re PR middle-end/25529 ((unsigned * 2)/2 is not changed into unsigned &0x7FFFFFFF)
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p
33 integer_pow2p)
34
35 /* Operator lists. */
36 (define_operator_list tcc_comparison
37 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
38 (define_operator_list inverted_tcc_comparison
39 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
40 (define_operator_list inverted_tcc_comparison_with_nans
41 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
42 (define_operator_list swapped_tcc_comparison
43 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
44 (define_operator_list simple_comparison lt le eq ne ge gt)
45 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
46
47 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
48 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
49 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
50 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
51 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
52 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
53 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
54 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
55 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
56 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
57
58
59 /* Simplifications of operations with one constant operand and
60 simplifications to constants or single values. */
61
62 (for op (plus pointer_plus minus bit_ior bit_xor)
63 (simplify
64 (op @0 integer_zerop)
65 (non_lvalue @0)))
66
67 /* 0 +p index -> (type)index */
68 (simplify
69 (pointer_plus integer_zerop @1)
70 (non_lvalue (convert @1)))
71
72 /* See if ARG1 is zero and X + ARG1 reduces to X.
73 Likewise if the operands are reversed. */
74 (simplify
75 (plus:c @0 real_zerop@1)
76 (if (fold_real_zero_addition_p (type, @1, 0))
77 (non_lvalue @0)))
78
79 /* See if ARG1 is zero and X - ARG1 reduces to X. */
80 (simplify
81 (minus @0 real_zerop@1)
82 (if (fold_real_zero_addition_p (type, @1, 1))
83 (non_lvalue @0)))
84
85 /* Simplify x - x.
86 This is unsafe for certain floats even in non-IEEE formats.
87 In IEEE, it is unsafe because it does wrong for NaNs.
88 Also note that operand_equal_p is always false if an operand
89 is volatile. */
90 (simplify
91 (minus @0 @0)
92 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
93 { build_zero_cst (type); }))
94
95 (simplify
96 (mult @0 integer_zerop@1)
97 @1)
98
99 /* Maybe fold x * 0 to 0. The expressions aren't the same
100 when x is NaN, since x * 0 is also NaN. Nor are they the
101 same in modes with signed zeros, since multiplying a
102 negative value by 0 gives -0, not +0. */
103 (simplify
104 (mult @0 real_zerop@1)
105 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
106 @1))
107
108 /* In IEEE floating point, x*1 is not equivalent to x for snans.
109 Likewise for complex arithmetic with signed zeros. */
110 (simplify
111 (mult @0 real_onep)
112 (if (!HONOR_SNANS (type)
113 && (!HONOR_SIGNED_ZEROS (type)
114 || !COMPLEX_FLOAT_TYPE_P (type)))
115 (non_lvalue @0)))
116
117 /* Transform x * -1.0 into -x. */
118 (simplify
119 (mult @0 real_minus_onep)
120 (if (!HONOR_SNANS (type)
121 && (!HONOR_SIGNED_ZEROS (type)
122 || !COMPLEX_FLOAT_TYPE_P (type)))
123 (negate @0)))
124
125 /* Make sure to preserve divisions by zero. This is the reason why
126 we don't simplify x / x to 1 or 0 / x to 0. */
127 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
128 (simplify
129 (op @0 integer_onep)
130 (non_lvalue @0)))
131
132 /* X / -1 is -X. */
133 (for div (trunc_div ceil_div floor_div round_div exact_div)
134 (simplify
135 (div @0 integer_minus_onep@1)
136 (if (!TYPE_UNSIGNED (type))
137 (negate @0))))
138
139 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
140 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
141 (simplify
142 (floor_div @0 @1)
143 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
144 && TYPE_UNSIGNED (type))
145 (trunc_div @0 @1)))
146
147 /* Combine two successive divisions. Note that combining ceil_div
148 and floor_div is trickier and combining round_div even more so. */
149 (for div (trunc_div exact_div)
150 (simplify
151 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
152 (with {
153 bool overflow_p;
154 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
155 }
156 (if (!overflow_p)
157 (div @0 { wide_int_to_tree (type, mul); })
158 (if (TYPE_UNSIGNED (type)
159 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
160 { build_zero_cst (type); })))))
161
162 /* Optimize A / A to 1.0 if we don't care about
163 NaNs or Infinities. */
164 (simplify
165 (rdiv @0 @0)
166 (if (FLOAT_TYPE_P (type)
167 && ! HONOR_NANS (type)
168 && ! HONOR_INFINITIES (type))
169 { build_one_cst (type); }))
170
171 /* Optimize -A / A to -1.0 if we don't care about
172 NaNs or Infinities. */
173 (simplify
174 (rdiv:c @0 (negate @0))
175 (if (FLOAT_TYPE_P (type)
176 && ! HONOR_NANS (type)
177 && ! HONOR_INFINITIES (type))
178 { build_minus_one_cst (type); }))
179
180 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
181 (simplify
182 (rdiv @0 real_onep)
183 (if (!HONOR_SNANS (type))
184 (non_lvalue @0)))
185
186 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
187 (simplify
188 (rdiv @0 real_minus_onep)
189 (if (!HONOR_SNANS (type))
190 (negate @0)))
191
192 /* If ARG1 is a constant, we can convert this to a multiply by the
193 reciprocal. This does not have the same rounding properties,
194 so only do this if -freciprocal-math. We can actually
195 always safely do it if ARG1 is a power of two, but it's hard to
196 tell if it is or not in a portable manner. */
197 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
198 (simplify
199 (rdiv @0 cst@1)
200 (if (optimize)
201 (if (flag_reciprocal_math
202 && !real_zerop (@1))
203 (with
204 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
205 (if (tem)
206 (mult @0 { tem; } )))
207 (if (cst != COMPLEX_CST)
208 (with { tree inverse = exact_inverse (type, @1); }
209 (if (inverse)
210 (mult @0 { inverse; } ))))))))
211
212 /* Same applies to modulo operations, but fold is inconsistent here
213 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
214 (for mod (ceil_mod floor_mod round_mod trunc_mod)
215 /* 0 % X is always zero. */
216 (simplify
217 (mod integer_zerop@0 @1)
218 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
219 (if (!integer_zerop (@1))
220 @0))
221 /* X % 1 is always zero. */
222 (simplify
223 (mod @0 integer_onep)
224 { build_zero_cst (type); })
225 /* X % -1 is zero. */
226 (simplify
227 (mod @0 integer_minus_onep@1)
228 (if (!TYPE_UNSIGNED (type))
229 { build_zero_cst (type); }))
230 /* (X % Y) % Y is just X % Y. */
231 (simplify
232 (mod (mod@2 @0 @1) @1)
233 @2)
234 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
235 (simplify
236 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
237 (if (ANY_INTEGRAL_TYPE_P (type)
238 && TYPE_OVERFLOW_UNDEFINED (type)
239 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
240 { build_zero_cst (type); })))
241
242 /* X % -C is the same as X % C. */
243 (simplify
244 (trunc_mod @0 INTEGER_CST@1)
245 (if (TYPE_SIGN (type) == SIGNED
246 && !TREE_OVERFLOW (@1)
247 && wi::neg_p (@1)
248 && !TYPE_OVERFLOW_TRAPS (type)
249 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
250 && !sign_bit_p (@1, @1))
251 (trunc_mod @0 (negate @1))))
252
253 /* X % -Y is the same as X % Y. */
254 (simplify
255 (trunc_mod @0 (convert? (negate @1)))
256 (if (!TYPE_UNSIGNED (type)
257 && !TYPE_OVERFLOW_TRAPS (type)
258 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
259 (trunc_mod @0 (convert @1))))
260
261 /* X - (X / Y) * Y is the same as X % Y. */
262 (simplify
263 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
264 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
265 (trunc_mod (convert @0) (convert @1))))
266
267 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
