Fold pointer range checks with equal spans
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
80 plus minus
81 mult trunc_div trunc_mod rdiv
82 min max
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
89
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
95
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
99 (convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
102 (view_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
109 @0)
110
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
120
121
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
124
125 (for op (plus pointer_plus minus bit_ior bit_xor)
126 (simplify
127 (op @0 integer_zerop)
128 (non_lvalue @0)))
129
130 /* 0 +p index -> (type)index */
131 (simplify
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
134
135 /* ptr - 0 -> (type)ptr */
136 (simplify
137 (pointer_diff @0 integer_zerop)
138 (convert @0))
139
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
142 (simplify
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
145 (non_lvalue @0)))
146
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
148 (simplify
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
151 (non_lvalue @0)))
152
153 /* Simplify x - x.
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
157 is volatile. */
158 (simplify
159 (minus @0 @0)
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
162 (simplify
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
165
166 (simplify
167 (mult @0 integer_zerop@1)
168 @1)
169
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
174 (simplify
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
177 @1))
178
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
181 (simplify
182 (mult @0 real_onep)
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
186 (non_lvalue @0)))
187
188 /* Transform x * -1.0 into -x. */
189 (simplify
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
194 (negate @0)))
195
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
203 (simplify
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
207 (switch
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
218 (simplify
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
222 (switch
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
229
230 /* Transform X * copysign (1.0, X) into abs(X). */
231 (simplify
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
234 (abs @0)))
235
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
237 (simplify
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
240 (negate (abs @0))))
241
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
243 (simplify
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
247
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
250 (simplify
251 (op @0 integer_onep)
252 (non_lvalue @0)))
253
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
256 toward zero.
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
258 (simplify
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
264 (rshift @0 @2)))
265
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
271 (simplify
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
275 @0))
276 /* X / -1 is -X. */
277 (simplify
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
280 (negate @0)))
281 /* X / X is one. */
282 (simplify
283 (div @0 @0)
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
289 (simplify
290 (div:C @0 (abs @0))
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
295 /* X / -X is -1. */
296 (simplify
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
301
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
304 (simplify
305 (floor_div @0 @1)
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
308 (trunc_div @0 @1)))
309
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
313 (simplify
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
315 (with {
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
319 }
320 (if (!overflow)
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
325
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
328 (simplify
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
330 (with {
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
334 }
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
339
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
342 (simplify
343 (rdiv @0 @0)
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
348
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
351 (simplify
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
357
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
359 (simplify
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
364 (switch
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
371
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
373 (simplify
374 (rdiv @0 real_onep)
375 (if (!HONOR_SNANS (type))
376 (non_lvalue @0)))
377
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
379 (simplify
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
382 (negate @0)))
383
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
386 (simplify
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
389
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
391 (simplify
392 (rdiv @0 (mult:s @1 REAL_CST@2))
393 (with
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
395 (if (tem)
396 (rdiv (mult @0 { tem; } ) @1))))
397
398 /* Convert A/(B/C) to (A/B)*C */
399 (simplify
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
402
403 /* Simplify x / (- y) to -x / y. */
404 (simplify
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
407
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
410 (simplify
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
416 (rshift (convert @0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
419
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
426 (simplify
427 (rdiv @0 cst@1)
428 (if (optimize)
429 (if (flag_reciprocal_math
430 && !real_zerop (@1))
431 (with
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
433 (if (tem)
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
437 (if (inverse)
438 (mult @0 { inverse; } ))))))))
439
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
442 (simplify
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
446 @0))
447 /* X % 1 is always zero. */
448 (simplify
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
452 (simplify
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
456 /* X % X is zero. */
457 (simplify
458 (mod @0 @0)
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
463 (simplify
464 (mod (mod@2 @0 @1) @1)
465 @2)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
467 (simplify
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
472 TYPE_SIGN (type)))
473 { build_zero_cst (type); })))
474
475 /* X % -C is the same as X % C. */
476 (simplify
477 (trunc_mod @0 INTEGER_CST@1)
478 (if (TYPE_SIGN (type) == SIGNED
479 && !TREE_OVERFLOW (@1)
480 && wi::neg_p (wi::to_wide (@1))
481 && !TYPE_OVERFLOW_TRAPS (type)
482 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
483 && !sign_bit_p (@1, @1))
484 (trunc_mod @0 (negate @1))))
485
486 /* X % -Y is the same as X % Y. */
487 (simplify
488 (trunc_mod @0 (convert? (negate @1)))
489 (if (INTEGRAL_TYPE_P (type)
490 && !TYPE_UNSIGNED (type)
491 && !TYPE_OVERFLOW_TRAPS (type)
492 && tree_nop_conversion_p (type, TREE_TYPE (@1))
493 /* Avoid this transformation if X might be INT_MIN or
494 Y might be -1, because we would then change valid
495 INT_MIN % -(-1) into invalid INT_MIN % -1. */
496 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
497 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
498 (TREE_TYPE (@1))))))
499 (trunc_mod @0 (convert @1))))
500
501 /* X - (X / Y) * Y is the same as X % Y. */
502 (simplify
503 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
504 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
505 (convert (trunc_mod @0 @1))))
506
507 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
508 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
509 Also optimize A % (C << N) where C is a power of 2,
510 to A & ((C << N) - 1). */
511 (match (power_of_two_cand @1)
512 INTEGER_CST@1)
513 (match (power_of_two_cand @1)
514 (lshift INTEGER_CST@1 @2))
515 (for mod (trunc_mod floor_mod)
516 (simplify
517 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
518 (if ((TYPE_UNSIGNED (type)
519 || tree_expr_nonnegative_p (@0))
520 && tree_nop_conversion_p (type, TREE_TYPE (@3))
521 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
522 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
523
524 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
525 (simplify
526 (trunc_div (mult @0 integer_pow2p@1) @1)
527 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
528 (bit_and @0 { wide_int_to_tree
529 (type, wi::mask (TYPE_PRECISION (type)
530 - wi::exact_log2 (wi::to_wide (@1)),
531 false, TYPE_PRECISION (type))); })))
532
533 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
534 (simplify
535 (mult (trunc_div @0 integer_pow2p@1) @1)
536 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
537 (bit_and @0 (negate @1))))
538
539 /* Simplify (t * 2) / 2) -> t. */
540 (for div (trunc_div ceil_div floor_div round_div exact_div)
541 (simplify
542 (div (mult:c @0 @1) @1)
543 (if (ANY_INTEGRAL_TYPE_P (type)
544 && TYPE_OVERFLOW_UNDEFINED (type))
545 @0)))
546
547 (for op (negate abs)
548 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
549 (for coss (COS COSH)
550 (simplify
551 (coss (op @0))
552 (coss @0)))
553 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
554 (for pows (POW)
555 (simplify
556 (pows (op @0) REAL_CST@1)
557 (with { HOST_WIDE_INT n; }
558 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
559 (pows @0 @1)))))
560 /* Likewise for powi. */
561 (for pows (POWI)
562 (simplify
563 (pows (op @0) INTEGER_CST@1)
564 (if ((wi::to_wide (@1) & 1) == 0)
565 (pows @0 @1))))
566 /* Strip negate and abs from both operands of hypot. */
567 (for hypots (HYPOT)
568 (simplify
569 (hypots (op @0) @1)
570 (hypots @0 @1))
571 (simplify
572 (hypots @0 (op @1))
573 (hypots @0 @1)))
574 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
575 (for copysigns (COPYSIGN_ALL)
576 (simplify
577 (copysigns (op @0) @1)
578 (copysigns @0 @1))))
579
580 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
581 (simplify
582 (mult (abs@1 @0) @1)
583 (mult @0 @0))
584
585 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
586 (for coss (COS COSH)
587 copysigns (COPYSIGN)
588 (simplify
589 (coss (copysigns @0 @1))
590 (coss @0)))
591
592 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
593 (for pows (POW)
594 copysigns (COPYSIGN)
595 (simplify
596 (pows (copysigns @0 @2) REAL_CST@1)
597 (with { HOST_WIDE_INT n; }
598 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
599 (pows @0 @1)))))
600 /* Likewise for powi. */
601 (for pows (POWI)
602 copysigns (COPYSIGN)
603 (simplify
604 (pows (copysigns @0 @2) INTEGER_CST@1)
605 (if ((wi::to_wide (@1) & 1) == 0)
606 (pows @0 @1))))
607
608 (for hypots (HYPOT)
609 copysigns (COPYSIGN)
610 /* hypot(copysign(x, y), z) -> hypot(x, z). */
611 (simplify
612 (hypots (copysigns @0 @1) @2)
613 (hypots @0 @2))
614 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
615 (simplify
616 (hypots @0 (copysigns @1 @2))
617 (hypots @0 @1)))
618
619 /* copysign(x, CST) -> [-]abs (x). */
620 (for copysigns (COPYSIGN_ALL)
621 (simplify
622 (copysigns @0 REAL_CST@1)
623 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
624 (negate (abs @0))
625 (abs @0))))
626
627 /* copysign(copysign(x, y), z) -> copysign(x, z). */
628 (for copysigns (COPYSIGN_ALL)
629 (simplify
630 (copysigns (copysigns @0 @1) @2)
631 (copysigns @0 @2)))
632
633 /* copysign(x,y)*copysign(x,y) -> x*x. */
634 (for copysigns (COPYSIGN_ALL)
635 (simplify
636 (mult (copysigns@2 @0 @1) @2)
637 (mult @0 @0)))
638
639 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
640 (for ccoss (CCOS CCOSH)
641 (simplify
642 (ccoss (negate @0))
643 (ccoss @0)))
644
645 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
646 (for ops (conj negate)
647 (for cabss (CABS)
648 (simplify
649 (cabss (ops @0))
650 (cabss @0))))
651
652 /* Fold (a * (1 << b)) into (a << b) */
653 (simplify
654 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
655 (if (! FLOAT_TYPE_P (type)
656 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
657 (lshift @0 @2)))
658
659 /* Fold (1 << (C - x)) where C = precision(type) - 1
660 into ((1 << C) >> x). */
661 (simplify
662 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
663 (if (INTEGRAL_TYPE_P (type)
664 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
665 && single_use (@1))
666 (if (TYPE_UNSIGNED (type))
667 (rshift (lshift @0 @2) @3)
668 (with
669 { tree utype = unsigned_type_for (type); }
670 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
671
672 /* Fold (C1/X)*C2 into (C1*C2)/X. */
673 (simplify
674 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
675 (if (flag_associative_math
676 && single_use (@3))
677 (with
678 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
679 (if (tem)
680 (rdiv { tem; } @1)))))
681
682 /* Simplify ~X & X as zero. */
683 (simplify
684 (bit_and:c (convert? @0) (convert? (bit_not @0)))
685 { build_zero_cst (type); })
686
687 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
688 (simplify
689 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
690 (if (TYPE_UNSIGNED (type))
691 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
692
693 (for bitop (bit_and bit_ior)
694 cmp (eq ne)
695 /* PR35691: Transform
696 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
697 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
698 (simplify
699 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
700 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
701 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
702 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
703 (cmp (bit_ior @0 (convert @1)) @2)))
704 /* Transform:
705 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
706 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
707 (simplify
708 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
709 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
710 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
711 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
712 (cmp (bit_and @0 (convert @1)) @2))))
713
714 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
715 (simplify
716 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
717 (minus (bit_xor @0 @1) @1))
718 (simplify
719 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
720 (if (~wi::to_wide (@2) == wi::to_wide (@1))
721 (minus (bit_xor @0 @1) @1)))
722
723 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
724 (simplify
725 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
726 (minus @1 (bit_xor @0 @1)))
727
728 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
729 (for op (bit_ior bit_xor plus)
730 (simplify
731 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
732 (bit_xor @0 @1))
733 (simplify
734 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
735 (if (~wi::to_wide (@2) == wi::to_wide (@1))
736 (bit_xor @0 @1))))
737
738 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
739 (simplify
740 (bit_ior:c (bit_xor:c @0 @1) @0)
741 (bit_ior @0 @1))
742
743 /* (a & ~b) | (a ^ b) --> a ^ b */
744 (simplify
745 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
746 @2)
747
748 /* (a & ~b) ^ ~a --> ~(a & b) */
749 (simplify
750 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
751 (bit_not (bit_and @0 @1)))
752
753 /* (a | b) & ~(a ^ b) --> a & b */
754 (simplify
755 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
756 (bit_and @0 @1))
757
758 /* a | ~(a ^ b) --> a | ~b */
759 (simplify
760 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
761 (bit_ior @0 (bit_not @1)))
762
763 /* (a | b) | (a &^ b) --> a | b */
764 (for op (bit_and bit_xor)
765 (simplify
766 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
767 @2))
768
769 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
770 (simplify
771 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
772 @2)
773
774 /* ~(~a & b) --> a | ~b */
775 (simplify
776 (bit_not (bit_and:cs (bit_not @0) @1))
777 (bit_ior @0 (bit_not @1)))
778
779 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
780 #if GIMPLE
781 (simplify
782 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
783 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
784 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
785 (bit_xor @0 @1)))
786 #endif
787
788 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
789 ((A & N) + B) & M -> (A + B) & M
790 Similarly if (N & M) == 0,
791 ((A | N) + B) & M -> (A + B) & M
792 and for - instead of + (or unary - instead of +)
793 and/or ^ instead of |.
794 If B is constant and (B & M) == 0, fold into A & M. */
795 (for op (plus minus)
796 (for bitop (bit_and bit_ior bit_xor)
797 (simplify
798 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
799 (with
800 { tree pmop[2];
801 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
802 @3, @4, @1, ERROR_MARK, NULL_TREE,
803 NULL_TREE, pmop); }
804 (if (utype)
805 (convert (bit_and (op (convert:utype { pmop[0]; })
806 (convert:utype { pmop[1]; }))
807 (convert:utype @2))))))
808 (simplify
809 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
810 (with
811 { tree pmop[2];
812 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
813 NULL_TREE, NULL_TREE, @1, bitop, @3,
814 @4, pmop); }
815 (if (utype)
816 (convert (bit_and (op (convert:utype { pmop[0]; })
817 (convert:utype { pmop[1]; }))
818 (convert:utype @2)))))))
819 (simplify
820 (bit_and (op:s @0 @1) INTEGER_CST@2)
821 (with
822 { tree pmop[2];
823 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
824 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
825 NULL_TREE, NULL_TREE, pmop); }
826 (if (utype)
827 (convert (bit_and (op (convert:utype { pmop[0]; })
828 (convert:utype { pmop[1]; }))
829 (convert:utype @2)))))))
830 (for bitop (bit_and bit_ior bit_xor)
831 (simplify
832 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
833 (with
834 { tree pmop[2];
835 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
836 bitop, @2, @3, NULL_TREE, ERROR_MARK,
837 NULL_TREE, NULL_TREE, pmop); }
838 (if (utype)
839 (convert (bit_and (negate (convert:utype { pmop[0]; }))
840 (convert:utype @1)))))))
841
842 /* X % Y is smaller than Y. */
843 (for cmp (lt ge)
844 (simplify
845 (cmp (trunc_mod @0 @1) @1)
846 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
847 { constant_boolean_node (cmp == LT_EXPR, type); })))
848 (for cmp (gt le)
849 (simplify
850 (cmp @1 (trunc_mod @0 @1))
851 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
852 { constant_boolean_node (cmp == GT_EXPR, type); })))
853
854 /* x | ~0 -> ~0 */
855 (simplify
856 (bit_ior @0 integer_all_onesp@1)
857 @1)
858
859 /* x | 0 -> x */
860 (simplify
861 (bit_ior @0 integer_zerop)
862 @0)
863
864 /* x & 0 -> 0 */
865 (simplify
866 (bit_and @0 integer_zerop@1)
867 @1)
868
869 /* ~x | x -> -1 */
870 /* ~x ^ x -> -1 */
871 /* ~x + x -> -1 */
872 (for op (bit_ior bit_xor plus)
873 (simplify
874 (op:c (convert? @0) (convert? (bit_not @0)))
875 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
876
877 /* x ^ x -> 0 */
878 (simplify
879 (bit_xor @0 @0)
880 { build_zero_cst (type); })
881
882 /* Canonicalize X ^ ~0 to ~X. */
883 (simplify
884 (bit_xor @0 integer_all_onesp@1)
885 (bit_not @0))
886
887 /* x & ~0 -> x */
888 (simplify
889 (bit_and @0 integer_all_onesp)
890 (non_lvalue @0))
891
892 /* x & x -> x, x | x -> x */
893 (for bitop (bit_and bit_ior)
894 (simplify
895 (bitop @0 @0)
896 (non_lvalue @0)))
897
898 /* x & C -> x if we know that x & ~C == 0. */
899 #if GIMPLE
900 (simplify
901 (bit_and SSA_NAME@0 INTEGER_CST@1)
902 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
903 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
904 @0))
905 #endif
906
907 /* x + (x & 1) -> (x + 1) & ~1 */
908 (simplify
909 (plus:c @0 (bit_and:s @0 integer_onep@1))
910 (bit_and (plus @0 @1) (bit_not @1)))
911
912 /* x & ~(x & y) -> x & ~y */
913 /* x | ~(x | y) -> x | ~y */
914 (for bitop (bit_and bit_ior)
915 (simplify
916 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
917 (bitop @0 (bit_not @1))))
918
919 /* (x | y) & ~x -> y & ~x */
920 /* (x & y) | ~x -> y | ~x */
921 (for bitop (bit_and bit_ior)
922 rbitop (bit_ior bit_and)
923 (simplify
924 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
925 (bitop @1 @2)))
926
927 /* (x & y) ^ (x | y) -> x ^ y */
928 (simplify
929 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
930 (bit_xor @0 @1))
931
932 /* (x ^ y) ^ (x | y) -> x & y */
933 (simplify
934 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
935 (bit_and @0 @1))
936
937 /* (x & y) + (x ^ y) -> x | y */
938 /* (x & y) | (x ^ y) -> x | y */
939 /* (x & y) ^ (x ^ y) -> x | y */
940 (for op (plus bit_ior bit_xor)
941 (simplify
942 (op:c (bit_and @0 @1) (bit_xor @0 @1))
943 (bit_ior @0 @1)))
944
945 /* (x & y) + (x | y) -> x + y */
946 (simplify
947 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
948 (plus @0 @1))
949
950 /* (x + y) - (x | y) -> x & y */
951 (simplify
952 (minus (plus @0 @1) (bit_ior @0 @1))
953 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
954 && !TYPE_SATURATING (type))
955 (bit_and @0 @1)))
956
957 /* (x + y) - (x & y) -> x | y */
958 (simplify
959 (minus (plus @0 @1) (bit_and @0 @1))
960 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
961 && !TYPE_SATURATING (type))
962 (bit_ior @0 @1)))
963
964 /* (x | y) - (x ^ y) -> x & y */
965 (simplify
966 (minus (bit_ior @0 @1) (bit_xor @0 @1))
967 (bit_and @0 @1))
968
969 /* (x | y) - (x & y) -> x ^ y */
970 (simplify
971 (minus (bit_ior @0 @1) (bit_and @0 @1))
972 (bit_xor @0 @1))
973
974 /* (x | y) & ~(x & y) -> x ^ y */
975 (simplify
976 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
977 (bit_xor @0 @1))
978
979 /* (x | y) & (~x ^ y) -> x & y */
980 (simplify
981 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
982 (bit_and @0 @1))
983
984 /* ~x & ~y -> ~(x | y)
985 ~x | ~y -> ~(x & y) */
986 (for op (bit_and bit_ior)
987 rop (bit_ior bit_and)
988 (simplify
989 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
990 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
991 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
992 (bit_not (rop (convert @0) (convert @1))))))
993
994 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
995 with a constant, and the two constants have no bits in common,
996 we should treat this as a BIT_IOR_EXPR since this may produce more
997 simplifications. */
998 (for op (bit_xor plus)
999 (simplify
1000 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1001 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1002 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1003 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1004 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1005 (bit_ior (convert @4) (convert @5)))))
1006
1007 /* (X | Y) ^ X -> Y & ~ X*/
1008 (simplify
1009 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1010 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1011 (convert (bit_and @1 (bit_not @0)))))
1012
1013 /* Convert ~X ^ ~Y to X ^ Y. */
1014 (simplify
1015 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1016 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1017 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1018 (bit_xor (convert @0) (convert @1))))
1019
1020 /* Convert ~X ^ C to X ^ ~C. */
1021 (simplify
1022 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1023 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1024 (bit_xor (convert @0) (bit_not @1))))
1025
1026 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1027 (for opo (bit_and bit_xor)
1028 opi (bit_xor bit_and)
1029 (simplify
1030 (opo:c (opi:c @0 @1) @1)
1031 (bit_and (bit_not @0) @1)))
1032
1033 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1034 operands are another bit-wise operation with a common input. If so,
1035 distribute the bit operations to save an operation and possibly two if
1036 constants are involved. For example, convert
1037 (A | B) & (A | C) into A | (B & C)
1038 Further simplification will occur if B and C are constants. */
1039 (for op (bit_and bit_ior bit_xor)
1040 rop (bit_ior bit_and bit_and)
1041 (simplify
1042 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1043 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1044 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1045 (rop (convert @0) (op (convert @1) (convert @2))))))
1046
1047 /* Some simple reassociation for bit operations, also handled in reassoc. */
1048 /* (X & Y) & Y -> X & Y
1049 (X | Y) | Y -> X | Y */
1050 (for op (bit_and bit_ior)
1051 (simplify
1052 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1053 @2))
1054 /* (X ^ Y) ^ Y -> X */
1055 (simplify
1056 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1057 (convert @0))
1058 /* (X & Y) & (X & Z) -> (X & Y) & Z
1059 (X | Y) | (X | Z) -> (X | Y) | Z */
1060 (for op (bit_and bit_ior)
1061 (simplify
1062 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1063 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1064 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1065 (if (single_use (@5) && single_use (@6))
1066 (op @3 (convert @2))
1067 (if (single_use (@3) && single_use (@4))
1068 (op (convert @1) @5))))))
1069 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1070 (simplify
1071 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1072 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1073 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1074 (bit_xor (convert @1) (convert @2))))
1075
1076 (simplify
1077 (abs (abs@1 @0))
1078 @1)
1079 (simplify
1080 (abs (negate @0))
1081 (abs @0))
1082 (simplify
1083 (abs tree_expr_nonnegative_p@0)
1084 @0)
1085
1086 /* A few cases of fold-const.c negate_expr_p predicate. */
1087 (match negate_expr_p
1088 INTEGER_CST
1089 (if ((INTEGRAL_TYPE_P (type)
1090 && TYPE_UNSIGNED (type))
1091 || (!TYPE_OVERFLOW_SANITIZED (type)
1092 && may_negate_without_overflow_p (t)))))
1093 (match negate_expr_p
1094 FIXED_CST)
1095 (match negate_expr_p
1096 (negate @0)
1097 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1098 (match negate_expr_p
1099 REAL_CST
1100 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1101 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1102 ways. */
1103 (match negate_expr_p
1104 VECTOR_CST
1105 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1106 (match negate_expr_p
1107 (minus @0 @1)
1108 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1109 || (FLOAT_TYPE_P (type)
1110 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1111 && !HONOR_SIGNED_ZEROS (type)))))
1112
1113 /* (-A) * (-B) -> A * B */
1114 (simplify
1115 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1116 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1117 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1118 (mult (convert @0) (convert (negate @1)))))
1119
1120 /* -(A + B) -> (-B) - A. */
1121 (simplify
1122 (negate (plus:c @0 negate_expr_p@1))
1123 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1124 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1125 (minus (negate @1) @0)))
1126
1127 /* -(A - B) -> B - A. */
1128 (simplify
1129 (negate (minus @0 @1))
1130 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1131 || (FLOAT_TYPE_P (type)
1132 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1133 && !HONOR_SIGNED_ZEROS (type)))
1134 (minus @1 @0)))
1135 (simplify
1136 (negate (pointer_diff @0 @1))
1137 (if (TYPE_OVERFLOW_UNDEFINED (type))
1138 (pointer_diff @1 @0)))
1139
1140 /* A - B -> A + (-B) if B is easily negatable. */
1141 (simplify
1142 (minus @0 negate_expr_p@1)
1143 (if (!FIXED_POINT_TYPE_P (type))
1144 (plus @0 (negate @1))))
1145
1146 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1147 when profitable.
