fold-const.c (fold_binary_loc): Move X % -Y -> X % Y and X % C -> X & (C - 1) for...
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43
44
45 /* Simplifications of operations with one constant operand and
46 simplifications to constants or single values. */
47
48 (for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
53 /* 0 +p index -> (type)index */
54 (simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
58 /* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60 (simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65 /* See if ARG1 is zero and X - ARG1 reduces to X. */
66 (simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
71 /* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76 (simplify
77 (minus @0 @0)
78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
79 { build_zero_cst (type); }))
80
81 (simplify
82 (mult @0 integer_zerop@1)
83 @1)
84
85 /* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89 (simplify
90 (mult @0 real_zerop@1)
91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
92 @1))
93
94 /* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96 (simplify
97 (mult @0 real_onep)
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103 /* Transform x * -1.0 into -x. */
104 (simplify
105 (mult @0 real_minus_onep)
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
110
111 /* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
118 /* X / -1 is -X. */
119 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
123 (negate @0))))
124
125 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127 (simplify
128 (floor_div @0 @1)
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
131 (trunc_div @0 @1)))
132
133 /* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135 (for div (trunc_div exact_div)
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
147 { build_zero_cst (type); }))))
148
149 /* Optimize A / A to 1.0 if we don't care about
150 NaNs or Infinities. */
151 (simplify
152 (rdiv @0 @0)
153 (if (FLOAT_TYPE_P (type)
154 && ! HONOR_NANS (type)
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158 /* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160 (simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
163 && ! HONOR_NANS (type)
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
166
167 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
168 (simplify
169 (rdiv @0 real_onep)
170 (if (!HONOR_SNANS (element_mode (type)))
171 (non_lvalue @0)))
172
173 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174 (simplify
175 (rdiv @0 real_minus_onep)
176 (if (!HONOR_SNANS (element_mode (type)))
177 (negate @0)))
178
179 /* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
190 (with
191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
199 /* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
201 (for mod (ceil_mod floor_mod round_mod trunc_mod)
202 /* 0 % X is always zero. */
203 (simplify
204 (mod integer_zerop@0 @1)
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
221
222 /* X % -C is the same as X % C. */
223 (simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
232
233 /* X % -Y is the same as X % Y. */
234 (simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
242 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
243 Also optimize A % (C << N) where C is a power of 2,
244 to A & ((C << N) - 1). */
245 (match (power_of_two_cand @1)
246 INTEGER_CST@1)
247 (match (power_of_two_cand @1)
248 (lshift INTEGER_CST@1 @2))
249 (for mod (trunc_mod floor_mod)
250 (simplify
251 (mod @0 (power_of_two_cand@1 @2))
252 (if ((TYPE_UNSIGNED (type)
253 || tree_expr_nonnegative_p (@0))
254 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
255 (bit_and @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); })))))
256
257 /* X % Y is smaller than Y. */
258 (for cmp (lt ge)
259 (simplify
260 (cmp (trunc_mod @0 @1) @1)
261 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
262 { constant_boolean_node (cmp == LT_EXPR, type); })))
263 (for cmp (gt le)
264 (simplify
265 (cmp @1 (trunc_mod @0 @1))
266 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
267 { constant_boolean_node (cmp == GT_EXPR, type); })))
268
269 /* x | ~0 -> ~0 */
270 (simplify
271 (bit_ior @0 integer_all_onesp@1)
272 @1)
273
274 /* x & 0 -> 0 */
275 (simplify
276 (bit_and @0 integer_zerop@1)
277 @1)
278
279 /* x ^ x -> 0 */
280 (simplify
281 (bit_xor @0 @0)
282 { build_zero_cst (type); })
283
284 /* Canonicalize X ^ ~0 to ~X. */
285 (simplify
286 (bit_xor @0 integer_all_onesp@1)
287 (bit_not @0))
288
289 /* x & ~0 -> x */
290 (simplify
291 (bit_and @0 integer_all_onesp)
292 (non_lvalue @0))
293
294 /* x & x -> x, x | x -> x */
295 (for bitop (bit_and bit_ior)
296 (simplify
297 (bitop @0 @0)
298 (non_lvalue @0)))
299
300 /* x + (x & 1) -> (x + 1) & ~1 */
301 (simplify
302 (plus:c @0 (bit_and@2 @0 integer_onep@1))
303 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
304 (bit_and (plus @0 @1) (bit_not @1))))
305
306 /* x & ~(x & y) -> x & ~y */
307 /* x | ~(x | y) -> x | ~y */
308 (for bitop (bit_and bit_ior)
309 (simplify
310 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
311 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
312 (bitop @0 (bit_not @1)))))
313
314 /* (x | y) & ~x -> y & ~x */
315 /* (x & y) | ~x -> y | ~x */
316 (for bitop (bit_and bit_ior)
317 rbitop (bit_ior bit_and)
318 (simplify
319 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
320 (bitop @1 @2)))
321
322 (simplify
323 (abs (negate @0))
324 (abs @0))
325 (simplify
326 (abs tree_expr_nonnegative_p@0)
327 @0)
328
329
330 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
331 when profitable.
