match.pd: Optimize (x < 0) != (y < 0) into (x ^ y) < 0 [PR94718]
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2020 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p)
41
42 /* Operator lists. */
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53
54 #include "cfn-operators.pd"
55
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
59
60 Also define operand lists:
61
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67 BUILT_IN_L##FN##F \
68 BUILT_IN_LL##FN##F) \
69 (define_operator_list X##FN BUILT_IN_I##FN \
70 BUILT_IN_L##FN \
71 BUILT_IN_LL##FN) \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 BUILT_IN_L##FN##L \
74 BUILT_IN_LL##FN##L)
75
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
83 plus minus
84 mult trunc_div trunc_mod rdiv
85 min max
86 bit_and bit_ior bit_xor
87 lshift rshift)
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
94
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101 /* With nop_convert? combine convert? and view_convert? in one pattern
102 plus conditionalize on tree_nop_conversion_p conversions. */
103 (match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
126
127 (for op (plus pointer_plus minus bit_ior bit_xor)
128 (simplify
129 (op @0 integer_zerop)
130 (non_lvalue @0)))
131
132 /* 0 +p index -> (type)index */
133 (simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137 /* ptr - 0 -> (type)ptr */
138 (simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
144 (simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147 (non_lvalue @0)))
148
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
150 (simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153 (non_lvalue @0)))
154
155 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158 if not -frounding-math. For sNaNs the first operation would raise
159 exceptions but turn the result into qNan, so the second operation
160 would not raise it. */
161 (for inner_op (plus minus)
162 (for outer_op (plus minus)
163 (simplify
164 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
165 (if (real_zerop (@1)
166 && real_zerop (@2)
167 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
170 bool outer_plus
171 = ((outer_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173 (if (outer_plus && !inner_plus)
174 (outer_op @0 @2)
175 @3))))))
176
177 /* Simplify x - x.
178 This is unsafe for certain floats even in non-IEEE formats.
179 In IEEE, it is unsafe because it does wrong for NaNs.
180 Also note that operand_equal_p is always false if an operand
181 is volatile. */
182 (simplify
183 (minus @0 @0)
184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
185 { build_zero_cst (type); }))
186 (simplify
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
189
190 (simplify
191 (mult @0 integer_zerop@1)
192 @1)
193
194 /* Maybe fold x * 0 to 0. The expressions aren't the same
195 when x is NaN, since x * 0 is also NaN. Nor are they the
196 same in modes with signed zeros, since multiplying a
197 negative value by 0 gives -0, not +0. */
198 (simplify
199 (mult @0 real_zerop@1)
200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
201 @1))
202
203 /* In IEEE floating point, x*1 is not equivalent to x for snans.
204 Likewise for complex arithmetic with signed zeros. */
205 (simplify
206 (mult @0 real_onep)
207 (if (!HONOR_SNANS (type)
208 && (!HONOR_SIGNED_ZEROS (type)
209 || !COMPLEX_FLOAT_TYPE_P (type)))
210 (non_lvalue @0)))
211
212 /* Transform x * -1.0 into -x. */
213 (simplify
214 (mult @0 real_minus_onep)
215 (if (!HONOR_SNANS (type)
216 && (!HONOR_SIGNED_ZEROS (type)
217 || !COMPLEX_FLOAT_TYPE_P (type)))
218 (negate @0)))
219
220 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
221 (simplify
222 (mult SSA_NAME@1 SSA_NAME@2)
223 (if (INTEGRAL_TYPE_P (type)
224 && get_nonzero_bits (@1) == 1
225 && get_nonzero_bits (@2) == 1)
226 (bit_and @1 @2)))
227
228 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
229 unless the target has native support for the former but not the latter. */
230 (simplify
231 (mult @0 VECTOR_CST@1)
232 (if (initializer_each_zero_or_onep (@1)
233 && !HONOR_SNANS (type)
234 && !HONOR_SIGNED_ZEROS (type))
235 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
236 (if (itype
237 && (!VECTOR_MODE_P (TYPE_MODE (type))
238 || (VECTOR_MODE_P (TYPE_MODE (itype))
239 && optab_handler (and_optab,
240 TYPE_MODE (itype)) != CODE_FOR_nothing)))
241 (view_convert (bit_and:itype (view_convert @0)
242 (ne @1 { build_zero_cst (type); })))))))
243
244 (for cmp (gt ge lt le)
245 outp (convert convert negate negate)
246 outn (negate negate convert convert)
247 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
248 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
249 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
250 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
251 (simplify
252 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
253 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
254 && types_match (type, TREE_TYPE (@0)))
255 (switch
256 (if (types_match (type, float_type_node))
257 (BUILT_IN_COPYSIGNF @1 (outp @0)))
258 (if (types_match (type, double_type_node))
259 (BUILT_IN_COPYSIGN @1 (outp @0)))
260 (if (types_match (type, long_double_type_node))
261 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
262 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
263 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
264 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
265 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
266 (simplify
267 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
268 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
269 && types_match (type, TREE_TYPE (@0)))
270 (switch
271 (if (types_match (type, float_type_node))
272 (BUILT_IN_COPYSIGNF @1 (outn @0)))
273 (if (types_match (type, double_type_node))
274 (BUILT_IN_COPYSIGN @1 (outn @0)))
275 (if (types_match (type, long_double_type_node))
276 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
277
278 /* Transform X * copysign (1.0, X) into abs(X). */
279 (simplify
280 (mult:c @0 (COPYSIGN_ALL real_onep @0))
281 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
282 (abs @0)))
283
284 /* Transform X * copysign (1.0, -X) into -abs(X). */
285 (simplify
286 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
287 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
288 (negate (abs @0))))
289
290 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
291 (simplify
292 (COPYSIGN_ALL REAL_CST@0 @1)
293 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
294 (COPYSIGN_ALL (negate @0) @1)))
295
296 /* X * 1, X / 1 -> X. */
297 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
298 (simplify
299 (op @0 integer_onep)
300 (non_lvalue @0)))
301
302 /* (A / (1 << B)) -> (A >> B).
303 Only for unsigned A. For signed A, this would not preserve rounding
304 toward zero.
305 For example: (-1 / ( 1 << B)) != -1 >> B.
306 Also also widening conversions, like:
307 (A / (unsigned long long) (1U << B)) -> (A >> B)
308 or
309 (A / (unsigned long long) (1 << B)) -> (A >> B).
310 If the left shift is signed, it can be done only if the upper bits
311 of A starting from shift's type sign bit are zero, as
312 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
313 so it is valid only if A >> 31 is zero. */
314 (simplify
315 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
316 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
317 && (!VECTOR_TYPE_P (type)
318 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
319 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
320 && (useless_type_conversion_p (type, TREE_TYPE (@1))
321 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
322 && (TYPE_UNSIGNED (TREE_TYPE (@1))
323 || (element_precision (type)
324 == element_precision (TREE_TYPE (@1)))
325 || (INTEGRAL_TYPE_P (type)
326 && (tree_nonzero_bits (@0)
327 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
328 true,
329 element_precision (type))) == 0)))))
330 (rshift @0 @2)))
331
332 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
333 undefined behavior in constexpr evaluation, and assuming that the division
334 traps enables better optimizations than these anyway. */
335 (for div (trunc_div ceil_div floor_div round_div exact_div)
336 /* 0 / X is always zero. */
337 (simplify
338 (div integer_zerop@0 @1)
339 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
340 (if (!integer_zerop (@1))
341 @0))
342 /* X / -1 is -X. */
343 (simplify
344 (div @0 integer_minus_onep@1)
345 (if (!TYPE_UNSIGNED (type))
346 (negate @0)))
347 /* X / X is one. */
348 (simplify
349 (div @0 @0)
350 /* But not for 0 / 0 so that we can get the proper warnings and errors.
351 And not for _Fract types where we can't build 1. */
352 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
353 { build_one_cst (type); }))
354 /* X / abs (X) is X < 0 ? -1 : 1. */
355 (simplify
356 (div:C @0 (abs @0))
357 (if (INTEGRAL_TYPE_P (type)
358 && TYPE_OVERFLOW_UNDEFINED (type))
359 (cond (lt @0 { build_zero_cst (type); })
360 { build_minus_one_cst (type); } { build_one_cst (type); })))
361 /* X / -X is -1. */
362 (simplify
363 (div:C @0 (negate @0))
364 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
365 && TYPE_OVERFLOW_UNDEFINED (type))
366 { build_minus_one_cst (type); })))
367
368 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
369 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
370 (simplify
371 (floor_div @0 @1)
372 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
373 && TYPE_UNSIGNED (type))
374 (trunc_div @0 @1)))
375
376 /* Combine two successive divisions. Note that combining ceil_div
377 and floor_div is trickier and combining round_div even more so. */
378 (for div (trunc_div exact_div)
379 (simplify
380 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
381 (with {
382 wi::overflow_type overflow;
383 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
384 TYPE_SIGN (type), &overflow);
385 }
386 (if (div == EXACT_DIV_EXPR
387 || optimize_successive_divisions_p (@2, @3))
388 (if (!overflow)
389 (div @0 { wide_int_to_tree (type, mul); })
390 (if (TYPE_UNSIGNED (type)
391 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
392 { build_zero_cst (type); }))))))
393
394 /* Combine successive multiplications. Similar to above, but handling
395 overflow is different. */
396 (simplify
397 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
398 (with {
399 wi::overflow_type overflow;
400 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
401 TYPE_SIGN (type), &overflow);
402 }
403 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
404 otherwise undefined overflow implies that @0 must be zero. */
405 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
406 (mult @0 { wide_int_to_tree (type, mul); }))))
407
408 /* Optimize A / A to 1.0 if we don't care about
409 NaNs or Infinities. */
410 (simplify
411 (rdiv @0 @0)
412 (if (FLOAT_TYPE_P (type)
413 && ! HONOR_NANS (type)
414 && ! HONOR_INFINITIES (type))
415 { build_one_cst (type); }))
416
417 /* Optimize -A / A to -1.0 if we don't care about
418 NaNs or Infinities. */
419 (simplify
420 (rdiv:C @0 (negate @0))
421 (if (FLOAT_TYPE_P (type)
422 && ! HONOR_NANS (type)
423 && ! HONOR_INFINITIES (type))
424 { build_minus_one_cst (type); }))
425
426 /* PR71078: x / abs(x) -> copysign (1.0, x) */
427 (simplify
428 (rdiv:C (convert? @0) (convert? (abs @0)))
429 (if (SCALAR_FLOAT_TYPE_P (type)
430 && ! HONOR_NANS (type)
431 && ! HONOR_INFINITIES (type))
432 (switch
433 (if (types_match (type, float_type_node))
434 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
435 (if (types_match (type, double_type_node))
436 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
437 (if (types_match (type, long_double_type_node))
438 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
439
440 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
441 (simplify
442 (rdiv @0 real_onep)
443 (if (!HONOR_SNANS (type))
444 (non_lvalue @0)))
445
446 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
447 (simplify
448 (rdiv @0 real_minus_onep)
449 (if (!HONOR_SNANS (type))
450 (negate @0)))
451
452 (if (flag_reciprocal_math)
453 /* Convert (A/B)/C to A/(B*C). */
454 (simplify
455 (rdiv (rdiv:s @0 @1) @2)
456 (rdiv @0 (mult @1 @2)))
457
458 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
459 (simplify
460 (rdiv @0 (mult:s @1 REAL_CST@2))
461 (with
462 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
463 (if (tem)
464 (rdiv (mult @0 { tem; } ) @1))))
465
466 /* Convert A/(B/C) to (A/B)*C */
467 (simplify
468 (rdiv @0 (rdiv:s @1 @2))
469 (mult (rdiv @0 @1) @2)))
470
471 /* Simplify x / (- y) to -x / y. */
472 (simplify
473 (rdiv @0 (negate @1))
474 (rdiv (negate @0) @1))
475
476 (if (flag_unsafe_math_optimizations)
477 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
478 Since C / x may underflow to zero, do this only for unsafe math. */
479 (for op (lt le gt ge)
480 neg_op (gt ge lt le)
481 (simplify
482 (op (rdiv REAL_CST@0 @1) real_zerop@2)
483 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
484 (switch
485 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
486 (op @1 @2))
487 /* For C < 0, use the inverted operator. */
488 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
489 (neg_op @1 @2)))))))
490
491 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
492 (for div (trunc_div ceil_div floor_div round_div exact_div)
493 (simplify
494 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
495 (if (integer_pow2p (@2)
496 && tree_int_cst_sgn (@2) > 0
497 && tree_nop_conversion_p (type, TREE_TYPE (@0))
498 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
499 (rshift (convert @0)
500 { build_int_cst (integer_type_node,
501 wi::exact_log2 (wi::to_wide (@2))); }))))
502
503 /* If ARG1 is a constant, we can convert this to a multiply by the
504 reciprocal. This does not have the same rounding properties,
505 so only do this if -freciprocal-math. We can actually
506 always safely do it if ARG1 is a power of two, but it's hard to
507 tell if it is or not in a portable manner. */
508 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
509 (simplify
510 (rdiv @0 cst@1)
511 (if (optimize)
512 (if (flag_reciprocal_math
513 && !real_zerop (@1))
514 (with
515 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
516 (if (tem)
517 (mult @0 { tem; } )))
518 (if (cst != COMPLEX_CST)
519 (with { tree inverse = exact_inverse (type, @1); }
520 (if (inverse)
521 (mult @0 { inverse; } ))))))))
522
523 (for mod (ceil_mod floor_mod round_mod trunc_mod)
524 /* 0 % X is always zero. */
525 (simplify
526 (mod integer_zerop@0 @1)
527 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
528 (if (!integer_zerop (@1))
529 @0))
530 /* X % 1 is always zero. */
531 (simplify
532 (mod @0 integer_onep)
533 { build_zero_cst (type); })
534 /* X % -1 is zero. */
535 (simplify
536 (mod @0 integer_minus_onep@1)
537 (if (!TYPE_UNSIGNED (type))
538 { build_zero_cst (type); }))
539 /* X % X is zero. */
540 (simplify
541 (mod @0 @0)
542 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
543 (if (!integer_zerop (@0))
544 { build_zero_cst (type); }))
545 /* (X % Y) % Y is just X % Y. */
546 (simplify
547 (mod (mod@2 @0 @1) @1)
548 @2)
549 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
550 (simplify
551 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
552 (if (ANY_INTEGRAL_TYPE_P (type)
553 && TYPE_OVERFLOW_UNDEFINED (type)
554 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
555 TYPE_SIGN (type)))
556 { build_zero_cst (type); }))
557 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
558 modulo and comparison, since it is simpler and equivalent. */
559 (for cmp (eq ne)
560 (simplify
561 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
562 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
563 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
564 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
565
566 /* X % -C is the same as X % C. */
567 (simplify
568 (trunc_mod @0 INTEGER_CST@1)
569 (if (TYPE_SIGN (type) == SIGNED
570 && !TREE_OVERFLOW (@1)
571 && wi::neg_p (wi::to_wide (@1))
572 && !TYPE_OVERFLOW_TRAPS (type)
573 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
574 && !sign_bit_p (@1, @1))
575 (trunc_mod @0 (negate @1))))
576
577 /* X % -Y is the same as X % Y. */
578 (simplify
579 (trunc_mod @0 (convert? (negate @1)))
580 (if (INTEGRAL_TYPE_P (type)
581 && !TYPE_UNSIGNED (type)
582 && !TYPE_OVERFLOW_TRAPS (type)
583 && tree_nop_conversion_p (type, TREE_TYPE (@1))
584 /* Avoid this transformation if X might be INT_MIN or
585 Y might be -1, because we would then change valid
586 INT_MIN % -(-1) into invalid INT_MIN % -1. */
587 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
588 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
589 (TREE_TYPE (@1))))))
590 (trunc_mod @0 (convert @1))))
591
592 /* X - (X / Y) * Y is the same as X % Y. */
593 (simplify
594 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
595 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
596 (convert (trunc_mod @0 @1))))
597
598 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
599 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
600 Also optimize A % (C << N) where C is a power of 2,
601 to A & ((C << N) - 1). */
602 (match (power_of_two_cand @1)
603 INTEGER_CST@1)
604 (match (power_of_two_cand @1)
605 (lshift INTEGER_CST@1 @2))
606 (for mod (trunc_mod floor_mod)
607 (simplify
608 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
609 (if ((TYPE_UNSIGNED (type)
610 || tree_expr_nonnegative_p (@0))
611 && tree_nop_conversion_p (type, TREE_TYPE (@3))
612 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
613 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
614
615 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
616 (simplify
617 (trunc_div (mult @0 integer_pow2p@1) @1)
618 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
619 (bit_and @0 { wide_int_to_tree
620 (type, wi::mask (TYPE_PRECISION (type)
621 - wi::exact_log2 (wi::to_wide (@1)),
622 false, TYPE_PRECISION (type))); })))
623
624 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
625 (simplify
626 (mult (trunc_div @0 integer_pow2p@1) @1)
627 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
628 (bit_and @0 (negate @1))))
629
630 /* Simplify (t * 2) / 2) -> t. */
631 (for div (trunc_div ceil_div floor_div round_div exact_div)
632 (simplify
633 (div (mult:c @0 @1) @1)
634 (if (ANY_INTEGRAL_TYPE_P (type)
635 && TYPE_OVERFLOW_UNDEFINED (type))
636 @0)))
637
638 (for op (negate abs)
639 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
640 (for coss (COS COSH)
641 (simplify
642 (coss (op @0))
643 (coss @0)))
644 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
645 (for pows (POW)
646 (simplify
647 (pows (op @0) REAL_CST@1)
648 (with { HOST_WIDE_INT n; }
649 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
650 (pows @0 @1)))))
651 /* Likewise for powi. */
652 (for pows (POWI)
653 (simplify
654 (pows (op @0) INTEGER_CST@1)
655 (if ((wi::to_wide (@1) & 1) == 0)
656 (pows @0 @1))))
657 /* Strip negate and abs from both operands of hypot. */
658 (for hypots (HYPOT)
659 (simplify
660 (hypots (op @0) @1)
661 (hypots @0 @1))
662 (simplify
663 (hypots @0 (op @1))
664 (hypots @0 @1)))
665 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
666 (for copysigns (COPYSIGN_ALL)
667 (simplify
668 (copysigns (op @0) @1)
669 (copysigns @0 @1))))
670
671 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
672 (simplify
673 (mult (abs@1 @0) @1)
674 (mult @0 @0))
675
676 /* Convert absu(x)*absu(x) -> x*x. */
677 (simplify
678 (mult (absu@1 @0) @1)
679 (mult (convert@2 @0) @2))
680
681 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
682 (for coss (COS COSH)
683 copysigns (COPYSIGN)
684 (simplify
685 (coss (copysigns @0 @1))
686 (coss @0)))
687
688 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
689 (for pows (POW)
690 copysigns (COPYSIGN)
691 (simplify
692 (pows (copysigns @0 @2) REAL_CST@1)
693 (with { HOST_WIDE_INT n; }
694 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
695 (pows @0 @1)))))
696 /* Likewise for powi. */
697 (for pows (POWI)
698 copysigns (COPYSIGN)
699 (simplify
700 (pows (copysigns @0 @2) INTEGER_CST@1)
701 (if ((wi::to_wide (@1) & 1) == 0)
702 (pows @0 @1))))
703
704 (for hypots (HYPOT)
705 copysigns (COPYSIGN)
706 /* hypot(copysign(x, y), z) -> hypot(x, z). */
707 (simplify
708 (hypots (copysigns @0 @1) @2)
709 (hypots @0 @2))
710 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
711 (simplify
712 (hypots @0 (copysigns @1 @2))
713 (hypots @0 @1)))
714
715 /* copysign(x, CST) -> [-]abs (x). */
716 (for copysigns (COPYSIGN_ALL)
717 (simplify
718 (copysigns @0 REAL_CST@1)
719 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
720 (negate (abs @0))
721 (abs @0))))
722
723 /* copysign(copysign(x, y), z) -> copysign(x, z). */
724 (for copysigns (COPYSIGN_ALL)
725 (simplify
726 (copysigns (copysigns @0 @1) @2)
727 (copysigns @0 @2)))
728
729 /* copysign(x,y)*copysign(x,y) -> x*x. */
730 (for copysigns (COPYSIGN_ALL)
731 (simplify
732 (mult (copysigns@2 @0 @1) @2)
733 (mult @0 @0)))
734
735 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
736 (for ccoss (CCOS CCOSH)
737 (simplify
738 (ccoss (negate @0))
739 (ccoss @0)))
740
741 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
742 (for ops (conj negate)
743 (for cabss (CABS)
744 (simplify
745 (cabss (ops @0))
746 (cabss @0))))
747
748 /* Fold (a * (1 << b)) into (a << b) */
749 (simplify
750 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
751 (if (! FLOAT_TYPE_P (type)
752 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
753 (lshift @0 @2)))
754
755 /* Fold (1 << (C - x)) where C = precision(type) - 1
756 into ((1 << C) >> x). */
757 (simplify
758 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
759 (if (INTEGRAL_TYPE_P (type)
760 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
761 && single_use (@1))
762 (if (TYPE_UNSIGNED (type))
763 (rshift (lshift @0 @2) @3)
764 (with
765 { tree utype = unsigned_type_for (type); }
766 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
767
768 /* Fold (C1/X)*C2 into (C1*C2)/X. */
769 (simplify
770 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
771 (if (flag_associative_math
772 && single_use (@3))
773 (with
774 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
775 (if (tem)
776 (rdiv { tem; } @1)))))
777
778 /* Simplify ~X & X as zero. */
779 (simplify
780 (bit_and:c (convert? @0) (convert? (bit_not @0)))
781 { build_zero_cst (type); })
782
783 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
784 (simplify
785 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
786 (if (TYPE_UNSIGNED (type))
787 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
788
789 (for bitop (bit_and bit_ior)
790 cmp (eq ne)
791 /* PR35691: Transform
792 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
793 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
794 (simplify
795 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
796 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
797 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
798 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
799 (cmp (bit_ior @0 (convert @1)) @2)))
800 /* Transform:
801 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
802 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
803 (simplify
804 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
805 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
806 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
807 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
808 (cmp (bit_and @0 (convert @1)) @2))))
809
810 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
811 (simplify
812 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
813 (minus (bit_xor @0 @1) @1))
814 (simplify
815 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
816 (if (~wi::to_wide (@2) == wi::to_wide (@1))
817 (minus (bit_xor @0 @1) @1)))
818
819 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
820 (simplify
821 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
822 (minus @1 (bit_xor @0 @1)))
823
824 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
825 (for op (bit_ior bit_xor plus)
826 (simplify
827 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
828 (bit_xor @0 @1))
829 (simplify
830 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
831 (if (~wi::to_wide (@2) == wi::to_wide (@1))
832 (bit_xor @0 @1))))
833
834 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
835 (simplify
836 (bit_ior:c (bit_xor:c @0 @1) @0)
837 (bit_ior @0 @1))
838
839 /* (a & ~b) | (a ^ b) --> a ^ b */
840 (simplify
841 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
842 @2)
843
844 /* (a & ~b) ^ ~a --> ~(a & b) */
845 (simplify
846 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
847 (bit_not (bit_and @0 @1)))
848
849 /* (~a & b) ^ a --> (a | b) */
850 (simplify
851 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
852 (bit_ior @0 @1))
853
854 /* (a | b) & ~(a ^ b) --> a & b */
855 (simplify
856 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
857 (bit_and @0 @1))
858
859 /* a | ~(a ^ b) --> a | ~b */
860 (simplify
861 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
862 (bit_ior @0 (bit_not @1)))
863
864 /* (a | b) | (a &^ b) --> a | b */
865 (for op (bit_and bit_xor)
866 (simplify
867 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
868 @2))
869
870 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
871 (simplify
872 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
873 @2)
874
875 /* ~(~a & b) --> a | ~b */
876 (simplify
877 (bit_not (bit_and:cs (bit_not @0) @1))
878 (bit_ior @0 (bit_not @1)))
879
880 /* ~(~a | b) --> a & ~b */
881 (simplify
882 (bit_not (bit_ior:cs (bit_not @0) @1))
883 (bit_and @0 (bit_not @1)))
884
885 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
886 #if GIMPLE
887 (simplify
888 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
889 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
890 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
891 (bit_xor @0 @1)))
892 #endif
893
894 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
895 ((A & N) + B) & M -> (A + B) & M
896 Similarly if (N & M) == 0,
897 ((A | N) + B) & M -> (A + B) & M
898 and for - instead of + (or unary - instead of +)
899 and/or ^ instead of |.