1148 For bitwise binary operations apply operand conversions to the
1149 binary operation result instead of to the operands. This allows
1150 to combine successive conversions and bitwise binary operations.
1151 We combine the above two cases by using a conditional convert. */
1152 (for bitop (bit_and bit_ior bit_xor)
1153 (simplify
1154 (bitop (convert @0) (convert? @1))
1155 (if (((TREE_CODE (@1) == INTEGER_CST
1156 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1157 && int_fits_type_p (@1, TREE_TYPE (@0)))
1158 || types_match (@0, @1))
1159 /* ??? This transform conflicts with fold-const.c doing
1160 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1161 constants (if x has signed type, the sign bit cannot be set
1162 in c). This folds extension into the BIT_AND_EXPR.
1163 Restrict it to GIMPLE to avoid endless recursions. */
1164 && (bitop != BIT_AND_EXPR || GIMPLE)
1165 && (/* That's a good idea if the conversion widens the operand, thus
1166 after hoisting the conversion the operation will be narrower. */
1167 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1168 /* It's also a good idea if the conversion is to a non-integer
1169 mode. */
1170 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1171 /* Or if the precision of TO is not the same as the precision
1172 of its mode. */
1173 || !type_has_mode_precision_p (type)))
1174 (convert (bitop @0 (convert @1))))))
1175
1176 (for bitop (bit_and bit_ior)
1177 rbitop (bit_ior bit_and)
1178 /* (x | y) & x -> x */
1179 /* (x & y) | x -> x */
1180 (simplify
1181 (bitop:c (rbitop:c @0 @1) @0)
1182 @0)
1183 /* (~x | y) & x -> x & y */
1184 /* (~x & y) | x -> x | y */
1185 (simplify
1186 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1187 (bitop @0 @1)))
1188
1189 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1190 (simplify
1191 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1192 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1193
1194 /* Combine successive equal operations with constants. */
1195 (for bitop (bit_and bit_ior bit_xor)
1196 (simplify
1197 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1198 (if (!CONSTANT_CLASS_P (@0))
1199 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1200 folded to a constant. */
1201 (bitop @0 (bitop @1 @2))
1202 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1203 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1204 the values involved are such that the operation can't be decided at
1205 compile time. Try folding one of @0 or @1 with @2 to see whether
1206 that combination can be decided at compile time.
1207
1208 Keep the existing form if both folds fail, to avoid endless
1209 oscillation. */
1210 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1211 (if (cst1)
1212 (bitop @1 { cst1; })
1213 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1214 (if (cst2)
1215 (bitop @0 { cst2; }))))))))
1216
1217 /* Try simple folding for X op !X, and X op X with the help
1218 of the truth_valued_p and logical_inverted_value predicates. */
1219 (match truth_valued_p
1220 @0
1221 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1222 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1223 (match truth_valued_p
1224 (op @0 @1)))
1225 (match truth_valued_p
1226 (truth_not @0))
1227
1228 (match (logical_inverted_value @0)
1229 (truth_not @0))
1230 (match (logical_inverted_value @0)
1231 (bit_not truth_valued_p@0))
1232 (match (logical_inverted_value @0)
1233 (eq @0 integer_zerop))
1234 (match (logical_inverted_value @0)
1235 (ne truth_valued_p@0 integer_truep))
1236 (match (logical_inverted_value @0)
1237 (bit_xor truth_valued_p@0 integer_truep))
1238
1239 /* X & !X -> 0. */
1240 (simplify
1241 (bit_and:c @0 (logical_inverted_value @0))
1242 { build_zero_cst (type); })
1243 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1244 (for op (bit_ior bit_xor)
1245 (simplify
1246 (op:c truth_valued_p@0 (logical_inverted_value @0))
1247 { constant_boolean_node (true, type); }))
1248 /* X ==/!= !X is false/true. */
1249 (for op (eq ne)
1250 (simplify
1251 (op:c truth_valued_p@0 (logical_inverted_value @0))
1252 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1253
1254 /* ~~x -> x */
1255 (simplify
1256 (bit_not (bit_not @0))
1257 @0)
1258
1259 /* Convert ~ (-A) to A - 1. */
1260 (simplify
1261 (bit_not (convert? (negate @0)))
1262 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1263 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1264 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1265
1266 /* Convert - (~A) to A + 1. */
1267 (simplify
1268 (negate (nop_convert (bit_not @0)))
1269 (plus (view_convert @0) { build_each_one_cst (type); }))
1270
1271 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1272 (simplify
1273 (bit_not (convert? (minus @0 integer_each_onep)))
1274 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1275 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1276 (convert (negate @0))))
1277 (simplify
1278 (bit_not (convert? (plus @0 integer_all_onesp)))
1279 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1280 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1281 (convert (negate @0))))
1282
1283 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1284 (simplify
1285 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1286 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1287 (convert (bit_xor @0 (bit_not @1)))))
1288 (simplify
1289 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1290 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1291 (convert (bit_xor @0 @1))))
1292
1293 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1294 (simplify
1295 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1296 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1297 (bit_not (bit_xor (view_convert @0) @1))))
1298
1299 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1300 (simplify
1301 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1302 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1303
1304 /* Fold A - (A & B) into ~B & A. */
1305 (simplify
1306 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1307 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1308 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1309 (convert (bit_and (bit_not @1) @0))))
1310
1311 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1312 (for cmp (gt lt ge le)
1313 (simplify
1314 (mult (convert (cmp @0 @1)) @2)
1315 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1316
1317 /* For integral types with undefined overflow and C != 0 fold
1318 x * C EQ/NE y * C into x EQ/NE y. */
1319 (for cmp (eq ne)
1320 (simplify
1321 (cmp (mult:c @0 @1) (mult:c @2 @1))
1322 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1323 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1324 && tree_expr_nonzero_p (@1))
1325 (cmp @0 @2))))
1326
1327 /* For integral types with wrapping overflow and C odd fold
1328 x * C EQ/NE y * C into x EQ/NE y. */
1329 (for cmp (eq ne)
1330 (simplify
1331 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1332 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1333 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1334 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1335 (cmp @0 @2))))
1336
1337 /* For integral types with undefined overflow and C != 0 fold
1338 x * C RELOP y * C into:
1339
1340 x RELOP y for nonnegative C
1341 y RELOP x for negative C */
1342 (for cmp (lt gt le ge)
1343 (simplify
1344 (cmp (mult:c @0 @1) (mult:c @2 @1))
1345 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1346 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1347 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1348 (cmp @0 @2)
1349 (if (TREE_CODE (@1) == INTEGER_CST
1350 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1351 (cmp @2 @0))))))
1352
1353 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1354 (for cmp (le gt)
1355 icmp (gt le)
1356 (simplify
1357 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1358 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1359 && TYPE_UNSIGNED (TREE_TYPE (@0))
1360 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1361 && (wi::to_wide (@2)
1362 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1363 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1364 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1365
1366 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1367 (for cmp (simple_comparison)
1368 (simplify
1369 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1370 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1371 (cmp @0 @1))))
1372
1373 /* X / C1 op C2 into a simple range test. */
1374 (for cmp (simple_comparison)
1375 (simplify
1376 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1377 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1378 && integer_nonzerop (@1)
1379 && !TREE_OVERFLOW (@1)
1380 && !TREE_OVERFLOW (@2))
1381 (with { tree lo, hi; bool neg_overflow;
1382 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1383 &neg_overflow); }
1384 (switch
1385 (if (code == LT_EXPR || code == GE_EXPR)
1386 (if (TREE_OVERFLOW (lo))
1387 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1388 (if (code == LT_EXPR)
1389 (lt @0 { lo; })
1390 (ge @0 { lo; }))))
1391 (if (code == LE_EXPR || code == GT_EXPR)
1392 (if (TREE_OVERFLOW (hi))
1393 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1394 (if (code == LE_EXPR)
1395 (le @0 { hi; })
1396 (gt @0 { hi; }))))
1397 (if (!lo && !hi)
1398 { build_int_cst (type, code == NE_EXPR); })
1399 (if (code == EQ_EXPR && !hi)
1400 (ge @0 { lo; }))
1401 (if (code == EQ_EXPR && !lo)
1402 (le @0 { hi; }))
1403 (if (code == NE_EXPR && !hi)
1404 (lt @0 { lo; }))
1405 (if (code == NE_EXPR && !lo)
1406 (gt @0 { hi; }))
1407 (if (GENERIC)
1408 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1409 lo, hi); })
1410 (with
1411 {
1412 tree etype = range_check_type (TREE_TYPE (@0));
1413 if (etype)
1414 {
1415 if (! TYPE_UNSIGNED (etype))
1416 etype = unsigned_type_for (etype);
1417 hi = fold_convert (etype, hi);
1418 lo = fold_convert (etype, lo);
1419 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1420 }
1421 }
1422 (if (etype && hi && !TREE_OVERFLOW (hi))
1423 (if (code == EQ_EXPR)
1424 (le (minus (convert:etype @0) { lo; }) { hi; })
1425 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1426
1427 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1428 (for op (lt le ge gt)
1429 (simplify
1430 (op (plus:c @0 @2) (plus:c @1 @2))
1431 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1432 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1433 (op @0 @1))))
1434 /* For equality and subtraction, this is also true with wrapping overflow. */
1435 (for op (eq ne minus)
1436 (simplify
1437 (op (plus:c @0 @2) (plus:c @1 @2))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1441 (op @0 @1))))
1442
1443 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1444 (for op (lt le ge gt)
1445 (simplify
1446 (op (minus @0 @2) (minus @1 @2))
1447 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1448 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1449 (op @0 @1))))
1450 /* For equality and subtraction, this is also true with wrapping overflow. */
1451 (for op (eq ne minus)
1452 (simplify
1453 (op (minus @0 @2) (minus @1 @2))
1454 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1455 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1456 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1457 (op @0 @1))))
1458 /* And for pointers... */
1459 (for op (simple_comparison)
1460 (simplify
1461 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1462 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1463 (op @0 @1))))
1464 (simplify
1465 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1466 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1467 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1468 (pointer_diff @0 @1)))
1469
1470 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1471 (for op (lt le ge gt)
1472 (simplify
1473 (op (minus @2 @0) (minus @2 @1))
1474 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1476 (op @1 @0))))
1477 /* For equality and subtraction, this is also true with wrapping overflow. */
1478 (for op (eq ne minus)
1479 (simplify
1480 (op (minus @2 @0) (minus @2 @1))
1481 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1482 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1483 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1484 (op @1 @0))))
1485 /* And for pointers... */
1486 (for op (simple_comparison)
1487 (simplify
1488 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1489 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1490 (op @1 @0))))
1491 (simplify
1492 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1493 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1494 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1495 (pointer_diff @1 @0)))
1496
1497 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1498 (for op (lt le gt ge)
1499 (simplify
1500 (op:c (plus:c@2 @0 @1) @1)
1501 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1502 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1503 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1504 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1505 /* For equality, this is also true with wrapping overflow. */
1506 (for op (eq ne)
1507 (simplify
1508 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1509 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1510 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1511 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1512 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1513 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1514 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1515 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1516 (simplify
1517 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1518 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1519 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1520 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1521 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1522
1523 /* X - Y < X is the same as Y > 0 when there is no overflow.
1524 For equality, this is also true with wrapping overflow. */
1525 (for op (simple_comparison)
1526 (simplify
1527 (op:c @0 (minus@2 @0 @1))
1528 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1529 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1530 || ((op == EQ_EXPR || op == NE_EXPR)
1531 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1532 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1533 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1534
1535 /* Transform:
1536 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1537 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1538 (for cmp (eq ne)
1539 ocmp (lt ge)
1540 (simplify
1541 (cmp (trunc_div @0 @1) integer_zerop)
1542 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1543 /* Complex ==/!= is allowed, but not </>=. */
1544 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1545 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1546 (ocmp @0 @1))))
1547
1548 /* X == C - X can never be true if C is odd. */
1549 (for cmp (eq ne)
1550 (simplify
1551 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1552 (if (TREE_INT_CST_LOW (@1) & 1)
1553 { constant_boolean_node (cmp == NE_EXPR, type); })))
1554
1555 /* Arguments on which one can call get_nonzero_bits to get the bits
1556 possibly set. */
1557 (match with_possible_nonzero_bits
1558 INTEGER_CST@0)
1559 (match with_possible_nonzero_bits
1560 SSA_NAME@0
1561 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1562 /* Slightly extended version, do not make it recursive to keep it cheap. */
1563 (match (with_possible_nonzero_bits2 @0)
1564 with_possible_nonzero_bits@0)
1565 (match (with_possible_nonzero_bits2 @0)
1566 (bit_and:c with_possible_nonzero_bits@0 @2))
1567
1568 /* Same for bits that are known to be set, but we do not have
1569 an equivalent to get_nonzero_bits yet. */
1570 (match (with_certain_nonzero_bits2 @0)
1571 INTEGER_CST@0)
1572 (match (with_certain_nonzero_bits2 @0)
1573 (bit_ior @1 INTEGER_CST@0))
1574
1575 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1576 (for cmp (eq ne)
1577 (simplify
1578 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1579 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1580 { constant_boolean_node (cmp == NE_EXPR, type); })))
1581
1582 /* ((X inner_op C0) outer_op C1)
1583 With X being a tree where value_range has reasoned certain bits to always be
1584 zero throughout its computed value range,
1585 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1586 where zero_mask has 1's for all bits that are sure to be 0 in
1587 and 0's otherwise.
