Add IFN_COND_{MUL,DIV,MOD,RDIV}
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
80 plus minus
81 mult trunc_div trunc_mod rdiv
82 min max
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
89
90 /* As opposed to convert?, this still creates a single pattern, so
91 it is not a suitable replacement for convert? in all cases. */
92 (match (nop_convert @0)
93 (convert @0)
94 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
95 (match (nop_convert @0)
96 (view_convert @0)
97 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
98 && known_eq (TYPE_VECTOR_SUBPARTS (type),
99 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
100 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
101 /* This one has to be last, or it shadows the others. */
102 (match (nop_convert @0)
103 @0)
104
105 /* Simplifications of operations with one constant operand and
106 simplifications to constants or single values. */
107
108 (for op (plus pointer_plus minus bit_ior bit_xor)
109 (simplify
110 (op @0 integer_zerop)
111 (non_lvalue @0)))
112
113 /* 0 +p index -> (type)index */
114 (simplify
115 (pointer_plus integer_zerop @1)
116 (non_lvalue (convert @1)))
117
118 /* ptr - 0 -> (type)ptr */
119 (simplify
120 (pointer_diff @0 integer_zerop)
121 (convert @0))
122
123 /* See if ARG1 is zero and X + ARG1 reduces to X.
124 Likewise if the operands are reversed. */
125 (simplify
126 (plus:c @0 real_zerop@1)
127 (if (fold_real_zero_addition_p (type, @1, 0))
128 (non_lvalue @0)))
129
130 /* See if ARG1 is zero and X - ARG1 reduces to X. */
131 (simplify
132 (minus @0 real_zerop@1)
133 (if (fold_real_zero_addition_p (type, @1, 1))
134 (non_lvalue @0)))
135
136 /* Simplify x - x.
137 This is unsafe for certain floats even in non-IEEE formats.
138 In IEEE, it is unsafe because it does wrong for NaNs.
139 Also note that operand_equal_p is always false if an operand
140 is volatile. */
141 (simplify
142 (minus @0 @0)
143 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
144 { build_zero_cst (type); }))
145 (simplify
146 (pointer_diff @@0 @0)
147 { build_zero_cst (type); })
148
149 (simplify
150 (mult @0 integer_zerop@1)
151 @1)
152
153 /* Maybe fold x * 0 to 0. The expressions aren't the same
154 when x is NaN, since x * 0 is also NaN. Nor are they the
155 same in modes with signed zeros, since multiplying a
156 negative value by 0 gives -0, not +0. */
157 (simplify
158 (mult @0 real_zerop@1)
159 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
160 @1))
161
162 /* In IEEE floating point, x*1 is not equivalent to x for snans.
163 Likewise for complex arithmetic with signed zeros. */
164 (simplify
165 (mult @0 real_onep)
166 (if (!HONOR_SNANS (type)
167 && (!HONOR_SIGNED_ZEROS (type)
168 || !COMPLEX_FLOAT_TYPE_P (type)))
169 (non_lvalue @0)))
170
171 /* Transform x * -1.0 into -x. */
172 (simplify
173 (mult @0 real_minus_onep)
174 (if (!HONOR_SNANS (type)
175 && (!HONOR_SIGNED_ZEROS (type)
176 || !COMPLEX_FLOAT_TYPE_P (type)))
177 (negate @0)))
178
179 (for cmp (gt ge lt le)
180 outp (convert convert negate negate)
181 outn (negate negate convert convert)
182 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
183 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
184 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
185 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
186 (simplify
187 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
188 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
189 && types_match (type, TREE_TYPE (@0)))
190 (switch
191 (if (types_match (type, float_type_node))
192 (BUILT_IN_COPYSIGNF @1 (outp @0)))
193 (if (types_match (type, double_type_node))
194 (BUILT_IN_COPYSIGN @1 (outp @0)))
195 (if (types_match (type, long_double_type_node))
196 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
197 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
198 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
199 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
200 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
201 (simplify
202 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
204 && types_match (type, TREE_TYPE (@0)))
205 (switch
206 (if (types_match (type, float_type_node))
207 (BUILT_IN_COPYSIGNF @1 (outn @0)))
208 (if (types_match (type, double_type_node))
209 (BUILT_IN_COPYSIGN @1 (outn @0)))
210 (if (types_match (type, long_double_type_node))
211 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
212
213 /* Transform X * copysign (1.0, X) into abs(X). */
214 (simplify
215 (mult:c @0 (COPYSIGN_ALL real_onep @0))
216 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
217 (abs @0)))
218
219 /* Transform X * copysign (1.0, -X) into -abs(X). */
220 (simplify
221 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
222 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
223 (negate (abs @0))))
224
225 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
226 (simplify
227 (COPYSIGN_ALL REAL_CST@0 @1)
228 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
229 (COPYSIGN_ALL (negate @0) @1)))
230
231 /* X * 1, X / 1 -> X. */
232 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
233 (simplify
234 (op @0 integer_onep)
235 (non_lvalue @0)))
236
237 /* (A / (1 << B)) -> (A >> B).
238 Only for unsigned A. For signed A, this would not preserve rounding
239 toward zero.
240 For example: (-1 / ( 1 << B)) != -1 >> B. */
241 (simplify
242 (trunc_div @0 (lshift integer_onep@1 @2))
243 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
244 && (!VECTOR_TYPE_P (type)
245 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
246 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
247 (rshift @0 @2)))
248
249 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
250 undefined behavior in constexpr evaluation, and assuming that the division
251 traps enables better optimizations than these anyway. */
252 (for div (trunc_div ceil_div floor_div round_div exact_div)
253 /* 0 / X is always zero. */
254 (simplify
255 (div integer_zerop@0 @1)
256 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
257 (if (!integer_zerop (@1))
258 @0))
259 /* X / -1 is -X. */
260 (simplify
261 (div @0 integer_minus_onep@1)
262 (if (!TYPE_UNSIGNED (type))
263 (negate @0)))
264 /* X / X is one. */
265 (simplify
266 (div @0 @0)
267 /* But not for 0 / 0 so that we can get the proper warnings and errors.
268 And not for _Fract types where we can't build 1. */
269 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
270 { build_one_cst (type); }))
271 /* X / abs (X) is X < 0 ? -1 : 1. */
272 (simplify
273 (div:C @0 (abs @0))
274 (if (INTEGRAL_TYPE_P (type)
275 && TYPE_OVERFLOW_UNDEFINED (type))
276 (cond (lt @0 { build_zero_cst (type); })
277 { build_minus_one_cst (type); } { build_one_cst (type); })))
278 /* X / -X is -1. */
279 (simplify
280 (div:C @0 (negate @0))
281 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
282 && TYPE_OVERFLOW_UNDEFINED (type))
283 { build_minus_one_cst (type); })))
284
285 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
286 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
287 (simplify
288 (floor_div @0 @1)
289 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
290 && TYPE_UNSIGNED (type))
291 (trunc_div @0 @1)))
292
293 /* Combine two successive divisions. Note that combining ceil_div
294 and floor_div is trickier and combining round_div even more so. */
295 (for div (trunc_div exact_div)
296 (simplify
297 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
298 (with {
299 bool overflow_p;
300 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
301 TYPE_SIGN (type), &overflow_p);
302 }
303 (if (!overflow_p)
304 (div @0 { wide_int_to_tree (type, mul); })
305 (if (TYPE_UNSIGNED (type)
306 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
307 { build_zero_cst (type); })))))
308
309 /* Combine successive multiplications. Similar to above, but handling
310 overflow is different. */
311 (simplify
312 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
313 (with {
314 bool overflow_p;
315 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
316 TYPE_SIGN (type), &overflow_p);
317 }
318 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
319 otherwise undefined overflow implies that @0 must be zero. */
320 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
321 (mult @0 { wide_int_to_tree (type, mul); }))))
322
323 /* Optimize A / A to 1.0 if we don't care about
324 NaNs or Infinities. */
325 (simplify
326 (rdiv @0 @0)
327 (if (FLOAT_TYPE_P (type)
328 && ! HONOR_NANS (type)
329 && ! HONOR_INFINITIES (type))
330 { build_one_cst (type); }))
331
332 /* Optimize -A / A to -1.0 if we don't care about
333 NaNs or Infinities. */
334 (simplify
335 (rdiv:C @0 (negate @0))
336 (if (FLOAT_TYPE_P (type)
337 && ! HONOR_NANS (type)
338 && ! HONOR_INFINITIES (type))
339 { build_minus_one_cst (type); }))
340
341 /* PR71078: x / abs(x) -> copysign (1.0, x) */
342 (simplify
343 (rdiv:C (convert? @0) (convert? (abs @0)))
344 (if (SCALAR_FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 (switch
348 (if (types_match (type, float_type_node))
349 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
350 (if (types_match (type, double_type_node))
351 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
352 (if (types_match (type, long_double_type_node))
353 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
354
355 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
356 (simplify
357 (rdiv @0 real_onep)
358 (if (!HONOR_SNANS (type))
359 (non_lvalue @0)))
360
361 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
362 (simplify
363 (rdiv @0 real_minus_onep)
364 (if (!HONOR_SNANS (type))
365 (negate @0)))
366
367 (if (flag_reciprocal_math)
368 /* Convert (A/B)/C to A/(B*C). */
369 (simplify
370 (rdiv (rdiv:s @0 @1) @2)
371 (rdiv @0 (mult @1 @2)))
372
373 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
374 (simplify
375 (rdiv @0 (mult:s @1 REAL_CST@2))
376 (with
377 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
378 (if (tem)
379 (rdiv (mult @0 { tem; } ) @1))))
380
381 /* Convert A/(B/C) to (A/B)*C */
382 (simplify
383 (rdiv @0 (rdiv:s @1 @2))
384 (mult (rdiv @0 @1) @2)))
385
386 /* Simplify x / (- y) to -x / y. */
387 (simplify
388 (rdiv @0 (negate @1))
389 (rdiv (negate @0) @1))
390
391 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
392 (for div (trunc_div ceil_div floor_div round_div exact_div)
393 (simplify
394 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
395 (if (integer_pow2p (@2)
396 && tree_int_cst_sgn (@2) > 0
397 && tree_nop_conversion_p (type, TREE_TYPE (@0))
398 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
399 (rshift (convert @0)
400 { build_int_cst (integer_type_node,
401 wi::exact_log2 (wi::to_wide (@2))); }))))
402
403 /* If ARG1 is a constant, we can convert this to a multiply by the
404 reciprocal. This does not have the same rounding properties,
405 so only do this if -freciprocal-math. We can actually
406 always safely do it if ARG1 is a power of two, but it's hard to
407 tell if it is or not in a portable manner. */
408 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
409 (simplify
410 (rdiv @0 cst@1)
411 (if (optimize)
412 (if (flag_reciprocal_math
413 && !real_zerop (@1))
414 (with
415 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
416 (if (tem)
417 (mult @0 { tem; } )))
418 (if (cst != COMPLEX_CST)
419 (with { tree inverse = exact_inverse (type, @1); }
420 (if (inverse)
421 (mult @0 { inverse; } ))))))))
422
423 (for mod (ceil_mod floor_mod round_mod trunc_mod)
424 /* 0 % X is always zero. */
425 (simplify
426 (mod integer_zerop@0 @1)
427 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
428 (if (!integer_zerop (@1))
429 @0))
430 /* X % 1 is always zero. */
431 (simplify
432 (mod @0 integer_onep)
433 { build_zero_cst (type); })
434 /* X % -1 is zero. */
435 (simplify
436 (mod @0 integer_minus_onep@1)
437 (if (!TYPE_UNSIGNED (type))
438 { build_zero_cst (type); }))
439 /* X % X is zero. */
440 (simplify
441 (mod @0 @0)
442 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
443 (if (!integer_zerop (@0))
444 { build_zero_cst (type); }))
445 /* (X % Y) % Y is just X % Y. */
446 (simplify
447 (mod (mod@2 @0 @1) @1)
448 @2)
449 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
450 (simplify
451 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
452 (if (ANY_INTEGRAL_TYPE_P (type)
453 && TYPE_OVERFLOW_UNDEFINED (type)
454 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
455 TYPE_SIGN (type)))
456 { build_zero_cst (type); })))
457
458 /* X % -C is the same as X % C. */
459 (simplify
460 (trunc_mod @0 INTEGER_CST@1)
461 (if (TYPE_SIGN (type) == SIGNED
462 && !TREE_OVERFLOW (@1)
463 && wi::neg_p (wi::to_wide (@1))
464 && !TYPE_OVERFLOW_TRAPS (type)
465 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
466 && !sign_bit_p (@1, @1))
467 (trunc_mod @0 (negate @1))))
468
469 /* X % -Y is the same as X % Y. */
470 (simplify
471 (trunc_mod @0 (convert? (negate @1)))
472 (if (INTEGRAL_TYPE_P (type)
473 && !TYPE_UNSIGNED (type)
474 && !TYPE_OVERFLOW_TRAPS (type)
475 && tree_nop_conversion_p (type, TREE_TYPE (@1))
476 /* Avoid this transformation if X might be INT_MIN or
477 Y might be -1, because we would then change valid
478 INT_MIN % -(-1) into invalid INT_MIN % -1. */
479 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
480 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
481 (TREE_TYPE (@1))))))
482 (trunc_mod @0 (convert @1))))
483
484 /* X - (X / Y) * Y is the same as X % Y. */
485 (simplify
486 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
487 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
488 (convert (trunc_mod @0 @1))))
489
490 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
491 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
492 Also optimize A % (C << N) where C is a power of 2,
493 to A & ((C << N) - 1). */
494 (match (power_of_two_cand @1)
495 INTEGER_CST@1)
496 (match (power_of_two_cand @1)
497 (lshift INTEGER_CST@1 @2))
498 (for mod (trunc_mod floor_mod)
499 (simplify
500 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
501 (if ((TYPE_UNSIGNED (type)
502 || tree_expr_nonnegative_p (@0))
503 && tree_nop_conversion_p (type, TREE_TYPE (@3))
504 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
505 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
506
507 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
508 (simplify
509 (trunc_div (mult @0 integer_pow2p@1) @1)
510 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
511 (bit_and @0 { wide_int_to_tree
512 (type, wi::mask (TYPE_PRECISION (type)
513 - wi::exact_log2 (wi::to_wide (@1)),
514 false, TYPE_PRECISION (type))); })))
515
516 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
517 (simplify
518 (mult (trunc_div @0 integer_pow2p@1) @1)
519 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
520 (bit_and @0 (negate @1))))
521
522 /* Simplify (t * 2) / 2) -> t. */
523 (for div (trunc_div ceil_div floor_div round_div exact_div)
524 (simplify
525 (div (mult:c @0 @1) @1)
526 (if (ANY_INTEGRAL_TYPE_P (type)
527 && TYPE_OVERFLOW_UNDEFINED (type))
528 @0)))
529
530 (for op (negate abs)
531 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
532 (for coss (COS COSH)
533 (simplify
534 (coss (op @0))
535 (coss @0)))
536 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
537 (for pows (POW)
538 (simplify
539 (pows (op @0) REAL_CST@1)
540 (with { HOST_WIDE_INT n; }
541 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
542 (pows @0 @1)))))
543 /* Likewise for powi. */
544 (for pows (POWI)
545 (simplify
546 (pows (op @0) INTEGER_CST@1)
547 (if ((wi::to_wide (@1) & 1) == 0)
548 (pows @0 @1))))
549 /* Strip negate and abs from both operands of hypot. */
550 (for hypots (HYPOT)
551 (simplify
552 (hypots (op @0) @1)
553 (hypots @0 @1))
554 (simplify
555 (hypots @0 (op @1))
556 (hypots @0 @1)))
557 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
558 (for copysigns (COPYSIGN_ALL)
559 (simplify
560 (copysigns (op @0) @1)
561 (copysigns @0 @1))))
562
563 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
564 (simplify
565 (mult (abs@1 @0) @1)
566 (mult @0 @0))
567
568 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
569 (for coss (COS COSH)
570 copysigns (COPYSIGN)
571 (simplify
572 (coss (copysigns @0 @1))
573 (coss @0)))
574
575 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
576 (for pows (POW)
577 copysigns (COPYSIGN)
578 (simplify
579 (pows (copysigns @0 @2) REAL_CST@1)
580 (with { HOST_WIDE_INT n; }
581 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
582 (pows @0 @1)))))
583 /* Likewise for powi. */
584 (for pows (POWI)
585 copysigns (COPYSIGN)
586 (simplify
587 (pows (copysigns @0 @2) INTEGER_CST@1)
588 (if ((wi::to_wide (@1) & 1) == 0)
589 (pows @0 @1))))
590
591 (for hypots (HYPOT)
592 copysigns (COPYSIGN)
593 /* hypot(copysign(x, y), z) -> hypot(x, z). */
594 (simplify
595 (hypots (copysigns @0 @1) @2)
596 (hypots @0 @2))
597 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
598 (simplify
599 (hypots @0 (copysigns @1 @2))
600 (hypots @0 @1)))
601
602 /* copysign(x, CST) -> [-]abs (x). */
603 (for copysigns (COPYSIGN_ALL)
604 (simplify
605 (copysigns @0 REAL_CST@1)
606 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
607 (negate (abs @0))
608 (abs @0))))
609
610 /* copysign(copysign(x, y), z) -> copysign(x, z). */
611 (for copysigns (COPYSIGN_ALL)
612 (simplify
613 (copysigns (copysigns @0 @1) @2)
614 (copysigns @0 @2)))
615
616 /* copysign(x,y)*copysign(x,y) -> x*x. */
617 (for copysigns (COPYSIGN_ALL)
618 (simplify
619 (mult (copysigns@2 @0 @1) @2)
620 (mult @0 @0)))
621
622 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
623 (for ccoss (CCOS CCOSH)
624 (simplify
625 (ccoss (negate @0))
626 (ccoss @0)))
627
628 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
629 (for ops (conj negate)
630 (for cabss (CABS)
631 (simplify
632 (cabss (ops @0))
633 (cabss @0))))
634
635 /* Fold (a * (1 << b)) into (a << b) */
636 (simplify
637 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
638 (if (! FLOAT_TYPE_P (type)
639 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
640 (lshift @0 @2)))
641
642 /* Fold (1 << (C - x)) where C = precision(type) - 1
643 into ((1 << C) >> x). */
644 (simplify
645 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
646 (if (INTEGRAL_TYPE_P (type)
647 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
648 && single_use (@1))
649 (if (TYPE_UNSIGNED (type))
650 (rshift (lshift @0 @2) @3)
651 (with
652 { tree utype = unsigned_type_for (type); }
653 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
654
655 /* Fold (C1/X)*C2 into (C1*C2)/X. */
656 (simplify
657 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
658 (if (flag_associative_math
659 && single_use (@3))
660 (with
661 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
662 (if (tem)
663 (rdiv { tem; } @1)))))
664
665 /* Simplify ~X & X as zero. */
666 (simplify
667 (bit_and:c (convert? @0) (convert? (bit_not @0)))
668 { build_zero_cst (type); })
669
670 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
671 (simplify
672 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
673 (if (TYPE_UNSIGNED (type))
674 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
675
676 (for bitop (bit_and bit_ior)
677 cmp (eq ne)
678 /* PR35691: Transform
679 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
680 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
681 (simplify
682 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
683 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
684 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
685 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
686 (cmp (bit_ior @0 (convert @1)) @2)))
687 /* Transform:
688 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
689 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
690 (simplify
691 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
692 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
693 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
694 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
695 (cmp (bit_and @0 (convert @1)) @2))))
696
697 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
698 (simplify
699 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
700 (minus (bit_xor @0 @1) @1))
701 (simplify
702 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
703 (if (~wi::to_wide (@2) == wi::to_wide (@1))
704 (minus (bit_xor @0 @1) @1)))
705
706 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
707 (simplify
708 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
709 (minus @1 (bit_xor @0 @1)))
710
711 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
712 (for op (bit_ior bit_xor plus)
713 (simplify
714 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
715 (bit_xor @0 @1))
716 (simplify
717 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
718 (if (~wi::to_wide (@2) == wi::to_wide (@1))
719 (bit_xor @0 @1))))
720
721 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
722 (simplify
723 (bit_ior:c (bit_xor:c @0 @1) @0)
724 (bit_ior @0 @1))
725
726 /* (a & ~b) | (a ^ b) --> a ^ b */
727 (simplify
728 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
729 @2)
730
731 /* (a & ~b) ^ ~a --> ~(a & b) */
732 (simplify
733 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
734 (bit_not (bit_and @0 @1)))
735
736 /* (a | b) & ~(a ^ b) --> a & b */
737 (simplify
738 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
739 (bit_and @0 @1))
740
741 /* a | ~(a ^ b) --> a | ~b */
742 (simplify
743 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
744 (bit_ior @0 (bit_not @1)))
745
746 /* (a | b) | (a &^ b) --> a | b */
747 (for op (bit_and bit_xor)
748 (simplify
749 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
750 @2))
751
752 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
753 (simplify
754 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
755 @2)
756
757 /* ~(~a & b) --> a | ~b */
758 (simplify
759 (bit_not (bit_and:cs (bit_not @0) @1))
760 (bit_ior @0 (bit_not @1)))
761
762 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
763 #if GIMPLE
764 (simplify
765 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
766 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
767 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
768 (bit_xor @0 @1)))
769 #endif
770
771 /* X % Y is smaller than Y. */
772 (for cmp (lt ge)
773 (simplify
774 (cmp (trunc_mod @0 @1) @1)
775 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
776 { constant_boolean_node (cmp == LT_EXPR, type); })))
777 (for cmp (gt le)
778 (simplify
779 (cmp @1 (trunc_mod @0 @1))
780 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
781 { constant_boolean_node (cmp == GT_EXPR, type); })))
782
783 /* x | ~0 -> ~0 */
784 (simplify
785 (bit_ior @0 integer_all_onesp@1)
786 @1)
787
788 /* x | 0 -> x */
789 (simplify
790 (bit_ior @0 integer_zerop)