332 For bitwise binary operations apply operand conversions to the
333 binary operation result instead of to the operands. This allows
334 to combine successive conversions and bitwise binary operations.
335 We combine the above two cases by using a conditional convert. */
336 (for bitop (bit_and bit_ior bit_xor)
337 (simplify
338 (bitop (convert @0) (convert? @1))
339 (if (((TREE_CODE (@1) == INTEGER_CST
340 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
341 && int_fits_type_p (@1, TREE_TYPE (@0)))
342 || types_match (@0, @1))
343 /* ??? This transform conflicts with fold-const.c doing
344 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
345 constants (if x has signed type, the sign bit cannot be set
346 in c). This folds extension into the BIT_AND_EXPR.
347 Restrict it to GIMPLE to avoid endless recursions. */
348 && (bitop != BIT_AND_EXPR || GIMPLE)
349 && (/* That's a good idea if the conversion widens the operand, thus
350 after hoisting the conversion the operation will be narrower. */
351 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
352 /* It's also a good idea if the conversion is to a non-integer
353 mode. */
354 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
355 /* Or if the precision of TO is not the same as the precision
356 of its mode. */
357 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
358 (convert (bitop @0 (convert @1))))))
359
360 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
361 (for bitop (bit_and bit_ior bit_xor)
362 (simplify
363 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
364 (bit_and (bitop @0 @2) @1)))
365
366 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
367 (simplify
368 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
369 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
370
371 /* Combine successive equal operations with constants. */
372 (for bitop (bit_and bit_ior bit_xor)
373 (simplify
374 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
375 (bitop @0 (bitop @1 @2))))
376
377 /* Try simple folding for X op !X, and X op X with the help
378 of the truth_valued_p and logical_inverted_value predicates. */
379 (match truth_valued_p
380 @0
381 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
382 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
383 (match truth_valued_p
384 (op @0 @1)))
385 (match truth_valued_p
386 (truth_not @0))
387
388 (match (logical_inverted_value @0)
389 (bit_not truth_valued_p@0))
390 (match (logical_inverted_value @0)
391 (eq @0 integer_zerop))
392 (match (logical_inverted_value @0)
393 (ne truth_valued_p@0 integer_truep))
394 (match (logical_inverted_value @0)
395 (bit_xor truth_valued_p@0 integer_truep))
396
397 /* X & !X -> 0. */
398 (simplify
399 (bit_and:c @0 (logical_inverted_value @0))
400 { build_zero_cst (type); })
401 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
402 (for op (bit_ior bit_xor)
403 (simplify
404 (op:c truth_valued_p@0 (logical_inverted_value @0))
405 { constant_boolean_node (true, type); }))
406
407 (for bitop (bit_and bit_ior)
408 rbitop (bit_ior bit_and)
409 /* (x | y) & x -> x */
410 /* (x & y) | x -> x */
411 (simplify
412 (bitop:c (rbitop:c @0 @1) @0)
413 @0)
414 /* (~x | y) & x -> x & y */
415 /* (~x & y) | x -> x | y */
416 (simplify
417 (bitop:c (rbitop:c (bit_not @0) @1) @0)
418 (bitop @0 @1)))
419
420 /* If arg1 and arg2 are booleans (or any single bit type)
421 then try to simplify:
422
423 (~X & Y) -> X < Y
424 (X & ~Y) -> Y < X
425 (~X | Y) -> X <= Y
426 (X | ~Y) -> Y <= X
427
428 But only do this if our result feeds into a comparison as
429 this transformation is not always a win, particularly on
430 targets with and-not instructions.