1588 if (inner_op == '^') C0 &= ~C1;
1589 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1590 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1591 */
1592 (for inner_op (bit_ior bit_xor)
1593 outer_op (bit_xor bit_ior)
1594 (simplify
1595 (outer_op
1596 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1597 (with
1598 {
1599 bool fail = false;
1600 wide_int zero_mask_not;
1601 wide_int C0;
1602 wide_int cst_emit;
1603
1604 if (TREE_CODE (@2) == SSA_NAME)
1605 zero_mask_not = get_nonzero_bits (@2);
1606 else
1607 fail = true;
1608
1609 if (inner_op == BIT_XOR_EXPR)
1610 {
1611 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1612 cst_emit = C0 | wi::to_wide (@1);
1613 }
1614 else
1615 {
1616 C0 = wi::to_wide (@0);
1617 cst_emit = C0 ^ wi::to_wide (@1);
1618 }
1619 }
1620 (if (!fail && (C0 & zero_mask_not) == 0)
1621 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1622 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1623 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1624
1625 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1626 (simplify
1627 (pointer_plus (pointer_plus:s @0 @1) @3)
1628 (pointer_plus @0 (plus @1 @3)))
1629
1630 /* Pattern match
1631 tem1 = (long) ptr1;
1632 tem2 = (long) ptr2;
1633 tem3 = tem2 - tem1;
1634 tem4 = (unsigned long) tem3;
1635 tem5 = ptr1 + tem4;
1636 and produce
1637 tem5 = ptr2; */
1638 (simplify
1639 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1640 /* Conditionally look through a sign-changing conversion. */
1641 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1642 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1643 || (GENERIC && type == TREE_TYPE (@1))))
1644 @1))
1645 (simplify
1646 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1647 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1648 (convert @1)))
1649
1650 /* Pattern match
1651 tem = (sizetype) ptr;
1652 tem = tem & algn;
1653 tem = -tem;
1654 ... = ptr p+ tem;
1655 and produce the simpler and easier to analyze with respect to alignment
1656 ... = ptr & ~algn; */
1657 (simplify
1658 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1659 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1660 (bit_and @0 { algn; })))
1661
1662 /* Try folding difference of addresses. */
1663 (simplify
1664 (minus (convert ADDR_EXPR@0) (convert @1))
1665 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1666 (with { poly_int64 diff; }
1667 (if (ptr_difference_const (@0, @1, &diff))
1668 { build_int_cst_type (type, diff); }))))
1669 (simplify
1670 (minus (convert @0) (convert ADDR_EXPR@1))
1671 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1672 (with { poly_int64 diff; }
1673 (if (ptr_difference_const (@0, @1, &diff))
1674 { build_int_cst_type (type, diff); }))))
1675 (simplify
1676 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1677 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1678 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1679 (with { poly_int64 diff; }
1680 (if (ptr_difference_const (@0, @1, &diff))
1681 { build_int_cst_type (type, diff); }))))
1682 (simplify
1683 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1684 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1685 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1686 (with { poly_int64 diff; }
1687 (if (ptr_difference_const (@0, @1, &diff))
1688 { build_int_cst_type (type, diff); }))))
1689
1690 /* If arg0 is derived from the address of an object or function, we may
1691 be able to fold this expression using the object or function's
1692 alignment. */
1693 (simplify
1694 (bit_and (convert? @0) INTEGER_CST@1)
1695 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1696 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1697 (with
1698 {
1699 unsigned int align;
1700 unsigned HOST_WIDE_INT bitpos;
1701 get_pointer_alignment_1 (@0, &align, &bitpos);
1702 }
1703 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1704 { wide_int_to_tree (type, (wi::to_wide (@1)
1705 & (bitpos / BITS_PER_UNIT))); }))))
1706
1707
1708 /* We can't reassociate at all for saturating types. */
1709 (if (!TYPE_SATURATING (type))
1710
1711 /* Contract negates. */
1712 /* A + (-B) -> A - B */
1713 (simplify
1714 (plus:c @0 (convert? (negate @1)))
1715 /* Apply STRIP_NOPS on the negate. */
1716 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1717 && !TYPE_OVERFLOW_SANITIZED (type))
1718 (with
1719 {
1720 tree t1 = type;
1721 if (INTEGRAL_TYPE_P (type)
1722 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1723 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1724 }
1725 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1726 /* A - (-B) -> A + B */
1727 (simplify
1728 (minus @0 (convert? (negate @1)))
1729 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1730 && !TYPE_OVERFLOW_SANITIZED (type))
1731 (with
1732 {
1733 tree t1 = type;
1734 if (INTEGRAL_TYPE_P (type)
1735 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1736 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1737 }
1738 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1739 /* -(T)(-A) -> (T)A
1740 Sign-extension is ok except for INT_MIN, which thankfully cannot
1741 happen without overflow. */
1742 (simplify
1743 (negate (convert (negate @1)))
1744 (if (INTEGRAL_TYPE_P (type)
1745 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1746 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1747 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1748 && !TYPE_OVERFLOW_SANITIZED (type)
1749 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1750 (convert @1)))
1751 (simplify
1752 (negate (convert negate_expr_p@1))
1753 (if (SCALAR_FLOAT_TYPE_P (type)
1754 && ((DECIMAL_FLOAT_TYPE_P (type)
1755 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1756 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1757 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1758 (convert (negate @1))))
1759 (simplify
1760 (negate (nop_convert (negate @1)))
1761 (if (!TYPE_OVERFLOW_SANITIZED (type)
1762 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1763 (view_convert @1)))
1764
1765 /* We can't reassociate floating-point unless -fassociative-math
1766 or fixed-point plus or minus because of saturation to +-Inf. */
1767 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1768 && !FIXED_POINT_TYPE_P (type))
1769
1770 /* Match patterns that allow contracting a plus-minus pair
1771 irrespective of overflow issues. */
1772 /* (A +- B) - A -> +- B */
1773 /* (A +- B) -+ B -> A */
1774 /* A - (A +- B) -> -+ B */
1775 /* A +- (B -+ A) -> +- B */
1776 (simplify
1777 (minus (plus:c @0 @1) @0)
1778 @1)
1779 (simplify
1780 (minus (minus @0 @1) @0)
1781 (negate @1))
1782 (simplify
1783 (plus:c (minus @0 @1) @1)
1784 @0)
1785 (simplify
1786 (minus @0 (plus:c @0 @1))
1787 (negate @1))
1788 (simplify
1789 (minus @0 (minus @0 @1))
1790 @1)
1791 /* (A +- B) + (C - A) -> C +- B */
1792 /* (A + B) - (A - C) -> B + C */
1793 /* More cases are handled with comparisons. */
1794 (simplify
1795 (plus:c (plus:c @0 @1) (minus @2 @0))
1796 (plus @2 @1))
1797 (simplify
1798 (plus:c (minus @0 @1) (minus @2 @0))
1799 (minus @2 @1))
1800 (simplify
1801 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1802 (if (TYPE_OVERFLOW_UNDEFINED (type)
1803 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1804 (pointer_diff @2 @1)))
1805 (simplify
1806 (minus (plus:c @0 @1) (minus @0 @2))
1807 (plus @1 @2))
1808
1809 /* (A +- CST1) +- CST2 -> A + CST3
1810 Use view_convert because it is safe for vectors and equivalent for
1811 scalars. */
1812 (for outer_op (plus minus)
1813 (for inner_op (plus minus)
1814 neg_inner_op (minus plus)
1815 (simplify
1816 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1817 CONSTANT_CLASS_P@2)
1818 /* If one of the types wraps, use that one. */
1819 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1820 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1821 forever if something doesn't simplify into a constant. */
1822 (if (!CONSTANT_CLASS_P (@0))
1823 (if (outer_op == PLUS_EXPR)
1824 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1825 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1826 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1827 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1828 (if (outer_op == PLUS_EXPR)
1829 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1830 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1831 /* If the constant operation overflows we cannot do the transform
1832 directly as we would introduce undefined overflow, for example
1833 with (a - 1) + INT_MIN. */
1834 (if (types_match (type, @0))
1835 (with { tree cst = const_binop (outer_op == inner_op
1836 ? PLUS_EXPR : MINUS_EXPR,
1837 type, @1, @2); }
1838 (if (cst && !TREE_OVERFLOW (cst))
1839 (inner_op @0 { cst; } )
1840 /* X+INT_MAX+1 is X-INT_MIN. */
1841 (if (INTEGRAL_TYPE_P (type) && cst
1842 && wi::to_wide (cst) == wi::min_value (type))
1843 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1844 /* Last resort, use some unsigned type. */
1845 (with { tree utype = unsigned_type_for (type); }
1846 (if (utype)
1847 (view_convert (inner_op
1848 (view_convert:utype @0)
1849 (view_convert:utype
1850 { drop_tree_overflow (cst); }))))))))))))))
1851
1852 /* (CST1 - A) +- CST2 -> CST3 - A */
1853 (for outer_op (plus minus)
1854 (simplify
1855 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1856 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1857 (if (cst && !TREE_OVERFLOW (cst))
1858 (minus { cst; } @0)))))
1859
1860 /* CST1 - (CST2 - A) -> CST3 + A */
1861 (simplify
1862 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1863 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1864 (if (cst && !TREE_OVERFLOW (cst))
1865 (plus { cst; } @0))))
1866
1867 /* ~A + A -> -1 */
1868 (simplify
1869 (plus:c (bit_not @0) @0)
1870 (if (!TYPE_OVERFLOW_TRAPS (type))
1871 { build_all_ones_cst (type); }))
1872
1873 /* ~A + 1 -> -A */
1874 (simplify
1875 (plus (convert? (bit_not @0)) integer_each_onep)
1876 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1877 (negate (convert @0))))
1878
1879 /* -A - 1 -> ~A */
1880 (simplify
1881 (minus (convert? (negate @0)) integer_each_onep)
1882 (if (!TYPE_OVERFLOW_TRAPS (type)
1883 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1884 (bit_not (convert @0))))
1885
1886 /* -1 - A -> ~A */
1887 (simplify
1888 (minus integer_all_onesp @0)
1889 (bit_not @0))
1890
1891 /* (T)(P + A) - (T)P -> (T) A */
1892 (simplify
1893 (minus (convert (plus:c @@0 @1))
1894 (convert? @0))
1895 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1896 /* For integer types, if A has a smaller type
1897 than T the result depends on the possible
1898 overflow in P + A.
1899 E.g. T=size_t, A=(unsigned)429497295, P>0.
1900 However, if an overflow in P + A would cause
1901 undefined behavior, we can assume that there
1902 is no overflow. */
1903 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1904 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1905 (convert @1)))
1906 (simplify
1907 (minus (convert (pointer_plus @@0 @1))
1908 (convert @0))
1909 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1910 /* For pointer types, if the conversion of A to the
1911 final type requires a sign- or zero-extension,
1912 then we have to punt - it is not defined which
1913 one is correct. */
1914 || (POINTER_TYPE_P (TREE_TYPE (@0))
1915 && TREE_CODE (@1) == INTEGER_CST
1916 && tree_int_cst_sign_bit (@1) == 0))
1917 (convert @1)))
1918 (simplify
1919 (pointer_diff (pointer_plus @@0 @1) @0)
1920 /* The second argument of pointer_plus must be interpreted as signed, and
1921 thus sign-extended if necessary. */
1922 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1923 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1924 second arg is unsigned even when we need to consider it as signed,
1925 we don't want to diagnose overflow here. */
1926 (convert (view_convert:stype @1))))
1927
1928 /* (T)P - (T)(P + A) -> -(T) A */
1929 (simplify
1930 (minus (convert? @0)
1931 (convert (plus:c @@0 @1)))
1932 (if (INTEGRAL_TYPE_P (type)
1933 && TYPE_OVERFLOW_UNDEFINED (type)
1934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1935 (with { tree utype = unsigned_type_for (type); }
1936 (convert (negate (convert:utype @1))))
1937 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1938 /* For integer types, if A has a smaller type
1939 than T the result depends on the possible
1940 overflow in P + A.
1941 E.g. T=size_t, A=(unsigned)429497295, P>0.
1942 However, if an overflow in P + A would cause
1943 undefined behavior, we can assume that there
1944 is no overflow. */
1945 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1946 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1947 (negate (convert @1)))))
1948 (simplify
1949 (minus (convert @0)
1950 (convert (pointer_plus @@0 @1)))
1951 (if (INTEGRAL_TYPE_P (type)
1952 && TYPE_OVERFLOW_UNDEFINED (type)
1953 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1954 (with { tree utype = unsigned_type_for (type); }
1955 (convert (negate (convert:utype @1))))
1956 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1957 /* For pointer types, if the conversion of A to the
1958 final type requires a sign- or zero-extension,
1959 then we have to punt - it is not defined which
1960 one is correct. */
1961 || (POINTER_TYPE_P (TREE_TYPE (@0))
1962 && TREE_CODE (@1) == INTEGER_CST
1963 && tree_int_cst_sign_bit (@1) == 0))
1964 (negate (convert @1)))))
1965 (simplify
1966 (pointer_diff @0 (pointer_plus @@0 @1))
1967 /* The second argument of pointer_plus must be interpreted as signed, and
1968 thus sign-extended if necessary. */
1969 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1970 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1971 second arg is unsigned even when we need to consider it as signed,
1972 we don't want to diagnose overflow here. */
1973 (negate (convert (view_convert:stype @1)))))
1974
1975 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1976 (simplify
1977 (minus (convert (plus:c @@0 @1))
1978 (convert (plus:c @0 @2)))
1979 (if (INTEGRAL_TYPE_P (type)
1980 && TYPE_OVERFLOW_UNDEFINED (type)
1981 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1982 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1983 (with { tree utype = unsigned_type_for (type); }
1984 (convert (minus (convert:utype @1) (convert:utype @2))))
1985 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1986 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1987 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1988 /* For integer types, if A has a smaller type
1989 than T the result depends on the possible
1990 overflow in P + A.
1991 E.g. T=size_t, A=(unsigned)429497295, P>0.
1992 However, if an overflow in P + A would cause
1993 undefined behavior, we can assume that there
1994 is no overflow. */
1995 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1996 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1999 (minus (convert @1) (convert @2)))))
2000 (simplify
2001 (minus (convert (pointer_plus @@0 @1))
2002 (convert (pointer_plus @0 @2)))
2003 (if (INTEGRAL_TYPE_P (type)
2004 && TYPE_OVERFLOW_UNDEFINED (type)
2005 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2006 (with { tree utype = unsigned_type_for (type); }
2007 (convert (minus (convert:utype @1) (convert:utype @2))))
2008 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2009 /* For pointer types, if the conversion of A to the
2010 final type requires a sign- or zero-extension,
2011 then we have to punt - it is not defined which
2012 one is correct. */
2013 || (POINTER_TYPE_P (TREE_TYPE (@0))
2014 && TREE_CODE (@1) == INTEGER_CST
2015 && tree_int_cst_sign_bit (@1) == 0
2016 && TREE_CODE (@2) == INTEGER_CST
2017 && tree_int_cst_sign_bit (@2) == 0))
2018 (minus (convert @1) (convert @2)))))
2019 (simplify
2020 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2021 /* The second argument of pointer_plus must be interpreted as signed, and
2022 thus sign-extended if necessary. */
2023 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2024 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2025 second arg is unsigned even when we need to consider it as signed,
2026 we don't want to diagnose overflow here. */
2027 (minus (convert (view_convert:stype @1))
2028 (convert (view_convert:stype @2)))))))
2029
2030 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2031 Modeled after fold_plusminus_mult_expr. */
2032 (if (!TYPE_SATURATING (type)
2033 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2034 (for plusminus (plus minus)
2035 (simplify
2036 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2037 (if ((!ANY_INTEGRAL_TYPE_P (type)
2038 || TYPE_OVERFLOW_WRAPS (type)
2039 || (INTEGRAL_TYPE_P (type)
2040 && tree_expr_nonzero_p (@0)
2041 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2042 /* If @1 +- @2 is constant require a hard single-use on either
2043 original operand (but not on both). */
2044 && (single_use (@3) || single_use (@4)))
2045 (mult (plusminus @1 @2) @0)))
2046 /* We cannot generate constant 1 for fract. */
2047 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2048 (simplify
2049 (plusminus @0 (mult:c@3 @0 @2))
2050 (if ((!ANY_INTEGRAL_TYPE_P (type)
2051 || TYPE_OVERFLOW_WRAPS (type)
2052 || (INTEGRAL_TYPE_P (type)
2053 && tree_expr_nonzero_p (@0)
2054 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2055 && single_use (@3))
2056 (mult (plusminus { build_one_cst (type); } @2) @0)))
2057 (simplify
2058 (plusminus (mult:c@3 @0 @2) @0)
2059 (if ((!ANY_INTEGRAL_TYPE_P (type)
2060 || TYPE_OVERFLOW_WRAPS (type)
2061 || (INTEGRAL_TYPE_P (type)
2062 && tree_expr_nonzero_p (@0)
2063 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2064 && single_use (@3))
2065 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2066
2067 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2068
2069 (for minmax (min max FMIN_ALL FMAX_ALL)
2070 (simplify
2071 (minmax @0 @0)
2072 @0))
2073 /* min(max(x,y),y) -> y. */
2074 (simplify
2075 (min:c (max:c @0 @1) @1)
2076 @1)
2077 /* max(min(x,y),y) -> y. */
2078 (simplify
2079 (max:c (min:c @0 @1) @1)
2080 @1)
2081 /* max(a,-a) -> abs(a). */
2082 (simplify
2083 (max:c @0 (negate @0))
2084 (if (TREE_CODE (type) != COMPLEX_TYPE
2085 && (! ANY_INTEGRAL_TYPE_P (type)
2086 || TYPE_OVERFLOW_UNDEFINED (type)))
2087 (abs @0)))
2088 /* min(a,-a) -> -abs(a). */
2089 (simplify
2090 (min:c @0 (negate @0))
2091 (if (TREE_CODE (type) != COMPLEX_TYPE
2092 && (! ANY_INTEGRAL_TYPE_P (type)
2093 || TYPE_OVERFLOW_UNDEFINED (type)))
2094 (negate (abs @0))))
2095 (simplify
2096 (min @0 @1)
2097 (switch
2098 (if (INTEGRAL_TYPE_P (type)
2099 && TYPE_MIN_VALUE (type)
2100 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2101 @1)
2102 (if (INTEGRAL_TYPE_P (type)
2103 && TYPE_MAX_VALUE (type)
2104 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2105 @0)))
2106 (simplify
2107 (max @0 @1)
2108 (switch
2109 (if (INTEGRAL_TYPE_P (type)
2110 && TYPE_MAX_VALUE (type)
2111 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2112 @1)
2113 (if (INTEGRAL_TYPE_P (type)
2114 && TYPE_MIN_VALUE (type)
2115 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2116 @0)))
2117
2118 /* max (a, a + CST) -> a + CST where CST is positive. */
2119 /* max (a, a + CST) -> a where CST is negative. */
2120 (simplify
2121 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2122 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2123 (if (tree_int_cst_sgn (@1) > 0)
2124 @2
2125 @0)))
2126
2127 /* min (a, a + CST) -> a where CST is positive. */
2128 /* min (a, a + CST) -> a + CST where CST is negative. */
2129 (simplify
2130 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2131 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2132 (if (tree_int_cst_sgn (@1) > 0)
2133 @0
2134 @2)))
2135
2136 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2137 and the outer convert demotes the expression back to x's type. */
2138 (for minmax (min max)
2139 (simplify
2140 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2141 (if (INTEGRAL_TYPE_P (type)
2142 && types_match (@1, type) && int_fits_type_p (@2, type)
2143 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2144 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2145 (minmax @1 (convert @2)))))
2146
2147 (for minmax (FMIN_ALL FMAX_ALL)
2148 /* If either argument is NaN, return the other one. Avoid the
2149 transformation if we get (and honor) a signalling NaN. */
2150 (simplify
2151 (minmax:c @0 REAL_CST@1)
2152 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2153 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2154 @0)))
2155 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2156 functions to return the numeric arg if the other one is NaN.