268 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
269 Also optimize A % (C << N) where C is a power of 2,
270 to A & ((C << N) - 1). */
271 (match (power_of_two_cand @1)
272 INTEGER_CST@1)
273 (match (power_of_two_cand @1)
274 (lshift INTEGER_CST@1 @2))
275 (for mod (trunc_mod floor_mod)
276 (simplify
277 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
278 (if ((TYPE_UNSIGNED (type)
279 || tree_expr_nonnegative_p (@0))
280 && tree_nop_conversion_p (type, TREE_TYPE (@3))
281 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
282 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
283
284 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
285 (simplify
286 (trunc_div (mult @0 integer_pow2p@1) @1)
287 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
288 (bit_and @0 { wide_int_to_tree
289 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
290 false, TYPE_PRECISION (type))); })))
291
292 /* X % Y is smaller than Y. */
293 (for cmp (lt ge)
294 (simplify
295 (cmp (trunc_mod @0 @1) @1)
296 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
297 { constant_boolean_node (cmp == LT_EXPR, type); })))
298 (for cmp (gt le)
299 (simplify
300 (cmp @1 (trunc_mod @0 @1))
301 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
302 { constant_boolean_node (cmp == GT_EXPR, type); })))
303
304 /* x | ~0 -> ~0 */
305 (simplify
306 (bit_ior @0 integer_all_onesp@1)
307 @1)
308
309 /* x & 0 -> 0 */
310 (simplify
311 (bit_and @0 integer_zerop@1)
312 @1)
313
314 /* ~x | x -> -1 */
315 /* ~x ^ x -> -1 */
316 /* ~x + x -> -1 */
317 (for op (bit_ior bit_xor plus)
318 (simplify
319 (op:c (convert? @0) (convert? (bit_not @0)))
320 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
321
322 /* x ^ x -> 0 */
323 (simplify
324 (bit_xor @0 @0)
325 { build_zero_cst (type); })
326
327 /* Canonicalize X ^ ~0 to ~X. */
328 (simplify
329 (bit_xor @0 integer_all_onesp@1)
330 (bit_not @0))
331
332 /* x & ~0 -> x */
333 (simplify
334 (bit_and @0 integer_all_onesp)
335 (non_lvalue @0))
336
337 /* x & x -> x, x | x -> x */
338 (for bitop (bit_and bit_ior)
339 (simplify
340 (bitop @0 @0)
341 (non_lvalue @0)))
342
343 /* x + (x & 1) -> (x + 1) & ~1 */
344 (simplify
345 (plus:c @0 (bit_and:s @0 integer_onep@1))
346 (bit_and (plus @0 @1) (bit_not @1)))
347
348 /* x & ~(x & y) -> x & ~y */
349 /* x | ~(x | y) -> x | ~y */
350 (for bitop (bit_and bit_ior)
351 (simplify
352 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
353 (bitop @0 (bit_not @1))))
354
355 /* (x | y) & ~x -> y & ~x */
356 /* (x & y) | ~x -> y | ~x */
357 (for bitop (bit_and bit_ior)
358 rbitop (bit_ior bit_and)
359 (simplify
360 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
361 (bitop @1 @2)))
362
363 /* (x & y) ^ (x | y) -> x ^ y */
364 (simplify
365 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
366 (bit_xor @0 @1))
367
368 /* (x ^ y) ^ (x | y) -> x & y */
369 (simplify
370 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
371 (bit_and @0 @1))
372
373 /* (x & y) + (x ^ y) -> x | y */
374 /* (x & y) | (x ^ y) -> x | y */
375 /* (x & y) ^ (x ^ y) -> x | y */
376 (for op (plus bit_ior bit_xor)
377 (simplify
378 (op:c (bit_and @0 @1) (bit_xor @0 @1))
379 (bit_ior @0 @1)))
380
381 /* (x & y) + (x | y) -> x + y */
382 (simplify
383 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
384 (plus @0 @1))
385
386 /* (x + y) - (x | y) -> x & y */
387 (simplify
388 (minus (plus @0 @1) (bit_ior @0 @1))
389 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
390 && !TYPE_SATURATING (type))
391 (bit_and @0 @1)))
392
393 /* (x + y) - (x & y) -> x | y */
394 (simplify
395 (minus (plus @0 @1) (bit_and @0 @1))
396 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
397 && !TYPE_SATURATING (type))
398 (bit_ior @0 @1)))
399
400 /* (x | y) - (x ^ y) -> x & y */
401 (simplify
402 (minus (bit_ior @0 @1) (bit_xor @0 @1))
403 (bit_and @0 @1))
404
405 /* (x | y) - (x & y) -> x ^ y */
406 (simplify
407 (minus (bit_ior @0 @1) (bit_and @0 @1))
408 (bit_xor @0 @1))
409
410 /* (x | y) & ~(x & y) -> x ^ y */
411 (simplify
412 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
413 (bit_xor @0 @1))
414
415 /* (x | y) & (~x ^ y) -> x & y */
416 (simplify
417 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
418 (bit_and @0 @1))
419
420 /* ~x & ~y -> ~(x | y)
421 ~x | ~y -> ~(x & y) */
422 (for op (bit_and bit_ior)
423 rop (bit_ior bit_and)
424 (simplify
425 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
426 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
427 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
428 (bit_not (rop (convert @0) (convert @1))))))
429
430 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
431 with a constant, and the two constants have no bits in common,
432 we should treat this as a BIT_IOR_EXPR since this may produce more
433 simplifications. */
434 (for op (bit_xor plus)
435 (simplify
436 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
437 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
438 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
439 && tree_nop_conversion_p (type, TREE_TYPE (@2))
440 && wi::bit_and (@1, @3) == 0)
441 (bit_ior (convert @4) (convert @5)))))
442
443 /* (X | Y) ^ X -> Y & ~ X*/
444 (simplify
445 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
446 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
447 (convert (bit_and @1 (bit_not @0)))))
448
449 /* Convert ~X ^ ~Y to X ^ Y. */
450 (simplify
451 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
452 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
453 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
454 (bit_xor (convert @0) (convert @1))))
455
456 /* Convert ~X ^ C to X ^ ~C. */
457 (simplify
458 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
459 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
460 (bit_xor (convert @0) (bit_not @1))))
461
462 /* Fold (X & Y) ^ Y as ~X & Y. */
463 (simplify
464 (bit_xor:c (bit_and:c @0 @1) @1)
465 (bit_and (bit_not @0) @1))
466
467 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
468 operands are another bit-wise operation with a common input. If so,
469 distribute the bit operations to save an operation and possibly two if
470 constants are involved. For example, convert
471 (A | B) & (A | C) into A | (B & C)
472 Further simplification will occur if B and C are constants. */
473 (for op (bit_and bit_ior)
474 rop (bit_ior bit_and)
475 (simplify
476 (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
477 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
478 (rop (convert @0) (op (convert @1) (convert @2))))))
479
480
481 (simplify
482 (abs (abs@1 @0))
483 @1)
484 (simplify
485 (abs (negate @0))
486 (abs @0))
487 (simplify
488 (abs tree_expr_nonnegative_p@0)
489 @0)
490
491 /* A few cases of fold-const.c negate_expr_p predicate. */
492 (match negate_expr_p
493 INTEGER_CST
494 (if ((INTEGRAL_TYPE_P (type)
495 && TYPE_OVERFLOW_WRAPS (type))
496 || (!TYPE_OVERFLOW_SANITIZED (type)
497 && may_negate_without_overflow_p (t)))))
498 (match negate_expr_p
499 FIXED_CST)
500 (match negate_expr_p
501 (negate @0)
502 (if (!TYPE_OVERFLOW_SANITIZED (type))))
503 (match negate_expr_p
504 REAL_CST
505 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
506 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
507 ways. */
508 (match negate_expr_p
509 VECTOR_CST
510 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
511
512 /* -(A + B) -> (-B) - A. */
513 (simplify
514 (negate (plus:c @0 negate_expr_p@1))
515 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
516 && !HONOR_SIGNED_ZEROS (element_mode (type)))
517 (minus (negate @1) @0)))
518
519 /* A - B -> A + (-B) if B is easily negatable. */
520 (simplify
521 (minus @0 negate_expr_p@1)
522 (if (!FIXED_POINT_TYPE_P (type))
523 (plus @0 (negate @1))))
524
525 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
526 when profitable.