791 @0)
792
793 /* x & 0 -> 0 */
794 (simplify
795 (bit_and @0 integer_zerop@1)
796 @1)
797
798 /* ~x | x -> -1 */
799 /* ~x ^ x -> -1 */
800 /* ~x + x -> -1 */
801 (for op (bit_ior bit_xor plus)
802 (simplify
803 (op:c (convert? @0) (convert? (bit_not @0)))
804 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
805
806 /* x ^ x -> 0 */
807 (simplify
808 (bit_xor @0 @0)
809 { build_zero_cst (type); })
810
811 /* Canonicalize X ^ ~0 to ~X. */
812 (simplify
813 (bit_xor @0 integer_all_onesp@1)
814 (bit_not @0))
815
816 /* x & ~0 -> x */
817 (simplify
818 (bit_and @0 integer_all_onesp)
819 (non_lvalue @0))
820
821 /* x & x -> x, x | x -> x */
822 (for bitop (bit_and bit_ior)
823 (simplify
824 (bitop @0 @0)
825 (non_lvalue @0)))
826
827 /* x & C -> x if we know that x & ~C == 0. */
828 #if GIMPLE
829 (simplify
830 (bit_and SSA_NAME@0 INTEGER_CST@1)
831 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
832 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
833 @0))
834 #endif
835
836 /* x + (x & 1) -> (x + 1) & ~1 */
837 (simplify
838 (plus:c @0 (bit_and:s @0 integer_onep@1))
839 (bit_and (plus @0 @1) (bit_not @1)))
840
841 /* x & ~(x & y) -> x & ~y */
842 /* x | ~(x | y) -> x | ~y */
843 (for bitop (bit_and bit_ior)
844 (simplify
845 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
846 (bitop @0 (bit_not @1))))
847
848 /* (x | y) & ~x -> y & ~x */
849 /* (x & y) | ~x -> y | ~x */
850 (for bitop (bit_and bit_ior)
851 rbitop (bit_ior bit_and)
852 (simplify
853 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
854 (bitop @1 @2)))
855
856 /* (x & y) ^ (x | y) -> x ^ y */
857 (simplify
858 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
859 (bit_xor @0 @1))
860
861 /* (x ^ y) ^ (x | y) -> x & y */
862 (simplify
863 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
864 (bit_and @0 @1))
865
866 /* (x & y) + (x ^ y) -> x | y */
867 /* (x & y) | (x ^ y) -> x | y */
868 /* (x & y) ^ (x ^ y) -> x | y */
869 (for op (plus bit_ior bit_xor)
870 (simplify
871 (op:c (bit_and @0 @1) (bit_xor @0 @1))
872 (bit_ior @0 @1)))
873
874 /* (x & y) + (x | y) -> x + y */
875 (simplify
876 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
877 (plus @0 @1))
878
879 /* (x + y) - (x | y) -> x & y */
880 (simplify
881 (minus (plus @0 @1) (bit_ior @0 @1))
882 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
883 && !TYPE_SATURATING (type))
884 (bit_and @0 @1)))
885
886 /* (x + y) - (x & y) -> x | y */
887 (simplify
888 (minus (plus @0 @1) (bit_and @0 @1))
889 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
890 && !TYPE_SATURATING (type))
891 (bit_ior @0 @1)))
892
893 /* (x | y) - (x ^ y) -> x & y */
894 (simplify
895 (minus (bit_ior @0 @1) (bit_xor @0 @1))
896 (bit_and @0 @1))
897
898 /* (x | y) - (x & y) -> x ^ y */
899 (simplify
900 (minus (bit_ior @0 @1) (bit_and @0 @1))
901 (bit_xor @0 @1))
902
903 /* (x | y) & ~(x & y) -> x ^ y */
904 (simplify
905 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
906 (bit_xor @0 @1))
907
908 /* (x | y) & (~x ^ y) -> x & y */
909 (simplify
910 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
911 (bit_and @0 @1))
912
913 /* ~x & ~y -> ~(x | y)
914 ~x | ~y -> ~(x & y) */
915 (for op (bit_and bit_ior)
916 rop (bit_ior bit_and)
917 (simplify
918 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
919 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
921 (bit_not (rop (convert @0) (convert @1))))))
922
923 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
924 with a constant, and the two constants have no bits in common,
925 we should treat this as a BIT_IOR_EXPR since this may produce more
926 simplifications. */
927 (for op (bit_xor plus)
928 (simplify
929 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
930 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
931 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
932 && tree_nop_conversion_p (type, TREE_TYPE (@2))
933 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
934 (bit_ior (convert @4) (convert @5)))))
935
936 /* (X | Y) ^ X -> Y & ~ X*/
937 (simplify
938 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
939 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
940 (convert (bit_and @1 (bit_not @0)))))
941
942 /* Convert ~X ^ ~Y to X ^ Y. */
943 (simplify
944 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
945 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
946 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
947 (bit_xor (convert @0) (convert @1))))
948
949 /* Convert ~X ^ C to X ^ ~C. */
950 (simplify
951 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
952 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
953 (bit_xor (convert @0) (bit_not @1))))
954
955 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
956 (for opo (bit_and bit_xor)
957 opi (bit_xor bit_and)
958 (simplify
959 (opo:c (opi:c @0 @1) @1)
960 (bit_and (bit_not @0) @1)))
961
962 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
963 operands are another bit-wise operation with a common input. If so,
964 distribute the bit operations to save an operation and possibly two if
965 constants are involved. For example, convert
966 (A | B) & (A | C) into A | (B & C)
967 Further simplification will occur if B and C are constants. */
968 (for op (bit_and bit_ior bit_xor)
969 rop (bit_ior bit_and bit_and)
970 (simplify
971 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
972 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
973 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
974 (rop (convert @0) (op (convert @1) (convert @2))))))
975
976 /* Some simple reassociation for bit operations, also handled in reassoc. */
977 /* (X & Y) & Y -> X & Y
978 (X | Y) | Y -> X | Y */
979 (for op (bit_and bit_ior)
980 (simplify
981 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
982 @2))
983 /* (X ^ Y) ^ Y -> X */
984 (simplify
985 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
986 (convert @0))
987 /* (X & Y) & (X & Z) -> (X & Y) & Z
988 (X | Y) | (X | Z) -> (X | Y) | Z */
989 (for op (bit_and bit_ior)
990 (simplify
991 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
992 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
993 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
994 (if (single_use (@5) && single_use (@6))
995 (op @3 (convert @2))
996 (if (single_use (@3) && single_use (@4))
997 (op (convert @1) @5))))))
998 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
999 (simplify
1000 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1001 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1002 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1003 (bit_xor (convert @1) (convert @2))))
1004
1005 (simplify
1006 (abs (abs@1 @0))
1007 @1)
1008 (simplify
1009 (abs (negate @0))
1010 (abs @0))
1011 (simplify
1012 (abs tree_expr_nonnegative_p@0)
1013 @0)
1014
1015 /* A few cases of fold-const.c negate_expr_p predicate. */
1016 (match negate_expr_p
1017 INTEGER_CST
1018 (if ((INTEGRAL_TYPE_P (type)
1019 && TYPE_UNSIGNED (type))
1020 || (!TYPE_OVERFLOW_SANITIZED (type)
1021 && may_negate_without_overflow_p (t)))))
1022 (match negate_expr_p
1023 FIXED_CST)
1024 (match negate_expr_p
1025 (negate @0)
1026 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1027 (match negate_expr_p
1028 REAL_CST
1029 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1030 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1031 ways. */
1032 (match negate_expr_p
1033 VECTOR_CST
1034 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1035 (match negate_expr_p
1036 (minus @0 @1)
1037 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1038 || (FLOAT_TYPE_P (type)
1039 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1040 && !HONOR_SIGNED_ZEROS (type)))))
1041
1042 /* (-A) * (-B) -> A * B */
1043 (simplify
1044 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1045 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1046 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1047 (mult (convert @0) (convert (negate @1)))))
1048
1049 /* -(A + B) -> (-B) - A. */
1050 (simplify
1051 (negate (plus:c @0 negate_expr_p@1))
1052 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1053 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1054 (minus (negate @1) @0)))
1055
1056 /* -(A - B) -> B - A. */
1057 (simplify
1058 (negate (minus @0 @1))
1059 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1060 || (FLOAT_TYPE_P (type)
1061 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1062 && !HONOR_SIGNED_ZEROS (type)))
1063 (minus @1 @0)))
1064 (simplify
1065 (negate (pointer_diff @0 @1))
1066 (if (TYPE_OVERFLOW_UNDEFINED (type))
1067 (pointer_diff @1 @0)))
1068
1069 /* A - B -> A + (-B) if B is easily negatable. */
1070 (simplify
1071 (minus @0 negate_expr_p@1)
1072 (if (!FIXED_POINT_TYPE_P (type))
1073 (plus @0 (negate @1))))
1074
1075 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1076 when profitable.
1077 For bitwise binary operations apply operand conversions to the
1078 binary operation result instead of to the operands. This allows
1079 to combine successive conversions and bitwise binary operations.
1080 We combine the above two cases by using a conditional convert. */
1081 (for bitop (bit_and bit_ior bit_xor)
1082 (simplify
1083 (bitop (convert @0) (convert? @1))
1084 (if (((TREE_CODE (@1) == INTEGER_CST
1085 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1086 && int_fits_type_p (@1, TREE_TYPE (@0)))
1087 || types_match (@0, @1))
1088 /* ??? This transform conflicts with fold-const.c doing
1089 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1090 constants (if x has signed type, the sign bit cannot be set
1091 in c). This folds extension into the BIT_AND_EXPR.
1092 Restrict it to GIMPLE to avoid endless recursions. */
1093 && (bitop != BIT_AND_EXPR || GIMPLE)
1094 && (/* That's a good idea if the conversion widens the operand, thus
1095 after hoisting the conversion the operation will be narrower. */
1096 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1097 /* It's also a good idea if the conversion is to a non-integer
1098 mode. */
1099 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1100 /* Or if the precision of TO is not the same as the precision
1101 of its mode. */
1102 || !type_has_mode_precision_p (type)))
1103 (convert (bitop @0 (convert @1))))))
1104
1105 (for bitop (bit_and bit_ior)
1106 rbitop (bit_ior bit_and)
1107 /* (x | y) & x -> x */
1108 /* (x & y) | x -> x */
1109 (simplify
1110 (bitop:c (rbitop:c @0 @1) @0)
1111 @0)
1112 /* (~x | y) & x -> x & y */
1113 /* (~x & y) | x -> x | y */
1114 (simplify
1115 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1116 (bitop @0 @1)))
1117
1118 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1119 (simplify
1120 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1121 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1122
1123 /* Combine successive equal operations with constants. */
1124 (for bitop (bit_and bit_ior bit_xor)
1125 (simplify
1126 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1127 (if (!CONSTANT_CLASS_P (@0))
1128 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1129 folded to a constant. */
1130 (bitop @0 (bitop @1 @2))
1131 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1132 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1133 the values involved are such that the operation can't be decided at
1134 compile time. Try folding one of @0 or @1 with @2 to see whether
1135 that combination can be decided at compile time.
1136
1137 Keep the existing form if both folds fail, to avoid endless
1138 oscillation. */
1139 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1140 (if (cst1)
1141 (bitop @1 { cst1; })
1142 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1143 (if (cst2)
1144 (bitop @0 { cst2; }))))))))
1145
1146 /* Try simple folding for X op !X, and X op X with the help
1147 of the truth_valued_p and logical_inverted_value predicates. */
1148 (match truth_valued_p
1149 @0
1150 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1151 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1152 (match truth_valued_p
1153 (op @0 @1)))
1154 (match truth_valued_p
1155 (truth_not @0))
1156
1157 (match (logical_inverted_value @0)
1158 (truth_not @0))
1159 (match (logical_inverted_value @0)
1160 (bit_not truth_valued_p@0))
1161 (match (logical_inverted_value @0)
1162 (eq @0 integer_zerop))
1163 (match (logical_inverted_value @0)
1164 (ne truth_valued_p@0 integer_truep))
1165 (match (logical_inverted_value @0)
1166 (bit_xor truth_valued_p@0 integer_truep))
1167
1168 /* X & !X -> 0. */
1169 (simplify
1170 (bit_and:c @0 (logical_inverted_value @0))
1171 { build_zero_cst (type); })
1172 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1173 (for op (bit_ior bit_xor)
1174 (simplify
1175 (op:c truth_valued_p@0 (logical_inverted_value @0))
1176 { constant_boolean_node (true, type); }))
1177 /* X ==/!= !X is false/true. */
1178 (for op (eq ne)
1179 (simplify
1180 (op:c truth_valued_p@0 (logical_inverted_value @0))
1181 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1182
1183 /* ~~x -> x */
1184 (simplify
1185 (bit_not (bit_not @0))
1186 @0)
1187
1188 /* Convert ~ (-A) to A - 1. */
1189 (simplify
1190 (bit_not (convert? (negate @0)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1194
1195 /* Convert - (~A) to A + 1. */
1196 (simplify
1197 (negate (nop_convert (bit_not @0)))
1198 (plus (view_convert @0) { build_each_one_cst (type); }))
1199
1200 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1201 (simplify
1202 (bit_not (convert? (minus @0 integer_each_onep)))
1203 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1204 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1205 (convert (negate @0))))
1206 (simplify
1207 (bit_not (convert? (plus @0 integer_all_onesp)))
1208 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1209 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1210 (convert (negate @0))))
1211
1212 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1213 (simplify
1214 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1215 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1216 (convert (bit_xor @0 (bit_not @1)))))
1217 (simplify
1218 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1219 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1220 (convert (bit_xor @0 @1))))
1221
1222 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1223 (simplify
1224 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1225 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1226 (bit_not (bit_xor (view_convert @0) @1))))
1227
1228 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1229 (simplify
1230 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1231 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1232
1233 /* Fold A - (A & B) into ~B & A. */
1234 (simplify
1235 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1236 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1237 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1238 (convert (bit_and (bit_not @1) @0))))
1239
1240 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1241 (for cmp (gt lt ge le)
1242 (simplify
1243 (mult (convert (cmp @0 @1)) @2)
1244 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1245
1246 /* For integral types with undefined overflow and C != 0 fold
1247 x * C EQ/NE y * C into x EQ/NE y. */
1248 (for cmp (eq ne)
1249 (simplify
1250 (cmp (mult:c @0 @1) (mult:c @2 @1))
1251 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1252 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1253 && tree_expr_nonzero_p (@1))
1254 (cmp @0 @2))))
1255
1256 /* For integral types with wrapping overflow and C odd fold
1257 x * C EQ/NE y * C into x EQ/NE y. */
1258 (for cmp (eq ne)
1259 (simplify
1260 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1262 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1263 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1264 (cmp @0 @2))))
1265
1266 /* For integral types with undefined overflow and C != 0 fold
1267 x * C RELOP y * C into:
1268
1269 x RELOP y for nonnegative C
1270 y RELOP x for negative C */
1271 (for cmp (lt gt le ge)
1272 (simplify
1273 (cmp (mult:c @0 @1) (mult:c @2 @1))
1274 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1275 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1276 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1277 (cmp @0 @2)
1278 (if (TREE_CODE (@1) == INTEGER_CST
1279 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1280 (cmp @2 @0))))))
1281
1282 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1283 (for cmp (le gt)
1284 icmp (gt le)
1285 (simplify
1286 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1287 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_UNSIGNED (TREE_TYPE (@0))
1289 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1290 && (wi::to_wide (@2)
1291 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1292 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1293 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1294
1295 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1296 (for cmp (simple_comparison)
1297 (simplify
1298 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1299 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1300 (cmp @0 @1))))
1301
1302 /* X / C1 op C2 into a simple range test. */
1303 (for cmp (simple_comparison)
1304 (simplify
1305 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1306 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1307 && integer_nonzerop (@1)
1308 && !TREE_OVERFLOW (@1)
1309 && !TREE_OVERFLOW (@2))
1310 (with { tree lo, hi; bool neg_overflow;
1311 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1312 &neg_overflow); }
1313 (switch
1314 (if (code == LT_EXPR || code == GE_EXPR)
1315 (if (TREE_OVERFLOW (lo))
1316 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1317 (if (code == LT_EXPR)
1318 (lt @0 { lo; })
1319 (ge @0 { lo; }))))
1320 (if (code == LE_EXPR || code == GT_EXPR)
1321 (if (TREE_OVERFLOW (hi))
1322 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1323 (if (code == LE_EXPR)
1324 (le @0 { hi; })
1325 (gt @0 { hi; }))))
1326 (if (!lo && !hi)
1327 { build_int_cst (type, code == NE_EXPR); })
1328 (if (code == EQ_EXPR && !hi)
1329 (ge @0 { lo; }))
1330 (if (code == EQ_EXPR && !lo)
1331 (le @0 { hi; }))
1332 (if (code == NE_EXPR && !hi)
1333 (lt @0 { lo; }))
1334 (if (code == NE_EXPR && !lo)
1335 (gt @0 { hi; }))
1336 (if (GENERIC)
1337 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1338 lo, hi); })
1339 (with
1340 {
1341 tree etype = range_check_type (TREE_TYPE (@0));
1342 if (etype)
1343 {
1344 if (! TYPE_UNSIGNED (etype))
1345 etype = unsigned_type_for (etype);
1346 hi = fold_convert (etype, hi);
1347 lo = fold_convert (etype, lo);
1348 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1349 }
1350 }
1351 (if (etype && hi && !TREE_OVERFLOW (hi))
1352 (if (code == EQ_EXPR)
1353 (le (minus (convert:etype @0) { lo; }) { hi; })
1354 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1355
1356 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1357 (for op (lt le ge gt)
1358 (simplify
1359 (op (plus:c @0 @2) (plus:c @1 @2))
1360 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1361 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1362 (op @0 @1))))
1363 /* For equality and subtraction, this is also true with wrapping overflow. */
1364 (for op (eq ne minus)
1365 (simplify
1366 (op (plus:c @0 @2) (plus:c @1 @2))
1367 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1368 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1369 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1370 (op @0 @1))))
1371
1372 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1373 (for op (lt le ge gt)
1374 (simplify
1375 (op (minus @0 @2) (minus @1 @2))
1376 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1377 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1378 (op @0 @1))))
1379 /* For equality and subtraction, this is also true with wrapping overflow. */
1380 (for op (eq ne minus)
1381 (simplify
1382 (op (minus @0 @2) (minus @1 @2))
1383 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1384 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1385 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1386 (op @0 @1))))
1387 /* And for pointers... */
1388 (for op (simple_comparison)
1389 (simplify
1390 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1391 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1392 (op @0 @1))))
1393 (simplify
1394 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1395 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1396 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1397 (pointer_diff @0 @1)))
1398
1399 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1400 (for op (lt le ge gt)
1401 (simplify
1402 (op (minus @2 @0) (minus @2 @1))
1403 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1404 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1405 (op @1 @0))))
1406 /* For equality and subtraction, this is also true with wrapping overflow. */
1407 (for op (eq ne minus)
1408 (simplify
1409 (op (minus @2 @0) (minus @2 @1))
1410 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1411 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1412 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1413 (op @1 @0))))
1414 /* And for pointers... */
1415 (for op (simple_comparison)
1416 (simplify
1417 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1418 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1419 (op @1 @0))))
1420 (simplify
1421 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1422 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1423 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1424 (pointer_diff @1 @0)))
1425
1426 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1427 (for op (lt le gt ge)
1428 (simplify
1429 (op:c (plus:c@2 @0 @1) @1)
1430 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1431 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1432 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1433 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1434 /* For equality, this is also true with wrapping overflow. */
1435 (for op (eq ne)
1436 (simplify
1437 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1441 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1442 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1443 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1444 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1445 (simplify
1446 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1447 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1448 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1449 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1452 /* X - Y < X is the same as Y > 0 when there is no overflow.
