gimplefe-30.c: New test.
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
80 plus minus
81 mult trunc_div trunc_mod rdiv
82 min max
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
89
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
95
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
99 (convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
102 (view_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
109 @0)
110
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
120
121
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
124
125 (for op (plus pointer_plus minus bit_ior bit_xor)
126 (simplify
127 (op @0 integer_zerop)
128 (non_lvalue @0)))
129
130 /* 0 +p index -> (type)index */
131 (simplify
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
134
135 /* ptr - 0 -> (type)ptr */
136 (simplify
137 (pointer_diff @0 integer_zerop)
138 (convert @0))
139
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
142 (simplify
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
145 (non_lvalue @0)))
146
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
148 (simplify
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
151 (non_lvalue @0)))
152
153 /* Simplify x - x.
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
157 is volatile. */
158 (simplify
159 (minus @0 @0)
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
162 (simplify
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
165
166 (simplify
167 (mult @0 integer_zerop@1)
168 @1)
169
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
174 (simplify
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
177 @1))
178
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
181 (simplify
182 (mult @0 real_onep)
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
186 (non_lvalue @0)))
187
188 /* Transform x * -1.0 into -x. */
189 (simplify
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
194 (negate @0)))
195
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
203 (simplify
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
207 (switch
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
218 (simplify
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
222 (switch
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
229
230 /* Transform X * copysign (1.0, X) into abs(X). */
231 (simplify
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
234 (abs @0)))
235
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
237 (simplify
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
240 (negate (abs @0))))
241
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
243 (simplify
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
247
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
250 (simplify
251 (op @0 integer_onep)
252 (non_lvalue @0)))
253
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
256 toward zero.
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
258 (simplify
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
264 (rshift @0 @2)))
265
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
271 (simplify
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
275 @0))
276 /* X / -1 is -X. */
277 (simplify
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
280 (negate @0)))
281 /* X / X is one. */
282 (simplify
283 (div @0 @0)
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
289 (simplify
290 (div:C @0 (abs @0))
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
295 /* X / -X is -1. */
296 (simplify
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
301
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
304 (simplify
305 (floor_div @0 @1)
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
308 (trunc_div @0 @1)))
309
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
313 (simplify
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
315 (with {
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
319 }
320 (if (!overflow)
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
325
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
328 (simplify
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
330 (with {
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
334 }
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
339
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
342 (simplify
343 (rdiv @0 @0)
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
348
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
351 (simplify
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
357
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
359 (simplify
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
364 (switch
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
371
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
373 (simplify
374 (rdiv @0 real_onep)
375 (if (!HONOR_SNANS (type))
376 (non_lvalue @0)))
377
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
379 (simplify
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
382 (negate @0)))
383
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
386 (simplify
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
389
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
391 (simplify
392 (rdiv @0 (mult:s @1 REAL_CST@2))
393 (with
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
395 (if (tem)
396 (rdiv (mult @0 { tem; } ) @1))))
397
398 /* Convert A/(B/C) to (A/B)*C */
399 (simplify
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
402
403 /* Simplify x / (- y) to -x / y. */
404 (simplify
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
407
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
410 (simplify
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
416 (rshift (convert @0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
419
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
426 (simplify
427 (rdiv @0 cst@1)
428 (if (optimize)
429 (if (flag_reciprocal_math
430 && !real_zerop (@1))
431 (with
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
433 (if (tem)
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
437 (if (inverse)
438 (mult @0 { inverse; } ))))))))
439
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
442 (simplify
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
446 @0))
447 /* X % 1 is always zero. */
448 (simplify
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
452 (simplify
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
456 /* X % X is zero. */
457 (simplify
458 (mod @0 @0)
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
463 (simplify
464 (mod (mod@2 @0 @1) @1)
465 @2)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
467 (simplify
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
472 TYPE_SIGN (type)))
473 { build_zero_cst (type); }))
474 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
475 modulo and comparison, since it is simpler and equivalent. */
476 (for cmp (eq ne)
477 (simplify
478 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
479 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
480 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
481 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
482
483 /* X % -C is the same as X % C. */
484 (simplify
485 (trunc_mod @0 INTEGER_CST@1)
486 (if (TYPE_SIGN (type) == SIGNED
487 && !TREE_OVERFLOW (@1)
488 && wi::neg_p (wi::to_wide (@1))
489 && !TYPE_OVERFLOW_TRAPS (type)
490 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
491 && !sign_bit_p (@1, @1))
492 (trunc_mod @0 (negate @1))))
493
494 /* X % -Y is the same as X % Y. */
495 (simplify
496 (trunc_mod @0 (convert? (negate @1)))
497 (if (INTEGRAL_TYPE_P (type)
498 && !TYPE_UNSIGNED (type)
499 && !TYPE_OVERFLOW_TRAPS (type)
500 && tree_nop_conversion_p (type, TREE_TYPE (@1))
501 /* Avoid this transformation if X might be INT_MIN or
502 Y might be -1, because we would then change valid
503 INT_MIN % -(-1) into invalid INT_MIN % -1. */
504 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
505 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
506 (TREE_TYPE (@1))))))
507 (trunc_mod @0 (convert @1))))
508
509 /* X - (X / Y) * Y is the same as X % Y. */
510 (simplify
511 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
512 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
513 (convert (trunc_mod @0 @1))))
514
515 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
516 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
517 Also optimize A % (C << N) where C is a power of 2,
518 to A & ((C << N) - 1). */
519 (match (power_of_two_cand @1)
520 INTEGER_CST@1)
521 (match (power_of_two_cand @1)
522 (lshift INTEGER_CST@1 @2))
523 (for mod (trunc_mod floor_mod)
524 (simplify
525 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
526 (if ((TYPE_UNSIGNED (type)
527 || tree_expr_nonnegative_p (@0))
528 && tree_nop_conversion_p (type, TREE_TYPE (@3))
529 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
530 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
531
532 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
533 (simplify
534 (trunc_div (mult @0 integer_pow2p@1) @1)
535 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
536 (bit_and @0 { wide_int_to_tree
537 (type, wi::mask (TYPE_PRECISION (type)
538 - wi::exact_log2 (wi::to_wide (@1)),
539 false, TYPE_PRECISION (type))); })))
540
541 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
542 (simplify
543 (mult (trunc_div @0 integer_pow2p@1) @1)
544 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
545 (bit_and @0 (negate @1))))
546
547 /* Simplify (t * 2) / 2) -> t. */
548 (for div (trunc_div ceil_div floor_div round_div exact_div)
549 (simplify
550 (div (mult:c @0 @1) @1)
551 (if (ANY_INTEGRAL_TYPE_P (type)
552 && TYPE_OVERFLOW_UNDEFINED (type))
553 @0)))
554
555 (for op (negate abs)
556 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
557 (for coss (COS COSH)
558 (simplify
559 (coss (op @0))
560 (coss @0)))
561 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
562 (for pows (POW)
563 (simplify
564 (pows (op @0) REAL_CST@1)
565 (with { HOST_WIDE_INT n; }
566 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
567 (pows @0 @1)))))
568 /* Likewise for powi. */
569 (for pows (POWI)
570 (simplify
571 (pows (op @0) INTEGER_CST@1)
572 (if ((wi::to_wide (@1) & 1) == 0)
573 (pows @0 @1))))
574 /* Strip negate and abs from both operands of hypot. */
575 (for hypots (HYPOT)
576 (simplify
577 (hypots (op @0) @1)
578 (hypots @0 @1))
579 (simplify
580 (hypots @0 (op @1))
581 (hypots @0 @1)))
582 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
583 (for copysigns (COPYSIGN_ALL)
584 (simplify
585 (copysigns (op @0) @1)
586 (copysigns @0 @1))))
587
588 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
589 (simplify
590 (mult (abs@1 @0) @1)
591 (mult @0 @0))
592
593 /* Convert absu(x)*absu(x) -> x*x. */
594 (simplify
595 (mult (absu@1 @0) @1)
596 (mult (convert@2 @0) @2))
597
598 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
599 (for coss (COS COSH)
600 copysigns (COPYSIGN)
601 (simplify
602 (coss (copysigns @0 @1))
603 (coss @0)))
604
605 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
606 (for pows (POW)
607 copysigns (COPYSIGN)
608 (simplify
609 (pows (copysigns @0 @2) REAL_CST@1)
610 (with { HOST_WIDE_INT n; }
611 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
612 (pows @0 @1)))))
613 /* Likewise for powi. */
614 (for pows (POWI)
615 copysigns (COPYSIGN)
616 (simplify
617 (pows (copysigns @0 @2) INTEGER_CST@1)
618 (if ((wi::to_wide (@1) & 1) == 0)
619 (pows @0 @1))))
620
621 (for hypots (HYPOT)
622 copysigns (COPYSIGN)
623 /* hypot(copysign(x, y), z) -> hypot(x, z). */
624 (simplify
625 (hypots (copysigns @0 @1) @2)
626 (hypots @0 @2))
627 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
628 (simplify
629 (hypots @0 (copysigns @1 @2))
630 (hypots @0 @1)))
631
632 /* copysign(x, CST) -> [-]abs (x). */
633 (for copysigns (COPYSIGN_ALL)
634 (simplify
635 (copysigns @0 REAL_CST@1)
636 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
637 (negate (abs @0))
638 (abs @0))))
639
640 /* copysign(copysign(x, y), z) -> copysign(x, z). */
641 (for copysigns (COPYSIGN_ALL)
642 (simplify
643 (copysigns (copysigns @0 @1) @2)
644 (copysigns @0 @2)))
645
646 /* copysign(x,y)*copysign(x,y) -> x*x. */
647 (for copysigns (COPYSIGN_ALL)
648 (simplify
649 (mult (copysigns@2 @0 @1) @2)
650 (mult @0 @0)))
651
652 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
653 (for ccoss (CCOS CCOSH)
654 (simplify
655 (ccoss (negate @0))
656 (ccoss @0)))
657
658 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
659 (for ops (conj negate)
660 (for cabss (CABS)
661 (simplify
662 (cabss (ops @0))
663 (cabss @0))))
664
665 /* Fold (a * (1 << b)) into (a << b) */
666 (simplify
667 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
668 (if (! FLOAT_TYPE_P (type)
669 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
670 (lshift @0 @2)))
671
672 /* Fold (1 << (C - x)) where C = precision(type) - 1
673 into ((1 << C) >> x). */
674 (simplify
675 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
676 (if (INTEGRAL_TYPE_P (type)
677 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
678 && single_use (@1))
679 (if (TYPE_UNSIGNED (type))
680 (rshift (lshift @0 @2) @3)
681 (with
682 { tree utype = unsigned_type_for (type); }
683 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
684
685 /* Fold (C1/X)*C2 into (C1*C2)/X. */
686 (simplify
687 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
688 (if (flag_associative_math
689 && single_use (@3))
690 (with
691 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
692 (if (tem)
693 (rdiv { tem; } @1)))))
694
695 /* Simplify ~X & X as zero. */
696 (simplify
697 (bit_and:c (convert? @0) (convert? (bit_not @0)))
698 { build_zero_cst (type); })
699
700 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
701 (simplify
702 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
703 (if (TYPE_UNSIGNED (type))
704 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
705
706 (for bitop (bit_and bit_ior)
707 cmp (eq ne)
708 /* PR35691: Transform
709 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
710 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
711 (simplify
712 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
713 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
714 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
715 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
716 (cmp (bit_ior @0 (convert @1)) @2)))
717 /* Transform:
718 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
719 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
720 (simplify
721 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
722 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
723 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
724 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
725 (cmp (bit_and @0 (convert @1)) @2))))
726
727 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
728 (simplify
729 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
730 (minus (bit_xor @0 @1) @1))
731 (simplify
732 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
733 (if (~wi::to_wide (@2) == wi::to_wide (@1))
734 (minus (bit_xor @0 @1) @1)))
735
736 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
737 (simplify
738 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
739 (minus @1 (bit_xor @0 @1)))
740
741 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
742 (for op (bit_ior bit_xor plus)
743 (simplify
744 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
745 (bit_xor @0 @1))
746 (simplify
747 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
748 (if (~wi::to_wide (@2) == wi::to_wide (@1))
749 (bit_xor @0 @1))))
750
751 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
752 (simplify
753 (bit_ior:c (bit_xor:c @0 @1) @0)
754 (bit_ior @0 @1))
755
756 /* (a & ~b) | (a ^ b) --> a ^ b */
757 (simplify
758 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
759 @2)
760
761 /* (a & ~b) ^ ~a --> ~(a & b) */
762 (simplify
763 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
764 (bit_not (bit_and @0 @1)))
765
766 /* (a | b) & ~(a ^ b) --> a & b */
767 (simplify
768 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
769 (bit_and @0 @1))
770
771 /* a | ~(a ^ b) --> a | ~b */
772 (simplify
773 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
774 (bit_ior @0 (bit_not @1)))
775
776 /* (a | b) | (a &^ b) --> a | b */
777 (for op (bit_and bit_xor)
778 (simplify
779 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
780 @2))
781
782 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
783 (simplify
784 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
785 @2)
786
787 /* ~(~a & b) --> a | ~b */
788 (simplify
789 (bit_not (bit_and:cs (bit_not @0) @1))
790 (bit_ior @0 (bit_not @1)))
791
792 /* ~(~a | b) --> a & ~b */
793 (simplify
794 (bit_not (bit_ior:cs (bit_not @0) @1))
795 (bit_and @0 (bit_not @1)))
796
797 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
798 #if GIMPLE
799 (simplify
800 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
801 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
802 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
803 (bit_xor @0 @1)))
804 #endif
805
806 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
807 ((A & N) + B) & M -> (A + B) & M
808 Similarly if (N & M) == 0,
809 ((A | N) + B) & M -> (A + B) & M
810 and for - instead of + (or unary - instead of +)
811 and/or ^ instead of |.
812 If B is constant and (B & M) == 0, fold into A & M. */
813 (for op (plus minus)
814 (for bitop (bit_and bit_ior bit_xor)
815 (simplify
816 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
817 (with
818 { tree pmop[2];
819 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
820 @3, @4, @1, ERROR_MARK, NULL_TREE,
821 NULL_TREE, pmop); }
822 (if (utype)
823 (convert (bit_and (op (convert:utype { pmop[0]; })
824 (convert:utype { pmop[1]; }))
825 (convert:utype @2))))))
826 (simplify
827 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
828 (with
829 { tree pmop[2];
830 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
831 NULL_TREE, NULL_TREE, @1, bitop, @3,
832 @4, pmop); }
833 (if (utype)
834 (convert (bit_and (op (convert:utype { pmop[0]; })
835 (convert:utype { pmop[1]; }))
836 (convert:utype @2)))))))
837 (simplify
838 (bit_and (op:s @0 @1) INTEGER_CST@2)
839 (with
840 { tree pmop[2];
841 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
842 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
843 NULL_TREE, NULL_TREE, pmop); }
844 (if (utype)
845 (convert (bit_and (op (convert:utype { pmop[0]; })
846 (convert:utype { pmop[1]; }))
847 (convert:utype @2)))))))
848 (for bitop (bit_and bit_ior bit_xor)
849 (simplify
850 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
851 (with
852 { tree pmop[2];
853 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
854 bitop, @2, @3, NULL_TREE, ERROR_MARK,
855 NULL_TREE, NULL_TREE, pmop); }
856 (if (utype)
857 (convert (bit_and (negate (convert:utype { pmop[0]; }))
858 (convert:utype @1)))))))
859
860 /* X % Y is smaller than Y. */
861 (for cmp (lt ge)
862 (simplify
863 (cmp (trunc_mod @0 @1) @1)
864 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
865 { constant_boolean_node (cmp == LT_EXPR, type); })))
866 (for cmp (gt le)
867 (simplify
868 (cmp @1 (trunc_mod @0 @1))
869 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
870 { constant_boolean_node (cmp == GT_EXPR, type); })))
871
872 /* x | ~0 -> ~0 */
873 (simplify
874 (bit_ior @0 integer_all_onesp@1)
875 @1)
876
877 /* x | 0 -> x */
878 (simplify
879 (bit_ior @0 integer_zerop)
880 @0)
881
882 /* x & 0 -> 0 */
883 (simplify
884 (bit_and @0 integer_zerop@1)
885 @1)
886
887 /* ~x | x -> -1 */
888 /* ~x ^ x -> -1 */
889 /* ~x + x -> -1 */
890 (for op (bit_ior bit_xor plus)
891 (simplify
892 (op:c (convert? @0) (convert? (bit_not @0)))
893 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
894
895 /* x ^ x -> 0 */
896 (simplify
897 (bit_xor @0 @0)
898 { build_zero_cst (type); })
899
900 /* Canonicalize X ^ ~0 to ~X. */
901 (simplify
902 (bit_xor @0 integer_all_onesp@1)
903 (bit_not @0))
904
905 /* x & ~0 -> x */
906 (simplify
907 (bit_and @0 integer_all_onesp)
908 (non_lvalue @0))
909
910 /* x & x -> x, x | x -> x */
911 (for bitop (bit_and bit_ior)
912 (simplify
913 (bitop @0 @0)
914 (non_lvalue @0)))
915
916 /* x & C -> x if we know that x & ~C == 0. */
917 #if GIMPLE
918 (simplify
919 (bit_and SSA_NAME@0 INTEGER_CST@1)
920 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
921 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
922 @0))
923 #endif
924
925 /* x + (x & 1) -> (x + 1) & ~1 */
926 (simplify
927 (plus:c @0 (bit_and:s @0 integer_onep@1))
928 (bit_and (plus @0 @1) (bit_not @1)))
929
930 /* x & ~(x & y) -> x & ~y */
931 /* x | ~(x | y) -> x | ~y */
932 (for bitop (bit_and bit_ior)
933 (simplify
934 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
935 (bitop @0 (bit_not @1))))
936
937 /* (~x & y) | ~(x | y) -> ~x */
938 (simplify
939 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
940 @2)
941
942 /* (x | y) ^ (x | ~y) -> ~x */
943 (simplify
944 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
945 (bit_not @0))
946
947 /* (x & y) | ~(x | y) -> ~(x ^ y) */
948 (simplify
949 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
950 (bit_not (bit_xor @0 @1)))
951
952 /* (~x | y) ^ (x ^ y) -> x | ~y */
953 (simplify
954 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
955 (bit_ior @0 (bit_not @1)))
956
957 /* (x ^ y) | ~(x | y) -> ~(x & y) */
958 (simplify
959 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
960 (bit_not (bit_and @0 @1)))
961
962 /* (x | y) & ~x -> y & ~x */
963 /* (x & y) | ~x -> y | ~x */
964 (for bitop (bit_and bit_ior)
965 rbitop (bit_ior bit_and)
966 (simplify
967 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
968 (bitop @1 @2)))
969
970 /* (x & y) ^ (x | y) -> x ^ y */
971 (simplify
972 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
973 (bit_xor @0 @1))
974
975 /* (x ^ y) ^ (x | y) -> x & y */
976 (simplify
977 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
978 (bit_and @0 @1))
979
980 /* (x & y) + (x ^ y) -> x | y */
981 /* (x & y) | (x ^ y) -> x | y */
982 /* (x & y) ^ (x ^ y) -> x | y */
983 (for op (plus bit_ior bit_xor)
984 (simplify
985 (op:c (bit_and @0 @1) (bit_xor @0 @1))
986 (bit_ior @0 @1)))
987
988 /* (x & y) + (x | y) -> x + y */
989 (simplify
990 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
991 (plus @0 @1))
992
993 /* (x + y) - (x | y) -> x & y */
994 (simplify
995 (minus (plus @0 @1) (bit_ior @0 @1))
996 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
997 && !TYPE_SATURATING (type))
998 (bit_and @0 @1)))
999
1000 /* (x + y) - (x & y) -> x | y */
1001 (simplify
1002 (minus (plus @0 @1) (bit_and @0 @1))
1003 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1004 && !TYPE_SATURATING (type))
1005 (bit_ior @0 @1)))
1006
1007 /* (x | y) - (x ^ y) -> x & y */
1008 (simplify
1009 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1010 (bit_and @0 @1))
1011
1012 /* (x | y) - (x & y) -> x ^ y */
1013 (simplify
1014 (minus (bit_ior @0 @1) (bit_and @0 @1))
1015 (bit_xor @0 @1))
1016
1017 /* (x | y) & ~(x & y) -> x ^ y */
1018 (simplify
1019 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1020 (bit_xor @0 @1))
1021
1022 /* (x | y) & (~x ^ y) -> x & y */
1023 (simplify
1024 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1025 (bit_and @0 @1))
1026
1027 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1028 (simplify
1029 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1030 (bit_not (bit_xor @0 @1)))
1031
1032 /* (~x | y) ^ (x | ~y) -> x ^ y */
1033 (simplify
1034 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1035 (bit_xor @0 @1))
1036
1037 /* ~x & ~y -> ~(x | y)
1038 ~x | ~y -> ~(x & y) */
1039 (for op (bit_and bit_ior)
1040 rop (bit_ior bit_and)
1041 (simplify
1042 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1043 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1044 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1045 (bit_not (rop (convert @0) (convert @1))))))
1046
1047 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1048 with a constant, and the two constants have no bits in common,
1049 we should treat this as a BIT_IOR_EXPR since this may produce more
1050 simplifications. */
1051 (for op (bit_xor plus)
1052 (simplify
1053 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1054 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1055 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1056 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1057 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1058 (bit_ior (convert @4) (convert @5)))))
1059
1060 /* (X | Y) ^ X -> Y & ~ X*/
1061 (simplify
1062 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1063 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1064 (convert (bit_and @1 (bit_not @0)))))
1065
1066 /* Convert ~X ^ ~Y to X ^ Y. */
1067 (simplify
1068 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1069 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1070 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1071 (bit_xor (convert @0) (convert @1))))
1072
1073 /* Convert ~X ^ C to X ^ ~C. */
1074 (simplify
1075 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1076 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1077 (bit_xor (convert @0) (bit_not @1))))
1078
1079 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1080 (for opo (bit_and bit_xor)
1081 opi (bit_xor bit_and)
1082 (simplify
1083 (opo:c (opi:cs @0 @1) @1)
1084 (bit_and (bit_not @0) @1)))
1085
1086 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1087 operands are another bit-wise operation with a common input. If so,
1088 distribute the bit operations to save an operation and possibly two if
1089 constants are involved. For example, convert
1090 (A | B) & (A | C) into A | (B & C)
1091 Further simplification will occur if B and C are constants. */
1092 (for op (bit_and bit_ior bit_xor)
1093 rop (bit_ior bit_and bit_and)
1094 (simplify
1095 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1096 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1097 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1098 (rop (convert @0) (op (convert @1) (convert @2))))))
1099
1100 /* Some simple reassociation for bit operations, also handled in reassoc. */
1101 /* (X & Y) & Y -> X & Y
1102 (X | Y) | Y -> X | Y */
1103 (for op (bit_and bit_ior)
1104 (simplify
1105 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1106 @2))
1107 /* (X ^ Y) ^ Y -> X */
1108 (simplify
1109 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1110 (convert @0))
1111 /* (X & Y) & (X & Z) -> (X & Y) & Z
1112 (X | Y) | (X | Z) -> (X | Y) | Z */
1113 (for op (bit_and bit_ior)
1114 (simplify
1115 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1116 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1117 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1118 (if (single_use (@5) && single_use (@6))
1119 (op @3 (convert @2))
1120 (if (single_use (@3) && single_use (@4))
1121 (op (convert @1) @5))))))
1122 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1123 (simplify
1124 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1125 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1126 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1127 (bit_xor (convert @1) (convert @2))))
1128
1129 /* Convert abs (abs (X)) into abs (X).