527 For bitwise binary operations apply operand conversions to the
528 binary operation result instead of to the operands. This allows
529 to combine successive conversions and bitwise binary operations.
530 We combine the above two cases by using a conditional convert. */
531 (for bitop (bit_and bit_ior bit_xor)
532 (simplify
533 (bitop (convert @0) (convert? @1))
534 (if (((TREE_CODE (@1) == INTEGER_CST
535 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
536 && int_fits_type_p (@1, TREE_TYPE (@0)))
537 || types_match (@0, @1))
538 /* ??? This transform conflicts with fold-const.c doing
539 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
540 constants (if x has signed type, the sign bit cannot be set
541 in c). This folds extension into the BIT_AND_EXPR.
542 Restrict it to GIMPLE to avoid endless recursions. */
543 && (bitop != BIT_AND_EXPR || GIMPLE)
544 && (/* That's a good idea if the conversion widens the operand, thus
545 after hoisting the conversion the operation will be narrower. */
546 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
547 /* It's also a good idea if the conversion is to a non-integer
548 mode. */
549 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
550 /* Or if the precision of TO is not the same as the precision
551 of its mode. */
552 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
553 (convert (bitop @0 (convert @1))))))
554
555 (for bitop (bit_and bit_ior)
556 rbitop (bit_ior bit_and)
557 /* (x | y) & x -> x */
558 /* (x & y) | x -> x */
559 (simplify
560 (bitop:c (rbitop:c @0 @1) @0)
561 @0)
562 /* (~x | y) & x -> x & y */
563 /* (~x & y) | x -> x | y */
564 (simplify
565 (bitop:c (rbitop:c (bit_not @0) @1) @0)
566 (bitop @0 @1)))
567
568 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
569 (for bitop (bit_and bit_ior bit_xor)
570 (simplify
571 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
572 (bit_and (bitop @0 @2) @1)))
573
574 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
575 (simplify
576 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
577 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
578
579 /* Combine successive equal operations with constants. */
580 (for bitop (bit_and bit_ior bit_xor)
581 (simplify
582 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
583 (bitop @0 (bitop @1 @2))))
584
585 /* Try simple folding for X op !X, and X op X with the help
586 of the truth_valued_p and logical_inverted_value predicates. */
587 (match truth_valued_p
588 @0
589 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
590 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
591 (match truth_valued_p
592 (op @0 @1)))
593 (match truth_valued_p
594 (truth_not @0))
595
596 (match (logical_inverted_value @0)
597 (bit_not truth_valued_p@0))
598 (match (logical_inverted_value @0)
599 (eq @0 integer_zerop))
600 (match (logical_inverted_value @0)
601 (ne truth_valued_p@0 integer_truep))
602 (match (logical_inverted_value @0)
603 (bit_xor truth_valued_p@0 integer_truep))
604
605 /* X & !X -> 0. */
606 (simplify
607 (bit_and:c @0 (logical_inverted_value @0))
608 { build_zero_cst (type); })
609 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
610 (for op (bit_ior bit_xor)
611 (simplify
612 (op:c truth_valued_p@0 (logical_inverted_value @0))
613 { constant_boolean_node (true, type); }))
614
615 /* If arg1 and arg2 are booleans (or any single bit type)
616 then try to simplify:
617
618 (~X & Y) -> X < Y
619 (X & ~Y) -> Y < X
620 (~X | Y) -> X <= Y
621 (X | ~Y) -> Y <= X
622
623 But only do this if our result feeds into a comparison as
624 this transformation is not always a win, particularly on
625 targets with and-not instructions.
626 -> simplify_bitwise_binary_boolean */
627 (simplify
628 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
629 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
630 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
631 (lt @0 @1)))
632 (simplify
633 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
634 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
635 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
636 (le @0 @1)))
637
638 /* ~~x -> x */
639 (simplify
640 (bit_not (bit_not @0))
641 @0)
642
643 /* Convert ~ (-A) to A - 1. */
644 (simplify
645 (bit_not (convert? (negate @0)))
646 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
647 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
648
649 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
650 (simplify
651 (bit_not (convert? (minus @0 integer_each_onep)))
652 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
653 (convert (negate @0))))
654 (simplify
655 (bit_not (convert? (plus @0 integer_all_onesp)))
656 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
657 (convert (negate @0))))
658
659 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
660 (simplify
661 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
662 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
663 (convert (bit_xor @0 (bit_not @1)))))
664 (simplify
665 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
666 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
667 (convert (bit_xor @0 @1))))
668
669 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
670 (simplify
671 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
672 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
673
674 /* Fold A - (A & B) into ~B & A. */
675 (simplify
676 (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
677 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
678 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
679 (convert (bit_and (bit_not @1) @0))))
680
681 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
682 (simplify
683 (pointer_plus (pointer_plus:s @0 @1) @3)
684 (pointer_plus @0 (plus @1 @3)))
685
686 /* Pattern match
687 tem1 = (long) ptr1;
688 tem2 = (long) ptr2;
689 tem3 = tem2 - tem1;
690 tem4 = (unsigned long) tem3;
691 tem5 = ptr1 + tem4;
692 and produce
693 tem5 = ptr2; */
694 (simplify
695 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
696 /* Conditionally look through a sign-changing conversion. */
697 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
698 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
699 || (GENERIC && type == TREE_TYPE (@1))))
700 @1))
701
702 /* Pattern match
703 tem = (sizetype) ptr;
704 tem = tem & algn;
705 tem = -tem;
706 ... = ptr p+ tem;
707 and produce the simpler and easier to analyze with respect to alignment
708 ... = ptr & ~algn; */
709 (simplify
710 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
711 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
712 (bit_and @0 { algn; })))
713
714 /* Try folding difference of addresses. */
715 (simplify
716 (minus (convert ADDR_EXPR@0) (convert @1))
717 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
718 (with { HOST_WIDE_INT diff; }
719 (if (ptr_difference_const (@0, @1, &diff))
720 { build_int_cst_type (type, diff); }))))
721 (simplify
722 (minus (convert @0) (convert ADDR_EXPR@1))
723 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
724 (with { HOST_WIDE_INT diff; }
725 (if (ptr_difference_const (@0, @1, &diff))
726 { build_int_cst_type (type, diff); }))))
727
728 /* If arg0 is derived from the address of an object or function, we may
729 be able to fold this expression using the object or function's
730 alignment. */
731 (simplify
732 (bit_and (convert? @0) INTEGER_CST@1)
733 (if (POINTER_TYPE_P (TREE_TYPE (@0))
734 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
735 (with
736 {
737 unsigned int align;
738 unsigned HOST_WIDE_INT bitpos;
739 get_pointer_alignment_1 (@0, &align, &bitpos);
740 }
741 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
742 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
743
744
745 /* We can't reassociate at all for saturating types. */
746 (if (!TYPE_SATURATING (type))
747
748 /* Contract negates. */
749 /* A + (-B) -> A - B */
750 (simplify
751 (plus:c (convert1? @0) (convert2? (negate @1)))
752 /* Apply STRIP_NOPS on @0 and the negate. */
753 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
754 && tree_nop_conversion_p (type, TREE_TYPE (@1))
755 && !TYPE_OVERFLOW_SANITIZED (type))
756 (minus (convert @0) (convert @1))))
757 /* A - (-B) -> A + B */
758 (simplify
759 (minus (convert1? @0) (convert2? (negate @1)))
760 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
761 && tree_nop_conversion_p (type, TREE_TYPE (@1))
762 && !TYPE_OVERFLOW_SANITIZED (type))
763 (plus (convert @0) (convert @1))))
764 /* -(-A) -> A */
765 (simplify
766 (negate (convert? (negate @1)))
767 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
768 && !TYPE_OVERFLOW_SANITIZED (type))
769 (convert @1)))
770
771 /* We can't reassociate floating-point unless -fassociative-math
772 or fixed-point plus or minus because of saturation to +-Inf. */
773 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
774 && !FIXED_POINT_TYPE_P (type))
775
776 /* Match patterns that allow contracting a plus-minus pair
777 irrespective of overflow issues. */
778 /* (A +- B) - A -> +- B */
779 /* (A +- B) -+ B -> A */