1453 For equality, this is also true with wrapping overflow. */
1454 (for op (simple_comparison)
1455 (simplify
1456 (op:c @0 (minus@2 @0 @1))
1457 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1458 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1459 || ((op == EQ_EXPR || op == NE_EXPR)
1460 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1461 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1462 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1463
1464 /* Transform:
1465 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1466 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1467 */
1468 (for cmp (eq ne)
1469 ocmp (lt ge)
1470 (simplify
1471 (cmp (trunc_div @0 @1) integer_zerop)
1472 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1473 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1474 (ocmp @0 @1))))
1475
1476 /* X == C - X can never be true if C is odd. */
1477 (for cmp (eq ne)
1478 (simplify
1479 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1480 (if (TREE_INT_CST_LOW (@1) & 1)
1481 { constant_boolean_node (cmp == NE_EXPR, type); })))
1482
1483 /* Arguments on which one can call get_nonzero_bits to get the bits
1484 possibly set. */
1485 (match with_possible_nonzero_bits
1486 INTEGER_CST@0)
1487 (match with_possible_nonzero_bits
1488 SSA_NAME@0
1489 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1490 /* Slightly extended version, do not make it recursive to keep it cheap. */
1491 (match (with_possible_nonzero_bits2 @0)
1492 with_possible_nonzero_bits@0)
1493 (match (with_possible_nonzero_bits2 @0)
1494 (bit_and:c with_possible_nonzero_bits@0 @2))
1495
1496 /* Same for bits that are known to be set, but we do not have
1497 an equivalent to get_nonzero_bits yet. */
1498 (match (with_certain_nonzero_bits2 @0)
1499 INTEGER_CST@0)
1500 (match (with_certain_nonzero_bits2 @0)
1501 (bit_ior @1 INTEGER_CST@0))
1502
1503 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1504 (for cmp (eq ne)
1505 (simplify
1506 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1507 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1508 { constant_boolean_node (cmp == NE_EXPR, type); })))
1509
1510 /* ((X inner_op C0) outer_op C1)
1511 With X being a tree where value_range has reasoned certain bits to always be
1512 zero throughout its computed value range,
1513 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1514 where zero_mask has 1's for all bits that are sure to be 0 in
1515 and 0's otherwise.
1516 if (inner_op == '^') C0 &= ~C1;
1517 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1518 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1519 */
1520 (for inner_op (bit_ior bit_xor)
1521 outer_op (bit_xor bit_ior)
1522 (simplify
1523 (outer_op
1524 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1525 (with
1526 {
1527 bool fail = false;
1528 wide_int zero_mask_not;
1529 wide_int C0;
1530 wide_int cst_emit;
1531
1532 if (TREE_CODE (@2) == SSA_NAME)
1533 zero_mask_not = get_nonzero_bits (@2);
1534 else
1535 fail = true;
1536
1537 if (inner_op == BIT_XOR_EXPR)
1538 {
1539 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1540 cst_emit = C0 | wi::to_wide (@1);
1541 }
1542 else
1543 {
1544 C0 = wi::to_wide (@0);
1545 cst_emit = C0 ^ wi::to_wide (@1);
1546 }
1547 }
1548 (if (!fail && (C0 & zero_mask_not) == 0)
1549 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1550 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1551 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1552
1553 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1554 (simplify
1555 (pointer_plus (pointer_plus:s @0 @1) @3)
1556 (pointer_plus @0 (plus @1 @3)))
1557
1558 /* Pattern match
1559 tem1 = (long) ptr1;
1560 tem2 = (long) ptr2;
1561 tem3 = tem2 - tem1;
1562 tem4 = (unsigned long) tem3;
1563 tem5 = ptr1 + tem4;
1564 and produce
1565 tem5 = ptr2; */
1566 (simplify
1567 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1568 /* Conditionally look through a sign-changing conversion. */
1569 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1570 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1571 || (GENERIC && type == TREE_TYPE (@1))))
1572 @1))
1573 (simplify
1574 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1575 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1576 (convert @1)))
1577
1578 /* Pattern match
1579 tem = (sizetype) ptr;
1580 tem = tem & algn;
1581 tem = -tem;
1582 ... = ptr p+ tem;
1583 and produce the simpler and easier to analyze with respect to alignment
1584 ... = ptr & ~algn; */
1585 (simplify
1586 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1587 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1588 (bit_and @0 { algn; })))
1589
1590 /* Try folding difference of addresses. */
1591 (simplify
1592 (minus (convert ADDR_EXPR@0) (convert @1))
1593 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1594 (with { poly_int64 diff; }
1595 (if (ptr_difference_const (@0, @1, &diff))
1596 { build_int_cst_type (type, diff); }))))
1597 (simplify
1598 (minus (convert @0) (convert ADDR_EXPR@1))
1599 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1600 (with { poly_int64 diff; }
1601 (if (ptr_difference_const (@0, @1, &diff))
1602 { build_int_cst_type (type, diff); }))))
1603 (simplify
1604 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1605 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1606 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1607 (with { poly_int64 diff; }
1608 (if (ptr_difference_const (@0, @1, &diff))
1609 { build_int_cst_type (type, diff); }))))
1610 (simplify
1611 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1612 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1613 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1614 (with { poly_int64 diff; }
1615 (if (ptr_difference_const (@0, @1, &diff))
1616 { build_int_cst_type (type, diff); }))))
1617
1618 /* If arg0 is derived from the address of an object or function, we may
1619 be able to fold this expression using the object or function's
1620 alignment. */
1621 (simplify
1622 (bit_and (convert? @0) INTEGER_CST@1)
1623 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1624 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1625 (with
1626 {
1627 unsigned int align;
1628 unsigned HOST_WIDE_INT bitpos;
1629 get_pointer_alignment_1 (@0, &align, &bitpos);
1630 }
1631 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1632 { wide_int_to_tree (type, (wi::to_wide (@1)
1633 & (bitpos / BITS_PER_UNIT))); }))))
1634
1635
1636 /* We can't reassociate at all for saturating types. */
1637 (if (!TYPE_SATURATING (type))
1638
1639 /* Contract negates. */
1640 /* A + (-B) -> A - B */
1641 (simplify
1642 (plus:c @0 (convert? (negate @1)))
1643 /* Apply STRIP_NOPS on the negate. */
1644 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1645 && !TYPE_OVERFLOW_SANITIZED (type))
1646 (with
1647 {
1648 tree t1 = type;
1649 if (INTEGRAL_TYPE_P (type)
1650 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1651 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1652 }
1653 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1654 /* A - (-B) -> A + B */
1655 (simplify
1656 (minus @0 (convert? (negate @1)))
1657 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1658 && !TYPE_OVERFLOW_SANITIZED (type))
1659 (with
1660 {
1661 tree t1 = type;
1662 if (INTEGRAL_TYPE_P (type)
1663 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1664 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1665 }
1666 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1667 /* -(T)(-A) -> (T)A
1668 Sign-extension is ok except for INT_MIN, which thankfully cannot
1669 happen without overflow. */
1670 (simplify
1671 (negate (convert (negate @1)))
1672 (if (INTEGRAL_TYPE_P (type)
1673 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1674 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1675 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1676 && !TYPE_OVERFLOW_SANITIZED (type)
1677 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1678 (convert @1)))
1679 (simplify
1680 (negate (convert negate_expr_p@1))
1681 (if (SCALAR_FLOAT_TYPE_P (type)
1682 && ((DECIMAL_FLOAT_TYPE_P (type)
1683 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1684 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1685 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1686 (convert (negate @1))))
1687 (simplify
1688 (negate (nop_convert (negate @1)))
1689 (if (!TYPE_OVERFLOW_SANITIZED (type)
1690 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1691 (view_convert @1)))
1692
1693 /* We can't reassociate floating-point unless -fassociative-math
1694 or fixed-point plus or minus because of saturation to +-Inf. */
1695 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1696 && !FIXED_POINT_TYPE_P (type))
1697
1698 /* Match patterns that allow contracting a plus-minus pair
1699 irrespective of overflow issues. */
1700 /* (A +- B) - A -> +- B */
1701 /* (A +- B) -+ B -> A */
1702 /* A - (A +- B) -> -+ B */
1703 /* A +- (B -+ A) -> +- B */
1704 (simplify
1705 (minus (plus:c @0 @1) @0)
1706 @1)
1707 (simplify
1708 (minus (minus @0 @1) @0)
1709 (negate @1))
1710 (simplify
1711 (plus:c (minus @0 @1) @1)
1712 @0)
1713 (simplify
1714 (minus @0 (plus:c @0 @1))
1715 (negate @1))
1716 (simplify
1717 (minus @0 (minus @0 @1))
1718 @1)
1719 /* (A +- B) + (C - A) -> C +- B */
1720 /* (A + B) - (A - C) -> B + C */
1721 /* More cases are handled with comparisons. */
1722 (simplify
1723 (plus:c (plus:c @0 @1) (minus @2 @0))
1724 (plus @2 @1))
1725 (simplify
1726 (plus:c (minus @0 @1) (minus @2 @0))
1727 (minus @2 @1))
1728 (simplify
1729 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1730 (if (TYPE_OVERFLOW_UNDEFINED (type)
1731 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1732 (pointer_diff @2 @1)))
1733 (simplify
1734 (minus (plus:c @0 @1) (minus @0 @2))
1735 (plus @1 @2))
1736
1737 /* (A +- CST1) +- CST2 -> A + CST3
1738 Use view_convert because it is safe for vectors and equivalent for
1739 scalars. */
1740 (for outer_op (plus minus)
1741 (for inner_op (plus minus)
1742 neg_inner_op (minus plus)
1743 (simplify
1744 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1745 CONSTANT_CLASS_P@2)
1746 /* If one of the types wraps, use that one. */
1747 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1748 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1749 forever if something doesn't simplify into a constant. */
1750 (if (!CONSTANT_CLASS_P (@0))
1751 (if (outer_op == PLUS_EXPR)
1752 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1753 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1754 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1755 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1756 (if (outer_op == PLUS_EXPR)
1757 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1758 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1759 /* If the constant operation overflows we cannot do the transform
1760 directly as we would introduce undefined overflow, for example
1761 with (a - 1) + INT_MIN. */
1762 (if (types_match (type, @0))
1763 (with { tree cst = const_binop (outer_op == inner_op
1764 ? PLUS_EXPR : MINUS_EXPR,
1765 type, @1, @2); }
1766 (if (cst && !TREE_OVERFLOW (cst))
1767 (inner_op @0 { cst; } )
1768 /* X+INT_MAX+1 is X-INT_MIN. */
1769 (if (INTEGRAL_TYPE_P (type) && cst
1770 && wi::to_wide (cst) == wi::min_value (type))
1771 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1772 /* Last resort, use some unsigned type. */
1773 (with { tree utype = unsigned_type_for (type); }
1774 (view_convert (inner_op
1775 (view_convert:utype @0)
1776 (view_convert:utype
1777 { drop_tree_overflow (cst); })))))))))))))
1778
1779 /* (CST1 - A) +- CST2 -> CST3 - A */
1780 (for outer_op (plus minus)
1781 (simplify
1782 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1783 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1784 (if (cst && !TREE_OVERFLOW (cst))
1785 (minus { cst; } @0)))))
1786
1787 /* CST1 - (CST2 - A) -> CST3 + A */
1788 (simplify
1789 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1790 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1791 (if (cst && !TREE_OVERFLOW (cst))
1792 (plus { cst; } @0))))
1793
1794 /* ~A + A -> -1 */
1795 (simplify
1796 (plus:c (bit_not @0) @0)
1797 (if (!TYPE_OVERFLOW_TRAPS (type))
1798 { build_all_ones_cst (type); }))
1799
1800 /* ~A + 1 -> -A */
1801 (simplify
1802 (plus (convert? (bit_not @0)) integer_each_onep)
1803 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1804 (negate (convert @0))))
1805
1806 /* -A - 1 -> ~A */
1807 (simplify
1808 (minus (convert? (negate @0)) integer_each_onep)
1809 (if (!TYPE_OVERFLOW_TRAPS (type)
1810 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1811 (bit_not (convert @0))))
1812
1813 /* -1 - A -> ~A */
1814 (simplify
1815 (minus integer_all_onesp @0)
1816 (bit_not @0))
1817
1818 /* (T)(P + A) - (T)P -> (T) A */
1819 (simplify
1820 (minus (convert (plus:c @@0 @1))
1821 (convert? @0))
1822 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1823 /* For integer types, if A has a smaller type
1824 than T the result depends on the possible
1825 overflow in P + A.
1826 E.g. T=size_t, A=(unsigned)429497295, P>0.
1827 However, if an overflow in P + A would cause
1828 undefined behavior, we can assume that there
1829 is no overflow. */
1830 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1831 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1832 (convert @1)))
1833 (simplify
1834 (minus (convert (pointer_plus @@0 @1))
1835 (convert @0))
1836 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1837 /* For pointer types, if the conversion of A to the
1838 final type requires a sign- or zero-extension,
1839 then we have to punt - it is not defined which
1840 one is correct. */
1841 || (POINTER_TYPE_P (TREE_TYPE (@0))
1842 && TREE_CODE (@1) == INTEGER_CST
1843 && tree_int_cst_sign_bit (@1) == 0))
1844 (convert @1)))
1845 (simplify
1846 (pointer_diff (pointer_plus @@0 @1) @0)
1847 /* The second argument of pointer_plus must be interpreted as signed, and
1848 thus sign-extended if necessary. */
1849 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1850 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1851 second arg is unsigned even when we need to consider it as signed,
1852 we don't want to diagnose overflow here. */
1853 (convert (view_convert:stype @1))))
1854
1855 /* (T)P - (T)(P + A) -> -(T) A */
1856 (simplify
1857 (minus (convert? @0)
1858 (convert (plus:c @@0 @1)))
1859 (if (INTEGRAL_TYPE_P (type)
1860 && TYPE_OVERFLOW_UNDEFINED (type)
1861 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1862 (with { tree utype = unsigned_type_for (type); }
1863 (convert (negate (convert:utype @1))))
1864 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1865 /* For integer types, if A has a smaller type
1866 than T the result depends on the possible
1867 overflow in P + A.
1868 E.g. T=size_t, A=(unsigned)429497295, P>0.
1869 However, if an overflow in P + A would cause
1870 undefined behavior, we can assume that there
1871 is no overflow. */
1872 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1873 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1874 (negate (convert @1)))))
1875 (simplify
1876 (minus (convert @0)
1877 (convert (pointer_plus @@0 @1)))
1878 (if (INTEGRAL_TYPE_P (type)
1879 && TYPE_OVERFLOW_UNDEFINED (type)
1880 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1881 (with { tree utype = unsigned_type_for (type); }
1882 (convert (negate (convert:utype @1))))
1883 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1884 /* For pointer types, if the conversion of A to the
1885 final type requires a sign- or zero-extension,
1886 then we have to punt - it is not defined which
1887 one is correct. */
1888 || (POINTER_TYPE_P (TREE_TYPE (@0))
1889 && TREE_CODE (@1) == INTEGER_CST
1890 && tree_int_cst_sign_bit (@1) == 0))
1891 (negate (convert @1)))))
1892 (simplify
1893 (pointer_diff @0 (pointer_plus @@0 @1))
1894 /* The second argument of pointer_plus must be interpreted as signed, and
1895 thus sign-extended if necessary. */
1896 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1897 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1898 second arg is unsigned even when we need to consider it as signed,
1899 we don't want to diagnose overflow here. */
1900 (negate (convert (view_convert:stype @1)))))
1901
1902 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1903 (simplify
1904 (minus (convert (plus:c @@0 @1))
1905 (convert (plus:c @0 @2)))
1906 (if (INTEGRAL_TYPE_P (type)
1907 && TYPE_OVERFLOW_UNDEFINED (type)
1908 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1909 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1910 (with { tree utype = unsigned_type_for (type); }
1911 (convert (minus (convert:utype @1) (convert:utype @2))))
1912 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1913 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1914 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1915 /* For integer types, if A has a smaller type
1916 than T the result depends on the possible
1917 overflow in P + A.