431 -> simplify_bitwise_binary_boolean */
432 (simplify
433 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
434 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
435 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
436 (lt @0 @1)))
437 (simplify
438 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
439 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
440 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
441 (le @0 @1)))
442
443 /* ~~x -> x */
444 (simplify
445 (bit_not (bit_not @0))
446 @0)
447
448 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
449 (simplify
450 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
451 (if ((TREE_CODE (@3) != SSA_NAME || has_single_use (@3))
452 && (TREE_CODE (@4) != SSA_NAME || has_single_use (@4)))
453 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
454
455
456 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
457 (simplify
458 (pointer_plus (pointer_plus@2 @0 @1) @3)
459 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
460 (pointer_plus @0 (plus @1 @3))))
461
462 /* Pattern match
463 tem1 = (long) ptr1;
464 tem2 = (long) ptr2;
465 tem3 = tem2 - tem1;
466 tem4 = (unsigned long) tem3;
467 tem5 = ptr1 + tem4;
468 and produce
469 tem5 = ptr2; */
470 (simplify
471 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
472 /* Conditionally look through a sign-changing conversion. */
473 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
474 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
475 || (GENERIC && type == TREE_TYPE (@1))))
476 @1))
477
478 /* Pattern match
479 tem = (sizetype) ptr;
480 tem = tem & algn;
481 tem = -tem;
482 ... = ptr p+ tem;
483 and produce the simpler and easier to analyze with respect to alignment
484 ... = ptr & ~algn; */
485 (simplify
486 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
487 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
488 (bit_and @0 { algn; })))
489
490
491 /* We can't reassociate at all for saturating types. */
492 (if (!TYPE_SATURATING (type))
493
494 /* Contract negates. */
495 /* A + (-B) -> A - B */
496 (simplify
497 (plus:c (convert1? @0) (convert2? (negate @1)))
498 /* Apply STRIP_NOPS on @0 and the negate. */
499 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
500 && tree_nop_conversion_p (type, TREE_TYPE (@1))
501 && !TYPE_OVERFLOW_SANITIZED (type))
502 (minus (convert @0) (convert @1))))
503 /* A - (-B) -> A + B */
504 (simplify
505 (minus (convert1? @0) (convert2? (negate @1)))
506 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
507 && tree_nop_conversion_p (type, TREE_TYPE (@1))
508 && !TYPE_OVERFLOW_SANITIZED (type))
509 (plus (convert @0) (convert @1))))
510 /* -(-A) -> A */
511 (simplify
512 (negate (convert? (negate @1)))
513 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
514 && !TYPE_OVERFLOW_SANITIZED (type))
515 (convert @1)))
516
517 /* We can't reassociate floating-point or fixed-point plus or minus
518 because of saturation to +-Inf. */
519 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
520
521 /* Match patterns that allow contracting a plus-minus pair
522 irrespective of overflow issues. */
523 /* (A +- B) - A -> +- B */
524 /* (A +- B) -+ B -> A */
525 /* A - (A +- B) -> -+ B */
526 /* A +- (B -+ A) -> +- B */
527 (simplify
528 (minus (plus:c @0 @1) @0)
529 @1)
530 (simplify
531 (minus (minus @0 @1) @0)
532 (negate @1))
533 (simplify
534 (plus:c (minus @0 @1) @1)
535 @0)
536 (simplify
537 (minus @0 (plus:c @0 @1))
538 (negate @1))
539 (simplify
540 (minus @0 (minus @0 @1))
541 @1)
542
543 /* (A +- CST) +- CST -> A + CST */
544 (for outer_op (plus minus)
545 (for inner_op (plus minus)
546 (simplify
547 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
548 /* If the constant operation overflows we cannot do the transform
549 as we would introduce undefined overflow, for example
550 with (a - 1) + INT_MIN. */
551 (with { tree cst = fold_binary (outer_op == inner_op
552 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
553 (if (cst && !TREE_OVERFLOW (cst))
554 (inner_op @0 { cst; } ))))))
555
556 /* (CST - A) +- CST -> CST - A */
557 (for outer_op (plus minus)
558 (simplify
559 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
560 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
561 (if (cst && !TREE_OVERFLOW (cst))
562 (minus { cst; } @0)))))
563
564 /* ~A + A -> -1 */
565 (simplify
566 (plus:c (bit_not @0) @0)
567 (if (!TYPE_OVERFLOW_TRAPS (type))
568 { build_all_ones_cst (type); }))
569
570 /* ~A + 1 -> -A */
571 (simplify
572 (plus (convert? (bit_not @0)) integer_each_onep)
573 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
574 (negate (convert @0))))
575
576 /* -A - 1 -> ~A */
577 (simplify
578 (minus (convert? (negate @0)) integer_each_onep)
579 (if (!TYPE_OVERFLOW_TRAPS (type)
580 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
581 (bit_not (convert @0))))
582
583 /* -1 - A -> ~A */
584 (simplify
585 (minus integer_all_onesp @0)
586 (bit_not @0))
587
588 /* (T)(P + A) - (T)P -> (T) A */
589 (for add (plus pointer_plus)
590 (simplify
591 (minus (convert (add @0 @1))
592 (convert @0))
593 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
594 /* For integer types, if A has a smaller type
595 than T the result depends on the possible
596 overflow in P + A.