900 If B is constant and (B & M) == 0, fold into A & M. */
901 (for op (plus minus)
902 (for bitop (bit_and bit_ior bit_xor)
903 (simplify
904 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
905 (with
906 { tree pmop[2];
907 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
908 @3, @4, @1, ERROR_MARK, NULL_TREE,
909 NULL_TREE, pmop); }
910 (if (utype)
911 (convert (bit_and (op (convert:utype { pmop[0]; })
912 (convert:utype { pmop[1]; }))
913 (convert:utype @2))))))
914 (simplify
915 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
916 (with
917 { tree pmop[2];
918 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
919 NULL_TREE, NULL_TREE, @1, bitop, @3,
920 @4, pmop); }
921 (if (utype)
922 (convert (bit_and (op (convert:utype { pmop[0]; })
923 (convert:utype { pmop[1]; }))
924 (convert:utype @2)))))))
925 (simplify
926 (bit_and (op:s @0 @1) INTEGER_CST@2)
927 (with
928 { tree pmop[2];
929 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
930 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
931 NULL_TREE, NULL_TREE, pmop); }
932 (if (utype)
933 (convert (bit_and (op (convert:utype { pmop[0]; })
934 (convert:utype { pmop[1]; }))
935 (convert:utype @2)))))))
936 (for bitop (bit_and bit_ior bit_xor)
937 (simplify
938 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
939 (with
940 { tree pmop[2];
941 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
942 bitop, @2, @3, NULL_TREE, ERROR_MARK,
943 NULL_TREE, NULL_TREE, pmop); }
944 (if (utype)
945 (convert (bit_and (negate (convert:utype { pmop[0]; }))
946 (convert:utype @1)))))))
947
948 /* X % Y is smaller than Y. */
949 (for cmp (lt ge)
950 (simplify
951 (cmp (trunc_mod @0 @1) @1)
952 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
953 { constant_boolean_node (cmp == LT_EXPR, type); })))
954 (for cmp (gt le)
955 (simplify
956 (cmp @1 (trunc_mod @0 @1))
957 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
958 { constant_boolean_node (cmp == GT_EXPR, type); })))
959
960 /* x | ~0 -> ~0 */
961 (simplify
962 (bit_ior @0 integer_all_onesp@1)
963 @1)
964
965 /* x | 0 -> x */
966 (simplify
967 (bit_ior @0 integer_zerop)
968 @0)
969
970 /* x & 0 -> 0 */
971 (simplify
972 (bit_and @0 integer_zerop@1)
973 @1)
974
975 /* ~x | x -> -1 */
976 /* ~x ^ x -> -1 */
977 /* ~x + x -> -1 */
978 (for op (bit_ior bit_xor plus)
979 (simplify
980 (op:c (convert? @0) (convert? (bit_not @0)))
981 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
982
983 /* x ^ x -> 0 */
984 (simplify
985 (bit_xor @0 @0)
986 { build_zero_cst (type); })
987
988 /* Canonicalize X ^ ~0 to ~X. */
989 (simplify
990 (bit_xor @0 integer_all_onesp@1)
991 (bit_not @0))
992
993 /* x & ~0 -> x */
994 (simplify
995 (bit_and @0 integer_all_onesp)
996 (non_lvalue @0))
997
998 /* x & x -> x, x | x -> x */
999 (for bitop (bit_and bit_ior)
1000 (simplify
1001 (bitop @0 @0)
1002 (non_lvalue @0)))
1003
1004 /* x & C -> x if we know that x & ~C == 0. */
1005 #if GIMPLE
1006 (simplify
1007 (bit_and SSA_NAME@0 INTEGER_CST@1)
1008 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1009 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1010 @0))
1011 #endif
1012
1013 /* x + (x & 1) -> (x + 1) & ~1 */
1014 (simplify
1015 (plus:c @0 (bit_and:s @0 integer_onep@1))
1016 (bit_and (plus @0 @1) (bit_not @1)))
1017
1018 /* x & ~(x & y) -> x & ~y */
1019 /* x | ~(x | y) -> x | ~y */
1020 (for bitop (bit_and bit_ior)
1021 (simplify
1022 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1023 (bitop @0 (bit_not @1))))
1024
1025 /* (~x & y) | ~(x | y) -> ~x */
1026 (simplify
1027 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1028 @2)
1029
1030 /* (x | y) ^ (x | ~y) -> ~x */
1031 (simplify
1032 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1033 (bit_not @0))
1034
1035 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1036 (simplify
1037 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1038 (bit_not (bit_xor @0 @1)))
1039
1040 /* (~x | y) ^ (x ^ y) -> x | ~y */
1041 (simplify
1042 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1043 (bit_ior @0 (bit_not @1)))
1044
1045 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1046 (simplify
1047 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1048 (bit_not (bit_and @0 @1)))
1049
1050 /* (x | y) & ~x -> y & ~x */
1051 /* (x & y) | ~x -> y | ~x */
1052 (for bitop (bit_and bit_ior)
1053 rbitop (bit_ior bit_and)
1054 (simplify
1055 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1056 (bitop @1 @2)))
1057
1058 /* (x & y) ^ (x | y) -> x ^ y */
1059 (simplify
1060 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1061 (bit_xor @0 @1))
1062
1063 /* (x ^ y) ^ (x | y) -> x & y */
1064 (simplify
1065 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1066 (bit_and @0 @1))
1067
1068 /* (x & y) + (x ^ y) -> x | y */
1069 /* (x & y) | (x ^ y) -> x | y */
1070 /* (x & y) ^ (x ^ y) -> x | y */
1071 (for op (plus bit_ior bit_xor)
1072 (simplify
1073 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1074 (bit_ior @0 @1)))
1075
1076 /* (x & y) + (x | y) -> x + y */
1077 (simplify
1078 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1079 (plus @0 @1))
1080
1081 /* (x + y) - (x | y) -> x & y */
1082 (simplify
1083 (minus (plus @0 @1) (bit_ior @0 @1))
1084 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1085 && !TYPE_SATURATING (type))
1086 (bit_and @0 @1)))
1087
1088 /* (x + y) - (x & y) -> x | y */
1089 (simplify
1090 (minus (plus @0 @1) (bit_and @0 @1))
1091 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1092 && !TYPE_SATURATING (type))
1093 (bit_ior @0 @1)))
1094
1095 /* (x | y) - (x ^ y) -> x & y */
1096 (simplify
1097 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1098 (bit_and @0 @1))
1099
1100 /* (x | y) - (x & y) -> x ^ y */
1101 (simplify
1102 (minus (bit_ior @0 @1) (bit_and @0 @1))
1103 (bit_xor @0 @1))
1104
1105 /* (x | y) & ~(x & y) -> x ^ y */
1106 (simplify
1107 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1108 (bit_xor @0 @1))
1109
1110 /* (x | y) & (~x ^ y) -> x & y */
1111 (simplify
1112 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1113 (bit_and @0 @1))
1114
1115 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1116 (simplify
1117 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1118 (bit_not (bit_xor @0 @1)))
1119
1120 /* (~x | y) ^ (x | ~y) -> x ^ y */
1121 (simplify
1122 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1123 (bit_xor @0 @1))
1124
1125 /* ~x & ~y -> ~(x | y)
1126 ~x | ~y -> ~(x & y) */
1127 (for op (bit_and bit_ior)
1128 rop (bit_ior bit_and)
1129 (simplify
1130 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1131 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1132 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1133 (bit_not (rop (convert @0) (convert @1))))))
1134
1135 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1136 with a constant, and the two constants have no bits in common,
1137 we should treat this as a BIT_IOR_EXPR since this may produce more
1138 simplifications. */
1139 (for op (bit_xor plus)
1140 (simplify
1141 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1142 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1143 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1144 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1145 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1146 (bit_ior (convert @4) (convert @5)))))
1147
1148 /* (X | Y) ^ X -> Y & ~ X*/
1149 (simplify
1150 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1152 (convert (bit_and @1 (bit_not @0)))))
1153
1154 /* Convert ~X ^ ~Y to X ^ Y. */
1155 (simplify
1156 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1157 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1158 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1159 (bit_xor (convert @0) (convert @1))))
1160
1161 /* Convert ~X ^ C to X ^ ~C. */
1162 (simplify
1163 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1164 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1165 (bit_xor (convert @0) (bit_not @1))))
1166
1167 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1168 (for opo (bit_and bit_xor)
1169 opi (bit_xor bit_and)
1170 (simplify
1171 (opo:c (opi:cs @0 @1) @1)
1172 (bit_and (bit_not @0) @1)))
1173
1174 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1175 operands are another bit-wise operation with a common input. If so,
1176 distribute the bit operations to save an operation and possibly two if
1177 constants are involved. For example, convert
1178 (A | B) & (A | C) into A | (B & C)
1179 Further simplification will occur if B and C are constants. */
1180 (for op (bit_and bit_ior bit_xor)
1181 rop (bit_ior bit_and bit_and)
1182 (simplify
1183 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1184 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1185 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1186 (rop (convert @0) (op (convert @1) (convert @2))))))
1187
1188 /* Some simple reassociation for bit operations, also handled in reassoc. */
1189 /* (X & Y) & Y -> X & Y
1190 (X | Y) | Y -> X | Y */
1191 (for op (bit_and bit_ior)
1192 (simplify
1193 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1194 @2))
1195 /* (X ^ Y) ^ Y -> X */
1196 (simplify
1197 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1198 (convert @0))
1199 /* (X & Y) & (X & Z) -> (X & Y) & Z
1200 (X | Y) | (X | Z) -> (X | Y) | Z */
1201 (for op (bit_and bit_ior)
1202 (simplify
1203 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1204 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1205 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1206 (if (single_use (@5) && single_use (@6))
1207 (op @3 (convert @2))
1208 (if (single_use (@3) && single_use (@4))
1209 (op (convert @1) @5))))))
1210 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1211 (simplify
1212 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1214 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1215 (bit_xor (convert @1) (convert @2))))
1216
1217 /* Convert abs (abs (X)) into abs (X).
1218 also absu (absu (X)) into absu (X). */
1219 (simplify
1220 (abs (abs@1 @0))
1221 @1)
1222
1223 (simplify
1224 (absu (convert@2 (absu@1 @0)))
1225 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1226 @1))
1227
1228 /* Convert abs[u] (-X) -> abs[u] (X). */
1229 (simplify
1230 (abs (negate @0))
1231 (abs @0))
1232
1233 (simplify
1234 (absu (negate @0))
1235 (absu @0))
1236
1237 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1238 (simplify
1239 (abs tree_expr_nonnegative_p@0)
1240 @0)
1241
1242 (simplify
1243 (absu tree_expr_nonnegative_p@0)
1244 (convert @0))
1245
1246 /* A few cases of fold-const.c negate_expr_p predicate. */
1247 (match negate_expr_p
1248 INTEGER_CST
1249 (if ((INTEGRAL_TYPE_P (type)
1250 && TYPE_UNSIGNED (type))
1251 || (!TYPE_OVERFLOW_SANITIZED (type)
1252 && may_negate_without_overflow_p (t)))))
1253 (match negate_expr_p
1254 FIXED_CST)
1255 (match negate_expr_p
1256 (negate @0)
1257 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1258 (match negate_expr_p
1259 REAL_CST
1260 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1261 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1262 ways. */
1263 (match negate_expr_p
1264 VECTOR_CST
1265 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1266 (match negate_expr_p
1267 (minus @0 @1)
1268 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1269 || (FLOAT_TYPE_P (type)
1270 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1271 && !HONOR_SIGNED_ZEROS (type)))))
1272
1273 /* (-A) * (-B) -> A * B */
1274 (simplify
1275 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1276 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1277 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1278 (mult (convert @0) (convert (negate @1)))))
1279
1280 /* -(A + B) -> (-B) - A. */
1281 (simplify
1282 (negate (plus:c @0 negate_expr_p@1))
1283 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1284 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1285 (minus (negate @1) @0)))
1286
1287 /* -(A - B) -> B - A. */
1288 (simplify
1289 (negate (minus @0 @1))
1290 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1291 || (FLOAT_TYPE_P (type)
1292 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1293 && !HONOR_SIGNED_ZEROS (type)))
1294 (minus @1 @0)))
1295 (simplify
1296 (negate (pointer_diff @0 @1))
1297 (if (TYPE_OVERFLOW_UNDEFINED (type))
1298 (pointer_diff @1 @0)))
1299
1300 /* A - B -> A + (-B) if B is easily negatable. */
1301 (simplify
1302 (minus @0 negate_expr_p@1)
1303 (if (!FIXED_POINT_TYPE_P (type))
1304 (plus @0 (negate @1))))
1305
1306 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1307 when profitable.
1308 For bitwise binary operations apply operand conversions to the
1309 binary operation result instead of to the operands. This allows
1310 to combine successive conversions and bitwise binary operations.
1311 We combine the above two cases by using a conditional convert. */
1312 (for bitop (bit_and bit_ior bit_xor)
1313 (simplify
1314 (bitop (convert@2 @0) (convert?@3 @1))
1315 (if (((TREE_CODE (@1) == INTEGER_CST
1316 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1317 && int_fits_type_p (@1, TREE_TYPE (@0)))
1318 || types_match (@0, @1))
1319 /* ??? This transform conflicts with fold-const.c doing
1320 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1321 constants (if x has signed type, the sign bit cannot be set
1322 in c). This folds extension into the BIT_AND_EXPR.
1323 Restrict it to GIMPLE to avoid endless recursions. */
1324 && (bitop != BIT_AND_EXPR || GIMPLE)
1325 && (/* That's a good idea if the conversion widens the operand, thus
1326 after hoisting the conversion the operation will be narrower. */
1327 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1328 /* It's also a good idea if the conversion is to a non-integer
1329 mode. */
1330 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1331 /* Or if the precision of TO is not the same as the precision
1332 of its mode. */
1333 || !type_has_mode_precision_p (type)
1334 /* In GIMPLE, getting rid of 2 conversions for one new results
1335 in smaller IL. */
1336 || (GIMPLE
1337 && TREE_CODE (@1) != INTEGER_CST
1338 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1339 && single_use (@2)
1340 && single_use (@3))))
1341 (convert (bitop @0 (convert @1)))))
1342 /* In GIMPLE, getting rid of 2 conversions for one new results
1343 in smaller IL. */
1344 (simplify
1345 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1346 (if (GIMPLE
1347 && TREE_CODE (@1) != INTEGER_CST
1348 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1349 && types_match (type, @0))
1350 (bitop @0 (convert @1)))))
1351
1352 (for bitop (bit_and bit_ior)
1353 rbitop (bit_ior bit_and)
1354 /* (x | y) & x -> x */
1355 /* (x & y) | x -> x */
1356 (simplify
1357 (bitop:c (rbitop:c @0 @1) @0)
1358 @0)
1359 /* (~x | y) & x -> x & y */
1360 /* (~x & y) | x -> x | y */
1361 (simplify
1362 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1363 (bitop @0 @1)))
1364
1365 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1366 (simplify
1367 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1368 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1369
1370 /* Combine successive equal operations with constants. */
1371 (for bitop (bit_and bit_ior bit_xor)
1372 (simplify
1373 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1374 (if (!CONSTANT_CLASS_P (@0))
1375 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1376 folded to a constant. */
1377 (bitop @0 (bitop @1 @2))
1378 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1379 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1380 the values involved are such that the operation can't be decided at
1381 compile time. Try folding one of @0 or @1 with @2 to see whether
1382 that combination can be decided at compile time.
1383
1384 Keep the existing form if both folds fail, to avoid endless
1385 oscillation. */
1386 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1387 (if (cst1)
1388 (bitop @1 { cst1; })
1389 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1390 (if (cst2)
1391 (bitop @0 { cst2; }))))))))
1392
1393 /* Try simple folding for X op !X, and X op X with the help
1394 of the truth_valued_p and logical_inverted_value predicates. */
1395 (match truth_valued_p
1396 @0
1397 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1398 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1399 (match truth_valued_p
1400 (op @0 @1)))
1401 (match truth_valued_p
1402 (truth_not @0))
1403
1404 (match (logical_inverted_value @0)
1405 (truth_not @0))
1406 (match (logical_inverted_value @0)
1407 (bit_not truth_valued_p@0))
1408 (match (logical_inverted_value @0)
1409 (eq @0 integer_zerop))
1410 (match (logical_inverted_value @0)
1411 (ne truth_valued_p@0 integer_truep))
1412 (match (logical_inverted_value @0)
1413 (bit_xor truth_valued_p@0 integer_truep))
1414
1415 /* X & !X -> 0. */
1416 (simplify
1417 (bit_and:c @0 (logical_inverted_value @0))
1418 { build_zero_cst (type); })
1419 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1420 (for op (bit_ior bit_xor)
1421 (simplify
1422 (op:c truth_valued_p@0 (logical_inverted_value @0))
1423 { constant_boolean_node (true, type); }))
1424 /* X ==/!= !X is false/true. */
1425 (for op (eq ne)
1426 (simplify
1427 (op:c truth_valued_p@0 (logical_inverted_value @0))
1428 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1429
1430 /* ~~x -> x */
1431 (simplify
1432 (bit_not (bit_not @0))
1433 @0)
1434
1435 /* Convert ~ (-A) to A - 1. */
1436 (simplify
1437 (bit_not (convert? (negate @0)))
1438 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1439 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1440 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1441
1442 /* Convert - (~A) to A + 1. */
1443 (simplify
1444 (negate (nop_convert? (bit_not @0)))
1445 (plus (view_convert @0) { build_each_one_cst (type); }))
1446
1447 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1448 (simplify
1449 (bit_not (convert? (minus @0 integer_each_onep)))
1450 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1451 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1452 (convert (negate @0))))
1453 (simplify
1454 (bit_not (convert? (plus @0 integer_all_onesp)))
1455 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1456 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1457 (convert (negate @0))))
1458
1459 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1460 (simplify
1461 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1462 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1463 (convert (bit_xor @0 (bit_not @1)))))
1464 (simplify
1465 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1466 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1467 (convert (bit_xor @0 @1))))
1468
1469 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1470 (simplify
1471 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1472 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1473 (bit_not (bit_xor (view_convert @0) @1))))
1474
1475 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1476 (simplify
1477 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1478 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1479
1480 /* Fold A - (A & B) into ~B & A. */
1481 (simplify
1482 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1483 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1484 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1485 (convert (bit_and (bit_not @1) @0))))
1486
1487 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1488 (for cmp (gt lt ge le)
1489 (simplify
1490 (mult (convert (cmp @0 @1)) @2)
1491 (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1492 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1493
1494 /* For integral types with undefined overflow and C != 0 fold
1495 x * C EQ/NE y * C into x EQ/NE y. */
1496 (for cmp (eq ne)
1497 (simplify
1498 (cmp (mult:c @0 @1) (mult:c @2 @1))
1499 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1500 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1501 && tree_expr_nonzero_p (@1))
1502 (cmp @0 @2))))
1503
1504 /* For integral types with wrapping overflow and C odd fold
1505 x * C EQ/NE y * C into x EQ/NE y. */
1506 (for cmp (eq ne)
1507 (simplify
1508 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1509 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1510 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1511 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1512 (cmp @0 @2))))
1513
1514 /* For integral types with undefined overflow and C != 0 fold
1515 x * C RELOP y * C into:
1516
1517 x RELOP y for nonnegative C
1518 y RELOP x for negative C */
1519 (for cmp (lt gt le ge)
1520 (simplify
1521 (cmp (mult:c @0 @1) (mult:c @2 @1))
1522 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1523 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1524 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1525 (cmp @0 @2)
1526 (if (TREE_CODE (@1) == INTEGER_CST
1527 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1528 (cmp @2 @0))))))
1529
1530 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1531 (for cmp (le gt)
1532 icmp (gt le)
1533 (simplify
1534 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1535 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1536 && TYPE_UNSIGNED (TREE_TYPE (@0))
1537 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1538 && (wi::to_wide (@2)
1539 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1540 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1541 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1542
1543 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1544 (for cmp (simple_comparison)
1545 (simplify
1546 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1547 (if (element_precision (@3) >= element_precision (@0)
1548 && types_match (@0, @1))
1549 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1550 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1551 (cmp @1 @0)
1552 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1553 (with
1554 {
1555 tree utype = unsigned_type_for (TREE_TYPE (@0));
1556 }
1557 (cmp (convert:utype @1) (convert:utype @0)))))
1558 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1559 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1560 (cmp @0 @1)
1561 (with
1562 {
1563 tree utype = unsigned_type_for (TREE_TYPE (@0));
1564 }
1565 (cmp (convert:utype @0) (convert:utype @1)))))))))
1566
1567 /* X / C1 op C2 into a simple range test. */
1568 (for cmp (simple_comparison)
1569 (simplify
1570 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1571 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1572 && integer_nonzerop (@1)
1573 && !TREE_OVERFLOW (@1)
1574 && !TREE_OVERFLOW (@2))
1575 (with { tree lo, hi; bool neg_overflow;
1576 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1577 &neg_overflow); }
1578 (switch
1579 (if (code == LT_EXPR || code == GE_EXPR)
1580 (if (TREE_OVERFLOW (lo))
1581 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1582 (if (code == LT_EXPR)
1583 (lt @0 { lo; })
1584 (ge @0 { lo; }))))
1585 (if (code == LE_EXPR || code == GT_EXPR)
1586 (if (TREE_OVERFLOW (hi))
1587 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1588 (if (code == LE_EXPR)
1589 (le @0 { hi; })
1590 (gt @0 { hi; }))))
1591 (if (!lo && !hi)
1592 { build_int_cst (type, code == NE_EXPR); })
1593 (if (code == EQ_EXPR && !hi)
1594 (ge @0 { lo; }))
1595 (if (code == EQ_EXPR && !lo)
1596 (le @0 { hi; }))
1597 (if (code == NE_EXPR && !hi)
1598 (lt @0 { lo; }))
1599 (if (code == NE_EXPR && !lo)
1600 (gt @0 { hi; }))
1601 (if (GENERIC)
1602 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1603 lo, hi); })
1604 (with
1605 {
1606 tree etype = range_check_type (TREE_TYPE (@0));
1607 if (etype)
1608 {
1609 hi = fold_convert (etype, hi);
1610 lo = fold_convert (etype, lo);
1611 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1612 }
1613 }
1614 (if (etype && hi && !TREE_OVERFLOW (hi))
1615 (if (code == EQ_EXPR)
1616 (le (minus (convert:etype @0) { lo; }) { hi; })
1617 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1618
1619 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1620 (for op (lt le ge gt)
1621 (simplify
1622 (op (plus:c @0 @2) (plus:c @1 @2))
1623 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1624 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1625 (op @0 @1))))
1626 /* For equality and subtraction, this is also true with wrapping overflow. */
1627 (for op (eq ne minus)
1628 (simplify
1629 (op (plus:c @0 @2) (plus:c @1 @2))
1630 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1631 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1632 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1633 (op @0 @1))))
1634
1635 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1636 (for op (lt le ge gt)
1637 (simplify
1638 (op (minus @0 @2) (minus @1 @2))
1639 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1640 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1641 (op @0 @1))))
1642 /* For equality and subtraction, this is also true with wrapping overflow. */
1643 (for op (eq ne minus)
1644 (simplify
1645 (op (minus @0 @2) (minus @1 @2))
1646 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1647 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1648 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1649 (op @0 @1))))
1650 /* And for pointers... */
1651 (for op (simple_comparison)
1652 (simplify
1653 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1654 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1655 (op @0 @1))))
1656 (simplify
1657 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1658 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1659 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1660 (pointer_diff @0 @1)))
1661
1662 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1663 (for op (lt le ge gt)
1664 (simplify
1665 (op (minus @2 @0) (minus @2 @1))
1666 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1667 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1668 (op @1 @0))))
1669 /* For equality and subtraction, this is also true with wrapping overflow. */
1670 (for op (eq ne minus)
1671 (simplify
1672 (op (minus @2 @0) (minus @2 @1))
1673 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1674 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1675 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1676 (op @1 @0))))
1677 /* And for pointers... */
1678 (for op (simple_comparison)
1679 (simplify
1680 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1681 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1682 (op @1 @0))))
1683 (simplify
1684 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1685 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1686 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1687 (pointer_diff @1 @0)))
1688
1689 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1690 (for op (lt le gt ge)
1691 (simplify
1692 (op:c (plus:c@2 @0 @1) @1)
1693 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1694 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1695 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1696 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1697 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1698 /* For equality, this is also true with wrapping overflow. */
1699 (for op (eq ne)
1700 (simplify
1701 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1702 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1703 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1704 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1705 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1706 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1707 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1708 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1709 (simplify
1710 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1711 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1712 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1713 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1714 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1715
1716 /* X - Y < X is the same as Y > 0 when there is no overflow.