780 /* A - (A +- B) -> -+ B */
781 /* A +- (B -+ A) -> +- B */
782 (simplify
783 (minus (plus:c @0 @1) @0)
784 @1)
785 (simplify
786 (minus (minus @0 @1) @0)
787 (negate @1))
788 (simplify
789 (plus:c (minus @0 @1) @1)
790 @0)
791 (simplify
792 (minus @0 (plus:c @0 @1))
793 (negate @1))
794 (simplify
795 (minus @0 (minus @0 @1))
796 @1)
797
798 /* (A +- CST) +- CST -> A + CST */
799 (for outer_op (plus minus)
800 (for inner_op (plus minus)
801 (simplify
802 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
803 /* If the constant operation overflows we cannot do the transform
804 as we would introduce undefined overflow, for example
805 with (a - 1) + INT_MIN. */
806 (with { tree cst = fold_binary (outer_op == inner_op
807 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
808 (if (cst && !TREE_OVERFLOW (cst))
809 (inner_op @0 { cst; } ))))))
810
811 /* (CST - A) +- CST -> CST - A */
812 (for outer_op (plus minus)
813 (simplify
814 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
815 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
816 (if (cst && !TREE_OVERFLOW (cst))
817 (minus { cst; } @0)))))
818
819 /* ~A + A -> -1 */
820 (simplify
821 (plus:c (bit_not @0) @0)
822 (if (!TYPE_OVERFLOW_TRAPS (type))
823 { build_all_ones_cst (type); }))
824
825 /* ~A + 1 -> -A */
826 (simplify
827 (plus (convert? (bit_not @0)) integer_each_onep)
828 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
829 (negate (convert @0))))
830
831 /* -A - 1 -> ~A */
832 (simplify
833 (minus (convert? (negate @0)) integer_each_onep)
834 (if (!TYPE_OVERFLOW_TRAPS (type)
835 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
836 (bit_not (convert @0))))
837
838 /* -1 - A -> ~A */
839 (simplify
840 (minus integer_all_onesp @0)
841 (bit_not @0))
842
843 /* (T)(P + A) - (T)P -> (T) A */
844 (for add (plus pointer_plus)
845 (simplify
846 (minus (convert (add @0 @1))
847 (convert @0))
848 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
849 /* For integer types, if A has a smaller type
850 than T the result depends on the possible
851 overflow in P + A.
852 E.g. T=size_t, A=(unsigned)429497295, P>0.
853 However, if an overflow in P + A would cause
854 undefined behavior, we can assume that there
855 is no overflow. */
856 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
857 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
858 /* For pointer types, if the conversion of A to the
859 final type requires a sign- or zero-extension,
860 then we have to punt - it is not defined which
861 one is correct. */
862 || (POINTER_TYPE_P (TREE_TYPE (@0))
863 && TREE_CODE (@1) == INTEGER_CST
864 && tree_int_cst_sign_bit (@1) == 0))
865 (convert @1))))))
866
867
868 /* Simplifications of MIN_EXPR and MAX_EXPR. */
869
870 (for minmax (min max)
871 (simplify
872 (minmax @0 @0)
873 @0))
874 (simplify
875 (min @0 @1)
876 (if (INTEGRAL_TYPE_P (type)
877 && TYPE_MIN_VALUE (type)
878 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
879 @1))
880 (simplify
881 (max @0 @1)
882 (if (INTEGRAL_TYPE_P (type)
883 && TYPE_MAX_VALUE (type)
884 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
885 @1))
886
887
888 /* Simplifications of shift and rotates. */
889
890 (for rotate (lrotate rrotate)
891 (simplify
892 (rotate integer_all_onesp@0 @1)
893 @0))
894
895 /* Optimize -1 >> x for arithmetic right shifts. */
896 (simplify
897 (rshift integer_all_onesp@0 @1)
898 (if (!TYPE_UNSIGNED (type)
899 && tree_expr_nonnegative_p (@1))
900 @0))
901
902 (for shiftrotate (lrotate rrotate lshift rshift)
903 (simplify
904 (shiftrotate @0 integer_zerop)
905 (non_lvalue @0))
906 (simplify
907 (shiftrotate integer_zerop@0 @1)
908 @0)
909 /* Prefer vector1 << scalar to vector1 << vector2
910 if vector2 is uniform. */
911 (for vec (VECTOR_CST CONSTRUCTOR)
912 (simplify
913 (shiftrotate @0 vec@1)
914 (with { tree tem = uniform_vector_p (@1); }
915 (if (tem)
916 (shiftrotate @0 { tem; }))))))
917
918 /* Rewrite an LROTATE_EXPR by a constant into an
919 RROTATE_EXPR by a new constant. */
920 (simplify
921 (lrotate @0 INTEGER_CST@1)
922 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
923 build_int_cst (TREE_TYPE (@1),
924 element_precision (type)), @1); }))
925
926 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
927 (for op (lrotate rrotate rshift lshift)
928 (simplify
929 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
930 (with { unsigned int prec = element_precision (type); }
931 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
932 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
933 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
934 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
935 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
936 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
937 being well defined. */
938 (if (low >= prec)
939 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
940 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
941 (if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
942 { build_zero_cst (type); }
943 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
944 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
945
946
947 /* ((1 << A) & 1) != 0 -> A == 0
948 ((1 << A) & 1) == 0 -> A != 0 */
949 (for cmp (ne eq)
950 icmp (eq ne)
951 (simplify
952 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
953 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
954
955 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
956 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
957 if CST2 != 0. */
958 (for cmp (ne eq)
959 (simplify
960 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
961 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
962 (if (cand < 0
963 || (!integer_zerop (@2)
964 && wi::ne_p (wi::lshift (@0, cand), @2)))
965 { constant_boolean_node (cmp == NE_EXPR, type); }
966 (if (!integer_zerop (@2)
967 && wi::eq_p (wi::lshift (@0, cand), @2))
968 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
969
970 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
971 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
972 if the new mask might be further optimized. */
973 (for shift (lshift rshift)
974 (simplify
975 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
976 INTEGER_CST@2)
977 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
978 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
979 && tree_fits_uhwi_p (@1)
980 && tree_to_uhwi (@1) > 0
981 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
982 (with
983 {
984 unsigned int shiftc = tree_to_uhwi (@1);
985 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
986 unsigned HOST_WIDE_INT newmask, zerobits = 0;
987 tree shift_type = TREE_TYPE (@3);
988 unsigned int prec;
989
990 if (shift == LSHIFT_EXPR)
991 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
992 else if (shift == RSHIFT_EXPR
993 && (TYPE_PRECISION (shift_type)
994 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
995 {
996 prec = TYPE_PRECISION (TREE_TYPE (@3));
997 tree arg00 = @0;
998 /* See if more bits can be proven as zero because of
999 zero extension. */
1000 if (@3 != @0
1001 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1002 {
1003 tree inner_type = TREE_TYPE (@0);
1004 if ((TYPE_PRECISION (inner_type)
1005 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1006 && TYPE_PRECISION (inner_type) < prec)
1007 {
1008 prec = TYPE_PRECISION (inner_type);
1009 /* See if we can shorten the right shift. */
1010 if (shiftc < prec)
1011 shift_type = inner_type;
1012 /* Otherwise X >> C1 is all zeros, so we'll optimize
1013 it into (X, 0) later on by making sure zerobits
1014 is all ones. */
1015 }
1016 }
1017 zerobits = ~(unsigned HOST_WIDE_INT) 0;
1018 if (shiftc < prec)
1019 {
1020 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1021 zerobits <<= prec - shiftc;
1022 }
1023 /* For arithmetic shift if sign bit could be set, zerobits
1024 can contain actually sign bits, so no transformation is
1025 possible, unless MASK masks them all away. In that
1026 case the shift needs to be converted into logical shift. */
1027 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1028 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1029 {
1030 if ((mask & zerobits) == 0)
1031 shift_type = unsigned_type_for (TREE_TYPE (@3));
1032 else
1033 zerobits = 0;
1034 }
1035 }
1036 }
1037 /* ((X << 16) & 0xff00) is (X, 0). */
1038 (if ((mask & zerobits) == mask)
1039 { build_int_cst (type, 0); }
1040 (with { newmask = mask | zerobits; }
1041 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1042 (with
1043 {
1044 /* Only do the transformation if NEWMASK is some integer
1045 mode's mask. */
1046 for (prec = BITS_PER_UNIT;
1047 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1048 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1049 break;
1050 }
1051 (if (prec < HOST_BITS_PER_WIDE_INT
1052 || newmask == ~(unsigned HOST_WIDE_INT) 0)
1053 (with
1054 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1055 (if (!tree_int_cst_equal (newmaskt, @2))
1056 (if (shift_type != TREE_TYPE (@3))
1057 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1058 (bit_and @4 { newmaskt; })))))))))))))