597 E.g. T=size_t, A=(unsigned)429497295, P>0.
598 However, if an overflow in P + A would cause
599 undefined behavior, we can assume that there
600 is no overflow. */
601 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
602 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
603 /* For pointer types, if the conversion of A to the
604 final type requires a sign- or zero-extension,
605 then we have to punt - it is not defined which
606 one is correct. */
607 || (POINTER_TYPE_P (TREE_TYPE (@0))
608 && TREE_CODE (@1) == INTEGER_CST
609 && tree_int_cst_sign_bit (@1) == 0))
610 (convert @1))))))
611
612
613 /* Simplifications of MIN_EXPR and MAX_EXPR. */
614
615 (for minmax (min max)
616 (simplify
617 (minmax @0 @0)
618 @0))
619 (simplify
620 (min @0 @1)
621 (if (INTEGRAL_TYPE_P (type)
622 && TYPE_MIN_VALUE (type)
623 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
624 @1))
625 (simplify
626 (max @0 @1)
627 (if (INTEGRAL_TYPE_P (type)
628 && TYPE_MAX_VALUE (type)
629 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
630 @1))
631
632
633 /* Simplifications of shift and rotates. */
634
635 (for rotate (lrotate rrotate)
636 (simplify
637 (rotate integer_all_onesp@0 @1)
638 @0))
639
640 /* Optimize -1 >> x for arithmetic right shifts. */
641 (simplify
642 (rshift integer_all_onesp@0 @1)
643 (if (!TYPE_UNSIGNED (type)
644 && tree_expr_nonnegative_p (@1))
645 @0))
646
647 (for shiftrotate (lrotate rrotate lshift rshift)
648 (simplify
649 (shiftrotate @0 integer_zerop)
650 (non_lvalue @0))
651 (simplify
652 (shiftrotate integer_zerop@0 @1)
653 @0)
654 /* Prefer vector1 << scalar to vector1 << vector2
655 if vector2 is uniform. */
656 (for vec (VECTOR_CST CONSTRUCTOR)
657 (simplify
658 (shiftrotate @0 vec@1)
659 (with { tree tem = uniform_vector_p (@1); }
660 (if (tem)
661 (shiftrotate @0 { tem; }))))))
662
663 /* Rewrite an LROTATE_EXPR by a constant into an
664 RROTATE_EXPR by a new constant. */
665 (simplify
666 (lrotate @0 INTEGER_CST@1)
667 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
668 build_int_cst (TREE_TYPE (@1),
669 element_precision (type)), @1); }))
670
671 /* ((1 << A) & 1) != 0 -> A == 0
672 ((1 << A) & 1) == 0 -> A != 0 */
673 (for cmp (ne eq)
674 icmp (eq ne)
675 (simplify
676 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
677 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
678
679 /* Simplifications of conversions. */
680
681 /* Basic strip-useless-type-conversions / strip_nops. */
682 (for cvt (convert view_convert float fix_trunc)
683 (simplify
684 (cvt @0)
685 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
686 || (GENERIC && type == TREE_TYPE (@0)))
687 @0)))
688
689 /* Contract view-conversions. */
690 (simplify
691 (view_convert (view_convert @0))
692 (view_convert @0))
693
694 /* For integral conversions with the same precision or pointer
695 conversions use a NOP_EXPR instead. */
696 (simplify
697 (view_convert @0)
698 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
699 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
700 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
701 (convert @0)))
702
703 /* Strip inner integral conversions that do not change precision or size. */
704 (simplify
705 (view_convert (convert@0 @1))
706 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
707 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
708 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
709 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
710 (view_convert @1)))
711
712 /* Re-association barriers around constants and other re-association
713 barriers can be removed. */
714 (simplify
715 (paren CONSTANT_CLASS_P@0)
716 @0)