1918 E.g. T=size_t, A=(unsigned)429497295, P>0.
1919 However, if an overflow in P + A would cause
1920 undefined behavior, we can assume that there
1921 is no overflow. */
1922 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1923 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1924 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1925 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1926 (minus (convert @1) (convert @2)))))
1927 (simplify
1928 (minus (convert (pointer_plus @@0 @1))
1929 (convert (pointer_plus @0 @2)))
1930 (if (INTEGRAL_TYPE_P (type)
1931 && TYPE_OVERFLOW_UNDEFINED (type)
1932 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1933 (with { tree utype = unsigned_type_for (type); }
1934 (convert (minus (convert:utype @1) (convert:utype @2))))
1935 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1936 /* For pointer types, if the conversion of A to the
1937 final type requires a sign- or zero-extension,
1938 then we have to punt - it is not defined which
1939 one is correct. */
1940 || (POINTER_TYPE_P (TREE_TYPE (@0))
1941 && TREE_CODE (@1) == INTEGER_CST
1942 && tree_int_cst_sign_bit (@1) == 0
1943 && TREE_CODE (@2) == INTEGER_CST
1944 && tree_int_cst_sign_bit (@2) == 0))
1945 (minus (convert @1) (convert @2)))))
1946 (simplify
1947 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1948 /* The second argument of pointer_plus must be interpreted as signed, and
1949 thus sign-extended if necessary. */
1950 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1951 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1952 second arg is unsigned even when we need to consider it as signed,
1953 we don't want to diagnose overflow here. */
1954 (minus (convert (view_convert:stype @1))
1955 (convert (view_convert:stype @2)))))))
1956
1957 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1958 Modeled after fold_plusminus_mult_expr. */
1959 (if (!TYPE_SATURATING (type)
1960 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1961 (for plusminus (plus minus)
1962 (simplify
1963 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1964 (if ((!ANY_INTEGRAL_TYPE_P (type)
1965 || TYPE_OVERFLOW_WRAPS (type)
1966 || (INTEGRAL_TYPE_P (type)
1967 && tree_expr_nonzero_p (@0)
1968 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1969 /* If @1 +- @2 is constant require a hard single-use on either
1970 original operand (but not on both). */
1971 && (single_use (@3) || single_use (@4)))
1972 (mult (plusminus @1 @2) @0)))
1973 /* We cannot generate constant 1 for fract. */
1974 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1975 (simplify
1976 (plusminus @0 (mult:c@3 @0 @2))
1977 (if ((!ANY_INTEGRAL_TYPE_P (type)
1978 || TYPE_OVERFLOW_WRAPS (type)
1979 || (INTEGRAL_TYPE_P (type)
1980 && tree_expr_nonzero_p (@0)
1981 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1982 && single_use (@3))
1983 (mult (plusminus { build_one_cst (type); } @2) @0)))
1984 (simplify
1985 (plusminus (mult:c@3 @0 @2) @0)
1986 (if ((!ANY_INTEGRAL_TYPE_P (type)
1987 || TYPE_OVERFLOW_WRAPS (type)
1988 || (INTEGRAL_TYPE_P (type)
1989 && tree_expr_nonzero_p (@0)
1990 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1991 && single_use (@3))
1992 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1993
1994 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1995
1996 (for minmax (min max FMIN_ALL FMAX_ALL)
1997 (simplify
1998 (minmax @0 @0)
1999 @0))
2000 /* min(max(x,y),y) -> y. */
2001 (simplify
2002 (min:c (max:c @0 @1) @1)
2003 @1)
2004 /* max(min(x,y),y) -> y. */
2005 (simplify
2006 (max:c (min:c @0 @1) @1)
2007 @1)
2008 /* max(a,-a) -> abs(a). */
2009 (simplify
2010 (max:c @0 (negate @0))
2011 (if (TREE_CODE (type) != COMPLEX_TYPE
2012 && (! ANY_INTEGRAL_TYPE_P (type)
2013 || TYPE_OVERFLOW_UNDEFINED (type)))
2014 (abs @0)))
2015 /* min(a,-a) -> -abs(a). */
2016 (simplify
2017 (min:c @0 (negate @0))
2018 (if (TREE_CODE (type) != COMPLEX_TYPE
2019 && (! ANY_INTEGRAL_TYPE_P (type)
2020 || TYPE_OVERFLOW_UNDEFINED (type)))
2021 (negate (abs @0))))
2022 (simplify
2023 (min @0 @1)
2024 (switch
2025 (if (INTEGRAL_TYPE_P (type)
2026 && TYPE_MIN_VALUE (type)
2027 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2028 @1)
2029 (if (INTEGRAL_TYPE_P (type)
2030 && TYPE_MAX_VALUE (type)
2031 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2032 @0)))
2033 (simplify
2034 (max @0 @1)
2035 (switch
2036 (if (INTEGRAL_TYPE_P (type)
2037 && TYPE_MAX_VALUE (type)
2038 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2039 @1)
2040 (if (INTEGRAL_TYPE_P (type)
2041 && TYPE_MIN_VALUE (type)
2042 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2043 @0)))
2044
2045 /* max (a, a + CST) -> a + CST where CST is positive. */
2046 /* max (a, a + CST) -> a where CST is negative. */
2047 (simplify
2048 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2049 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2050 (if (tree_int_cst_sgn (@1) > 0)
2051 @2
2052 @0)))
2053
2054 /* min (a, a + CST) -> a where CST is positive. */
2055 /* min (a, a + CST) -> a + CST where CST is negative. */
2056 (simplify
2057 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2058 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2059 (if (tree_int_cst_sgn (@1) > 0)
2060 @0
2061 @2)))
2062
2063 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2064 and the outer convert demotes the expression back to x's type. */
2065 (for minmax (min max)
2066 (simplify
2067 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2068 (if (INTEGRAL_TYPE_P (type)
2069 && types_match (@1, type) && int_fits_type_p (@2, type)
2070 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2071 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2072 (minmax @1 (convert @2)))))
2073
2074 (for minmax (FMIN_ALL FMAX_ALL)
2075 /* If either argument is NaN, return the other one. Avoid the
2076 transformation if we get (and honor) a signalling NaN. */
2077 (simplify
2078 (minmax:c @0 REAL_CST@1)
2079 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2080 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2081 @0)))
2082 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2083 functions to return the numeric arg if the other one is NaN.
2084 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2085 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2086 worry about it either. */
2087 (if (flag_finite_math_only)
2088 (simplify
2089 (FMIN_ALL @0 @1)
2090 (min @0 @1))
2091 (simplify
2092 (FMAX_ALL @0 @1)
2093 (max @0 @1)))
2094 /* min (-A, -B) -> -max (A, B) */
2095 (for minmax (min max FMIN_ALL FMAX_ALL)
2096 maxmin (max min FMAX_ALL FMIN_ALL)
2097 (simplify
2098 (minmax (negate:s@2 @0) (negate:s@3 @1))
2099 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2100 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2101 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2102 (negate (maxmin @0 @1)))))
2103 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2104 MAX (~X, ~Y) -> ~MIN (X, Y) */
2105 (for minmax (min max)
2106 maxmin (max min)
2107 (simplify
2108 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2109 (bit_not (maxmin @0 @1))))
2110
2111 /* MIN (X, Y) == X -> X <= Y */
2112 (for minmax (min min max max)
2113 cmp (eq ne eq ne )
2114 out (le gt ge lt )
2115 (simplify
2116 (cmp:c (minmax:c @0 @1) @0)
2117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2118 (out @0 @1))))
2119 /* MIN (X, 5) == 0 -> X == 0
2120 MIN (X, 5) == 7 -> false */
2121 (for cmp (eq ne)
2122 (simplify
2123 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2124 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2125 TYPE_SIGN (TREE_TYPE (@0))))
2126 { constant_boolean_node (cmp == NE_EXPR, type); }
2127 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2128 TYPE_SIGN (TREE_TYPE (@0))))
2129 (cmp @0 @2)))))
2130 (for cmp (eq ne)
2131 (simplify
2132 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2133 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2134 TYPE_SIGN (TREE_TYPE (@0))))
2135 { constant_boolean_node (cmp == NE_EXPR, type); }
2136 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2137 TYPE_SIGN (TREE_TYPE (@0))))
2138 (cmp @0 @2)))))
2139 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2140 (for minmax (min min max max min min max max )
2141 cmp (lt le gt ge gt ge lt le )
2142 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2143 (simplify
2144 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2145 (comb (cmp @0 @2) (cmp @1 @2))))
2146
2147 /* Simplifications of shift and rotates. */
2148
2149 (for rotate (lrotate rrotate)
2150 (simplify
2151 (rotate integer_all_onesp@0 @1)
2152 @0))
2153
2154 /* Optimize -1 >> x for arithmetic right shifts. */
2155 (simplify
2156 (rshift integer_all_onesp@0 @1)
2157 (if (!TYPE_UNSIGNED (type)
2158 && tree_expr_nonnegative_p (@1))
2159 @0))
2160
2161 /* Optimize (x >> c) << c into x & (-1<<c). */
2162 (simplify
2163 (lshift (rshift @0 INTEGER_CST@1) @1)
2164 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2165 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2166
2167 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2168 types. */
2169 (simplify
2170 (rshift (lshift @0 INTEGER_CST@1) @1)
2171 (if (TYPE_UNSIGNED (type)
2172 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2173 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2174
2175 (for shiftrotate (lrotate rrotate lshift rshift)
2176 (simplify
2177 (shiftrotate @0 integer_zerop)
2178 (non_lvalue @0))
2179 (simplify
2180 (shiftrotate integer_zerop@0 @1)
2181 @0)
2182 /* Prefer vector1 << scalar to vector1 << vector2
2183 if vector2 is uniform. */
2184 (for vec (VECTOR_CST CONSTRUCTOR)
2185 (simplify
2186 (shiftrotate @0 vec@1)
2187 (with { tree tem = uniform_vector_p (@1); }
2188 (if (tem)
2189 (shiftrotate @0 { tem; }))))))
2190
2191 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2192 Y is 0. Similarly for X >> Y. */
2193 #if GIMPLE
2194 (for shift (lshift rshift)
2195 (simplify
2196 (shift @0 SSA_NAME@1)
2197 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2198 (with {
2199 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2200 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2201 }
2202 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2203 @0)))))
2204 #endif
2205
2206 /* Rewrite an LROTATE_EXPR by a constant into an
2207 RROTATE_EXPR by a new constant. */
2208 (simplify
2209 (lrotate @0 INTEGER_CST@1)
2210 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2211 build_int_cst (TREE_TYPE (@1),
2212 element_precision (type)), @1); }))
2213
2214 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2215 (for op (lrotate rrotate rshift lshift)
2216 (simplify
2217 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2218 (with { unsigned int prec = element_precision (type); }
2219 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2220 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2221 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2222 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2223 (with { unsigned int low = (tree_to_uhwi (@1)
2224 + tree_to_uhwi (@2)); }
2225 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2226 being well defined. */
2227 (if (low >= prec)
2228 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2229 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2230 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2231 { build_zero_cst (type); }
2232 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2233 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2234
2235
2236 /* ((1 << A) & 1) != 0 -> A == 0
2237 ((1 << A) & 1) == 0 -> A != 0 */
2238 (for cmp (ne eq)
2239 icmp (eq ne)
2240 (simplify
2241 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2242 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2243
2244 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2245 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2246 if CST2 != 0. */
2247 (for cmp (ne eq)
2248 (simplify
2249 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2250 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2251 (if (cand < 0
2252 || (!integer_zerop (@2)
2253 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2254 { constant_boolean_node (cmp == NE_EXPR, type); }
2255 (if (!integer_zerop (@2)
2256 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2257 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2258
2259 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2260 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2261 if the new mask might be further optimized. */
2262 (for shift (lshift rshift)
2263 (simplify
2264 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2265 INTEGER_CST@2)
2266 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2267 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2268 && tree_fits_uhwi_p (@1)
2269 && tree_to_uhwi (@1) > 0
2270 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2271 (with
2272 {
2273 unsigned int shiftc = tree_to_uhwi (@1);
2274 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2275 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2276 tree shift_type = TREE_TYPE (@3);
2277 unsigned int prec;
2278
2279 if (shift == LSHIFT_EXPR)
2280 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2281 else if (shift == RSHIFT_EXPR
2282 && type_has_mode_precision_p (shift_type))
2283 {
2284 prec = TYPE_PRECISION (TREE_TYPE (@3));
2285 tree arg00 = @0;
2286 /* See if more bits can be proven as zero because of
2287 zero extension. */
2288 if (@3 != @0
2289 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2290 {
2291 tree inner_type = TREE_TYPE (@0);
2292 if (type_has_mode_precision_p (inner_type)
2293 && TYPE_PRECISION (inner_type) < prec)
2294 {
2295 prec = TYPE_PRECISION (inner_type);
2296 /* See if we can shorten the right shift. */
2297 if (shiftc < prec)
2298 shift_type = inner_type;
2299 /* Otherwise X >> C1 is all zeros, so we'll optimize
2300 it into (X, 0) later on by making sure zerobits
2301 is all ones. */
2302 }
2303 }
2304 zerobits = HOST_WIDE_INT_M1U;
2305 if (shiftc < prec)
2306 {
2307 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2308 zerobits <<= prec - shiftc;
2309 }
2310 /* For arithmetic shift if sign bit could be set, zerobits
2311 can contain actually sign bits, so no transformation is
2312 possible, unless MASK masks them all away. In that
2313 case the shift needs to be converted into logical shift. */
2314 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2315 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2316 {
2317 if ((mask & zerobits) == 0)
2318 shift_type = unsigned_type_for (TREE_TYPE (@3));
2319 else
2320 zerobits = 0;
2321 }
2322 }
2323 }
2324 /* ((X << 16) & 0xff00) is (X, 0). */
2325 (if ((mask & zerobits) == mask)
2326 { build_int_cst (type, 0); }
2327 (with { newmask = mask | zerobits; }
2328 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2329 (with
2330 {
2331 /* Only do the transformation if NEWMASK is some integer
2332 mode's mask. */
2333 for (prec = BITS_PER_UNIT;
2334 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2335 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2336 break;
2337 }
2338 (if (prec < HOST_BITS_PER_WIDE_INT
2339 || newmask == HOST_WIDE_INT_M1U)
2340 (with
2341 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2342 (if (!tree_int_cst_equal (newmaskt, @2))
2343 (if (shift_type != TREE_TYPE (@3))
2344 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2345 (bit_and @4 { newmaskt; })))))))))))))
2346
2347 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2348 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2349 (for shift (lshift rshift)
2350 (for bit_op (bit_and bit_xor bit_ior)
2351 (simplify
2352 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2353 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2354 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2355 (bit_op (shift (convert @0) @1) { mask; }))))))
2356
2357 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2358 (simplify
2359 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2360 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2361 && (element_precision (TREE_TYPE (@0))
2362 <= element_precision (TREE_TYPE (@1))
2363 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2364 (with
2365 { tree shift_type = TREE_TYPE (@0); }
2366 (convert (rshift (convert:shift_type @1) @2)))))
2367
2368 /* ~(~X >>r Y) -> X >>r Y
2369 ~(~X <<r Y) -> X <<r Y */
2370 (for rotate (lrotate rrotate)
2371 (simplify
2372 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2373 (if ((element_precision (TREE_TYPE (@0))
2374 <= element_precision (TREE_TYPE (@1))
2375 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2376 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2377 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2378 (with
2379 { tree rotate_type = TREE_TYPE (@0); }
2380 (convert (rotate (convert:rotate_type @1) @2))))))
2381
2382 /* Simplifications of conversions. */
2383
2384 /* Basic strip-useless-type-conversions / strip_nops. */
2385 (for cvt (convert view_convert float fix_trunc)
2386 (simplify
2387 (cvt @0)
2388 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2389 || (GENERIC && type == TREE_TYPE (@0)))
2390 @0)))
2391
2392 /* Contract view-conversions. */
2393 (simplify
2394 (view_convert (view_convert @0))
2395 (view_convert @0))
2396
2397 /* For integral conversions with the same precision or pointer
2398 conversions use a NOP_EXPR instead. */
2399 (simplify
2400 (view_convert @0)
2401 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2402 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2403 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2404 (convert @0)))
2405
2406 /* Strip inner integral conversions that do not change precision or size, or
2407 zero-extend while keeping the same size (for bool-to-char). */
2408 (simplify
2409 (view_convert (convert@0 @1))
2410 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2411 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2412 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2413 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2414 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2415 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2416 (view_convert @1)))
2417
2418 /* Re-association barriers around constants and other re-association
2419 barriers can be removed. */
2420 (simplify
2421 (paren CONSTANT_CLASS_P@0)
2422 @0)
2423 (simplify
2424 (paren (paren@1 @0))
2425 @1)
2426
2427 /* Handle cases of two conversions in a row. */
2428 (for ocvt (convert float fix_trunc)
2429 (for icvt (convert float)
2430 (simplify
2431 (ocvt (icvt@1 @0))
2432 (with
2433 {
2434 tree inside_type = TREE_TYPE (@0);
2435 tree inter_type = TREE_TYPE (@1);
2436 int inside_int = INTEGRAL_TYPE_P (inside_type);
2437 int inside_ptr = POINTER_TYPE_P (inside_type);
2438 int inside_float = FLOAT_TYPE_P (inside_type);