1130 also absu (absu (X)) into absu (X). */
1131 (simplify
1132 (abs (abs@1 @0))
1133 @1)
1134
1135 (simplify
1136 (absu (convert@2 (absu@1 @0)))
1137 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1138 @1))
1139
1140 /* Convert abs[u] (-X) -> abs[u] (X). */
1141 (simplify
1142 (abs (negate @0))
1143 (abs @0))
1144
1145 (simplify
1146 (absu (negate @0))
1147 (absu @0))
1148
1149 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1150 (simplify
1151 (abs tree_expr_nonnegative_p@0)
1152 @0)
1153
1154 (simplify
1155 (absu tree_expr_nonnegative_p@0)
1156 (convert @0))
1157
1158 /* A few cases of fold-const.c negate_expr_p predicate. */
1159 (match negate_expr_p
1160 INTEGER_CST
1161 (if ((INTEGRAL_TYPE_P (type)
1162 && TYPE_UNSIGNED (type))
1163 || (!TYPE_OVERFLOW_SANITIZED (type)
1164 && may_negate_without_overflow_p (t)))))
1165 (match negate_expr_p
1166 FIXED_CST)
1167 (match negate_expr_p
1168 (negate @0)
1169 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1170 (match negate_expr_p
1171 REAL_CST
1172 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1173 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1174 ways. */
1175 (match negate_expr_p
1176 VECTOR_CST
1177 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1178 (match negate_expr_p
1179 (minus @0 @1)
1180 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1181 || (FLOAT_TYPE_P (type)
1182 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1183 && !HONOR_SIGNED_ZEROS (type)))))
1184
1185 /* (-A) * (-B) -> A * B */
1186 (simplify
1187 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1188 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1189 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1190 (mult (convert @0) (convert (negate @1)))))
1191
1192 /* -(A + B) -> (-B) - A. */
1193 (simplify
1194 (negate (plus:c @0 negate_expr_p@1))
1195 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1196 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1197 (minus (negate @1) @0)))
1198
1199 /* -(A - B) -> B - A. */
1200 (simplify
1201 (negate (minus @0 @1))
1202 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1203 || (FLOAT_TYPE_P (type)
1204 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1205 && !HONOR_SIGNED_ZEROS (type)))
1206 (minus @1 @0)))
1207 (simplify
1208 (negate (pointer_diff @0 @1))
1209 (if (TYPE_OVERFLOW_UNDEFINED (type))
1210 (pointer_diff @1 @0)))
1211
1212 /* A - B -> A + (-B) if B is easily negatable. */
1213 (simplify
1214 (minus @0 negate_expr_p@1)
1215 (if (!FIXED_POINT_TYPE_P (type))
1216 (plus @0 (negate @1))))
1217
1218 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1219 when profitable.
1220 For bitwise binary operations apply operand conversions to the
1221 binary operation result instead of to the operands. This allows
1222 to combine successive conversions and bitwise binary operations.
1223 We combine the above two cases by using a conditional convert. */
1224 (for bitop (bit_and bit_ior bit_xor)
1225 (simplify
1226 (bitop (convert @0) (convert? @1))
1227 (if (((TREE_CODE (@1) == INTEGER_CST
1228 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1229 && int_fits_type_p (@1, TREE_TYPE (@0)))
1230 || types_match (@0, @1))
1231 /* ??? This transform conflicts with fold-const.c doing
1232 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1233 constants (if x has signed type, the sign bit cannot be set
1234 in c). This folds extension into the BIT_AND_EXPR.
1235 Restrict it to GIMPLE to avoid endless recursions. */
1236 && (bitop != BIT_AND_EXPR || GIMPLE)
1237 && (/* That's a good idea if the conversion widens the operand, thus
1238 after hoisting the conversion the operation will be narrower. */
1239 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1240 /* It's also a good idea if the conversion is to a non-integer
1241 mode. */
1242 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1243 /* Or if the precision of TO is not the same as the precision
1244 of its mode. */
1245 || !type_has_mode_precision_p (type)))
1246 (convert (bitop @0 (convert @1))))))
1247
1248 (for bitop (bit_and bit_ior)
1249 rbitop (bit_ior bit_and)
1250 /* (x | y) & x -> x */
1251 /* (x & y) | x -> x */
1252 (simplify
1253 (bitop:c (rbitop:c @0 @1) @0)
1254 @0)
1255 /* (~x | y) & x -> x & y */
1256 /* (~x & y) | x -> x | y */
1257 (simplify
1258 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1259 (bitop @0 @1)))
1260
1261 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1262 (simplify
1263 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1264 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1265
1266 /* Combine successive equal operations with constants. */
1267 (for bitop (bit_and bit_ior bit_xor)
1268 (simplify
1269 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1270 (if (!CONSTANT_CLASS_P (@0))
1271 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1272 folded to a constant. */
1273 (bitop @0 (bitop @1 @2))
1274 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1275 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1276 the values involved are such that the operation can't be decided at
1277 compile time. Try folding one of @0 or @1 with @2 to see whether
1278 that combination can be decided at compile time.
1279
1280 Keep the existing form if both folds fail, to avoid endless
1281 oscillation. */
1282 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1283 (if (cst1)
1284 (bitop @1 { cst1; })
1285 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1286 (if (cst2)
1287 (bitop @0 { cst2; }))))))))
1288
1289 /* Try simple folding for X op !X, and X op X with the help
1290 of the truth_valued_p and logical_inverted_value predicates. */
1291 (match truth_valued_p
1292 @0
1293 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1294 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1295 (match truth_valued_p
1296 (op @0 @1)))
1297 (match truth_valued_p
1298 (truth_not @0))
1299
1300 (match (logical_inverted_value @0)
1301 (truth_not @0))
1302 (match (logical_inverted_value @0)
1303 (bit_not truth_valued_p@0))
1304 (match (logical_inverted_value @0)
1305 (eq @0 integer_zerop))
1306 (match (logical_inverted_value @0)
1307 (ne truth_valued_p@0 integer_truep))
1308 (match (logical_inverted_value @0)
1309 (bit_xor truth_valued_p@0 integer_truep))
1310
1311 /* X & !X -> 0. */
1312 (simplify
1313 (bit_and:c @0 (logical_inverted_value @0))
1314 { build_zero_cst (type); })
1315 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1316 (for op (bit_ior bit_xor)
1317 (simplify
1318 (op:c truth_valued_p@0 (logical_inverted_value @0))
1319 { constant_boolean_node (true, type); }))
1320 /* X ==/!= !X is false/true. */
1321 (for op (eq ne)
1322 (simplify
1323 (op:c truth_valued_p@0 (logical_inverted_value @0))
1324 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1325
1326 /* ~~x -> x */
1327 (simplify
1328 (bit_not (bit_not @0))
1329 @0)
1330
1331 /* Convert ~ (-A) to A - 1. */
1332 (simplify
1333 (bit_not (convert? (negate @0)))
1334 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1335 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1336 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1337
1338 /* Convert - (~A) to A + 1. */
1339 (simplify
1340 (negate (nop_convert (bit_not @0)))
1341 (plus (view_convert @0) { build_each_one_cst (type); }))
1342
1343 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1344 (simplify
1345 (bit_not (convert? (minus @0 integer_each_onep)))
1346 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1347 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1348 (convert (negate @0))))
1349 (simplify
1350 (bit_not (convert? (plus @0 integer_all_onesp)))
1351 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1352 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1353 (convert (negate @0))))
1354
1355 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1356 (simplify
1357 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1358 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1359 (convert (bit_xor @0 (bit_not @1)))))
1360 (simplify
1361 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1362 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1363 (convert (bit_xor @0 @1))))
1364
1365 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1366 (simplify
1367 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1368 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1369 (bit_not (bit_xor (view_convert @0) @1))))
1370
1371 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1372 (simplify
1373 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1374 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1375
1376 /* Fold A - (A & B) into ~B & A. */
1377 (simplify
1378 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1379 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1380 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1381 (convert (bit_and (bit_not @1) @0))))
1382
1383 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1384 (for cmp (gt lt ge le)
1385 (simplify
1386 (mult (convert (cmp @0 @1)) @2)
1387 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1388
1389 /* For integral types with undefined overflow and C != 0 fold
1390 x * C EQ/NE y * C into x EQ/NE y. */
1391 (for cmp (eq ne)
1392 (simplify
1393 (cmp (mult:c @0 @1) (mult:c @2 @1))
1394 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1395 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1396 && tree_expr_nonzero_p (@1))
1397 (cmp @0 @2))))
1398
1399 /* For integral types with wrapping overflow and C odd fold
1400 x * C EQ/NE y * C into x EQ/NE y. */
1401 (for cmp (eq ne)
1402 (simplify
1403 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1404 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1405 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1406 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1407 (cmp @0 @2))))
1408
1409 /* For integral types with undefined overflow and C != 0 fold
1410 x * C RELOP y * C into:
1411
1412 x RELOP y for nonnegative C
1413 y RELOP x for negative C */
1414 (for cmp (lt gt le ge)
1415 (simplify
1416 (cmp (mult:c @0 @1) (mult:c @2 @1))
1417 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1418 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1419 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1420 (cmp @0 @2)
1421 (if (TREE_CODE (@1) == INTEGER_CST
1422 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1423 (cmp @2 @0))))))
1424
1425 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1426 (for cmp (le gt)
1427 icmp (gt le)
1428 (simplify
1429 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1430 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1431 && TYPE_UNSIGNED (TREE_TYPE (@0))
1432 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1433 && (wi::to_wide (@2)
1434 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1435 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1436 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1437
1438 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1439 (for cmp (simple_comparison)
1440 (simplify
1441 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1442 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1443 (cmp @0 @1))))
1444
1445 /* X / C1 op C2 into a simple range test. */
1446 (for cmp (simple_comparison)
1447 (simplify
1448 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1449 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1450 && integer_nonzerop (@1)
1451 && !TREE_OVERFLOW (@1)
1452 && !TREE_OVERFLOW (@2))
1453 (with { tree lo, hi; bool neg_overflow;
1454 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1455 &neg_overflow); }
1456 (switch
1457 (if (code == LT_EXPR || code == GE_EXPR)
1458 (if (TREE_OVERFLOW (lo))
1459 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1460 (if (code == LT_EXPR)
1461 (lt @0 { lo; })
1462 (ge @0 { lo; }))))
1463 (if (code == LE_EXPR || code == GT_EXPR)
1464 (if (TREE_OVERFLOW (hi))
1465 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1466 (if (code == LE_EXPR)
1467 (le @0 { hi; })
1468 (gt @0 { hi; }))))
1469 (if (!lo && !hi)
1470 { build_int_cst (type, code == NE_EXPR); })
1471 (if (code == EQ_EXPR && !hi)
1472 (ge @0 { lo; }))
1473 (if (code == EQ_EXPR && !lo)
1474 (le @0 { hi; }))
1475 (if (code == NE_EXPR && !hi)
1476 (lt @0 { lo; }))
1477 (if (code == NE_EXPR && !lo)
1478 (gt @0 { hi; }))
1479 (if (GENERIC)
1480 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1481 lo, hi); })
1482 (with
1483 {
1484 tree etype = range_check_type (TREE_TYPE (@0));
1485 if (etype)
1486 {
1487 if (! TYPE_UNSIGNED (etype))
1488 etype = unsigned_type_for (etype);
1489 hi = fold_convert (etype, hi);
1490 lo = fold_convert (etype, lo);
1491 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1492 }
1493 }
1494 (if (etype && hi && !TREE_OVERFLOW (hi))
1495 (if (code == EQ_EXPR)
1496 (le (minus (convert:etype @0) { lo; }) { hi; })
1497 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1498
1499 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1500 (for op (lt le ge gt)
1501 (simplify
1502 (op (plus:c @0 @2) (plus:c @1 @2))
1503 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1504 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1505 (op @0 @1))))
1506 /* For equality and subtraction, this is also true with wrapping overflow. */
1507 (for op (eq ne minus)
1508 (simplify
1509 (op (plus:c @0 @2) (plus:c @1 @2))
1510 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1511 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1512 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1513 (op @0 @1))))
1514
1515 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1516 (for op (lt le ge gt)
1517 (simplify
1518 (op (minus @0 @2) (minus @1 @2))
1519 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1520 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1521 (op @0 @1))))
1522 /* For equality and subtraction, this is also true with wrapping overflow. */
1523 (for op (eq ne minus)
1524 (simplify
1525 (op (minus @0 @2) (minus @1 @2))
1526 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1527 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1528 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1529 (op @0 @1))))
1530 /* And for pointers... */
1531 (for op (simple_comparison)
1532 (simplify
1533 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1534 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1535 (op @0 @1))))
1536 (simplify
1537 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1538 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1539 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1540 (pointer_diff @0 @1)))
1541
1542 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1543 (for op (lt le ge gt)
1544 (simplify
1545 (op (minus @2 @0) (minus @2 @1))
1546 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1547 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1548 (op @1 @0))))
1549 /* For equality and subtraction, this is also true with wrapping overflow. */
1550 (for op (eq ne minus)
1551 (simplify
1552 (op (minus @2 @0) (minus @2 @1))
1553 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1554 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1555 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1556 (op @1 @0))))
1557 /* And for pointers... */
1558 (for op (simple_comparison)
1559 (simplify
1560 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1561 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1562 (op @1 @0))))
1563 (simplify
1564 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1565 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1566 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1567 (pointer_diff @1 @0)))
1568
1569 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1570 (for op (lt le gt ge)
1571 (simplify
1572 (op:c (plus:c@2 @0 @1) @1)
1573 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1575 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1576 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1577 /* For equality, this is also true with wrapping overflow. */
1578 (for op (eq ne)
1579 (simplify
1580 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1581 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1582 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1583 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1584 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1585 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1586 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1587 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1588 (simplify
1589 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1590 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1591 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1592 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1593 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1594
1595 /* X - Y < X is the same as Y > 0 when there is no overflow.
1596 For equality, this is also true with wrapping overflow. */
1597 (for op (simple_comparison)
1598 (simplify
1599 (op:c @0 (minus@2 @0 @1))
1600 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1601 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1602 || ((op == EQ_EXPR || op == NE_EXPR)
1603 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1604 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1605 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1606
1607 /* Transform:
1608 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1609 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1610 (for cmp (eq ne)
1611 ocmp (lt ge)
1612 (simplify
1613 (cmp (trunc_div @0 @1) integer_zerop)
1614 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1615 /* Complex ==/!= is allowed, but not </>=. */
1616 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1617 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1618 (ocmp @0 @1))))
1619
1620 /* X == C - X can never be true if C is odd. */
1621 (for cmp (eq ne)
1622 (simplify
1623 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1624 (if (TREE_INT_CST_LOW (@1) & 1)
1625 { constant_boolean_node (cmp == NE_EXPR, type); })))
1626
1627 /* Arguments on which one can call get_nonzero_bits to get the bits
1628 possibly set. */
1629 (match with_possible_nonzero_bits
1630 INTEGER_CST@0)
1631 (match with_possible_nonzero_bits
1632 SSA_NAME@0
1633 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1634 /* Slightly extended version, do not make it recursive to keep it cheap. */
1635 (match (with_possible_nonzero_bits2 @0)
1636 with_possible_nonzero_bits@0)
1637 (match (with_possible_nonzero_bits2 @0)
1638 (bit_and:c with_possible_nonzero_bits@0 @2))
1639
1640 /* Same for bits that are known to be set, but we do not have
1641 an equivalent to get_nonzero_bits yet. */
1642 (match (with_certain_nonzero_bits2 @0)
1643 INTEGER_CST@0)
1644 (match (with_certain_nonzero_bits2 @0)
1645 (bit_ior @1 INTEGER_CST@0))
1646
1647 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1648 (for cmp (eq ne)
1649 (simplify
1650 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1651 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1652 { constant_boolean_node (cmp == NE_EXPR, type); })))
1653
1654 /* ((X inner_op C0) outer_op C1)
1655 With X being a tree where value_range has reasoned certain bits to always be
1656 zero throughout its computed value range,
1657 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1658 where zero_mask has 1's for all bits that are sure to be 0 in
1659 and 0's otherwise.