717 (simplify
718 (paren (paren@1 @0))
719 @1)
720
721 /* Handle cases of two conversions in a row. */
722 (for ocvt (convert float fix_trunc)
723 (for icvt (convert float)
724 (simplify
725 (ocvt (icvt@1 @0))
726 (with
727 {
728 tree inside_type = TREE_TYPE (@0);
729 tree inter_type = TREE_TYPE (@1);
730 int inside_int = INTEGRAL_TYPE_P (inside_type);
731 int inside_ptr = POINTER_TYPE_P (inside_type);
732 int inside_float = FLOAT_TYPE_P (inside_type);
733 int inside_vec = VECTOR_TYPE_P (inside_type);
734 unsigned int inside_prec = TYPE_PRECISION (inside_type);
735 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
736 int inter_int = INTEGRAL_TYPE_P (inter_type);
737 int inter_ptr = POINTER_TYPE_P (inter_type);
738 int inter_float = FLOAT_TYPE_P (inter_type);
739 int inter_vec = VECTOR_TYPE_P (inter_type);
740 unsigned int inter_prec = TYPE_PRECISION (inter_type);
741 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
742 int final_int = INTEGRAL_TYPE_P (type);
743 int final_ptr = POINTER_TYPE_P (type);
744 int final_float = FLOAT_TYPE_P (type);
745 int final_vec = VECTOR_TYPE_P (type);
746 unsigned int final_prec = TYPE_PRECISION (type);
747 int final_unsignedp = TYPE_UNSIGNED (type);
748 }
749 /* In addition to the cases of two conversions in a row
750 handled below, if we are converting something to its own
751 type via an object of identical or wider precision, neither
752 conversion is needed. */
753 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
754 || (GENERIC
755 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
756 && (((inter_int || inter_ptr) && final_int)
757 || (inter_float && final_float))
758 && inter_prec >= final_prec)
759 (ocvt @0))
760
761 /* Likewise, if the intermediate and initial types are either both
762 float or both integer, we don't need the middle conversion if the
763 former is wider than the latter and doesn't change the signedness
764 (for integers). Avoid this if the final type is a pointer since
765 then we sometimes need the middle conversion. Likewise if the
766 final type has a precision not equal to the size of its mode. */
767 (if (((inter_int && inside_int) || (inter_float && inside_float))
768 && (final_int || final_float)
769 && inter_prec >= inside_prec
770 && (inter_float || inter_unsignedp == inside_unsignedp)
771 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
772 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
773 (ocvt @0))
774
775 /* If we have a sign-extension of a zero-extended value, we can
776 replace that by a single zero-extension. Likewise if the
777 final conversion does not change precision we can drop the
778 intermediate conversion. */
779 (if (inside_int && inter_int && final_int
780 && ((inside_prec < inter_prec && inter_prec < final_prec
781 && inside_unsignedp && !inter_unsignedp)
782 || final_prec == inter_prec))
783 (ocvt @0))
784
785 /* Two conversions in a row are not needed unless:
786 - some conversion is floating-point (overstrict for now), or
787 - some conversion is a vector (overstrict for now), or
788 - the intermediate type is narrower than both initial and
789 final, or
790 - the intermediate type and innermost type differ in signedness,
791 and the outermost type is wider than the intermediate, or
792 - the initial type is a pointer type and the precisions of the
793 intermediate and final types differ, or
794 - the final type is a pointer type and the precisions of the
795 initial and intermediate types differ. */
796 (if (! inside_float && ! inter_float && ! final_float
797 && ! inside_vec && ! inter_vec && ! final_vec
798 && (inter_prec >= inside_prec || inter_prec >= final_prec)
799 && ! (inside_int && inter_int