2439 int inside_vec = VECTOR_TYPE_P (inside_type);
2440 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2441 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2442 int inter_int = INTEGRAL_TYPE_P (inter_type);
2443 int inter_ptr = POINTER_TYPE_P (inter_type);
2444 int inter_float = FLOAT_TYPE_P (inter_type);
2445 int inter_vec = VECTOR_TYPE_P (inter_type);
2446 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2447 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2448 int final_int = INTEGRAL_TYPE_P (type);
2449 int final_ptr = POINTER_TYPE_P (type);
2450 int final_float = FLOAT_TYPE_P (type);
2451 int final_vec = VECTOR_TYPE_P (type);
2452 unsigned int final_prec = TYPE_PRECISION (type);
2453 int final_unsignedp = TYPE_UNSIGNED (type);
2454 }
2455 (switch
2456 /* In addition to the cases of two conversions in a row
2457 handled below, if we are converting something to its own
2458 type via an object of identical or wider precision, neither
2459 conversion is needed. */
2460 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2461 || (GENERIC
2462 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2463 && (((inter_int || inter_ptr) && final_int)
2464 || (inter_float && final_float))
2465 && inter_prec >= final_prec)
2466 (ocvt @0))
2467
2468 /* Likewise, if the intermediate and initial types are either both
2469 float or both integer, we don't need the middle conversion if the
2470 former is wider than the latter and doesn't change the signedness
2471 (for integers). Avoid this if the final type is a pointer since
2472 then we sometimes need the middle conversion. */
2473 (if (((inter_int && inside_int) || (inter_float && inside_float))
2474 && (final_int || final_float)
2475 && inter_prec >= inside_prec
2476 && (inter_float || inter_unsignedp == inside_unsignedp))
2477 (ocvt @0))
2478
2479 /* If we have a sign-extension of a zero-extended value, we can
2480 replace that by a single zero-extension. Likewise if the
2481 final conversion does not change precision we can drop the
2482 intermediate conversion. */
2483 (if (inside_int && inter_int && final_int
2484 && ((inside_prec < inter_prec && inter_prec < final_prec
2485 && inside_unsignedp && !inter_unsignedp)
2486 || final_prec == inter_prec))
2487 (ocvt @0))
2488
2489 /* Two conversions in a row are not needed unless:
2490 - some conversion is floating-point (overstrict for now), or
2491 - some conversion is a vector (overstrict for now), or
2492 - the intermediate type is narrower than both initial and
2493 final, or
2494 - the intermediate type and innermost type differ in signedness,
2495 and the outermost type is wider than the intermediate, or
2496 - the initial type is a pointer type and the precisions of the
2497 intermediate and final types differ, or
2498 - the final type is a pointer type and the precisions of the
2499 initial and intermediate types differ. */
2500 (if (! inside_float && ! inter_float && ! final_float
2501 && ! inside_vec && ! inter_vec && ! final_vec
2502 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2503 && ! (inside_int && inter_int
2504 && inter_unsignedp != inside_unsignedp
2505 && inter_prec < final_prec)
2506 && ((inter_unsignedp && inter_prec > inside_prec)
2507 == (final_unsignedp && final_prec > inter_prec))
2508 && ! (inside_ptr && inter_prec != final_prec)
2509 && ! (final_ptr && inside_prec != inter_prec))
2510 (ocvt @0))
2511
2512 /* A truncation to an unsigned type (a zero-extension) should be
2513 canonicalized as bitwise and of a mask. */
2514 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2515 && final_int && inter_int && inside_int
2516 && final_prec == inside_prec
2517 && final_prec > inter_prec
2518 && inter_unsignedp)
2519 (convert (bit_and @0 { wide_int_to_tree
2520 (inside_type,
2521 wi::mask (inter_prec, false,
2522 TYPE_PRECISION (inside_type))); })))
2523
2524 /* If we are converting an integer to a floating-point that can
2525 represent it exactly and back to an integer, we can skip the
2526 floating-point conversion. */
2527 (if (GIMPLE /* PR66211 */
2528 && inside_int && inter_float && final_int &&
2529 (unsigned) significand_size (TYPE_MODE (inter_type))
2530 >= inside_prec - !inside_unsignedp)
2531 (convert @0)))))))
2532
2533 /* If we have a narrowing conversion to an integral type that is fed by a
2534 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2535 masks off bits outside the final type (and nothing else). */
2536 (simplify
2537 (convert (bit_and @0 INTEGER_CST@1))
2538 (if (INTEGRAL_TYPE_P (type)
2539 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2540 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2541 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2542 TYPE_PRECISION (type)), 0))
2543 (convert @0)))
2544
2545
2546 /* (X /[ex] A) * A -> X. */
2547 (simplify
2548 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2549 (convert @0))
2550
2551 /* Canonicalization of binary operations. */
2552
2553 /* Convert X + -C into X - C. */
2554 (simplify
2555 (plus @0 REAL_CST@1)
2556 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2557 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2558 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2559 (minus @0 { tem; })))))
2560
2561 /* Convert x+x into x*2. */
2562 (simplify
2563 (plus @0 @0)
2564 (if (SCALAR_FLOAT_TYPE_P (type))
2565 (mult @0 { build_real (type, dconst2); })
2566 (if (INTEGRAL_TYPE_P (type))
2567 (mult @0 { build_int_cst (type, 2); }))))
2568
2569 /* 0 - X -> -X. */
2570 (simplify
2571 (minus integer_zerop @1)
2572 (negate @1))
2573 (simplify
2574 (pointer_diff integer_zerop @1)
2575 (negate (convert @1)))
2576
2577 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2578 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2579 (-ARG1 + ARG0) reduces to -ARG1. */
2580 (simplify
2581 (minus real_zerop@0 @1)
2582 (if (fold_real_zero_addition_p (type, @0, 0))
2583 (negate @1)))
2584
2585 /* Transform x * -1 into -x. */
2586 (simplify
2587 (mult @0 integer_minus_onep)
2588 (negate @0))
2589
2590 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2591 signed overflow for CST != 0 && CST != -1. */
2592 (simplify
2593 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2594 (if (TREE_CODE (@2) != INTEGER_CST
2595 && single_use (@3)
2596 && !integer_zerop (@1) && !integer_minus_onep (@1))
2597 (mult (mult @0 @2) @1)))
2598
2599 /* True if we can easily extract the real and imaginary parts of a complex
2600 number. */
2601 (match compositional_complex
2602 (convert? (complex @0 @1)))
2603
2604 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2605 (simplify
2606 (complex (realpart @0) (imagpart @0))
2607 @0)
2608 (simplify
2609 (realpart (complex @0 @1))
2610 @0)
2611 (simplify
2612 (imagpart (complex @0 @1))
2613 @1)
2614
2615 /* Sometimes we only care about half of a complex expression. */
2616 (simplify
2617 (realpart (convert?:s (conj:s @0)))
2618 (convert (realpart @0)))
2619 (simplify
2620 (imagpart (convert?:s (conj:s @0)))
2621 (convert (negate (imagpart @0))))
2622 (for part (realpart imagpart)
2623 (for op (plus minus)
2624 (simplify
2625 (part (convert?:s@2 (op:s @0 @1)))
2626 (convert (op (part @0) (part @1))))))
2627 (simplify
2628 (realpart (convert?:s (CEXPI:s @0)))
2629 (convert (COS @0)))
2630 (simplify
2631 (imagpart (convert?:s (CEXPI:s @0)))
2632 (convert (SIN @0)))
2633
2634 /* conj(conj(x)) -> x */
2635 (simplify
2636 (conj (convert? (conj @0)))
2637 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2638 (convert @0)))
2639
2640 /* conj({x,y}) -> {x,-y} */
2641 (simplify
2642 (conj (convert?:s (complex:s @0 @1)))
2643 (with { tree itype = TREE_TYPE (type); }
2644 (complex (convert:itype @0) (negate (convert:itype @1)))))
2645
2646 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2647 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2648 (simplify
2649 (bswap (bswap @0))
2650 @0)
2651 (simplify
2652 (bswap (bit_not (bswap @0)))
2653 (bit_not @0))
2654 (for bitop (bit_xor bit_ior bit_and)
2655 (simplify
2656 (bswap (bitop:c (bswap @0) @1))
2657 (bitop @0 (bswap @1)))))
2658
2659
2660 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2661
2662 /* Simplify constant conditions.
2663 Only optimize constant conditions when the selected branch
2664 has the same type as the COND_EXPR. This avoids optimizing
2665 away "c ? x : throw", where the throw has a void type.
2666 Note that we cannot throw away the fold-const.c variant nor
2667 this one as we depend on doing this transform before possibly
2668 A ? B : B -> B triggers and the fold-const.c one can optimize
2669 0 ? A : B to B even if A has side-effects. Something
2670 genmatch cannot handle. */
2671 (simplify
2672 (cond INTEGER_CST@0 @1 @2)
2673 (if (integer_zerop (@0))
2674 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2675 @2)
2676 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2677 @1)))
2678 (simplify
2679 (vec_cond VECTOR_CST@0 @1 @2)
2680 (if (integer_all_onesp (@0))
2681 @1
2682 (if (integer_zerop (@0))
2683 @2)))
2684
2685 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2686 be extended. */
2687 /* This pattern implements two kinds simplification:
2688
2689 Case 1)
2690 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2691 1) Conversions are type widening from smaller type.
2692 2) Const c1 equals to c2 after canonicalizing comparison.
2693 3) Comparison has tree code LT, LE, GT or GE.
2694 This specific pattern is needed when (cmp (convert x) c) may not
2695 be simplified by comparison patterns because of multiple uses of
2696 x. It also makes sense here because simplifying across multiple
2697 referred var is always benefitial for complicated cases.
2698
2699 Case 2)
2700 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2701 (for cmp (lt le gt ge eq)
2702 (simplify
2703 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2704 (with
2705 {
2706 tree from_type = TREE_TYPE (@1);
2707 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2708 enum tree_code code = ERROR_MARK;
2709
2710 if (INTEGRAL_TYPE_P (from_type)
2711 && int_fits_type_p (@2, from_type)
2712 && (types_match (c1_type, from_type)
2713 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2714 && (TYPE_UNSIGNED (from_type)
2715 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2716 && (types_match (c2_type, from_type)
2717 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2718 && (TYPE_UNSIGNED (from_type)
2719 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2720 {
2721 if (cmp != EQ_EXPR)
2722 {
2723 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2724 {
2725 /* X <= Y - 1 equals to X < Y. */
2726 if (cmp == LE_EXPR)
2727 code = LT_EXPR;
2728 /* X > Y - 1 equals to X >= Y. */
2729 if (cmp == GT_EXPR)
2730 code = GE_EXPR;
2731 }
2732 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2733 {
2734 /* X < Y + 1 equals to X <= Y. */
2735 if (cmp == LT_EXPR)
2736 code = LE_EXPR;
2737 /* X >= Y + 1 equals to X > Y. */
2738 if (cmp == GE_EXPR)
2739 code = GT_EXPR;
2740 }
2741 if (code != ERROR_MARK
2742 || wi::to_widest (@2) == wi::to_widest (@3))
2743 {
2744 if (cmp == LT_EXPR || cmp == LE_EXPR)
2745 code = MIN_EXPR;
2746 if (cmp == GT_EXPR || cmp == GE_EXPR)
2747 code = MAX_EXPR;
2748 }
2749 }
2750 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2751 else if (int_fits_type_p (@3, from_type))
2752 code = EQ_EXPR;
2753 }
2754 }
2755 (if (code == MAX_EXPR)
2756 (convert (max @1 (convert @2)))
2757 (if (code == MIN_EXPR)
2758 (convert (min @1 (convert @2)))
2759 (if (code == EQ_EXPR)
2760 (convert (cond (eq @1 (convert @3))
2761 (convert:from_type @3) (convert:from_type @2)))))))))
2762
2763 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2764
2765 1) OP is PLUS or MINUS.
2766 2) CMP is LT, LE, GT or GE.
2767 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2768
2769 This pattern also handles special cases like:
2770
2771 A) Operand x is a unsigned to signed type conversion and c1 is
2772 integer zero. In this case,
2773 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2774 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2775 B) Const c1 may not equal to (C3 op' C2). In this case we also
2776 check equality for (c1+1) and (c1-1) by adjusting comparison
2777 code.
2778
2779 TODO: Though signed type is handled by this pattern, it cannot be
2780 simplified at the moment because C standard requires additional
2781 type promotion. In order to match&simplify it here, the IR needs
2782 to be cleaned up by other optimizers, i.e, VRP. */
2783 (for op (plus minus)
2784 (for cmp (lt le gt ge)
2785 (simplify
2786 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2787 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2788 (if (types_match (from_type, to_type)
2789 /* Check if it is special case A). */
2790 || (TYPE_UNSIGNED (from_type)
2791 && !TYPE_UNSIGNED (to_type)
2792 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2793 && integer_zerop (@1)
2794 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2795 (with
2796 {
2797 bool overflow = false;
2798 enum tree_code code, cmp_code = cmp;
2799 wide_int real_c1;
2800 wide_int c1 = wi::to_wide (@1);
2801 wide_int c2 = wi::to_wide (@2);
2802 wide_int c3 = wi::to_wide (@3);
2803 signop sgn = TYPE_SIGN (from_type);
2804
2805 /* Handle special case A), given x of unsigned type:
2806 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2807 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2808 if (!types_match (from_type, to_type))
2809 {
2810 if (cmp_code == LT_EXPR)
2811 cmp_code = GT_EXPR;
2812 if (cmp_code == GE_EXPR)
2813 cmp_code = LE_EXPR;
2814 c1 = wi::max_value (to_type);
2815 }
2816 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2817 compute (c3 op' c2) and check if it equals to c1 with op' being
2818 the inverted operator of op. Make sure overflow doesn't happen
2819 if it is undefined. */
2820 if (op == PLUS_EXPR)
2821 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2822 else
2823 real_c1 = wi::add (c3, c2, sgn, &overflow);
2824
2825 code = cmp_code;
2826 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2827 {
2828 /* Check if c1 equals to real_c1. Boundary condition is handled
2829 by adjusting comparison operation if necessary. */
2830 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2831 && !overflow)
2832 {
2833 /* X <= Y - 1 equals to X < Y. */
2834 if (cmp_code == LE_EXPR)
2835 code = LT_EXPR;
2836 /* X > Y - 1 equals to X >= Y. */
2837 if (cmp_code == GT_EXPR)
2838 code = GE_EXPR;
2839 }
2840 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2841 && !overflow)
2842 {
2843 /* X < Y + 1 equals to X <= Y. */
2844 if (cmp_code == LT_EXPR)
2845 code = LE_EXPR;
2846 /* X >= Y + 1 equals to X > Y. */
2847 if (cmp_code == GE_EXPR)
2848 code = GT_EXPR;
2849 }
2850 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2851 {
2852 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2853 code = MIN_EXPR;
2854 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2855 code = MAX_EXPR;
2856 }
2857 }
2858 }
2859 (if (code == MAX_EXPR)
2860 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2861 { wide_int_to_tree (from_type, c2); })
2862 (if (code == MIN_EXPR)
2863 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2864 { wide_int_to_tree (from_type, c2); })))))))))
2865
2866 (for cnd (cond vec_cond)
2867 /* A ? B : (A ? X : C) -> A ? B : C. */
2868 (simplify
2869 (cnd @0 (cnd @0 @1 @2) @3)
2870 (cnd @0 @1 @3))
2871 (simplify
2872 (cnd @0 @1 (cnd @0 @2 @3))
2873 (cnd @0 @1 @3))
2874 /* A ? B : (!A ? C : X) -> A ? B : C. */
2875 /* ??? This matches embedded conditions open-coded because genmatch
2876 would generate matching code for conditions in separate stmts only.
2877 The following is still important to merge then and else arm cases
2878 from if-conversion. */
2879 (simplify
2880 (cnd @0 @1 (cnd @2 @3 @4))
2881 (if (COMPARISON_CLASS_P (@0)
2882 && COMPARISON_CLASS_P (@2)
2883 && invert_tree_comparison
2884 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2885 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2886 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2887 (cnd @0 @1 @3)))
2888 (simplify
2889 (cnd @0 (cnd @1 @2 @3) @4)
2890 (if (COMPARISON_CLASS_P (@0)
2891 && COMPARISON_CLASS_P (@1)
2892 && invert_tree_comparison
2893 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2894 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2895 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2896 (cnd @0 @3 @4)))
2897
2898 /* A ? B : B -> B. */
2899 (simplify
2900 (cnd @0 @1 @1)
2901 @1)
2902
2903 /* !A ? B : C -> A ? C : B. */
2904 (simplify
2905 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2906 (cnd @0 @2 @1)))
2907
2908 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2909 return all -1 or all 0 results. */
2910 /* ??? We could instead convert all instances of the vec_cond to negate,
2911 but that isn't necessarily a win on its own. */
2912 (simplify
2913 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2914 (if (VECTOR_TYPE_P (type)
2915 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2916 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2917 && (TYPE_MODE (TREE_TYPE (type))
2918 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2919 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2920
2921 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2922 (simplify
2923 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2924 (if (VECTOR_TYPE_P (type)
2925 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2926 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2927 && (TYPE_MODE (TREE_TYPE (type))
2928 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2929 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2930
2931
2932 /* Simplifications of comparisons. */
2933
2934 /* See if we can reduce the magnitude of a constant involved in a
2935 comparison by changing the comparison code. This is a canonicalization
2936 formerly done by maybe_canonicalize_comparison_1. */
2937 (for cmp (le gt)
2938 acmp (lt ge)
2939 (simplify
2940 (cmp @0 INTEGER_CST@1)
2941 (if (tree_int_cst_sgn (@1) == -1)
2942 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2943 (for cmp (ge lt)
2944 acmp (gt le)
2945 (simplify
2946 (cmp @0 INTEGER_CST@1)
2947 (if (tree_int_cst_sgn (@1) == 1)
2948 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2949
2950
2951 /* We can simplify a logical negation of a comparison to the
2952 inverted comparison. As we cannot compute an expression
2953 operator using invert_tree_comparison we have to simulate
2954 that with expression code iteration. */
2955 (for cmp (tcc_comparison)
2956 icmp (inverted_tcc_comparison)
2957 ncmp (inverted_tcc_comparison_with_nans)
2958 /* Ideally we'd like to combine the following two patterns
2959 and handle some more cases by using
2960 (logical_inverted_value (cmp @0 @1))
2961 here but for that genmatch would need to "inline" that.