2157 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2158 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2159 worry about it either. */
2160 (if (flag_finite_math_only)
2161 (simplify
2162 (FMIN_ALL @0 @1)
2163 (min @0 @1))
2164 (simplify
2165 (FMAX_ALL @0 @1)
2166 (max @0 @1)))
2167 /* min (-A, -B) -> -max (A, B) */
2168 (for minmax (min max FMIN_ALL FMAX_ALL)
2169 maxmin (max min FMAX_ALL FMIN_ALL)
2170 (simplify
2171 (minmax (negate:s@2 @0) (negate:s@3 @1))
2172 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2173 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2174 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2175 (negate (maxmin @0 @1)))))
2176 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2177 MAX (~X, ~Y) -> ~MIN (X, Y) */
2178 (for minmax (min max)
2179 maxmin (max min)
2180 (simplify
2181 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2182 (bit_not (maxmin @0 @1))))
2183
2184 /* MIN (X, Y) == X -> X <= Y */
2185 (for minmax (min min max max)
2186 cmp (eq ne eq ne )
2187 out (le gt ge lt )
2188 (simplify
2189 (cmp:c (minmax:c @0 @1) @0)
2190 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2191 (out @0 @1))))
2192 /* MIN (X, 5) == 0 -> X == 0
2193 MIN (X, 5) == 7 -> false */
2194 (for cmp (eq ne)
2195 (simplify
2196 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2197 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2198 TYPE_SIGN (TREE_TYPE (@0))))
2199 { constant_boolean_node (cmp == NE_EXPR, type); }
2200 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2201 TYPE_SIGN (TREE_TYPE (@0))))
2202 (cmp @0 @2)))))
2203 (for cmp (eq ne)
2204 (simplify
2205 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2206 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2207 TYPE_SIGN (TREE_TYPE (@0))))
2208 { constant_boolean_node (cmp == NE_EXPR, type); }
2209 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2210 TYPE_SIGN (TREE_TYPE (@0))))
2211 (cmp @0 @2)))))
2212 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2213 (for minmax (min min max max min min max max )
2214 cmp (lt le gt ge gt ge lt le )
2215 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2216 (simplify
2217 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2218 (comb (cmp @0 @2) (cmp @1 @2))))
2219
2220 /* Simplifications of shift and rotates. */
2221
2222 (for rotate (lrotate rrotate)
2223 (simplify
2224 (rotate integer_all_onesp@0 @1)
2225 @0))
2226
2227 /* Optimize -1 >> x for arithmetic right shifts. */
2228 (simplify
2229 (rshift integer_all_onesp@0 @1)
2230 (if (!TYPE_UNSIGNED (type)
2231 && tree_expr_nonnegative_p (@1))
2232 @0))
2233
2234 /* Optimize (x >> c) << c into x & (-1<<c). */
2235 (simplify
2236 (lshift (rshift @0 INTEGER_CST@1) @1)
2237 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2238 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2239
2240 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2241 types. */
2242 (simplify
2243 (rshift (lshift @0 INTEGER_CST@1) @1)
2244 (if (TYPE_UNSIGNED (type)
2245 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2246 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2247
2248 (for shiftrotate (lrotate rrotate lshift rshift)
2249 (simplify
2250 (shiftrotate @0 integer_zerop)
2251 (non_lvalue @0))
2252 (simplify
2253 (shiftrotate integer_zerop@0 @1)
2254 @0)
2255 /* Prefer vector1 << scalar to vector1 << vector2
2256 if vector2 is uniform. */
2257 (for vec (VECTOR_CST CONSTRUCTOR)
2258 (simplify
2259 (shiftrotate @0 vec@1)
2260 (with { tree tem = uniform_vector_p (@1); }
2261 (if (tem)
2262 (shiftrotate @0 { tem; }))))))
2263
2264 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2265 Y is 0. Similarly for X >> Y. */
2266 #if GIMPLE
2267 (for shift (lshift rshift)
2268 (simplify
2269 (shift @0 SSA_NAME@1)
2270 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2271 (with {
2272 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2273 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2274 }
2275 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2276 @0)))))
2277 #endif
2278
2279 /* Rewrite an LROTATE_EXPR by a constant into an
2280 RROTATE_EXPR by a new constant. */
2281 (simplify
2282 (lrotate @0 INTEGER_CST@1)
2283 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2284 build_int_cst (TREE_TYPE (@1),
2285 element_precision (type)), @1); }))
2286
2287 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2288 (for op (lrotate rrotate rshift lshift)
2289 (simplify
2290 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2291 (with { unsigned int prec = element_precision (type); }
2292 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2293 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2294 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2295 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2296 (with { unsigned int low = (tree_to_uhwi (@1)
2297 + tree_to_uhwi (@2)); }
2298 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2299 being well defined. */
2300 (if (low >= prec)
2301 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2302 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2303 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2304 { build_zero_cst (type); }
2305 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2306 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2307
2308
2309 /* ((1 << A) & 1) != 0 -> A == 0
2310 ((1 << A) & 1) == 0 -> A != 0 */
2311 (for cmp (ne eq)
2312 icmp (eq ne)
2313 (simplify
2314 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2315 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2316
2317 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2318 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2319 if CST2 != 0. */
2320 (for cmp (ne eq)
2321 (simplify
2322 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2323 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2324 (if (cand < 0
2325 || (!integer_zerop (@2)
2326 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2327 { constant_boolean_node (cmp == NE_EXPR, type); }
2328 (if (!integer_zerop (@2)
2329 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2330 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2331
2332 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2333 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2334 if the new mask might be further optimized. */
2335 (for shift (lshift rshift)
2336 (simplify
2337 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2338 INTEGER_CST@2)
2339 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2340 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2341 && tree_fits_uhwi_p (@1)
2342 && tree_to_uhwi (@1) > 0
2343 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2344 (with
2345 {
2346 unsigned int shiftc = tree_to_uhwi (@1);
2347 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2348 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2349 tree shift_type = TREE_TYPE (@3);
2350 unsigned int prec;
2351
2352 if (shift == LSHIFT_EXPR)
2353 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2354 else if (shift == RSHIFT_EXPR
2355 && type_has_mode_precision_p (shift_type))
2356 {
2357 prec = TYPE_PRECISION (TREE_TYPE (@3));
2358 tree arg00 = @0;
2359 /* See if more bits can be proven as zero because of
2360 zero extension. */
2361 if (@3 != @0
2362 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2363 {
2364 tree inner_type = TREE_TYPE (@0);
2365 if (type_has_mode_precision_p (inner_type)
2366 && TYPE_PRECISION (inner_type) < prec)
2367 {
2368 prec = TYPE_PRECISION (inner_type);
2369 /* See if we can shorten the right shift. */
2370 if (shiftc < prec)
2371 shift_type = inner_type;
2372 /* Otherwise X >> C1 is all zeros, so we'll optimize
2373 it into (X, 0) later on by making sure zerobits
2374 is all ones. */
2375 }
2376 }
2377 zerobits = HOST_WIDE_INT_M1U;
2378 if (shiftc < prec)
2379 {
2380 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2381 zerobits <<= prec - shiftc;
2382 }
2383 /* For arithmetic shift if sign bit could be set, zerobits
2384 can contain actually sign bits, so no transformation is
2385 possible, unless MASK masks them all away. In that
2386 case the shift needs to be converted into logical shift. */
2387 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2388 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2389 {
2390 if ((mask & zerobits) == 0)
2391 shift_type = unsigned_type_for (TREE_TYPE (@3));
2392 else
2393 zerobits = 0;
2394 }
2395 }
2396 }
2397 /* ((X << 16) & 0xff00) is (X, 0). */
2398 (if ((mask & zerobits) == mask)
2399 { build_int_cst (type, 0); }
2400 (with { newmask = mask | zerobits; }
2401 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2402 (with
2403 {
2404 /* Only do the transformation if NEWMASK is some integer
2405 mode's mask. */
2406 for (prec = BITS_PER_UNIT;
2407 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2408 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2409 break;
2410 }
2411 (if (prec < HOST_BITS_PER_WIDE_INT
2412 || newmask == HOST_WIDE_INT_M1U)
2413 (with
2414 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2415 (if (!tree_int_cst_equal (newmaskt, @2))
2416 (if (shift_type != TREE_TYPE (@3))
2417 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2418 (bit_and @4 { newmaskt; })))))))))))))
2419
2420 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2421 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2422 (for shift (lshift rshift)
2423 (for bit_op (bit_and bit_xor bit_ior)
2424 (simplify
2425 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2426 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2427 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2428 (bit_op (shift (convert @0) @1) { mask; }))))))
2429
2430 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2431 (simplify
2432 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2433 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2434 && (element_precision (TREE_TYPE (@0))
2435 <= element_precision (TREE_TYPE (@1))
2436 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2437 (with
2438 { tree shift_type = TREE_TYPE (@0); }
2439 (convert (rshift (convert:shift_type @1) @2)))))
2440
2441 /* ~(~X >>r Y) -> X >>r Y
2442 ~(~X <<r Y) -> X <<r Y */
2443 (for rotate (lrotate rrotate)
2444 (simplify
2445 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2446 (if ((element_precision (TREE_TYPE (@0))
2447 <= element_precision (TREE_TYPE (@1))
2448 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2449 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2450 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2451 (with
2452 { tree rotate_type = TREE_TYPE (@0); }
2453 (convert (rotate (convert:rotate_type @1) @2))))))
2454
2455 /* Simplifications of conversions. */
2456
2457 /* Basic strip-useless-type-conversions / strip_nops. */
2458 (for cvt (convert view_convert float fix_trunc)
2459 (simplify
2460 (cvt @0)
2461 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2462 || (GENERIC && type == TREE_TYPE (@0)))
2463 @0)))
2464
2465 /* Contract view-conversions. */
2466 (simplify
2467 (view_convert (view_convert @0))
2468 (view_convert @0))
2469
2470 /* For integral conversions with the same precision or pointer
2471 conversions use a NOP_EXPR instead. */
2472 (simplify
2473 (view_convert @0)
2474 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2475 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2476 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2477 (convert @0)))
2478
2479 /* Strip inner integral conversions that do not change precision or size, or
2480 zero-extend while keeping the same size (for bool-to-char). */
2481 (simplify
2482 (view_convert (convert@0 @1))
2483 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2484 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2485 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2486 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2487 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2488 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2489 (view_convert @1)))
2490
2491 /* Re-association barriers around constants and other re-association
2492 barriers can be removed. */
2493 (simplify
2494 (paren CONSTANT_CLASS_P@0)
2495 @0)
2496 (simplify
2497 (paren (paren@1 @0))
2498 @1)
2499
2500 /* Handle cases of two conversions in a row. */
2501 (for ocvt (convert float fix_trunc)
2502 (for icvt (convert float)
2503 (simplify
2504 (ocvt (icvt@1 @0))
2505 (with
2506 {
2507 tree inside_type = TREE_TYPE (@0);
2508 tree inter_type = TREE_TYPE (@1);
2509 int inside_int = INTEGRAL_TYPE_P (inside_type);
2510 int inside_ptr = POINTER_TYPE_P (inside_type);
2511 int inside_float = FLOAT_TYPE_P (inside_type);
2512 int inside_vec = VECTOR_TYPE_P (inside_type);
2513 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2514 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2515 int inter_int = INTEGRAL_TYPE_P (inter_type);
2516 int inter_ptr = POINTER_TYPE_P (inter_type);
2517 int inter_float = FLOAT_TYPE_P (inter_type);
2518 int inter_vec = VECTOR_TYPE_P (inter_type);
2519 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2520 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2521 int final_int = INTEGRAL_TYPE_P (type);
2522 int final_ptr = POINTER_TYPE_P (type);
2523 int final_float = FLOAT_TYPE_P (type);
2524 int final_vec = VECTOR_TYPE_P (type);
2525 unsigned int final_prec = TYPE_PRECISION (type);
2526 int final_unsignedp = TYPE_UNSIGNED (type);
2527 }
2528 (switch
2529 /* In addition to the cases of two conversions in a row
2530 handled below, if we are converting something to its own
2531 type via an object of identical or wider precision, neither
2532 conversion is needed. */
2533 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2534 || (GENERIC
2535 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2536 && (((inter_int || inter_ptr) && final_int)
2537 || (inter_float && final_float))
2538 && inter_prec >= final_prec)
2539 (ocvt @0))
2540
2541 /* Likewise, if the intermediate and initial types are either both
2542 float or both integer, we don't need the middle conversion if the
2543 former is wider than the latter and doesn't change the signedness
2544 (for integers). Avoid this if the final type is a pointer since
2545 then we sometimes need the middle conversion. */
2546 (if (((inter_int && inside_int) || (inter_float && inside_float))
2547 && (final_int || final_float)
2548 && inter_prec >= inside_prec
2549 && (inter_float || inter_unsignedp == inside_unsignedp))
2550 (ocvt @0))
2551
2552 /* If we have a sign-extension of a zero-extended value, we can
2553 replace that by a single zero-extension. Likewise if the
2554 final conversion does not change precision we can drop the
2555 intermediate conversion. */
2556 (if (inside_int && inter_int && final_int
2557 && ((inside_prec < inter_prec && inter_prec < final_prec
2558 && inside_unsignedp && !inter_unsignedp)
2559 || final_prec == inter_prec))
2560 (ocvt @0))
2561
2562 /* Two conversions in a row are not needed unless:
2563 - some conversion is floating-point (overstrict for now), or
2564 - some conversion is a vector (overstrict for now), or
2565 - the intermediate type is narrower than both initial and
2566 final, or
2567 - the intermediate type and innermost type differ in signedness,
2568 and the outermost type is wider than the intermediate, or
2569 - the initial type is a pointer type and the precisions of the
2570 intermediate and final types differ, or
2571 - the final type is a pointer type and the precisions of the
2572 initial and intermediate types differ. */
2573 (if (! inside_float && ! inter_float && ! final_float
2574 && ! inside_vec && ! inter_vec && ! final_vec
2575 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2576 && ! (inside_int && inter_int
2577 && inter_unsignedp != inside_unsignedp
2578 && inter_prec < final_prec)
2579 && ((inter_unsignedp && inter_prec > inside_prec)
2580 == (final_unsignedp && final_prec > inter_prec))
2581 && ! (inside_ptr && inter_prec != final_prec)
2582 && ! (final_ptr && inside_prec != inter_prec))
2583 (ocvt @0))
2584
2585 /* A truncation to an unsigned type (a zero-extension) should be
2586 canonicalized as bitwise and of a mask. */
2587 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2588 && final_int && inter_int && inside_int
2589 && final_prec == inside_prec
2590 && final_prec > inter_prec
2591 && inter_unsignedp)
2592 (convert (bit_and @0 { wide_int_to_tree
2593 (inside_type,
2594 wi::mask (inter_prec, false,
2595 TYPE_PRECISION (inside_type))); })))
2596
2597 /* If we are converting an integer to a floating-point that can
2598 represent it exactly and back to an integer, we can skip the
2599 floating-point conversion. */
2600 (if (GIMPLE /* PR66211 */
2601 && inside_int && inter_float && final_int &&
2602 (unsigned) significand_size (TYPE_MODE (inter_type))
2603 >= inside_prec - !inside_unsignedp)
2604 (convert @0)))))))
2605
2606 /* If we have a narrowing conversion to an integral type that is fed by a
2607 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2608 masks off bits outside the final type (and nothing else). */
2609 (simplify
2610 (convert (bit_and @0 INTEGER_CST@1))
2611 (if (INTEGRAL_TYPE_P (type)
2612 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2613 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2614 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2615 TYPE_PRECISION (type)), 0))
2616 (convert @0)))
2617
2618
2619 /* (X /[ex] A) * A -> X. */
2620 (simplify
2621 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2622 (convert @0))
2623
2624 /* Canonicalization of binary operations. */
2625
2626 /* Convert X + -C into X - C. */
2627 (simplify
2628 (plus @0 REAL_CST@1)
2629 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2630 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2631 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2632 (minus @0 { tem; })))))
2633
2634 /* Convert x+x into x*2. */
2635 (simplify
2636 (plus @0 @0)
2637 (if (SCALAR_FLOAT_TYPE_P (type))
2638 (mult @0 { build_real (type, dconst2); })
2639 (if (INTEGRAL_TYPE_P (type))
2640 (mult @0 { build_int_cst (type, 2); }))))
2641
2642 /* 0 - X -> -X. */
2643 (simplify
2644 (minus integer_zerop @1)
2645 (negate @1))
2646 (simplify
2647 (pointer_diff integer_zerop @1)
2648 (negate (convert @1)))
2649
2650 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2651 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2652 (-ARG1 + ARG0) reduces to -ARG1. */
2653 (simplify
2654 (minus real_zerop@0 @1)
2655 (if (fold_real_zero_addition_p (type, @0, 0))
2656 (negate @1)))
2657
2658 /* Transform x * -1 into -x. */
2659 (simplify
2660 (mult @0 integer_minus_onep)
2661 (negate @0))
2662
2663 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2664 signed overflow for CST != 0 && CST != -1. */
2665 (simplify
2666 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2667 (if (TREE_CODE (@2) != INTEGER_CST
2668 && single_use (@3)
2669 && !integer_zerop (@1) && !integer_minus_onep (@1))
2670 (mult (mult @0 @2) @1)))
2671
2672 /* True if we can easily extract the real and imaginary parts of a complex
2673 number. */
2674 (match compositional_complex
2675 (convert? (complex @0 @1)))
2676
2677 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2678 (simplify
2679 (complex (realpart @0) (imagpart @0))
2680 @0)
2681 (simplify
2682 (realpart (complex @0 @1))
2683 @0)
2684 (simplify
2685 (imagpart (complex @0 @1))
2686 @1)
2687
2688 /* Sometimes we only care about half of a complex expression. */
2689 (simplify
2690 (realpart (convert?:s (conj:s @0)))
2691 (convert (realpart @0)))
2692 (simplify
2693 (imagpart (convert?:s (conj:s @0)))
2694 (convert (negate (imagpart @0))))
2695 (for part (realpart imagpart)
2696 (for op (plus minus)
2697 (simplify
2698 (part (convert?:s@2 (op:s @0 @1)))
2699 (convert (op (part @0) (part @1))))))
2700 (simplify
2701 (realpart (convert?:s (CEXPI:s @0)))
2702 (convert (COS @0)))
2703 (simplify
2704 (imagpart (convert?:s (CEXPI:s @0)))
2705 (convert (SIN @0)))
2706
2707 /* conj(conj(x)) -> x */
2708 (simplify
2709 (conj (convert? (conj @0)))
2710 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2711 (convert @0)))
2712
2713 /* conj({x,y}) -> {x,-y} */
2714 (simplify
2715 (conj (convert?:s (complex:s @0 @1)))
2716 (with { tree itype = TREE_TYPE (type); }
2717 (complex (convert:itype @0) (negate (convert:itype @1)))))
2718
2719 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2720 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2721 (simplify
2722 (bswap (bswap @0))
2723 @0)
2724 (simplify
2725 (bswap (bit_not (bswap @0)))
2726 (bit_not @0))
2727 (for bitop (bit_xor bit_ior bit_and)
2728 (simplify
2729 (bswap (bitop:c (bswap @0) @1))
2730 (bitop @0 (bswap @1)))))
2731
2732
2733 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2734
2735 /* Simplify constant conditions.