800 && inter_unsignedp != inside_unsignedp
801 && inter_prec < final_prec)
802 && ((inter_unsignedp && inter_prec > inside_prec)
803 == (final_unsignedp && final_prec > inter_prec))
804 && ! (inside_ptr && inter_prec != final_prec)
805 && ! (final_ptr && inside_prec != inter_prec)
806 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
807 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
808 (ocvt @0))
809
810 /* A truncation to an unsigned type (a zero-extension) should be
811 canonicalized as bitwise and of a mask. */
812 (if (final_int && inter_int && inside_int
813 && final_prec == inside_prec
814 && final_prec > inter_prec
815 && inter_unsignedp)
816 (convert (bit_and @0 { wide_int_to_tree
817 (inside_type,
818 wi::mask (inter_prec, false,
819 TYPE_PRECISION (inside_type))); })))
820
821 /* If we are converting an integer to a floating-point that can
822 represent it exactly and back to an integer, we can skip the
823 floating-point conversion. */
824 (if (GIMPLE /* PR66211 */
825 && inside_int && inter_float && final_int &&
826 (unsigned) significand_size (TYPE_MODE (inter_type))
827 >= inside_prec - !inside_unsignedp)
828 (convert @0))))))
829
830 /* If we have a narrowing conversion to an integral type that is fed by a
831 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
832 masks off bits outside the final type (and nothing else). */
833 (simplify
834 (convert (bit_and @0 INTEGER_CST@1))
835 (if (INTEGRAL_TYPE_P (type)
836 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
837 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
838 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
839 TYPE_PRECISION (type)), 0))
840 (convert @0)))
841
842
843 /* (X /[ex] A) * A -> X. */
844 (simplify
845 (mult (convert? (exact_div @0 @1)) @1)
846 /* Look through a sign-changing conversion. */
847 (convert @0))
848
849 /* Canonicalization of binary operations. */
850
851 /* Convert X + -C into X - C. */
852 (simplify
853 (plus @0 REAL_CST@1)
854 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
855 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
856 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
857 (minus @0 { tem; })))))
858
859 /* Convert x+x into x*2.0. */
860 (simplify
861 (plus @0 @0)
862 (if (SCALAR_FLOAT_TYPE_P (type))
863 (mult @0 { build_real (type, dconst2); })))
864
865 (simplify
866 (minus integer_zerop @1)
867 (negate @1))
868
869 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
870 ARG0 is zero and X + ARG0 reduces to X, since that would mean
871 (-ARG1 + ARG0) reduces to -ARG1. */
872 (simplify
873 (minus real_zerop@0 @1)
874 (if (fold_real_zero_addition_p (type, @0, 0))
875 (negate @1)))
876
877 /* Transform x * -1 into -x. */
878 (simplify
879 (mult @0 integer_minus_onep)
880 (negate @0))
881
882 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
883 (simplify
884 (complex (realpart @0) (imagpart @0))
885 @0)
886 (simplify
887 (realpart (complex @0 @1))
888 @0)
889 (simplify
890 (imagpart (complex @0 @1))
891 @1)
892
893
894 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
895 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
896 (simplify
897 (bswap (bswap @0))
898 @0)
899 (simplify
900 (bswap (bit_not (bswap @0)))
901 (bit_not @0))
902 (for bitop (bit_xor bit_ior bit_and)
903 (simplify
904 (bswap (bitop:c (bswap @0) @1))
905 (bitop @0 (bswap @1)))))
906
907
908 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
909
910 /* Simplify constant conditions.
911 Only optimize constant conditions when the selected branch
912 has the same type as the COND_EXPR. This avoids optimizing
913 away "c ? x : throw", where the throw has a void type.