1059
1060 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
1061 (X & C2) >> C1 into (X >> C1) & (C2 >> C1). */
1062 (for shift (lshift rshift)
1063 (simplify
1064 (shift (convert?:s (bit_and:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1065 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1066 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1067 (bit_and (shift (convert @0) @1) { mask; })))))
1068
1069
1070 /* Simplifications of conversions. */
1071
1072 /* Basic strip-useless-type-conversions / strip_nops. */
1073 (for cvt (convert view_convert float fix_trunc)
1074 (simplify
1075 (cvt @0)
1076 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1077 || (GENERIC && type == TREE_TYPE (@0)))
1078 @0)))
1079
1080 /* Contract view-conversions. */
1081 (simplify
1082 (view_convert (view_convert @0))
1083 (view_convert @0))
1084
1085 /* For integral conversions with the same precision or pointer
1086 conversions use a NOP_EXPR instead. */
1087 (simplify
1088 (view_convert @0)
1089 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1090 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1091 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1092 (convert @0)))
1093
1094 /* Strip inner integral conversions that do not change precision or size. */
1095 (simplify
1096 (view_convert (convert@0 @1))
1097 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1098 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1099 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1100 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1101 (view_convert @1)))
1102
1103 /* Re-association barriers around constants and other re-association
1104 barriers can be removed. */
1105 (simplify
1106 (paren CONSTANT_CLASS_P@0)
1107 @0)
1108 (simplify
1109 (paren (paren@1 @0))
1110 @1)
1111
1112 /* Handle cases of two conversions in a row. */
1113 (for ocvt (convert float fix_trunc)
1114 (for icvt (convert float)
1115 (simplify
1116 (ocvt (icvt@1 @0))
1117 (with
1118 {
1119 tree inside_type = TREE_TYPE (@0);
1120 tree inter_type = TREE_TYPE (@1);
1121 int inside_int = INTEGRAL_TYPE_P (inside_type);
1122 int inside_ptr = POINTER_TYPE_P (inside_type);
1123 int inside_float = FLOAT_TYPE_P (inside_type);
1124 int inside_vec = VECTOR_TYPE_P (inside_type);
1125 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1126 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1127 int inter_int = INTEGRAL_TYPE_P (inter_type);
1128 int inter_ptr = POINTER_TYPE_P (inter_type);
1129 int inter_float = FLOAT_TYPE_P (inter_type);
1130 int inter_vec = VECTOR_TYPE_P (inter_type);
1131 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1132 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1133 int final_int = INTEGRAL_TYPE_P (type);
1134 int final_ptr = POINTER_TYPE_P (type);
1135 int final_float = FLOAT_TYPE_P (type);
1136 int final_vec = VECTOR_TYPE_P (type);
1137 unsigned int final_prec = TYPE_PRECISION (type);
1138 int final_unsignedp = TYPE_UNSIGNED (type);
1139 }
1140 (switch
1141 /* In addition to the cases of two conversions in a row
1142 handled below, if we are converting something to its own
1143 type via an object of identical or wider precision, neither
1144 conversion is needed. */
1145 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1146 || (GENERIC
1147 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1148 && (((inter_int || inter_ptr) && final_int)
1149 || (inter_float && final_float))
1150 && inter_prec >= final_prec)
1151 (ocvt @0))
1152
1153 /* Likewise, if the intermediate and initial types are either both
1154 float or both integer, we don't need the middle conversion if the
1155 former is wider than the latter and doesn't change the signedness
1156 (for integers). Avoid this if the final type is a pointer since
1157 then we sometimes need the middle conversion. Likewise if the
1158 final type has a precision not equal to the size of its mode. */
1159 (if (((inter_int && inside_int) || (inter_float && inside_float))
1160 && (final_int || final_float)
1161 && inter_prec >= inside_prec
1162 && (inter_float || inter_unsignedp == inside_unsignedp)
1163 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1164 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1165 (ocvt @0))
1166
1167 /* If we have a sign-extension of a zero-extended value, we can
1168 replace that by a single zero-extension. Likewise if the
1169 final conversion does not change precision we can drop the
1170 intermediate conversion. */
1171 (if (inside_int && inter_int && final_int
1172 && ((inside_prec < inter_prec && inter_prec < final_prec
1173 && inside_unsignedp && !inter_unsignedp)
1174 || final_prec == inter_prec))
1175 (ocvt @0))
1176
1177 /* Two conversions in a row are not needed unless:
1178 - some conversion is floating-point (overstrict for now), or
1179 - some conversion is a vector (overstrict for now), or
1180 - the intermediate type is narrower than both initial and
1181 final, or
1182 - the intermediate type and innermost type differ in signedness,
1183 and the outermost type is wider than the intermediate, or
1184 - the initial type is a pointer type and the precisions of the
1185 intermediate and final types differ, or
1186 - the final type is a pointer type and the precisions of the
1187 initial and intermediate types differ. */
1188 (if (! inside_float && ! inter_float && ! final_float
1189 && ! inside_vec && ! inter_vec && ! final_vec
1190 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1191 && ! (inside_int && inter_int
1192 && inter_unsignedp != inside_unsignedp
1193 && inter_prec < final_prec)
1194 && ((inter_unsignedp && inter_prec > inside_prec)
1195 == (final_unsignedp && final_prec > inter_prec))
1196 && ! (inside_ptr && inter_prec != final_prec)
1197 && ! (final_ptr && inside_prec != inter_prec)
1198 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1199 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1200 (ocvt @0))
1201
1202 /* A truncation to an unsigned type (a zero-extension) should be
1203 canonicalized as bitwise and of a mask. */
1204 (if (final_int && inter_int && inside_int
1205 && final_prec == inside_prec
1206 && final_prec > inter_prec
1207 && inter_unsignedp)
1208 (convert (bit_and @0 { wide_int_to_tree
1209 (inside_type,
1210 wi::mask (inter_prec, false,
1211 TYPE_PRECISION (inside_type))); })))
1212
1213 /* If we are converting an integer to a floating-point that can
1214 represent it exactly and back to an integer, we can skip the
1215 floating-point conversion. */
1216 (if (GIMPLE /* PR66211 */
1217 && inside_int && inter_float && final_int &&
1218 (unsigned) significand_size (TYPE_MODE (inter_type))
1219 >= inside_prec - !inside_unsignedp)
1220 (convert @0)))))))
1221
1222 /* If we have a narrowing conversion to an integral type that is fed by a
1223 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1224 masks off bits outside the final type (and nothing else). */
1225 (simplify
1226 (convert (bit_and @0 INTEGER_CST@1))
1227 (if (INTEGRAL_TYPE_P (type)
1228 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1229 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1230 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1231 TYPE_PRECISION (type)), 0))
1232 (convert @0)))
1233
1234
1235 /* (X /[ex] A) * A -> X. */
1236 (simplify
1237 (mult (convert? (exact_div @0 @1)) @1)
1238 /* Look through a sign-changing conversion. */
1239 (convert @0))
1240
1241 /* Canonicalization of binary operations. */
1242
1243 /* Convert X + -C into X - C. */
1244 (simplify
1245 (plus @0 REAL_CST@1)
1246 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1247 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1248 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1249 (minus @0 { tem; })))))
1250
1251 /* Convert x+x into x*2.0. */
1252 (simplify
1253 (plus @0 @0)
1254 (if (SCALAR_FLOAT_TYPE_P (type))
1255 (mult @0 { build_real (type, dconst2); })))
1256
1257 (simplify
1258 (minus integer_zerop @1)
1259 (negate @1))
1260
1261 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1262 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1263 (-ARG1 + ARG0) reduces to -ARG1. */
1264 (simplify
1265 (minus real_zerop@0 @1)
1266 (if (fold_real_zero_addition_p (type, @0, 0))
1267 (negate @1)))
1268
1269 /* Transform x * -1 into -x. */
1270 (simplify
1271 (mult @0 integer_minus_onep)
1272 (negate @0))
1273
1274 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1275 (simplify
1276 (complex (realpart @0) (imagpart @0))
1277 @0)
1278 (simplify
1279 (realpart (complex @0 @1))
1280 @0)
1281 (simplify
1282 (imagpart (complex @0 @1))
1283 @1)
1284
1285
1286 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1287 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1288 (simplify
1289 (bswap (bswap @0))
1290 @0)
1291 (simplify
1292 (bswap (bit_not (bswap @0)))
1293 (bit_not @0))
1294 (for bitop (bit_xor bit_ior bit_and)
1295 (simplify
1296 (bswap (bitop:c (bswap @0) @1))
1297 (bitop @0 (bswap @1)))))
1298
1299
1300 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1301
1302 /* Simplify constant conditions.