1660 if (inner_op == '^') C0 &= ~C1;
1661 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1662 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1663 */
1664 (for inner_op (bit_ior bit_xor)
1665 outer_op (bit_xor bit_ior)
1666 (simplify
1667 (outer_op
1668 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1669 (with
1670 {
1671 bool fail = false;
1672 wide_int zero_mask_not;
1673 wide_int C0;
1674 wide_int cst_emit;
1675
1676 if (TREE_CODE (@2) == SSA_NAME)
1677 zero_mask_not = get_nonzero_bits (@2);
1678 else
1679 fail = true;
1680
1681 if (inner_op == BIT_XOR_EXPR)
1682 {
1683 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1684 cst_emit = C0 | wi::to_wide (@1);
1685 }
1686 else
1687 {
1688 C0 = wi::to_wide (@0);
1689 cst_emit = C0 ^ wi::to_wide (@1);
1690 }
1691 }
1692 (if (!fail && (C0 & zero_mask_not) == 0)
1693 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1694 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1695 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1696
1697 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1698 (simplify
1699 (pointer_plus (pointer_plus:s @0 @1) @3)
1700 (pointer_plus @0 (plus @1 @3)))
1701
1702 /* Pattern match
1703 tem1 = (long) ptr1;
1704 tem2 = (long) ptr2;
1705 tem3 = tem2 - tem1;
1706 tem4 = (unsigned long) tem3;
1707 tem5 = ptr1 + tem4;
1708 and produce
1709 tem5 = ptr2; */
1710 (simplify
1711 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1712 /* Conditionally look through a sign-changing conversion. */
1713 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1714 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1715 || (GENERIC && type == TREE_TYPE (@1))))
1716 @1))
1717 (simplify
1718 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1719 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1720 (convert @1)))
1721
1722 /* Pattern match
1723 tem = (sizetype) ptr;
1724 tem = tem & algn;
1725 tem = -tem;
1726 ... = ptr p+ tem;
1727 and produce the simpler and easier to analyze with respect to alignment
1728 ... = ptr & ~algn; */
1729 (simplify
1730 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1731 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1732 (bit_and @0 { algn; })))
1733
1734 /* Try folding difference of addresses. */
1735 (simplify
1736 (minus (convert ADDR_EXPR@0) (convert @1))
1737 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1738 (with { poly_int64 diff; }
1739 (if (ptr_difference_const (@0, @1, &diff))
1740 { build_int_cst_type (type, diff); }))))
1741 (simplify
1742 (minus (convert @0) (convert ADDR_EXPR@1))
1743 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1744 (with { poly_int64 diff; }
1745 (if (ptr_difference_const (@0, @1, &diff))
1746 { build_int_cst_type (type, diff); }))))
1747 (simplify
1748 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1749 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1750 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1751 (with { poly_int64 diff; }
1752 (if (ptr_difference_const (@0, @1, &diff))
1753 { build_int_cst_type (type, diff); }))))
1754 (simplify
1755 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1756 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1757 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1758 (with { poly_int64 diff; }
1759 (if (ptr_difference_const (@0, @1, &diff))
1760 { build_int_cst_type (type, diff); }))))
1761
1762 /* If arg0 is derived from the address of an object or function, we may
1763 be able to fold this expression using the object or function's
1764 alignment. */
1765 (simplify
1766 (bit_and (convert? @0) INTEGER_CST@1)
1767 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1768 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1769 (with
1770 {
1771 unsigned int align;
1772 unsigned HOST_WIDE_INT bitpos;
1773 get_pointer_alignment_1 (@0, &align, &bitpos);
1774 }
1775 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1776 { wide_int_to_tree (type, (wi::to_wide (@1)
1777 & (bitpos / BITS_PER_UNIT))); }))))
1778
1779
1780 /* We can't reassociate at all for saturating types. */
1781 (if (!TYPE_SATURATING (type))
1782
1783 /* Contract negates. */
1784 /* A + (-B) -> A - B */
1785 (simplify
1786 (plus:c @0 (convert? (negate @1)))
1787 /* Apply STRIP_NOPS on the negate. */
1788 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1789 && !TYPE_OVERFLOW_SANITIZED (type))
1790 (with
1791 {
1792 tree t1 = type;
1793 if (INTEGRAL_TYPE_P (type)
1794 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1795 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1796 }
1797 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1798 /* A - (-B) -> A + B */
1799 (simplify
1800 (minus @0 (convert? (negate @1)))
1801 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1802 && !TYPE_OVERFLOW_SANITIZED (type))
1803 (with
1804 {
1805 tree t1 = type;
1806 if (INTEGRAL_TYPE_P (type)
1807 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1808 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1809 }
1810 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1811 /* -(T)(-A) -> (T)A
1812 Sign-extension is ok except for INT_MIN, which thankfully cannot
1813 happen without overflow. */
1814 (simplify
1815 (negate (convert (negate @1)))
1816 (if (INTEGRAL_TYPE_P (type)
1817 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1818 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1820 && !TYPE_OVERFLOW_SANITIZED (type)
1821 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1822 (convert @1)))
1823 (simplify
1824 (negate (convert negate_expr_p@1))
1825 (if (SCALAR_FLOAT_TYPE_P (type)
1826 && ((DECIMAL_FLOAT_TYPE_P (type)
1827 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1828 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1829 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1830 (convert (negate @1))))
1831 (simplify
1832 (negate (nop_convert (negate @1)))
1833 (if (!TYPE_OVERFLOW_SANITIZED (type)
1834 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1835 (view_convert @1)))
1836
1837 /* We can't reassociate floating-point unless -fassociative-math
1838 or fixed-point plus or minus because of saturation to +-Inf. */
1839 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1840 && !FIXED_POINT_TYPE_P (type))
1841
1842 /* Match patterns that allow contracting a plus-minus pair
1843 irrespective of overflow issues. */
1844 /* (A +- B) - A -> +- B */
1845 /* (A +- B) -+ B -> A */
1846 /* A - (A +- B) -> -+ B */
1847 /* A +- (B -+ A) -> +- B */
1848 (simplify
1849 (minus (plus:c @0 @1) @0)
1850 @1)
1851 (simplify
1852 (minus (minus @0 @1) @0)
1853 (negate @1))
1854 (simplify
1855 (plus:c (minus @0 @1) @1)
1856 @0)
1857 (simplify
1858 (minus @0 (plus:c @0 @1))
1859 (negate @1))
1860 (simplify
1861 (minus @0 (minus @0 @1))
1862 @1)
1863 /* (A +- B) + (C - A) -> C +- B */
1864 /* (A + B) - (A - C) -> B + C */
1865 /* More cases are handled with comparisons. */
1866 (simplify
1867 (plus:c (plus:c @0 @1) (minus @2 @0))
1868 (plus @2 @1))
1869 (simplify
1870 (plus:c (minus @0 @1) (minus @2 @0))
1871 (minus @2 @1))
1872 (simplify
1873 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1874 (if (TYPE_OVERFLOW_UNDEFINED (type)
1875 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1876 (pointer_diff @2 @1)))
1877 (simplify
1878 (minus (plus:c @0 @1) (minus @0 @2))
1879 (plus @1 @2))
1880
1881 /* (A +- CST1) +- CST2 -> A + CST3
1882 Use view_convert because it is safe for vectors and equivalent for
1883 scalars. */
1884 (for outer_op (plus minus)
1885 (for inner_op (plus minus)
1886 neg_inner_op (minus plus)
1887 (simplify
1888 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1889 CONSTANT_CLASS_P@2)
1890 /* If one of the types wraps, use that one. */
1891 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1892 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1893 forever if something doesn't simplify into a constant. */
1894 (if (!CONSTANT_CLASS_P (@0))
1895 (if (outer_op == PLUS_EXPR)
1896 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1897 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1898 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1899 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1900 (if (outer_op == PLUS_EXPR)
1901 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1902 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1903 /* If the constant operation overflows we cannot do the transform
1904 directly as we would introduce undefined overflow, for example
1905 with (a - 1) + INT_MIN. */
1906 (if (types_match (type, @0))
1907 (with { tree cst = const_binop (outer_op == inner_op
1908 ? PLUS_EXPR : MINUS_EXPR,
1909 type, @1, @2); }
1910 (if (cst && !TREE_OVERFLOW (cst))
1911 (inner_op @0 { cst; } )
1912 /* X+INT_MAX+1 is X-INT_MIN. */
1913 (if (INTEGRAL_TYPE_P (type) && cst
1914 && wi::to_wide (cst) == wi::min_value (type))
1915 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1916 /* Last resort, use some unsigned type. */
1917 (with { tree utype = unsigned_type_for (type); }
1918 (if (utype)
1919 (view_convert (inner_op
1920 (view_convert:utype @0)
1921 (view_convert:utype
1922 { drop_tree_overflow (cst); }))))))))))))))
1923
1924 /* (CST1 - A) +- CST2 -> CST3 - A */
1925 (for outer_op (plus minus)
1926 (simplify
1927 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1928 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1929 (if (cst && !TREE_OVERFLOW (cst))
1930 (minus { cst; } @0)))))
1931
1932 /* CST1 - (CST2 - A) -> CST3 + A */
1933 (simplify
1934 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1935 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1936 (if (cst && !TREE_OVERFLOW (cst))
1937 (plus { cst; } @0))))
1938
1939 /* ~A + A -> -1 */
1940 (simplify
1941 (plus:c (bit_not @0) @0)
1942 (if (!TYPE_OVERFLOW_TRAPS (type))
1943 { build_all_ones_cst (type); }))
1944
1945 /* ~A + 1 -> -A */
1946 (simplify
1947 (plus (convert? (bit_not @0)) integer_each_onep)
1948 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1949 (negate (convert @0))))
1950
1951 /* -A - 1 -> ~A */
1952 (simplify
1953 (minus (convert? (negate @0)) integer_each_onep)
1954 (if (!TYPE_OVERFLOW_TRAPS (type)
1955 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1956 (bit_not (convert @0))))
1957
1958 /* -1 - A -> ~A */
1959 (simplify
1960 (minus integer_all_onesp @0)
1961 (bit_not @0))
1962
1963 /* (T)(P + A) - (T)P -> (T) A */
1964 (simplify
1965 (minus (convert (plus:c @@0 @1))
1966 (convert? @0))
1967 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1968 /* For integer types, if A has a smaller type
1969 than T the result depends on the possible
1970 overflow in P + A.
1971 E.g. T=size_t, A=(unsigned)429497295, P>0.
1972 However, if an overflow in P + A would cause
1973 undefined behavior, we can assume that there
1974 is no overflow. */
1975 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1976 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1977 (convert @1)))
1978 (simplify
1979 (minus (convert (pointer_plus @@0 @1))
1980 (convert @0))
1981 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1982 /* For pointer types, if the conversion of A to the
1983 final type requires a sign- or zero-extension,
1984 then we have to punt - it is not defined which
1985 one is correct. */
1986 || (POINTER_TYPE_P (TREE_TYPE (@0))
1987 && TREE_CODE (@1) == INTEGER_CST
1988 && tree_int_cst_sign_bit (@1) == 0))
1989 (convert @1)))
1990 (simplify
1991 (pointer_diff (pointer_plus @@0 @1) @0)
1992 /* The second argument of pointer_plus must be interpreted as signed, and
1993 thus sign-extended if necessary. */
1994 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1995 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1996 second arg is unsigned even when we need to consider it as signed,
1997 we don't want to diagnose overflow here. */
1998 (convert (view_convert:stype @1))))
1999
2000 /* (T)P - (T)(P + A) -> -(T) A */
2001 (simplify
2002 (minus (convert? @0)
2003 (convert (plus:c @@0 @1)))
2004 (if (INTEGRAL_TYPE_P (type)
2005 && TYPE_OVERFLOW_UNDEFINED (type)
2006 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2007 (with { tree utype = unsigned_type_for (type); }
2008 (convert (negate (convert:utype @1))))
2009 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2010 /* For integer types, if A has a smaller type
2011 than T the result depends on the possible
2012 overflow in P + A.
2013 E.g. T=size_t, A=(unsigned)429497295, P>0.
2014 However, if an overflow in P + A would cause
2015 undefined behavior, we can assume that there
2016 is no overflow. */
2017 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2019 (negate (convert @1)))))
2020 (simplify
2021 (minus (convert @0)
2022 (convert (pointer_plus @@0 @1)))
2023 (if (INTEGRAL_TYPE_P (type)
2024 && TYPE_OVERFLOW_UNDEFINED (type)
2025 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2026 (with { tree utype = unsigned_type_for (type); }
2027 (convert (negate (convert:utype @1))))
2028 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2029 /* For pointer types, if the conversion of A to the
2030 final type requires a sign- or zero-extension,
2031 then we have to punt - it is not defined which
2032 one is correct. */
2033 || (POINTER_TYPE_P (TREE_TYPE (@0))
2034 && TREE_CODE (@1) == INTEGER_CST
2035 && tree_int_cst_sign_bit (@1) == 0))
2036 (negate (convert @1)))))
2037 (simplify
2038 (pointer_diff @0 (pointer_plus @@0 @1))
2039 /* The second argument of pointer_plus must be interpreted as signed, and
2040 thus sign-extended if necessary. */
2041 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2042 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2043 second arg is unsigned even when we need to consider it as signed,
2044 we don't want to diagnose overflow here. */
2045 (negate (convert (view_convert:stype @1)))))
2046
2047 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2048 (simplify
2049 (minus (convert (plus:c @@0 @1))
2050 (convert (plus:c @0 @2)))
2051 (if (INTEGRAL_TYPE_P (type)
2052 && TYPE_OVERFLOW_UNDEFINED (type)
2053 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2054 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2055 (with { tree utype = unsigned_type_for (type); }
2056 (convert (minus (convert:utype @1) (convert:utype @2))))
2057 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2058 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2059 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2060 /* For integer types, if A has a smaller type
2061 than T the result depends on the possible
2062 overflow in P + A.
2063 E.g. T=size_t, A=(unsigned)429497295, P>0.
2064 However, if an overflow in P + A would cause
2065 undefined behavior, we can assume that there
2066 is no overflow. */
2067 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2068 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2069 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2070 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2071 (minus (convert @1) (convert @2)))))
2072 (simplify
2073 (minus (convert (pointer_plus @@0 @1))
2074 (convert (pointer_plus @0 @2)))
2075 (if (INTEGRAL_TYPE_P (type)
2076 && TYPE_OVERFLOW_UNDEFINED (type)
2077 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2078 (with { tree utype = unsigned_type_for (type); }
2079 (convert (minus (convert:utype @1) (convert:utype @2))))
2080 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2081 /* For pointer types, if the conversion of A to the
2082 final type requires a sign- or zero-extension,
2083 then we have to punt - it is not defined which
2084 one is correct. */
2085 || (POINTER_TYPE_P (TREE_TYPE (@0))
2086 && TREE_CODE (@1) == INTEGER_CST
2087 && tree_int_cst_sign_bit (@1) == 0
2088 && TREE_CODE (@2) == INTEGER_CST
2089 && tree_int_cst_sign_bit (@2) == 0))
2090 (minus (convert @1) (convert @2)))))
2091 (simplify
2092 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2093 /* The second argument of pointer_plus must be interpreted as signed, and
2094 thus sign-extended if necessary. */
2095 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2096 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2097 second arg is unsigned even when we need to consider it as signed,
2098 we don't want to diagnose overflow here. */
2099 (minus (convert (view_convert:stype @1))
2100 (convert (view_convert:stype @2)))))))
2101
2102 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2103 Modeled after fold_plusminus_mult_expr. */
2104 (if (!TYPE_SATURATING (type)
2105 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2106 (for plusminus (plus minus)
2107 (simplify
2108 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2109 (if ((!ANY_INTEGRAL_TYPE_P (type)
2110 || TYPE_OVERFLOW_WRAPS (type)
2111 || (INTEGRAL_TYPE_P (type)
2112 && tree_expr_nonzero_p (@0)
2113 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2114 /* If @1 +- @2 is constant require a hard single-use on either
2115 original operand (but not on both). */
2116 && (single_use (@3) || single_use (@4)))
2117 (mult (plusminus @1 @2) @0)))
2118 /* We cannot generate constant 1 for fract. */
2119 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2120 (simplify
2121 (plusminus @0 (mult:c@3 @0 @2))
2122 (if ((!ANY_INTEGRAL_TYPE_P (type)
2123 || TYPE_OVERFLOW_WRAPS (type)
2124 || (INTEGRAL_TYPE_P (type)
2125 && tree_expr_nonzero_p (@0)
2126 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2127 && single_use (@3))
2128 (mult (plusminus { build_one_cst (type); } @2) @0)))
2129 (simplify
2130 (plusminus (mult:c@3 @0 @2) @0)
2131 (if ((!ANY_INTEGRAL_TYPE_P (type)
2132 || TYPE_OVERFLOW_WRAPS (type)
2133 || (INTEGRAL_TYPE_P (type)
2134 && tree_expr_nonzero_p (@0)
2135 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2136 && single_use (@3))
2137 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2138
2139 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2140
2141 (for minmax (min max FMIN_ALL FMAX_ALL)
2142 (simplify
2143 (minmax @0 @0)
2144 @0))
2145 /* min(max(x,y),y) -> y. */
2146 (simplify
2147 (min:c (max:c @0 @1) @1)
2148 @1)
2149 /* max(min(x,y),y) -> y. */
2150 (simplify
2151 (max:c (min:c @0 @1) @1)
2152 @1)
2153 /* max(a,-a) -> abs(a). */
2154 (simplify
2155 (max:c @0 (negate @0))
2156 (if (TREE_CODE (type) != COMPLEX_TYPE
2157 && (! ANY_INTEGRAL_TYPE_P (type)
2158 || TYPE_OVERFLOW_UNDEFINED (type)))
2159 (abs @0)))
2160 /* min(a,-a) -> -abs(a). */
2161 (simplify
2162 (min:c @0 (negate @0))
2163 (if (TREE_CODE (type) != COMPLEX_TYPE
2164 && (! ANY_INTEGRAL_TYPE_P (type)
2165 || TYPE_OVERFLOW_UNDEFINED (type)))
2166 (negate (abs @0))))
2167 (simplify
2168 (min @0 @1)
2169 (switch
2170 (if (INTEGRAL_TYPE_P (type)
2171 && TYPE_MIN_VALUE (type)
2172 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2173 @1)
2174 (if (INTEGRAL_TYPE_P (type)
2175 && TYPE_MAX_VALUE (type)
2176 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2177 @0)))
2178 (simplify
2179 (max @0 @1)
2180 (switch
2181 (if (INTEGRAL_TYPE_P (type)
2182 && TYPE_MAX_VALUE (type)
2183 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2184 @1)
2185 (if (INTEGRAL_TYPE_P (type)
2186 && TYPE_MIN_VALUE (type)
2187 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2188 @0)))
2189
2190 /* max (a, a + CST) -> a + CST where CST is positive. */
2191 /* max (a, a + CST) -> a where CST is negative. */
2192 (simplify
2193 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2194 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2195 (if (tree_int_cst_sgn (@1) > 0)
2196 @2
2197 @0)))
2198
2199 /* min (a, a + CST) -> a where CST is positive. */
2200 /* min (a, a + CST) -> a + CST where CST is negative. */
2201 (simplify
2202 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2203 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2204 (if (tree_int_cst_sgn (@1) > 0)
2205 @0
2206 @2)))
2207
2208 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2209 and the outer convert demotes the expression back to x's type. */
2210 (for minmax (min max)
2211 (simplify
2212 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2213 (if (INTEGRAL_TYPE_P (type)
2214 && types_match (@1, type) && int_fits_type_p (@2, type)
2215 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2216 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2217 (minmax @1 (convert @2)))))
2218
2219 (for minmax (FMIN_ALL FMAX_ALL)
2220 /* If either argument is NaN, return the other one. Avoid the
2221 transformation if we get (and honor) a signalling NaN. */
2222 (simplify
2223 (minmax:c @0 REAL_CST@1)
2224 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2225 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2226 @0)))
2227 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2228 functions to return the numeric arg if the other one is NaN.