2962 For now implement what forward_propagate_comparison did. */
2963 (simplify
2964 (bit_not (cmp @0 @1))
2965 (if (VECTOR_TYPE_P (type)
2966 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2967 /* Comparison inversion may be impossible for trapping math,
2968 invert_tree_comparison will tell us. But we can't use
2969 a computed operator in the replacement tree thus we have
2970 to play the trick below. */
2971 (with { enum tree_code ic = invert_tree_comparison
2972 (cmp, HONOR_NANS (@0)); }
2973 (if (ic == icmp)
2974 (icmp @0 @1)
2975 (if (ic == ncmp)
2976 (ncmp @0 @1))))))
2977 (simplify
2978 (bit_xor (cmp @0 @1) integer_truep)
2979 (with { enum tree_code ic = invert_tree_comparison
2980 (cmp, HONOR_NANS (@0)); }
2981 (if (ic == icmp)
2982 (icmp @0 @1)
2983 (if (ic == ncmp)
2984 (ncmp @0 @1))))))
2985
2986 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2987 ??? The transformation is valid for the other operators if overflow
2988 is undefined for the type, but performing it here badly interacts
2989 with the transformation in fold_cond_expr_with_comparison which
2990 attempts to synthetize ABS_EXPR. */
2991 (for cmp (eq ne)
2992 (for sub (minus pointer_diff)
2993 (simplify
2994 (cmp (sub@2 @0 @1) integer_zerop)
2995 (if (single_use (@2))
2996 (cmp @0 @1)))))
2997
2998 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2999 signed arithmetic case. That form is created by the compiler
3000 often enough for folding it to be of value. One example is in
3001 computing loop trip counts after Operator Strength Reduction. */
3002 (for cmp (simple_comparison)
3003 scmp (swapped_simple_comparison)
3004 (simplify
3005 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3006 /* Handle unfolded multiplication by zero. */
3007 (if (integer_zerop (@1))
3008 (cmp @1 @2)
3009 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3010 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3011 && single_use (@3))
3012 /* If @1 is negative we swap the sense of the comparison. */
3013 (if (tree_int_cst_sgn (@1) < 0)
3014 (scmp @0 @2)
3015 (cmp @0 @2))))))
3016
3017 /* Simplify comparison of something with itself. For IEEE
3018 floating-point, we can only do some of these simplifications. */
3019 (for cmp (eq ge le)
3020 (simplify
3021 (cmp @0 @0)
3022 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3023 || ! HONOR_NANS (@0))
3024 { constant_boolean_node (true, type); }
3025 (if (cmp != EQ_EXPR)
3026 (eq @0 @0)))))
3027 (for cmp (ne gt lt)
3028 (simplify
3029 (cmp @0 @0)
3030 (if (cmp != NE_EXPR
3031 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3032 || ! HONOR_NANS (@0))
3033 { constant_boolean_node (false, type); })))
3034 (for cmp (unle unge uneq)
3035 (simplify
3036 (cmp @0 @0)
3037 { constant_boolean_node (true, type); }))
3038 (for cmp (unlt ungt)
3039 (simplify
3040 (cmp @0 @0)
3041 (unordered @0 @0)))
3042 (simplify
3043 (ltgt @0 @0)
3044 (if (!flag_trapping_math)
3045 { constant_boolean_node (false, type); }))
3046
3047 /* Fold ~X op ~Y as Y op X. */
3048 (for cmp (simple_comparison)
3049 (simplify
3050 (cmp (bit_not@2 @0) (bit_not@3 @1))
3051 (if (single_use (@2) && single_use (@3))
3052 (cmp @1 @0))))
3053
3054 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3055 (for cmp (simple_comparison)
3056 scmp (swapped_simple_comparison)
3057 (simplify
3058 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3059 (if (single_use (@2)
3060 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3061 (scmp @0 (bit_not @1)))))
3062
3063 (for cmp (simple_comparison)
3064 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3065 (simplify
3066 (cmp (convert@2 @0) (convert? @1))
3067 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3068 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3069 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3070 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3071 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3072 (with
3073 {
3074 tree type1 = TREE_TYPE (@1);
3075 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3076 {
3077 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3078 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3079 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3080 type1 = float_type_node;
3081 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3082 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3083 type1 = double_type_node;
3084 }
3085 tree newtype
3086 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3087 ? TREE_TYPE (@0) : type1);
3088 }
3089 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3090 (cmp (convert:newtype @0) (convert:newtype @1))))))
3091
3092 (simplify
3093 (cmp @0 REAL_CST@1)
3094 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3095 (switch
3096 /* a CMP (-0) -> a CMP 0 */
3097 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3098 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3099 /* x != NaN is always true, other ops are always false. */
3100 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3101 && ! HONOR_SNANS (@1))
3102 { constant_boolean_node (cmp == NE_EXPR, type); })
3103 /* Fold comparisons against infinity. */
3104 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3105 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3106 (with
3107 {
3108 REAL_VALUE_TYPE max;
3109 enum tree_code code = cmp;
3110 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3111 if (neg)
3112 code = swap_tree_comparison (code);
3113 }
3114 (switch
3115 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3116 (if (code == GT_EXPR
3117 && !(HONOR_NANS (@0) && flag_trapping_math))
3118 { constant_boolean_node (false, type); })
3119 (if (code == LE_EXPR)
3120 /* x <= +Inf is always true, if we don't care about NaNs. */
3121 (if (! HONOR_NANS (@0))
3122 { constant_boolean_node (true, type); }
3123 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3124 an "invalid" exception. */
3125 (if (!flag_trapping_math)
3126 (eq @0 @0))))
3127 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3128 for == this introduces an exception for x a NaN. */
3129 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3130 || code == GE_EXPR)
3131 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3132 (if (neg)
3133 (lt @0 { build_real (TREE_TYPE (@0), max); })
3134 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3135 /* x < +Inf is always equal to x <= DBL_MAX. */
3136 (if (code == LT_EXPR)
3137 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3138 (if (neg)
3139 (ge @0 { build_real (TREE_TYPE (@0), max); })
3140 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3141 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3142 an exception for x a NaN so use an unordered comparison. */
3143 (if (code == NE_EXPR)
3144 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3145 (if (! HONOR_NANS (@0))
3146 (if (neg)
3147 (ge @0 { build_real (TREE_TYPE (@0), max); })
3148 (le @0 { build_real (TREE_TYPE (@0), max); }))
3149 (if (neg)
3150 (unge @0 { build_real (TREE_TYPE (@0), max); })
3151 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3152
3153 /* If this is a comparison of a real constant with a PLUS_EXPR
3154 or a MINUS_EXPR of a real constant, we can convert it into a
3155 comparison with a revised real constant as long as no overflow
3156 occurs when unsafe_math_optimizations are enabled. */
3157 (if (flag_unsafe_math_optimizations)
3158 (for op (plus minus)
3159 (simplify
3160 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3161 (with
3162 {
3163 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3164 TREE_TYPE (@1), @2, @1);
3165 }
3166 (if (tem && !TREE_OVERFLOW (tem))
3167 (cmp @0 { tem; }))))))
3168
3169 /* Likewise, we can simplify a comparison of a real constant with
3170 a MINUS_EXPR whose first operand is also a real constant, i.e.
3171 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3172 floating-point types only if -fassociative-math is set. */
3173 (if (flag_associative_math)
3174 (simplify
3175 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3176 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3177 (if (tem && !TREE_OVERFLOW (tem))
3178 (cmp { tem; } @1)))))
3179
3180 /* Fold comparisons against built-in math functions. */
3181 (if (flag_unsafe_math_optimizations
3182 && ! flag_errno_math)
3183 (for sq (SQRT)
3184 (simplify
3185 (cmp (sq @0) REAL_CST@1)
3186 (switch
3187 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3188 (switch
3189 /* sqrt(x) < y is always false, if y is negative. */
3190 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3191 { constant_boolean_node (false, type); })
3192 /* sqrt(x) > y is always true, if y is negative and we
3193 don't care about NaNs, i.e. negative values of x. */
3194 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3195 { constant_boolean_node (true, type); })
3196 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3197 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3198 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3199 (switch
3200 /* sqrt(x) < 0 is always false. */
3201 (if (cmp == LT_EXPR)
3202 { constant_boolean_node (false, type); })
3203 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3204 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3205 { constant_boolean_node (true, type); })
3206 /* sqrt(x) <= 0 -> x == 0. */
3207 (if (cmp == LE_EXPR)
3208 (eq @0 @1))
3209 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3210 == or !=. In the last case:
3211
3212 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3213
3214 if x is negative or NaN. Due to -funsafe-math-optimizations,
3215 the results for other x follow from natural arithmetic. */
3216 (cmp @0 @1)))
3217 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3218 (with
3219 {
3220 REAL_VALUE_TYPE c2;
3221 real_arithmetic (&c2, MULT_EXPR,
3222 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3223 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3224 }
3225 (if (REAL_VALUE_ISINF (c2))
3226 /* sqrt(x) > y is x == +Inf, when y is very large. */
3227 (if (HONOR_INFINITIES (@0))
3228 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3229 { constant_boolean_node (false, type); })
3230 /* sqrt(x) > c is the same as x > c*c. */
3231 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3232 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3233 (with
3234 {
3235 REAL_VALUE_TYPE c2;
3236 real_arithmetic (&c2, MULT_EXPR,
3237 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3238 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3239 }
3240 (if (REAL_VALUE_ISINF (c2))
3241 (switch
3242 /* sqrt(x) < y is always true, when y is a very large
3243 value and we don't care about NaNs or Infinities. */
3244 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3245 { constant_boolean_node (true, type); })
3246 /* sqrt(x) < y is x != +Inf when y is very large and we
3247 don't care about NaNs. */
3248 (if (! HONOR_NANS (@0))
3249 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3250 /* sqrt(x) < y is x >= 0 when y is very large and we
3251 don't care about Infinities. */
3252 (if (! HONOR_INFINITIES (@0))
3253 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3254 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3255 (if (GENERIC)
3256 (truth_andif
3257 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3258 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3259 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3260 (if (! HONOR_NANS (@0))
3261 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3262 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3263 (if (GENERIC)
3264 (truth_andif
3265 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3266 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3267 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3268 (simplify
3269 (cmp (sq @0) (sq @1))
3270 (if (! HONOR_NANS (@0))
3271 (cmp @0 @1))))))
3272
3273 /* Optimize various special cases of (FTYPE) N CMP CST. */
3274 (for cmp (lt le eq ne ge gt)
3275 icmp (le le eq ne ge ge)
3276 (simplify
3277 (cmp (float @0) REAL_CST@1)
3278 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3279 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3280 (with
3281 {
3282 tree itype = TREE_TYPE (@0);
3283 signop isign = TYPE_SIGN (itype);
3284 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3285 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3286 /* Be careful to preserve any potential exceptions due to
3287 NaNs. qNaNs are ok in == or != context.
3288 TODO: relax under -fno-trapping-math or
3289 -fno-signaling-nans. */
3290 bool exception_p
3291 = real_isnan (cst) && (cst->signalling
3292 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3293 /* INT?_MIN is power-of-two so it takes
3294 only one mantissa bit. */
3295 bool signed_p = isign == SIGNED;
3296 bool itype_fits_ftype_p
3297 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3298 }
3299 /* TODO: allow non-fitting itype and SNaNs when
3300 -fno-trapping-math. */
3301 (if (itype_fits_ftype_p && ! exception_p)
3302 (with
3303 {
3304 REAL_VALUE_TYPE imin, imax;
3305 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3306 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3307
3308 REAL_VALUE_TYPE icst;
3309 if (cmp == GT_EXPR || cmp == GE_EXPR)
3310 real_ceil (&icst, fmt, cst);
3311 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3312 real_floor (&icst, fmt, cst);
3313 else
3314 real_trunc (&icst, fmt, cst);
3315
3316 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3317
3318 bool overflow_p = false;
3319 wide_int icst_val
3320 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3321 }
3322 (switch
3323 /* Optimize cases when CST is outside of ITYPE's range. */
3324 (if (real_compare (LT_EXPR, cst, &imin))
3325 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3326 type); })
3327 (if (real_compare (GT_EXPR, cst, &imax))
3328 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3329 type); })
3330 /* Remove cast if CST is an integer representable by ITYPE. */
3331 (if (cst_int_p)
3332 (cmp @0 { gcc_assert (!overflow_p);
3333 wide_int_to_tree (itype, icst_val); })
3334 )
3335 /* When CST is fractional, optimize
3336 (FTYPE) N == CST -> 0
3337 (FTYPE) N != CST -> 1. */
3338 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3339 { constant_boolean_node (cmp == NE_EXPR, type); })
3340 /* Otherwise replace with sensible integer constant. */
3341 (with
3342 {
3343 gcc_checking_assert (!overflow_p);
3344 }
3345 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3346
3347 /* Fold A /[ex] B CMP C to A CMP B * C. */
3348 (for cmp (eq ne)
3349 (simplify
3350 (cmp (exact_div @0 @1) INTEGER_CST@2)
3351 (if (!integer_zerop (@1))
3352 (if (wi::to_wide (@2) == 0)
3353 (cmp @0 @2)
3354 (if (TREE_CODE (@1) == INTEGER_CST)
3355 (with
3356 {
3357 bool ovf;
3358 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3359 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3360 }
3361 (if (ovf)
3362 { constant_boolean_node (cmp == NE_EXPR, type); }
3363 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3364 (for cmp (lt le gt ge)
3365 (simplify
3366 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3367 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3368 (with
3369 {
3370 bool ovf;
3371 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3372 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3373 }
3374 (if (ovf)
3375 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3376 TYPE_SIGN (TREE_TYPE (@2)))
3377 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3378 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3379
3380 /* Unordered tests if either argument is a NaN. */
3381 (simplify
3382 (bit_ior (unordered @0 @0) (unordered @1 @1))
3383 (if (types_match (@0, @1))
3384 (unordered @0 @1)))
3385 (simplify
3386 (bit_and (ordered @0 @0) (ordered @1 @1))
3387 (if (types_match (@0, @1))
3388 (ordered @0 @1)))
3389 (simplify
3390 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3391 @2)
3392 (simplify
3393 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3394 @2)
3395
3396 /* Simple range test simplifications. */
3397 /* A < B || A >= B -> true. */
3398 (for test1 (lt le le le ne ge)
3399 test2 (ge gt ge ne eq ne)
3400 (simplify
3401 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3402 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3403 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3404 { constant_boolean_node (true, type); })))
3405 /* A < B && A >= B -> false. */
3406 (for test1 (lt lt lt le ne eq)
3407 test2 (ge gt eq gt eq gt)
3408 (simplify
3409 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3410 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3411 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3412 { constant_boolean_node (false, type); })))
3413
3414 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3415 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3416
3417 Note that comparisons
3418 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3419 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3420 will be canonicalized to above so there's no need to
3421 consider them here.
3422 */
3423
3424 (for cmp (le gt)
3425 eqcmp (eq ne)
3426 (simplify
3427 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3428 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3429 (with
3430 {
3431 tree ty = TREE_TYPE (@0);
3432 unsigned prec = TYPE_PRECISION (ty);
3433 wide_int mask = wi::to_wide (@2, prec);
3434 wide_int rhs = wi::to_wide (@3, prec);
3435 signop sgn = TYPE_SIGN (ty);
3436 }
3437 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3438 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3439 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3440 { build_zero_cst (ty); }))))))
3441
3442 /* -A CMP -B -> B CMP A. */
3443 (for cmp (tcc_comparison)
3444 scmp (swapped_tcc_comparison)
3445 (simplify
3446 (cmp (negate @0) (negate @1))
3447 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3448 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3449 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3450 (scmp @0 @1)))
3451 (simplify
3452 (cmp (negate @0) CONSTANT_CLASS_P@1)
3453 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3454 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3455 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3456 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3457 (if (tem && !TREE_OVERFLOW (tem))
3458 (scmp @0 { tem; }))))))
3459
3460 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3461 (for op (eq ne)
3462 (simplify
3463 (op (abs @0) zerop@1)
3464 (op @0 @1)))
3465
3466 /* From fold_sign_changed_comparison and fold_widened_comparison.
3467 FIXME: the lack of symmetry is disturbing. */
3468 (for cmp (simple_comparison)
3469 (simplify
3470 (cmp (convert@0 @00) (convert?@1 @10))
3471 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3472 /* Disable this optimization if we're casting a function pointer
3473 type on targets that require function pointer canonicalization. */
3474 && !(targetm.have_canonicalize_funcptr_for_compare ()
3475 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3476 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3477 && single_use (@0))
3478 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3479 && (TREE_CODE (@10) == INTEGER_CST
3480 || @1 != @10)
3481 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3482 || cmp == NE_EXPR
3483 || cmp == EQ_EXPR)
3484 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3485 /* ??? The special-casing of INTEGER_CST conversion was in the original
3486 code and here to avoid a spurious overflow flag on the resulting
3487 constant which fold_convert produces. */
3488 (if (TREE_CODE (@1) == INTEGER_CST)
3489 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3490 TREE_OVERFLOW (@1)); })
3491 (cmp @00 (convert @1)))
3492
3493 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3494 /* If possible, express the comparison in the shorter mode. */
3495 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3496 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3497 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3498 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3499 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3500 || ((TYPE_PRECISION (TREE_TYPE (@00))
3501 >= TYPE_PRECISION (TREE_TYPE (@10)))
3502 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3503 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3504 || (TREE_CODE (@10) == INTEGER_CST
3505 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3506 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3507 (cmp @00 (convert @10))
3508 (if (TREE_CODE (@10) == INTEGER_CST
3509 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3510 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3511 (with
3512 {
3513 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3514 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3515 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3516 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3517 }
3518 (if (above || below)
3519 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3520 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3521 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3522 { constant_boolean_node (above ? true : false, type); }
3523 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3524 { constant_boolean_node (above ? false : true, type); }))))))))))))
3525
3526 (for cmp (eq ne)
3527 /* A local variable can never be pointed to by
3528 the default SSA name of an incoming parameter.
3529 SSA names are canonicalized to 2nd place. */
3530 (simplify
3531 (cmp addr@0 SSA_NAME@1)
3532 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3533 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3534 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3535 (if (TREE_CODE (base) == VAR_DECL
3536 && auto_var_in_fn_p (base, current_function_decl))
3537 (if (cmp == NE_EXPR)
3538 { constant_boolean_node (true, type); }
3539 { constant_boolean_node (false, type); }))))))
3540
3541 /* Equality compare simplifications from fold_binary */
3542 (for cmp (eq ne)
3543
3544 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3545 Similarly for NE_EXPR. */
3546 (simplify
3547 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3548 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3549 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3550 { constant_boolean_node (cmp == NE_EXPR, type); }))
3551
3552 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3553 (simplify
3554 (cmp (bit_xor @0 @1) integer_zerop)
3555 (cmp @0 @1))
3556
3557 /* (X ^ Y) == Y becomes X == 0.
3558 Likewise (X ^ Y) == X becomes Y == 0. */
3559 (simplify
3560 (cmp:c (bit_xor:c @0 @1) @0)
3561 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3562
3563 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3564 (simplify
3565 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3566 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3567 (cmp @0 (bit_xor @1 (convert @2)))))
3568
3569 (simplify
3570 (cmp (convert? addr@0) integer_zerop)
3571 (if (tree_single_nonzero_warnv_p (@0, NULL))
3572 { constant_boolean_node (cmp == NE_EXPR, type); })))
3573
3574 /* If we have (A & C) == C where C is a power of 2, convert this into
3575 (A & C) != 0. Similarly for NE_EXPR. */
3576 (for cmp (eq ne)
3577 icmp (ne eq)
3578 (simplify
3579 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3580 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3581
3582 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3583 convert this into a shift followed by ANDing with D. */
3584 (simplify
3585 (cond
3586 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3587 INTEGER_CST@2 integer_zerop)
3588 (if (integer_pow2p (@2))
3589 (with {
3590 int shift = (wi::exact_log2 (wi::to_wide (@2))
3591 - wi::exact_log2 (wi::to_wide (@1)));
3592 }
3593 (if (shift > 0)
3594 (bit_and
3595 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3596 (bit_and
3597 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3598 @2)))))
3599
3600 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3601 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3602 (for cmp (eq ne)
3603 ncmp (ge lt)
3604 (simplify
3605 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3606 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3607 && type_has_mode_precision_p (TREE_TYPE (@0))
3608 && element_precision (@2) >= element_precision (@0)
3609 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3610 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3611 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3612
3613 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3614 this into a right shift or sign extension followed by ANDing with C. */
3615 (simplify
3616 (cond
3617 (lt @0 integer_zerop)
3618 INTEGER_CST@1 integer_zerop)
3619 (if (integer_pow2p (@1)
3620 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3621 (with {
3622 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3623 }
3624 (if (shift >= 0)
3625 (bit_and
3626 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3627 @1)
3628 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3629 sign extension followed by AND with C will achieve the effect. */
3630 (bit_and (convert @0) @1)))))
3631
3632 /* When the addresses are not directly of decls compare base and offset.