1717 For equality, this is also true with wrapping overflow. */
1718 (for op (simple_comparison)
1719 (simplify
1720 (op:c @0 (minus@2 @0 @1))
1721 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1722 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1723 || ((op == EQ_EXPR || op == NE_EXPR)
1724 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1725 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1726 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1727
1728 /* Transform:
1729 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1730 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1731 (for cmp (eq ne)
1732 ocmp (lt ge)
1733 (simplify
1734 (cmp (trunc_div @0 @1) integer_zerop)
1735 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1736 /* Complex ==/!= is allowed, but not </>=. */
1737 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1738 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1739 (ocmp @0 @1))))
1740
1741 /* X == C - X can never be true if C is odd. */
1742 (for cmp (eq ne)
1743 (simplify
1744 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1745 (if (TREE_INT_CST_LOW (@1) & 1)
1746 { constant_boolean_node (cmp == NE_EXPR, type); })))
1747
1748 /* Arguments on which one can call get_nonzero_bits to get the bits
1749 possibly set. */
1750 (match with_possible_nonzero_bits
1751 INTEGER_CST@0)
1752 (match with_possible_nonzero_bits
1753 SSA_NAME@0
1754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1755 /* Slightly extended version, do not make it recursive to keep it cheap. */
1756 (match (with_possible_nonzero_bits2 @0)
1757 with_possible_nonzero_bits@0)
1758 (match (with_possible_nonzero_bits2 @0)
1759 (bit_and:c with_possible_nonzero_bits@0 @2))
1760
1761 /* Same for bits that are known to be set, but we do not have
1762 an equivalent to get_nonzero_bits yet. */
1763 (match (with_certain_nonzero_bits2 @0)
1764 INTEGER_CST@0)
1765 (match (with_certain_nonzero_bits2 @0)
1766 (bit_ior @1 INTEGER_CST@0))
1767
1768 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1769 (for cmp (eq ne)
1770 (simplify
1771 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1772 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1773 { constant_boolean_node (cmp == NE_EXPR, type); })))
1774
1775 /* ((X inner_op C0) outer_op C1)
1776 With X being a tree where value_range has reasoned certain bits to always be
1777 zero throughout its computed value range,
1778 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1779 where zero_mask has 1's for all bits that are sure to be 0 in
1780 and 0's otherwise.
1781 if (inner_op == '^') C0 &= ~C1;
1782 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1783 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1784 */
1785 (for inner_op (bit_ior bit_xor)
1786 outer_op (bit_xor bit_ior)
1787 (simplify
1788 (outer_op
1789 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1790 (with
1791 {
1792 bool fail = false;
1793 wide_int zero_mask_not;
1794 wide_int C0;
1795 wide_int cst_emit;
1796
1797 if (TREE_CODE (@2) == SSA_NAME)
1798 zero_mask_not = get_nonzero_bits (@2);
1799 else
1800 fail = true;
1801
1802 if (inner_op == BIT_XOR_EXPR)
1803 {
1804 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1805 cst_emit = C0 | wi::to_wide (@1);
1806 }
1807 else
1808 {
1809 C0 = wi::to_wide (@0);
1810 cst_emit = C0 ^ wi::to_wide (@1);
1811 }
1812 }
1813 (if (!fail && (C0 & zero_mask_not) == 0)
1814 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1815 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1816 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1817
1818 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1819 (simplify
1820 (pointer_plus (pointer_plus:s @0 @1) @3)
1821 (pointer_plus @0 (plus @1 @3)))
1822
1823 /* Pattern match
1824 tem1 = (long) ptr1;
1825 tem2 = (long) ptr2;
1826 tem3 = tem2 - tem1;
1827 tem4 = (unsigned long) tem3;
1828 tem5 = ptr1 + tem4;
1829 and produce
1830 tem5 = ptr2; */
1831 (simplify
1832 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1833 /* Conditionally look through a sign-changing conversion. */
1834 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1835 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1836 || (GENERIC && type == TREE_TYPE (@1))))
1837 @1))
1838 (simplify
1839 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1840 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1841 (convert @1)))
1842
1843 /* Pattern match
1844 tem = (sizetype) ptr;
1845 tem = tem & algn;
1846 tem = -tem;
1847 ... = ptr p+ tem;
1848 and produce the simpler and easier to analyze with respect to alignment
1849 ... = ptr & ~algn; */
1850 (simplify
1851 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1852 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1853 (bit_and @0 { algn; })))
1854
1855 /* Try folding difference of addresses. */
1856 (simplify
1857 (minus (convert ADDR_EXPR@0) (convert @1))
1858 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1859 (with { poly_int64 diff; }
1860 (if (ptr_difference_const (@0, @1, &diff))
1861 { build_int_cst_type (type, diff); }))))
1862 (simplify
1863 (minus (convert @0) (convert ADDR_EXPR@1))
1864 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1865 (with { poly_int64 diff; }
1866 (if (ptr_difference_const (@0, @1, &diff))
1867 { build_int_cst_type (type, diff); }))))
1868 (simplify
1869 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1870 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1871 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1872 (with { poly_int64 diff; }
1873 (if (ptr_difference_const (@0, @1, &diff))
1874 { build_int_cst_type (type, diff); }))))
1875 (simplify
1876 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1877 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1878 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1879 (with { poly_int64 diff; }
1880 (if (ptr_difference_const (@0, @1, &diff))
1881 { build_int_cst_type (type, diff); }))))
1882
1883 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
1884 (simplify
1885 (convert (pointer_diff @0 INTEGER_CST@1))
1886 (if (POINTER_TYPE_P (type))
1887 { build_fold_addr_expr_with_type
1888 (build2 (MEM_REF, char_type_node, @0,
1889 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
1890 type); }))
1891
1892 /* If arg0 is derived from the address of an object or function, we may
1893 be able to fold this expression using the object or function's
1894 alignment. */
1895 (simplify
1896 (bit_and (convert? @0) INTEGER_CST@1)
1897 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1898 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1899 (with
1900 {
1901 unsigned int align;
1902 unsigned HOST_WIDE_INT bitpos;
1903 get_pointer_alignment_1 (@0, &align, &bitpos);
1904 }
1905 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1906 { wide_int_to_tree (type, (wi::to_wide (@1)
1907 & (bitpos / BITS_PER_UNIT))); }))))
1908
1909 (match min_value
1910 INTEGER_CST
1911 (if (INTEGRAL_TYPE_P (type)
1912 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1913
1914 (match max_value
1915 INTEGER_CST
1916 (if (INTEGRAL_TYPE_P (type)
1917 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1918
1919 /* x > y && x != XXX_MIN --> x > y
1920 x > y && x == XXX_MIN --> false . */
1921 (for eqne (eq ne)
1922 (simplify
1923 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1924 (switch
1925 (if (eqne == EQ_EXPR)
1926 { constant_boolean_node (false, type); })
1927 (if (eqne == NE_EXPR)
1928 @2)
1929 )))
1930
1931 /* x < y && x != XXX_MAX --> x < y
1932 x < y && x == XXX_MAX --> false. */
1933 (for eqne (eq ne)
1934 (simplify
1935 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1936 (switch
1937 (if (eqne == EQ_EXPR)
1938 { constant_boolean_node (false, type); })
1939 (if (eqne == NE_EXPR)
1940 @2)
1941 )))
1942
1943 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1944 (simplify
1945 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1946 @2)
1947
1948 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
1949 (simplify
1950 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1951 @2)
1952
1953 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
1954 (simplify
1955 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1956 @2)
1957
1958 /* x <= y || x != XXX_MIN --> true. */
1959 (simplify
1960 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1961 { constant_boolean_node (true, type); })
1962
1963 /* x <= y || x == XXX_MIN --> x <= y. */
1964 (simplify
1965 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1966 @2)
1967
1968 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
1969 (simplify
1970 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1971 @2)
1972
1973 /* x >= y || x != XXX_MAX --> true
1974 x >= y || x == XXX_MAX --> x >= y. */
1975 (for eqne (eq ne)
1976 (simplify
1977 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1978 (switch
1979 (if (eqne == EQ_EXPR)
1980 @2)
1981 (if (eqne == NE_EXPR)
1982 { constant_boolean_node (true, type); }))))
1983
1984 /* Convert (X == CST1) && (X OP2 CST2) to a known value
1985 based on CST1 OP2 CST2. Similarly for (X != CST1). */
1986
1987 (for code1 (eq ne)
1988 (for code2 (eq ne lt gt le ge)
1989 (simplify
1990 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1991 (with
1992 {
1993 int cmp = tree_int_cst_compare (@1, @2);
1994 bool val;
1995 switch (code2)
1996 {
1997 case EQ_EXPR: val = (cmp == 0); break;
1998 case NE_EXPR: val = (cmp != 0); break;
1999 case LT_EXPR: val = (cmp < 0); break;
2000 case GT_EXPR: val = (cmp > 0); break;
2001 case LE_EXPR: val = (cmp <= 0); break;
2002 case GE_EXPR: val = (cmp >= 0); break;
2003 default: gcc_unreachable ();
2004 }
2005 }
2006 (switch
2007 (if (code1 == EQ_EXPR && val) @3)
2008 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2009 (if (code1 == NE_EXPR && !val) @4))))))
2010
2011 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2012
2013 (for code1 (lt le gt ge)
2014 (for code2 (lt le gt ge)
2015 (simplify
2016 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2017 (with
2018 {
2019 int cmp = tree_int_cst_compare (@1, @2);
2020 }
2021 (switch
2022 /* Choose the more restrictive of two < or <= comparisons. */
2023 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2024 && (code2 == LT_EXPR || code2 == LE_EXPR))
2025 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2026 @3
2027 @4))
2028 /* Likewise chose the more restrictive of two > or >= comparisons. */
2029 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2030 && (code2 == GT_EXPR || code2 == GE_EXPR))
2031 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2032 @3
2033 @4))
2034 /* Check for singleton ranges. */
2035 (if (cmp == 0
2036 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2037 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2038 (eq @0 @1))
2039 /* Check for disjoint ranges. */
2040 (if (cmp <= 0
2041 && (code1 == LT_EXPR || code1 == LE_EXPR)
2042 && (code2 == GT_EXPR || code2 == GE_EXPR))
2043 { constant_boolean_node (false, type); })
2044 (if (cmp >= 0
2045 && (code1 == GT_EXPR || code1 == GE_EXPR)
2046 && (code2 == LT_EXPR || code2 == LE_EXPR))
2047 { constant_boolean_node (false, type); })
2048 )))))
2049
2050 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2051 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2052
2053 (for code1 (eq ne)
2054 (for code2 (eq ne lt gt le ge)
2055 (simplify
2056 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2057 (with
2058 {
2059 int cmp = tree_int_cst_compare (@1, @2);
2060 bool val;
2061 switch (code2)
2062 {
2063 case EQ_EXPR: val = (cmp == 0); break;
2064 case NE_EXPR: val = (cmp != 0); break;
2065 case LT_EXPR: val = (cmp < 0); break;
2066 case GT_EXPR: val = (cmp > 0); break;
2067 case LE_EXPR: val = (cmp <= 0); break;
2068 case GE_EXPR: val = (cmp >= 0); break;
2069 default: gcc_unreachable ();
2070 }
2071 }
2072 (switch
2073 (if (code1 == EQ_EXPR && val) @4)
2074 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2075 (if (code1 == NE_EXPR && !val) @3))))))
2076
2077 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2078
2079 (for code1 (lt le gt ge)
2080 (for code2 (lt le gt ge)
2081 (simplify
2082 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2083 (with
2084 {
2085 int cmp = tree_int_cst_compare (@1, @2);
2086 }
2087 (switch
2088 /* Choose the more restrictive of two < or <= comparisons. */
2089 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2090 && (code2 == LT_EXPR || code2 == LE_EXPR))
2091 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2092 @4
2093 @3))
2094 /* Likewise chose the more restrictive of two > or >= comparisons. */
2095 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2096 && (code2 == GT_EXPR || code2 == GE_EXPR))
2097 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2098 @4
2099 @3))
2100 /* Check for singleton ranges. */
2101 (if (cmp == 0
2102 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2103 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2104 (ne @0 @2))
2105 /* Check for disjoint ranges. */
2106 (if (cmp >= 0
2107 && (code1 == LT_EXPR || code1 == LE_EXPR)
2108 && (code2 == GT_EXPR || code2 == GE_EXPR))
2109 { constant_boolean_node (true, type); })
2110 (if (cmp <= 0
2111 && (code1 == GT_EXPR || code1 == GE_EXPR)
2112 && (code2 == LT_EXPR || code2 == LE_EXPR))
2113 { constant_boolean_node (true, type); })
2114 )))))
2115
2116 /* We can't reassociate at all for saturating types. */
2117 (if (!TYPE_SATURATING (type))
2118
2119 /* Contract negates. */
2120 /* A + (-B) -> A - B */
2121 (simplify
2122 (plus:c @0 (convert? (negate @1)))
2123 /* Apply STRIP_NOPS on the negate. */
2124 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2125 && !TYPE_OVERFLOW_SANITIZED (type))
2126 (with
2127 {
2128 tree t1 = type;
2129 if (INTEGRAL_TYPE_P (type)
2130 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2131 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2132 }
2133 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2134 /* A - (-B) -> A + B */
2135 (simplify
2136 (minus @0 (convert? (negate @1)))
2137 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2138 && !TYPE_OVERFLOW_SANITIZED (type))
2139 (with
2140 {
2141 tree t1 = type;
2142 if (INTEGRAL_TYPE_P (type)
2143 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2144 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2145 }
2146 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2147 /* -(T)(-A) -> (T)A
2148 Sign-extension is ok except for INT_MIN, which thankfully cannot
2149 happen without overflow. */
2150 (simplify
2151 (negate (convert (negate @1)))
2152 (if (INTEGRAL_TYPE_P (type)
2153 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2154 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2155 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2156 && !TYPE_OVERFLOW_SANITIZED (type)
2157 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2158 (convert @1)))
2159 (simplify
2160 (negate (convert negate_expr_p@1))
2161 (if (SCALAR_FLOAT_TYPE_P (type)
2162 && ((DECIMAL_FLOAT_TYPE_P (type)
2163 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2164 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2165 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2166 (convert (negate @1))))
2167 (simplify
2168 (negate (nop_convert? (negate @1)))
2169 (if (!TYPE_OVERFLOW_SANITIZED (type)
2170 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2171 (view_convert @1)))
2172
2173 /* We can't reassociate floating-point unless -fassociative-math
2174 or fixed-point plus or minus because of saturation to +-Inf. */
2175 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2176 && !FIXED_POINT_TYPE_P (type))
2177
2178 /* Match patterns that allow contracting a plus-minus pair
2179 irrespective of overflow issues. */
2180 /* (A +- B) - A -> +- B */
2181 /* (A +- B) -+ B -> A */
2182 /* A - (A +- B) -> -+ B */
2183 /* A +- (B -+ A) -> +- B */
2184 (simplify
2185 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2186 (view_convert @1))
2187 (simplify
2188 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2189 (if (!ANY_INTEGRAL_TYPE_P (type)
2190 || TYPE_OVERFLOW_WRAPS (type))
2191 (negate (view_convert @1))
2192 (view_convert (negate @1))))
2193 (simplify
2194 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2195 (view_convert @0))
2196 (simplify
2197 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2198 (if (!ANY_INTEGRAL_TYPE_P (type)
2199 || TYPE_OVERFLOW_WRAPS (type))
2200 (negate (view_convert @1))
2201 (view_convert (negate @1))))
2202 (simplify
2203 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2204 (view_convert @1))
2205 /* (A +- B) + (C - A) -> C +- B */
2206 /* (A + B) - (A - C) -> B + C */
2207 /* More cases are handled with comparisons. */
2208 (simplify
2209 (plus:c (plus:c @0 @1) (minus @2 @0))
2210 (plus @2 @1))
2211 (simplify
2212 (plus:c (minus @0 @1) (minus @2 @0))
2213 (minus @2 @1))
2214 (simplify
2215 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2216 (if (TYPE_OVERFLOW_UNDEFINED (type)
2217 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2218 (pointer_diff @2 @1)))
2219 (simplify
2220 (minus (plus:c @0 @1) (minus @0 @2))
2221 (plus @1 @2))
2222
2223 /* (A +- CST1) +- CST2 -> A + CST3
2224 Use view_convert because it is safe for vectors and equivalent for
2225 scalars. */
2226 (for outer_op (plus minus)
2227 (for inner_op (plus minus)
2228 neg_inner_op (minus plus)
2229 (simplify
2230 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2231 CONSTANT_CLASS_P@2)
2232 /* If one of the types wraps, use that one. */
2233 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2234 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2235 forever if something doesn't simplify into a constant. */
2236 (if (!CONSTANT_CLASS_P (@0))
2237 (if (outer_op == PLUS_EXPR)
2238 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2239 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2240 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2241 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2242 (if (outer_op == PLUS_EXPR)
2243 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2244 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2245 /* If the constant operation overflows we cannot do the transform
2246 directly as we would introduce undefined overflow, for example
2247 with (a - 1) + INT_MIN. */
2248 (if (types_match (type, @0))
2249 (with { tree cst = const_binop (outer_op == inner_op
2250 ? PLUS_EXPR : MINUS_EXPR,
2251 type, @1, @2); }
2252 (if (cst && !TREE_OVERFLOW (cst))
2253 (inner_op @0 { cst; } )
2254 /* X+INT_MAX+1 is X-INT_MIN. */
2255 (if (INTEGRAL_TYPE_P (type) && cst
2256 && wi::to_wide (cst) == wi::min_value (type))
2257 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2258 /* Last resort, use some unsigned type. */
2259 (with { tree utype = unsigned_type_for (type); }
2260 (if (utype)
2261 (view_convert (inner_op
2262 (view_convert:utype @0)
2263 (view_convert:utype
2264 { drop_tree_overflow (cst); }))))))))))))))
2265
2266 /* (CST1 - A) +- CST2 -> CST3 - A */
2267 (for outer_op (plus minus)
2268 (simplify
2269 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2270 /* If one of the types wraps, use that one. */
2271 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2272 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2273 forever if something doesn't simplify into a constant. */
2274 (if (!CONSTANT_CLASS_P (@0))
2275 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2276 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2277 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2278 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2279 (if (types_match (type, @0))
2280 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2281 (if (cst && !TREE_OVERFLOW (cst))
2282 (minus { cst; } @0))))))))
2283
2284 /* CST1 - (CST2 - A) -> CST3 + A
2285 Use view_convert because it is safe for vectors and equivalent for
2286 scalars. */
2287 (simplify
2288 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2289 /* If one of the types wraps, use that one. */
2290 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2291 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2292 forever if something doesn't simplify into a constant. */
2293 (if (!CONSTANT_CLASS_P (@0))
2294 (plus (view_convert @0) (minus @1 (view_convert @2))))
2295 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2296 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2297 (view_convert (plus @0 (minus (view_convert @1) @2)))
2298 (if (types_match (type, @0))
2299 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2300 (if (cst && !TREE_OVERFLOW (cst))
2301 (plus { cst; } @0)))))))
2302
2303 /* ((T)(A)) + CST -> (T)(A + CST) */
2304 #if GIMPLE
2305 (simplify
2306 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2307 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2308 && TREE_CODE (type) == INTEGER_TYPE
2309 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2310 && int_fits_type_p (@1, TREE_TYPE (@0)))
2311 /* Perform binary operation inside the cast if the constant fits
2312 and (A + CST)'s range does not overflow. */
2313 (with
2314 {
2315 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2316 max_ovf = wi::OVF_OVERFLOW;
2317 tree inner_type = TREE_TYPE (@0);
2318
2319 wide_int w1
2320 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2321 TYPE_SIGN (inner_type));
2322
2323 wide_int wmin0, wmax0;
2324 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2325 {
2326 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2327 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2328 }
2329 }
2330 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2331 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2332 )))
2333 #endif
2334
2335 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2336 #if GIMPLE
2337 (for op (plus minus)
2338 (simplify
2339 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2340 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2341 && TREE_CODE (type) == INTEGER_TYPE
2342 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2343 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2344 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2345 && TYPE_OVERFLOW_WRAPS (type))
2346 (plus (convert @0) (op @2 (convert @1))))))
2347 #endif
2348
2349 /* ~A + A -> -1 */
2350 (simplify
2351 (plus:c (bit_not @0) @0)
2352 (if (!TYPE_OVERFLOW_TRAPS (type))
2353 { build_all_ones_cst (type); }))
2354
2355 /* ~A + 1 -> -A */
2356 (simplify
2357 (plus (convert? (bit_not @0)) integer_each_onep)
2358 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2359 (negate (convert @0))))
2360
2361 /* -A - 1 -> ~A */
2362 (simplify
2363 (minus (convert? (negate @0)) integer_each_onep)
2364 (if (!TYPE_OVERFLOW_TRAPS (type)
2365 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2366 (bit_not (convert @0))))
2367
2368 /* -1 - A -> ~A */
2369 (simplify
2370 (minus integer_all_onesp @0)
2371 (bit_not @0))
2372
2373 /* (T)(P + A) - (T)P -> (T) A */
2374 (simplify
2375 (minus (convert (plus:c @@0 @1))
2376 (convert? @0))
2377 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2378 /* For integer types, if A has a smaller type
2379 than T the result depends on the possible
2380 overflow in P + A.
2381 E.g. T=size_t, A=(unsigned)429497295, P>0.
2382 However, if an overflow in P + A would cause
2383 undefined behavior, we can assume that there
2384 is no overflow. */
2385 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2386 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2387 (convert @1)))
2388 (simplify
2389 (minus (convert (pointer_plus @@0 @1))
2390 (convert @0))
2391 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2392 /* For pointer types, if the conversion of A to the
2393 final type requires a sign- or zero-extension,
2394 then we have to punt - it is not defined which
2395 one is correct. */
2396 || (POINTER_TYPE_P (TREE_TYPE (@0))
2397 && TREE_CODE (@1) == INTEGER_CST
2398 && tree_int_cst_sign_bit (@1) == 0))
2399 (convert @1)))
2400 (simplify
2401 (pointer_diff (pointer_plus @@0 @1) @0)
2402 /* The second argument of pointer_plus must be interpreted as signed, and
2403 thus sign-extended if necessary. */
2404 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2405 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2406 second arg is unsigned even when we need to consider it as signed,
2407 we don't want to diagnose overflow here. */
2408 (convert (view_convert:stype @1))))
2409
2410 /* (T)P - (T)(P + A) -> -(T) A */
2411 (simplify
2412 (minus (convert? @0)
2413 (convert (plus:c @@0 @1)))
2414 (if (INTEGRAL_TYPE_P (type)
2415 && TYPE_OVERFLOW_UNDEFINED (type)
2416 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2417 (with { tree utype = unsigned_type_for (type); }
2418 (convert (negate (convert:utype @1))))
2419 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2420 /* For integer types, if A has a smaller type
2421 than T the result depends on the possible
2422 overflow in P + A.
2423 E.g. T=size_t, A=(unsigned)429497295, P>0.
2424 However, if an overflow in P + A would cause
2425 undefined behavior, we can assume that there
2426 is no overflow. */
2427 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2428 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2429 (negate (convert @1)))))
2430 (simplify
2431 (minus (convert @0)
2432 (convert (pointer_plus @@0 @1)))
2433 (if (INTEGRAL_TYPE_P (type)
2434 && TYPE_OVERFLOW_UNDEFINED (type)
2435 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2436 (with { tree utype = unsigned_type_for (type); }
2437 (convert (negate (convert:utype @1))))
2438 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2439 /* For pointer types, if the conversion of A to the
2440 final type requires a sign- or zero-extension,
2441 then we have to punt - it is not defined which
2442 one is correct. */
2443 || (POINTER_TYPE_P (TREE_TYPE (@0))
2444 && TREE_CODE (@1) == INTEGER_CST
2445 && tree_int_cst_sign_bit (@1) == 0))
2446 (negate (convert @1)))))
2447 (simplify
2448 (pointer_diff @0 (pointer_plus @@0 @1))
2449 /* The second argument of pointer_plus must be interpreted as signed, and
2450 thus sign-extended if necessary. */
2451 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2452 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2453 second arg is unsigned even when we need to consider it as signed,
2454 we don't want to diagnose overflow here. */
2455 (negate (convert (view_convert:stype @1)))))
2456
2457 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2458 (simplify
2459 (minus (convert (plus:c @@0 @1))
2460 (convert (plus:c @0 @2)))
2461 (if (INTEGRAL_TYPE_P (type)
2462 && TYPE_OVERFLOW_UNDEFINED (type)
2463 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2464 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2465 (with { tree utype = unsigned_type_for (type); }
2466 (convert (minus (convert:utype @1) (convert:utype @2))))
2467 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2468 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2469 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2470 /* For integer types, if A has a smaller type
2471 than T the result depends on the possible
2472 overflow in P + A.