2229 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2230 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2231 worry about it either. */
2232 (if (flag_finite_math_only)
2233 (simplify
2234 (FMIN_ALL @0 @1)
2235 (min @0 @1))
2236 (simplify
2237 (FMAX_ALL @0 @1)
2238 (max @0 @1)))
2239 /* min (-A, -B) -> -max (A, B) */
2240 (for minmax (min max FMIN_ALL FMAX_ALL)
2241 maxmin (max min FMAX_ALL FMIN_ALL)
2242 (simplify
2243 (minmax (negate:s@2 @0) (negate:s@3 @1))
2244 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2245 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2246 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2247 (negate (maxmin @0 @1)))))
2248 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2249 MAX (~X, ~Y) -> ~MIN (X, Y) */
2250 (for minmax (min max)
2251 maxmin (max min)
2252 (simplify
2253 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2254 (bit_not (maxmin @0 @1))))
2255
2256 /* MIN (X, Y) == X -> X <= Y */
2257 (for minmax (min min max max)
2258 cmp (eq ne eq ne )
2259 out (le gt ge lt )
2260 (simplify
2261 (cmp:c (minmax:c @0 @1) @0)
2262 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2263 (out @0 @1))))
2264 /* MIN (X, 5) == 0 -> X == 0
2265 MIN (X, 5) == 7 -> false */
2266 (for cmp (eq ne)
2267 (simplify
2268 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2269 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2270 TYPE_SIGN (TREE_TYPE (@0))))
2271 { constant_boolean_node (cmp == NE_EXPR, type); }
2272 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2273 TYPE_SIGN (TREE_TYPE (@0))))
2274 (cmp @0 @2)))))
2275 (for cmp (eq ne)
2276 (simplify
2277 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2278 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2279 TYPE_SIGN (TREE_TYPE (@0))))
2280 { constant_boolean_node (cmp == NE_EXPR, type); }
2281 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2282 TYPE_SIGN (TREE_TYPE (@0))))
2283 (cmp @0 @2)))))
2284 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2285 (for minmax (min min max max min min max max )
2286 cmp (lt le gt ge gt ge lt le )
2287 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2288 (simplify
2289 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2290 (comb (cmp @0 @2) (cmp @1 @2))))
2291
2292 /* Simplifications of shift and rotates. */
2293
2294 (for rotate (lrotate rrotate)
2295 (simplify
2296 (rotate integer_all_onesp@0 @1)
2297 @0))
2298
2299 /* Optimize -1 >> x for arithmetic right shifts. */
2300 (simplify
2301 (rshift integer_all_onesp@0 @1)
2302 (if (!TYPE_UNSIGNED (type)
2303 && tree_expr_nonnegative_p (@1))
2304 @0))
2305
2306 /* Optimize (x >> c) << c into x & (-1<<c). */
2307 (simplify
2308 (lshift (rshift @0 INTEGER_CST@1) @1)
2309 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2310 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2311
2312 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2313 types. */
2314 (simplify
2315 (rshift (lshift @0 INTEGER_CST@1) @1)
2316 (if (TYPE_UNSIGNED (type)
2317 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2318 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2319
2320 (for shiftrotate (lrotate rrotate lshift rshift)
2321 (simplify
2322 (shiftrotate @0 integer_zerop)
2323 (non_lvalue @0))
2324 (simplify
2325 (shiftrotate integer_zerop@0 @1)
2326 @0)
2327 /* Prefer vector1 << scalar to vector1 << vector2
2328 if vector2 is uniform. */
2329 (for vec (VECTOR_CST CONSTRUCTOR)
2330 (simplify
2331 (shiftrotate @0 vec@1)
2332 (with { tree tem = uniform_vector_p (@1); }
2333 (if (tem)
2334 (shiftrotate @0 { tem; }))))))
2335
2336 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2337 Y is 0. Similarly for X >> Y. */
2338 #if GIMPLE
2339 (for shift (lshift rshift)
2340 (simplify
2341 (shift @0 SSA_NAME@1)
2342 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2343 (with {
2344 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2345 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2346 }
2347 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2348 @0)))))
2349 #endif
2350
2351 /* Rewrite an LROTATE_EXPR by a constant into an
2352 RROTATE_EXPR by a new constant. */
2353 (simplify
2354 (lrotate @0 INTEGER_CST@1)
2355 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2356 build_int_cst (TREE_TYPE (@1),
2357 element_precision (type)), @1); }))
2358
2359 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2360 (for op (lrotate rrotate rshift lshift)
2361 (simplify
2362 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2363 (with { unsigned int prec = element_precision (type); }
2364 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2365 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2366 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2367 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2368 (with { unsigned int low = (tree_to_uhwi (@1)
2369 + tree_to_uhwi (@2)); }
2370 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2371 being well defined. */
2372 (if (low >= prec)
2373 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2374 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2375 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2376 { build_zero_cst (type); }
2377 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2378 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2379
2380
2381 /* ((1 << A) & 1) != 0 -> A == 0
2382 ((1 << A) & 1) == 0 -> A != 0 */
2383 (for cmp (ne eq)
2384 icmp (eq ne)
2385 (simplify
2386 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2387 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2388
2389 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2390 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2391 if CST2 != 0. */
2392 (for cmp (ne eq)
2393 (simplify
2394 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2395 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2396 (if (cand < 0
2397 || (!integer_zerop (@2)
2398 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2399 { constant_boolean_node (cmp == NE_EXPR, type); }
2400 (if (!integer_zerop (@2)
2401 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2402 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2403
2404 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2405 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2406 if the new mask might be further optimized. */
2407 (for shift (lshift rshift)
2408 (simplify
2409 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2410 INTEGER_CST@2)
2411 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2412 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2413 && tree_fits_uhwi_p (@1)
2414 && tree_to_uhwi (@1) > 0
2415 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2416 (with
2417 {
2418 unsigned int shiftc = tree_to_uhwi (@1);
2419 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2420 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2421 tree shift_type = TREE_TYPE (@3);
2422 unsigned int prec;
2423
2424 if (shift == LSHIFT_EXPR)
2425 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2426 else if (shift == RSHIFT_EXPR
2427 && type_has_mode_precision_p (shift_type))
2428 {
2429 prec = TYPE_PRECISION (TREE_TYPE (@3));
2430 tree arg00 = @0;
2431 /* See if more bits can be proven as zero because of
2432 zero extension. */
2433 if (@3 != @0
2434 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2435 {
2436 tree inner_type = TREE_TYPE (@0);
2437 if (type_has_mode_precision_p (inner_type)
2438 && TYPE_PRECISION (inner_type) < prec)
2439 {
2440 prec = TYPE_PRECISION (inner_type);
2441 /* See if we can shorten the right shift. */
2442 if (shiftc < prec)
2443 shift_type = inner_type;
2444 /* Otherwise X >> C1 is all zeros, so we'll optimize
2445 it into (X, 0) later on by making sure zerobits
2446 is all ones. */
2447 }
2448 }
2449 zerobits = HOST_WIDE_INT_M1U;
2450 if (shiftc < prec)
2451 {
2452 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2453 zerobits <<= prec - shiftc;
2454 }
2455 /* For arithmetic shift if sign bit could be set, zerobits
2456 can contain actually sign bits, so no transformation is
2457 possible, unless MASK masks them all away. In that
2458 case the shift needs to be converted into logical shift. */
2459 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2460 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2461 {
2462 if ((mask & zerobits) == 0)
2463 shift_type = unsigned_type_for (TREE_TYPE (@3));
2464 else
2465 zerobits = 0;
2466 }
2467 }
2468 }
2469 /* ((X << 16) & 0xff00) is (X, 0). */
2470 (if ((mask & zerobits) == mask)
2471 { build_int_cst (type, 0); }
2472 (with { newmask = mask | zerobits; }
2473 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2474 (with
2475 {
2476 /* Only do the transformation if NEWMASK is some integer
2477 mode's mask. */
2478 for (prec = BITS_PER_UNIT;
2479 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2480 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2481 break;
2482 }
2483 (if (prec < HOST_BITS_PER_WIDE_INT
2484 || newmask == HOST_WIDE_INT_M1U)
2485 (with
2486 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2487 (if (!tree_int_cst_equal (newmaskt, @2))
2488 (if (shift_type != TREE_TYPE (@3))
2489 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2490 (bit_and @4 { newmaskt; })))))))))))))
2491
2492 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2493 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2494 (for shift (lshift rshift)
2495 (for bit_op (bit_and bit_xor bit_ior)
2496 (simplify
2497 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2498 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2499 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2500 (bit_op (shift (convert @0) @1) { mask; }))))))
2501
2502 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2503 (simplify
2504 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2505 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2506 && (element_precision (TREE_TYPE (@0))
2507 <= element_precision (TREE_TYPE (@1))
2508 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2509 (with
2510 { tree shift_type = TREE_TYPE (@0); }
2511 (convert (rshift (convert:shift_type @1) @2)))))
2512
2513 /* ~(~X >>r Y) -> X >>r Y
2514 ~(~X <<r Y) -> X <<r Y */
2515 (for rotate (lrotate rrotate)
2516 (simplify
2517 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2518 (if ((element_precision (TREE_TYPE (@0))
2519 <= element_precision (TREE_TYPE (@1))
2520 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2521 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2522 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2523 (with
2524 { tree rotate_type = TREE_TYPE (@0); }
2525 (convert (rotate (convert:rotate_type @1) @2))))))
2526
2527 /* Simplifications of conversions. */
2528
2529 /* Basic strip-useless-type-conversions / strip_nops. */
2530 (for cvt (convert view_convert float fix_trunc)
2531 (simplify
2532 (cvt @0)
2533 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2534 || (GENERIC && type == TREE_TYPE (@0)))
2535 @0)))
2536
2537 /* Contract view-conversions. */
2538 (simplify
2539 (view_convert (view_convert @0))
2540 (view_convert @0))
2541
2542 /* For integral conversions with the same precision or pointer
2543 conversions use a NOP_EXPR instead. */
2544 (simplify
2545 (view_convert @0)
2546 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2547 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2548 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2549 (convert @0)))
2550
2551 /* Strip inner integral conversions that do not change precision or size, or
2552 zero-extend while keeping the same size (for bool-to-char). */
2553 (simplify
2554 (view_convert (convert@0 @1))
2555 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2556 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2557 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2558 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2559 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2560 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2561 (view_convert @1)))
2562
2563 /* Re-association barriers around constants and other re-association
2564 barriers can be removed. */
2565 (simplify
2566 (paren CONSTANT_CLASS_P@0)
2567 @0)
2568 (simplify
2569 (paren (paren@1 @0))
2570 @1)
2571
2572 /* Handle cases of two conversions in a row. */
2573 (for ocvt (convert float fix_trunc)
2574 (for icvt (convert float)
2575 (simplify
2576 (ocvt (icvt@1 @0))
2577 (with
2578 {
2579 tree inside_type = TREE_TYPE (@0);
2580 tree inter_type = TREE_TYPE (@1);
2581 int inside_int = INTEGRAL_TYPE_P (inside_type);
2582 int inside_ptr = POINTER_TYPE_P (inside_type);
2583 int inside_float = FLOAT_TYPE_P (inside_type);
2584 int inside_vec = VECTOR_TYPE_P (inside_type);
2585 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2586 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2587 int inter_int = INTEGRAL_TYPE_P (inter_type);
2588 int inter_ptr = POINTER_TYPE_P (inter_type);
2589 int inter_float = FLOAT_TYPE_P (inter_type);
2590 int inter_vec = VECTOR_TYPE_P (inter_type);
2591 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2592 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2593 int final_int = INTEGRAL_TYPE_P (type);
2594 int final_ptr = POINTER_TYPE_P (type);
2595 int final_float = FLOAT_TYPE_P (type);
2596 int final_vec = VECTOR_TYPE_P (type);
2597 unsigned int final_prec = TYPE_PRECISION (type);
2598 int final_unsignedp = TYPE_UNSIGNED (type);
2599 }
2600 (switch
2601 /* In addition to the cases of two conversions in a row
2602 handled below, if we are converting something to its own
2603 type via an object of identical or wider precision, neither
2604 conversion is needed. */
2605 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2606 || (GENERIC
2607 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2608 && (((inter_int || inter_ptr) && final_int)
2609 || (inter_float && final_float))
2610 && inter_prec >= final_prec)
2611 (ocvt @0))
2612
2613 /* Likewise, if the intermediate and initial types are either both
2614 float or both integer, we don't need the middle conversion if the
2615 former is wider than the latter and doesn't change the signedness
2616 (for integers). Avoid this if the final type is a pointer since
2617 then we sometimes need the middle conversion. */
2618 (if (((inter_int && inside_int) || (inter_float && inside_float))
2619 && (final_int || final_float)
2620 && inter_prec >= inside_prec
2621 && (inter_float || inter_unsignedp == inside_unsignedp))
2622 (ocvt @0))
2623
2624 /* If we have a sign-extension of a zero-extended value, we can
2625 replace that by a single zero-extension. Likewise if the
2626 final conversion does not change precision we can drop the
2627 intermediate conversion. */
2628 (if (inside_int && inter_int && final_int
2629 && ((inside_prec < inter_prec && inter_prec < final_prec
2630 && inside_unsignedp && !inter_unsignedp)
2631 || final_prec == inter_prec))
2632 (ocvt @0))
2633
2634 /* Two conversions in a row are not needed unless:
2635 - some conversion is floating-point (overstrict for now), or
2636 - some conversion is a vector (overstrict for now), or
2637 - the intermediate type is narrower than both initial and
2638 final, or
2639 - the intermediate type and innermost type differ in signedness,
2640 and the outermost type is wider than the intermediate, or
2641 - the initial type is a pointer type and the precisions of the
2642 intermediate and final types differ, or
2643 - the final type is a pointer type and the precisions of the
2644 initial and intermediate types differ. */
2645 (if (! inside_float && ! inter_float && ! final_float
2646 && ! inside_vec && ! inter_vec && ! final_vec
2647 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2648 && ! (inside_int && inter_int
2649 && inter_unsignedp != inside_unsignedp
2650 && inter_prec < final_prec)
2651 && ((inter_unsignedp && inter_prec > inside_prec)
2652 == (final_unsignedp && final_prec > inter_prec))
2653 && ! (inside_ptr && inter_prec != final_prec)
2654 && ! (final_ptr && inside_prec != inter_prec))
2655 (ocvt @0))
2656
2657 /* A truncation to an unsigned type (a zero-extension) should be
2658 canonicalized as bitwise and of a mask. */
2659 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2660 && final_int && inter_int && inside_int
2661 && final_prec == inside_prec
2662 && final_prec > inter_prec
2663 && inter_unsignedp)
2664 (convert (bit_and @0 { wide_int_to_tree
2665 (inside_type,
2666 wi::mask (inter_prec, false,
2667 TYPE_PRECISION (inside_type))); })))
2668
2669 /* If we are converting an integer to a floating-point that can
2670 represent it exactly and back to an integer, we can skip the
2671 floating-point conversion. */
2672 (if (GIMPLE /* PR66211 */
2673 && inside_int && inter_float && final_int &&
2674 (unsigned) significand_size (TYPE_MODE (inter_type))
2675 >= inside_prec - !inside_unsignedp)
2676 (convert @0)))))))
2677
2678 /* If we have a narrowing conversion to an integral type that is fed by a
2679 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2680 masks off bits outside the final type (and nothing else). */
2681 (simplify
2682 (convert (bit_and @0 INTEGER_CST@1))
2683 (if (INTEGRAL_TYPE_P (type)
2684 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2685 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2686 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2687 TYPE_PRECISION (type)), 0))
2688 (convert @0)))
2689
2690
2691 /* (X /[ex] A) * A -> X. */
2692 (simplify
2693 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2694 (convert @0))
2695
2696 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2697 (for op (plus minus)
2698 (simplify
2699 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2700 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2701 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2702 (with
2703 {
2704 wi::overflow_type overflow;
2705 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2706 TYPE_SIGN (type), &overflow);
2707 }
2708 (if (types_match (type, TREE_TYPE (@2))
2709 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2710 (op @0 { wide_int_to_tree (type, mul); })
2711 (with { tree utype = unsigned_type_for (type); }
2712 (convert (op (convert:utype @0)
2713 (mult (convert:utype @1) (convert:utype @2))))))))))
2714
2715 /* Canonicalization of binary operations. */
2716
2717 /* Convert X + -C into X - C. */
2718 (simplify
2719 (plus @0 REAL_CST@1)
2720 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2721 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2722 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2723 (minus @0 { tem; })))))
2724
2725 /* Convert x+x into x*2. */
2726 (simplify
2727 (plus @0 @0)
2728 (if (SCALAR_FLOAT_TYPE_P (type))
2729 (mult @0 { build_real (type, dconst2); })
2730 (if (INTEGRAL_TYPE_P (type))
2731 (mult @0 { build_int_cst (type, 2); }))))
2732
2733 /* 0 - X -> -X. */
2734 (simplify
2735 (minus integer_zerop @1)
2736 (negate @1))
2737 (simplify
2738 (pointer_diff integer_zerop @1)
2739 (negate (convert @1)))
2740
2741 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2742 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2743 (-ARG1 + ARG0) reduces to -ARG1. */
2744 (simplify
2745 (minus real_zerop@0 @1)
2746 (if (fold_real_zero_addition_p (type, @0, 0))
2747 (negate @1)))
2748
2749 /* Transform x * -1 into -x. */
2750 (simplify
2751 (mult @0 integer_minus_onep)
2752 (negate @0))
2753
2754 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2755 signed overflow for CST != 0 && CST != -1. */
2756 (simplify
2757 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2758 (if (TREE_CODE (@2) != INTEGER_CST
2759 && single_use (@3)
2760 && !integer_zerop (@1) && !integer_minus_onep (@1))
2761 (mult (mult @0 @2) @1)))
2762
2763 /* True if we can easily extract the real and imaginary parts of a complex
2764 number. */
2765 (match compositional_complex
2766 (convert? (complex @0 @1)))
2767
2768 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2769 (simplify
2770 (complex (realpart @0) (imagpart @0))
2771 @0)
2772 (simplify
2773 (realpart (complex @0 @1))
2774 @0)
2775 (simplify
2776 (imagpart (complex @0 @1))
2777 @1)
2778
2779 /* Sometimes we only care about half of a complex expression. */
2780 (simplify
2781 (realpart (convert?:s (conj:s @0)))
2782 (convert (realpart @0)))
2783 (simplify
2784 (imagpart (convert?:s (conj:s @0)))
2785 (convert (negate (imagpart @0))))
2786 (for part (realpart imagpart)
2787 (for op (plus minus)
2788 (simplify
2789 (part (convert?:s@2 (op:s @0 @1)))
2790 (convert (op (part @0) (part @1))))))
2791 (simplify
2792 (realpart (convert?:s (CEXPI:s @0)))
2793 (convert (COS @0)))
2794 (simplify
2795 (imagpart (convert?:s (CEXPI:s @0)))
2796 (convert (SIN @0)))
2797
2798 /* conj(conj(x)) -> x */
2799 (simplify
2800 (conj (convert? (conj @0)))
2801 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2802 (convert @0)))
2803
2804 /* conj({x,y}) -> {x,-y} */
2805 (simplify
2806 (conj (convert?:s (complex:s @0 @1)))
2807 (with { tree itype = TREE_TYPE (type); }
2808 (complex (convert:itype @0) (negate (convert:itype @1)))))
2809
2810 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2811 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2812 (simplify
2813 (bswap (bswap @0))
2814 @0)
2815 (simplify
2816 (bswap (bit_not (bswap @0)))
2817 (bit_not @0))
2818 (for bitop (bit_xor bit_ior bit_and)
2819 (simplify
2820 (bswap (bitop:c (bswap @0) @1))
2821 (bitop @0 (bswap @1)))))
2822
2823
2824 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2825
2826 /* Simplify constant conditions.