914 Note that we cannot throw away the fold-const.c variant nor
915 this one as we depend on doing this transform before possibly
916 A ? B : B -> B triggers and the fold-const.c one can optimize
917 0 ? A : B to B even if A has side-effects. Something
918 genmatch cannot handle. */
919 (simplify
920 (cond INTEGER_CST@0 @1 @2)
921 (if (integer_zerop (@0)
922 && (!VOID_TYPE_P (TREE_TYPE (@2))
923 || VOID_TYPE_P (type)))
924 @2)
925 (if (!integer_zerop (@0)
926 && (!VOID_TYPE_P (TREE_TYPE (@1))
927 || VOID_TYPE_P (type)))
928 @1))
929 (simplify
930 (vec_cond VECTOR_CST@0 @1 @2)
931 (if (integer_all_onesp (@0))
932 @1)
933 (if (integer_zerop (@0))
934 @2))
935
936 (for cnd (cond vec_cond)
937 /* A ? B : (A ? X : C) -> A ? B : C. */
938 (simplify
939 (cnd @0 (cnd @0 @1 @2) @3)
940 (cnd @0 @1 @3))
941 (simplify
942 (cnd @0 @1 (cnd @0 @2 @3))
943 (cnd @0 @1 @3))
944
945 /* A ? B : B -> B. */
946 (simplify
947 (cnd @0 @1 @1)
948 @1)
949
950 /* !A ? B : C -> A ? C : B. */
951 (simplify
952 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
953 (cnd @0 @2 @1)))
954
955
956 /* Simplifications of comparisons. */
957
958 /* We can simplify a logical negation of a comparison to the
959 inverted comparison. As we cannot compute an expression
960 operator using invert_tree_comparison we have to simulate
961 that with expression code iteration. */
962 (for cmp (tcc_comparison)
963 icmp (inverted_tcc_comparison)
964 ncmp (inverted_tcc_comparison_with_nans)
965 /* Ideally we'd like to combine the following two patterns
966 and handle some more cases by using
967 (logical_inverted_value (cmp @0 @1))
968 here but for that genmatch would need to "inline" that.
969 For now implement what forward_propagate_comparison did. */
970 (simplify
971 (bit_not (cmp @0 @1))
972 (if (VECTOR_TYPE_P (type)
973 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
974 /* Comparison inversion may be impossible for trapping math,
975 invert_tree_comparison will tell us. But we can't use
976 a computed operator in the replacement tree thus we have
977 to play the trick below. */
978 (with { enum tree_code ic = invert_tree_comparison
979 (cmp, HONOR_NANS (@0)); }
980 (if (ic == icmp)
981 (icmp @0 @1))
982 (if (ic == ncmp)
983 (ncmp @0 @1)))))
984 (simplify
985 (bit_xor (cmp @0 @1) integer_truep)
986 (with { enum tree_code ic = invert_tree_comparison
987 (cmp, HONOR_NANS (@0)); }
988 (if (ic == icmp)
989 (icmp @0 @1))
990 (if (ic == ncmp)
991 (ncmp @0 @1)))))
992
993 /* Unordered tests if either argument is a NaN. */
994 (simplify
995 (bit_ior (unordered @0 @0) (unordered @1 @1))
996 (if (types_match (@0, @1))
997 (unordered @0 @1)))
998 (simplify
999 (bit_and (ordered @0 @0) (ordered @1 @1))
1000 (if (types_match (@0, @1))
1001 (ordered @0 @1)))
1002 (simplify
1003 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1004 @2)
1005 (simplify
1006 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1007 @2)
1008
1009 /* -A CMP -B -> B CMP A. */
1010 (for cmp (tcc_comparison)
1011 scmp (swapped_tcc_comparison)
1012 (simplify
1013 (cmp (negate @0) (negate @1))
1014 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1015 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1016 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1017 (scmp @0 @1)))
1018 (simplify
1019 (cmp (negate @0) CONSTANT_CLASS_P@1)
1020 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1021 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1022 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1023 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1024 (if (tem && !TREE_OVERFLOW (tem))
1025 (scmp @0 { tem; }))))))
1026
1027 /* Simplification of math builtins. */
1028
1029 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1030 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1031 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1032 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1033 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1034 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1035 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1036 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1037 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1038 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1039
1040
1041 /* fold_builtin_logarithm */
1042 (if (flag_unsafe_math_optimizations)
1043 /* Special case, optimize logN(expN(x)) = x. */
1044 (for logs (LOG LOG2 LOG10)
1045 exps (EXP EXP2 EXP10)
1046 (simplify
1047 (logs (exps @0))
1048 @0))
1049 /* Optimize logN(func()) for various exponential functions. We
1050 want to determine the value "x" and the power "exponent" in
1051 order to transform logN(x**exponent) into exponent*logN(x). */
1052 (for logs (LOG LOG LOG LOG
1053 LOG2 LOG2 LOG2 LOG2
1054 LOG10 LOG10 LOG10 LOG10)
1055 exps (EXP EXP2 EXP10 POW10)
1056 (simplify
1057 (logs (exps @0))
1058 (with {
1059 tree x;
1060 switch (exps)
1061 {
1062 CASE_FLT_FN (BUILT_IN_EXP):