2473 E.g. T=size_t, A=(unsigned)429497295, P>0.
2474 However, if an overflow in P + A would cause
2475 undefined behavior, we can assume that there
2476 is no overflow. */
2477 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2478 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2479 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2480 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2481 (minus (convert @1) (convert @2)))))
2482 (simplify
2483 (minus (convert (pointer_plus @@0 @1))
2484 (convert (pointer_plus @0 @2)))
2485 (if (INTEGRAL_TYPE_P (type)
2486 && TYPE_OVERFLOW_UNDEFINED (type)
2487 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2488 (with { tree utype = unsigned_type_for (type); }
2489 (convert (minus (convert:utype @1) (convert:utype @2))))
2490 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2491 /* For pointer types, if the conversion of A to the
2492 final type requires a sign- or zero-extension,
2493 then we have to punt - it is not defined which
2494 one is correct. */
2495 || (POINTER_TYPE_P (TREE_TYPE (@0))
2496 && TREE_CODE (@1) == INTEGER_CST
2497 && tree_int_cst_sign_bit (@1) == 0
2498 && TREE_CODE (@2) == INTEGER_CST
2499 && tree_int_cst_sign_bit (@2) == 0))
2500 (minus (convert @1) (convert @2)))))
2501 (simplify
2502 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2503 /* The second argument of pointer_plus must be interpreted as signed, and
2504 thus sign-extended if necessary. */
2505 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2506 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2507 second arg is unsigned even when we need to consider it as signed,
2508 we don't want to diagnose overflow here. */
2509 (minus (convert (view_convert:stype @1))
2510 (convert (view_convert:stype @2)))))))
2511
2512 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2513 Modeled after fold_plusminus_mult_expr. */
2514 (if (!TYPE_SATURATING (type)
2515 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2516 (for plusminus (plus minus)
2517 (simplify
2518 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2519 (if ((!ANY_INTEGRAL_TYPE_P (type)
2520 || TYPE_OVERFLOW_WRAPS (type)
2521 || (INTEGRAL_TYPE_P (type)
2522 && tree_expr_nonzero_p (@0)
2523 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2524 /* If @1 +- @2 is constant require a hard single-use on either
2525 original operand (but not on both). */
2526 && (single_use (@3) || single_use (@4)))
2527 (mult (plusminus @1 @2) @0)))
2528 /* We cannot generate constant 1 for fract. */
2529 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2530 (simplify
2531 (plusminus @0 (mult:c@3 @0 @2))
2532 (if ((!ANY_INTEGRAL_TYPE_P (type)
2533 || TYPE_OVERFLOW_WRAPS (type)
2534 /* For @0 + @0*@2 this transformation would introduce UB
2535 (where there was none before) for @0 in [-1,0] and @2 max.
2536 For @0 - @0*@2 this transformation would introduce UB
2537 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2538 || (INTEGRAL_TYPE_P (type)
2539 && ((tree_expr_nonzero_p (@0)
2540 && expr_not_equal_to (@0,
2541 wi::minus_one (TYPE_PRECISION (type))))
2542 || (plusminus == PLUS_EXPR
2543 ? expr_not_equal_to (@2,
2544 wi::max_value (TYPE_PRECISION (type), SIGNED))
2545 /* Let's ignore the @0 -1 and @2 min case. */
2546 : (expr_not_equal_to (@2,
2547 wi::min_value (TYPE_PRECISION (type), SIGNED))
2548 && expr_not_equal_to (@2,
2549 wi::min_value (TYPE_PRECISION (type), SIGNED)
2550 + 1))))))
2551 && single_use (@3))
2552 (mult (plusminus { build_one_cst (type); } @2) @0)))
2553 (simplify
2554 (plusminus (mult:c@3 @0 @2) @0)
2555 (if ((!ANY_INTEGRAL_TYPE_P (type)
2556 || TYPE_OVERFLOW_WRAPS (type)
2557 /* For @0*@2 + @0 this transformation would introduce UB
2558 (where there was none before) for @0 in [-1,0] and @2 max.
2559 For @0*@2 - @0 this transformation would introduce UB
2560 for @0 0 and @2 min. */
2561 || (INTEGRAL_TYPE_P (type)
2562 && ((tree_expr_nonzero_p (@0)
2563 && (plusminus == MINUS_EXPR
2564 || expr_not_equal_to (@0,
2565 wi::minus_one (TYPE_PRECISION (type)))))
2566 || expr_not_equal_to (@2,
2567 (plusminus == PLUS_EXPR
2568 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2569 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2570 && single_use (@3))
2571 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2572
2573 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2574
2575 (for minmax (min max FMIN_ALL FMAX_ALL)
2576 (simplify
2577 (minmax @0 @0)
2578 @0))
2579 /* min(max(x,y),y) -> y. */
2580 (simplify
2581 (min:c (max:c @0 @1) @1)
2582 @1)
2583 /* max(min(x,y),y) -> y. */
2584 (simplify
2585 (max:c (min:c @0 @1) @1)
2586 @1)
2587 /* max(a,-a) -> abs(a). */
2588 (simplify
2589 (max:c @0 (negate @0))
2590 (if (TREE_CODE (type) != COMPLEX_TYPE
2591 && (! ANY_INTEGRAL_TYPE_P (type)
2592 || TYPE_OVERFLOW_UNDEFINED (type)))
2593 (abs @0)))
2594 /* min(a,-a) -> -abs(a). */
2595 (simplify
2596 (min:c @0 (negate @0))
2597 (if (TREE_CODE (type) != COMPLEX_TYPE
2598 && (! ANY_INTEGRAL_TYPE_P (type)
2599 || TYPE_OVERFLOW_UNDEFINED (type)))
2600 (negate (abs @0))))
2601 (simplify
2602 (min @0 @1)
2603 (switch
2604 (if (INTEGRAL_TYPE_P (type)
2605 && TYPE_MIN_VALUE (type)
2606 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2607 @1)
2608 (if (INTEGRAL_TYPE_P (type)
2609 && TYPE_MAX_VALUE (type)
2610 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2611 @0)))
2612 (simplify
2613 (max @0 @1)
2614 (switch
2615 (if (INTEGRAL_TYPE_P (type)
2616 && TYPE_MAX_VALUE (type)
2617 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2618 @1)
2619 (if (INTEGRAL_TYPE_P (type)
2620 && TYPE_MIN_VALUE (type)
2621 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2622 @0)))
2623
2624 /* max (a, a + CST) -> a + CST where CST is positive. */
2625 /* max (a, a + CST) -> a where CST is negative. */
2626 (simplify
2627 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2628 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2629 (if (tree_int_cst_sgn (@1) > 0)
2630 @2
2631 @0)))
2632
2633 /* min (a, a + CST) -> a where CST is positive. */
2634 /* min (a, a + CST) -> a + CST where CST is negative. */
2635 (simplify
2636 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2637 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2638 (if (tree_int_cst_sgn (@1) > 0)
2639 @0
2640 @2)))
2641
2642 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2643 and the outer convert demotes the expression back to x's type. */
2644 (for minmax (min max)
2645 (simplify
2646 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2647 (if (INTEGRAL_TYPE_P (type)
2648 && types_match (@1, type) && int_fits_type_p (@2, type)
2649 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2650 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2651 (minmax @1 (convert @2)))))
2652
2653 (for minmax (FMIN_ALL FMAX_ALL)
2654 /* If either argument is NaN, return the other one. Avoid the
2655 transformation if we get (and honor) a signalling NaN. */
2656 (simplify
2657 (minmax:c @0 REAL_CST@1)
2658 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2659 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2660 @0)))
2661 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2662 functions to return the numeric arg if the other one is NaN.
2663 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2664 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2665 worry about it either. */
2666 (if (flag_finite_math_only)
2667 (simplify
2668 (FMIN_ALL @0 @1)
2669 (min @0 @1))
2670 (simplify
2671 (FMAX_ALL @0 @1)
2672 (max @0 @1)))
2673 /* min (-A, -B) -> -max (A, B) */
2674 (for minmax (min max FMIN_ALL FMAX_ALL)
2675 maxmin (max min FMAX_ALL FMIN_ALL)
2676 (simplify
2677 (minmax (negate:s@2 @0) (negate:s@3 @1))
2678 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2679 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2680 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2681 (negate (maxmin @0 @1)))))
2682 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2683 MAX (~X, ~Y) -> ~MIN (X, Y) */
2684 (for minmax (min max)
2685 maxmin (max min)
2686 (simplify
2687 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2688 (bit_not (maxmin @0 @1))))
2689
2690 /* MIN (X, Y) == X -> X <= Y */
2691 (for minmax (min min max max)
2692 cmp (eq ne eq ne )
2693 out (le gt ge lt )
2694 (simplify
2695 (cmp:c (minmax:c @0 @1) @0)
2696 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2697 (out @0 @1))))
2698 /* MIN (X, 5) == 0 -> X == 0
2699 MIN (X, 5) == 7 -> false */
2700 (for cmp (eq ne)
2701 (simplify
2702 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2703 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2704 TYPE_SIGN (TREE_TYPE (@0))))
2705 { constant_boolean_node (cmp == NE_EXPR, type); }
2706 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2707 TYPE_SIGN (TREE_TYPE (@0))))
2708 (cmp @0 @2)))))
2709 (for cmp (eq ne)
2710 (simplify
2711 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2712 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2713 TYPE_SIGN (TREE_TYPE (@0))))
2714 { constant_boolean_node (cmp == NE_EXPR, type); }
2715 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2716 TYPE_SIGN (TREE_TYPE (@0))))
2717 (cmp @0 @2)))))
2718 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2719 (for minmax (min min max max min min max max )
2720 cmp (lt le gt ge gt ge lt le )
2721 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2722 (simplify
2723 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2724 (comb (cmp @0 @2) (cmp @1 @2))))
2725
2726 /* Undo fancy way of writing max/min or other ?: expressions,
2727 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2728 People normally use ?: and that is what we actually try to optimize. */
2729 (for cmp (simple_comparison)
2730 (simplify
2731 (minus @0 (bit_and:c (minus @0 @1)
2732 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2733 (if (INTEGRAL_TYPE_P (type)
2734 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2735 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2736 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2737 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2738 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2739 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2740 (cond (cmp @2 @3) @1 @0)))
2741 (simplify
2742 (plus:c @0 (bit_and:c (minus @1 @0)
2743 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2744 (if (INTEGRAL_TYPE_P (type)
2745 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2746 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2747 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2748 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2749 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2750 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2751 (cond (cmp @2 @3) @1 @0))))
2752
2753 /* Simplifications of shift and rotates. */
2754
2755 (for rotate (lrotate rrotate)
2756 (simplify
2757 (rotate integer_all_onesp@0 @1)
2758 @0))
2759
2760 /* Optimize -1 >> x for arithmetic right shifts. */
2761 (simplify
2762 (rshift integer_all_onesp@0 @1)
2763 (if (!TYPE_UNSIGNED (type)
2764 && tree_expr_nonnegative_p (@1))
2765 @0))
2766
2767 /* Optimize (x >> c) << c into x & (-1<<c). */
2768 (simplify
2769 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2770 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2771 /* It doesn't matter if the right shift is arithmetic or logical. */
2772 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2773
2774 (simplify
2775 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2776 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2777 /* Allow intermediate conversion to integral type with whatever sign, as
2778 long as the low TYPE_PRECISION (type)
2779 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
2780 && INTEGRAL_TYPE_P (type)
2781 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2782 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2783 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2784 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2785 || wi::geu_p (wi::to_wide (@1),
2786 TYPE_PRECISION (type)
2787 - TYPE_PRECISION (TREE_TYPE (@2)))))
2788 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2789
2790 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2791 types. */
2792 (simplify
2793 (rshift (lshift @0 INTEGER_CST@1) @1)
2794 (if (TYPE_UNSIGNED (type)
2795 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2796 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2797
2798 (for shiftrotate (lrotate rrotate lshift rshift)
2799 (simplify
2800 (shiftrotate @0 integer_zerop)
2801 (non_lvalue @0))
2802 (simplify
2803 (shiftrotate integer_zerop@0 @1)
2804 @0)
2805 /* Prefer vector1 << scalar to vector1 << vector2
2806 if vector2 is uniform. */
2807 (for vec (VECTOR_CST CONSTRUCTOR)
2808 (simplify
2809 (shiftrotate @0 vec@1)
2810 (with { tree tem = uniform_vector_p (@1); }
2811 (if (tem)
2812 (shiftrotate @0 { tem; }))))))
2813
2814 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2815 Y is 0. Similarly for X >> Y. */
2816 #if GIMPLE
2817 (for shift (lshift rshift)
2818 (simplify
2819 (shift @0 SSA_NAME@1)
2820 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2821 (with {
2822 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2823 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2824 }
2825 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2826 @0)))))
2827 #endif
2828
2829 /* Rewrite an LROTATE_EXPR by a constant into an
2830 RROTATE_EXPR by a new constant. */
2831 (simplify
2832 (lrotate @0 INTEGER_CST@1)
2833 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2834 build_int_cst (TREE_TYPE (@1),
2835 element_precision (type)), @1); }))
2836
2837 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2838 (for op (lrotate rrotate rshift lshift)
2839 (simplify
2840 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2841 (with { unsigned int prec = element_precision (type); }
2842 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2843 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2844 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2845 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2846 (with { unsigned int low = (tree_to_uhwi (@1)
2847 + tree_to_uhwi (@2)); }
2848 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2849 being well defined. */
2850 (if (low >= prec)
2851 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2852 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2853 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2854 { build_zero_cst (type); }
2855 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2856 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2857
2858
2859 /* ((1 << A) & 1) != 0 -> A == 0
2860 ((1 << A) & 1) == 0 -> A != 0 */
2861 (for cmp (ne eq)
2862 icmp (eq ne)
2863 (simplify
2864 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2865 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2866
2867 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2868 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2869 if CST2 != 0. */
2870 (for cmp (ne eq)
2871 (simplify
2872 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2873 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2874 (if (cand < 0
2875 || (!integer_zerop (@2)
2876 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2877 { constant_boolean_node (cmp == NE_EXPR, type); }
2878 (if (!integer_zerop (@2)
2879 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2880 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2881
2882 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2883 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2884 if the new mask might be further optimized. */
2885 (for shift (lshift rshift)
2886 (simplify
2887 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2888 INTEGER_CST@2)
2889 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2890 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2891 && tree_fits_uhwi_p (@1)
2892 && tree_to_uhwi (@1) > 0
2893 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2894 (with
2895 {
2896 unsigned int shiftc = tree_to_uhwi (@1);
2897 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2898 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2899 tree shift_type = TREE_TYPE (@3);
2900 unsigned int prec;
2901
2902 if (shift == LSHIFT_EXPR)
2903 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2904 else if (shift == RSHIFT_EXPR
2905 && type_has_mode_precision_p (shift_type))
2906 {
2907 prec = TYPE_PRECISION (TREE_TYPE (@3));
2908 tree arg00 = @0;
2909 /* See if more bits can be proven as zero because of
2910 zero extension. */
2911 if (@3 != @0
2912 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2913 {
2914 tree inner_type = TREE_TYPE (@0);
2915 if (type_has_mode_precision_p (inner_type)
2916 && TYPE_PRECISION (inner_type) < prec)
2917 {
2918 prec = TYPE_PRECISION (inner_type);
2919 /* See if we can shorten the right shift. */
2920 if (shiftc < prec)
2921 shift_type = inner_type;
2922 /* Otherwise X >> C1 is all zeros, so we'll optimize
2923 it into (X, 0) later on by making sure zerobits
2924 is all ones. */
2925 }
2926 }
2927 zerobits = HOST_WIDE_INT_M1U;
2928 if (shiftc < prec)
2929 {
2930 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2931 zerobits <<= prec - shiftc;
2932 }
2933 /* For arithmetic shift if sign bit could be set, zerobits
2934 can contain actually sign bits, so no transformation is
2935 possible, unless MASK masks them all away. In that
2936 case the shift needs to be converted into logical shift. */
2937 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2938 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2939 {
2940 if ((mask & zerobits) == 0)
2941 shift_type = unsigned_type_for (TREE_TYPE (@3));
2942 else
2943 zerobits = 0;
2944 }
2945 }
2946 }
2947 /* ((X << 16) & 0xff00) is (X, 0). */
2948 (if ((mask & zerobits) == mask)
2949 { build_int_cst (type, 0); }
2950 (with { newmask = mask | zerobits; }
2951 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2952 (with
2953 {
2954 /* Only do the transformation if NEWMASK is some integer
2955 mode's mask. */
2956 for (prec = BITS_PER_UNIT;
2957 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2958 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2959 break;
2960 }
2961 (if (prec < HOST_BITS_PER_WIDE_INT
2962 || newmask == HOST_WIDE_INT_M1U)
2963 (with
2964 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2965 (if (!tree_int_cst_equal (newmaskt, @2))
2966 (if (shift_type != TREE_TYPE (@3))
2967 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2968 (bit_and @4 { newmaskt; })))))))))))))
2969
2970 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2971 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2972 (for shift (lshift rshift)
2973 (for bit_op (bit_and bit_xor bit_ior)
2974 (simplify
2975 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2976 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2977 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2978 (bit_op (shift (convert @0) @1) { mask; }))))))
2979
2980 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2981 (simplify
2982 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2983 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2984 && (element_precision (TREE_TYPE (@0))
2985 <= element_precision (TREE_TYPE (@1))
2986 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2987 (with
2988 { tree shift_type = TREE_TYPE (@0); }
2989 (convert (rshift (convert:shift_type @1) @2)))))
2990
2991 /* ~(~X >>r Y) -> X >>r Y
2992 ~(~X <<r Y) -> X <<r Y */
2993 (for rotate (lrotate rrotate)
2994 (simplify
2995 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2996 (if ((element_precision (TREE_TYPE (@0))
2997 <= element_precision (TREE_TYPE (@1))
2998 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2999 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3000 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3001 (with
3002 { tree rotate_type = TREE_TYPE (@0); }
3003 (convert (rotate (convert:rotate_type @1) @2))))))
3004
3005 /* Simplifications of conversions. */
3006
3007 /* Basic strip-useless-type-conversions / strip_nops. */
3008 (for cvt (convert view_convert float fix_trunc)
3009 (simplify
3010 (cvt @0)
3011 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3012 || (GENERIC && type == TREE_TYPE (@0)))
3013 @0)))
3014
3015 /* Contract view-conversions. */
3016 (simplify
3017 (view_convert (view_convert @0))
3018 (view_convert @0))
3019
3020 /* For integral conversions with the same precision or pointer
3021 conversions use a NOP_EXPR instead. */
3022 (simplify
3023 (view_convert @0)
3024 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3025 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3026 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3027 (convert @0)))
3028
3029 /* Strip inner integral conversions that do not change precision or size, or
3030 zero-extend while keeping the same size (for bool-to-char). */
3031 (simplify
3032 (view_convert (convert@0 @1))
3033 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3034 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3035 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3036 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3037 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3038 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3039 (view_convert @1)))
3040
3041 /* Simplify a view-converted empty constructor. */
3042 (simplify
3043 (view_convert CONSTRUCTOR@0)
3044 (if (TREE_CODE (@0) != SSA_NAME
3045 && CONSTRUCTOR_NELTS (@0) == 0)
3046 { build_zero_cst (type); }))
3047
3048 /* Re-association barriers around constants and other re-association
3049 barriers can be removed. */
3050 (simplify
3051 (paren CONSTANT_CLASS_P@0)
3052 @0)
3053 (simplify
3054 (paren (paren@1 @0))
3055 @1)
3056
3057 /* Handle cases of two conversions in a row. */
3058 (for ocvt (convert float fix_trunc)
3059 (for icvt (convert float)
3060 (simplify
3061 (ocvt (icvt@1 @0))
3062 (with
3063 {
3064 tree inside_type = TREE_TYPE (@0);
3065 tree inter_type = TREE_TYPE (@1);
3066 int inside_int = INTEGRAL_TYPE_P (inside_type);
3067 int inside_ptr = POINTER_TYPE_P (inside_type);
3068 int inside_float = FLOAT_TYPE_P (inside_type);
3069 int inside_vec = VECTOR_TYPE_P (inside_type);
3070 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3071 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3072 int inter_int = INTEGRAL_TYPE_P (inter_type);
3073 int inter_ptr = POINTER_TYPE_P (inter_type);
3074 int inter_float = FLOAT_TYPE_P (inter_type);
3075 int inter_vec = VECTOR_TYPE_P (inter_type);
3076 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3077 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3078 int final_int = INTEGRAL_TYPE_P (type);
3079 int final_ptr = POINTER_TYPE_P (type);
3080 int final_float = FLOAT_TYPE_P (type);
3081 int final_vec = VECTOR_TYPE_P (type);
3082 unsigned int final_prec = TYPE_PRECISION (type);
3083 int final_unsignedp = TYPE_UNSIGNED (type);
3084 }
3085 (switch
3086 /* In addition to the cases of two conversions in a row
3087 handled below, if we are converting something to its own
3088 type via an object of identical or wider precision, neither
3089 conversion is needed. */
3090 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3091 || (GENERIC
3092 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3093 && (((inter_int || inter_ptr) && final_int)
3094 || (inter_float && final_float))
3095 && inter_prec >= final_prec)
3096 (ocvt @0))
3097
3098 /* Likewise, if the intermediate and initial types are either both
3099 float or both integer, we don't need the middle conversion if the
3100 former is wider than the latter and doesn't change the signedness
3101 (for integers). Avoid this if the final type is a pointer since
3102 then we sometimes need the middle conversion. */
3103 (if (((inter_int && inside_int) || (inter_float && inside_float))
3104 && (final_int || final_float)
3105 && inter_prec >= inside_prec
3106 && (inter_float || inter_unsignedp == inside_unsignedp))
3107 (ocvt @0))
3108
3109 /* If we have a sign-extension of a zero-extended value, we can
3110 replace that by a single zero-extension. Likewise if the
3111 final conversion does not change precision we can drop the
3112 intermediate conversion. */
3113 (if (inside_int && inter_int && final_int
3114 && ((inside_prec < inter_prec && inter_prec < final_prec
3115 && inside_unsignedp && !inter_unsignedp)
3116 || final_prec == inter_prec))
3117 (ocvt @0))
3118
3119 /* Two conversions in a row are not needed unless:
3120 - some conversion is floating-point (overstrict for now), or
3121 - some conversion is a vector (overstrict for now), or
3122 - the intermediate type is narrower than both initial and
3123 final, or
3124 - the intermediate type and innermost type differ in signedness,
3125 and the outermost type is wider than the intermediate, or
3126 - the initial type is a pointer type and the precisions of the
3127 intermediate and final types differ, or
3128 - the final type is a pointer type and the precisions of the
3129 initial and intermediate types differ. */
3130 (if (! inside_float && ! inter_float && ! final_float
3131 && ! inside_vec && ! inter_vec && ! final_vec
3132 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3133 && ! (inside_int && inter_int
3134 && inter_unsignedp != inside_unsignedp
3135 && inter_prec < final_prec)
3136 && ((inter_unsignedp && inter_prec > inside_prec)
3137 == (final_unsignedp && final_prec > inter_prec))
3138 && ! (inside_ptr && inter_prec != final_prec)
3139 && ! (final_ptr && inside_prec != inter_prec))
3140 (ocvt @0))
3141
3142 /* A truncation to an unsigned type (a zero-extension) should be
3143 canonicalized as bitwise and of a mask. */
3144 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3145 && final_int && inter_int && inside_int
3146 && final_prec == inside_prec
3147 && final_prec > inter_prec
3148 && inter_unsignedp)
3149 (convert (bit_and @0 { wide_int_to_tree
3150 (inside_type,
3151 wi::mask (inter_prec, false,
3152 TYPE_PRECISION (inside_type))); })))
3153
3154 /* If we are converting an integer to a floating-point that can
3155 represent it exactly and back to an integer, we can skip the
3156 floating-point conversion. */
3157 (if (GIMPLE /* PR66211 */
3158 && inside_int && inter_float && final_int &&
3159 (unsigned) significand_size (TYPE_MODE (inter_type))
3160 >= inside_prec - !inside_unsignedp)
3161 (convert @0)))))))
3162
3163 /* If we have a narrowing conversion to an integral type that is fed by a
3164 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3165 masks off bits outside the final type (and nothing else). */
3166 (simplify
3167 (convert (bit_and @0 INTEGER_CST@1))
3168 (if (INTEGRAL_TYPE_P (type)
3169 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3170 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3171 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3172 TYPE_PRECISION (type)), 0))
3173 (convert @0)))
3174
3175
3176 /* (X /[ex] A) * A -> X. */
3177 (simplify
3178 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3179 (convert @0))
3180
3181 /* Simplify (A / B) * B + (A % B) -> A. */
3182 (for div (trunc_div ceil_div floor_div round_div)
3183 mod (trunc_mod ceil_mod floor_mod round_mod)
3184 (simplify
3185 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3186 @0))
3187
3188 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3189 (for op (plus minus)
3190 (simplify
3191 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3192 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3193 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3194 (with
3195 {
3196 wi::overflow_type overflow;
3197 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3198 TYPE_SIGN (type), &overflow);
3199 }
3200 (if (types_match (type, TREE_TYPE (@2))
3201 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3202 (op @0 { wide_int_to_tree (type, mul); })
3203 (with { tree utype = unsigned_type_for (type); }
3204 (convert (op (convert:utype @0)
3205 (mult (convert:utype @1) (convert:utype @2))))))))))
3206
3207 /* Canonicalization of binary operations. */
3208
3209 /* Convert X + -C into X - C. */
3210 (simplify
3211 (plus @0 REAL_CST@1)
3212 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3213 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3214 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3215 (minus @0 { tem; })))))
3216
3217 /* Convert x+x into x*2. */
3218 (simplify
3219 (plus @0 @0)
3220 (if (SCALAR_FLOAT_TYPE_P (type))
3221 (mult @0 { build_real (type, dconst2); })
3222 (if (INTEGRAL_TYPE_P (type))
3223 (mult @0 { build_int_cst (type, 2); }))))
3224
3225 /* 0 - X -> -X. */
3226 (simplify
3227 (minus integer_zerop @1)
3228 (negate @1))
3229 (simplify
3230 (pointer_diff integer_zerop @1)
3231 (negate (convert @1)))
3232
3233 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3234 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3235 (-ARG1 + ARG0) reduces to -ARG1. */
3236 (simplify
3237 (minus real_zerop@0 @1)
3238 (if (fold_real_zero_addition_p (type, @0, 0))
3239 (negate @1)))
3240
3241 /* Transform x * -1 into -x. */
3242 (simplify
3243 (mult @0 integer_minus_onep)
3244 (negate @0))
3245
3246 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3247 signed overflow for CST != 0 && CST != -1. */
3248 (simplify
3249 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3250 (if (TREE_CODE (@2) != INTEGER_CST
3251 && single_use (@3)
3252 && !integer_zerop (@1) && !integer_minus_onep (@1))
3253 (mult (mult @0 @2) @1)))
3254
3255 /* True if we can easily extract the real and imaginary parts of a complex
3256 number. */
3257 (match compositional_complex
3258 (convert? (complex @0 @1)))
3259
3260 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3261 (simplify
3262 (complex (realpart @0) (imagpart @0))
3263 @0)
3264 (simplify
3265 (realpart (complex @0 @1))
3266 @0)
3267 (simplify
3268 (imagpart (complex @0 @1))
3269 @1)
3270
3271 /* Sometimes we only care about half of a complex expression. */
3272 (simplify
3273 (realpart (convert?:s (conj:s @0)))
3274 (convert (realpart @0)))
3275 (simplify
3276 (imagpart (convert?:s (conj:s @0)))
3277 (convert (negate (imagpart @0))))
3278 (for part (realpart imagpart)
3279 (for op (plus minus)
3280 (simplify
3281 (part (convert?:s@2 (op:s @0 @1)))
3282 (convert (op (part @0) (part @1))))))
3283 (simplify
3284 (realpart (convert?:s (CEXPI:s @0)))
3285 (convert (COS @0)))
3286 (simplify
3287 (imagpart (convert?:s (CEXPI:s @0)))
3288 (convert (SIN @0)))
3289
3290 /* conj(conj(x)) -> x */
3291 (simplify
3292 (conj (convert? (conj @0)))
3293 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3294 (convert @0)))
3295
3296 /* conj({x,y}) -> {x,-y} */
3297 (simplify
3298 (conj (convert?:s (complex:s @0 @1)))
3299 (with { tree itype = TREE_TYPE (type); }
3300 (complex (convert:itype @0) (negate (convert:itype @1)))))
3301
3302 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3303 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3304 (simplify
3305 (bswap (bswap @0))
3306 @0)
3307 (simplify
3308 (bswap (bit_not (bswap @0)))
3309 (bit_not @0))
3310 (for bitop (bit_xor bit_ior bit_and)
3311 (simplify
3312 (bswap (bitop:c (bswap @0) @1))
3313 (bitop @0 (bswap @1)))))
3314
3315
3316 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3317
3318 /* Simplify constant conditions.