2827 Only optimize constant conditions when the selected branch
2828 has the same type as the COND_EXPR. This avoids optimizing
2829 away "c ? x : throw", where the throw has a void type.
2830 Note that we cannot throw away the fold-const.c variant nor
2831 this one as we depend on doing this transform before possibly
2832 A ? B : B -> B triggers and the fold-const.c one can optimize
2833 0 ? A : B to B even if A has side-effects. Something
2834 genmatch cannot handle. */
2835 (simplify
2836 (cond INTEGER_CST@0 @1 @2)
2837 (if (integer_zerop (@0))
2838 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2839 @2)
2840 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2841 @1)))
2842 (simplify
2843 (vec_cond VECTOR_CST@0 @1 @2)
2844 (if (integer_all_onesp (@0))
2845 @1
2846 (if (integer_zerop (@0))
2847 @2)))
2848
2849 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2850 be extended. */
2851 /* This pattern implements two kinds simplification:
2852
2853 Case 1)
2854 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2855 1) Conversions are type widening from smaller type.
2856 2) Const c1 equals to c2 after canonicalizing comparison.
2857 3) Comparison has tree code LT, LE, GT or GE.
2858 This specific pattern is needed when (cmp (convert x) c) may not
2859 be simplified by comparison patterns because of multiple uses of
2860 x. It also makes sense here because simplifying across multiple
2861 referred var is always benefitial for complicated cases.
2862
2863 Case 2)
2864 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2865 (for cmp (lt le gt ge eq)
2866 (simplify
2867 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2868 (with
2869 {
2870 tree from_type = TREE_TYPE (@1);
2871 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2872 enum tree_code code = ERROR_MARK;
2873
2874 if (INTEGRAL_TYPE_P (from_type)
2875 && int_fits_type_p (@2, from_type)
2876 && (types_match (c1_type, from_type)
2877 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2878 && (TYPE_UNSIGNED (from_type)
2879 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2880 && (types_match (c2_type, from_type)
2881 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2882 && (TYPE_UNSIGNED (from_type)
2883 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2884 {
2885 if (cmp != EQ_EXPR)
2886 {
2887 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2888 {
2889 /* X <= Y - 1 equals to X < Y. */
2890 if (cmp == LE_EXPR)
2891 code = LT_EXPR;
2892 /* X > Y - 1 equals to X >= Y. */
2893 if (cmp == GT_EXPR)
2894 code = GE_EXPR;
2895 }
2896 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2897 {
2898 /* X < Y + 1 equals to X <= Y. */
2899 if (cmp == LT_EXPR)
2900 code = LE_EXPR;
2901 /* X >= Y + 1 equals to X > Y. */
2902 if (cmp == GE_EXPR)
2903 code = GT_EXPR;
2904 }
2905 if (code != ERROR_MARK
2906 || wi::to_widest (@2) == wi::to_widest (@3))
2907 {
2908 if (cmp == LT_EXPR || cmp == LE_EXPR)
2909 code = MIN_EXPR;
2910 if (cmp == GT_EXPR || cmp == GE_EXPR)
2911 code = MAX_EXPR;
2912 }
2913 }
2914 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2915 else if (int_fits_type_p (@3, from_type))
2916 code = EQ_EXPR;
2917 }
2918 }
2919 (if (code == MAX_EXPR)
2920 (convert (max @1 (convert @2)))
2921 (if (code == MIN_EXPR)
2922 (convert (min @1 (convert @2)))
2923 (if (code == EQ_EXPR)
2924 (convert (cond (eq @1 (convert @3))
2925 (convert:from_type @3) (convert:from_type @2)))))))))
2926
2927 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2928
2929 1) OP is PLUS or MINUS.
2930 2) CMP is LT, LE, GT or GE.
2931 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2932
2933 This pattern also handles special cases like:
2934
2935 A) Operand x is a unsigned to signed type conversion and c1 is
2936 integer zero. In this case,
2937 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2938 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2939 B) Const c1 may not equal to (C3 op' C2). In this case we also
2940 check equality for (c1+1) and (c1-1) by adjusting comparison
2941 code.
2942
2943 TODO: Though signed type is handled by this pattern, it cannot be
2944 simplified at the moment because C standard requires additional
2945 type promotion. In order to match&simplify it here, the IR needs
2946 to be cleaned up by other optimizers, i.e, VRP. */
2947 (for op (plus minus)
2948 (for cmp (lt le gt ge)
2949 (simplify
2950 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2951 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2952 (if (types_match (from_type, to_type)
2953 /* Check if it is special case A). */
2954 || (TYPE_UNSIGNED (from_type)
2955 && !TYPE_UNSIGNED (to_type)
2956 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2957 && integer_zerop (@1)
2958 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2959 (with
2960 {
2961 wi::overflow_type overflow = wi::OVF_NONE;
2962 enum tree_code code, cmp_code = cmp;
2963 wide_int real_c1;
2964 wide_int c1 = wi::to_wide (@1);
2965 wide_int c2 = wi::to_wide (@2);
2966 wide_int c3 = wi::to_wide (@3);
2967 signop sgn = TYPE_SIGN (from_type);
2968
2969 /* Handle special case A), given x of unsigned type:
2970 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2971 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2972 if (!types_match (from_type, to_type))
2973 {
2974 if (cmp_code == LT_EXPR)
2975 cmp_code = GT_EXPR;
2976 if (cmp_code == GE_EXPR)
2977 cmp_code = LE_EXPR;
2978 c1 = wi::max_value (to_type);
2979 }
2980 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2981 compute (c3 op' c2) and check if it equals to c1 with op' being
2982 the inverted operator of op. Make sure overflow doesn't happen
2983 if it is undefined. */
2984 if (op == PLUS_EXPR)
2985 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2986 else
2987 real_c1 = wi::add (c3, c2, sgn, &overflow);
2988
2989 code = cmp_code;
2990 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2991 {
2992 /* Check if c1 equals to real_c1. Boundary condition is handled
2993 by adjusting comparison operation if necessary. */
2994 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2995 && !overflow)
2996 {
2997 /* X <= Y - 1 equals to X < Y. */
2998 if (cmp_code == LE_EXPR)
2999 code = LT_EXPR;
3000 /* X > Y - 1 equals to X >= Y. */
3001 if (cmp_code == GT_EXPR)
3002 code = GE_EXPR;
3003 }
3004 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3005 && !overflow)
3006 {
3007 /* X < Y + 1 equals to X <= Y. */
3008 if (cmp_code == LT_EXPR)
3009 code = LE_EXPR;
3010 /* X >= Y + 1 equals to X > Y. */
3011 if (cmp_code == GE_EXPR)
3012 code = GT_EXPR;
3013 }
3014 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3015 {
3016 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3017 code = MIN_EXPR;
3018 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3019 code = MAX_EXPR;
3020 }
3021 }
3022 }
3023 (if (code == MAX_EXPR)
3024 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3025 { wide_int_to_tree (from_type, c2); })
3026 (if (code == MIN_EXPR)
3027 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3028 { wide_int_to_tree (from_type, c2); })))))))))
3029
3030 (for cnd (cond vec_cond)
3031 /* A ? B : (A ? X : C) -> A ? B : C. */
3032 (simplify
3033 (cnd @0 (cnd @0 @1 @2) @3)
3034 (cnd @0 @1 @3))
3035 (simplify
3036 (cnd @0 @1 (cnd @0 @2 @3))
3037 (cnd @0 @1 @3))
3038 /* A ? B : (!A ? C : X) -> A ? B : C. */
3039 /* ??? This matches embedded conditions open-coded because genmatch
3040 would generate matching code for conditions in separate stmts only.
3041 The following is still important to merge then and else arm cases
3042 from if-conversion. */
3043 (simplify
3044 (cnd @0 @1 (cnd @2 @3 @4))
3045 (if (inverse_conditions_p (@0, @2))
3046 (cnd @0 @1 @3)))
3047 (simplify
3048 (cnd @0 (cnd @1 @2 @3) @4)
3049 (if (inverse_conditions_p (@0, @1))
3050 (cnd @0 @3 @4)))
3051
3052 /* A ? B : B -> B. */
3053 (simplify
3054 (cnd @0 @1 @1)
3055 @1)
3056
3057 /* !A ? B : C -> A ? C : B. */
3058 (simplify
3059 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3060 (cnd @0 @2 @1)))
3061
3062 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3063 return all -1 or all 0 results. */
3064 /* ??? We could instead convert all instances of the vec_cond to negate,
3065 but that isn't necessarily a win on its own. */
3066 (simplify
3067 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3068 (if (VECTOR_TYPE_P (type)
3069 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3070 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3071 && (TYPE_MODE (TREE_TYPE (type))
3072 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3073 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3074
3075 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3076 (simplify
3077 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3078 (if (VECTOR_TYPE_P (type)
3079 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3080 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3081 && (TYPE_MODE (TREE_TYPE (type))
3082 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3083 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3084
3085
3086 /* Simplifications of comparisons. */
3087
3088 /* See if we can reduce the magnitude of a constant involved in a
3089 comparison by changing the comparison code. This is a canonicalization
3090 formerly done by maybe_canonicalize_comparison_1. */
3091 (for cmp (le gt)
3092 acmp (lt ge)
3093 (simplify
3094 (cmp @0 INTEGER_CST@1)
3095 (if (tree_int_cst_sgn (@1) == -1)
3096 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3097 (for cmp (ge lt)
3098 acmp (gt le)
3099 (simplify
3100 (cmp @0 INTEGER_CST@1)
3101 (if (tree_int_cst_sgn (@1) == 1)
3102 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3103
3104
3105 /* We can simplify a logical negation of a comparison to the
3106 inverted comparison. As we cannot compute an expression
3107 operator using invert_tree_comparison we have to simulate
3108 that with expression code iteration. */
3109 (for cmp (tcc_comparison)
3110 icmp (inverted_tcc_comparison)
3111 ncmp (inverted_tcc_comparison_with_nans)
3112 /* Ideally we'd like to combine the following two patterns
3113 and handle some more cases by using
3114 (logical_inverted_value (cmp @0 @1))
3115 here but for that genmatch would need to "inline" that.
3116 For now implement what forward_propagate_comparison did. */
3117 (simplify
3118 (bit_not (cmp @0 @1))
3119 (if (VECTOR_TYPE_P (type)
3120 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3121 /* Comparison inversion may be impossible for trapping math,
3122 invert_tree_comparison will tell us. But we can't use
3123 a computed operator in the replacement tree thus we have
3124 to play the trick below. */
3125 (with { enum tree_code ic = invert_tree_comparison
3126 (cmp, HONOR_NANS (@0)); }
3127 (if (ic == icmp)
3128 (icmp @0 @1)
3129 (if (ic == ncmp)
3130 (ncmp @0 @1))))))
3131 (simplify
3132 (bit_xor (cmp @0 @1) integer_truep)
3133 (with { enum tree_code ic = invert_tree_comparison
3134 (cmp, HONOR_NANS (@0)); }
3135 (if (ic == icmp)
3136 (icmp @0 @1)
3137 (if (ic == ncmp)
3138 (ncmp @0 @1))))))
3139
3140 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3141 ??? The transformation is valid for the other operators if overflow
3142 is undefined for the type, but performing it here badly interacts
3143 with the transformation in fold_cond_expr_with_comparison which
3144 attempts to synthetize ABS_EXPR. */
3145 (for cmp (eq ne)
3146 (for sub (minus pointer_diff)
3147 (simplify
3148 (cmp (sub@2 @0 @1) integer_zerop)
3149 (if (single_use (@2))
3150 (cmp @0 @1)))))
3151
3152 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3153 signed arithmetic case. That form is created by the compiler
3154 often enough for folding it to be of value. One example is in
3155 computing loop trip counts after Operator Strength Reduction. */
3156 (for cmp (simple_comparison)
3157 scmp (swapped_simple_comparison)
3158 (simplify
3159 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3160 /* Handle unfolded multiplication by zero. */
3161 (if (integer_zerop (@1))
3162 (cmp @1 @2)
3163 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3164 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3165 && single_use (@3))
3166 /* If @1 is negative we swap the sense of the comparison. */
3167 (if (tree_int_cst_sgn (@1) < 0)
3168 (scmp @0 @2)
3169 (cmp @0 @2))))))
3170
3171 /* Simplify comparison of something with itself. For IEEE
3172 floating-point, we can only do some of these simplifications. */
3173 (for cmp (eq ge le)
3174 (simplify
3175 (cmp @0 @0)
3176 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3177 || ! HONOR_NANS (@0))
3178 { constant_boolean_node (true, type); }
3179 (if (cmp != EQ_EXPR)
3180 (eq @0 @0)))))
3181 (for cmp (ne gt lt)
3182 (simplify
3183 (cmp @0 @0)
3184 (if (cmp != NE_EXPR
3185 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3186 || ! HONOR_NANS (@0))
3187 { constant_boolean_node (false, type); })))
3188 (for cmp (unle unge uneq)
3189 (simplify
3190 (cmp @0 @0)
3191 { constant_boolean_node (true, type); }))
3192 (for cmp (unlt ungt)
3193 (simplify
3194 (cmp @0 @0)
3195 (unordered @0 @0)))
3196 (simplify
3197 (ltgt @0 @0)
3198 (if (!flag_trapping_math)
3199 { constant_boolean_node (false, type); }))
3200
3201 /* Fold ~X op ~Y as Y op X. */
3202 (for cmp (simple_comparison)
3203 (simplify
3204 (cmp (bit_not@2 @0) (bit_not@3 @1))
3205 (if (single_use (@2) && single_use (@3))
3206 (cmp @1 @0))))
3207
3208 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3209 (for cmp (simple_comparison)
3210 scmp (swapped_simple_comparison)
3211 (simplify
3212 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3213 (if (single_use (@2)
3214 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3215 (scmp @0 (bit_not @1)))))
3216
3217 (for cmp (simple_comparison)
3218 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3219 (simplify
3220 (cmp (convert@2 @0) (convert? @1))
3221 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3222 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3223 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3224 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3225 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3226 (with
3227 {
3228 tree type1 = TREE_TYPE (@1);
3229 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3230 {
3231 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3232 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3233 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3234 type1 = float_type_node;
3235 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3236 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3237 type1 = double_type_node;
3238 }
3239 tree newtype
3240 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3241 ? TREE_TYPE (@0) : type1);
3242 }
3243 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3244 (cmp (convert:newtype @0) (convert:newtype @1))))))
3245
3246 (simplify
3247 (cmp @0 REAL_CST@1)
3248 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3249 (switch
3250 /* a CMP (-0) -> a CMP 0 */
3251 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3252 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3253 /* x != NaN is always true, other ops are always false. */
3254 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3255 && ! HONOR_SNANS (@1))
3256 { constant_boolean_node (cmp == NE_EXPR, type); })
3257 /* Fold comparisons against infinity. */
3258 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3259 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3260 (with
3261 {
3262 REAL_VALUE_TYPE max;
3263 enum tree_code code = cmp;
3264 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3265 if (neg)
3266 code = swap_tree_comparison (code);
3267 }
3268 (switch
3269 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3270 (if (code == GT_EXPR
3271 && !(HONOR_NANS (@0) && flag_trapping_math))
3272 { constant_boolean_node (false, type); })
3273 (if (code == LE_EXPR)
3274 /* x <= +Inf is always true, if we don't care about NaNs. */
3275 (if (! HONOR_NANS (@0))
3276 { constant_boolean_node (true, type); }
3277 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3278 an "invalid" exception. */
3279 (if (!flag_trapping_math)
3280 (eq @0 @0))))
3281 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3282 for == this introduces an exception for x a NaN. */
3283 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3284 || code == GE_EXPR)
3285 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3286 (if (neg)
3287 (lt @0 { build_real (TREE_TYPE (@0), max); })
3288 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3289 /* x < +Inf is always equal to x <= DBL_MAX. */
3290 (if (code == LT_EXPR)
3291 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3292 (if (neg)
3293 (ge @0 { build_real (TREE_TYPE (@0), max); })
3294 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3295 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3296 an exception for x a NaN so use an unordered comparison. */
3297 (if (code == NE_EXPR)
3298 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3299 (if (! HONOR_NANS (@0))
3300 (if (neg)
3301 (ge @0 { build_real (TREE_TYPE (@0), max); })
3302 (le @0 { build_real (TREE_TYPE (@0), max); }))
3303 (if (neg)
3304 (unge @0 { build_real (TREE_TYPE (@0), max); })
3305 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3306
3307 /* If this is a comparison of a real constant with a PLUS_EXPR
3308 or a MINUS_EXPR of a real constant, we can convert it into a
3309 comparison with a revised real constant as long as no overflow
3310 occurs when unsafe_math_optimizations are enabled. */
3311 (if (flag_unsafe_math_optimizations)
3312 (for op (plus minus)
3313 (simplify
3314 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3315 (with
3316 {
3317 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3318 TREE_TYPE (@1), @2, @1);
3319 }
3320 (if (tem && !TREE_OVERFLOW (tem))
3321 (cmp @0 { tem; }))))))
3322
3323 /* Likewise, we can simplify a comparison of a real constant with
3324 a MINUS_EXPR whose first operand is also a real constant, i.e.