2736 Only optimize constant conditions when the selected branch
2737 has the same type as the COND_EXPR. This avoids optimizing
2738 away "c ? x : throw", where the throw has a void type.
2739 Note that we cannot throw away the fold-const.c variant nor
2740 this one as we depend on doing this transform before possibly
2741 A ? B : B -> B triggers and the fold-const.c one can optimize
2742 0 ? A : B to B even if A has side-effects. Something
2743 genmatch cannot handle. */
2744 (simplify
2745 (cond INTEGER_CST@0 @1 @2)
2746 (if (integer_zerop (@0))
2747 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2748 @2)
2749 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2750 @1)))
2751 (simplify
2752 (vec_cond VECTOR_CST@0 @1 @2)
2753 (if (integer_all_onesp (@0))
2754 @1
2755 (if (integer_zerop (@0))
2756 @2)))
2757
2758 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2759 be extended. */
2760 /* This pattern implements two kinds simplification:
2761
2762 Case 1)
2763 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2764 1) Conversions are type widening from smaller type.
2765 2) Const c1 equals to c2 after canonicalizing comparison.
2766 3) Comparison has tree code LT, LE, GT or GE.
2767 This specific pattern is needed when (cmp (convert x) c) may not
2768 be simplified by comparison patterns because of multiple uses of
2769 x. It also makes sense here because simplifying across multiple
2770 referred var is always benefitial for complicated cases.
2771
2772 Case 2)
2773 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2774 (for cmp (lt le gt ge eq)
2775 (simplify
2776 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2777 (with
2778 {
2779 tree from_type = TREE_TYPE (@1);
2780 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2781 enum tree_code code = ERROR_MARK;
2782
2783 if (INTEGRAL_TYPE_P (from_type)
2784 && int_fits_type_p (@2, from_type)
2785 && (types_match (c1_type, from_type)
2786 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2787 && (TYPE_UNSIGNED (from_type)
2788 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2789 && (types_match (c2_type, from_type)
2790 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2791 && (TYPE_UNSIGNED (from_type)
2792 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2793 {
2794 if (cmp != EQ_EXPR)
2795 {
2796 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2797 {
2798 /* X <= Y - 1 equals to X < Y. */
2799 if (cmp == LE_EXPR)
2800 code = LT_EXPR;
2801 /* X > Y - 1 equals to X >= Y. */
2802 if (cmp == GT_EXPR)
2803 code = GE_EXPR;
2804 }
2805 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2806 {
2807 /* X < Y + 1 equals to X <= Y. */
2808 if (cmp == LT_EXPR)
2809 code = LE_EXPR;
2810 /* X >= Y + 1 equals to X > Y. */
2811 if (cmp == GE_EXPR)
2812 code = GT_EXPR;
2813 }
2814 if (code != ERROR_MARK
2815 || wi::to_widest (@2) == wi::to_widest (@3))
2816 {
2817 if (cmp == LT_EXPR || cmp == LE_EXPR)
2818 code = MIN_EXPR;
2819 if (cmp == GT_EXPR || cmp == GE_EXPR)
2820 code = MAX_EXPR;
2821 }
2822 }
2823 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2824 else if (int_fits_type_p (@3, from_type))
2825 code = EQ_EXPR;
2826 }
2827 }
2828 (if (code == MAX_EXPR)
2829 (convert (max @1 (convert @2)))
2830 (if (code == MIN_EXPR)
2831 (convert (min @1 (convert @2)))
2832 (if (code == EQ_EXPR)
2833 (convert (cond (eq @1 (convert @3))
2834 (convert:from_type @3) (convert:from_type @2)))))))))
2835
2836 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2837
2838 1) OP is PLUS or MINUS.
2839 2) CMP is LT, LE, GT or GE.
2840 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2841
2842 This pattern also handles special cases like:
2843
2844 A) Operand x is a unsigned to signed type conversion and c1 is
2845 integer zero. In this case,
2846 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2847 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2848 B) Const c1 may not equal to (C3 op' C2). In this case we also
2849 check equality for (c1+1) and (c1-1) by adjusting comparison
2850 code.
2851
2852 TODO: Though signed type is handled by this pattern, it cannot be
2853 simplified at the moment because C standard requires additional
2854 type promotion. In order to match&simplify it here, the IR needs
2855 to be cleaned up by other optimizers, i.e, VRP. */
2856 (for op (plus minus)
2857 (for cmp (lt le gt ge)
2858 (simplify
2859 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2860 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2861 (if (types_match (from_type, to_type)
2862 /* Check if it is special case A). */
2863 || (TYPE_UNSIGNED (from_type)
2864 && !TYPE_UNSIGNED (to_type)
2865 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2866 && integer_zerop (@1)
2867 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2868 (with
2869 {
2870 wi::overflow_type overflow = wi::OVF_NONE;
2871 enum tree_code code, cmp_code = cmp;
2872 wide_int real_c1;
2873 wide_int c1 = wi::to_wide (@1);
2874 wide_int c2 = wi::to_wide (@2);
2875 wide_int c3 = wi::to_wide (@3);
2876 signop sgn = TYPE_SIGN (from_type);
2877
2878 /* Handle special case A), given x of unsigned type:
2879 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2880 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2881 if (!types_match (from_type, to_type))
2882 {
2883 if (cmp_code == LT_EXPR)
2884 cmp_code = GT_EXPR;
2885 if (cmp_code == GE_EXPR)
2886 cmp_code = LE_EXPR;
2887 c1 = wi::max_value (to_type);
2888 }
2889 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2890 compute (c3 op' c2) and check if it equals to c1 with op' being
2891 the inverted operator of op. Make sure overflow doesn't happen
2892 if it is undefined. */
2893 if (op == PLUS_EXPR)
2894 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2895 else
2896 real_c1 = wi::add (c3, c2, sgn, &overflow);
2897
2898 code = cmp_code;
2899 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2900 {
2901 /* Check if c1 equals to real_c1. Boundary condition is handled
2902 by adjusting comparison operation if necessary. */
2903 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2904 && !overflow)
2905 {
2906 /* X <= Y - 1 equals to X < Y. */
2907 if (cmp_code == LE_EXPR)
2908 code = LT_EXPR;
2909 /* X > Y - 1 equals to X >= Y. */
2910 if (cmp_code == GT_EXPR)
2911 code = GE_EXPR;
2912 }
2913 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2914 && !overflow)
2915 {
2916 /* X < Y + 1 equals to X <= Y. */
2917 if (cmp_code == LT_EXPR)
2918 code = LE_EXPR;
2919 /* X >= Y + 1 equals to X > Y. */
2920 if (cmp_code == GE_EXPR)
2921 code = GT_EXPR;
2922 }
2923 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2924 {
2925 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2926 code = MIN_EXPR;
2927 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2928 code = MAX_EXPR;
2929 }
2930 }
2931 }
2932 (if (code == MAX_EXPR)
2933 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2934 { wide_int_to_tree (from_type, c2); })
2935 (if (code == MIN_EXPR)
2936 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2937 { wide_int_to_tree (from_type, c2); })))))))))
2938
2939 (for cnd (cond vec_cond)
2940 /* A ? B : (A ? X : C) -> A ? B : C. */
2941 (simplify
2942 (cnd @0 (cnd @0 @1 @2) @3)
2943 (cnd @0 @1 @3))
2944 (simplify
2945 (cnd @0 @1 (cnd @0 @2 @3))
2946 (cnd @0 @1 @3))
2947 /* A ? B : (!A ? C : X) -> A ? B : C. */
2948 /* ??? This matches embedded conditions open-coded because genmatch
2949 would generate matching code for conditions in separate stmts only.
2950 The following is still important to merge then and else arm cases
2951 from if-conversion. */
2952 (simplify
2953 (cnd @0 @1 (cnd @2 @3 @4))
2954 (if (inverse_conditions_p (@0, @2))
2955 (cnd @0 @1 @3)))
2956 (simplify
2957 (cnd @0 (cnd @1 @2 @3) @4)
2958 (if (inverse_conditions_p (@0, @1))
2959 (cnd @0 @3 @4)))
2960
2961 /* A ? B : B -> B. */
2962 (simplify
2963 (cnd @0 @1 @1)
2964 @1)
2965
2966 /* !A ? B : C -> A ? C : B. */
2967 (simplify
2968 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2969 (cnd @0 @2 @1)))
2970
2971 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2972 return all -1 or all 0 results. */
2973 /* ??? We could instead convert all instances of the vec_cond to negate,
2974 but that isn't necessarily a win on its own. */
2975 (simplify
2976 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2977 (if (VECTOR_TYPE_P (type)
2978 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2979 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2980 && (TYPE_MODE (TREE_TYPE (type))
2981 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2982 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2983
2984 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2985 (simplify
2986 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2987 (if (VECTOR_TYPE_P (type)
2988 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2989 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2990 && (TYPE_MODE (TREE_TYPE (type))
2991 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2992 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2993
2994
2995 /* Simplifications of comparisons. */
2996
2997 /* See if we can reduce the magnitude of a constant involved in a
2998 comparison by changing the comparison code. This is a canonicalization
2999 formerly done by maybe_canonicalize_comparison_1. */
3000 (for cmp (le gt)
3001 acmp (lt ge)
3002 (simplify
3003 (cmp @0 INTEGER_CST@1)
3004 (if (tree_int_cst_sgn (@1) == -1)
3005 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3006 (for cmp (ge lt)
3007 acmp (gt le)
3008 (simplify
3009 (cmp @0 INTEGER_CST@1)
3010 (if (tree_int_cst_sgn (@1) == 1)
3011 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3012
3013
3014 /* We can simplify a logical negation of a comparison to the
3015 inverted comparison. As we cannot compute an expression
3016 operator using invert_tree_comparison we have to simulate
3017 that with expression code iteration. */
3018 (for cmp (tcc_comparison)
3019 icmp (inverted_tcc_comparison)
3020 ncmp (inverted_tcc_comparison_with_nans)
3021 /* Ideally we'd like to combine the following two patterns
3022 and handle some more cases by using
3023 (logical_inverted_value (cmp @0 @1))
3024 here but for that genmatch would need to "inline" that.
3025 For now implement what forward_propagate_comparison did. */
3026 (simplify
3027 (bit_not (cmp @0 @1))
3028 (if (VECTOR_TYPE_P (type)
3029 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3030 /* Comparison inversion may be impossible for trapping math,
3031 invert_tree_comparison will tell us. But we can't use
3032 a computed operator in the replacement tree thus we have
3033 to play the trick below. */
3034 (with { enum tree_code ic = invert_tree_comparison
3035 (cmp, HONOR_NANS (@0)); }
3036 (if (ic == icmp)
3037 (icmp @0 @1)
3038 (if (ic == ncmp)
3039 (ncmp @0 @1))))))
3040 (simplify
3041 (bit_xor (cmp @0 @1) integer_truep)
3042 (with { enum tree_code ic = invert_tree_comparison
3043 (cmp, HONOR_NANS (@0)); }
3044 (if (ic == icmp)
3045 (icmp @0 @1)
3046 (if (ic == ncmp)
3047 (ncmp @0 @1))))))
3048
3049 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3050 ??? The transformation is valid for the other operators if overflow
3051 is undefined for the type, but performing it here badly interacts
3052 with the transformation in fold_cond_expr_with_comparison which
3053 attempts to synthetize ABS_EXPR. */
3054 (for cmp (eq ne)
3055 (for sub (minus pointer_diff)
3056 (simplify
3057 (cmp (sub@2 @0 @1) integer_zerop)
3058 (if (single_use (@2))
3059 (cmp @0 @1)))))
3060
3061 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3062 signed arithmetic case. That form is created by the compiler
3063 often enough for folding it to be of value. One example is in
3064 computing loop trip counts after Operator Strength Reduction. */
3065 (for cmp (simple_comparison)
3066 scmp (swapped_simple_comparison)
3067 (simplify
3068 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3069 /* Handle unfolded multiplication by zero. */
3070 (if (integer_zerop (@1))
3071 (cmp @1 @2)
3072 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3073 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3074 && single_use (@3))
3075 /* If @1 is negative we swap the sense of the comparison. */
3076 (if (tree_int_cst_sgn (@1) < 0)
3077 (scmp @0 @2)
3078 (cmp @0 @2))))))
3079
3080 /* Simplify comparison of something with itself. For IEEE
3081 floating-point, we can only do some of these simplifications. */
3082 (for cmp (eq ge le)
3083 (simplify
3084 (cmp @0 @0)
3085 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3086 || ! HONOR_NANS (@0))
3087 { constant_boolean_node (true, type); }
3088 (if (cmp != EQ_EXPR)
3089 (eq @0 @0)))))
3090 (for cmp (ne gt lt)
3091 (simplify
3092 (cmp @0 @0)
3093 (if (cmp != NE_EXPR
3094 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3095 || ! HONOR_NANS (@0))
3096 { constant_boolean_node (false, type); })))
3097 (for cmp (unle unge uneq)
3098 (simplify
3099 (cmp @0 @0)
3100 { constant_boolean_node (true, type); }))
3101 (for cmp (unlt ungt)
3102 (simplify
3103 (cmp @0 @0)
3104 (unordered @0 @0)))
3105 (simplify
3106 (ltgt @0 @0)
3107 (if (!flag_trapping_math)
3108 { constant_boolean_node (false, type); }))
3109
3110 /* Fold ~X op ~Y as Y op X. */
3111 (for cmp (simple_comparison)
3112 (simplify
3113 (cmp (bit_not@2 @0) (bit_not@3 @1))
3114 (if (single_use (@2) && single_use (@3))
3115 (cmp @1 @0))))
3116
3117 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3118 (for cmp (simple_comparison)
3119 scmp (swapped_simple_comparison)
3120 (simplify
3121 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3122 (if (single_use (@2)
3123 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3124 (scmp @0 (bit_not @1)))))
3125
3126 (for cmp (simple_comparison)
3127 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3128 (simplify
3129 (cmp (convert@2 @0) (convert? @1))
3130 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3131 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3132 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3133 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3134 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3135 (with
3136 {
3137 tree type1 = TREE_TYPE (@1);
3138 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3139 {
3140 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3141 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3142 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3143 type1 = float_type_node;
3144 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3145 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3146 type1 = double_type_node;
3147 }
3148 tree newtype
3149 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3150 ? TREE_TYPE (@0) : type1);
3151 }
3152 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3153 (cmp (convert:newtype @0) (convert:newtype @1))))))
3154
3155 (simplify
3156 (cmp @0 REAL_CST@1)
3157 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3158 (switch
3159 /* a CMP (-0) -> a CMP 0 */
3160 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3161 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3162 /* x != NaN is always true, other ops are always false. */
3163 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3164 && ! HONOR_SNANS (@1))
3165 { constant_boolean_node (cmp == NE_EXPR, type); })
3166 /* Fold comparisons against infinity. */
3167 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3168 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3169 (with
3170 {
3171 REAL_VALUE_TYPE max;
3172 enum tree_code code = cmp;
3173 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3174 if (neg)
3175 code = swap_tree_comparison (code);
3176 }
3177 (switch
3178 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3179 (if (code == GT_EXPR
3180 && !(HONOR_NANS (@0) && flag_trapping_math))
3181 { constant_boolean_node (false, type); })
3182 (if (code == LE_EXPR)
3183 /* x <= +Inf is always true, if we don't care about NaNs. */
3184 (if (! HONOR_NANS (@0))
3185 { constant_boolean_node (true, type); }
3186 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3187 an "invalid" exception. */
3188 (if (!flag_trapping_math)
3189 (eq @0 @0))))
3190 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3191 for == this introduces an exception for x a NaN. */
3192 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3193 || code == GE_EXPR)
3194 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3195 (if (neg)
3196 (lt @0 { build_real (TREE_TYPE (@0), max); })
3197 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3198 /* x < +Inf is always equal to x <= DBL_MAX. */
3199 (if (code == LT_EXPR)
3200 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3201 (if (neg)
3202 (ge @0 { build_real (TREE_TYPE (@0), max); })
3203 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3204 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3205 an exception for x a NaN so use an unordered comparison. */
3206 (if (code == NE_EXPR)
3207 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3208 (if (! HONOR_NANS (@0))
3209 (if (neg)
3210 (ge @0 { build_real (TREE_TYPE (@0), max); })
3211 (le @0 { build_real (TREE_TYPE (@0), max); }))
3212 (if (neg)
3213 (unge @0 { build_real (TREE_TYPE (@0), max); })
3214 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3215
3216 /* If this is a comparison of a real constant with a PLUS_EXPR
3217 or a MINUS_EXPR of a real constant, we can convert it into a
3218 comparison with a revised real constant as long as no overflow
3219 occurs when unsafe_math_optimizations are enabled. */
3220 (if (flag_unsafe_math_optimizations)
3221 (for op (plus minus)
3222 (simplify
3223 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3224 (with
3225 {
3226 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3227 TREE_TYPE (@1), @2, @1);
3228 }
3229 (if (tem && !TREE_OVERFLOW (tem))
3230 (cmp @0 { tem; }))))))
3231
3232 /* Likewise, we can simplify a comparison of a real constant with
3233 a MINUS_EXPR whose first operand is also a real constant, i.e.