3633 This implements some remaining parts of fold_comparison address
3634 comparisons but still no complete part of it. Still it is good
3635 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3636 (for cmp (simple_comparison)
3637 (simplify
3638 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3639 (with
3640 {
3641 poly_int64 off0, off1;
3642 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3643 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3644 if (base0 && TREE_CODE (base0) == MEM_REF)
3645 {
3646 off0 += mem_ref_offset (base0).force_shwi ();
3647 base0 = TREE_OPERAND (base0, 0);
3648 }
3649 if (base1 && TREE_CODE (base1) == MEM_REF)
3650 {
3651 off1 += mem_ref_offset (base1).force_shwi ();
3652 base1 = TREE_OPERAND (base1, 0);
3653 }
3654 }
3655 (if (base0 && base1)
3656 (with
3657 {
3658 int equal = 2;
3659 /* Punt in GENERIC on variables with value expressions;
3660 the value expressions might point to fields/elements
3661 of other vars etc. */
3662 if (GENERIC
3663 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3664 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3665 ;
3666 else if (decl_in_symtab_p (base0)
3667 && decl_in_symtab_p (base1))
3668 equal = symtab_node::get_create (base0)
3669 ->equal_address_to (symtab_node::get_create (base1));
3670 else if ((DECL_P (base0)
3671 || TREE_CODE (base0) == SSA_NAME
3672 || TREE_CODE (base0) == STRING_CST)
3673 && (DECL_P (base1)
3674 || TREE_CODE (base1) == SSA_NAME
3675 || TREE_CODE (base1) == STRING_CST))
3676 equal = (base0 == base1);
3677 }
3678 (if (equal == 1
3679 && (cmp == EQ_EXPR || cmp == NE_EXPR
3680 /* If the offsets are equal we can ignore overflow. */
3681 || known_eq (off0, off1)
3682 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3683 /* Or if we compare using pointers to decls or strings. */
3684 || (POINTER_TYPE_P (TREE_TYPE (@2))
3685 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3686 (switch
3687 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3688 { constant_boolean_node (known_eq (off0, off1), type); })
3689 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3690 { constant_boolean_node (known_ne (off0, off1), type); })
3691 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3692 { constant_boolean_node (known_lt (off0, off1), type); })
3693 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3694 { constant_boolean_node (known_le (off0, off1), type); })
3695 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3696 { constant_boolean_node (known_ge (off0, off1), type); })
3697 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3698 { constant_boolean_node (known_gt (off0, off1), type); }))
3699 (if (equal == 0
3700 && DECL_P (base0) && DECL_P (base1)
3701 /* If we compare this as integers require equal offset. */
3702 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3703 || known_eq (off0, off1)))
3704 (switch
3705 (if (cmp == EQ_EXPR)
3706 { constant_boolean_node (false, type); })
3707 (if (cmp == NE_EXPR)
3708 { constant_boolean_node (true, type); })))))))))
3709
3710 /* Simplify pointer equality compares using PTA. */
3711 (for neeq (ne eq)
3712 (simplify
3713 (neeq @0 @1)
3714 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3715 && ptrs_compare_unequal (@0, @1))
3716 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3717
3718 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3719 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3720 Disable the transform if either operand is pointer to function.
3721 This broke pr22051-2.c for arm where function pointer
3722 canonicalizaion is not wanted. */
3723
3724 (for cmp (ne eq)
3725 (simplify
3726 (cmp (convert @0) INTEGER_CST@1)
3727 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3728 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3729 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3730 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3731 && POINTER_TYPE_P (TREE_TYPE (@1))
3732 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3733 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3734 (cmp @0 (convert @1)))))
3735
3736 /* Non-equality compare simplifications from fold_binary */
3737 (for cmp (lt gt le ge)
3738 /* Comparisons with the highest or lowest possible integer of
3739 the specified precision will have known values. */
3740 (simplify
3741 (cmp (convert?@2 @0) INTEGER_CST@1)
3742 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3743 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3744 (with
3745 {
3746 tree arg1_type = TREE_TYPE (@1);
3747 unsigned int prec = TYPE_PRECISION (arg1_type);
3748 wide_int max = wi::max_value (arg1_type);
3749 wide_int signed_max = wi::max_value (prec, SIGNED);
3750 wide_int min = wi::min_value (arg1_type);
3751 }
3752 (switch
3753 (if (wi::to_wide (@1) == max)
3754 (switch
3755 (if (cmp == GT_EXPR)
3756 { constant_boolean_node (false, type); })
3757 (if (cmp == GE_EXPR)
3758 (eq @2 @1))
3759 (if (cmp == LE_EXPR)
3760 { constant_boolean_node (true, type); })
3761 (if (cmp == LT_EXPR)
3762 (ne @2 @1))))
3763 (if (wi::to_wide (@1) == min)
3764 (switch
3765 (if (cmp == LT_EXPR)
3766 { constant_boolean_node (false, type); })
3767 (if (cmp == LE_EXPR)
3768 (eq @2 @1))
3769 (if (cmp == GE_EXPR)
3770 { constant_boolean_node (true, type); })
3771 (if (cmp == GT_EXPR)
3772 (ne @2 @1))))
3773 (if (wi::to_wide (@1) == max - 1)
3774 (switch
3775 (if (cmp == GT_EXPR)
3776 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3777 (if (cmp == LE_EXPR)
3778 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3779 (if (wi::to_wide (@1) == min + 1)
3780 (switch
3781 (if (cmp == GE_EXPR)
3782 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3783 (if (cmp == LT_EXPR)
3784 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3785 (if (wi::to_wide (@1) == signed_max
3786 && TYPE_UNSIGNED (arg1_type)
3787 /* We will flip the signedness of the comparison operator
3788 associated with the mode of @1, so the sign bit is
3789 specified by this mode. Check that @1 is the signed
3790 max associated with this sign bit. */
3791 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3792 /* signed_type does not work on pointer types. */
3793 && INTEGRAL_TYPE_P (arg1_type))
3794 /* The following case also applies to X < signed_max+1
3795 and X >= signed_max+1 because previous transformations. */
3796 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3797 (with { tree st = signed_type_for (arg1_type); }
3798 (if (cmp == LE_EXPR)
3799 (ge (convert:st @0) { build_zero_cst (st); })
3800 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3801
3802 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3803 /* If the second operand is NaN, the result is constant. */
3804 (simplify
3805 (cmp @0 REAL_CST@1)
3806 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3807 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3808 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3809 ? false : true, type); })))
3810
3811 /* bool_var != 0 becomes bool_var. */
3812 (simplify
3813 (ne @0 integer_zerop)
3814 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3815 && types_match (type, TREE_TYPE (@0)))
3816 (non_lvalue @0)))
3817 /* bool_var == 1 becomes bool_var. */
3818 (simplify
3819 (eq @0 integer_onep)
3820 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3821 && types_match (type, TREE_TYPE (@0)))
3822 (non_lvalue @0)))
3823 /* Do not handle
3824 bool_var == 0 becomes !bool_var or
3825 bool_var != 1 becomes !bool_var
3826 here because that only is good in assignment context as long
3827 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3828 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3829 clearly less optimal and which we'll transform again in forwprop. */
3830
3831 /* When one argument is a constant, overflow detection can be simplified.
3832 Currently restricted to single use so as not to interfere too much with
3833 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3834 A + CST CMP A -> A CMP' CST' */
3835 (for cmp (lt le ge gt)
3836 out (gt gt le le)
3837 (simplify
3838 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3839 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3840 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3841 && wi::to_wide (@1) != 0
3842 && single_use (@2))
3843 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3844 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3845 wi::max_value (prec, UNSIGNED)
3846 - wi::to_wide (@1)); })))))
3847
3848 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3849 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3850 expects the long form, so we restrict the transformation for now. */
3851 (for cmp (gt le)
3852 (simplify
3853 (cmp:c (minus@2 @0 @1) @0)
3854 (if (single_use (@2)
3855 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3856 && TYPE_UNSIGNED (TREE_TYPE (@0))
3857 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3858 (cmp @1 @0))))
3859
3860 /* Testing for overflow is unnecessary if we already know the result. */
3861 /* A - B > A */
3862 (for cmp (gt le)
3863 out (ne eq)
3864 (simplify
3865 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3866 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3867 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3868 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3869 /* A + B < A */
3870 (for cmp (lt ge)
3871 out (ne eq)
3872 (simplify
3873 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3874 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3875 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3876 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3877
3878 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3879 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3880 (for cmp (lt ge)
3881 out (ne eq)
3882 (simplify
3883 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3884 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3885 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3886 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3887
3888 /* Simplification of math builtins. These rules must all be optimizations
3889 as well as IL simplifications. If there is a possibility that the new
3890 form could be a pessimization, the rule should go in the canonicalization
3891 section that follows this one.
3892
3893 Rules can generally go in this section if they satisfy one of
3894 the following:
3895
3896 - the rule describes an identity
3897
3898 - the rule replaces calls with something as simple as addition or
3899 multiplication
3900
3901 - the rule contains unary calls only and simplifies the surrounding
3902 arithmetic. (The idea here is to exclude non-unary calls in which
3903 one operand is constant and in which the call is known to be cheap
3904 when the operand has that value.) */
3905
3906 (if (flag_unsafe_math_optimizations)
3907 /* Simplify sqrt(x) * sqrt(x) -> x. */
3908 (simplify
3909 (mult (SQRT_ALL@1 @0) @1)
3910 (if (!HONOR_SNANS (type))
3911 @0))
3912
3913 (for op (plus minus)
3914 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3915 (simplify
3916 (op (rdiv @0 @1)
3917 (rdiv @2 @1))
3918 (rdiv (op @0 @2) @1)))
3919
3920 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3921 (for root (SQRT CBRT)
3922 (simplify
3923 (mult (root:s @0) (root:s @1))
3924 (root (mult @0 @1))))
3925
3926 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3927 (for exps (EXP EXP2 EXP10 POW10)
3928 (simplify
3929 (mult (exps:s @0) (exps:s @1))
3930 (exps (plus @0 @1))))
3931
3932 /* Simplify a/root(b/c) into a*root(c/b). */
3933 (for root (SQRT CBRT)
3934 (simplify
3935 (rdiv @0 (root:s (rdiv:s @1 @2)))
3936 (mult @0 (root (rdiv @2 @1)))))
3937
3938 /* Simplify x/expN(y) into x*expN(-y). */
3939 (for exps (EXP EXP2 EXP10 POW10)
3940 (simplify
3941 (rdiv @0 (exps:s @1))
3942 (mult @0 (exps (negate @1)))))
3943
3944 (for logs (LOG LOG2 LOG10 LOG10)
3945 exps (EXP EXP2 EXP10 POW10)
3946 /* logN(expN(x)) -> x. */
3947 (simplify
3948 (logs (exps @0))
3949 @0)
3950 /* expN(logN(x)) -> x. */
3951 (simplify
3952 (exps (logs @0))
3953 @0))
3954
3955 /* Optimize logN(func()) for various exponential functions. We
3956 want to determine the value "x" and the power "exponent" in
3957 order to transform logN(x**exponent) into exponent*logN(x). */
3958 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3959 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3960 (simplify
3961 (logs (exps @0))
3962 (if (SCALAR_FLOAT_TYPE_P (type))
3963 (with {
3964 tree x;
3965 switch (exps)
3966 {
3967 CASE_CFN_EXP:
3968 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3969 x = build_real_truncate (type, dconst_e ());
3970 break;
3971 CASE_CFN_EXP2:
3972 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3973 x = build_real (type, dconst2);
3974 break;
3975 CASE_CFN_EXP10:
3976 CASE_CFN_POW10:
3977 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3978 {
3979 REAL_VALUE_TYPE dconst10;
3980 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3981 x = build_real (type, dconst10);
3982 }
3983 break;
3984 default:
3985 gcc_unreachable ();
3986 }
3987 }
3988 (mult (logs { x; }) @0)))))
3989
3990 (for logs (LOG LOG
3991 LOG2 LOG2
3992 LOG10 LOG10)
3993 exps (SQRT CBRT)
3994 (simplify
3995 (logs (exps @0))
3996 (if (SCALAR_FLOAT_TYPE_P (type))
3997 (with {
3998 tree x;
3999 switch (exps)
4000 {
4001 CASE_CFN_SQRT:
4002 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4003 x = build_real (type, dconsthalf);
4004 break;
4005 CASE_CFN_CBRT:
4006 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4007 x = build_real_truncate (type, dconst_third ());
4008 break;
4009 default:
4010 gcc_unreachable ();
4011 }
4012 }
4013 (mult { x; } (logs @0))))))
4014
4015 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4016 (for logs (LOG LOG2 LOG10)
4017 pows (POW)
4018 (simplify
4019 (logs (pows @0 @1))
4020 (mult @1 (logs @0))))
4021
4022 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4023 or if C is a positive power of 2,
4024 pow(C,x) -> exp2(log2(C)*x). */
4025 #if GIMPLE
4026 (for pows (POW)
4027 exps (EXP)
4028 logs (LOG)
4029 exp2s (EXP2)
4030 log2s (LOG2)
4031 (simplify
4032 (pows REAL_CST@0 @1)
4033 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4034 && real_isfinite (TREE_REAL_CST_PTR (@0))
4035 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4036 the use_exp2 case until after vectorization. It seems actually
4037 beneficial for all constants to postpone this until later,
4038 because exp(log(C)*x), while faster, will have worse precision
4039 and if x folds into a constant too, that is unnecessary
4040 pessimization. */
4041 && canonicalize_math_after_vectorization_p ())
4042 (with {
4043 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4044 bool use_exp2 = false;
4045 if (targetm.libc_has_function (function_c99_misc)
4046 && value->cl == rvc_normal)
4047 {
4048 REAL_VALUE_TYPE frac_rvt = *value;
4049 SET_REAL_EXP (&frac_rvt, 1);
4050 if (real_equal (&frac_rvt, &dconst1))
4051 use_exp2 = true;
4052 }
4053 }
4054 (if (!use_exp2)
4055 (if (optimize_pow_to_exp (@0, @1))
4056 (exps (mult (logs @0) @1)))
4057 (exp2s (mult (log2s @0) @1)))))))
4058 #endif
4059
4060 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4061 (for pows (POW)
4062 exps (EXP EXP2 EXP10 POW10)
4063 logs (LOG LOG2 LOG10 LOG10)
4064 (simplify
4065 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4066 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4067 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4068 (exps (plus (mult (logs @0) @1) @2)))))
4069
4070 (for sqrts (SQRT)
4071 cbrts (CBRT)
4072 pows (POW)
4073 exps (EXP EXP2 EXP10 POW10)
4074 /* sqrt(expN(x)) -> expN(x*0.5). */
4075 (simplify
4076 (sqrts (exps @0))
4077 (exps (mult @0 { build_real (type, dconsthalf); })))
4078 /* cbrt(expN(x)) -> expN(x/3). */
4079 (simplify
4080 (cbrts (exps @0))
4081 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4082 /* pow(expN(x), y) -> expN(x*y). */
4083 (simplify
4084 (pows (exps @0) @1)
4085 (exps (mult @0 @1))))
4086
4087 /* tan(atan(x)) -> x. */
4088 (for tans (TAN)
4089 atans (ATAN)
4090 (simplify
4091 (tans (atans @0))
4092 @0)))
4093
4094 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4095 (simplify
4096 (CABS (complex:C @0 real_zerop@1))
4097 (abs @0))
4098
4099 /* trunc(trunc(x)) -> trunc(x), etc. */
4100 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4101 (simplify
4102 (fns (fns @0))
4103 (fns @0)))
4104 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4105 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4106 (simplify
4107 (fns integer_valued_real_p@0)
4108 @0))
4109
4110 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4111 (simplify
4112 (HYPOT:c @0 real_zerop@1)
4113 (abs @0))
4114
4115 /* pow(1,x) -> 1. */
4116 (simplify
4117 (POW real_onep@0 @1)
4118 @0)
4119
4120 (simplify
4121 /* copysign(x,x) -> x. */
4122 (COPYSIGN_ALL @0 @0)
4123 @0)
4124
4125 (simplify
4126 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4127 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4128 (abs @0))
4129
4130 (for scale (LDEXP SCALBN SCALBLN)
4131 /* ldexp(0, x) -> 0. */
4132 (simplify
4133 (scale real_zerop@0 @1)
4134 @0)
4135 /* ldexp(x, 0) -> x. */
4136 (simplify
4137 (scale @0 integer_zerop@1)
4138 @0)
4139 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4140 (simplify
4141 (scale REAL_CST@0 @1)
4142 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4143 @0)))
4144
4145 /* Canonicalization of sequences of math builtins. These rules represent
4146 IL simplifications but are not necessarily optimizations.
4147
4148 The sincos pass is responsible for picking "optimal" implementations
4149 of math builtins, which may be more complicated and can sometimes go
4150 the other way, e.g. converting pow into a sequence of sqrts.