3319 Only optimize constant conditions when the selected branch
3320 has the same type as the COND_EXPR. This avoids optimizing
3321 away "c ? x : throw", where the throw has a void type.
3322 Note that we cannot throw away the fold-const.c variant nor
3323 this one as we depend on doing this transform before possibly
3324 A ? B : B -> B triggers and the fold-const.c one can optimize
3325 0 ? A : B to B even if A has side-effects. Something
3326 genmatch cannot handle. */
3327 (simplify
3328 (cond INTEGER_CST@0 @1 @2)
3329 (if (integer_zerop (@0))
3330 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3331 @2)
3332 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3333 @1)))
3334 (simplify
3335 (vec_cond VECTOR_CST@0 @1 @2)
3336 (if (integer_all_onesp (@0))
3337 @1
3338 (if (integer_zerop (@0))
3339 @2)))
3340
3341 /* Sink unary operations to constant branches, but only if we do fold it to
3342 constants. */
3343 (for op (negate bit_not abs absu)
3344 (simplify
3345 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3346 (with
3347 {
3348 tree cst1, cst2;
3349 cst1 = const_unop (op, type, @1);
3350 if (cst1)
3351 cst2 = const_unop (op, type, @2);
3352 }
3353 (if (cst1 && cst2)
3354 (vec_cond @0 { cst1; } { cst2; })))))
3355
3356 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3357 be extended. */
3358 /* This pattern implements two kinds simplification:
3359
3360 Case 1)
3361 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3362 1) Conversions are type widening from smaller type.
3363 2) Const c1 equals to c2 after canonicalizing comparison.
3364 3) Comparison has tree code LT, LE, GT or GE.
3365 This specific pattern is needed when (cmp (convert x) c) may not
3366 be simplified by comparison patterns because of multiple uses of
3367 x. It also makes sense here because simplifying across multiple
3368 referred var is always benefitial for complicated cases.
3369
3370 Case 2)
3371 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3372 (for cmp (lt le gt ge eq)
3373 (simplify
3374 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3375 (with
3376 {
3377 tree from_type = TREE_TYPE (@1);
3378 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3379 enum tree_code code = ERROR_MARK;
3380
3381 if (INTEGRAL_TYPE_P (from_type)
3382 && int_fits_type_p (@2, from_type)
3383 && (types_match (c1_type, from_type)
3384 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3385 && (TYPE_UNSIGNED (from_type)
3386 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3387 && (types_match (c2_type, from_type)
3388 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3389 && (TYPE_UNSIGNED (from_type)
3390 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3391 {
3392 if (cmp != EQ_EXPR)
3393 {
3394 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3395 {
3396 /* X <= Y - 1 equals to X < Y. */
3397 if (cmp == LE_EXPR)
3398 code = LT_EXPR;
3399 /* X > Y - 1 equals to X >= Y. */
3400 if (cmp == GT_EXPR)
3401 code = GE_EXPR;
3402 }
3403 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3404 {
3405 /* X < Y + 1 equals to X <= Y. */
3406 if (cmp == LT_EXPR)
3407 code = LE_EXPR;
3408 /* X >= Y + 1 equals to X > Y. */
3409 if (cmp == GE_EXPR)
3410 code = GT_EXPR;
3411 }
3412 if (code != ERROR_MARK
3413 || wi::to_widest (@2) == wi::to_widest (@3))
3414 {
3415 if (cmp == LT_EXPR || cmp == LE_EXPR)
3416 code = MIN_EXPR;
3417 if (cmp == GT_EXPR || cmp == GE_EXPR)
3418 code = MAX_EXPR;
3419 }
3420 }
3421 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3422 else if (int_fits_type_p (@3, from_type))
3423 code = EQ_EXPR;
3424 }
3425 }
3426 (if (code == MAX_EXPR)
3427 (convert (max @1 (convert @2)))
3428 (if (code == MIN_EXPR)
3429 (convert (min @1 (convert @2)))
3430 (if (code == EQ_EXPR)
3431 (convert (cond (eq @1 (convert @3))
3432 (convert:from_type @3) (convert:from_type @2)))))))))
3433
3434 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3435
3436 1) OP is PLUS or MINUS.
3437 2) CMP is LT, LE, GT or GE.
3438 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3439
3440 This pattern also handles special cases like:
3441
3442 A) Operand x is a unsigned to signed type conversion and c1 is
3443 integer zero. In this case,
3444 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3445 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3446 B) Const c1 may not equal to (C3 op' C2). In this case we also
3447 check equality for (c1+1) and (c1-1) by adjusting comparison
3448 code.
3449
3450 TODO: Though signed type is handled by this pattern, it cannot be
3451 simplified at the moment because C standard requires additional
3452 type promotion. In order to match&simplify it here, the IR needs
3453 to be cleaned up by other optimizers, i.e, VRP. */
3454 (for op (plus minus)
3455 (for cmp (lt le gt ge)
3456 (simplify
3457 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3458 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3459 (if (types_match (from_type, to_type)
3460 /* Check if it is special case A). */
3461 || (TYPE_UNSIGNED (from_type)
3462 && !TYPE_UNSIGNED (to_type)
3463 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3464 && integer_zerop (@1)
3465 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3466 (with
3467 {
3468 wi::overflow_type overflow = wi::OVF_NONE;
3469 enum tree_code code, cmp_code = cmp;
3470 wide_int real_c1;
3471 wide_int c1 = wi::to_wide (@1);
3472 wide_int c2 = wi::to_wide (@2);
3473 wide_int c3 = wi::to_wide (@3);
3474 signop sgn = TYPE_SIGN (from_type);
3475
3476 /* Handle special case A), given x of unsigned type:
3477 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3478 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3479 if (!types_match (from_type, to_type))
3480 {
3481 if (cmp_code == LT_EXPR)
3482 cmp_code = GT_EXPR;
3483 if (cmp_code == GE_EXPR)
3484 cmp_code = LE_EXPR;
3485 c1 = wi::max_value (to_type);
3486 }
3487 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3488 compute (c3 op' c2) and check if it equals to c1 with op' being
3489 the inverted operator of op. Make sure overflow doesn't happen
3490 if it is undefined. */
3491 if (op == PLUS_EXPR)
3492 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3493 else
3494 real_c1 = wi::add (c3, c2, sgn, &overflow);
3495
3496 code = cmp_code;
3497 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3498 {
3499 /* Check if c1 equals to real_c1. Boundary condition is handled
3500 by adjusting comparison operation if necessary. */
3501 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3502 && !overflow)
3503 {
3504 /* X <= Y - 1 equals to X < Y. */
3505 if (cmp_code == LE_EXPR)
3506 code = LT_EXPR;
3507 /* X > Y - 1 equals to X >= Y. */
3508 if (cmp_code == GT_EXPR)
3509 code = GE_EXPR;
3510 }
3511 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3512 && !overflow)
3513 {
3514 /* X < Y + 1 equals to X <= Y. */
3515 if (cmp_code == LT_EXPR)
3516 code = LE_EXPR;
3517 /* X >= Y + 1 equals to X > Y. */
3518 if (cmp_code == GE_EXPR)
3519 code = GT_EXPR;
3520 }
3521 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3522 {
3523 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3524 code = MIN_EXPR;
3525 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3526 code = MAX_EXPR;
3527 }
3528 }
3529 }
3530 (if (code == MAX_EXPR)
3531 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3532 { wide_int_to_tree (from_type, c2); })
3533 (if (code == MIN_EXPR)
3534 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3535 { wide_int_to_tree (from_type, c2); })))))))))
3536
3537 (for cnd (cond vec_cond)
3538 /* A ? B : (A ? X : C) -> A ? B : C. */
3539 (simplify
3540 (cnd @0 (cnd @0 @1 @2) @3)
3541 (cnd @0 @1 @3))
3542 (simplify
3543 (cnd @0 @1 (cnd @0 @2 @3))
3544 (cnd @0 @1 @3))
3545 /* A ? B : (!A ? C : X) -> A ? B : C. */
3546 /* ??? This matches embedded conditions open-coded because genmatch
3547 would generate matching code for conditions in separate stmts only.
3548 The following is still important to merge then and else arm cases
3549 from if-conversion. */
3550 (simplify
3551 (cnd @0 @1 (cnd @2 @3 @4))
3552 (if (inverse_conditions_p (@0, @2))
3553 (cnd @0 @1 @3)))
3554 (simplify
3555 (cnd @0 (cnd @1 @2 @3) @4)
3556 (if (inverse_conditions_p (@0, @1))
3557 (cnd @0 @3 @4)))
3558
3559 /* A ? B : B -> B. */
3560 (simplify
3561 (cnd @0 @1 @1)
3562 @1)
3563
3564 /* !A ? B : C -> A ? C : B. */
3565 (simplify
3566 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3567 (cnd @0 @2 @1)))
3568
3569 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3570 return all -1 or all 0 results. */
3571 /* ??? We could instead convert all instances of the vec_cond to negate,
3572 but that isn't necessarily a win on its own. */
3573 (simplify
3574 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3575 (if (VECTOR_TYPE_P (type)
3576 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3577 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3578 && (TYPE_MODE (TREE_TYPE (type))
3579 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3580 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3581
3582 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3583 (simplify
3584 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3585 (if (VECTOR_TYPE_P (type)
3586 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3587 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3588 && (TYPE_MODE (TREE_TYPE (type))
3589 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3590 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3591
3592
3593 /* Simplifications of comparisons. */
3594
3595 /* See if we can reduce the magnitude of a constant involved in a
3596 comparison by changing the comparison code. This is a canonicalization
3597 formerly done by maybe_canonicalize_comparison_1. */
3598 (for cmp (le gt)
3599 acmp (lt ge)
3600 (simplify
3601 (cmp @0 uniform_integer_cst_p@1)
3602 (with { tree cst = uniform_integer_cst_p (@1); }
3603 (if (tree_int_cst_sgn (cst) == -1)
3604 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3605 wide_int_to_tree (TREE_TYPE (cst),
3606 wi::to_wide (cst)
3607 + 1)); })))))
3608 (for cmp (ge lt)
3609 acmp (gt le)
3610 (simplify
3611 (cmp @0 uniform_integer_cst_p@1)
3612 (with { tree cst = uniform_integer_cst_p (@1); }
3613 (if (tree_int_cst_sgn (cst) == 1)
3614 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3615 wide_int_to_tree (TREE_TYPE (cst),
3616 wi::to_wide (cst) - 1)); })))))
3617
3618 /* We can simplify a logical negation of a comparison to the
3619 inverted comparison. As we cannot compute an expression
3620 operator using invert_tree_comparison we have to simulate
3621 that with expression code iteration. */
3622 (for cmp (tcc_comparison)
3623 icmp (inverted_tcc_comparison)
3624 ncmp (inverted_tcc_comparison_with_nans)
3625 /* Ideally we'd like to combine the following two patterns
3626 and handle some more cases by using
3627 (logical_inverted_value (cmp @0 @1))
3628 here but for that genmatch would need to "inline" that.
3629 For now implement what forward_propagate_comparison did. */
3630 (simplify
3631 (bit_not (cmp @0 @1))
3632 (if (VECTOR_TYPE_P (type)
3633 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3634 /* Comparison inversion may be impossible for trapping math,
3635 invert_tree_comparison will tell us. But we can't use
3636 a computed operator in the replacement tree thus we have
3637 to play the trick below. */
3638 (with { enum tree_code ic = invert_tree_comparison
3639 (cmp, HONOR_NANS (@0)); }
3640 (if (ic == icmp)
3641 (icmp @0 @1)
3642 (if (ic == ncmp)
3643 (ncmp @0 @1))))))
3644 (simplify
3645 (bit_xor (cmp @0 @1) integer_truep)
3646 (with { enum tree_code ic = invert_tree_comparison
3647 (cmp, HONOR_NANS (@0)); }
3648 (if (ic == icmp)
3649 (icmp @0 @1)
3650 (if (ic == ncmp)
3651 (ncmp @0 @1))))))
3652
3653 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3654 ??? The transformation is valid for the other operators if overflow
3655 is undefined for the type, but performing it here badly interacts
3656 with the transformation in fold_cond_expr_with_comparison which
3657 attempts to synthetize ABS_EXPR. */
3658 (for cmp (eq ne)
3659 (for sub (minus pointer_diff)
3660 (simplify
3661 (cmp (sub@2 @0 @1) integer_zerop)
3662 (if (single_use (@2))
3663 (cmp @0 @1)))))
3664
3665 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3666 signed arithmetic case. That form is created by the compiler
3667 often enough for folding it to be of value. One example is in
3668 computing loop trip counts after Operator Strength Reduction. */
3669 (for cmp (simple_comparison)
3670 scmp (swapped_simple_comparison)
3671 (simplify
3672 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3673 /* Handle unfolded multiplication by zero. */
3674 (if (integer_zerop (@1))
3675 (cmp @1 @2)
3676 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3677 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3678 && single_use (@3))
3679 /* If @1 is negative we swap the sense of the comparison. */
3680 (if (tree_int_cst_sgn (@1) < 0)
3681 (scmp @0 @2)
3682 (cmp @0 @2))))))
3683
3684 /* Simplify comparison of something with itself. For IEEE
3685 floating-point, we can only do some of these simplifications. */
3686 (for cmp (eq ge le)
3687 (simplify
3688 (cmp @0 @0)
3689 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3690 || ! HONOR_NANS (@0))
3691 { constant_boolean_node (true, type); }
3692 (if (cmp != EQ_EXPR)
3693 (eq @0 @0)))))
3694 (for cmp (ne gt lt)
3695 (simplify
3696 (cmp @0 @0)
3697 (if (cmp != NE_EXPR
3698 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3699 || ! HONOR_NANS (@0))
3700 { constant_boolean_node (false, type); })))
3701 (for cmp (unle unge uneq)
3702 (simplify
3703 (cmp @0 @0)
3704 { constant_boolean_node (true, type); }))
3705 (for cmp (unlt ungt)
3706 (simplify
3707 (cmp @0 @0)
3708 (unordered @0 @0)))
3709 (simplify
3710 (ltgt @0 @0)
3711 (if (!flag_trapping_math)
3712 { constant_boolean_node (false, type); }))
3713
3714 /* Fold ~X op ~Y as Y op X. */
3715 (for cmp (simple_comparison)
3716 (simplify
3717 (cmp (bit_not@2 @0) (bit_not@3 @1))
3718 (if (single_use (@2) && single_use (@3))
3719 (cmp @1 @0))))
3720
3721 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3722 (for cmp (simple_comparison)
3723 scmp (swapped_simple_comparison)
3724 (simplify
3725 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3726 (if (single_use (@2)
3727 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3728 (scmp @0 (bit_not @1)))))
3729
3730 (for cmp (simple_comparison)
3731 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3732 (simplify
3733 (cmp (convert@2 @0) (convert? @1))
3734 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3735 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3736 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3737 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3738 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3739 (with
3740 {
3741 tree type1 = TREE_TYPE (@1);
3742 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3743 {
3744 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3745 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3746 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3747 type1 = float_type_node;
3748 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3749 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3750 type1 = double_type_node;
3751 }
3752 tree newtype
3753 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3754 ? TREE_TYPE (@0) : type1);
3755 }
3756 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3757 (cmp (convert:newtype @0) (convert:newtype @1))))))
3758
3759 (simplify
3760 (cmp @0 REAL_CST@1)
3761 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3762 (switch
3763 /* a CMP (-0) -> a CMP 0 */
3764 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3765 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3766 /* x != NaN is always true, other ops are always false. */
3767 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3768 && ! HONOR_SNANS (@1))
3769 { constant_boolean_node (cmp == NE_EXPR, type); })
3770 /* Fold comparisons against infinity. */
3771 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3772 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3773 (with
3774 {
3775 REAL_VALUE_TYPE max;
3776 enum tree_code code = cmp;
3777 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3778 if (neg)
3779 code = swap_tree_comparison (code);
3780 }
3781 (switch
3782 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3783 (if (code == GT_EXPR
3784 && !(HONOR_NANS (@0) && flag_trapping_math))
3785 { constant_boolean_node (false, type); })
3786 (if (code == LE_EXPR)
3787 /* x <= +Inf is always true, if we don't care about NaNs. */
3788 (if (! HONOR_NANS (@0))
3789 { constant_boolean_node (true, type); }
3790 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3791 an "invalid" exception. */
3792 (if (!flag_trapping_math)
3793 (eq @0 @0))))
3794 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3795 for == this introduces an exception for x a NaN. */
3796 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3797 || code == GE_EXPR)
3798 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3799 (if (neg)
3800 (lt @0 { build_real (TREE_TYPE (@0), max); })
3801 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3802 /* x < +Inf is always equal to x <= DBL_MAX. */
3803 (if (code == LT_EXPR)
3804 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3805 (if (neg)
3806 (ge @0 { build_real (TREE_TYPE (@0), max); })
3807 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3808 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3809 an exception for x a NaN so use an unordered comparison. */
3810 (if (code == NE_EXPR)
3811 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3812 (if (! HONOR_NANS (@0))
3813 (if (neg)
3814 (ge @0 { build_real (TREE_TYPE (@0), max); })
3815 (le @0 { build_real (TREE_TYPE (@0), max); }))
3816 (if (neg)
3817 (unge @0 { build_real (TREE_TYPE (@0), max); })
3818 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3819
3820 /* If this is a comparison of a real constant with a PLUS_EXPR
3821 or a MINUS_EXPR of a real constant, we can convert it into a
3822 comparison with a revised real constant as long as no overflow
3823 occurs when unsafe_math_optimizations are enabled. */
3824 (if (flag_unsafe_math_optimizations)
3825 (for op (plus minus)
3826 (simplify
3827 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3828 (with
3829 {
3830 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3831 TREE_TYPE (@1), @2, @1);
3832 }
3833 (if (tem && !TREE_OVERFLOW (tem))
3834 (cmp @0 { tem; }))))))
3835
3836 /* Likewise, we can simplify a comparison of a real constant with
3837 a MINUS_EXPR whose first operand is also a real constant, i.e.