3234 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3235 floating-point types only if -fassociative-math is set. */
3236 (if (flag_associative_math)
3237 (simplify
3238 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3239 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3240 (if (tem && !TREE_OVERFLOW (tem))
3241 (cmp { tem; } @1)))))
3242
3243 /* Fold comparisons against built-in math functions. */
3244 (if (flag_unsafe_math_optimizations
3245 && ! flag_errno_math)
3246 (for sq (SQRT)
3247 (simplify
3248 (cmp (sq @0) REAL_CST@1)
3249 (switch
3250 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3251 (switch
3252 /* sqrt(x) < y is always false, if y is negative. */
3253 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3254 { constant_boolean_node (false, type); })
3255 /* sqrt(x) > y is always true, if y is negative and we
3256 don't care about NaNs, i.e. negative values of x. */
3257 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3258 { constant_boolean_node (true, type); })
3259 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3260 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3261 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3262 (switch
3263 /* sqrt(x) < 0 is always false. */
3264 (if (cmp == LT_EXPR)
3265 { constant_boolean_node (false, type); })
3266 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3267 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3268 { constant_boolean_node (true, type); })
3269 /* sqrt(x) <= 0 -> x == 0. */
3270 (if (cmp == LE_EXPR)
3271 (eq @0 @1))
3272 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3273 == or !=. In the last case:
3274
3275 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3276
3277 if x is negative or NaN. Due to -funsafe-math-optimizations,
3278 the results for other x follow from natural arithmetic. */
3279 (cmp @0 @1)))
3280 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3281 (with
3282 {
3283 REAL_VALUE_TYPE c2;
3284 real_arithmetic (&c2, MULT_EXPR,
3285 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3286 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3287 }
3288 (if (REAL_VALUE_ISINF (c2))
3289 /* sqrt(x) > y is x == +Inf, when y is very large. */
3290 (if (HONOR_INFINITIES (@0))
3291 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3292 { constant_boolean_node (false, type); })
3293 /* sqrt(x) > c is the same as x > c*c. */
3294 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3295 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3296 (with
3297 {
3298 REAL_VALUE_TYPE c2;
3299 real_arithmetic (&c2, MULT_EXPR,
3300 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3301 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3302 }
3303 (if (REAL_VALUE_ISINF (c2))
3304 (switch
3305 /* sqrt(x) < y is always true, when y is a very large
3306 value and we don't care about NaNs or Infinities. */
3307 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3308 { constant_boolean_node (true, type); })
3309 /* sqrt(x) < y is x != +Inf when y is very large and we
3310 don't care about NaNs. */
3311 (if (! HONOR_NANS (@0))
3312 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3313 /* sqrt(x) < y is x >= 0 when y is very large and we
3314 don't care about Infinities. */
3315 (if (! HONOR_INFINITIES (@0))
3316 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3317 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3318 (if (GENERIC)
3319 (truth_andif
3320 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3321 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3322 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3323 (if (! HONOR_NANS (@0))
3324 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3325 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3326 (if (GENERIC)
3327 (truth_andif
3328 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3329 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3330 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3331 (simplify
3332 (cmp (sq @0) (sq @1))
3333 (if (! HONOR_NANS (@0))
3334 (cmp @0 @1))))))
3335
3336 /* Optimize various special cases of (FTYPE) N CMP CST. */
3337 (for cmp (lt le eq ne ge gt)
3338 icmp (le le eq ne ge ge)
3339 (simplify
3340 (cmp (float @0) REAL_CST@1)
3341 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3342 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3343 (with
3344 {
3345 tree itype = TREE_TYPE (@0);
3346 signop isign = TYPE_SIGN (itype);
3347 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3348 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3349 /* Be careful to preserve any potential exceptions due to
3350 NaNs. qNaNs are ok in == or != context.
3351 TODO: relax under -fno-trapping-math or
3352 -fno-signaling-nans. */
3353 bool exception_p
3354 = real_isnan (cst) && (cst->signalling
3355 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3356 /* INT?_MIN is power-of-two so it takes
3357 only one mantissa bit. */
3358 bool signed_p = isign == SIGNED;
3359 bool itype_fits_ftype_p
3360 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3361 }
3362 /* TODO: allow non-fitting itype and SNaNs when
3363 -fno-trapping-math. */
3364 (if (itype_fits_ftype_p && ! exception_p)
3365 (with
3366 {
3367 REAL_VALUE_TYPE imin, imax;
3368 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3369 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3370
3371 REAL_VALUE_TYPE icst;
3372 if (cmp == GT_EXPR || cmp == GE_EXPR)
3373 real_ceil (&icst, fmt, cst);
3374 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3375 real_floor (&icst, fmt, cst);
3376 else
3377 real_trunc (&icst, fmt, cst);
3378
3379 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3380
3381 bool overflow_p = false;
3382 wide_int icst_val
3383 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3384 }
3385 (switch
3386 /* Optimize cases when CST is outside of ITYPE's range. */
3387 (if (real_compare (LT_EXPR, cst, &imin))
3388 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3389 type); })
3390 (if (real_compare (GT_EXPR, cst, &imax))
3391 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3392 type); })
3393 /* Remove cast if CST is an integer representable by ITYPE. */
3394 (if (cst_int_p)
3395 (cmp @0 { gcc_assert (!overflow_p);
3396 wide_int_to_tree (itype, icst_val); })
3397 )
3398 /* When CST is fractional, optimize
3399 (FTYPE) N == CST -> 0
3400 (FTYPE) N != CST -> 1. */
3401 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3402 { constant_boolean_node (cmp == NE_EXPR, type); })
3403 /* Otherwise replace with sensible integer constant. */
3404 (with
3405 {
3406 gcc_checking_assert (!overflow_p);
3407 }
3408 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3409
3410 /* Fold A /[ex] B CMP C to A CMP B * C. */
3411 (for cmp (eq ne)
3412 (simplify
3413 (cmp (exact_div @0 @1) INTEGER_CST@2)
3414 (if (!integer_zerop (@1))
3415 (if (wi::to_wide (@2) == 0)
3416 (cmp @0 @2)
3417 (if (TREE_CODE (@1) == INTEGER_CST)
3418 (with
3419 {
3420 wi::overflow_type ovf;
3421 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3422 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3423 }
3424 (if (ovf)
3425 { constant_boolean_node (cmp == NE_EXPR, type); }
3426 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3427 (for cmp (lt le gt ge)
3428 (simplify
3429 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3430 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3431 (with
3432 {
3433 wi::overflow_type ovf;
3434 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3435 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3436 }
3437 (if (ovf)
3438 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3439 TYPE_SIGN (TREE_TYPE (@2)))
3440 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3441 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3442
3443 /* Unordered tests if either argument is a NaN. */
3444 (simplify
3445 (bit_ior (unordered @0 @0) (unordered @1 @1))
3446 (if (types_match (@0, @1))
3447 (unordered @0 @1)))
3448 (simplify
3449 (bit_and (ordered @0 @0) (ordered @1 @1))
3450 (if (types_match (@0, @1))
3451 (ordered @0 @1)))
3452 (simplify
3453 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3454 @2)
3455 (simplify
3456 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3457 @2)
3458
3459 /* Simple range test simplifications. */
3460 /* A < B || A >= B -> true. */
3461 (for test1 (lt le le le ne ge)
3462 test2 (ge gt ge ne eq ne)
3463 (simplify
3464 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3465 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3466 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3467 { constant_boolean_node (true, type); })))
3468 /* A < B && A >= B -> false. */
3469 (for test1 (lt lt lt le ne eq)
3470 test2 (ge gt eq gt eq gt)
3471 (simplify
3472 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3473 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3474 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3475 { constant_boolean_node (false, type); })))
3476
3477 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3478 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3479
3480 Note that comparisons
3481 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3482 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3483 will be canonicalized to above so there's no need to
3484 consider them here.
3485 */
3486
3487 (for cmp (le gt)
3488 eqcmp (eq ne)
3489 (simplify
3490 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3491 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3492 (with
3493 {
3494 tree ty = TREE_TYPE (@0);
3495 unsigned prec = TYPE_PRECISION (ty);
3496 wide_int mask = wi::to_wide (@2, prec);
3497 wide_int rhs = wi::to_wide (@3, prec);
3498 signop sgn = TYPE_SIGN (ty);
3499 }
3500 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3501 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3502 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3503 { build_zero_cst (ty); }))))))
3504
3505 /* -A CMP -B -> B CMP A. */
3506 (for cmp (tcc_comparison)
3507 scmp (swapped_tcc_comparison)
3508 (simplify
3509 (cmp (negate @0) (negate @1))
3510 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3511 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3512 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3513 (scmp @0 @1)))
3514 (simplify
3515 (cmp (negate @0) CONSTANT_CLASS_P@1)
3516 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3517 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3518 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3519 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3520 (if (tem && !TREE_OVERFLOW (tem))
3521 (scmp @0 { tem; }))))))
3522
3523 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3524 (for op (eq ne)
3525 (simplify
3526 (op (abs @0) zerop@1)
3527 (op @0 @1)))
3528
3529 /* From fold_sign_changed_comparison and fold_widened_comparison.
3530 FIXME: the lack of symmetry is disturbing. */
3531 (for cmp (simple_comparison)
3532 (simplify
3533 (cmp (convert@0 @00) (convert?@1 @10))
3534 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3535 /* Disable this optimization if we're casting a function pointer
3536 type on targets that require function pointer canonicalization. */
3537 && !(targetm.have_canonicalize_funcptr_for_compare ()
3538 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3539 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3540 && single_use (@0))
3541 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3542 && (TREE_CODE (@10) == INTEGER_CST
3543 || @1 != @10)
3544 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3545 || cmp == NE_EXPR
3546 || cmp == EQ_EXPR)
3547 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3548 /* ??? The special-casing of INTEGER_CST conversion was in the original
3549 code and here to avoid a spurious overflow flag on the resulting
3550 constant which fold_convert produces. */
3551 (if (TREE_CODE (@1) == INTEGER_CST)
3552 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3553 TREE_OVERFLOW (@1)); })
3554 (cmp @00 (convert @1)))
3555
3556 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3557 /* If possible, express the comparison in the shorter mode. */
3558 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3559 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3560 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3561 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3562 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3563 || ((TYPE_PRECISION (TREE_TYPE (@00))
3564 >= TYPE_PRECISION (TREE_TYPE (@10)))
3565 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3566 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3567 || (TREE_CODE (@10) == INTEGER_CST
3568 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3569 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3570 (cmp @00 (convert @10))
3571 (if (TREE_CODE (@10) == INTEGER_CST
3572 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3573 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3574 (with
3575 {
3576 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3577 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3578 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3579 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3580 }
3581 (if (above || below)
3582 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3583 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3584 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3585 { constant_boolean_node (above ? true : false, type); }
3586 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3587 { constant_boolean_node (above ? false : true, type); }))))))))))))
3588
3589 (for cmp (eq ne)
3590 /* A local variable can never be pointed to by
3591 the default SSA name of an incoming parameter.
3592 SSA names are canonicalized to 2nd place. */
3593 (simplify
3594 (cmp addr@0 SSA_NAME@1)
3595 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3596 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3597 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3598 (if (TREE_CODE (base) == VAR_DECL
3599 && auto_var_in_fn_p (base, current_function_decl))
3600 (if (cmp == NE_EXPR)
3601 { constant_boolean_node (true, type); }
3602 { constant_boolean_node (false, type); }))))))
3603
3604 /* Equality compare simplifications from fold_binary */
3605 (for cmp (eq ne)
3606
3607 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3608 Similarly for NE_EXPR. */
3609 (simplify
3610 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3611 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3612 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3613 { constant_boolean_node (cmp == NE_EXPR, type); }))
3614
3615 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3616 (simplify
3617 (cmp (bit_xor @0 @1) integer_zerop)
3618 (cmp @0 @1))
3619
3620 /* (X ^ Y) == Y becomes X == 0.
3621 Likewise (X ^ Y) == X becomes Y == 0. */
3622 (simplify
3623 (cmp:c (bit_xor:c @0 @1) @0)
3624 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3625
3626 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3627 (simplify
3628 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3629 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3630 (cmp @0 (bit_xor @1 (convert @2)))))
3631
3632 (simplify
3633 (cmp (convert? addr@0) integer_zerop)
3634 (if (tree_single_nonzero_warnv_p (@0, NULL))
3635 { constant_boolean_node (cmp == NE_EXPR, type); })))
3636
3637 /* If we have (A & C) == C where C is a power of 2, convert this into
3638 (A & C) != 0. Similarly for NE_EXPR. */
3639 (for cmp (eq ne)
3640 icmp (ne eq)
3641 (simplify
3642 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3643 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3644
3645 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3646 convert this into a shift followed by ANDing with D. */
3647 (simplify
3648 (cond
3649 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3650 INTEGER_CST@2 integer_zerop)
3651 (if (integer_pow2p (@2))
3652 (with {
3653 int shift = (wi::exact_log2 (wi::to_wide (@2))
3654 - wi::exact_log2 (wi::to_wide (@1)));
3655 }
3656 (if (shift > 0)
3657 (bit_and
3658 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3659 (bit_and
3660 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3661 @2)))))
3662
3663 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3664 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3665 (for cmp (eq ne)
3666 ncmp (ge lt)
3667 (simplify
3668 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3669 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3670 && type_has_mode_precision_p (TREE_TYPE (@0))
3671 && element_precision (@2) >= element_precision (@0)
3672 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3673 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3674 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3675
3676 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3677 this into a right shift or sign extension followed by ANDing with C. */
3678 (simplify
3679 (cond
3680 (lt @0 integer_zerop)
3681 INTEGER_CST@1 integer_zerop)
3682 (if (integer_pow2p (@1)
3683 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3684 (with {
3685 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3686 }
3687 (if (shift >= 0)
3688 (bit_and
3689 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3690 @1)
3691 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3692 sign extension followed by AND with C will achieve the effect. */
3693 (bit_and (convert @0) @1)))))
3694
3695 /* When the addresses are not directly of decls compare base and offset.
3696 This implements some remaining parts of fold_comparison address
3697 comparisons but still no complete part of it. Still it is good
3698 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3699 (for cmp (simple_comparison)
3700 (simplify
3701 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3702 (with
3703 {
3704 poly_int64 off0, off1;
3705 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3706 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3707 if (base0 && TREE_CODE (base0) == MEM_REF)
3708 {
3709 off0 += mem_ref_offset (base0).force_shwi ();
3710 base0 = TREE_OPERAND (base0, 0);
3711 }
3712 if (base1 && TREE_CODE (base1) == MEM_REF)
3713 {
3714 off1 += mem_ref_offset (base1).force_shwi ();
3715 base1 = TREE_OPERAND (base1, 0);
3716 }
3717 }
3718 (if (base0 && base1)
3719 (with
3720 {
3721 int equal = 2;
3722 /* Punt in GENERIC on variables with value expressions;
3723 the value expressions might point to fields/elements
3724 of other vars etc. */
3725 if (GENERIC
3726 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3727 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3728 ;
3729 else if (decl_in_symtab_p (base0)
3730 && decl_in_symtab_p (base1))
3731 equal = symtab_node::get_create (base0)
3732 ->equal_address_to (symtab_node::get_create (base1));
3733 else if ((DECL_P (base0)
3734 || TREE_CODE (base0) == SSA_NAME
3735 || TREE_CODE (base0) == STRING_CST)
3736 && (DECL_P (base1)
3737 || TREE_CODE (base1) == SSA_NAME
3738 || TREE_CODE (base1) == STRING_CST))
3739 equal = (base0 == base1);
3740 }
3741 (if (equal == 1
3742 && (cmp == EQ_EXPR || cmp == NE_EXPR
3743 /* If the offsets are equal we can ignore overflow. */
3744 || known_eq (off0, off1)
3745 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3746 /* Or if we compare using pointers to decls or strings. */
3747 || (POINTER_TYPE_P (TREE_TYPE (@2))
3748 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3749 (switch
3750 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3751 { constant_boolean_node (known_eq (off0, off1), type); })
3752 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3753 { constant_boolean_node (known_ne (off0, off1), type); })
3754 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3755 { constant_boolean_node (known_lt (off0, off1), type); })
3756 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3757 { constant_boolean_node (known_le (off0, off1), type); })
3758 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3759 { constant_boolean_node (known_ge (off0, off1), type); })
3760 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3761 { constant_boolean_node (known_gt (off0, off1), type); }))
3762 (if (equal == 0
3763 && DECL_P (base0) && DECL_P (base1)
3764 /* If we compare this as integers require equal offset. */
3765 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3766 || known_eq (off0, off1)))
3767 (switch
3768 (if (cmp == EQ_EXPR)
3769 { constant_boolean_node (false, type); })
3770 (if (cmp == NE_EXPR)
3771 { constant_boolean_node (true, type); })))))))))
3772
3773 /* Simplify pointer equality compares using PTA. */
3774 (for neeq (ne eq)
3775 (simplify
3776 (neeq @0 @1)
3777 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3778 && ptrs_compare_unequal (@0, @1))
3779 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3780
3781 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3782 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3783 Disable the transform if either operand is pointer to function.
3784 This broke pr22051-2.c for arm where function pointer
3785 canonicalizaion is not wanted. */
3786
3787 (for cmp (ne eq)
3788 (simplify
3789 (cmp (convert @0) INTEGER_CST@1)
3790 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3791 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3792 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3793 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3794 && POINTER_TYPE_P (TREE_TYPE (@1))
3795 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3796 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3797 (cmp @0 (convert @1)))))
3798
3799 /* Non-equality compare simplifications from fold_binary */
3800 (for cmp (lt gt le ge)
3801 /* Comparisons with the highest or lowest possible integer of
3802 the specified precision will have known values. */
3803 (simplify
3804 (cmp (convert?@2 @0) INTEGER_CST@1)
3805 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3806 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3807 (with
3808 {
3809 tree arg1_type = TREE_TYPE (@1);
3810 unsigned int prec = TYPE_PRECISION (arg1_type);
3811 wide_int max = wi::max_value (arg1_type);
3812 wide_int signed_max = wi::max_value (prec, SIGNED);
3813 wide_int min = wi::min_value (arg1_type);
3814 }
3815 (switch
3816 (if (wi::to_wide (@1) == max)
3817 (switch
3818 (if (cmp == GT_EXPR)
3819 { constant_boolean_node (false, type); })
3820 (if (cmp == GE_EXPR)
3821 (eq @2 @1))
3822 (if (cmp == LE_EXPR)
3823 { constant_boolean_node (true, type); })
3824 (if (cmp == LT_EXPR)
3825 (ne @2 @1))))
3826 (if (wi::to_wide (@1) == min)
3827 (switch
3828 (if (cmp == LT_EXPR)
3829 { constant_boolean_node (false, type); })
3830 (if (cmp == LE_EXPR)
3831 (eq @2 @1))
3832 (if (cmp == GE_EXPR)
3833 { constant_boolean_node (true, type); })
3834 (if (cmp == GT_EXPR)
3835 (ne @2 @1))))
3836 (if (wi::to_wide (@1) == max - 1)
3837 (switch
3838 (if (cmp == GT_EXPR)
3839 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3840 (if (cmp == LE_EXPR)
3841 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3842 (if (wi::to_wide (@1) == min + 1)
3843 (switch
3844 (if (cmp == GE_EXPR)
3845 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3846 (if (cmp == LT_EXPR)
3847 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3848 (if (wi::to_wide (@1) == signed_max
3849 && TYPE_UNSIGNED (arg1_type)
3850 /* We will flip the signedness of the comparison operator
3851 associated with the mode of @1, so the sign bit is
3852 specified by this mode. Check that @1 is the signed
3853 max associated with this sign bit. */
3854 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3855 /* signed_type does not work on pointer types. */
3856 && INTEGRAL_TYPE_P (arg1_type))
3857 /* The following case also applies to X < signed_max+1
3858 and X >= signed_max+1 because previous transformations. */
3859 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3860 (with { tree st = signed_type_for (arg1_type); }
3861 (if (cmp == LE_EXPR)
3862 (ge (convert:st @0) { build_zero_cst (st); })
3863 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3864
3865 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3866 /* If the second operand is NaN, the result is constant. */
3867 (simplify
3868 (cmp @0 REAL_CST@1)
3869 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3870 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3871 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3872 ? false : true, type); })))
3873
3874 /* bool_var != 0 becomes bool_var. */
3875 (simplify
3876 (ne @0 integer_zerop)
3877 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3878 && types_match (type, TREE_TYPE (@0)))
3879 (non_lvalue @0)))
3880 /* bool_var == 1 becomes bool_var. */
3881 (simplify
3882 (eq @0 integer_onep)
3883 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3884 && types_match (type, TREE_TYPE (@0)))
3885 (non_lvalue @0)))
3886 /* Do not handle
3887 bool_var == 0 becomes !bool_var or
3888 bool_var != 1 becomes !bool_var
3889 here because that only is good in assignment context as long
3890 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3891 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3892 clearly less optimal and which we'll transform again in forwprop. */
3893
3894 /* When one argument is a constant, overflow detection can be simplified.