3325 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3326 floating-point types only if -fassociative-math is set. */
3327 (if (flag_associative_math)
3328 (simplify
3329 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3330 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3331 (if (tem && !TREE_OVERFLOW (tem))
3332 (cmp { tem; } @1)))))
3333
3334 /* Fold comparisons against built-in math functions. */
3335 (if (flag_unsafe_math_optimizations
3336 && ! flag_errno_math)
3337 (for sq (SQRT)
3338 (simplify
3339 (cmp (sq @0) REAL_CST@1)
3340 (switch
3341 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3342 (switch
3343 /* sqrt(x) < y is always false, if y is negative. */
3344 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3345 { constant_boolean_node (false, type); })
3346 /* sqrt(x) > y is always true, if y is negative and we
3347 don't care about NaNs, i.e. negative values of x. */
3348 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3349 { constant_boolean_node (true, type); })
3350 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3351 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3352 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3353 (switch
3354 /* sqrt(x) < 0 is always false. */
3355 (if (cmp == LT_EXPR)
3356 { constant_boolean_node (false, type); })
3357 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3358 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3359 { constant_boolean_node (true, type); })
3360 /* sqrt(x) <= 0 -> x == 0. */
3361 (if (cmp == LE_EXPR)
3362 (eq @0 @1))
3363 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3364 == or !=. In the last case:
3365
3366 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3367
3368 if x is negative or NaN. Due to -funsafe-math-optimizations,
3369 the results for other x follow from natural arithmetic. */
3370 (cmp @0 @1)))
3371 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3372 (with
3373 {
3374 REAL_VALUE_TYPE c2;
3375 real_arithmetic (&c2, MULT_EXPR,
3376 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3377 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3378 }
3379 (if (REAL_VALUE_ISINF (c2))
3380 /* sqrt(x) > y is x == +Inf, when y is very large. */
3381 (if (HONOR_INFINITIES (@0))
3382 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3383 { constant_boolean_node (false, type); })
3384 /* sqrt(x) > c is the same as x > c*c. */
3385 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3386 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3387 (with
3388 {
3389 REAL_VALUE_TYPE c2;
3390 real_arithmetic (&c2, MULT_EXPR,
3391 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3392 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3393 }
3394 (if (REAL_VALUE_ISINF (c2))
3395 (switch
3396 /* sqrt(x) < y is always true, when y is a very large
3397 value and we don't care about NaNs or Infinities. */
3398 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3399 { constant_boolean_node (true, type); })
3400 /* sqrt(x) < y is x != +Inf when y is very large and we
3401 don't care about NaNs. */
3402 (if (! HONOR_NANS (@0))
3403 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3404 /* sqrt(x) < y is x >= 0 when y is very large and we
3405 don't care about Infinities. */
3406 (if (! HONOR_INFINITIES (@0))
3407 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3408 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3409 (if (GENERIC)
3410 (truth_andif
3411 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3412 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3413 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3414 (if (! HONOR_NANS (@0))
3415 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3416 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3417 (if (GENERIC)
3418 (truth_andif
3419 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3420 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3421 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3422 (simplify
3423 (cmp (sq @0) (sq @1))
3424 (if (! HONOR_NANS (@0))
3425 (cmp @0 @1))))))
3426
3427 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3428 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3429 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3430 (simplify
3431 (cmp (float@0 @1) (float @2))
3432 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3433 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3434 (with
3435 {
3436 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3437 tree type1 = TREE_TYPE (@1);
3438 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3439 tree type2 = TREE_TYPE (@2);
3440 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3441 }
3442 (if (fmt.can_represent_integral_type_p (type1)
3443 && fmt.can_represent_integral_type_p (type2))
3444 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3445 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3446 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3447 && type1_signed_p >= type2_signed_p)
3448 (icmp @1 (convert @2))
3449 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3450 && type1_signed_p <= type2_signed_p)
3451 (icmp (convert:type2 @1) @2)
3452 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3453 && type1_signed_p == type2_signed_p)
3454 (icmp @1 @2))))))))))
3455
3456 /* Optimize various special cases of (FTYPE) N CMP CST. */
3457 (for cmp (lt le eq ne ge gt)
3458 icmp (le le eq ne ge ge)
3459 (simplify
3460 (cmp (float @0) REAL_CST@1)
3461 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3462 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3463 (with
3464 {
3465 tree itype = TREE_TYPE (@0);
3466 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3467 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3468 /* Be careful to preserve any potential exceptions due to
3469 NaNs. qNaNs are ok in == or != context.
3470 TODO: relax under -fno-trapping-math or
3471 -fno-signaling-nans. */
3472 bool exception_p
3473 = real_isnan (cst) && (cst->signalling
3474 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3475 }
3476 /* TODO: allow non-fitting itype and SNaNs when
3477 -fno-trapping-math. */
3478 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3479 (with
3480 {
3481 signop isign = TYPE_SIGN (itype);
3482 REAL_VALUE_TYPE imin, imax;
3483 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3484 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3485
3486 REAL_VALUE_TYPE icst;
3487 if (cmp == GT_EXPR || cmp == GE_EXPR)
3488 real_ceil (&icst, fmt, cst);
3489 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3490 real_floor (&icst, fmt, cst);
3491 else
3492 real_trunc (&icst, fmt, cst);
3493
3494 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3495
3496 bool overflow_p = false;
3497 wide_int icst_val
3498 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3499 }
3500 (switch
3501 /* Optimize cases when CST is outside of ITYPE's range. */
3502 (if (real_compare (LT_EXPR, cst, &imin))
3503 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3504 type); })
3505 (if (real_compare (GT_EXPR, cst, &imax))
3506 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3507 type); })
3508 /* Remove cast if CST is an integer representable by ITYPE. */
3509 (if (cst_int_p)
3510 (cmp @0 { gcc_assert (!overflow_p);
3511 wide_int_to_tree (itype, icst_val); })
3512 )
3513 /* When CST is fractional, optimize
3514 (FTYPE) N == CST -> 0
3515 (FTYPE) N != CST -> 1. */
3516 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3517 { constant_boolean_node (cmp == NE_EXPR, type); })
3518 /* Otherwise replace with sensible integer constant. */
3519 (with
3520 {
3521 gcc_checking_assert (!overflow_p);
3522 }
3523 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3524
3525 /* Fold A /[ex] B CMP C to A CMP B * C. */
3526 (for cmp (eq ne)
3527 (simplify
3528 (cmp (exact_div @0 @1) INTEGER_CST@2)
3529 (if (!integer_zerop (@1))
3530 (if (wi::to_wide (@2) == 0)
3531 (cmp @0 @2)
3532 (if (TREE_CODE (@1) == INTEGER_CST)
3533 (with
3534 {
3535 wi::overflow_type ovf;
3536 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3537 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3538 }
3539 (if (ovf)
3540 { constant_boolean_node (cmp == NE_EXPR, type); }
3541 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3542 (for cmp (lt le gt ge)
3543 (simplify
3544 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3545 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3546 (with
3547 {
3548 wi::overflow_type ovf;
3549 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3550 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3551 }
3552 (if (ovf)
3553 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3554 TYPE_SIGN (TREE_TYPE (@2)))
3555 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3556 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3557
3558 /* Unordered tests if either argument is a NaN. */
3559 (simplify
3560 (bit_ior (unordered @0 @0) (unordered @1 @1))
3561 (if (types_match (@0, @1))
3562 (unordered @0 @1)))
3563 (simplify
3564 (bit_and (ordered @0 @0) (ordered @1 @1))
3565 (if (types_match (@0, @1))
3566 (ordered @0 @1)))
3567 (simplify
3568 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3569 @2)
3570 (simplify
3571 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3572 @2)
3573
3574 /* Simple range test simplifications. */
3575 /* A < B || A >= B -> true. */
3576 (for test1 (lt le le le ne ge)
3577 test2 (ge gt ge ne eq ne)
3578 (simplify
3579 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3580 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3581 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3582 { constant_boolean_node (true, type); })))
3583 /* A < B && A >= B -> false. */
3584 (for test1 (lt lt lt le ne eq)
3585 test2 (ge gt eq gt eq gt)
3586 (simplify
3587 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3588 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3589 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3590 { constant_boolean_node (false, type); })))
3591
3592 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3593 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3594
3595 Note that comparisons
3596 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3597 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3598 will be canonicalized to above so there's no need to
3599 consider them here.
3600 */
3601
3602 (for cmp (le gt)
3603 eqcmp (eq ne)
3604 (simplify
3605 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3606 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3607 (with
3608 {
3609 tree ty = TREE_TYPE (@0);
3610 unsigned prec = TYPE_PRECISION (ty);
3611 wide_int mask = wi::to_wide (@2, prec);
3612 wide_int rhs = wi::to_wide (@3, prec);
3613 signop sgn = TYPE_SIGN (ty);
3614 }
3615 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3616 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3617 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3618 { build_zero_cst (ty); }))))))
3619
3620 /* -A CMP -B -> B CMP A. */
3621 (for cmp (tcc_comparison)
3622 scmp (swapped_tcc_comparison)
3623 (simplify
3624 (cmp (negate @0) (negate @1))
3625 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3626 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3627 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3628 (scmp @0 @1)))
3629 (simplify
3630 (cmp (negate @0) CONSTANT_CLASS_P@1)
3631 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3632 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3633 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3634 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3635 (if (tem && !TREE_OVERFLOW (tem))
3636 (scmp @0 { tem; }))))))
3637
3638 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3639 (for op (eq ne)
3640 (simplify
3641 (op (abs @0) zerop@1)
3642 (op @0 @1)))
3643
3644 /* From fold_sign_changed_comparison and fold_widened_comparison.
3645 FIXME: the lack of symmetry is disturbing. */
3646 (for cmp (simple_comparison)
3647 (simplify
3648 (cmp (convert@0 @00) (convert?@1 @10))
3649 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3650 /* Disable this optimization if we're casting a function pointer
3651 type on targets that require function pointer canonicalization. */
3652 && !(targetm.have_canonicalize_funcptr_for_compare ()
3653 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3654 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3655 || (POINTER_TYPE_P (TREE_TYPE (@10))
3656 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3657 && single_use (@0))
3658 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3659 && (TREE_CODE (@10) == INTEGER_CST
3660 || @1 != @10)
3661 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3662 || cmp == NE_EXPR
3663 || cmp == EQ_EXPR)
3664 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3665 /* ??? The special-casing of INTEGER_CST conversion was in the original
3666 code and here to avoid a spurious overflow flag on the resulting
3667 constant which fold_convert produces. */
3668 (if (TREE_CODE (@1) == INTEGER_CST)
3669 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3670 TREE_OVERFLOW (@1)); })
3671 (cmp @00 (convert @1)))
3672
3673 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3674 /* If possible, express the comparison in the shorter mode. */
3675 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3676 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3677 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3678 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3679 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3680 || ((TYPE_PRECISION (TREE_TYPE (@00))
3681 >= TYPE_PRECISION (TREE_TYPE (@10)))
3682 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3683 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3684 || (TREE_CODE (@10) == INTEGER_CST
3685 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3686 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3687 (cmp @00 (convert @10))
3688 (if (TREE_CODE (@10) == INTEGER_CST
3689 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3690 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3691 (with
3692 {
3693 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3694 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3695 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3696 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3697 }
3698 (if (above || below)
3699 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3700 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3701 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3702 { constant_boolean_node (above ? true : false, type); }
3703 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3704 { constant_boolean_node (above ? false : true, type); }))))))))))))
3705
3706 (for cmp (eq ne)
3707 /* A local variable can never be pointed to by
3708 the default SSA name of an incoming parameter.
3709 SSA names are canonicalized to 2nd place. */
3710 (simplify
3711 (cmp addr@0 SSA_NAME@1)
3712 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3713 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3714 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3715 (if (TREE_CODE (base) == VAR_DECL
3716 && auto_var_in_fn_p (base, current_function_decl))
3717 (if (cmp == NE_EXPR)
3718 { constant_boolean_node (true, type); }
3719 { constant_boolean_node (false, type); }))))))
3720
3721 /* Equality compare simplifications from fold_binary */
3722 (for cmp (eq ne)
3723
3724 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3725 Similarly for NE_EXPR. */
3726 (simplify
3727 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3728 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3729 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3730 { constant_boolean_node (cmp == NE_EXPR, type); }))
3731
3732 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3733 (simplify
3734 (cmp (bit_xor @0 @1) integer_zerop)
3735 (cmp @0 @1))
3736
3737 /* (X ^ Y) == Y becomes X == 0.
3738 Likewise (X ^ Y) == X becomes Y == 0. */
3739 (simplify
3740 (cmp:c (bit_xor:c @0 @1) @0)
3741 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3742
3743 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3744 (simplify
3745 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3746 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3747 (cmp @0 (bit_xor @1 (convert @2)))))
3748
3749 (simplify
3750 (cmp (convert? addr@0) integer_zerop)
3751 (if (tree_single_nonzero_warnv_p (@0, NULL))
3752 { constant_boolean_node (cmp == NE_EXPR, type); })))
3753
3754 /* If we have (A & C) == C where C is a power of 2, convert this into
3755 (A & C) != 0. Similarly for NE_EXPR. */
3756 (for cmp (eq ne)
3757 icmp (ne eq)
3758 (simplify
3759 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3760 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3761
3762 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3763 convert this into a shift followed by ANDing with D. */
3764 (simplify
3765 (cond
3766 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3767 INTEGER_CST@2 integer_zerop)
3768 (if (integer_pow2p (@2))
3769 (with {
3770 int shift = (wi::exact_log2 (wi::to_wide (@2))
3771 - wi::exact_log2 (wi::to_wide (@1)));
3772 }
3773 (if (shift > 0)
3774 (bit_and
3775 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3776 (bit_and
3777 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3778 @2)))))
3779
3780 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3781 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3782 (for cmp (eq ne)
3783 ncmp (ge lt)
3784 (simplify
3785 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3786 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3787 && type_has_mode_precision_p (TREE_TYPE (@0))
3788 && element_precision (@2) >= element_precision (@0)
3789 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3790 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3791 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3792
3793 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3794 this into a right shift or sign extension followed by ANDing with C. */
3795 (simplify
3796 (cond
3797 (lt @0 integer_zerop)
3798 INTEGER_CST@1 integer_zerop)
3799 (if (integer_pow2p (@1)
3800 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3801 (with {
3802 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3803 }
3804 (if (shift >= 0)
3805 (bit_and
3806 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3807 @1)
3808 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3809 sign extension followed by AND with C will achieve the effect. */
3810 (bit_and (convert @0) @1)))))
3811
3812 /* When the addresses are not directly of decls compare base and offset.
3813 This implements some remaining parts of fold_comparison address
3814 comparisons but still no complete part of it. Still it is good
3815 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3816 (for cmp (simple_comparison)
3817 (simplify
3818 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3819 (with
3820 {
3821 poly_int64 off0, off1;
3822 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3823 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3824 if (base0 && TREE_CODE (base0) == MEM_REF)
3825 {
3826 off0 += mem_ref_offset (base0).force_shwi ();
3827 base0 = TREE_OPERAND (base0, 0);
3828 }
3829 if (base1 && TREE_CODE (base1) == MEM_REF)
3830 {
3831 off1 += mem_ref_offset (base1).force_shwi ();
3832 base1 = TREE_OPERAND (base1, 0);
3833 }
3834 }
3835 (if (base0 && base1)
3836 (with
3837 {
3838 int equal = 2;
3839 /* Punt in GENERIC on variables with value expressions;
3840 the value expressions might point to fields/elements
3841 of other vars etc. */
3842 if (GENERIC
3843 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3844 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3845 ;
3846 else if (decl_in_symtab_p (base0)
3847 && decl_in_symtab_p (base1))
3848 equal = symtab_node::get_create (base0)
3849 ->equal_address_to (symtab_node::get_create (base1));
3850 else if ((DECL_P (base0)
3851 || TREE_CODE (base0) == SSA_NAME
3852 || TREE_CODE (base0) == STRING_CST)
3853 && (DECL_P (base1)
3854 || TREE_CODE (base1) == SSA_NAME
3855 || TREE_CODE (base1) == STRING_CST))
3856 equal = (base0 == base1);
3857 }
3858 (if (equal == 1
3859 && (cmp == EQ_EXPR || cmp == NE_EXPR
3860 /* If the offsets are equal we can ignore overflow. */
3861 || known_eq (off0, off1)
3862 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3863 /* Or if we compare using pointers to decls or strings. */
3864 || (POINTER_TYPE_P (TREE_TYPE (@2))
3865 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3866 (switch
3867 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3868 { constant_boolean_node (known_eq (off0, off1), type); })
3869 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3870 { constant_boolean_node (known_ne (off0, off1), type); })
3871 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3872 { constant_boolean_node (known_lt (off0, off1), type); })
3873 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3874 { constant_boolean_node (known_le (off0, off1), type); })
3875 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3876 { constant_boolean_node (known_ge (off0, off1), type); })
3877 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3878 { constant_boolean_node (known_gt (off0, off1), type); }))
3879 (if (equal == 0
3880 && DECL_P (base0) && DECL_P (base1)
3881 /* If we compare this as integers require equal offset. */
3882 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3883 || known_eq (off0, off1)))
3884 (switch
3885 (if (cmp == EQ_EXPR)
3886 { constant_boolean_node (false, type); })
3887 (if (cmp == NE_EXPR)
3888 { constant_boolean_node (true, type); })))))))))
3889
3890 /* Simplify pointer equality compares using PTA. */
3891 (for neeq (ne eq)
3892 (simplify
3893 (neeq @0 @1)
3894 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3895 && ptrs_compare_unequal (@0, @1))
3896 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3897
3898 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3899 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3900 Disable the transform if either operand is pointer to function.
3901 This broke pr22051-2.c for arm where function pointer
3902 canonicalizaion is not wanted. */
3903
3904 (for cmp (ne eq)
3905 (simplify
3906 (cmp (convert @0) INTEGER_CST@1)
3907 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3908 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3909 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3910 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3911 && POINTER_TYPE_P (TREE_TYPE (@1))
3912 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3913 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3914 (cmp @0 (convert @1)))))
3915
3916 /* Non-equality compare simplifications from fold_binary */
3917 (for cmp (lt gt le ge)
3918 /* Comparisons with the highest or lowest possible integer of
3919 the specified precision will have known values. */
3920 (simplify
3921 (cmp (convert?@2 @0) INTEGER_CST@1)
3922 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3923 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3924 (with
3925 {
3926 tree arg1_type = TREE_TYPE (@1);
3927 unsigned int prec = TYPE_PRECISION (arg1_type);
3928 wide_int max = wi::max_value (arg1_type);
3929 wide_int signed_max = wi::max_value (prec, SIGNED);
3930 wide_int min = wi::min_value (arg1_type);
3931 }
3932 (switch
3933 (if (wi::to_wide (@1) == max)
3934 (switch
3935 (if (cmp == GT_EXPR)
3936 { constant_boolean_node (false, type); })
3937 (if (cmp == GE_EXPR)
3938 (eq @2 @1))
3939 (if (cmp == LE_EXPR)
3940 { constant_boolean_node (true, type); })
3941 (if (cmp == LT_EXPR)
3942 (ne @2 @1))))
3943 (if (wi::to_wide (@1) == min)
3944 (switch
3945 (if (cmp == LT_EXPR)
3946 { constant_boolean_node (false, type); })
3947 (if (cmp == LE_EXPR)
3948 (eq @2 @1))
3949 (if (cmp == GE_EXPR)
3950 { constant_boolean_node (true, type); })
3951 (if (cmp == GT_EXPR)
3952 (ne @2 @1))))
3953 (if (wi::to_wide (@1) == max - 1)
3954 (switch
3955 (if (cmp == GT_EXPR)
3956 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3957 (if (cmp == LE_EXPR)
3958 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3959 (if (wi::to_wide (@1) == min + 1)
3960 (switch
3961 (if (cmp == GE_EXPR)
3962 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3963 (if (cmp == LT_EXPR)
3964 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3965 (if (wi::to_wide (@1) == signed_max
3966 && TYPE_UNSIGNED (arg1_type)
3967 /* We will flip the signedness of the comparison operator
3968 associated with the mode of @1, so the sign bit is
3969 specified by this mode. Check that @1 is the signed
3970 max associated with this sign bit. */
3971 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3972 /* signed_type does not work on pointer types. */
3973 && INTEGRAL_TYPE_P (arg1_type))
3974 /* The following case also applies to X < signed_max+1
3975 and X >= signed_max+1 because previous transformations. */
3976 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3977 (with { tree st = signed_type_for (arg1_type); }
3978 (if (cmp == LE_EXPR)
3979 (ge (convert:st @0) { build_zero_cst (st); })
3980 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3981
3982 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3983 /* If the second operand is NaN, the result is constant. */
3984 (simplify
3985 (cmp @0 REAL_CST@1)
3986 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3987 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3988 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3989 ? false : true, type); })))
3990
3991 /* bool_var != 0 becomes bool_var. */
3992 (simplify
3993 (ne @0 integer_zerop)
3994 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3995 && types_match (type, TREE_TYPE (@0)))
3996 (non_lvalue @0)))
3997 /* bool_var == 1 becomes bool_var. */
3998 (simplify
3999 (eq @0 integer_onep)
4000 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4001 && types_match (type, TREE_TYPE (@0)))
4002 (non_lvalue @0)))
4003 /* Do not handle
4004 bool_var == 0 becomes !bool_var or
4005 bool_var != 1 becomes !bool_var
4006 here because that only is good in assignment context as long
4007 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4008 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4009 clearly less optimal and which we'll transform again in forwprop. */
4010
4011 /* When one argument is a constant, overflow detection can be simplified.