1303 Only optimize constant conditions when the selected branch
1304 has the same type as the COND_EXPR. This avoids optimizing
1305 away "c ? x : throw", where the throw has a void type.
1306 Note that we cannot throw away the fold-const.c variant nor
1307 this one as we depend on doing this transform before possibly
1308 A ? B : B -> B triggers and the fold-const.c one can optimize
1309 0 ? A : B to B even if A has side-effects. Something
1310 genmatch cannot handle. */
1311 (simplify
1312 (cond INTEGER_CST@0 @1 @2)
1313 (if (integer_zerop (@0))
1314 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1315 @2)
1316 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1317 @1)))
1318 (simplify
1319 (vec_cond VECTOR_CST@0 @1 @2)
1320 (if (integer_all_onesp (@0))
1321 @1
1322 (if (integer_zerop (@0))
1323 @2)))
1324
1325 (for cnd (cond vec_cond)
1326 /* A ? B : (A ? X : C) -> A ? B : C. */
1327 (simplify
1328 (cnd @0 (cnd @0 @1 @2) @3)
1329 (cnd @0 @1 @3))
1330 (simplify
1331 (cnd @0 @1 (cnd @0 @2 @3))
1332 (cnd @0 @1 @3))
1333
1334 /* A ? B : B -> B. */
1335 (simplify
1336 (cnd @0 @1 @1)
1337 @1)
1338
1339 /* !A ? B : C -> A ? C : B. */
1340 (simplify
1341 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1342 (cnd @0 @2 @1)))
1343
1344 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1345 return all-1 or all-0 results. */
1346 /* ??? We could instead convert all instances of the vec_cond to negate,
1347 but that isn't necessarily a win on its own. */
1348 (simplify
1349 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1350 (if (VECTOR_TYPE_P (type)
1351 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1352 && (TYPE_MODE (TREE_TYPE (type))
1353 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1354 (minus @3 (view_convert @0))))
1355
1356 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1357 (simplify
1358 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1359 (if (VECTOR_TYPE_P (type)
1360 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1361 && (TYPE_MODE (TREE_TYPE (type))
1362 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1363 (plus @3 (view_convert @0))))
1364
1365
1366 /* Simplifications of comparisons. */
1367
1368 /* We can simplify a logical negation of a comparison to the
1369 inverted comparison. As we cannot compute an expression
1370 operator using invert_tree_comparison we have to simulate
1371 that with expression code iteration. */
1372 (for cmp (tcc_comparison)
1373 icmp (inverted_tcc_comparison)
1374 ncmp (inverted_tcc_comparison_with_nans)
1375 /* Ideally we'd like to combine the following two patterns
1376 and handle some more cases by using
1377 (logical_inverted_value (cmp @0 @1))
1378 here but for that genmatch would need to "inline" that.
1379 For now implement what forward_propagate_comparison did. */
1380 (simplify
1381 (bit_not (cmp @0 @1))
1382 (if (VECTOR_TYPE_P (type)
1383 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1384 /* Comparison inversion may be impossible for trapping math,
1385 invert_tree_comparison will tell us. But we can't use
1386 a computed operator in the replacement tree thus we have
1387 to play the trick below. */
1388 (with { enum tree_code ic = invert_tree_comparison
1389 (cmp, HONOR_NANS (@0)); }
1390 (if (ic == icmp)
1391 (icmp @0 @1)
1392 (if (ic == ncmp)
1393 (ncmp @0 @1))))))
1394 (simplify
1395 (bit_xor (cmp @0 @1) integer_truep)
1396 (with { enum tree_code ic = invert_tree_comparison
1397 (cmp, HONOR_NANS (@0)); }
1398 (if (ic == icmp)
1399 (icmp @0 @1)
1400 (if (ic == ncmp)
1401 (ncmp @0 @1))))))
1402
1403 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1404 ??? The transformation is valid for the other operators if overflow
1405 is undefined for the type, but performing it here badly interacts
1406 with the transformation in fold_cond_expr_with_comparison which
1407 attempts to synthetize ABS_EXPR. */
1408 (for cmp (eq ne)
1409 (simplify
1410 (cmp (minus@2 @0 @1) integer_zerop)
1411 (if (single_use (@2))
1412 (cmp @0 @1))))
1413
1414 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1415 signed arithmetic case. That form is created by the compiler
1416 often enough for folding it to be of value. One example is in
1417 computing loop trip counts after Operator Strength Reduction. */
1418 (for cmp (simple_comparison)
1419 scmp (swapped_simple_comparison)
1420 (simplify
1421 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1422 /* Handle unfolded multiplication by zero. */
1423 (if (integer_zerop (@1))
1424 (cmp @1 @2)
1425 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1426 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1427 /* If @1 is negative we swap the sense of the comparison. */
1428 (if (tree_int_cst_sgn (@1) < 0)
1429 (scmp @0 @2)
1430 (cmp @0 @2))))))
1431
1432 /* Simplify comparison of something with itself. For IEEE
1433 floating-point, we can only do some of these simplifications. */
1434 (simplify
1435 (eq @0 @0)
1436 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1437 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1438 { constant_boolean_node (true, type); }))
1439 (for cmp (ge le)
1440 (simplify
1441 (cmp @0 @0)
1442 (eq @0 @0)))
1443 (for cmp (ne gt lt)
1444 (simplify
1445 (cmp @0 @0)
1446 (if (cmp != NE_EXPR
1447 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1448 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1449 { constant_boolean_node (false, type); })))
1450
1451 /* Fold ~X op ~Y as Y op X. */
1452 (for cmp (simple_comparison)
1453 (simplify
1454 (cmp (bit_not @0) (bit_not @1))
1455 (cmp @1 @0)))
1456
1457 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1458 (for cmp (simple_comparison)
1459 scmp (swapped_simple_comparison)
1460 (simplify
1461 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1462 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1463 (scmp @0 (bit_not @1)))))
1464
1465 (for cmp (simple_comparison)
1466 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1467 (simplify
1468 (cmp (convert@2 @0) (convert? @1))
1469 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1470 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1471 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1472 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1473 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1474 (with
1475 {
1476 tree type1 = TREE_TYPE (@1);
1477 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1478 {
1479 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1480 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1481 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1482 type1 = float_type_node;
1483 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1484 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1485 type1 = double_type_node;
1486 }
1487 tree newtype
1488 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1489 ? TREE_TYPE (@0) : type1);
1490 }
1491 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1492 (cmp (convert:newtype @0) (convert:newtype @1))))))
1493
1494 (simplify
1495 (cmp @0 REAL_CST@1)
1496 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1497 (switch
1498 /* a CMP (-0) -> a CMP 0 */
1499 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1500 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1501 /* x != NaN is always true, other ops are always false. */
1502 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1503 && ! HONOR_SNANS (@1))
1504 { constant_boolean_node (cmp == NE_EXPR, type); })
1505 /* Fold comparisons against infinity. */
1506 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1507 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1508 (with
1509 {
1510 REAL_VALUE_TYPE max;
1511 enum tree_code code = cmp;
1512 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1513 if (neg)
1514 code = swap_tree_comparison (code);
1515 }
1516 (switch
1517 /* x > +Inf is always false, if with ignore sNANs. */
1518 (if (code == GT_EXPR
1519 && ! HONOR_SNANS (@0))
1520 { constant_boolean_node (false, type); })
1521 (if (code == LE_EXPR)
1522 /* x <= +Inf is always true, if we don't case about NaNs. */
1523 (if (! HONOR_NANS (@0))
1524 { constant_boolean_node (true, type); }
1525 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
1526 (eq @0 @0)))
1527 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1528 (if (code == EQ_EXPR || code == GE_EXPR)
1529 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1530 (if (neg)
1531 (lt @0 { build_real (TREE_TYPE (@0), max); })
1532 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
1533 /* x < +Inf is always equal to x <= DBL_MAX. */
1534 (if (code == LT_EXPR)
1535 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1536 (if (neg)
1537 (ge @0 { build_real (TREE_TYPE (@0), max); })
1538 (le @0 { build_real (TREE_TYPE (@0), max); }))))
1539 /* x != +Inf is always equal to !(x > DBL_MAX). */