3838 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3839 floating-point types only if -fassociative-math is set. */
3840 (if (flag_associative_math)
3841 (simplify
3842 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3843 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3844 (if (tem && !TREE_OVERFLOW (tem))
3845 (cmp { tem; } @1)))))
3846
3847 /* Fold comparisons against built-in math functions. */
3848 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3849 (for sq (SQRT)
3850 (simplify
3851 (cmp (sq @0) REAL_CST@1)
3852 (switch
3853 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3854 (switch
3855 /* sqrt(x) < y is always false, if y is negative. */
3856 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3857 { constant_boolean_node (false, type); })
3858 /* sqrt(x) > y is always true, if y is negative and we
3859 don't care about NaNs, i.e. negative values of x. */
3860 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3861 { constant_boolean_node (true, type); })
3862 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3863 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3864 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3865 (switch
3866 /* sqrt(x) < 0 is always false. */
3867 (if (cmp == LT_EXPR)
3868 { constant_boolean_node (false, type); })
3869 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3870 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3871 { constant_boolean_node (true, type); })
3872 /* sqrt(x) <= 0 -> x == 0. */
3873 (if (cmp == LE_EXPR)
3874 (eq @0 @1))
3875 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3876 == or !=. In the last case:
3877
3878 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3879
3880 if x is negative or NaN. Due to -funsafe-math-optimizations,
3881 the results for other x follow from natural arithmetic. */
3882 (cmp @0 @1)))
3883 (if ((cmp == LT_EXPR
3884 || cmp == LE_EXPR
3885 || cmp == GT_EXPR
3886 || cmp == GE_EXPR)
3887 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3888 /* Give up for -frounding-math. */
3889 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3890 (with
3891 {
3892 REAL_VALUE_TYPE c2;
3893 enum tree_code ncmp = cmp;
3894 const real_format *fmt
3895 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3896 real_arithmetic (&c2, MULT_EXPR,
3897 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3898 real_convert (&c2, fmt, &c2);
3899 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3900 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
3901 if (!REAL_VALUE_ISINF (c2))
3902 {
3903 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3904 build_real (TREE_TYPE (@0), c2));
3905 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3906 ncmp = ERROR_MARK;
3907 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3908 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3909 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3910 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3911 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3912 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3913 else
3914 {
3915 /* With rounding to even, sqrt of up to 3 different values
3916 gives the same normal result, so in some cases c2 needs
3917 to be adjusted. */
3918 REAL_VALUE_TYPE c2alt, tow;
3919 if (cmp == LT_EXPR || cmp == GE_EXPR)
3920 tow = dconst0;
3921 else
3922 real_inf (&tow);
3923 real_nextafter (&c2alt, fmt, &c2, &tow);
3924 real_convert (&c2alt, fmt, &c2alt);
3925 if (REAL_VALUE_ISINF (c2alt))
3926 ncmp = ERROR_MARK;
3927 else
3928 {
3929 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3930 build_real (TREE_TYPE (@0), c2alt));
3931 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3932 ncmp = ERROR_MARK;
3933 else if (real_equal (&TREE_REAL_CST (c3),
3934 &TREE_REAL_CST (@1)))
3935 c2 = c2alt;
3936 }
3937 }
3938 }
3939 }
3940 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3941 (if (REAL_VALUE_ISINF (c2))
3942 /* sqrt(x) > y is x == +Inf, when y is very large. */
3943 (if (HONOR_INFINITIES (@0))
3944 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3945 { constant_boolean_node (false, type); })
3946 /* sqrt(x) > c is the same as x > c*c. */
3947 (if (ncmp != ERROR_MARK)
3948 (if (ncmp == GE_EXPR)
3949 (ge @0 { build_real (TREE_TYPE (@0), c2); })
3950 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
3951 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
3952 (if (REAL_VALUE_ISINF (c2))
3953 (switch
3954 /* sqrt(x) < y is always true, when y is a very large
3955 value and we don't care about NaNs or Infinities. */
3956 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3957 { constant_boolean_node (true, type); })
3958 /* sqrt(x) < y is x != +Inf when y is very large and we
3959 don't care about NaNs. */
3960 (if (! HONOR_NANS (@0))
3961 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3962 /* sqrt(x) < y is x >= 0 when y is very large and we
3963 don't care about Infinities. */
3964 (if (! HONOR_INFINITIES (@0))
3965 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3966 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3967 (if (GENERIC)
3968 (truth_andif
3969 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3970 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3971 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3972 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
3973 (if (ncmp == LT_EXPR)
3974 (lt @0 { build_real (TREE_TYPE (@0), c2); })
3975 (le @0 { build_real (TREE_TYPE (@0), c2); }))
3976 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3977 (if (ncmp != ERROR_MARK && GENERIC)
3978 (if (ncmp == LT_EXPR)
3979 (truth_andif
3980 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3981 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
3982 (truth_andif
3983 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3984 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
3985 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3986 (simplify
3987 (cmp (sq @0) (sq @1))
3988 (if (! HONOR_NANS (@0))
3989 (cmp @0 @1))))))
3990
3991 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3992 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3993 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3994 (simplify
3995 (cmp (float@0 @1) (float @2))
3996 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3997 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3998 (with
3999 {
4000 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
4001 tree type1 = TREE_TYPE (@1);
4002 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
4003 tree type2 = TREE_TYPE (@2);
4004 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
4005 }
4006 (if (fmt.can_represent_integral_type_p (type1)
4007 && fmt.can_represent_integral_type_p (type2))
4008 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
4009 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
4010 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
4011 && type1_signed_p >= type2_signed_p)
4012 (icmp @1 (convert @2))
4013 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
4014 && type1_signed_p <= type2_signed_p)
4015 (icmp (convert:type2 @1) @2)
4016 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4017 && type1_signed_p == type2_signed_p)
4018 (icmp @1 @2))))))))))
4019
4020 /* Optimize various special cases of (FTYPE) N CMP CST. */
4021 (for cmp (lt le eq ne ge gt)
4022 icmp (le le eq ne ge ge)
4023 (simplify
4024 (cmp (float @0) REAL_CST@1)
4025 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4026 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4027 (with
4028 {
4029 tree itype = TREE_TYPE (@0);
4030 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4031 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4032 /* Be careful to preserve any potential exceptions due to
4033 NaNs. qNaNs are ok in == or != context.
4034 TODO: relax under -fno-trapping-math or
4035 -fno-signaling-nans. */
4036 bool exception_p
4037 = real_isnan (cst) && (cst->signalling
4038 || (cmp != EQ_EXPR && cmp != NE_EXPR));
4039 }
4040 /* TODO: allow non-fitting itype and SNaNs when
4041 -fno-trapping-math. */
4042 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4043 (with
4044 {
4045 signop isign = TYPE_SIGN (itype);
4046 REAL_VALUE_TYPE imin, imax;
4047 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4048 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4049
4050 REAL_VALUE_TYPE icst;
4051 if (cmp == GT_EXPR || cmp == GE_EXPR)
4052 real_ceil (&icst, fmt, cst);
4053 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4054 real_floor (&icst, fmt, cst);
4055 else
4056 real_trunc (&icst, fmt, cst);
4057
4058 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4059
4060 bool overflow_p = false;
4061 wide_int icst_val
4062 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4063 }
4064 (switch
4065 /* Optimize cases when CST is outside of ITYPE's range. */
4066 (if (real_compare (LT_EXPR, cst, &imin))
4067 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4068 type); })
4069 (if (real_compare (GT_EXPR, cst, &imax))
4070 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4071 type); })
4072 /* Remove cast if CST is an integer representable by ITYPE. */
4073 (if (cst_int_p)
4074 (cmp @0 { gcc_assert (!overflow_p);
4075 wide_int_to_tree (itype, icst_val); })
4076 )
4077 /* When CST is fractional, optimize
4078 (FTYPE) N == CST -> 0
4079 (FTYPE) N != CST -> 1. */
4080 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4081 { constant_boolean_node (cmp == NE_EXPR, type); })
4082 /* Otherwise replace with sensible integer constant. */
4083 (with
4084 {
4085 gcc_checking_assert (!overflow_p);
4086 }
4087 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4088
4089 /* Fold A /[ex] B CMP C to A CMP B * C. */
4090 (for cmp (eq ne)
4091 (simplify
4092 (cmp (exact_div @0 @1) INTEGER_CST@2)
4093 (if (!integer_zerop (@1))
4094 (if (wi::to_wide (@2) == 0)
4095 (cmp @0 @2)
4096 (if (TREE_CODE (@1) == INTEGER_CST)
4097 (with
4098 {
4099 wi::overflow_type ovf;
4100 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4101 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4102 }
4103 (if (ovf)
4104 { constant_boolean_node (cmp == NE_EXPR, type); }
4105 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4106 (for cmp (lt le gt ge)
4107 (simplify
4108 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4109 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4110 (with
4111 {
4112 wi::overflow_type ovf;
4113 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4114 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4115 }
4116 (if (ovf)
4117 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4118 TYPE_SIGN (TREE_TYPE (@2)))
4119 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4120 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4121
4122 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4123
4124 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4125 For large C (more than min/B+2^size), this is also true, with the
4126 multiplication computed modulo 2^size.
4127 For intermediate C, this just tests the sign of A. */
4128 (for cmp (lt le gt ge)
4129 cmp2 (ge ge lt lt)
4130 (simplify
4131 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4132 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4133 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4134 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4135 (with
4136 {
4137 tree utype = TREE_TYPE (@2);
4138 wide_int denom = wi::to_wide (@1);
4139 wide_int right = wi::to_wide (@2);
4140 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4141 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4142 bool small = wi::leu_p (right, smax);
4143 bool large = wi::geu_p (right, smin);
4144 }
4145 (if (small || large)
4146 (cmp (convert:utype @0) (mult @2 (convert @1)))
4147 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4148
4149 /* Unordered tests if either argument is a NaN. */
4150 (simplify
4151 (bit_ior (unordered @0 @0) (unordered @1 @1))
4152 (if (types_match (@0, @1))
4153 (unordered @0 @1)))
4154 (simplify
4155 (bit_and (ordered @0 @0) (ordered @1 @1))
4156 (if (types_match (@0, @1))
4157 (ordered @0 @1)))
4158 (simplify
4159 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4160 @2)
4161 (simplify
4162 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4163 @2)
4164
4165 /* Simple range test simplifications. */
4166 /* A < B || A >= B -> true. */
4167 (for test1 (lt le le le ne ge)
4168 test2 (ge gt ge ne eq ne)
4169 (simplify
4170 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4171 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4172 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4173 { constant_boolean_node (true, type); })))
4174 /* A < B && A >= B -> false. */
4175 (for test1 (lt lt lt le ne eq)
4176 test2 (ge gt eq gt eq gt)
4177 (simplify
4178 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4179 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4180 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4181 { constant_boolean_node (false, type); })))
4182
4183 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4184 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4185
4186 Note that comparisons
4187 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4188 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4189 will be canonicalized to above so there's no need to
4190 consider them here.
4191 */
4192
4193 (for cmp (le gt)
4194 eqcmp (eq ne)
4195 (simplify
4196 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4197 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4198 (with
4199 {
4200 tree ty = TREE_TYPE (@0);
4201 unsigned prec = TYPE_PRECISION (ty);
4202 wide_int mask = wi::to_wide (@2, prec);
4203 wide_int rhs = wi::to_wide (@3, prec);
4204 signop sgn = TYPE_SIGN (ty);
4205 }
4206 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4207 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4208 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4209 { build_zero_cst (ty); }))))))
4210
4211 /* -A CMP -B -> B CMP A. */
4212 (for cmp (tcc_comparison)
4213 scmp (swapped_tcc_comparison)
4214 (simplify
4215 (cmp (negate @0) (negate @1))
4216 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4217 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4218 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4219 (scmp @0 @1)))
4220 (simplify
4221 (cmp (negate @0) CONSTANT_CLASS_P@1)
4222 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4223 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4224 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4225 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4226 (if (tem && !TREE_OVERFLOW (tem))
4227 (scmp @0 { tem; }))))))
4228
4229 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4230 (for op (eq ne)
4231 (simplify
4232 (op (abs @0) zerop@1)
4233 (op @0 @1)))
4234
4235 /* From fold_sign_changed_comparison and fold_widened_comparison.
4236 FIXME: the lack of symmetry is disturbing. */
4237 (for cmp (simple_comparison)
4238 (simplify
4239 (cmp (convert@0 @00) (convert?@1 @10))
4240 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4241 /* Disable this optimization if we're casting a function pointer
4242 type on targets that require function pointer canonicalization. */
4243 && !(targetm.have_canonicalize_funcptr_for_compare ()
4244 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4245 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4246 || (POINTER_TYPE_P (TREE_TYPE (@10))
4247 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4248 && single_use (@0))
4249 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4250 && (TREE_CODE (@10) == INTEGER_CST
4251 || @1 != @10)
4252 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4253 || cmp == NE_EXPR
4254 || cmp == EQ_EXPR)
4255 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4256 /* ??? The special-casing of INTEGER_CST conversion was in the original
4257 code and here to avoid a spurious overflow flag on the resulting
4258 constant which fold_convert produces. */
4259 (if (TREE_CODE (@1) == INTEGER_CST)
4260 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4261 TREE_OVERFLOW (@1)); })
4262 (cmp @00 (convert @1)))
4263
4264 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4265 /* If possible, express the comparison in the shorter mode. */
4266 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4267 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4268 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4269 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4270 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4271 || ((TYPE_PRECISION (TREE_TYPE (@00))
4272 >= TYPE_PRECISION (TREE_TYPE (@10)))
4273 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4274 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4275 || (TREE_CODE (@10) == INTEGER_CST
4276 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4277 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4278 (cmp @00 (convert @10))
4279 (if (TREE_CODE (@10) == INTEGER_CST
4280 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4281 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4282 (with
4283 {
4284 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4285 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4286 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4287 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4288 }
4289 (if (above || below)
4290 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4291 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4292 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4293 { constant_boolean_node (above ? true : false, type); }
4294 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4295 { constant_boolean_node (above ? false : true, type); }))))))))))))
4296
4297 (for cmp (eq ne)
4298 (simplify
4299 /* SSA names are canonicalized to 2nd place. */
4300 (cmp addr@0 SSA_NAME@1)
4301 (with
4302 { poly_int64 off; tree base; }
4303 /* A local variable can never be pointed to by
4304 the default SSA name of an incoming parameter. */
4305 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4306 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
4307 && (base = get_base_address (TREE_OPERAND (@0, 0)))
4308 && TREE_CODE (base) == VAR_DECL
4309 && auto_var_in_fn_p (base, current_function_decl))
4310 (if (cmp == NE_EXPR)
4311 { constant_boolean_node (true, type); }
4312 { constant_boolean_node (false, type); })
4313 /* If the address is based on @1 decide using the offset. */
4314 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
4315 && TREE_CODE (base) == MEM_REF
4316 && TREE_OPERAND (base, 0) == @1)
4317 (with { off += mem_ref_offset (base).force_shwi (); }
4318 (if (known_ne (off, 0))
4319 { constant_boolean_node (cmp == NE_EXPR, type); }
4320 (if (known_eq (off, 0))
4321 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
4322
4323 /* Equality compare simplifications from fold_binary */
4324 (for cmp (eq ne)
4325
4326 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4327 Similarly for NE_EXPR. */
4328 (simplify
4329 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4330 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4331 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4332 { constant_boolean_node (cmp == NE_EXPR, type); }))
4333
4334 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4335 (simplify
4336 (cmp (bit_xor @0 @1) integer_zerop)
4337 (cmp @0 @1))
4338
4339 /* (X ^ Y) == Y becomes X == 0.
4340 Likewise (X ^ Y) == X becomes Y == 0. */
4341 (simplify
4342 (cmp:c (bit_xor:c @0 @1) @0)
4343 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4344
4345 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4346 (simplify
4347 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4348 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4349 (cmp @0 (bit_xor @1 (convert @2)))))
4350
4351 (simplify
4352 (cmp (convert? addr@0) integer_zerop)
4353 (if (tree_single_nonzero_warnv_p (@0, NULL))
4354 { constant_boolean_node (cmp == NE_EXPR, type); }))
4355
4356 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
4357 (simplify
4358 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
4359 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
4360
4361 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
4362 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
4363 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
4364 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
4365 (for cmp (eq ne)
4366 ncmp (ge lt)
4367 (for sgncmp (ge lt)
4368 (simplify
4369 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
4370 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4371 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4372 && types_match (@0, @1))
4373 (ncmp (bit_xor @0 @1) @2)))))
4374 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
4375 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
4376 (for cmp (eq ne)
4377 ncmp (lt ge)
4378 (simplify
4379 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
4380 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4381 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4382 && types_match (@0, @1))
4383 (ncmp (bit_xor @0 @1) @2))))
4384
4385 /* If we have (A & C) == C where C is a power of 2, convert this into
4386 (A & C) != 0. Similarly for NE_EXPR. */
4387 (for cmp (eq ne)
4388 icmp (ne eq)
4389 (simplify
4390 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4391 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4392
4393 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4394 convert this into a shift followed by ANDing with D. */
4395 (simplify
4396 (cond
4397 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4398 INTEGER_CST@2 integer_zerop)
4399 (if (integer_pow2p (@2))
4400 (with {
4401 int shift = (wi::exact_log2 (wi::to_wide (@2))
4402 - wi::exact_log2 (wi::to_wide (@1)));
4403 }
4404 (if (shift > 0)
4405 (bit_and
4406 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4407 (bit_and
4408 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4409 @2)))))
4410
4411 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4412 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4413 (for cmp (eq ne)
4414 ncmp (ge lt)
4415 (simplify
4416 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4417 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4418 && type_has_mode_precision_p (TREE_TYPE (@0))
4419 && element_precision (@2) >= element_precision (@0)
4420 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4421 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4422 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4423
4424 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4425 this into a right shift or sign extension followed by ANDing with C. */
4426 (simplify
4427 (cond
4428 (lt @0 integer_zerop)
4429 INTEGER_CST@1 integer_zerop)
4430 (if (integer_pow2p (@1)
4431 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4432 (with {
4433 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4434 }
4435 (if (shift >= 0)
4436 (bit_and
4437 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4438 @1)
4439 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4440 sign extension followed by AND with C will achieve the effect. */
4441 (bit_and (convert @0) @1)))))
4442
4443 /* When the addresses are not directly of decls compare base and offset.
4444 This implements some remaining parts of fold_comparison address
4445 comparisons but still no complete part of it. Still it is good
4446 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4447 (for cmp (simple_comparison)
4448 (simplify
4449 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4450 (with
4451 {
4452 poly_int64 off0, off1;
4453 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4454 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4455 if (base0 && TREE_CODE (base0) == MEM_REF)
4456 {
4457 off0 += mem_ref_offset (base0).force_shwi ();
4458 base0 = TREE_OPERAND (base0, 0);
4459 }
4460 if (base1 && TREE_CODE (base1) == MEM_REF)
4461 {
4462 off1 += mem_ref_offset (base1).force_shwi ();
4463 base1 = TREE_OPERAND (base1, 0);
4464 }
4465 }
4466 (if (base0 && base1)
4467 (with
4468 {
4469 int equal = 2;
4470 /* Punt in GENERIC on variables with value expressions;
4471 the value expressions might point to fields/elements
4472 of other vars etc. */
4473 if (GENERIC
4474 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4475 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4476 ;
4477 else if (decl_in_symtab_p (base0)
4478 && decl_in_symtab_p (base1))
4479 equal = symtab_node::get_create (base0)
4480 ->equal_address_to (symtab_node::get_create (base1));
4481 else if ((DECL_P (base0)
4482 || TREE_CODE (base0) == SSA_NAME
4483 || TREE_CODE (base0) == STRING_CST)
4484 && (DECL_P (base1)
4485 || TREE_CODE (base1) == SSA_NAME
4486 || TREE_CODE (base1) == STRING_CST))
4487 equal = (base0 == base1);
4488 if (equal == 0)
4489 {
4490 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4491 off0.is_constant (&ioff0);
4492 off1.is_constant (&ioff1);
4493 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4494 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4495 || (TREE_CODE (base0) == STRING_CST
4496 && TREE_CODE (base1) == STRING_CST
4497 && ioff0 >= 0 && ioff1 >= 0
4498 && ioff0 < TREE_STRING_LENGTH (base0)
4499 && ioff1 < TREE_STRING_LENGTH (base1)
4500 /* This is a too conservative test that the STRING_CSTs
4501 will not end up being string-merged. */
4502 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4503 TREE_STRING_POINTER (base1) + ioff1,
4504 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4505 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4506 ;
4507 else if (!DECL_P (base0) || !DECL_P (base1))
4508 equal = 2;
4509 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4510 equal = 2;
4511 /* If this is a pointer comparison, ignore for now even
4512 valid equalities where one pointer is the offset zero
4513 of one object and the other to one past end of another one. */
4514 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4515 ;
4516 /* Assume that automatic variables can't be adjacent to global
4517 variables. */
4518 else if (is_global_var (base0) != is_global_var (base1))
4519 ;
4520 else
4521 {
4522 tree sz0 = DECL_SIZE_UNIT (base0);
4523 tree sz1 = DECL_SIZE_UNIT (base1);
4524 /* If sizes are unknown, e.g. VLA or not representable,
4525 punt. */
4526 if (!tree_fits_poly_int64_p (sz0)
4527 || !tree_fits_poly_int64_p (sz1))
4528 equal = 2;
4529 else
4530 {
4531 poly_int64 size0 = tree_to_poly_int64 (sz0);
4532 poly_int64 size1 = tree_to_poly_int64 (sz1);
4533 /* If one offset is pointing (or could be) to the beginning
4534 of one object and the other is pointing to one past the
4535 last byte of the other object, punt. */
4536 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4537 equal = 2;
4538 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4539 equal = 2;
4540 /* If both offsets are the same, there are some cases
4541 we know that are ok. Either if we know they aren't
4542 zero, or if we know both sizes are no zero. */
4543 if (equal == 2
4544 && known_eq (off0, off1)
4545 && (known_ne (off0, 0)
4546 || (known_ne (size0, 0) && known_ne (size1, 0))))
4547 equal = 0;
4548 }
4549 }
4550 }
4551 }
4552 (if (equal == 1
4553 && (cmp == EQ_EXPR || cmp == NE_EXPR
4554 /* If the offsets are equal we can ignore overflow. */
4555 || known_eq (off0, off1)
4556 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4557 /* Or if we compare using pointers to decls or strings. */
4558 || (POINTER_TYPE_P (TREE_TYPE (@2))
4559 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4560 (switch
4561 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4562 { constant_boolean_node (known_eq (off0, off1), type); })
4563 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4564 { constant_boolean_node (known_ne (off0, off1), type); })
4565 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4566 { constant_boolean_node (known_lt (off0, off1), type); })
4567 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4568 { constant_boolean_node (known_le (off0, off1), type); })
4569 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4570 { constant_boolean_node (known_ge (off0, off1), type); })
4571 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4572 { constant_boolean_node (known_gt (off0, off1), type); }))
4573 (if (equal == 0)
4574 (switch
4575 (if (cmp == EQ_EXPR)
4576 { constant_boolean_node (false, type); })
4577 (if (cmp == NE_EXPR)
4578 { constant_boolean_node (true, type); })))))))))
4579
4580 /* Simplify pointer equality compares using PTA. */
4581 (for neeq (ne eq)
4582 (simplify
4583 (neeq @0 @1)
4584 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4585 && ptrs_compare_unequal (@0, @1))
4586 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4587
4588 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4589 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4590 Disable the transform if either operand is pointer to function.
4591 This broke pr22051-2.c for arm where function pointer
4592 canonicalizaion is not wanted. */
4593
4594 (for cmp (ne eq)
4595 (simplify
4596 (cmp (convert @0) INTEGER_CST@1)
4597 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4598 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4599 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4600 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4601 && POINTER_TYPE_P (TREE_TYPE (@1))
4602 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4603 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4604 (cmp @0 (convert @1)))))
4605
4606 /* Non-equality compare simplifications from fold_binary */
4607 (for cmp (lt gt le ge)
4608 /* Comparisons with the highest or lowest possible integer of
4609 the specified precision will have known values. */
4610 (simplify
4611 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4612 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4613 || POINTER_TYPE_P (TREE_TYPE (@1))
4614 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4615 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4616 (with
4617 {
4618 tree cst = uniform_integer_cst_p (@1);
4619 tree arg1_type = TREE_TYPE (cst);
4620 unsigned int prec = TYPE_PRECISION (arg1_type);
4621 wide_int max = wi::max_value (arg1_type);
4622 wide_int signed_max = wi::max_value (prec, SIGNED);
4623 wide_int min = wi::min_value (arg1_type);
4624 }
4625 (switch
4626 (if (wi::to_wide (cst) == max)
4627 (switch
4628 (if (cmp == GT_EXPR)
4629 { constant_boolean_node (false, type); })
4630 (if (cmp == GE_EXPR)
4631 (eq @2 @1))
4632 (if (cmp == LE_EXPR)
4633 { constant_boolean_node (true, type); })
4634 (if (cmp == LT_EXPR)
4635 (ne @2 @1))))
4636 (if (wi::to_wide (cst) == min)
4637 (switch
4638 (if (cmp == LT_EXPR)
4639 { constant_boolean_node (false, type); })
4640 (if (cmp == LE_EXPR)
4641 (eq @2 @1))
4642 (if (cmp == GE_EXPR)
4643 { constant_boolean_node (true, type); })
4644 (if (cmp == GT_EXPR)
4645 (ne @2 @1))))
4646 (if (wi::to_wide (cst) == max - 1)
4647 (switch
4648 (if (cmp == GT_EXPR)
4649 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4650 wide_int_to_tree (TREE_TYPE (cst),
4651 wi::to_wide (cst)
4652 + 1)); }))
4653 (if (cmp == LE_EXPR)
4654 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4655 wide_int_to_tree (TREE_TYPE (cst),
4656 wi::to_wide (cst)
4657 + 1)); }))))
4658 (if (wi::to_wide (cst) == min + 1)
4659 (switch
4660 (if (cmp == GE_EXPR)
4661 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4662 wide_int_to_tree (TREE_TYPE (cst),
4663 wi::to_wide (cst)
4664 - 1)); }))
4665 (if (cmp == LT_EXPR)
4666 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4667 wide_int_to_tree (TREE_TYPE (cst),
4668 wi::to_wide (cst)
4669 - 1)); }))))
4670 (if (wi::to_wide (cst) == signed_max
4671 && TYPE_UNSIGNED (arg1_type)
4672 /* We will flip the signedness of the comparison operator
4673 associated with the mode of @1, so the sign bit is
4674 specified by this mode. Check that @1 is the signed
4675 max associated with this sign bit. */
4676 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4677 /* signed_type does not work on pointer types. */
4678 && INTEGRAL_TYPE_P (arg1_type))
4679 /* The following case also applies to X < signed_max+1
4680 and X >= signed_max+1 because previous transformations. */
4681 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4682 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4683 (switch
4684 (if (cst == @1 && cmp == LE_EXPR)
4685 (ge (convert:st @0) { build_zero_cst (st); }))
4686 (if (cst == @1 && cmp == GT_EXPR)
4687 (lt (convert:st @0) { build_zero_cst (st); }))
4688 (if (cmp == LE_EXPR)
4689 (ge (view_convert:st @0) { build_zero_cst (st); }))
4690 (if (cmp == GT_EXPR)
4691 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4692
4693 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4694 /* If the second operand is NaN, the result is constant. */
4695 (simplify
4696 (cmp @0 REAL_CST@1)
4697 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4698 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4699 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4700 ? false : true, type); })))
4701
4702 /* bool_var != 0 becomes bool_var. */
4703 (simplify
4704 (ne @0 integer_zerop)
4705 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4706 && types_match (type, TREE_TYPE (@0)))
4707 (non_lvalue @0)))
4708 /* bool_var == 1 becomes bool_var. */
4709 (simplify
4710 (eq @0 integer_onep)
4711 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4712 && types_match (type, TREE_TYPE (@0)))
4713 (non_lvalue @0)))
4714 /* Do not handle
4715 bool_var == 0 becomes !bool_var or
4716 bool_var != 1 becomes !bool_var
4717 here because that only is good in assignment context as long
4718 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4719 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4720 clearly less optimal and which we'll transform again in forwprop. */
4721
4722 /* When one argument is a constant, overflow detection can be simplified.