4012 Currently restricted to single use so as not to interfere too much with
4013 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4014 A + CST CMP A -> A CMP' CST' */
4015 (for cmp (lt le ge gt)
4016 out (gt gt le le)
4017 (simplify
4018 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4019 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4020 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4021 && wi::to_wide (@1) != 0
4022 && single_use (@2))
4023 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4024 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4025 wi::max_value (prec, UNSIGNED)
4026 - wi::to_wide (@1)); })))))
4027
4028 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4029 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4030 expects the long form, so we restrict the transformation for now. */
4031 (for cmp (gt le)
4032 (simplify
4033 (cmp:c (minus@2 @0 @1) @0)
4034 (if (single_use (@2)
4035 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4036 && TYPE_UNSIGNED (TREE_TYPE (@0))
4037 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4038 (cmp @1 @0))))
4039
4040 /* Testing for overflow is unnecessary if we already know the result. */
4041 /* A - B > A */
4042 (for cmp (gt le)
4043 out (ne eq)
4044 (simplify
4045 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4046 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4047 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4048 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4049 /* A + B < A */
4050 (for cmp (lt ge)
4051 out (ne eq)
4052 (simplify
4053 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4054 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4055 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4056 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4057
4058 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4059 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4060 (for cmp (lt ge)
4061 out (ne eq)
4062 (simplify
4063 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4064 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4065 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4066 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4067
4068 /* Simplification of math builtins. These rules must all be optimizations
4069 as well as IL simplifications. If there is a possibility that the new
4070 form could be a pessimization, the rule should go in the canonicalization
4071 section that follows this one.
4072
4073 Rules can generally go in this section if they satisfy one of
4074 the following:
4075
4076 - the rule describes an identity
4077
4078 - the rule replaces calls with something as simple as addition or
4079 multiplication
4080
4081 - the rule contains unary calls only and simplifies the surrounding
4082 arithmetic. (The idea here is to exclude non-unary calls in which
4083 one operand is constant and in which the call is known to be cheap
4084 when the operand has that value.) */
4085
4086 (if (flag_unsafe_math_optimizations)
4087 /* Simplify sqrt(x) * sqrt(x) -> x. */
4088 (simplify
4089 (mult (SQRT_ALL@1 @0) @1)
4090 (if (!HONOR_SNANS (type))
4091 @0))
4092
4093 (for op (plus minus)
4094 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4095 (simplify
4096 (op (rdiv @0 @1)
4097 (rdiv @2 @1))
4098 (rdiv (op @0 @2) @1)))
4099
4100 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4101 (for root (SQRT CBRT)
4102 (simplify
4103 (mult (root:s @0) (root:s @1))
4104 (root (mult @0 @1))))
4105
4106 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4107 (for exps (EXP EXP2 EXP10 POW10)
4108 (simplify
4109 (mult (exps:s @0) (exps:s @1))
4110 (exps (plus @0 @1))))
4111
4112 /* Simplify a/root(b/c) into a*root(c/b). */
4113 (for root (SQRT CBRT)
4114 (simplify
4115 (rdiv @0 (root:s (rdiv:s @1 @2)))
4116 (mult @0 (root (rdiv @2 @1)))))
4117
4118 /* Simplify x/expN(y) into x*expN(-y). */
4119 (for exps (EXP EXP2 EXP10 POW10)
4120 (simplify
4121 (rdiv @0 (exps:s @1))
4122 (mult @0 (exps (negate @1)))))
4123
4124 (for logs (LOG LOG2 LOG10 LOG10)
4125 exps (EXP EXP2 EXP10 POW10)
4126 /* logN(expN(x)) -> x. */
4127 (simplify
4128 (logs (exps @0))
4129 @0)
4130 /* expN(logN(x)) -> x. */
4131 (simplify
4132 (exps (logs @0))
4133 @0))
4134
4135 /* Optimize logN(func()) for various exponential functions. We
4136 want to determine the value "x" and the power "exponent" in
4137 order to transform logN(x**exponent) into exponent*logN(x). */
4138 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4139 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4140 (simplify
4141 (logs (exps @0))
4142 (if (SCALAR_FLOAT_TYPE_P (type))
4143 (with {
4144 tree x;
4145 switch (exps)
4146 {
4147 CASE_CFN_EXP:
4148 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4149 x = build_real_truncate (type, dconst_e ());
4150 break;
4151 CASE_CFN_EXP2:
4152 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4153 x = build_real (type, dconst2);
4154 break;
4155 CASE_CFN_EXP10:
4156 CASE_CFN_POW10:
4157 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4158 {
4159 REAL_VALUE_TYPE dconst10;
4160 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4161 x = build_real (type, dconst10);
4162 }
4163 break;
4164 default:
4165 gcc_unreachable ();
4166 }
4167 }
4168 (mult (logs { x; }) @0)))))
4169
4170 (for logs (LOG LOG
4171 LOG2 LOG2
4172 LOG10 LOG10)
4173 exps (SQRT CBRT)
4174 (simplify
4175 (logs (exps @0))
4176 (if (SCALAR_FLOAT_TYPE_P (type))
4177 (with {
4178 tree x;
4179 switch (exps)
4180 {
4181 CASE_CFN_SQRT:
4182 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4183 x = build_real (type, dconsthalf);
4184 break;
4185 CASE_CFN_CBRT:
4186 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4187 x = build_real_truncate (type, dconst_third ());
4188 break;
4189 default:
4190 gcc_unreachable ();
4191 }
4192 }
4193 (mult { x; } (logs @0))))))
4194
4195 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4196 (for logs (LOG LOG2 LOG10)
4197 pows (POW)
4198 (simplify
4199 (logs (pows @0 @1))
4200 (mult @1 (logs @0))))
4201
4202 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4203 or if C is a positive power of 2,
4204 pow(C,x) -> exp2(log2(C)*x). */
4205 #if GIMPLE
4206 (for pows (POW)
4207 exps (EXP)
4208 logs (LOG)
4209 exp2s (EXP2)
4210 log2s (LOG2)
4211 (simplify
4212 (pows REAL_CST@0 @1)
4213 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4214 && real_isfinite (TREE_REAL_CST_PTR (@0))
4215 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4216 the use_exp2 case until after vectorization. It seems actually
4217 beneficial for all constants to postpone this until later,
4218 because exp(log(C)*x), while faster, will have worse precision
4219 and if x folds into a constant too, that is unnecessary
4220 pessimization. */
4221 && canonicalize_math_after_vectorization_p ())
4222 (with {
4223 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4224 bool use_exp2 = false;
4225 if (targetm.libc_has_function (function_c99_misc)
4226 && value->cl == rvc_normal)
4227 {
4228 REAL_VALUE_TYPE frac_rvt = *value;
4229 SET_REAL_EXP (&frac_rvt, 1);
4230 if (real_equal (&frac_rvt, &dconst1))
4231 use_exp2 = true;
4232 }
4233 }
4234 (if (!use_exp2)
4235 (if (optimize_pow_to_exp (@0, @1))
4236 (exps (mult (logs @0) @1)))
4237 (exp2s (mult (log2s @0) @1)))))))
4238 #endif
4239
4240 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4241 (for pows (POW)
4242 exps (EXP EXP2 EXP10 POW10)
4243 logs (LOG LOG2 LOG10 LOG10)
4244 (simplify
4245 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4246 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4247 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4248 (exps (plus (mult (logs @0) @1) @2)))))
4249
4250 (for sqrts (SQRT)
4251 cbrts (CBRT)
4252 pows (POW)
4253 exps (EXP EXP2 EXP10 POW10)
4254 /* sqrt(expN(x)) -> expN(x*0.5). */
4255 (simplify
4256 (sqrts (exps @0))
4257 (exps (mult @0 { build_real (type, dconsthalf); })))
4258 /* cbrt(expN(x)) -> expN(x/3). */
4259 (simplify
4260 (cbrts (exps @0))
4261 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4262 /* pow(expN(x), y) -> expN(x*y). */
4263 (simplify
4264 (pows (exps @0) @1)
4265 (exps (mult @0 @1))))
4266
4267 /* tan(atan(x)) -> x. */
4268 (for tans (TAN)
4269 atans (ATAN)
4270 (simplify
4271 (tans (atans @0))
4272 @0)))
4273
4274 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4275 (for sins (SIN)
4276 atans (ATAN)
4277 sqrts (SQRT)
4278 copysigns (COPYSIGN)
4279 (simplify
4280 (sins (atans:s @0))
4281 (with
4282 {
4283 REAL_VALUE_TYPE r_cst;
4284 build_sinatan_real (&r_cst, type);
4285 tree t_cst = build_real (type, r_cst);
4286 tree t_one = build_one_cst (type);
4287 }
4288 (if (SCALAR_FLOAT_TYPE_P (type))
4289 (cond (le (abs @0) { t_cst; })
4290 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4291 (copysigns { t_one; } @0))))))
4292
4293 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4294 (for coss (COS)
4295 atans (ATAN)
4296 sqrts (SQRT)
4297 copysigns (COPYSIGN)
4298 (simplify
4299 (coss (atans:s @0))
4300 (with
4301 {
4302 REAL_VALUE_TYPE r_cst;
4303 build_sinatan_real (&r_cst, type);
4304 tree t_cst = build_real (type, r_cst);
4305 tree t_one = build_one_cst (type);
4306 tree t_zero = build_zero_cst (type);
4307 }
4308 (if (SCALAR_FLOAT_TYPE_P (type))
4309 (cond (le (abs @0) { t_cst; })
4310 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4311 (copysigns { t_zero; } @0))))))
4312
4313 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4314 (simplify
4315 (CABS (complex:C @0 real_zerop@1))
4316 (abs @0))
4317
4318 /* trunc(trunc(x)) -> trunc(x), etc. */
4319 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4320 (simplify
4321 (fns (fns @0))
4322 (fns @0)))
4323 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4324 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4325 (simplify
4326 (fns integer_valued_real_p@0)
4327 @0))
4328
4329 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4330 (simplify
4331 (HYPOT:c @0 real_zerop@1)
4332 (abs @0))
4333
4334 /* pow(1,x) -> 1. */
4335 (simplify
4336 (POW real_onep@0 @1)
4337 @0)
4338
4339 (simplify
4340 /* copysign(x,x) -> x. */
4341 (COPYSIGN_ALL @0 @0)
4342 @0)
4343
4344 (simplify
4345 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4346 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4347 (abs @0))
4348
4349 (for scale (LDEXP SCALBN SCALBLN)
4350 /* ldexp(0, x) -> 0. */
4351 (simplify
4352 (scale real_zerop@0 @1)
4353 @0)
4354 /* ldexp(x, 0) -> x. */
4355 (simplify
4356 (scale @0 integer_zerop@1)
4357 @0)
4358 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4359 (simplify
4360 (scale REAL_CST@0 @1)
4361 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4362 @0)))
4363
4364 /* Canonicalization of sequences of math builtins. These rules represent
4365 IL simplifications but are not necessarily optimizations.
4366
4367 The sincos pass is responsible for picking "optimal" implementations
4368 of math builtins, which may be more complicated and can sometimes go
4369 the other way, e.g. converting pow into a sequence of sqrts.
4370 We only want to do these canonicalizations before the pass has run. */
4371
4372 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4373 /* Simplify tan(x) * cos(x) -> sin(x). */
4374 (simplify
4375 (mult:c (TAN:s @0) (COS:s @0))
4376 (SIN @0))
4377
4378 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4379 (simplify
4380 (mult:c @0 (POW:s @0 REAL_CST@1))
4381 (if (!TREE_OVERFLOW (@1))
4382 (POW @0 (plus @1 { build_one_cst (type); }))))
4383
4384 /* Simplify sin(x) / cos(x) -> tan(x). */
4385 (simplify
4386 (rdiv (SIN:s @0) (COS:s @0))
4387 (TAN @0))
4388
4389 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4390 (simplify
4391 (rdiv (COS:s @0) (SIN:s @0))
4392 (rdiv { build_one_cst (type); } (TAN @0)))
4393
4394 /* Simplify sin(x) / tan(x) -> cos(x). */
4395 (simplify
4396 (rdiv (SIN:s @0) (TAN:s @0))
4397 (if (! HONOR_NANS (@0)
4398 && ! HONOR_INFINITIES (@0))
4399 (COS @0)))
4400
4401 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4402 (simplify
4403 (rdiv (TAN:s @0) (SIN:s @0))
4404 (if (! HONOR_NANS (@0)
4405 && ! HONOR_INFINITIES (@0))
4406 (rdiv { build_one_cst (type); } (COS @0))))
4407
4408 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4409 (simplify
4410 (mult (POW:s @0 @1) (POW:s @0 @2))
4411 (POW @0 (plus @1 @2)))
4412
4413 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4414 (simplify
4415 (mult (POW:s @0 @1) (POW:s @2 @1))
4416 (POW (mult @0 @2) @1))
4417
4418 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4419 (simplify
4420 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4421 (POWI (mult @0 @2) @1))
4422
4423 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4424 (simplify
4425 (rdiv (POW:s @0 REAL_CST@1) @0)
4426 (if (!TREE_OVERFLOW (@1))
4427 (POW @0 (minus @1 { build_one_cst (type); }))))
4428
4429 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4430 (simplify
4431 (rdiv @0 (POW:s @1 @2))
4432 (mult @0 (POW @1 (negate @2))))
4433
4434 (for sqrts (SQRT)
4435 cbrts (CBRT)
4436 pows (POW)
4437 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4438 (simplify
4439 (sqrts (sqrts @0))
4440 (pows @0 { build_real (type, dconst_quarter ()); }))
4441 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4442 (simplify
4443 (sqrts (cbrts @0))
4444 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4445 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4446 (simplify
4447 (cbrts (sqrts @0))
4448 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4449 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4450 (simplify
4451 (cbrts (cbrts tree_expr_nonnegative_p@0))
4452 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4453 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4454 (simplify
4455 (sqrts (pows @0 @1))
4456 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4457 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4458 (simplify
4459 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4460 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4461 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4462 (simplify
4463 (pows (sqrts @0) @1)
4464 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4465 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4466 (simplify
4467 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4468 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4469 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4470 (simplify
4471 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4472 (pows @0 (mult @1 @2))))
4473
4474 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4475 (simplify
4476 (CABS (complex @0 @0))
4477 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4478
4479 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4480 (simplify
4481 (HYPOT @0 @0)
4482 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4483
4484 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4485 (for cexps (CEXP)
4486 exps (EXP)
4487 cexpis (CEXPI)
4488 (simplify
4489 (cexps compositional_complex@0)
4490 (if (targetm.libc_has_function (function_c99_math_complex))
4491 (complex
4492 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4493 (mult @1 (imagpart @2)))))))
4494
4495 (if (canonicalize_math_p ())
4496 /* floor(x) -> trunc(x) if x is nonnegative. */
4497 (for floors (FLOOR_ALL)
4498 truncs (TRUNC_ALL)
4499 (simplify
4500 (floors tree_expr_nonnegative_p@0)
4501 (truncs @0))))
4502
4503 (match double_value_p
4504 @0
4505 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4506 (for froms (BUILT_IN_TRUNCL
4507 BUILT_IN_FLOORL
4508 BUILT_IN_CEILL
4509 BUILT_IN_ROUNDL
4510 BUILT_IN_NEARBYINTL
4511 BUILT_IN_RINTL)
4512 tos (BUILT_IN_TRUNC
4513 BUILT_IN_FLOOR
4514 BUILT_IN_CEIL
4515 BUILT_IN_ROUND
4516 BUILT_IN_NEARBYINT
4517 BUILT_IN_RINT)
4518 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4519 (if (optimize && canonicalize_math_p ())
4520 (simplify
4521 (froms (convert double_value_p@0))
4522 (convert (tos @0)))))
4523
4524 (match float_value_p
4525 @0
4526 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4527 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4528 BUILT_IN_FLOORL BUILT_IN_FLOOR
4529 BUILT_IN_CEILL BUILT_IN_CEIL
4530 BUILT_IN_ROUNDL BUILT_IN_ROUND
4531 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4532 BUILT_IN_RINTL BUILT_IN_RINT)
4533 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4534 BUILT_IN_FLOORF BUILT_IN_FLOORF
4535 BUILT_IN_CEILF BUILT_IN_CEILF
4536 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4537 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4538 BUILT_IN_RINTF BUILT_IN_RINTF)
4539 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4540 if x is a float. */
4541 (if (optimize && canonicalize_math_p ()
4542 && targetm.libc_has_function (function_c99_misc))
4543 (simplify
4544 (froms (convert float_value_p@0))
4545 (convert (tos @0)))))
4546
4547 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4548 tos (XFLOOR XCEIL XROUND XRINT)
4549 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4550 (if (optimize && canonicalize_math_p ())
4551 (simplify
4552 (froms (convert double_value_p@0))
4553 (tos @0))))
4554
4555 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4556 XFLOOR XCEIL XROUND XRINT)
4557 tos (XFLOORF XCEILF XROUNDF XRINTF)
4558 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4559 if x is a float. */
4560 (if (optimize && canonicalize_math_p ())
4561 (simplify
4562 (froms (convert float_value_p@0))
4563 (tos @0))))
4564
4565 (if (canonicalize_math_p ())
4566 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4567 (for floors (IFLOOR LFLOOR LLFLOOR)
4568 (simplify
4569 (floors tree_expr_nonnegative_p@0)
4570 (fix_trunc @0))))
4571
4572 (if (canonicalize_math_p ())
4573 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4574 (for fns (IFLOOR LFLOOR LLFLOOR
4575 ICEIL LCEIL LLCEIL
4576 IROUND LROUND LLROUND)
4577 (simplify
4578 (fns integer_valued_real_p@0)
4579 (fix_trunc @0)))
4580 (if (!flag_errno_math)
4581 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4582 (for rints (IRINT LRINT LLRINT)
4583 (simplify
4584 (rints integer_valued_real_p@0)
4585 (fix_trunc @0)))))
4586
4587 (if (canonicalize_math_p ())
4588 (for ifn (IFLOOR ICEIL IROUND IRINT)
4589 lfn (LFLOOR LCEIL LROUND LRINT)
4590 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4591 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4592 sizeof (int) == sizeof (long). */
4593 (if (TYPE_PRECISION (integer_type_node)
4594 == TYPE_PRECISION (long_integer_type_node))
4595 (simplify
4596 (ifn @0)
4597 (lfn:long_integer_type_node @0)))
4598 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4599 sizeof (long long) == sizeof (long). */
4600 (if (TYPE_PRECISION (long_long_integer_type_node)
4601 == TYPE_PRECISION (long_integer_type_node))
4602 (simplify
4603 (llfn @0)
4604 (lfn:long_integer_type_node @0)))))
4605
4606 /* cproj(x) -> x if we're ignoring infinities. */
4607 (simplify
4608 (CPROJ @0)
4609 (if (!HONOR_INFINITIES (type))
4610 @0))
4611
4612 /* If the real part is inf and the imag part is known to be
4613 nonnegative, return (inf + 0i). */
4614 (simplify
4615 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4616 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4617 { build_complex_inf (type, false); }))
4618
4619 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4620 (simplify
4621 (CPROJ (complex @0 REAL_CST@1))
4622 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4623 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4624
4625 (for pows (POW)
4626 sqrts (SQRT)
4627 cbrts (CBRT)
4628 (simplify
4629 (pows @0 REAL_CST@1)
4630 (with {
4631 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4632 REAL_VALUE_TYPE tmp;
4633 }
4634 (switch
4635 /* pow(x,0) -> 1. */
4636 (if (real_equal (value, &dconst0))
4637 { build_real (type, dconst1); })
4638 /* pow(x,1) -> x. */
4639 (if (real_equal (value, &dconst1))
4640 @0)
4641 /* pow(x,-1) -> 1/x. */
4642 (if (real_equal (value, &dconstm1))
4643 (rdiv { build_real (type, dconst1); } @0))
4644 /* pow(x,0.5) -> sqrt(x). */
4645 (if (flag_unsafe_math_optimizations
4646 && canonicalize_math_p ()
4647 && real_equal (value, &dconsthalf))
4648 (sqrts @0))
4649 /* pow(x,1/3) -> cbrt(x). */
4650 (if (flag_unsafe_math_optimizations
4651 && canonicalize_math_p ()
4652 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4653 real_equal (value, &tmp)))
4654 (cbrts @0))))))
4655
4656 /* powi(1,x) -> 1. */
4657 (simplify
4658 (POWI real_onep@0 @1)
4659 @0)
4660
4661 (simplify
4662 (POWI @0 INTEGER_CST@1)
4663 (switch
4664 /* powi(x,0) -> 1. */
4665 (if (wi::to_wide (@1) == 0)
4666 { build_real (type, dconst1); })
4667 /* powi(x,1) -> x. */
4668 (if (wi::to_wide (@1) == 1)
4669 @0)
4670 /* powi(x,-1) -> 1/x. */
4671 (if (wi::to_wide (@1) == -1)
4672 (rdiv { build_real (type, dconst1); } @0))))
4673
4674 /* Narrowing of arithmetic and logical operations.