1540 (if (code == NE_EXPR)
1541 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1542 (if (! HONOR_NANS (@0))
1543 (if (neg)
1544 (ge @0 { build_real (TREE_TYPE (@0), max); })
1545 (le @0 { build_real (TREE_TYPE (@0), max); }))
1546 (if (neg)
1547 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1548 { build_one_cst (type); })
1549 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1550 { build_one_cst (type); }))))))))))
1551
1552 /* If this is a comparison of a real constant with a PLUS_EXPR
1553 or a MINUS_EXPR of a real constant, we can convert it into a
1554 comparison with a revised real constant as long as no overflow
1555 occurs when unsafe_math_optimizations are enabled. */
1556 (if (flag_unsafe_math_optimizations)
1557 (for op (plus minus)
1558 (simplify
1559 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1560 (with
1561 {
1562 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1563 TREE_TYPE (@1), @2, @1);
1564 }
1565 (if (!TREE_OVERFLOW (tem))
1566 (cmp @0 { tem; }))))))
1567
1568 /* Likewise, we can simplify a comparison of a real constant with
1569 a MINUS_EXPR whose first operand is also a real constant, i.e.
1570 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1571 floating-point types only if -fassociative-math is set. */
1572 (if (flag_associative_math)
1573 (simplify
1574 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
1575 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1576 (if (!TREE_OVERFLOW (tem))
1577 (cmp { tem; } @1)))))
1578
1579 /* Fold comparisons against built-in math functions. */
1580 (if (flag_unsafe_math_optimizations
1581 && ! flag_errno_math)
1582 (for sq (SQRT)
1583 (simplify
1584 (cmp (sq @0) REAL_CST@1)
1585 (switch
1586 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1587 (switch
1588 /* sqrt(x) < y is always false, if y is negative. */
1589 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1590 { constant_boolean_node (false, type); })
1591 /* sqrt(x) > y is always true, if y is negative and we
1592 don't care about NaNs, i.e. negative values of x. */
1593 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1594 { constant_boolean_node (true, type); })
1595 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1596 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
1597 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1598 (with
1599 {
1600 REAL_VALUE_TYPE c2;
1601 REAL_ARITHMETIC (c2, MULT_EXPR,
1602 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1603 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1604 }
1605 (if (REAL_VALUE_ISINF (c2))
1606 /* sqrt(x) > y is x == +Inf, when y is very large. */
1607 (if (HONOR_INFINITIES (@0))
1608 (eq @0 { build_real (TREE_TYPE (@0), c2); })
1609 { constant_boolean_node (false, type); })
1610 /* sqrt(x) > c is the same as x > c*c. */
1611 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
1612 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1613 (with
1614 {
1615 REAL_VALUE_TYPE c2;
1616 REAL_ARITHMETIC (c2, MULT_EXPR,
1617 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1618 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1619 }
1620 (if (REAL_VALUE_ISINF (c2))
1621 (switch
1622 /* sqrt(x) < y is always true, when y is a very large
1623 value and we don't care about NaNs or Infinities. */
1624 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1625 { constant_boolean_node (true, type); })
1626 /* sqrt(x) < y is x != +Inf when y is very large and we
1627 don't care about NaNs. */
1628 (if (! HONOR_NANS (@0))
1629 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1630 /* sqrt(x) < y is x >= 0 when y is very large and we
1631 don't care about Infinities. */
1632 (if (! HONOR_INFINITIES (@0))
1633 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1634 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1635 (if (GENERIC)
1636 (truth_andif
1637 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1638 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1639 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1640 (if (! HONOR_NANS (@0))
1641 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
1642 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1643 (if (GENERIC)
1644 (truth_andif
1645 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1646 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
1647
1648 /* Unordered tests if either argument is a NaN. */
1649 (simplify
1650 (bit_ior (unordered @0 @0) (unordered @1 @1))
1651 (if (types_match (@0, @1))
1652 (unordered @0 @1)))
1653 (simplify
1654 (bit_and (ordered @0 @0) (ordered @1 @1))
1655 (if (types_match (@0, @1))
1656 (ordered @0 @1)))
1657 (simplify
1658 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1659 @2)
1660 (simplify
1661 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1662 @2)
1663
1664 /* -A CMP -B -> B CMP A. */
1665 (for cmp (tcc_comparison)
1666 scmp (swapped_tcc_comparison)
1667 (simplify
1668 (cmp (negate @0) (negate @1))
1669 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1670 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1671 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1672 (scmp @0 @1)))
1673 (simplify
1674 (cmp (negate @0) CONSTANT_CLASS_P@1)
1675 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1676 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1677 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1678 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1679 (if (tem && !TREE_OVERFLOW (tem))
1680 (scmp @0 { tem; }))))))
1681
1682 /* From fold_sign_changed_comparison and fold_widened_comparison. */
1683 (for cmp (simple_comparison)
1684 (simplify
1685 (cmp (convert@0 @00) (convert?@1 @10))
1686 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
1687 /* Disable this optimization if we're casting a function pointer
1688 type on targets that require function pointer canonicalization. */
1689 && !(targetm.have_canonicalize_funcptr_for_compare ()
1690 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
1691 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
1692 && single_use (@0))
1693 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
1694 && (TREE_CODE (@10) == INTEGER_CST
1695 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
1696 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
1697 || cmp == NE_EXPR
1698 || cmp == EQ_EXPR)
1699 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
1700 /* ??? The special-casing of INTEGER_CST conversion was in the original
1701 code and here to avoid a spurious overflow flag on the resulting
1702 constant which fold_convert produces. */
1703 (if (TREE_CODE (@1) == INTEGER_CST)
1704 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
1705 TREE_OVERFLOW (@1)); })
1706 (cmp @00 (convert @1)))
1707
1708 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
1709 /* If possible, express the comparison in the shorter mode. */
1710 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
1711 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
1712 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
1713 || ((TYPE_PRECISION (TREE_TYPE (@00))
1714 >= TYPE_PRECISION (TREE_TYPE (@10)))
1715 && (TYPE_UNSIGNED (TREE_TYPE (@00))
1716 == TYPE_UNSIGNED (TREE_TYPE (@10))))
1717 || (TREE_CODE (@10) == INTEGER_CST
1718 && (TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1719 || TREE_CODE (TREE_TYPE (@00)) == BOOLEAN_TYPE)
1720 && int_fits_type_p (@10, TREE_TYPE (@00)))))
1721 (cmp @00 (convert @10))
1722 (if (TREE_CODE (@10) == INTEGER_CST
1723 && TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1724 && !int_fits_type_p (@10, TREE_TYPE (@00)))
1725 (with
1726 {
1727 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1728 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1729 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
1730 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
1731 }
1732 (if (above || below)
1733 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
1734 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
1735 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1736 { constant_boolean_node (above ? true : false, type); }
1737 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1738 { constant_boolean_node (above ? false : true, type); }))))))))))))
1739
1740 /* Equality compare simplifications from fold_binary */
1741 (for cmp (eq ne)
1742
1743 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1744 Similarly for NE_EXPR. */
1745 (simplify
1746 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1747 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1748 && wi::bit_and_not (@1, @2) != 0)
1749 { constant_boolean_node (cmp == NE_EXPR, type); }))
1750
1751 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1752 (simplify
1753 (cmp (bit_xor @0 @1) integer_zerop)
1754 (cmp @0 @1))
1755
1756 /* (X ^ Y) == Y becomes X == 0.