1063 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1064 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1065 dconst_e ()));
1066 break;
1067 CASE_FLT_FN (BUILT_IN_EXP2):
1068 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1069 x = build_real (type, dconst2);
1070 break;
1071 CASE_FLT_FN (BUILT_IN_EXP10):
1072 CASE_FLT_FN (BUILT_IN_POW10):
1073 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1074 {
1075 REAL_VALUE_TYPE dconst10;
1076 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1077 x = build_real (type, dconst10);
1078 }
1079 break;
1080 }
1081 }
1082 (mult (logs { x; }) @0))))
1083 (for logs (LOG LOG
1084 LOG2 LOG2
1085 LOG10 LOG10)
1086 exps (SQRT CBRT)
1087 (simplify
1088 (logs (exps @0))
1089 (with {
1090 tree x;
1091 switch (exps)
1092 {
1093 CASE_FLT_FN (BUILT_IN_SQRT):
1094 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1095 x = build_real (type, dconsthalf);
1096 break;
1097 CASE_FLT_FN (BUILT_IN_CBRT):
1098 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1099 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1100 dconst_third ()));
1101 break;
1102 }
1103 }
1104 (mult { x; } (logs @0)))))
1105 /* logN(pow(x,exponent) -> exponent*logN(x). */
1106 (for logs (LOG LOG2 LOG10)
1107 pows (POW)
1108 (simplify
1109 (logs (pows @0 @1))
1110 (mult @1 (logs @0)))))
1111
1112 /* Narrowing of arithmetic and logical operations.
1113
1114 These are conceptually similar to the transformations performed for
1115 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1116 term we want to move all that code out of the front-ends into here. */
1117
1118 /* If we have a narrowing conversion of an arithmetic operation where
1119 both operands are widening conversions from the same type as the outer
1120 narrowing conversion. Then convert the innermost operands to a suitable
1121 unsigned type (to avoid introducing undefined behaviour), perform the
1122 operation and convert the result to the desired type. */
1123 (for op (plus minus)
1124 (simplify
1125 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1126 (if (INTEGRAL_TYPE_P (type)
1127 /* We check for type compatibility between @0 and @1 below,
1128 so there's no need to check that @1/@3 are integral types. */
1129 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1130 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1131 /* The precision of the type of each operand must match the
1132 precision of the mode of each operand, similarly for the
1133 result. */
1134 && (TYPE_PRECISION (TREE_TYPE (@0))
1135 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1136 && (TYPE_PRECISION (TREE_TYPE (@1))
1137 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1138 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1139 /* The inner conversion must be a widening conversion. */
1140 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1141 && types_match (@0, @1)
1142 && types_match (@0, type)
1143 && single_use (@4))
1144 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1145 (convert (op @0 @1)))
1146 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1147 (convert (op (convert:utype @0) (convert:utype @1)))))))
1148
1149 /* This is another case of narrowing, specifically when there's an outer
1150 BIT_AND_EXPR which masks off bits outside the type of the innermost
1151 operands. Like the previous case we have to convert the operands
1152 to unsigned types to avoid introducing undefined behaviour for the
1153 arithmetic operation. */
1154 (for op (minus plus)
1155 (simplify
1156 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1157 (if (INTEGRAL_TYPE_P (type)
1158 /* We check for type compatibility between @0 and @1 below,
1159 so there's no need to check that @1/@3 are integral types. */
1160 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1161 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1162 /* The precision of the type of each operand must match the
1163 precision of the mode of each operand, similarly for the
1164 result. */
1165 && (TYPE_PRECISION (TREE_TYPE (@0))
1166 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1167 && (TYPE_PRECISION (TREE_TYPE (@1))
1168 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1169 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1170 /* The inner conversion must be a widening conversion. */
1171 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1172 && types_match (@0, @1)
1173 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1174 <= TYPE_PRECISION (TREE_TYPE (@0)))
1175 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1176 || tree_int_cst_sgn (@4) >= 0)
1177 && single_use (@5))
1178 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1179 (with { tree ntype = TREE_TYPE (@0); }
1180 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1181 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1182 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1183 (convert:utype @4)))))))
1184