4151 We only want to do these canonicalizations before the pass has run. */
4152
4153 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4154 /* Simplify tan(x) * cos(x) -> sin(x). */
4155 (simplify
4156 (mult:c (TAN:s @0) (COS:s @0))
4157 (SIN @0))
4158
4159 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4160 (simplify
4161 (mult:c @0 (POW:s @0 REAL_CST@1))
4162 (if (!TREE_OVERFLOW (@1))
4163 (POW @0 (plus @1 { build_one_cst (type); }))))
4164
4165 /* Simplify sin(x) / cos(x) -> tan(x). */
4166 (simplify
4167 (rdiv (SIN:s @0) (COS:s @0))
4168 (TAN @0))
4169
4170 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4171 (simplify
4172 (rdiv (COS:s @0) (SIN:s @0))
4173 (rdiv { build_one_cst (type); } (TAN @0)))
4174
4175 /* Simplify sin(x) / tan(x) -> cos(x). */
4176 (simplify
4177 (rdiv (SIN:s @0) (TAN:s @0))
4178 (if (! HONOR_NANS (@0)
4179 && ! HONOR_INFINITIES (@0))
4180 (COS @0)))
4181
4182 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4183 (simplify
4184 (rdiv (TAN:s @0) (SIN:s @0))
4185 (if (! HONOR_NANS (@0)
4186 && ! HONOR_INFINITIES (@0))
4187 (rdiv { build_one_cst (type); } (COS @0))))
4188
4189 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4190 (simplify
4191 (mult (POW:s @0 @1) (POW:s @0 @2))
4192 (POW @0 (plus @1 @2)))
4193
4194 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4195 (simplify
4196 (mult (POW:s @0 @1) (POW:s @2 @1))
4197 (POW (mult @0 @2) @1))
4198
4199 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4200 (simplify
4201 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4202 (POWI (mult @0 @2) @1))
4203
4204 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4205 (simplify
4206 (rdiv (POW:s @0 REAL_CST@1) @0)
4207 (if (!TREE_OVERFLOW (@1))
4208 (POW @0 (minus @1 { build_one_cst (type); }))))
4209
4210 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4211 (simplify
4212 (rdiv @0 (POW:s @1 @2))
4213 (mult @0 (POW @1 (negate @2))))
4214
4215 (for sqrts (SQRT)
4216 cbrts (CBRT)
4217 pows (POW)
4218 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4219 (simplify
4220 (sqrts (sqrts @0))
4221 (pows @0 { build_real (type, dconst_quarter ()); }))
4222 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4223 (simplify
4224 (sqrts (cbrts @0))
4225 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4226 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4227 (simplify
4228 (cbrts (sqrts @0))
4229 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4230 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4231 (simplify
4232 (cbrts (cbrts tree_expr_nonnegative_p@0))
4233 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4234 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4235 (simplify
4236 (sqrts (pows @0 @1))
4237 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4238 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4239 (simplify
4240 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4241 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4242 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4243 (simplify
4244 (pows (sqrts @0) @1)
4245 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4246 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4247 (simplify
4248 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4249 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4250 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4251 (simplify
4252 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4253 (pows @0 (mult @1 @2))))
4254
4255 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4256 (simplify
4257 (CABS (complex @0 @0))
4258 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4259
4260 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4261 (simplify
4262 (HYPOT @0 @0)
4263 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4264
4265 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4266 (for cexps (CEXP)
4267 exps (EXP)
4268 cexpis (CEXPI)
4269 (simplify
4270 (cexps compositional_complex@0)
4271 (if (targetm.libc_has_function (function_c99_math_complex))
4272 (complex
4273 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4274 (mult @1 (imagpart @2)))))))
4275
4276 (if (canonicalize_math_p ())
4277 /* floor(x) -> trunc(x) if x is nonnegative. */
4278 (for floors (FLOOR_ALL)
4279 truncs (TRUNC_ALL)
4280 (simplify
4281 (floors tree_expr_nonnegative_p@0)
4282 (truncs @0))))
4283
4284 (match double_value_p
4285 @0
4286 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4287 (for froms (BUILT_IN_TRUNCL
4288 BUILT_IN_FLOORL
4289 BUILT_IN_CEILL
4290 BUILT_IN_ROUNDL
4291 BUILT_IN_NEARBYINTL
4292 BUILT_IN_RINTL)
4293 tos (BUILT_IN_TRUNC
4294 BUILT_IN_FLOOR
4295 BUILT_IN_CEIL
4296 BUILT_IN_ROUND
4297 BUILT_IN_NEARBYINT
4298 BUILT_IN_RINT)
4299 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4300 (if (optimize && canonicalize_math_p ())
4301 (simplify
4302 (froms (convert double_value_p@0))
4303 (convert (tos @0)))))
4304
4305 (match float_value_p
4306 @0
4307 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4308 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4309 BUILT_IN_FLOORL BUILT_IN_FLOOR
4310 BUILT_IN_CEILL BUILT_IN_CEIL
4311 BUILT_IN_ROUNDL BUILT_IN_ROUND
4312 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4313 BUILT_IN_RINTL BUILT_IN_RINT)
4314 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4315 BUILT_IN_FLOORF BUILT_IN_FLOORF
4316 BUILT_IN_CEILF BUILT_IN_CEILF
4317 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4318 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4319 BUILT_IN_RINTF BUILT_IN_RINTF)
4320 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4321 if x is a float. */
4322 (if (optimize && canonicalize_math_p ()
4323 && targetm.libc_has_function (function_c99_misc))
4324 (simplify
4325 (froms (convert float_value_p@0))
4326 (convert (tos @0)))))
4327
4328 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4329 tos (XFLOOR XCEIL XROUND XRINT)
4330 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4331 (if (optimize && canonicalize_math_p ())
4332 (simplify
4333 (froms (convert double_value_p@0))
4334 (tos @0))))
4335
4336 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4337 XFLOOR XCEIL XROUND XRINT)
4338 tos (XFLOORF XCEILF XROUNDF XRINTF)
4339 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4340 if x is a float. */
4341 (if (optimize && canonicalize_math_p ())
4342 (simplify
4343 (froms (convert float_value_p@0))
4344 (tos @0))))
4345
4346 (if (canonicalize_math_p ())
4347 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4348 (for floors (IFLOOR LFLOOR LLFLOOR)
4349 (simplify
4350 (floors tree_expr_nonnegative_p@0)
4351 (fix_trunc @0))))
4352
4353 (if (canonicalize_math_p ())
4354 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4355 (for fns (IFLOOR LFLOOR LLFLOOR
4356 ICEIL LCEIL LLCEIL
4357 IROUND LROUND LLROUND)
4358 (simplify
4359 (fns integer_valued_real_p@0)
4360 (fix_trunc @0)))
4361 (if (!flag_errno_math)
4362 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4363 (for rints (IRINT LRINT LLRINT)
4364 (simplify
4365 (rints integer_valued_real_p@0)
4366 (fix_trunc @0)))))
4367
4368 (if (canonicalize_math_p ())
4369 (for ifn (IFLOOR ICEIL IROUND IRINT)
4370 lfn (LFLOOR LCEIL LROUND LRINT)
4371 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4372 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4373 sizeof (int) == sizeof (long). */
4374 (if (TYPE_PRECISION (integer_type_node)
4375 == TYPE_PRECISION (long_integer_type_node))
4376 (simplify
4377 (ifn @0)
4378 (lfn:long_integer_type_node @0)))
4379 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4380 sizeof (long long) == sizeof (long). */
4381 (if (TYPE_PRECISION (long_long_integer_type_node)
4382 == TYPE_PRECISION (long_integer_type_node))
4383 (simplify
4384 (llfn @0)
4385 (lfn:long_integer_type_node @0)))))
4386
4387 /* cproj(x) -> x if we're ignoring infinities. */
4388 (simplify
4389 (CPROJ @0)
4390 (if (!HONOR_INFINITIES (type))
4391 @0))
4392
4393 /* If the real part is inf and the imag part is known to be
4394 nonnegative, return (inf + 0i). */
4395 (simplify
4396 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4397 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4398 { build_complex_inf (type, false); }))
4399
4400 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4401 (simplify
4402 (CPROJ (complex @0 REAL_CST@1))
4403 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4404 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4405
4406 (for pows (POW)
4407 sqrts (SQRT)
4408 cbrts (CBRT)
4409 (simplify
4410 (pows @0 REAL_CST@1)
4411 (with {
4412 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4413 REAL_VALUE_TYPE tmp;
4414 }
4415 (switch
4416 /* pow(x,0) -> 1. */
4417 (if (real_equal (value, &dconst0))
4418 { build_real (type, dconst1); })
4419 /* pow(x,1) -> x. */
4420 (if (real_equal (value, &dconst1))
4421 @0)
4422 /* pow(x,-1) -> 1/x. */
4423 (if (real_equal (value, &dconstm1))
4424 (rdiv { build_real (type, dconst1); } @0))
4425 /* pow(x,0.5) -> sqrt(x). */
4426 (if (flag_unsafe_math_optimizations
4427 && canonicalize_math_p ()
4428 && real_equal (value, &dconsthalf))
4429 (sqrts @0))
4430 /* pow(x,1/3) -> cbrt(x). */
4431 (if (flag_unsafe_math_optimizations
4432 && canonicalize_math_p ()
4433 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4434 real_equal (value, &tmp)))
4435 (cbrts @0))))))
4436
4437 /* powi(1,x) -> 1. */
4438 (simplify
4439 (POWI real_onep@0 @1)
4440 @0)
4441
4442 (simplify
4443 (POWI @0 INTEGER_CST@1)
4444 (switch
4445 /* powi(x,0) -> 1. */
4446 (if (wi::to_wide (@1) == 0)
4447 { build_real (type, dconst1); })
4448 /* powi(x,1) -> x. */
4449 (if (wi::to_wide (@1) == 1)
4450 @0)
4451 /* powi(x,-1) -> 1/x. */
4452 (if (wi::to_wide (@1) == -1)
4453 (rdiv { build_real (type, dconst1); } @0))))
4454
4455 /* Narrowing of arithmetic and logical operations.
4456
4457 These are conceptually similar to the transformations performed for
4458 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4459 term we want to move all that code out of the front-ends into here. */
4460
4461 /* If we have a narrowing conversion of an arithmetic operation where
4462 both operands are widening conversions from the same type as the outer
4463 narrowing conversion. Then convert the innermost operands to a suitable
4464 unsigned type (to avoid introducing undefined behavior), perform the
4465 operation and convert the result to the desired type. */
4466 (for op (plus minus)
4467 (simplify
4468 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4469 (if (INTEGRAL_TYPE_P (type)
4470 /* We check for type compatibility between @0 and @1 below,
4471 so there's no need to check that @1/@3 are integral types. */
4472 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4473 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4474 /* The precision of the type of each operand must match the
4475 precision of the mode of each operand, similarly for the
4476 result. */
4477 && type_has_mode_precision_p (TREE_TYPE (@0))
4478 && type_has_mode_precision_p (TREE_TYPE (@1))
4479 && type_has_mode_precision_p (type)
4480 /* The inner conversion must be a widening conversion. */
4481 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4482 && types_match (@0, type)
4483 && (types_match (@0, @1)
4484 /* Or the second operand is const integer or converted const
4485 integer from valueize. */
4486 || TREE_CODE (@1) == INTEGER_CST))
4487 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4488 (op @0 (convert @1))
4489 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4490 (convert (op (convert:utype @0)
4491 (convert:utype @1))))))))
4492
4493 /* This is another case of narrowing, specifically when there's an outer
4494 BIT_AND_EXPR which masks off bits outside the type of the innermost
4495 operands. Like the previous case we have to convert the operands
4496 to unsigned types to avoid introducing undefined behavior for the
4497 arithmetic operation. */
4498 (for op (minus plus)
4499 (simplify
4500 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4501 (if (INTEGRAL_TYPE_P (type)
4502 /* We check for type compatibility between @0 and @1 below,
4503 so there's no need to check that @1/@3 are integral types. */
4504 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4505 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4506 /* The precision of the type of each operand must match the
4507 precision of the mode of each operand, similarly for the
4508 result. */
4509 && type_has_mode_precision_p (TREE_TYPE (@0))
4510 && type_has_mode_precision_p (TREE_TYPE (@1))
4511 && type_has_mode_precision_p (type)
4512 /* The inner conversion must be a widening conversion. */
4513 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4514 && types_match (@0, @1)
4515 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4516 <= TYPE_PRECISION (TREE_TYPE (@0)))
4517 && (wi::to_wide (@4)
4518 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4519 true, TYPE_PRECISION (type))) == 0)
4520 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4521 (with { tree ntype = TREE_TYPE (@0); }
4522 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4523 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4524 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4525 (convert:utype @4))))))))
4526
4527 /* Transform (@0 < @1 and @0 < @2) to use min,
4528 (@0 > @1 and @0 > @2) to use max */
4529 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4530 op (lt le gt ge lt le gt ge )
4531 ext (min min max max max max min min )
4532 (simplify
4533 (logic (op:cs @0 @1) (op:cs @0 @2))
4534 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4535 && TREE_CODE (@0) != INTEGER_CST)
4536 (op @0 (ext @1 @2)))))
4537
4538 (simplify
4539 /* signbit(x) -> 0 if x is nonnegative. */
4540 (SIGNBIT tree_expr_nonnegative_p@0)
4541 { integer_zero_node; })
4542
4543 (simplify
4544 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4545 (SIGNBIT @0)
4546 (if (!HONOR_SIGNED_ZEROS (@0))
4547 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4548
4549 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4550 (for cmp (eq ne)
4551 (for op (plus minus)
4552 rop (minus plus)
4553 (simplify
4554 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4555 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4556 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4557 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4558 && !TYPE_SATURATING (TREE_TYPE (@0)))
4559 (with { tree res = int_const_binop (rop, @2, @1); }
4560 (if (TREE_OVERFLOW (res)
4561 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4562 { constant_boolean_node (cmp == NE_EXPR, type); }
4563 (if (single_use (@3))
4564 (cmp @0 { TREE_OVERFLOW (res)
4565 ? drop_tree_overflow (res) : res; }))))))))
4566 (for cmp (lt le gt ge)
4567 (for op (plus minus)
4568 rop (minus plus)
4569 (simplify
4570 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4571 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4572 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4573 (with { tree res = int_const_binop (rop, @2, @1); }
4574 (if (TREE_OVERFLOW (res))
4575 {
4576 fold_overflow_warning (("assuming signed overflow does not occur "
4577 "when simplifying conditional to constant"),
4578 WARN_STRICT_OVERFLOW_CONDITIONAL);
4579 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4580 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4581 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4582 TYPE_SIGN (TREE_TYPE (@1)))
4583 != (op == MINUS_EXPR);
4584 constant_boolean_node (less == ovf_high, type);
4585 }
4586 (if (single_use (@3))
4587 (with
4588 {
4589 fold_overflow_warning (("assuming signed overflow does not occur "
4590 "when changing X +- C1 cmp C2 to "
4591 "X cmp C2 -+ C1"),
4592 WARN_STRICT_OVERFLOW_COMPARISON);
4593 }
4594 (cmp @0 { res; })))))))))
4595
4596 /* Canonicalizations of BIT_FIELD_REFs. */
4597
4598 (simplify
4599 (BIT_FIELD_REF @0 @1 @2)
4600 (switch
4601 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4602 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4603 (switch
4604 (if (integer_zerop (@2))
4605 (view_convert (realpart @0)))
4606 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4607 (view_convert (imagpart @0)))))
4608 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4609 && INTEGRAL_TYPE_P (type)
4610 /* On GIMPLE this should only apply to register arguments. */
4611 && (! GIMPLE || is_gimple_reg (@0))
4612 /* A bit-field-ref that referenced the full argument can be stripped. */
4613 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4614 && integer_zerop (@2))
4615 /* Low-parts can be reduced to integral conversions.
4616 ??? The following doesn't work for PDP endian. */
4617 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4618 /* Don't even think about BITS_BIG_ENDIAN. */
4619 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4620 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4621 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4622 ? (TYPE_PRECISION (TREE_TYPE (@0))
4623 - TYPE_PRECISION (type))
4624 : 0)) == 0)))
4625 (convert @0))))
4626
4627 /* Simplify vector extracts. */
4628
4629 (simplify
4630 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4631 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4632 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4633 || (VECTOR_TYPE_P (type)
4634 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4635 (with
4636 {
4637 tree ctor = (TREE_CODE (@0) == SSA_NAME
4638 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4639 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4640 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4641 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4642 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4643 }
4644 (if (n != 0
4645 && (idx % width) == 0
4646 && (n % width) == 0
4647 && known_le ((idx + n) / width,
4648 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4649 (with
4650 {
4651 idx = idx / width;
4652 n = n / width;
4653 /* Constructor elements can be subvectors. */
4654 poly_uint64 k = 1;
4655 if (CONSTRUCTOR_NELTS (ctor) != 0)
4656 {
4657 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4658 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4659 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4660 }
4661 unsigned HOST_WIDE_INT elt, count, const_k;
4662 }
4663 (switch
4664 /* We keep an exact subset of the constructor elements. */
4665 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4666 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4667 { build_constructor (type, NULL); }
4668 (if (count == 1)
4669 (if (elt < CONSTRUCTOR_NELTS (ctor))
4670 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4671 { build_zero_cst (type); })
4672 {
4673 vec<constructor_elt, va_gc> *vals;
4674 vec_alloc (vals, count);
4675 for (unsigned i = 0;
4676 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4677 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4678 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4679 build_constructor (type, vals);
4680 })))
4681 /* The bitfield references a single constructor element. */
4682 (if (k.is_constant (&const_k)
4683 && idx + n <= (idx / const_k + 1) * const_k)
4684 (switch
4685 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4686 { build_zero_cst (type); })
4687 (if (n == const_k)
4688 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4689 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4690 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4691
4692 /* Simplify a bit extraction from a bit insertion for the cases with
4693 the inserted element fully covering the extraction or the insertion
4694 not touching the extraction. */
4695 (simplify
4696 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4697 (with
4698 {
4699 unsigned HOST_WIDE_INT isize;
4700 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4701 isize = TYPE_PRECISION (TREE_TYPE (@1));
4702 else
4703 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4704 }
4705 (switch
4706 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4707 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4708 wi::to_wide (@ipos) + isize))
4709 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4710 wi::to_wide (@rpos)
4711 - wi::to_wide (@ipos)); }))
4712 (if (wi::geu_p (wi::to_wide (@ipos),
4713 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4714 || wi::geu_p (wi::to_wide (@rpos),
4715 wi::to_wide (@ipos) + isize))
4716 (BIT_FIELD_REF @0 @rsize @rpos)))))
4717
4718 (if (canonicalize_math_after_vectorization_p ())
4719 (for fmas (FMA)
4720 (simplify
4721 (fmas:c (negate @0) @1 @2)
4722 (IFN_FNMA @0 @1 @2))
4723 (simplify
4724 (fmas @0 @1 (negate @2))
4725 (IFN_FMS @0 @1 @2))
4726 (simplify
4727 (fmas:c (negate @0) @1 (negate @2))
4728 (IFN_FNMS @0 @1 @2))
4729 (simplify
4730 (negate (fmas@3 @0 @1 @2))
4731 (if (single_use (@3))
4732 (IFN_FNMS @0 @1 @2))))
4733
4734 (simplify
4735 (IFN_FMS:c (negate @0) @1 @2)
4736 (IFN_FNMS @0 @1 @2))
4737 (simplify
4738 (IFN_FMS @0 @1 (negate @2))
4739 (IFN_FMA @0 @1 @2))
4740 (simplify
4741 (IFN_FMS:c (negate @0) @1 (negate @2))
4742 (IFN_FNMA @0 @1 @2))
4743 (simplify
4744 (negate (IFN_FMS@3 @0 @1 @2))
4745 (if (single_use (@3))
4746 (IFN_FNMA @0 @1 @2)))
4747
4748 (simplify
4749 (IFN_FNMA:c (negate @0) @1 @2)
4750 (IFN_FMA @0 @1 @2))
4751 (simplify
4752 (IFN_FNMA @0 @1 (negate @2))
4753 (IFN_FNMS @0 @1 @2))
4754 (simplify
4755 (IFN_FNMA:c (negate @0) @1 (negate @2))
4756 (IFN_FMS @0 @1 @2))
4757 (simplify
4758 (negate (IFN_FNMA@3 @0 @1 @2))
4759 (if (single_use (@3))
4760 (IFN_FMS @0 @1 @2)))
4761
4762 (simplify
4763 (IFN_FNMS:c (negate @0) @1 @2)
4764 (IFN_FMS @0 @1 @2))
4765 (simplify
4766 (IFN_FNMS @0 @1 (negate @2))
4767 (IFN_FNMA @0 @1 @2))
4768 (simplify
4769 (IFN_FNMS:c (negate @0) @1 (negate @2))
4770 (IFN_FMA @0 @1 @2))
4771 (simplify
4772 (negate (IFN_FNMS@3 @0 @1 @2))
4773 (if (single_use (@3))
4774 (IFN_FMA @0 @1 @2))))
4775
4776 /* POPCOUNT simplifications. */
4777 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4778 BUILT_IN_POPCOUNTIMAX)
4779 /* popcount(X&1) is nop_expr(X&1). */
4780 (simplify
4781 (popcount @0)
4782 (if (tree_nonzero_bits (@0) == 1)
4783 (convert @0)))
4784 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4785 (simplify
4786 (plus (popcount:s @0) (popcount:s @1))
4787 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4788 (popcount (bit_ior @0 @1))))
4789 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4790 (for cmp (le eq ne gt)
4791 rep (eq eq ne ne)
4792 (simplify
4793 (cmp (popcount @0) integer_zerop)
4794 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4795
4796 /* Simplify:
4797
4798 a = a1 op a2
4799 r = c ? a : b;
4800
4801 to:
4802
4803 r = c ? a1 op a2 : b;
4804
4805 if the target can do it in one go. This makes the operation conditional
4806 on c, so could drop potentially-trapping arithmetic, but that's a valid
4807 simplification if the result of the operation isn't needed. */
4808 (for uncond_op (UNCOND_BINARY)
4809 cond_op (COND_BINARY)
4810 (simplify
4811 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4812 (with { tree op_type = TREE_TYPE (@4); }
4813 (if (element_precision (type) == element_precision (op_type))
4814 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4815 (simplify
4816 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4817 (with { tree op_type = TREE_TYPE (@4); }
4818 (if (element_precision (type) == element_precision (op_type))
4819 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))