4675
4676 These are conceptually similar to the transformations performed for
4677 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4678 term we want to move all that code out of the front-ends into here. */
4679
4680 /* If we have a narrowing conversion of an arithmetic operation where
4681 both operands are widening conversions from the same type as the outer
4682 narrowing conversion. Then convert the innermost operands to a suitable
4683 unsigned type (to avoid introducing undefined behavior), perform the
4684 operation and convert the result to the desired type. */
4685 (for op (plus minus)
4686 (simplify
4687 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4688 (if (INTEGRAL_TYPE_P (type)
4689 /* We check for type compatibility between @0 and @1 below,
4690 so there's no need to check that @1/@3 are integral types. */
4691 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4692 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4693 /* The precision of the type of each operand must match the
4694 precision of the mode of each operand, similarly for the
4695 result. */
4696 && type_has_mode_precision_p (TREE_TYPE (@0))
4697 && type_has_mode_precision_p (TREE_TYPE (@1))
4698 && type_has_mode_precision_p (type)
4699 /* The inner conversion must be a widening conversion. */
4700 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4701 && types_match (@0, type)
4702 && (types_match (@0, @1)
4703 /* Or the second operand is const integer or converted const
4704 integer from valueize. */
4705 || TREE_CODE (@1) == INTEGER_CST))
4706 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4707 (op @0 (convert @1))
4708 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4709 (convert (op (convert:utype @0)
4710 (convert:utype @1))))))))
4711
4712 /* This is another case of narrowing, specifically when there's an outer
4713 BIT_AND_EXPR which masks off bits outside the type of the innermost
4714 operands. Like the previous case we have to convert the operands
4715 to unsigned types to avoid introducing undefined behavior for the
4716 arithmetic operation. */
4717 (for op (minus plus)
4718 (simplify
4719 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4720 (if (INTEGRAL_TYPE_P (type)
4721 /* We check for type compatibility between @0 and @1 below,
4722 so there's no need to check that @1/@3 are integral types. */
4723 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4724 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4725 /* The precision of the type of each operand must match the
4726 precision of the mode of each operand, similarly for the
4727 result. */
4728 && type_has_mode_precision_p (TREE_TYPE (@0))
4729 && type_has_mode_precision_p (TREE_TYPE (@1))
4730 && type_has_mode_precision_p (type)
4731 /* The inner conversion must be a widening conversion. */
4732 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4733 && types_match (@0, @1)
4734 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4735 <= TYPE_PRECISION (TREE_TYPE (@0)))
4736 && (wi::to_wide (@4)
4737 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4738 true, TYPE_PRECISION (type))) == 0)
4739 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4740 (with { tree ntype = TREE_TYPE (@0); }
4741 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4742 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4743 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4744 (convert:utype @4))))))))
4745
4746 /* Transform (@0 < @1 and @0 < @2) to use min,
4747 (@0 > @1 and @0 > @2) to use max */
4748 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4749 op (lt le gt ge lt le gt ge )
4750 ext (min min max max max max min min )
4751 (simplify
4752 (logic (op:cs @0 @1) (op:cs @0 @2))
4753 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4754 && TREE_CODE (@0) != INTEGER_CST)
4755 (op @0 (ext @1 @2)))))
4756
4757 (simplify
4758 /* signbit(x) -> 0 if x is nonnegative. */
4759 (SIGNBIT tree_expr_nonnegative_p@0)
4760 { integer_zero_node; })
4761
4762 (simplify
4763 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4764 (SIGNBIT @0)
4765 (if (!HONOR_SIGNED_ZEROS (@0))
4766 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4767
4768 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4769 (for cmp (eq ne)
4770 (for op (plus minus)
4771 rop (minus plus)
4772 (simplify
4773 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4774 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4775 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4776 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4777 && !TYPE_SATURATING (TREE_TYPE (@0)))
4778 (with { tree res = int_const_binop (rop, @2, @1); }
4779 (if (TREE_OVERFLOW (res)
4780 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4781 { constant_boolean_node (cmp == NE_EXPR, type); }
4782 (if (single_use (@3))
4783 (cmp @0 { TREE_OVERFLOW (res)
4784 ? drop_tree_overflow (res) : res; }))))))))
4785 (for cmp (lt le gt ge)
4786 (for op (plus minus)
4787 rop (minus plus)
4788 (simplify
4789 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4790 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4791 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4792 (with { tree res = int_const_binop (rop, @2, @1); }
4793 (if (TREE_OVERFLOW (res))
4794 {
4795 fold_overflow_warning (("assuming signed overflow does not occur "
4796 "when simplifying conditional to constant"),
4797 WARN_STRICT_OVERFLOW_CONDITIONAL);
4798 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4799 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4800 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4801 TYPE_SIGN (TREE_TYPE (@1)))
4802 != (op == MINUS_EXPR);
4803 constant_boolean_node (less == ovf_high, type);
4804 }
4805 (if (single_use (@3))
4806 (with
4807 {
4808 fold_overflow_warning (("assuming signed overflow does not occur "
4809 "when changing X +- C1 cmp C2 to "
4810 "X cmp C2 -+ C1"),
4811 WARN_STRICT_OVERFLOW_COMPARISON);
4812 }
4813 (cmp @0 { res; })))))))))
4814
4815 /* Canonicalizations of BIT_FIELD_REFs. */
4816
4817 (simplify
4818 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4819 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4820
4821 (simplify
4822 (BIT_FIELD_REF (view_convert @0) @1 @2)
4823 (BIT_FIELD_REF @0 @1 @2))
4824
4825 (simplify
4826 (BIT_FIELD_REF @0 @1 integer_zerop)
4827 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4828 (view_convert @0)))
4829
4830 (simplify
4831 (BIT_FIELD_REF @0 @1 @2)
4832 (switch
4833 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4834 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4835 (switch
4836 (if (integer_zerop (@2))
4837 (view_convert (realpart @0)))
4838 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4839 (view_convert (imagpart @0)))))
4840 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4841 && INTEGRAL_TYPE_P (type)
4842 /* On GIMPLE this should only apply to register arguments. */
4843 && (! GIMPLE || is_gimple_reg (@0))
4844 /* A bit-field-ref that referenced the full argument can be stripped. */
4845 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4846 && integer_zerop (@2))
4847 /* Low-parts can be reduced to integral conversions.
4848 ??? The following doesn't work for PDP endian. */
4849 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4850 /* Don't even think about BITS_BIG_ENDIAN. */
4851 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4852 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4853 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4854 ? (TYPE_PRECISION (TREE_TYPE (@0))
4855 - TYPE_PRECISION (type))
4856 : 0)) == 0)))
4857 (convert @0))))
4858
4859 /* Simplify vector extracts. */
4860
4861 (simplify
4862 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4863 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4864 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4865 || (VECTOR_TYPE_P (type)
4866 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4867 (with
4868 {
4869 tree ctor = (TREE_CODE (@0) == SSA_NAME
4870 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4871 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4872 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4873 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4874 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4875 }
4876 (if (n != 0
4877 && (idx % width) == 0
4878 && (n % width) == 0
4879 && known_le ((idx + n) / width,
4880 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4881 (with
4882 {
4883 idx = idx / width;
4884 n = n / width;
4885 /* Constructor elements can be subvectors. */
4886 poly_uint64 k = 1;
4887 if (CONSTRUCTOR_NELTS (ctor) != 0)
4888 {
4889 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4890 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4891 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4892 }
4893 unsigned HOST_WIDE_INT elt, count, const_k;
4894 }
4895 (switch
4896 /* We keep an exact subset of the constructor elements. */
4897 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4898 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4899 { build_constructor (type, NULL); }
4900 (if (count == 1)
4901 (if (elt < CONSTRUCTOR_NELTS (ctor))
4902 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4903 { build_zero_cst (type); })
4904 {
4905 vec<constructor_elt, va_gc> *vals;
4906 vec_alloc (vals, count);
4907 for (unsigned i = 0;
4908 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4909 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4910 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4911 build_constructor (type, vals);
4912 })))
4913 /* The bitfield references a single constructor element. */
4914 (if (k.is_constant (&const_k)
4915 && idx + n <= (idx / const_k + 1) * const_k)
4916 (switch
4917 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4918 { build_zero_cst (type); })
4919 (if (n == const_k)
4920 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4921 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4922 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4923
4924 /* Simplify a bit extraction from a bit insertion for the cases with
4925 the inserted element fully covering the extraction or the insertion
4926 not touching the extraction. */
4927 (simplify
4928 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4929 (with
4930 {
4931 unsigned HOST_WIDE_INT isize;
4932 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4933 isize = TYPE_PRECISION (TREE_TYPE (@1));
4934 else
4935 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4936 }
4937 (switch
4938 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4939 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4940 wi::to_wide (@ipos) + isize))
4941 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4942 wi::to_wide (@rpos)
4943 - wi::to_wide (@ipos)); }))
4944 (if (wi::geu_p (wi::to_wide (@ipos),
4945 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4946 || wi::geu_p (wi::to_wide (@rpos),
4947 wi::to_wide (@ipos) + isize))
4948 (BIT_FIELD_REF @0 @rsize @rpos)))))
4949
4950 (if (canonicalize_math_after_vectorization_p ())
4951 (for fmas (FMA)
4952 (simplify
4953 (fmas:c (negate @0) @1 @2)
4954 (IFN_FNMA @0 @1 @2))
4955 (simplify
4956 (fmas @0 @1 (negate @2))
4957 (IFN_FMS @0 @1 @2))
4958 (simplify
4959 (fmas:c (negate @0) @1 (negate @2))
4960 (IFN_FNMS @0 @1 @2))
4961 (simplify
4962 (negate (fmas@3 @0 @1 @2))
4963 (if (single_use (@3))
4964 (IFN_FNMS @0 @1 @2))))
4965
4966 (simplify
4967 (IFN_FMS:c (negate @0) @1 @2)
4968 (IFN_FNMS @0 @1 @2))
4969 (simplify
4970 (IFN_FMS @0 @1 (negate @2))
4971 (IFN_FMA @0 @1 @2))
4972 (simplify
4973 (IFN_FMS:c (negate @0) @1 (negate @2))
4974 (IFN_FNMA @0 @1 @2))
4975 (simplify
4976 (negate (IFN_FMS@3 @0 @1 @2))
4977 (if (single_use (@3))
4978 (IFN_FNMA @0 @1 @2)))
4979
4980 (simplify
4981 (IFN_FNMA:c (negate @0) @1 @2)
4982 (IFN_FMA @0 @1 @2))
4983 (simplify
4984 (IFN_FNMA @0 @1 (negate @2))
4985 (IFN_FNMS @0 @1 @2))
4986 (simplify
4987 (IFN_FNMA:c (negate @0) @1 (negate @2))
4988 (IFN_FMS @0 @1 @2))
4989 (simplify
4990 (negate (IFN_FNMA@3 @0 @1 @2))
4991 (if (single_use (@3))
4992 (IFN_FMS @0 @1 @2)))
4993
4994 (simplify
4995 (IFN_FNMS:c (negate @0) @1 @2)
4996 (IFN_FMS @0 @1 @2))
4997 (simplify
4998 (IFN_FNMS @0 @1 (negate @2))
4999 (IFN_FNMA @0 @1 @2))
5000 (simplify
5001 (IFN_FNMS:c (negate @0) @1 (negate @2))
5002 (IFN_FMA @0 @1 @2))
5003 (simplify
5004 (negate (IFN_FNMS@3 @0 @1 @2))
5005 (if (single_use (@3))
5006 (IFN_FMA @0 @1 @2))))
5007
5008 /* POPCOUNT simplifications. */
5009 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5010 BUILT_IN_POPCOUNTIMAX)
5011 /* popcount(X&1) is nop_expr(X&1). */
5012 (simplify
5013 (popcount @0)
5014 (if (tree_nonzero_bits (@0) == 1)
5015 (convert @0)))
5016 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5017 (simplify
5018 (plus (popcount:s @0) (popcount:s @1))
5019 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5020 (popcount (bit_ior @0 @1))))
5021 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5022 (for cmp (le eq ne gt)
5023 rep (eq eq ne ne)
5024 (simplify
5025 (cmp (popcount @0) integer_zerop)
5026 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5027
5028 /* Simplify:
5029
5030 a = a1 op a2
5031 r = c ? a : b;
5032
5033 to:
5034
5035 r = c ? a1 op a2 : b;
5036
5037 if the target can do it in one go. This makes the operation conditional
5038 on c, so could drop potentially-trapping arithmetic, but that's a valid
5039 simplification if the result of the operation isn't needed. */
5040 (for uncond_op (UNCOND_BINARY)
5041 cond_op (COND_BINARY)
5042 (simplify
5043 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5044 (with { tree op_type = TREE_TYPE (@4); }
5045 (if (element_precision (type) == element_precision (op_type))
5046 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5047 (simplify
5048 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5049 (with { tree op_type = TREE_TYPE (@4); }
5050 (if (element_precision (type) == element_precision (op_type))
5051 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5052
5053 /* Same for ternary operations. */
5054 (for uncond_op (UNCOND_TERNARY)
5055 cond_op (COND_TERNARY)
5056 (simplify
5057 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5058 (with { tree op_type = TREE_TYPE (@5); }
5059 (if (element_precision (type) == element_precision (op_type))
5060 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5061 (simplify
5062 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5063 (with { tree op_type = TREE_TYPE (@5); }
5064 (if (element_precision (type) == element_precision (op_type))
5065 (view_convert (cond_op (bit_not @0) @2 @3 @4
5066 (view_convert:op_type @1)))))))
5067
5068 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5069 "else" value of an IFN_COND_*. */
5070 (for cond_op (COND_BINARY)
5071 (simplify
5072 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5073 (with { tree op_type = TREE_TYPE (@3); }
5074 (if (element_precision (type) == element_precision (op_type))
5075 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5076 (simplify
5077 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5078 (with { tree op_type = TREE_TYPE (@5); }
5079 (if (inverse_conditions_p (@0, @2)
5080 && element_precision (type) == element_precision (op_type))
5081 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5082
5083 /* Same for ternary operations. */
5084 (for cond_op (COND_TERNARY)
5085 (simplify
5086 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5087 (with { tree op_type = TREE_TYPE (@4); }
5088 (if (element_precision (type) == element_precision (op_type))
5089 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5090 (simplify
5091 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5092 (with { tree op_type = TREE_TYPE (@6); }
5093 (if (inverse_conditions_p (@0, @2)
5094 && element_precision (type) == element_precision (op_type))
5095 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5096
5097 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5098 expressions like:
5099
5100 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5101 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5102
5103 If pointers are known not to wrap, B checks whether @1 bytes starting
5104 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5105 bytes. A is more efficiently tested as:
5106
5107 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5108
5109 The equivalent expression for B is given by replacing @1 with @1 - 1:
5110
5111 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5112
5113 @0 and @2 can be swapped in both expressions without changing the result.
5114
5115 The folds rely on sizetype's being unsigned (which is always true)
5116 and on its being the same width as the pointer (which we have to check).
5117
5118 The fold replaces two pointer_plus expressions, two comparisons and
5119 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5120 the best case it's a saving of two operations. The A fold retains one
5121 of the original pointer_pluses, so is a win even if both pointer_pluses
5122 are used elsewhere. The B fold is a wash if both pointer_pluses are
5123 used elsewhere, since all we end up doing is replacing a comparison with
5124 a pointer_plus. We do still apply the fold under those circumstances
5125 though, in case applying it to other conditions eventually makes one of the
5126 pointer_pluses dead. */
5127 (for ior (truth_orif truth_or bit_ior)
5128 (for cmp (le lt)
5129 (simplify
5130 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5131 (cmp:cs (pointer_plus@4 @2 @1) @0))
5132 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5133 && TYPE_OVERFLOW_WRAPS (sizetype)
5134 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5135 /* Calculate the rhs constant. */
5136 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5137 offset_int rhs = off * 2; }
5138 /* Always fails for negative values. */
5139 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5140 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5141 pick a canonical order. This increases the chances of using the
5142 same pointer_plus in multiple checks. */
5143 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5144 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5145 (if (cmp == LT_EXPR)
5146 (gt (convert:sizetype
5147 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5148 { swap_p ? @0 : @2; }))
5149 { rhs_tree; })
5150 (gt (convert:sizetype
5151 (pointer_diff:ssizetype
5152 (pointer_plus { swap_p ? @2 : @0; }
5153 { wide_int_to_tree (sizetype, off); })
5154 { swap_p ? @0 : @2; }))
5155 { rhs_tree; })))))))))