4723 Currently restricted to single use so as not to interfere too much with
4724 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4725 A + CST CMP A -> A CMP' CST' */
4726 (for cmp (lt le ge gt)
4727 out (gt gt le le)
4728 (simplify
4729 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4730 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4731 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4732 && wi::to_wide (@1) != 0
4733 && single_use (@2))
4734 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4735 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4736 wi::max_value (prec, UNSIGNED)
4737 - wi::to_wide (@1)); })))))
4738
4739 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4740 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4741 expects the long form, so we restrict the transformation for now. */
4742 (for cmp (gt le)
4743 (simplify
4744 (cmp:c (minus@2 @0 @1) @0)
4745 (if (single_use (@2)
4746 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4747 && TYPE_UNSIGNED (TREE_TYPE (@0))
4748 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4749 (cmp @1 @0))))
4750
4751 /* Testing for overflow is unnecessary if we already know the result. */
4752 /* A - B > A */
4753 (for cmp (gt le)
4754 out (ne eq)
4755 (simplify
4756 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4757 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4758 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4759 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4760 /* A + B < A */
4761 (for cmp (lt ge)
4762 out (ne eq)
4763 (simplify
4764 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4765 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4766 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4767 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4768
4769 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4770 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4771 (for cmp (lt ge)
4772 out (ne eq)
4773 (simplify
4774 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4775 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4776 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4777 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4778
4779 /* Simplification of math builtins. These rules must all be optimizations
4780 as well as IL simplifications. If there is a possibility that the new
4781 form could be a pessimization, the rule should go in the canonicalization
4782 section that follows this one.
4783
4784 Rules can generally go in this section if they satisfy one of
4785 the following:
4786
4787 - the rule describes an identity
4788
4789 - the rule replaces calls with something as simple as addition or
4790 multiplication
4791
4792 - the rule contains unary calls only and simplifies the surrounding
4793 arithmetic. (The idea here is to exclude non-unary calls in which
4794 one operand is constant and in which the call is known to be cheap
4795 when the operand has that value.) */
4796
4797 (if (flag_unsafe_math_optimizations)
4798 /* Simplify sqrt(x) * sqrt(x) -> x. */
4799 (simplify
4800 (mult (SQRT_ALL@1 @0) @1)
4801 (if (!HONOR_SNANS (type))
4802 @0))
4803
4804 (for op (plus minus)
4805 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4806 (simplify
4807 (op (rdiv @0 @1)
4808 (rdiv @2 @1))
4809 (rdiv (op @0 @2) @1)))
4810
4811 (for cmp (lt le gt ge)
4812 neg_cmp (gt ge lt le)
4813 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4814 (simplify
4815 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4816 (with
4817 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4818 (if (tem
4819 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4820 || (real_zerop (tem) && !real_zerop (@1))))
4821 (switch
4822 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4823 (cmp @0 { tem; }))
4824 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4825 (neg_cmp @0 { tem; })))))))
4826
4827 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4828 (for root (SQRT CBRT)
4829 (simplify
4830 (mult (root:s @0) (root:s @1))
4831 (root (mult @0 @1))))
4832
4833 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4834 (for exps (EXP EXP2 EXP10 POW10)
4835 (simplify
4836 (mult (exps:s @0) (exps:s @1))
4837 (exps (plus @0 @1))))
4838
4839 /* Simplify a/root(b/c) into a*root(c/b). */
4840 (for root (SQRT CBRT)
4841 (simplify
4842 (rdiv @0 (root:s (rdiv:s @1 @2)))
4843 (mult @0 (root (rdiv @2 @1)))))
4844
4845 /* Simplify x/expN(y) into x*expN(-y). */
4846 (for exps (EXP EXP2 EXP10 POW10)
4847 (simplify
4848 (rdiv @0 (exps:s @1))
4849 (mult @0 (exps (negate @1)))))
4850
4851 (for logs (LOG LOG2 LOG10 LOG10)
4852 exps (EXP EXP2 EXP10 POW10)
4853 /* logN(expN(x)) -> x. */
4854 (simplify
4855 (logs (exps @0))
4856 @0)
4857 /* expN(logN(x)) -> x. */
4858 (simplify
4859 (exps (logs @0))
4860 @0))
4861
4862 /* Optimize logN(func()) for various exponential functions. We
4863 want to determine the value "x" and the power "exponent" in
4864 order to transform logN(x**exponent) into exponent*logN(x). */
4865 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4866 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4867 (simplify
4868 (logs (exps @0))
4869 (if (SCALAR_FLOAT_TYPE_P (type))
4870 (with {
4871 tree x;
4872 switch (exps)
4873 {
4874 CASE_CFN_EXP:
4875 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4876 x = build_real_truncate (type, dconst_e ());
4877 break;
4878 CASE_CFN_EXP2:
4879 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4880 x = build_real (type, dconst2);
4881 break;
4882 CASE_CFN_EXP10:
4883 CASE_CFN_POW10:
4884 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4885 {
4886 REAL_VALUE_TYPE dconst10;
4887 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4888 x = build_real (type, dconst10);
4889 }
4890 break;
4891 default:
4892 gcc_unreachable ();
4893 }
4894 }
4895 (mult (logs { x; }) @0)))))
4896
4897 (for logs (LOG LOG
4898 LOG2 LOG2
4899 LOG10 LOG10)
4900 exps (SQRT CBRT)
4901 (simplify
4902 (logs (exps @0))
4903 (if (SCALAR_FLOAT_TYPE_P (type))
4904 (with {
4905 tree x;
4906 switch (exps)
4907 {
4908 CASE_CFN_SQRT:
4909 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4910 x = build_real (type, dconsthalf);
4911 break;
4912 CASE_CFN_CBRT:
4913 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4914 x = build_real_truncate (type, dconst_third ());
4915 break;
4916 default:
4917 gcc_unreachable ();
4918 }
4919 }
4920 (mult { x; } (logs @0))))))
4921
4922 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4923 (for logs (LOG LOG2 LOG10)
4924 pows (POW)
4925 (simplify
4926 (logs (pows @0 @1))
4927 (mult @1 (logs @0))))
4928
4929 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4930 or if C is a positive power of 2,
4931 pow(C,x) -> exp2(log2(C)*x). */
4932 #if GIMPLE
4933 (for pows (POW)
4934 exps (EXP)
4935 logs (LOG)
4936 exp2s (EXP2)
4937 log2s (LOG2)
4938 (simplify
4939 (pows REAL_CST@0 @1)
4940 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4941 && real_isfinite (TREE_REAL_CST_PTR (@0))
4942 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4943 the use_exp2 case until after vectorization. It seems actually
4944 beneficial for all constants to postpone this until later,
4945 because exp(log(C)*x), while faster, will have worse precision
4946 and if x folds into a constant too, that is unnecessary
4947 pessimization. */
4948 && canonicalize_math_after_vectorization_p ())
4949 (with {
4950 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4951 bool use_exp2 = false;
4952 if (targetm.libc_has_function (function_c99_misc)
4953 && value->cl == rvc_normal)
4954 {
4955 REAL_VALUE_TYPE frac_rvt = *value;
4956 SET_REAL_EXP (&frac_rvt, 1);
4957 if (real_equal (&frac_rvt, &dconst1))
4958 use_exp2 = true;
4959 }
4960 }
4961 (if (!use_exp2)
4962 (if (optimize_pow_to_exp (@0, @1))
4963 (exps (mult (logs @0) @1)))
4964 (exp2s (mult (log2s @0) @1)))))))
4965 #endif
4966
4967 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4968 (for pows (POW)
4969 exps (EXP EXP2 EXP10 POW10)
4970 logs (LOG LOG2 LOG10 LOG10)
4971 (simplify
4972 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4973 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4974 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4975 (exps (plus (mult (logs @0) @1) @2)))))
4976
4977 (for sqrts (SQRT)
4978 cbrts (CBRT)
4979 pows (POW)
4980 exps (EXP EXP2 EXP10 POW10)
4981 /* sqrt(expN(x)) -> expN(x*0.5). */
4982 (simplify
4983 (sqrts (exps @0))
4984 (exps (mult @0 { build_real (type, dconsthalf); })))
4985 /* cbrt(expN(x)) -> expN(x/3). */
4986 (simplify
4987 (cbrts (exps @0))
4988 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4989 /* pow(expN(x), y) -> expN(x*y). */
4990 (simplify
4991 (pows (exps @0) @1)
4992 (exps (mult @0 @1))))
4993
4994 /* tan(atan(x)) -> x. */
4995 (for tans (TAN)
4996 atans (ATAN)
4997 (simplify
4998 (tans (atans @0))
4999 @0)))
5000
5001 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
5002 (for sins (SIN)
5003 atans (ATAN)
5004 sqrts (SQRT)
5005 copysigns (COPYSIGN)
5006 (simplify
5007 (sins (atans:s @0))
5008 (with
5009 {
5010 REAL_VALUE_TYPE r_cst;
5011 build_sinatan_real (&r_cst, type);
5012 tree t_cst = build_real (type, r_cst);
5013 tree t_one = build_one_cst (type);
5014 }
5015 (if (SCALAR_FLOAT_TYPE_P (type))
5016 (cond (lt (abs @0) { t_cst; })
5017 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
5018 (copysigns { t_one; } @0))))))
5019
5020 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
5021 (for coss (COS)
5022 atans (ATAN)
5023 sqrts (SQRT)
5024 copysigns (COPYSIGN)
5025 (simplify
5026 (coss (atans:s @0))
5027 (with
5028 {
5029 REAL_VALUE_TYPE r_cst;
5030 build_sinatan_real (&r_cst, type);
5031 tree t_cst = build_real (type, r_cst);
5032 tree t_one = build_one_cst (type);
5033 tree t_zero = build_zero_cst (type);
5034 }
5035 (if (SCALAR_FLOAT_TYPE_P (type))
5036 (cond (lt (abs @0) { t_cst; })
5037 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
5038 (copysigns { t_zero; } @0))))))
5039
5040 (if (!flag_errno_math)
5041 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
5042 (for sinhs (SINH)
5043 atanhs (ATANH)
5044 sqrts (SQRT)
5045 (simplify
5046 (sinhs (atanhs:s @0))
5047 (with { tree t_one = build_one_cst (type); }
5048 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5049
5050 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5051 (for coshs (COSH)
5052 atanhs (ATANH)
5053 sqrts (SQRT)
5054 (simplify
5055 (coshs (atanhs:s @0))
5056 (with { tree t_one = build_one_cst (type); }
5057 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5058
5059 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
5060 (simplify
5061 (CABS (complex:C @0 real_zerop@1))
5062 (abs @0))
5063
5064 /* trunc(trunc(x)) -> trunc(x), etc. */
5065 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5066 (simplify
5067 (fns (fns @0))
5068 (fns @0)))
5069 /* f(x) -> x if x is integer valued and f does nothing for such values. */
5070 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5071 (simplify
5072 (fns integer_valued_real_p@0)
5073 @0))
5074
5075 /* hypot(x,0) and hypot(0,x) -> abs(x). */
5076 (simplify
5077 (HYPOT:c @0 real_zerop@1)
5078 (abs @0))
5079
5080 /* pow(1,x) -> 1. */
5081 (simplify
5082 (POW real_onep@0 @1)
5083 @0)
5084
5085 (simplify
5086 /* copysign(x,x) -> x. */
5087 (COPYSIGN_ALL @0 @0)
5088 @0)
5089
5090 (simplify
5091 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
5092 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5093 (abs @0))
5094
5095 (for scale (LDEXP SCALBN SCALBLN)
5096 /* ldexp(0, x) -> 0. */
5097 (simplify
5098 (scale real_zerop@0 @1)
5099 @0)
5100 /* ldexp(x, 0) -> x. */
5101 (simplify
5102 (scale @0 integer_zerop@1)
5103 @0)
5104 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
5105 (simplify
5106 (scale REAL_CST@0 @1)
5107 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5108 @0)))
5109
5110 /* Canonicalization of sequences of math builtins. These rules represent
5111 IL simplifications but are not necessarily optimizations.
5112
5113 The sincos pass is responsible for picking "optimal" implementations
5114 of math builtins, which may be more complicated and can sometimes go
5115 the other way, e.g. converting pow into a sequence of sqrts.
5116 We only want to do these canonicalizations before the pass has run. */
5117
5118 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5119 /* Simplify tan(x) * cos(x) -> sin(x). */
5120 (simplify
5121 (mult:c (TAN:s @0) (COS:s @0))
5122 (SIN @0))
5123
5124 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5125 (simplify
5126 (mult:c @0 (POW:s @0 REAL_CST@1))
5127 (if (!TREE_OVERFLOW (@1))
5128 (POW @0 (plus @1 { build_one_cst (type); }))))
5129
5130 /* Simplify sin(x) / cos(x) -> tan(x). */
5131 (simplify
5132 (rdiv (SIN:s @0) (COS:s @0))
5133 (TAN @0))
5134
5135 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5136 (simplify
5137 (rdiv (SINH:s @0) (COSH:s @0))
5138 (TANH @0))
5139
5140 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5141 (simplify
5142 (rdiv (COS:s @0) (SIN:s @0))
5143 (rdiv { build_one_cst (type); } (TAN @0)))
5144
5145 /* Simplify sin(x) / tan(x) -> cos(x). */
5146 (simplify
5147 (rdiv (SIN:s @0) (TAN:s @0))
5148 (if (! HONOR_NANS (@0)
5149 && ! HONOR_INFINITIES (@0))
5150 (COS @0)))
5151
5152 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5153 (simplify
5154 (rdiv (TAN:s @0) (SIN:s @0))
5155 (if (! HONOR_NANS (@0)
5156 && ! HONOR_INFINITIES (@0))
5157 (rdiv { build_one_cst (type); } (COS @0))))
5158
5159 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5160 (simplify
5161 (mult (POW:s @0 @1) (POW:s @0 @2))
5162 (POW @0 (plus @1 @2)))
5163
5164 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5165 (simplify
5166 (mult (POW:s @0 @1) (POW:s @2 @1))
5167 (POW (mult @0 @2) @1))
5168
5169 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5170 (simplify
5171 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5172 (POWI (mult @0 @2) @1))
5173
5174 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5175 (simplify
5176 (rdiv (POW:s @0 REAL_CST@1) @0)
5177 (if (!TREE_OVERFLOW (@1))
5178 (POW @0 (minus @1 { build_one_cst (type); }))))
5179
5180 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5181 (simplify
5182 (rdiv @0 (POW:s @1 @2))
5183 (mult @0 (POW @1 (negate @2))))
5184
5185 (for sqrts (SQRT)
5186 cbrts (CBRT)
5187 pows (POW)
5188 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5189 (simplify
5190 (sqrts (sqrts @0))
5191 (pows @0 { build_real (type, dconst_quarter ()); }))
5192 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5193 (simplify
5194 (sqrts (cbrts @0))
5195 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5196 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5197 (simplify
5198 (cbrts (sqrts @0))
5199 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5200 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5201 (simplify
5202 (cbrts (cbrts tree_expr_nonnegative_p@0))
5203 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5204 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5205 (simplify
5206 (sqrts (pows @0 @1))
5207 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5208 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5209 (simplify
5210 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5211 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5212 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5213 (simplify
5214 (pows (sqrts @0) @1)
5215 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5216 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5217 (simplify
5218 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5219 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5220 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5221 (simplify
5222 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5223 (pows @0 (mult @1 @2))))
5224
5225 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5226 (simplify
5227 (CABS (complex @0 @0))
5228 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5229
5230 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5231 (simplify
5232 (HYPOT @0 @0)
5233 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5234
5235 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5236 (for cexps (CEXP)
5237 exps (EXP)
5238 cexpis (CEXPI)
5239 (simplify
5240 (cexps compositional_complex@0)
5241 (if (targetm.libc_has_function (function_c99_math_complex))
5242 (complex
5243 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5244 (mult @1 (imagpart @2)))))))
5245
5246 (if (canonicalize_math_p ())
5247 /* floor(x) -> trunc(x) if x is nonnegative. */
5248 (for floors (FLOOR_ALL)
5249 truncs (TRUNC_ALL)
5250 (simplify
5251 (floors tree_expr_nonnegative_p@0)
5252 (truncs @0))))
5253
5254 (match double_value_p
5255 @0
5256 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5257 (for froms (BUILT_IN_TRUNCL
5258 BUILT_IN_FLOORL
5259 BUILT_IN_CEILL
5260 BUILT_IN_ROUNDL
5261 BUILT_IN_NEARBYINTL
5262 BUILT_IN_RINTL)
5263 tos (BUILT_IN_TRUNC
5264 BUILT_IN_FLOOR
5265 BUILT_IN_CEIL
5266 BUILT_IN_ROUND
5267 BUILT_IN_NEARBYINT
5268 BUILT_IN_RINT)
5269 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5270 (if (optimize && canonicalize_math_p ())
5271 (simplify
5272 (froms (convert double_value_p@0))
5273 (convert (tos @0)))))
5274
5275 (match float_value_p
5276 @0
5277 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5278 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5279 BUILT_IN_FLOORL BUILT_IN_FLOOR
5280 BUILT_IN_CEILL BUILT_IN_CEIL
5281 BUILT_IN_ROUNDL BUILT_IN_ROUND
5282 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5283 BUILT_IN_RINTL BUILT_IN_RINT)
5284 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5285 BUILT_IN_FLOORF BUILT_IN_FLOORF
5286 BUILT_IN_CEILF BUILT_IN_CEILF
5287 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5288 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5289 BUILT_IN_RINTF BUILT_IN_RINTF)
5290 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5291 if x is a float. */
5292 (if (optimize && canonicalize_math_p ()
5293 && targetm.libc_has_function (function_c99_misc))
5294 (simplify
5295 (froms (convert float_value_p@0))
5296 (convert (tos @0)))))
5297
5298 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5299 tos (XFLOOR XCEIL XROUND XRINT)
5300 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5301 (if (optimize && canonicalize_math_p ())
5302 (simplify
5303 (froms (convert double_value_p@0))
5304 (tos @0))))
5305
5306 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5307 XFLOOR XCEIL XROUND XRINT)
5308 tos (XFLOORF XCEILF XROUNDF XRINTF)
5309 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5310 if x is a float. */
5311 (if (optimize && canonicalize_math_p ())
5312 (simplify
5313 (froms (convert float_value_p@0))
5314 (tos @0))))
5315
5316 (if (canonicalize_math_p ())
5317 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5318 (for floors (IFLOOR LFLOOR LLFLOOR)
5319 (simplify
5320 (floors tree_expr_nonnegative_p@0)
5321 (fix_trunc @0))))
5322
5323 (if (canonicalize_math_p ())
5324 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5325 (for fns (IFLOOR LFLOOR LLFLOOR
5326 ICEIL LCEIL LLCEIL
5327 IROUND LROUND LLROUND)
5328 (simplify
5329 (fns integer_valued_real_p@0)
5330 (fix_trunc @0)))
5331 (if (!flag_errno_math)
5332 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5333 (for rints (IRINT LRINT LLRINT)
5334 (simplify
5335 (rints integer_valued_real_p@0)
5336 (fix_trunc @0)))))
5337
5338 (if (canonicalize_math_p ())
5339 (for ifn (IFLOOR ICEIL IROUND IRINT)
5340 lfn (LFLOOR LCEIL LROUND LRINT)
5341 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5342 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5343 sizeof (int) == sizeof (long). */
5344 (if (TYPE_PRECISION (integer_type_node)
5345 == TYPE_PRECISION (long_integer_type_node))
5346 (simplify
5347 (ifn @0)
5348 (lfn:long_integer_type_node @0)))
5349 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5350 sizeof (long long) == sizeof (long). */
5351 (if (TYPE_PRECISION (long_long_integer_type_node)
5352 == TYPE_PRECISION (long_integer_type_node))
5353 (simplify
5354 (llfn @0)
5355 (lfn:long_integer_type_node @0)))))
5356
5357 /* cproj(x) -> x if we're ignoring infinities. */
5358 (simplify
5359 (CPROJ @0)
5360 (if (!HONOR_INFINITIES (type))
5361 @0))
5362
5363 /* If the real part is inf and the imag part is known to be
5364 nonnegative, return (inf + 0i). */
5365 (simplify
5366 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5367 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5368 { build_complex_inf (type, false); }))
5369
5370 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5371 (simplify
5372 (CPROJ (complex @0 REAL_CST@1))
5373 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5374 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5375
5376 (for pows (POW)
5377 sqrts (SQRT)
5378 cbrts (CBRT)
5379 (simplify
5380 (pows @0 REAL_CST@1)
5381 (with {
5382 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5383 REAL_VALUE_TYPE tmp;
5384 }
5385 (switch
5386 /* pow(x,0) -> 1. */
5387 (if (real_equal (value, &dconst0))
5388 { build_real (type, dconst1); })
5389 /* pow(x,1) -> x. */
5390 (if (real_equal (value, &dconst1))
5391 @0)
5392 /* pow(x,-1) -> 1/x. */
5393 (if (real_equal (value, &dconstm1))
5394 (rdiv { build_real (type, dconst1); } @0))
5395 /* pow(x,0.5) -> sqrt(x). */
5396 (if (flag_unsafe_math_optimizations
5397 && canonicalize_math_p ()
5398 && real_equal (value, &dconsthalf))
5399 (sqrts @0))
5400 /* pow(x,1/3) -> cbrt(x). */
5401 (if (flag_unsafe_math_optimizations
5402 && canonicalize_math_p ()
5403 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5404 real_equal (value, &tmp)))
5405 (cbrts @0))))))
5406
5407 /* powi(1,x) -> 1. */
5408 (simplify
5409 (POWI real_onep@0 @1)
5410 @0)
5411
5412 (simplify
5413 (POWI @0 INTEGER_CST@1)
5414 (switch
5415 /* powi(x,0) -> 1. */
5416 (if (wi::to_wide (@1) == 0)
5417 { build_real (type, dconst1); })
5418 /* powi(x,1) -> x. */
5419 (if (wi::to_wide (@1) == 1)
5420 @0)
5421 /* powi(x,-1) -> 1/x. */
5422 (if (wi::to_wide (@1) == -1)
5423 (rdiv { build_real (type, dconst1); } @0))))
5424
5425 /* Narrowing of arithmetic and logical operations.