3895 Currently restricted to single use so as not to interfere too much with
3896 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3897 A + CST CMP A -> A CMP' CST' */
3898 (for cmp (lt le ge gt)
3899 out (gt gt le le)
3900 (simplify
3901 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3902 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3903 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3904 && wi::to_wide (@1) != 0
3905 && single_use (@2))
3906 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3907 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3908 wi::max_value (prec, UNSIGNED)
3909 - wi::to_wide (@1)); })))))
3910
3911 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3912 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3913 expects the long form, so we restrict the transformation for now. */
3914 (for cmp (gt le)
3915 (simplify
3916 (cmp:c (minus@2 @0 @1) @0)
3917 (if (single_use (@2)
3918 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3919 && TYPE_UNSIGNED (TREE_TYPE (@0))
3920 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3921 (cmp @1 @0))))
3922
3923 /* Testing for overflow is unnecessary if we already know the result. */
3924 /* A - B > A */
3925 (for cmp (gt le)
3926 out (ne eq)
3927 (simplify
3928 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3929 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3930 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3931 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3932 /* A + B < A */
3933 (for cmp (lt ge)
3934 out (ne eq)
3935 (simplify
3936 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3937 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3938 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3939 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3940
3941 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3942 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3943 (for cmp (lt ge)
3944 out (ne eq)
3945 (simplify
3946 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3947 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3948 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3949 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3950
3951 /* Simplification of math builtins. These rules must all be optimizations
3952 as well as IL simplifications. If there is a possibility that the new
3953 form could be a pessimization, the rule should go in the canonicalization
3954 section that follows this one.
3955
3956 Rules can generally go in this section if they satisfy one of
3957 the following:
3958
3959 - the rule describes an identity
3960
3961 - the rule replaces calls with something as simple as addition or
3962 multiplication
3963
3964 - the rule contains unary calls only and simplifies the surrounding
3965 arithmetic. (The idea here is to exclude non-unary calls in which
3966 one operand is constant and in which the call is known to be cheap
3967 when the operand has that value.) */
3968
3969 (if (flag_unsafe_math_optimizations)
3970 /* Simplify sqrt(x) * sqrt(x) -> x. */
3971 (simplify
3972 (mult (SQRT_ALL@1 @0) @1)
3973 (if (!HONOR_SNANS (type))
3974 @0))
3975
3976 (for op (plus minus)
3977 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3978 (simplify
3979 (op (rdiv @0 @1)
3980 (rdiv @2 @1))
3981 (rdiv (op @0 @2) @1)))
3982
3983 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3984 (for root (SQRT CBRT)
3985 (simplify
3986 (mult (root:s @0) (root:s @1))
3987 (root (mult @0 @1))))
3988
3989 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3990 (for exps (EXP EXP2 EXP10 POW10)
3991 (simplify
3992 (mult (exps:s @0) (exps:s @1))
3993 (exps (plus @0 @1))))
3994
3995 /* Simplify a/root(b/c) into a*root(c/b). */
3996 (for root (SQRT CBRT)
3997 (simplify
3998 (rdiv @0 (root:s (rdiv:s @1 @2)))
3999 (mult @0 (root (rdiv @2 @1)))))
4000
4001 /* Simplify x/expN(y) into x*expN(-y). */
4002 (for exps (EXP EXP2 EXP10 POW10)
4003 (simplify
4004 (rdiv @0 (exps:s @1))
4005 (mult @0 (exps (negate @1)))))
4006
4007 (for logs (LOG LOG2 LOG10 LOG10)
4008 exps (EXP EXP2 EXP10 POW10)
4009 /* logN(expN(x)) -> x. */
4010 (simplify
4011 (logs (exps @0))
4012 @0)
4013 /* expN(logN(x)) -> x. */
4014 (simplify
4015 (exps (logs @0))
4016 @0))
4017
4018 /* Optimize logN(func()) for various exponential functions. We
4019 want to determine the value "x" and the power "exponent" in
4020 order to transform logN(x**exponent) into exponent*logN(x). */
4021 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4022 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4023 (simplify
4024 (logs (exps @0))
4025 (if (SCALAR_FLOAT_TYPE_P (type))
4026 (with {
4027 tree x;
4028 switch (exps)
4029 {
4030 CASE_CFN_EXP:
4031 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4032 x = build_real_truncate (type, dconst_e ());
4033 break;
4034 CASE_CFN_EXP2:
4035 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4036 x = build_real (type, dconst2);
4037 break;
4038 CASE_CFN_EXP10:
4039 CASE_CFN_POW10:
4040 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4041 {
4042 REAL_VALUE_TYPE dconst10;
4043 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4044 x = build_real (type, dconst10);
4045 }
4046 break;
4047 default:
4048 gcc_unreachable ();
4049 }
4050 }
4051 (mult (logs { x; }) @0)))))
4052
4053 (for logs (LOG LOG
4054 LOG2 LOG2
4055 LOG10 LOG10)
4056 exps (SQRT CBRT)
4057 (simplify
4058 (logs (exps @0))
4059 (if (SCALAR_FLOAT_TYPE_P (type))
4060 (with {
4061 tree x;
4062 switch (exps)
4063 {
4064 CASE_CFN_SQRT:
4065 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4066 x = build_real (type, dconsthalf);
4067 break;
4068 CASE_CFN_CBRT:
4069 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4070 x = build_real_truncate (type, dconst_third ());
4071 break;
4072 default:
4073 gcc_unreachable ();
4074 }
4075 }
4076 (mult { x; } (logs @0))))))
4077
4078 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4079 (for logs (LOG LOG2 LOG10)
4080 pows (POW)
4081 (simplify
4082 (logs (pows @0 @1))
4083 (mult @1 (logs @0))))
4084
4085 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4086 or if C is a positive power of 2,
4087 pow(C,x) -> exp2(log2(C)*x). */
4088 #if GIMPLE
4089 (for pows (POW)
4090 exps (EXP)
4091 logs (LOG)
4092 exp2s (EXP2)
4093 log2s (LOG2)
4094 (simplify
4095 (pows REAL_CST@0 @1)
4096 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4097 && real_isfinite (TREE_REAL_CST_PTR (@0))
4098 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4099 the use_exp2 case until after vectorization. It seems actually
4100 beneficial for all constants to postpone this until later,
4101 because exp(log(C)*x), while faster, will have worse precision
4102 and if x folds into a constant too, that is unnecessary
4103 pessimization. */
4104 && canonicalize_math_after_vectorization_p ())
4105 (with {
4106 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4107 bool use_exp2 = false;
4108 if (targetm.libc_has_function (function_c99_misc)
4109 && value->cl == rvc_normal)
4110 {
4111 REAL_VALUE_TYPE frac_rvt = *value;
4112 SET_REAL_EXP (&frac_rvt, 1);
4113 if (real_equal (&frac_rvt, &dconst1))
4114 use_exp2 = true;
4115 }
4116 }
4117 (if (!use_exp2)
4118 (if (optimize_pow_to_exp (@0, @1))
4119 (exps (mult (logs @0) @1)))
4120 (exp2s (mult (log2s @0) @1)))))))
4121 #endif
4122
4123 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4124 (for pows (POW)
4125 exps (EXP EXP2 EXP10 POW10)
4126 logs (LOG LOG2 LOG10 LOG10)
4127 (simplify
4128 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4129 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4130 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4131 (exps (plus (mult (logs @0) @1) @2)))))
4132
4133 (for sqrts (SQRT)
4134 cbrts (CBRT)
4135 pows (POW)
4136 exps (EXP EXP2 EXP10 POW10)
4137 /* sqrt(expN(x)) -> expN(x*0.5). */
4138 (simplify
4139 (sqrts (exps @0))
4140 (exps (mult @0 { build_real (type, dconsthalf); })))
4141 /* cbrt(expN(x)) -> expN(x/3). */
4142 (simplify
4143 (cbrts (exps @0))
4144 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4145 /* pow(expN(x), y) -> expN(x*y). */
4146 (simplify
4147 (pows (exps @0) @1)
4148 (exps (mult @0 @1))))
4149
4150 /* tan(atan(x)) -> x. */
4151 (for tans (TAN)
4152 atans (ATAN)
4153 (simplify
4154 (tans (atans @0))
4155 @0)))
4156
4157 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4158 (simplify
4159 (CABS (complex:C @0 real_zerop@1))
4160 (abs @0))
4161
4162 /* trunc(trunc(x)) -> trunc(x), etc. */
4163 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4164 (simplify
4165 (fns (fns @0))
4166 (fns @0)))
4167 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4168 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4169 (simplify
4170 (fns integer_valued_real_p@0)
4171 @0))
4172
4173 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4174 (simplify
4175 (HYPOT:c @0 real_zerop@1)
4176 (abs @0))
4177
4178 /* pow(1,x) -> 1. */
4179 (simplify
4180 (POW real_onep@0 @1)
4181 @0)
4182
4183 (simplify
4184 /* copysign(x,x) -> x. */
4185 (COPYSIGN_ALL @0 @0)
4186 @0)
4187
4188 (simplify
4189 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4190 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4191 (abs @0))
4192
4193 (for scale (LDEXP SCALBN SCALBLN)
4194 /* ldexp(0, x) -> 0. */
4195 (simplify
4196 (scale real_zerop@0 @1)
4197 @0)
4198 /* ldexp(x, 0) -> x. */
4199 (simplify
4200 (scale @0 integer_zerop@1)
4201 @0)
4202 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4203 (simplify
4204 (scale REAL_CST@0 @1)
4205 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4206 @0)))
4207
4208 /* Canonicalization of sequences of math builtins. These rules represent
4209 IL simplifications but are not necessarily optimizations.
4210
4211 The sincos pass is responsible for picking "optimal" implementations
4212 of math builtins, which may be more complicated and can sometimes go
4213 the other way, e.g. converting pow into a sequence of sqrts.
4214 We only want to do these canonicalizations before the pass has run. */
4215
4216 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4217 /* Simplify tan(x) * cos(x) -> sin(x). */
4218 (simplify
4219 (mult:c (TAN:s @0) (COS:s @0))
4220 (SIN @0))
4221
4222 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4223 (simplify
4224 (mult:c @0 (POW:s @0 REAL_CST@1))
4225 (if (!TREE_OVERFLOW (@1))
4226 (POW @0 (plus @1 { build_one_cst (type); }))))
4227
4228 /* Simplify sin(x) / cos(x) -> tan(x). */
4229 (simplify
4230 (rdiv (SIN:s @0) (COS:s @0))
4231 (TAN @0))
4232
4233 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4234 (simplify
4235 (rdiv (COS:s @0) (SIN:s @0))
4236 (rdiv { build_one_cst (type); } (TAN @0)))
4237
4238 /* Simplify sin(x) / tan(x) -> cos(x). */
4239 (simplify
4240 (rdiv (SIN:s @0) (TAN:s @0))
4241 (if (! HONOR_NANS (@0)
4242 && ! HONOR_INFINITIES (@0))
4243 (COS @0)))
4244
4245 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4246 (simplify
4247 (rdiv (TAN:s @0) (SIN:s @0))
4248 (if (! HONOR_NANS (@0)
4249 && ! HONOR_INFINITIES (@0))
4250 (rdiv { build_one_cst (type); } (COS @0))))
4251
4252 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4253 (simplify
4254 (mult (POW:s @0 @1) (POW:s @0 @2))
4255 (POW @0 (plus @1 @2)))
4256
4257 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4258 (simplify
4259 (mult (POW:s @0 @1) (POW:s @2 @1))
4260 (POW (mult @0 @2) @1))
4261
4262 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4263 (simplify
4264 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4265 (POWI (mult @0 @2) @1))
4266
4267 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4268 (simplify
4269 (rdiv (POW:s @0 REAL_CST@1) @0)
4270 (if (!TREE_OVERFLOW (@1))
4271 (POW @0 (minus @1 { build_one_cst (type); }))))
4272
4273 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4274 (simplify
4275 (rdiv @0 (POW:s @1 @2))
4276 (mult @0 (POW @1 (negate @2))))
4277
4278 (for sqrts (SQRT)
4279 cbrts (CBRT)
4280 pows (POW)
4281 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4282 (simplify
4283 (sqrts (sqrts @0))
4284 (pows @0 { build_real (type, dconst_quarter ()); }))
4285 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4286 (simplify
4287 (sqrts (cbrts @0))
4288 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4289 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4290 (simplify
4291 (cbrts (sqrts @0))
4292 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4293 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4294 (simplify
4295 (cbrts (cbrts tree_expr_nonnegative_p@0))
4296 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4297 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4298 (simplify
4299 (sqrts (pows @0 @1))
4300 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4301 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4302 (simplify
4303 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4304 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4305 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4306 (simplify
4307 (pows (sqrts @0) @1)
4308 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4309 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4310 (simplify
4311 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4312 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4313 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4314 (simplify
4315 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4316 (pows @0 (mult @1 @2))))
4317
4318 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4319 (simplify
4320 (CABS (complex @0 @0))
4321 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4322
4323 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4324 (simplify
4325 (HYPOT @0 @0)
4326 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4327
4328 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4329 (for cexps (CEXP)
4330 exps (EXP)
4331 cexpis (CEXPI)
4332 (simplify
4333 (cexps compositional_complex@0)
4334 (if (targetm.libc_has_function (function_c99_math_complex))
4335 (complex
4336 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4337 (mult @1 (imagpart @2)))))))
4338
4339 (if (canonicalize_math_p ())
4340 /* floor(x) -> trunc(x) if x is nonnegative. */
4341 (for floors (FLOOR_ALL)
4342 truncs (TRUNC_ALL)
4343 (simplify
4344 (floors tree_expr_nonnegative_p@0)
4345 (truncs @0))))
4346
4347 (match double_value_p
4348 @0
4349 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4350 (for froms (BUILT_IN_TRUNCL
4351 BUILT_IN_FLOORL
4352 BUILT_IN_CEILL
4353 BUILT_IN_ROUNDL
4354 BUILT_IN_NEARBYINTL
4355 BUILT_IN_RINTL)
4356 tos (BUILT_IN_TRUNC
4357 BUILT_IN_FLOOR
4358 BUILT_IN_CEIL
4359 BUILT_IN_ROUND
4360 BUILT_IN_NEARBYINT
4361 BUILT_IN_RINT)
4362 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4363 (if (optimize && canonicalize_math_p ())
4364 (simplify
4365 (froms (convert double_value_p@0))
4366 (convert (tos @0)))))
4367
4368 (match float_value_p
4369 @0
4370 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4371 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4372 BUILT_IN_FLOORL BUILT_IN_FLOOR
4373 BUILT_IN_CEILL BUILT_IN_CEIL
4374 BUILT_IN_ROUNDL BUILT_IN_ROUND
4375 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4376 BUILT_IN_RINTL BUILT_IN_RINT)
4377 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4378 BUILT_IN_FLOORF BUILT_IN_FLOORF
4379 BUILT_IN_CEILF BUILT_IN_CEILF
4380 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4381 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4382 BUILT_IN_RINTF BUILT_IN_RINTF)
4383 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4384 if x is a float. */
4385 (if (optimize && canonicalize_math_p ()
4386 && targetm.libc_has_function (function_c99_misc))
4387 (simplify
4388 (froms (convert float_value_p@0))
4389 (convert (tos @0)))))
4390
4391 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4392 tos (XFLOOR XCEIL XROUND XRINT)
4393 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4394 (if (optimize && canonicalize_math_p ())
4395 (simplify
4396 (froms (convert double_value_p@0))
4397 (tos @0))))
4398
4399 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4400 XFLOOR XCEIL XROUND XRINT)
4401 tos (XFLOORF XCEILF XROUNDF XRINTF)
4402 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4403 if x is a float. */
4404 (if (optimize && canonicalize_math_p ())
4405 (simplify
4406 (froms (convert float_value_p@0))
4407 (tos @0))))
4408
4409 (if (canonicalize_math_p ())
4410 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4411 (for floors (IFLOOR LFLOOR LLFLOOR)
4412 (simplify
4413 (floors tree_expr_nonnegative_p@0)
4414 (fix_trunc @0))))
4415
4416 (if (canonicalize_math_p ())
4417 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4418 (for fns (IFLOOR LFLOOR LLFLOOR
4419 ICEIL LCEIL LLCEIL
4420 IROUND LROUND LLROUND)
4421 (simplify
4422 (fns integer_valued_real_p@0)
4423 (fix_trunc @0)))
4424 (if (!flag_errno_math)
4425 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4426 (for rints (IRINT LRINT LLRINT)
4427 (simplify
4428 (rints integer_valued_real_p@0)
4429 (fix_trunc @0)))))
4430
4431 (if (canonicalize_math_p ())
4432 (for ifn (IFLOOR ICEIL IROUND IRINT)
4433 lfn (LFLOOR LCEIL LROUND LRINT)
4434 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4435 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4436 sizeof (int) == sizeof (long). */
4437 (if (TYPE_PRECISION (integer_type_node)
4438 == TYPE_PRECISION (long_integer_type_node))
4439 (simplify
4440 (ifn @0)
4441 (lfn:long_integer_type_node @0)))
4442 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4443 sizeof (long long) == sizeof (long). */
4444 (if (TYPE_PRECISION (long_long_integer_type_node)
4445 == TYPE_PRECISION (long_integer_type_node))
4446 (simplify
4447 (llfn @0)
4448 (lfn:long_integer_type_node @0)))))
4449
4450 /* cproj(x) -> x if we're ignoring infinities. */
4451 (simplify
4452 (CPROJ @0)
4453 (if (!HONOR_INFINITIES (type))
4454 @0))
4455
4456 /* If the real part is inf and the imag part is known to be
4457 nonnegative, return (inf + 0i). */
4458 (simplify
4459 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4460 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4461 { build_complex_inf (type, false); }))
4462
4463 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4464 (simplify
4465 (CPROJ (complex @0 REAL_CST@1))
4466 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4467 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4468
4469 (for pows (POW)
4470 sqrts (SQRT)
4471 cbrts (CBRT)
4472 (simplify
4473 (pows @0 REAL_CST@1)
4474 (with {
4475 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4476 REAL_VALUE_TYPE tmp;
4477 }
4478 (switch
4479 /* pow(x,0) -> 1. */
4480 (if (real_equal (value, &dconst0))
4481 { build_real (type, dconst1); })
4482 /* pow(x,1) -> x. */
4483 (if (real_equal (value, &dconst1))
4484 @0)
4485 /* pow(x,-1) -> 1/x. */
4486 (if (real_equal (value, &dconstm1))
4487 (rdiv { build_real (type, dconst1); } @0))
4488 /* pow(x,0.5) -> sqrt(x). */
4489 (if (flag_unsafe_math_optimizations
4490 && canonicalize_math_p ()
4491 && real_equal (value, &dconsthalf))
4492 (sqrts @0))
4493 /* pow(x,1/3) -> cbrt(x). */
4494 (if (flag_unsafe_math_optimizations
4495 && canonicalize_math_p ()
4496 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4497 real_equal (value, &tmp)))
4498 (cbrts @0))))))
4499
4500 /* powi(1,x) -> 1. */
4501 (simplify
4502 (POWI real_onep@0 @1)
4503 @0)
4504
4505 (simplify
4506 (POWI @0 INTEGER_CST@1)
4507 (switch
4508 /* powi(x,0) -> 1. */
4509 (if (wi::to_wide (@1) == 0)
4510 { build_real (type, dconst1); })
4511 /* powi(x,1) -> x. */
4512 (if (wi::to_wide (@1) == 1)
4513 @0)
4514 /* powi(x,-1) -> 1/x. */
4515 (if (wi::to_wide (@1) == -1)
4516 (rdiv { build_real (type, dconst1); } @0))))
4517
4518 /* Narrowing of arithmetic and logical operations.
