x = build_real (type, dconsthalf);
1072 break;
1073 CASE_FLT_FN (BUILT_IN_CBRT):
1074 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1075 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1076 dconst_third ()));
1077 break;
1078 }
1079 }
1080 (mult { x; } (logs @0)))))
1081 /* logN(pow(x,exponent) -> exponent*logN(x). */
1082 (for logs (LOG LOG2 LOG10)
1083 pows (POW)
1084 (simplify
1085 (logs (pows @0 @1))
1086 (mult @1 (logs @0)))))
1087
1088 /* Narrowing of arithmetic and logical operations.
1089
1090 These are conceptually similar to the transformations performed for
1091 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1092 term we want to move all that code out of the front-ends into here. */
1093
1094 /* If we have a narrowing conversion of an arithmetic operation where
1095 both operands are widening conversions from the same type as the outer
1096 narrowing conversion. Then convert the innermost operands to a suitable
1097 unsigned type (to avoid introducing undefined behaviour), perform the
1098 operation and convert the result to the desired type. */
1099 (for op (plus minus)
1100 (simplify
1101 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1102 (if (INTEGRAL_TYPE_P (type)
1103 /* We check for type compatibility between @0 and @1 below,
1104 so there's no need to check that @1/@3 are integral types. */
1105 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1106 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1107 /* The precision of the type of each operand must match the
1108 precision of the mode of each operand, similarly for the
1109 result. */
1110 && (TYPE_PRECISION (TREE_TYPE (@0))
1111 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1112 && (TYPE_PRECISION (TREE_TYPE (@1))
1113 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1114 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1115 /* The inner conversion must be a widening conversion. */
1116 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1117 && types_match (@0, @1)
1118 && types_match (@0, type)
1119 && single_use (@4))
1120 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1121 (convert (op @0 @1)))
1122 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1123 (convert (op (convert:utype @0) (convert:utype @1)))))))
1124
1125 /* This is another case of narrowing, specifically when there's an outer
1126 BIT_AND_EXPR which masks off bits outside the type of the innermost
1127 operands. Like the previous case we have to convert the operands
1128 to unsigned types to avoid introducing undefined behaviour for the
1129 arithmetic operation. */
1130 (for op (minus plus)
1131 (simplify
1132 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1133 (if (INTEGRAL_TYPE_P (type)
1134 /* We check for type compatibility between @0 and @1 below,
1135 so there's no need to check that @1/@3 are integral types. */
1136 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1137 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1138 /* The precision of the type of each operand must match the
1139 precision of the mode of each operand, similarly for the
1140 result. */
1141 && (TYPE_PRECISION (TREE_TYPE (@0))
1142 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1143 && (TYPE_PRECISION (TREE_TYPE (@1))
1144 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1145 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1146 /* The inner conversion must be a widening conversion. */
1147 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1148 && types_match (@0, @1)
1149 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1150 <= TYPE_PRECISION (TREE_TYPE (@0)))
1151 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1152 || tree_int_cst_sgn (@4) >= 0)
1153 && single_use (@5))
1154 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1155 (with { tree ntype = TREE_TYPE (@0); }
1156 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1157 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1158 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1159 (convert:utype @4)))))))
1160