5426
5427 These are conceptually similar to the transformations performed for
5428 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5429 term we want to move all that code out of the front-ends into here. */
5430
5431 /* Convert (outertype)((innertype0)a+(innertype1)b)
5432 into ((newtype)a+(newtype)b) where newtype
5433 is the widest mode from all of these. */
5434 (for op (plus minus mult rdiv)
5435 (simplify
5436 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5437 /* If we have a narrowing conversion of an arithmetic operation where
5438 both operands are widening conversions from the same type as the outer
5439 narrowing conversion. Then convert the innermost operands to a
5440 suitable unsigned type (to avoid introducing undefined behavior),
5441 perform the operation and convert the result to the desired type. */
5442 (if (INTEGRAL_TYPE_P (type)
5443 && op != MULT_EXPR
5444 && op != RDIV_EXPR
5445 /* We check for type compatibility between @0 and @1 below,
5446 so there's no need to check that @2/@4 are integral types. */
5447 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5448 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5449 /* The precision of the type of each operand must match the
5450 precision of the mode of each operand, similarly for the
5451 result. */
5452 && type_has_mode_precision_p (TREE_TYPE (@1))
5453 && type_has_mode_precision_p (TREE_TYPE (@2))
5454 && type_has_mode_precision_p (type)
5455 /* The inner conversion must be a widening conversion. */
5456 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5457 && types_match (@1, type)
5458 && (types_match (@1, @2)
5459 /* Or the second operand is const integer or converted const
5460 integer from valueize. */
5461 || TREE_CODE (@2) == INTEGER_CST))
5462 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5463 (op @1 (convert @2))
5464 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5465 (convert (op (convert:utype @1)
5466 (convert:utype @2)))))
5467 (if (FLOAT_TYPE_P (type)
5468 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5469 == DECIMAL_FLOAT_TYPE_P (type))
5470 (with { tree arg0 = strip_float_extensions (@1);
5471 tree arg1 = strip_float_extensions (@2);
5472 tree itype = TREE_TYPE (@0);
5473 tree ty1 = TREE_TYPE (arg0);
5474 tree ty2 = TREE_TYPE (arg1);
5475 enum tree_code code = TREE_CODE (itype); }
5476 (if (FLOAT_TYPE_P (ty1)
5477 && FLOAT_TYPE_P (ty2))
5478 (with { tree newtype = type;
5479 if (TYPE_MODE (ty1) == SDmode
5480 || TYPE_MODE (ty2) == SDmode
5481 || TYPE_MODE (type) == SDmode)
5482 newtype = dfloat32_type_node;
5483 if (TYPE_MODE (ty1) == DDmode
5484 || TYPE_MODE (ty2) == DDmode
5485 || TYPE_MODE (type) == DDmode)
5486 newtype = dfloat64_type_node;
5487 if (TYPE_MODE (ty1) == TDmode
5488 || TYPE_MODE (ty2) == TDmode
5489 || TYPE_MODE (type) == TDmode)
5490 newtype = dfloat128_type_node; }
5491 (if ((newtype == dfloat32_type_node
5492 || newtype == dfloat64_type_node
5493 || newtype == dfloat128_type_node)
5494 && newtype == type
5495 && types_match (newtype, type))
5496 (op (convert:newtype @1) (convert:newtype @2))
5497 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5498 newtype = ty1;
5499 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5500 newtype = ty2; }
5501 /* Sometimes this transformation is safe (cannot
5502 change results through affecting double rounding
5503 cases) and sometimes it is not. If NEWTYPE is
5504 wider than TYPE, e.g. (float)((long double)double
5505 + (long double)double) converted to
5506 (float)(double + double), the transformation is
5507 unsafe regardless of the details of the types
5508 involved; double rounding can arise if the result
5509 of NEWTYPE arithmetic is a NEWTYPE value half way
5510 between two representable TYPE values but the
5511 exact value is sufficiently different (in the
5512 right direction) for this difference to be
5513 visible in ITYPE arithmetic. If NEWTYPE is the
5514 same as TYPE, however, the transformation may be
5515 safe depending on the types involved: it is safe
5516 if the ITYPE has strictly more than twice as many
5517 mantissa bits as TYPE, can represent infinities
5518 and NaNs if the TYPE can, and has sufficient
5519 exponent range for the product or ratio of two
5520 values representable in the TYPE to be within the
5521 range of normal values of ITYPE. */
5522 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5523 && (flag_unsafe_math_optimizations
5524 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5525 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5526 TYPE_MODE (type))
5527 && !excess_precision_type (newtype)))
5528 && !types_match (itype, newtype))
5529 (convert:type (op (convert:newtype @1)
5530 (convert:newtype @2)))
5531 )))) )
5532 ))
5533 )))
5534
5535 /* This is another case of narrowing, specifically when there's an outer
5536 BIT_AND_EXPR which masks off bits outside the type of the innermost
5537 operands. Like the previous case we have to convert the operands
5538 to unsigned types to avoid introducing undefined behavior for the
5539 arithmetic operation. */
5540 (for op (minus plus)
5541 (simplify
5542 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5543 (if (INTEGRAL_TYPE_P (type)
5544 /* We check for type compatibility between @0 and @1 below,
5545 so there's no need to check that @1/@3 are integral types. */
5546 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5547 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5548 /* The precision of the type of each operand must match the
5549 precision of the mode of each operand, similarly for the
5550 result. */
5551 && type_has_mode_precision_p (TREE_TYPE (@0))
5552 && type_has_mode_precision_p (TREE_TYPE (@1))
5553 && type_has_mode_precision_p (type)
5554 /* The inner conversion must be a widening conversion. */
5555 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5556 && types_match (@0, @1)
5557 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5558 <= TYPE_PRECISION (TREE_TYPE (@0)))
5559 && (wi::to_wide (@4)
5560 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5561 true, TYPE_PRECISION (type))) == 0)
5562 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5563 (with { tree ntype = TREE_TYPE (@0); }
5564 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5565 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5566 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5567 (convert:utype @4))))))))
5568
5569 /* Transform (@0 < @1 and @0 < @2) to use min,
5570 (@0 > @1 and @0 > @2) to use max */
5571 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5572 op (lt le gt ge lt le gt ge )
5573 ext (min min max max max max min min )
5574 (simplify
5575 (logic (op:cs @0 @1) (op:cs @0 @2))
5576 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5577 && TREE_CODE (@0) != INTEGER_CST)
5578 (op @0 (ext @1 @2)))))
5579
5580 (simplify
5581 /* signbit(x) -> 0 if x is nonnegative. */
5582 (SIGNBIT tree_expr_nonnegative_p@0)
5583 { integer_zero_node; })
5584
5585 (simplify
5586 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5587 (SIGNBIT @0)
5588 (if (!HONOR_SIGNED_ZEROS (@0))
5589 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5590
5591 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5592 (for cmp (eq ne)
5593 (for op (plus minus)
5594 rop (minus plus)
5595 (simplify
5596 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5597 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5598 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5599 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5600 && !TYPE_SATURATING (TREE_TYPE (@0)))
5601 (with { tree res = int_const_binop (rop, @2, @1); }
5602 (if (TREE_OVERFLOW (res)
5603 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5604 { constant_boolean_node (cmp == NE_EXPR, type); }
5605 (if (single_use (@3))
5606 (cmp @0 { TREE_OVERFLOW (res)
5607 ? drop_tree_overflow (res) : res; }))))))))
5608 (for cmp (lt le gt ge)
5609 (for op (plus minus)
5610 rop (minus plus)
5611 (simplify
5612 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5613 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5614 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5615 (with { tree res = int_const_binop (rop, @2, @1); }
5616 (if (TREE_OVERFLOW (res))
5617 {
5618 fold_overflow_warning (("assuming signed overflow does not occur "
5619 "when simplifying conditional to constant"),
5620 WARN_STRICT_OVERFLOW_CONDITIONAL);
5621 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5622 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5623 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5624 TYPE_SIGN (TREE_TYPE (@1)))
5625 != (op == MINUS_EXPR);
5626 constant_boolean_node (less == ovf_high, type);
5627 }
5628 (if (single_use (@3))
5629 (with
5630 {
5631 fold_overflow_warning (("assuming signed overflow does not occur "
5632 "when changing X +- C1 cmp C2 to "
5633 "X cmp C2 -+ C1"),
5634 WARN_STRICT_OVERFLOW_COMPARISON);
5635 }
5636 (cmp @0 { res; })))))))))
5637
5638 /* Canonicalizations of BIT_FIELD_REFs. */
5639
5640 (simplify
5641 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5642 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5643
5644 (simplify
5645 (BIT_FIELD_REF (view_convert @0) @1 @2)
5646 (BIT_FIELD_REF @0 @1 @2))
5647
5648 (simplify
5649 (BIT_FIELD_REF @0 @1 integer_zerop)
5650 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5651 (view_convert @0)))
5652
5653 (simplify
5654 (BIT_FIELD_REF @0 @1 @2)
5655 (switch
5656 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5657 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5658 (switch
5659 (if (integer_zerop (@2))
5660 (view_convert (realpart @0)))
5661 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5662 (view_convert (imagpart @0)))))
5663 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5664 && INTEGRAL_TYPE_P (type)
5665 /* On GIMPLE this should only apply to register arguments. */
5666 && (! GIMPLE || is_gimple_reg (@0))
5667 /* A bit-field-ref that referenced the full argument can be stripped. */
5668 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5669 && integer_zerop (@2))
5670 /* Low-parts can be reduced to integral conversions.
5671 ??? The following doesn't work for PDP endian. */
5672 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5673 /* Don't even think about BITS_BIG_ENDIAN. */
5674 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5675 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5676 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5677 ? (TYPE_PRECISION (TREE_TYPE (@0))
5678 - TYPE_PRECISION (type))
5679 : 0)) == 0)))
5680 (convert @0))))
5681
5682 /* Simplify vector extracts. */
5683
5684 (simplify
5685 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5686 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5687 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5688 || (VECTOR_TYPE_P (type)
5689 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5690 (with
5691 {
5692 tree ctor = (TREE_CODE (@0) == SSA_NAME
5693 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5694 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5695 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5696 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5697 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5698 }
5699 (if (n != 0
5700 && (idx % width) == 0
5701 && (n % width) == 0
5702 && known_le ((idx + n) / width,
5703 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5704 (with
5705 {
5706 idx = idx / width;
5707 n = n / width;
5708 /* Constructor elements can be subvectors. */
5709 poly_uint64 k = 1;
5710 if (CONSTRUCTOR_NELTS (ctor) != 0)
5711 {
5712 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5713 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5714 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5715 }
5716 unsigned HOST_WIDE_INT elt, count, const_k;
5717 }
5718 (switch
5719 /* We keep an exact subset of the constructor elements. */
5720 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5721 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5722 { build_constructor (type, NULL); }
5723 (if (count == 1)
5724 (if (elt < CONSTRUCTOR_NELTS (ctor))
5725 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5726 { build_zero_cst (type); })
5727 /* We don't want to emit new CTORs unless the old one goes away.
5728 ??? Eventually allow this if the CTOR ends up constant or
5729 uniform. */
5730 (if (single_use (@0))
5731 {
5732 vec<constructor_elt, va_gc> *vals;
5733 vec_alloc (vals, count);
5734 for (unsigned i = 0;
5735 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5736 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5737 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5738 build_constructor (type, vals);
5739 }))))
5740 /* The bitfield references a single constructor element. */
5741 (if (k.is_constant (&const_k)
5742 && idx + n <= (idx / const_k + 1) * const_k)
5743 (switch
5744 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5745 { build_zero_cst (type); })
5746 (if (n == const_k)
5747 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5748 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5749 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5750
5751 /* Simplify a bit extraction from a bit insertion for the cases with
5752 the inserted element fully covering the extraction or the insertion
5753 not touching the extraction. */
5754 (simplify
5755 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5756 (with
5757 {
5758 unsigned HOST_WIDE_INT isize;
5759 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5760 isize = TYPE_PRECISION (TREE_TYPE (@1));
5761 else
5762 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5763 }
5764 (switch
5765 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5766 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5767 wi::to_wide (@ipos) + isize))
5768 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5769 wi::to_wide (@rpos)
5770 - wi::to_wide (@ipos)); }))
5771 (if (wi::geu_p (wi::to_wide (@ipos),
5772 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5773 || wi::geu_p (wi::to_wide (@rpos),
5774 wi::to_wide (@ipos) + isize))
5775 (BIT_FIELD_REF @0 @rsize @rpos)))))
5776
5777 (if (canonicalize_math_after_vectorization_p ())
5778 (for fmas (FMA)
5779 (simplify
5780 (fmas:c (negate @0) @1 @2)
5781 (IFN_FNMA @0 @1 @2))
5782 (simplify
5783 (fmas @0 @1 (negate @2))
5784 (IFN_FMS @0 @1 @2))
5785 (simplify
5786 (fmas:c (negate @0) @1 (negate @2))
5787 (IFN_FNMS @0 @1 @2))
5788 (simplify
5789 (negate (fmas@3 @0 @1 @2))
5790 (if (single_use (@3))
5791 (IFN_FNMS @0 @1 @2))))
5792
5793 (simplify
5794 (IFN_FMS:c (negate @0) @1 @2)
5795 (IFN_FNMS @0 @1 @2))
5796 (simplify
5797 (IFN_FMS @0 @1 (negate @2))
5798 (IFN_FMA @0 @1 @2))
5799 (simplify
5800 (IFN_FMS:c (negate @0) @1 (negate @2))
5801 (IFN_FNMA @0 @1 @2))
5802 (simplify
5803 (negate (IFN_FMS@3 @0 @1 @2))
5804 (if (single_use (@3))
5805 (IFN_FNMA @0 @1 @2)))
5806
5807 (simplify
5808 (IFN_FNMA:c (negate @0) @1 @2)
5809 (IFN_FMA @0 @1 @2))
5810 (simplify
5811 (IFN_FNMA @0 @1 (negate @2))
5812 (IFN_FNMS @0 @1 @2))
5813 (simplify
5814 (IFN_FNMA:c (negate @0) @1 (negate @2))
5815 (IFN_FMS @0 @1 @2))
5816 (simplify
5817 (negate (IFN_FNMA@3 @0 @1 @2))
5818 (if (single_use (@3))
5819 (IFN_FMS @0 @1 @2)))
5820
5821 (simplify
5822 (IFN_FNMS:c (negate @0) @1 @2)
5823 (IFN_FMS @0 @1 @2))
5824 (simplify
5825 (IFN_FNMS @0 @1 (negate @2))
5826 (IFN_FNMA @0 @1 @2))
5827 (simplify
5828 (IFN_FNMS:c (negate @0) @1 (negate @2))
5829 (IFN_FMA @0 @1 @2))
5830 (simplify
5831 (negate (IFN_FNMS@3 @0 @1 @2))
5832 (if (single_use (@3))
5833 (IFN_FMA @0 @1 @2))))
5834
5835 /* POPCOUNT simplifications. */
5836 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5837 BUILT_IN_POPCOUNTIMAX)
5838 /* popcount(X&1) is nop_expr(X&1). */
5839 (simplify
5840 (popcount @0)
5841 (if (tree_nonzero_bits (@0) == 1)
5842 (convert @0)))
5843 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5844 (simplify
5845 (plus (popcount:s @0) (popcount:s @1))
5846 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5847 (popcount (bit_ior @0 @1))))
5848 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5849 (for cmp (le eq ne gt)
5850 rep (eq eq ne ne)
5851 (simplify
5852 (cmp (popcount @0) integer_zerop)
5853 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5854
5855 #if GIMPLE
5856 /* 64- and 32-bits branchless implementations of popcount are detected:
5857
5858 int popcount64c (uint64_t x)
5859 {
5860 x -= (x >> 1) & 0x5555555555555555ULL;
5861 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5862 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5863 return (x * 0x0101010101010101ULL) >> 56;
5864 }
5865
5866 int popcount32c (uint32_t x)
5867 {
5868 x -= (x >> 1) & 0x55555555;
5869 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5870 x = (x + (x >> 4)) & 0x0f0f0f0f;
5871 return (x * 0x01010101) >> 24;
5872 } */
5873 (simplify
5874 (rshift
5875 (mult
5876 (bit_and
5877 (plus:c
5878 (rshift @8 INTEGER_CST@5)
5879 (plus:c@8
5880 (bit_and @6 INTEGER_CST@7)
5881 (bit_and
5882 (rshift
5883 (minus@6 @0
5884 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
5885 INTEGER_CST@10)
5886 INTEGER_CST@9)))
5887 INTEGER_CST@3)
5888 INTEGER_CST@2)
5889 INTEGER_CST@1)
5890 /* Check constants and optab. */
5891 (with { unsigned prec = TYPE_PRECISION (type);
5892 int shift = (64 - prec) & 63;
5893 unsigned HOST_WIDE_INT c1
5894 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
5895 unsigned HOST_WIDE_INT c2
5896 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
5897 unsigned HOST_WIDE_INT c3
5898 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
5899 unsigned HOST_WIDE_INT c4
5900 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
5901 }
5902 (if (prec >= 16
5903 && prec <= 64
5904 && pow2p_hwi (prec)
5905 && TYPE_UNSIGNED (type)
5906 && integer_onep (@4)
5907 && wi::to_widest (@10) == 2
5908 && wi::to_widest (@5) == 4
5909 && wi::to_widest (@1) == prec - 8
5910 && tree_to_uhwi (@2) == c1
5911 && tree_to_uhwi (@3) == c2
5912 && tree_to_uhwi (@9) == c3
5913 && tree_to_uhwi (@7) == c3
5914 && tree_to_uhwi (@11) == c4
5915 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
5916 OPTIMIZE_FOR_BOTH))
5917 (convert (IFN_POPCOUNT:type @0)))))
5918 #endif
5919
5920 /* Simplify:
5921
5922 a = a1 op a2
5923 r = c ? a : b;
5924
5925 to:
5926
5927 r = c ? a1 op a2 : b;
5928
5929 if the target can do it in one go. This makes the operation conditional
5930 on c, so could drop potentially-trapping arithmetic, but that's a valid
5931 simplification if the result of the operation isn't needed.
5932
5933 Avoid speculatively generating a stand-alone vector comparison
5934 on targets that might not support them. Any target implementing
5935 conditional internal functions must support the same comparisons
5936 inside and outside a VEC_COND_EXPR. */
5937
5938 #if GIMPLE
5939 (for uncond_op (UNCOND_BINARY)
5940 cond_op (COND_BINARY)
5941 (simplify
5942 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5943 (with { tree op_type = TREE_TYPE (@4); }
5944 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5945 && element_precision (type) == element_precision (op_type))
5946 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5947 (simplify
5948 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5949 (with { tree op_type = TREE_TYPE (@4); }
5950 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5951 && element_precision (type) == element_precision (op_type))
5952 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5953
5954 /* Same for ternary operations. */
5955 (for uncond_op (UNCOND_TERNARY)
5956 cond_op (COND_TERNARY)
5957 (simplify
5958 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5959 (with { tree op_type = TREE_TYPE (@5); }
5960 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5961 && element_precision (type) == element_precision (op_type))
5962 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5963 (simplify
5964 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5965 (with { tree op_type = TREE_TYPE (@5); }
5966 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5967 && element_precision (type) == element_precision (op_type))
5968 (view_convert (cond_op (bit_not @0) @2 @3 @4
5969 (view_convert:op_type @1)))))))
5970 #endif
5971
5972 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5973 "else" value of an IFN_COND_*. */
5974 (for cond_op (COND_BINARY)
5975 (simplify
5976 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5977 (with { tree op_type = TREE_TYPE (@3); }
5978 (if (element_precision (type) == element_precision (op_type))
5979 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5980 (simplify
5981 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5982 (with { tree op_type = TREE_TYPE (@5); }
5983 (if (inverse_conditions_p (@0, @2)
5984 && element_precision (type) == element_precision (op_type))
5985 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5986
5987 /* Same for ternary operations. */
5988 (for cond_op (COND_TERNARY)
5989 (simplify
5990 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5991 (with { tree op_type = TREE_TYPE (@4); }
5992 (if (element_precision (type) == element_precision (op_type))
5993 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5994 (simplify
5995 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5996 (with { tree op_type = TREE_TYPE (@6); }
5997 (if (inverse_conditions_p (@0, @2)
5998 && element_precision (type) == element_precision (op_type))
5999 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
6000
6001 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
6002 expressions like:
6003
6004 A: (@0 + @1 < @2) | (@2 + @1 < @0)
6005 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
6006
6007 If pointers are known not to wrap, B checks whether @1 bytes starting
6008 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
6009 bytes. A is more efficiently tested as:
6010
6011 A: (sizetype) (@0 + @1 - @2) > @1 * 2
6012
6013 The equivalent expression for B is given by replacing @1 with @1 - 1:
6014
6015 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
6016
6017 @0 and @2 can be swapped in both expressions without changing the result.
6018
6019 The folds rely on sizetype's being unsigned (which is always true)
6020 and on its being the same width as the pointer (which we have to check).
6021
6022 The fold replaces two pointer_plus expressions, two comparisons and
6023 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
6024 the best case it's a saving of two operations. The A fold retains one
6025 of the original pointer_pluses, so is a win even if both pointer_pluses
6026 are used elsewhere. The B fold is a wash if both pointer_pluses are
6027 used elsewhere, since all we end up doing is replacing a comparison with
6028 a pointer_plus. We do still apply the fold under those circumstances
6029 though, in case applying it to other conditions eventually makes one of the
6030 pointer_pluses dead. */
6031 (for ior (truth_orif truth_or bit_ior)
6032 (for cmp (le lt)
6033 (simplify
6034 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
6035 (cmp:cs (pointer_plus@4 @2 @1) @0))
6036 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6037 && TYPE_OVERFLOW_WRAPS (sizetype)
6038 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
6039 /* Calculate the rhs constant. */
6040 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
6041 offset_int rhs = off * 2; }
6042 /* Always fails for negative values. */
6043 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
6044 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
6045 pick a canonical order. This increases the chances of using the
6046 same pointer_plus in multiple checks. */
6047 (with { bool swap_p = tree_swap_operands_p (@0, @2);
6048 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
6049 (if (cmp == LT_EXPR)
6050 (gt (convert:sizetype
6051 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
6052 { swap_p ? @0 : @2; }))
6053 { rhs_tree; })
6054 (gt (convert:sizetype
6055 (pointer_diff:ssizetype
6056 (pointer_plus { swap_p ? @2 : @0; }
6057 { wide_int_to_tree (sizetype, off); })
6058 { swap_p ? @0 : @2; }))
6059 { rhs_tree; })))))))))
6060
6061 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
6062 element of @1. */
6063 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
6064 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
6065 (with { int i = single_nonzero_element (@1); }
6066 (if (i >= 0)
6067 (with { tree elt = vector_cst_elt (@1, i);
6068 tree elt_type = TREE_TYPE (elt);
6069 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6070 tree size = bitsize_int (elt_bits);
6071 tree pos = bitsize_int (elt_bits * i); }
6072 (view_convert
6073 (bit_and:elt_type
6074 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6075 { elt; })))))))
6076
6077 (simplify
6078 (vec_perm @0 @1 VECTOR_CST@2)
6079 (with
6080 {
6081 tree op0 = @0, op1 = @1, op2 = @2;
6082
6083 /* Build a vector of integers from the tree mask. */
6084 vec_perm_builder builder;
6085 if (!tree_to_vec_perm_builder (&builder, op2))
6086 return NULL_TREE;
6087
6088 /* Create a vec_perm_indices for the integer vector. */
6089 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6090 bool single_arg = (op0 == op1);
6091 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6092 }
6093 (if (sel.series_p (0, 1, 0, 1))
6094 { op0; }
6095 (if (sel.series_p (0, 1, nelts, 1))
6096 { op1; }
6097 (with
6098 {
6099 if (!single_arg)
6100 {
6101 if (sel.all_from_input_p (0))
6102 op1 = op0;
6103 else if (sel.all_from_input_p (1))
6104 {
6105 op0 = op1;
6106 sel.rotate_inputs (1);
6107 }
6108 else if (known_ge (poly_uint64 (sel[0]), nelts))
6109 {
6110 std::swap (op0, op1);
6111 sel.rotate_inputs (1);
6112 }
6113 }
6114 gassign *def;
6115 tree cop0 = op0, cop1 = op1;
6116 if (TREE_CODE (op0) == SSA_NAME
6117 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6118 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6119 cop0 = gimple_assign_rhs1 (def);
6120 if (TREE_CODE (op1) == SSA_NAME
6121 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6122 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6123 cop1 = gimple_assign_rhs1 (def);
6124
6125 tree t;
6126 }
6127 (if ((TREE_CODE (cop0) == VECTOR_CST
6128 || TREE_CODE (cop0) == CONSTRUCTOR)
6129 && (TREE_CODE (cop1) == VECTOR_CST
6130 || TREE_CODE (cop1) == CONSTRUCTOR)
6131 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6132 { t; }
6133 (with
6134 {
6135 bool changed = (op0 == op1 && !single_arg);
6136 tree ins = NULL_TREE;
6137 unsigned at = 0;
6138
6139 /* See if the permutation is performing a single element
6140 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6141 in that case. But only if the vector mode is supported,
6142 otherwise this is invalid GIMPLE. */
6143 if (TYPE_MODE (type) != BLKmode
6144 && (TREE_CODE (cop0) == VECTOR_CST
6145 || TREE_CODE (cop0) == CONSTRUCTOR
6146 || TREE_CODE (cop1) == VECTOR_CST
6147 || TREE_CODE (cop1) == CONSTRUCTOR))
6148 {
6149 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6150 if (insert_first_p)
6151 {
6152 /* After canonicalizing the first elt to come from the
6153 first vector we only can insert the first elt from
6154 the first vector. */
6155 at = 0;
6156 if ((ins = fold_read_from_vector (cop0, sel[0])))
6157 op0 = op1;
6158 }
6159 /* The above can fail for two-element vectors which always
6160 appear to insert the first element, so try inserting
6161 into the second lane as well. For more than two
6162 elements that's wasted time. */
6163 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6164 {
6165 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6166 for (at = 0; at < encoded_nelts; ++at)
6167 if (maybe_ne (sel[at], at))
6168 break;
6169 if (at < encoded_nelts
6170 && (known_eq (at + 1, nelts)
6171 || sel.series_p (at + 1, 1, at + 1, 1)))
6172 {
6173 if (known_lt (poly_uint64 (sel[at]), nelts))
6174 ins = fold_read_from_vector (cop0, sel[at]);
6175 else
6176 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6177 }
6178 }
6179 }
6180
6181 /* Generate a canonical form of the selector. */
6182 if (!ins && sel.encoding () != builder)
6183 {
6184 /* Some targets are deficient and fail to expand a single
6185 argument permutation while still allowing an equivalent
6186 2-argument version. */
6187 tree oldop2 = op2;
6188 if (sel.ninputs () == 2
6189 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6190 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6191 else
6192 {
6193 vec_perm_indices sel2 (builder, 2, nelts);
6194 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6195 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6196 else
6197 /* Not directly supported with either encoding,
6198 so use the preferred form. */
6199 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6200 }
6201 if (!operand_equal_p (op2, oldop2, 0))
6202 changed = true;
6203 }
6204 }
6205 (if (ins)
6206 (bit_insert { op0; } { ins; }
6207 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
6208 (if (changed)
6209 (vec_perm { op0; } { op1; } { op2; }))))))))))
6210
6211 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6212
6213 (match vec_same_elem_p
6214 @0
6215 (if (uniform_vector_p (@0))))
6216
6217 (match vec_same_elem_p
6218 (vec_duplicate @0))
6219
6220 (simplify
6221 (vec_perm vec_same_elem_p@0 @0 @1)
6222 @0)
6223
6224 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6225 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6226 constant which when multiplied by a power of 2 contains a unique value
6227 in the top 5 or 6 bits. This is then indexed into a table which maps it
6228 to the number of trailing zeroes. */
6229 (match (ctz_table_index @1 @2 @3)
6230 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))