1757 Likewise (X ^ Y) == X becomes Y == 0. */
1758 (simplify
1759 (cmp:c (bit_xor:c @0 @1) @0)
1760 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1761
1762 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1763 (simplify
1764 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1765 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1766 (cmp @0 (bit_xor @1 (convert @2)))))
1767
1768 /* If this is an equality comparison of the address of two non-weak,
1769 unaliased symbols neither of which are extern (since we do not
1770 have access to attributes for externs), then we know the result. */
1771 (simplify
1772 (cmp (convert? addr@0) (convert? addr@1))
1773 (if (decl_in_symtab_p (TREE_OPERAND (@0, 0))
1774 && decl_in_symtab_p (TREE_OPERAND (@1, 0)))
1775 (with
1776 {
1777 int equal = symtab_node::get_create (TREE_OPERAND (@0, 0))
1778 ->equal_address_to (symtab_node::get_create (TREE_OPERAND (@1, 0)));
1779 }
1780 (if (equal != 2)
1781 { constant_boolean_node (equal ? cmp == EQ_EXPR : cmp != EQ_EXPR, type); }))))
1782
1783 (simplify
1784 (cmp (convert? addr@0) integer_zerop)
1785 (if (tree_single_nonzero_warnv_p (@0, NULL))
1786 { constant_boolean_node (cmp == NE_EXPR, type); })))
1787
1788
1789 /* bool_var != 0 becomes bool_var. */
1790 (simplify
1791 (ne @0 integer_zerop@1)
1792 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
1793 && types_match (type, TREE_TYPE (@0)))
1794 (non_lvalue @0)))
1795 /* bool_var == 1 becomes bool_var. */
1796 (simplify
1797 (eq @0 integer_onep@1)
1798 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
1799 && types_match (type, TREE_TYPE (@0)))
1800 (non_lvalue @0)))
1801
1802
1803 /* Simplification of math builtins. */
1804
1805 /* fold_builtin_logarithm */
1806 (if (flag_unsafe_math_optimizations)
1807 /* Special case, optimize logN(expN(x)) = x. */
1808 (for logs (LOG LOG2 LOG10)
1809 exps (EXP EXP2 EXP10)
1810 (simplify
1811 (logs (exps @0))
1812 @0))
1813 /* Optimize logN(func()) for various exponential functions. We
1814 want to determine the value "x" and the power "exponent" in
1815 order to transform logN(x**exponent) into exponent*logN(x). */
1816 (for logs (LOG LOG LOG LOG
1817 LOG2 LOG2 LOG2 LOG2
1818 LOG10 LOG10 LOG10 LOG10)
1819 exps (EXP EXP2 EXP10 POW10)
1820 (simplify
1821 (logs (exps @0))
1822 (with {
1823 tree x;
1824 switch (exps)
1825 {
1826 CASE_FLT_FN (BUILT_IN_EXP):
1827 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1828 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1829 dconst_e ()));
1830 break;
1831 CASE_FLT_FN (BUILT_IN_EXP2):
1832 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1833 x = build_real (type, dconst2);
1834 break;
1835 CASE_FLT_FN (BUILT_IN_EXP10):
1836 CASE_FLT_FN (BUILT_IN_POW10):
1837 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1838 {
1839 REAL_VALUE_TYPE dconst10;
1840 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1841 x = build_real (type, dconst10);
1842 }
1843 break;
1844 }
1845 }
1846 (mult (logs { x; }) @0))))
1847 (for logs (LOG LOG
1848 LOG2 LOG2
1849 LOG10 LOG10)
1850 exps (SQRT CBRT)
1851 (simplify
1852 (logs (exps @0))
1853 (with {
1854 tree x;
1855 switch (exps)
1856 {
1857 CASE_FLT_FN (BUILT_IN_SQRT):
1858 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1859 x = build_real (type, dconsthalf);
1860 break;
1861 CASE_FLT_FN (BUILT_IN_CBRT):
1862 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1863 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1864 dconst_third ()));
1865 break;
1866 }
1867 }
1868 (mult { x; } (logs @0)))))
1869 /* logN(pow(x,exponent) -> exponent*logN(x). */
1870 (for logs (LOG LOG2 LOG10)
1871 pows (POW)
1872 (simplify
1873 (logs (pows @0 @1))
1874 (mult @1 (logs @0)))))
1875
1876 /* Narrowing of arithmetic and logical operations.
1877
1878 These are conceptually similar to the transformations performed for
1879 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1880 term we want to move all that code out of the front-ends into here. */
1881
1882 /* If we have a narrowing conversion of an arithmetic operation where
1883 both operands are widening conversions from the same type as the outer
1884 narrowing conversion. Then convert the innermost operands to a suitable
1885 unsigned type (to avoid introducing undefined behaviour), perform the
1886 operation and convert the result to the desired type. */
1887 (for op (plus minus)
1888 (simplify
1889 (convert (op:s (convert@2 @0) (convert@3 @1)))
1890 (if (INTEGRAL_TYPE_P (type)
1891 /* We check for type compatibility between @0 and @1 below,
1892 so there's no need to check that @1/@3 are integral types. */
1893 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1894 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1895 /* The precision of the type of each operand must match the
1896 precision of the mode of each operand, similarly for the
1897 result. */
1898 && (TYPE_PRECISION (TREE_TYPE (@0))
1899 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1900 && (TYPE_PRECISION (TREE_TYPE (@1))
1901 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1902 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1903 /* The inner conversion must be a widening conversion. */
1904 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1905 && types_match (@0, @1)
1906 && types_match (@0, type))
1907 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1908 (convert (op @0 @1))
1909 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1910 (convert (op (convert:utype @0) (convert:utype @1))))))))
1911
1912 /* This is another case of narrowing, specifically when there's an outer
1913 BIT_AND_EXPR which masks off bits outside the type of the innermost
1914 operands. Like the previous case we have to convert the operands
1915 to unsigned types to avoid introducing undefined behaviour for the
1916 arithmetic operation. */
1917 (for op (minus plus)
1918 (simplify
1919 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1920 (if (INTEGRAL_TYPE_P (type)
1921 /* We check for type compatibility between @0 and @1 below,
1922 so there's no need to check that @1/@3 are integral types. */
1923 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1924 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1925 /* The precision of the type of each operand must match the
1926 precision of the mode of each operand, similarly for the
1927 result. */
1928 && (TYPE_PRECISION (TREE_TYPE (@0))
1929 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1930 && (TYPE_PRECISION (TREE_TYPE (@1))
1931 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1932 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1933 /* The inner conversion must be a widening conversion. */
1934 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1935 && types_match (@0, @1)
1936 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1937 <= TYPE_PRECISION (TREE_TYPE (@0)))
1938 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1939 || tree_int_cst_sgn (@4) >= 0))
1940 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1941 (with { tree ntype = TREE_TYPE (@0); }
1942 (convert (bit_and (op @0 @1) (convert:ntype @4))))
1943 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1944 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1945 (convert:utype @4))))))))