4519
4520 These are conceptually similar to the transformations performed for
4521 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4522 term we want to move all that code out of the front-ends into here. */
4523
4524 /* If we have a narrowing conversion of an arithmetic operation where
4525 both operands are widening conversions from the same type as the outer
4526 narrowing conversion. Then convert the innermost operands to a suitable
4527 unsigned type (to avoid introducing undefined behavior), perform the
4528 operation and convert the result to the desired type. */
4529 (for op (plus minus)
4530 (simplify
4531 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4532 (if (INTEGRAL_TYPE_P (type)
4533 /* We check for type compatibility between @0 and @1 below,
4534 so there's no need to check that @1/@3 are integral types. */
4535 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4536 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4537 /* The precision of the type of each operand must match the
4538 precision of the mode of each operand, similarly for the
4539 result. */
4540 && type_has_mode_precision_p (TREE_TYPE (@0))
4541 && type_has_mode_precision_p (TREE_TYPE (@1))
4542 && type_has_mode_precision_p (type)
4543 /* The inner conversion must be a widening conversion. */
4544 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4545 && types_match (@0, type)
4546 && (types_match (@0, @1)
4547 /* Or the second operand is const integer or converted const
4548 integer from valueize. */
4549 || TREE_CODE (@1) == INTEGER_CST))
4550 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4551 (op @0 (convert @1))
4552 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4553 (convert (op (convert:utype @0)
4554 (convert:utype @1))))))))
4555
4556 /* This is another case of narrowing, specifically when there's an outer
4557 BIT_AND_EXPR which masks off bits outside the type of the innermost
4558 operands. Like the previous case we have to convert the operands
4559 to unsigned types to avoid introducing undefined behavior for the
4560 arithmetic operation. */
4561 (for op (minus plus)
4562 (simplify
4563 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4564 (if (INTEGRAL_TYPE_P (type)
4565 /* We check for type compatibility between @0 and @1 below,
4566 so there's no need to check that @1/@3 are integral types. */
4567 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4568 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4569 /* The precision of the type of each operand must match the
4570 precision of the mode of each operand, similarly for the
4571 result. */
4572 && type_has_mode_precision_p (TREE_TYPE (@0))
4573 && type_has_mode_precision_p (TREE_TYPE (@1))
4574 && type_has_mode_precision_p (type)
4575 /* The inner conversion must be a widening conversion. */
4576 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4577 && types_match (@0, @1)
4578 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4579 <= TYPE_PRECISION (TREE_TYPE (@0)))
4580 && (wi::to_wide (@4)
4581 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4582 true, TYPE_PRECISION (type))) == 0)
4583 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4584 (with { tree ntype = TREE_TYPE (@0); }
4585 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4586 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4587 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4588 (convert:utype @4))))))))
4589
4590 /* Transform (@0 < @1 and @0 < @2) to use min,
4591 (@0 > @1 and @0 > @2) to use max */
4592 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4593 op (lt le gt ge lt le gt ge )
4594 ext (min min max max max max min min )
4595 (simplify
4596 (logic (op:cs @0 @1) (op:cs @0 @2))
4597 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4598 && TREE_CODE (@0) != INTEGER_CST)
4599 (op @0 (ext @1 @2)))))
4600
4601 (simplify
4602 /* signbit(x) -> 0 if x is nonnegative. */
4603 (SIGNBIT tree_expr_nonnegative_p@0)
4604 { integer_zero_node; })
4605
4606 (simplify
4607 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4608 (SIGNBIT @0)
4609 (if (!HONOR_SIGNED_ZEROS (@0))
4610 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4611
4612 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4613 (for cmp (eq ne)
4614 (for op (plus minus)
4615 rop (minus plus)
4616 (simplify
4617 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4618 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4619 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4620 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4621 && !TYPE_SATURATING (TREE_TYPE (@0)))
4622 (with { tree res = int_const_binop (rop, @2, @1); }
4623 (if (TREE_OVERFLOW (res)
4624 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4625 { constant_boolean_node (cmp == NE_EXPR, type); }
4626 (if (single_use (@3))
4627 (cmp @0 { TREE_OVERFLOW (res)
4628 ? drop_tree_overflow (res) : res; }))))))))
4629 (for cmp (lt le gt ge)
4630 (for op (plus minus)
4631 rop (minus plus)
4632 (simplify
4633 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4634 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4635 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4636 (with { tree res = int_const_binop (rop, @2, @1); }
4637 (if (TREE_OVERFLOW (res))
4638 {
4639 fold_overflow_warning (("assuming signed overflow does not occur "
4640 "when simplifying conditional to constant"),
4641 WARN_STRICT_OVERFLOW_CONDITIONAL);
4642 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4643 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4644 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4645 TYPE_SIGN (TREE_TYPE (@1)))
4646 != (op == MINUS_EXPR);
4647 constant_boolean_node (less == ovf_high, type);
4648 }
4649 (if (single_use (@3))
4650 (with
4651 {
4652 fold_overflow_warning (("assuming signed overflow does not occur "
4653 "when changing X +- C1 cmp C2 to "
4654 "X cmp C2 -+ C1"),
4655 WARN_STRICT_OVERFLOW_COMPARISON);
4656 }
4657 (cmp @0 { res; })))))))))
4658
4659 /* Canonicalizations of BIT_FIELD_REFs. */
4660
4661 (simplify
4662 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4663 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4664
4665 (simplify
4666 (BIT_FIELD_REF (view_convert @0) @1 @2)
4667 (BIT_FIELD_REF @0 @1 @2))
4668
4669 (simplify
4670 (BIT_FIELD_REF @0 @1 integer_zerop)
4671 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4672 (view_convert @0)))
4673
4674 (simplify
4675 (BIT_FIELD_REF @0 @1 @2)
4676 (switch
4677 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4678 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4679 (switch
4680 (if (integer_zerop (@2))
4681 (view_convert (realpart @0)))
4682 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4683 (view_convert (imagpart @0)))))
4684 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4685 && INTEGRAL_TYPE_P (type)
4686 /* On GIMPLE this should only apply to register arguments. */
4687 && (! GIMPLE || is_gimple_reg (@0))
4688 /* A bit-field-ref that referenced the full argument can be stripped. */
4689 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4690 && integer_zerop (@2))
4691 /* Low-parts can be reduced to integral conversions.
4692 ??? The following doesn't work for PDP endian. */
4693 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4694 /* Don't even think about BITS_BIG_ENDIAN. */
4695 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4696 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4697 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4698 ? (TYPE_PRECISION (TREE_TYPE (@0))
4699 - TYPE_PRECISION (type))
4700 : 0)) == 0)))
4701 (convert @0))))
4702
4703 /* Simplify vector extracts. */
4704
4705 (simplify
4706 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4707 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4708 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4709 || (VECTOR_TYPE_P (type)
4710 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4711 (with
4712 {
4713 tree ctor = (TREE_CODE (@0) == SSA_NAME
4714 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4715 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4716 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4717 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4718 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4719 }
4720 (if (n != 0
4721 && (idx % width) == 0
4722 && (n % width) == 0
4723 && known_le ((idx + n) / width,
4724 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4725 (with
4726 {
4727 idx = idx / width;
4728 n = n / width;
4729 /* Constructor elements can be subvectors. */
4730 poly_uint64 k = 1;
4731 if (CONSTRUCTOR_NELTS (ctor) != 0)
4732 {
4733 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4734 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4735 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4736 }
4737 unsigned HOST_WIDE_INT elt, count, const_k;
4738 }
4739 (switch
4740 /* We keep an exact subset of the constructor elements. */
4741 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4742 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4743 { build_constructor (type, NULL); }
4744 (if (count == 1)
4745 (if (elt < CONSTRUCTOR_NELTS (ctor))
4746 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4747 { build_zero_cst (type); })
4748 {
4749 vec<constructor_elt, va_gc> *vals;
4750 vec_alloc (vals, count);
4751 for (unsigned i = 0;
4752 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4753 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4754 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4755 build_constructor (type, vals);
4756 })))
4757 /* The bitfield references a single constructor element. */
4758 (if (k.is_constant (&const_k)
4759 && idx + n <= (idx / const_k + 1) * const_k)
4760 (switch
4761 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4762 { build_zero_cst (type); })
4763 (if (n == const_k)
4764 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4765 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4766 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4767
4768 /* Simplify a bit extraction from a bit insertion for the cases with
4769 the inserted element fully covering the extraction or the insertion
4770 not touching the extraction. */
4771 (simplify
4772 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4773 (with
4774 {
4775 unsigned HOST_WIDE_INT isize;
4776 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4777 isize = TYPE_PRECISION (TREE_TYPE (@1));
4778 else
4779 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4780 }
4781 (switch
4782 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4783 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4784 wi::to_wide (@ipos) + isize))
4785 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4786 wi::to_wide (@rpos)
4787 - wi::to_wide (@ipos)); }))
4788 (if (wi::geu_p (wi::to_wide (@ipos),
4789 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4790 || wi::geu_p (wi::to_wide (@rpos),
4791 wi::to_wide (@ipos) + isize))
4792 (BIT_FIELD_REF @0 @rsize @rpos)))))
4793
4794 (if (canonicalize_math_after_vectorization_p ())
4795 (for fmas (FMA)
4796 (simplify
4797 (fmas:c (negate @0) @1 @2)
4798 (IFN_FNMA @0 @1 @2))
4799 (simplify
4800 (fmas @0 @1 (negate @2))
4801 (IFN_FMS @0 @1 @2))
4802 (simplify
4803 (fmas:c (negate @0) @1 (negate @2))
4804 (IFN_FNMS @0 @1 @2))
4805 (simplify
4806 (negate (fmas@3 @0 @1 @2))
4807 (if (single_use (@3))
4808 (IFN_FNMS @0 @1 @2))))
4809
4810 (simplify
4811 (IFN_FMS:c (negate @0) @1 @2)
4812 (IFN_FNMS @0 @1 @2))
4813 (simplify
4814 (IFN_FMS @0 @1 (negate @2))
4815 (IFN_FMA @0 @1 @2))
4816 (simplify
4817 (IFN_FMS:c (negate @0) @1 (negate @2))
4818 (IFN_FNMA @0 @1 @2))
4819 (simplify
4820 (negate (IFN_FMS@3 @0 @1 @2))
4821 (if (single_use (@3))
4822 (IFN_FNMA @0 @1 @2)))
4823
4824 (simplify
4825 (IFN_FNMA:c (negate @0) @1 @2)
4826 (IFN_FMA @0 @1 @2))
4827 (simplify
4828 (IFN_FNMA @0 @1 (negate @2))
4829 (IFN_FNMS @0 @1 @2))
4830 (simplify
4831 (IFN_FNMA:c (negate @0) @1 (negate @2))
4832 (IFN_FMS @0 @1 @2))
4833 (simplify
4834 (negate (IFN_FNMA@3 @0 @1 @2))
4835 (if (single_use (@3))
4836 (IFN_FMS @0 @1 @2)))
4837
4838 (simplify
4839 (IFN_FNMS:c (negate @0) @1 @2)
4840 (IFN_FMS @0 @1 @2))
4841 (simplify
4842 (IFN_FNMS @0 @1 (negate @2))
4843 (IFN_FNMA @0 @1 @2))
4844 (simplify
4845 (IFN_FNMS:c (negate @0) @1 (negate @2))
4846 (IFN_FMA @0 @1 @2))
4847 (simplify
4848 (negate (IFN_FNMS@3 @0 @1 @2))
4849 (if (single_use (@3))
4850 (IFN_FMA @0 @1 @2))))
4851
4852 /* POPCOUNT simplifications. */
4853 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4854 BUILT_IN_POPCOUNTIMAX)
4855 /* popcount(X&1) is nop_expr(X&1). */
4856 (simplify
4857 (popcount @0)
4858 (if (tree_nonzero_bits (@0) == 1)
4859 (convert @0)))
4860 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4861 (simplify
4862 (plus (popcount:s @0) (popcount:s @1))
4863 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4864 (popcount (bit_ior @0 @1))))
4865 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4866 (for cmp (le eq ne gt)
4867 rep (eq eq ne ne)
4868 (simplify
4869 (cmp (popcount @0) integer_zerop)
4870 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4871
4872 /* Simplify:
4873
4874 a = a1 op a2
4875 r = c ? a : b;
4876
4877 to:
4878
4879 r = c ? a1 op a2 : b;
4880
4881 if the target can do it in one go. This makes the operation conditional
4882 on c, so could drop potentially-trapping arithmetic, but that's a valid
4883 simplification if the result of the operation isn't needed. */
4884 (for uncond_op (UNCOND_BINARY)
4885 cond_op (COND_BINARY)
4886 (simplify
4887 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4888 (with { tree op_type = TREE_TYPE (@4); }
4889 (if (element_precision (type) == element_precision (op_type))
4890 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4891 (simplify
4892 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4893 (with { tree op_type = TREE_TYPE (@4); }
4894 (if (element_precision (type) == element_precision (op_type))
4895 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
4896
4897 /* Same for ternary operations. */
4898 (for uncond_op (UNCOND_TERNARY)
4899 cond_op (COND_TERNARY)
4900 (simplify
4901 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
4902 (with { tree op_type = TREE_TYPE (@5); }
4903 (if (element_precision (type) == element_precision (op_type))
4904 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
4905 (simplify
4906 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
4907 (with { tree op_type = TREE_TYPE (@5); }
4908 (if (element_precision (type) == element_precision (op_type))
4909 (view_convert (cond_op (bit_not @0) @2 @3 @4
4910 (view_convert:op_type @1)))))))
4911
4912 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
4913 "else" value of an IFN_COND_*. */
4914 (for cond_op (COND_BINARY)
4915 (simplify
4916 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
4917 (with { tree op_type = TREE_TYPE (@3); }
4918 (if (element_precision (type) == element_precision (op_type))
4919 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
4920 (simplify
4921 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
4922 (with { tree op_type = TREE_TYPE (@5); }
4923 (if (inverse_conditions_p (@0, @2)
4924 && element_precision (type) == element_precision (op_type))
4925 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
4926
4927 /* Same for ternary operations. */
4928 (for cond_op (COND_TERNARY)
4929 (simplify
4930 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
4931 (with { tree op_type = TREE_TYPE (@4); }
4932 (if (element_precision (type) == element_precision (op_type))
4933 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
4934 (simplify
4935 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
4936 (with { tree op_type = TREE_TYPE (@6); }
4937 (if (inverse_conditions_p (@0, @2)
4938 && element_precision (type) == element_precision (op_type))
4939 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
4940
4941 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
4942 expressions like:
4943
4944 A: (@0 + @1 < @2) | (@2 + @1 < @0)
4945 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
4946
4947 If pointers are known not to wrap, B checks whether @1 bytes starting
4948 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
4949 bytes. A is more efficiently tested as:
4950
4951 A: (sizetype) (@0 + @1 - @2) > @1 * 2
4952
4953 The equivalent expression for B is given by replacing @1 with @1 - 1:
4954
4955 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
4956
4957 @0 and @2 can be swapped in both expressions without changing the result.
4958
4959 The folds rely on sizetype's being unsigned (which is always true)
4960 and on its being the same width as the pointer (which we have to check).
4961
4962 The fold replaces two pointer_plus expressions, two comparisons and
4963 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
4964 the best case it's a saving of two operations. The A fold retains one
4965 of the original pointer_pluses, so is a win even if both pointer_pluses
4966 are used elsewhere. The B fold is a wash if both pointer_pluses are
4967 used elsewhere, since all we end up doing is replacing a comparison with
4968 a pointer_plus. We do still apply the fold under those circumstances
4969 though, in case applying it to other conditions eventually makes one of the
4970 pointer_pluses dead. */
4971 (for ior (truth_orif truth_or bit_ior)
4972 (for cmp (le lt)
4973 (simplify
4974 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
4975 (cmp:cs (pointer_plus@4 @2 @1) @0))
4976 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4977 && TYPE_OVERFLOW_WRAPS (sizetype)
4978 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
4979 /* Calculate the rhs constant. */
4980 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
4981 offset_int rhs = off * 2; }
4982 /* Always fails for negative values. */
4983 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
4984 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
4985 pick a canonical order. This increases the chances of using the
4986 same pointer_plus in multiple checks. */
4987 (with { bool swap_p = tree_swap_operands_p (@0, @2);
4988 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
4989 (if (cmp == LT_EXPR)
4990 (gt (convert:sizetype
4991 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
4992 { swap_p ? @0 : @2; }))
4993 { rhs_tree; })
4994 (gt (convert:sizetype
4995 (pointer_diff:ssizetype
4996 (pointer_plus { swap_p ? @2 : @0; }
4997 { wide_int_to_tree (sizetype, off); })
4998 { swap_p ? @0 : @2; }))
4999 { rhs_tree; })))))))))