re PR tree-optimization/87314 (pointless comparison of malloc result to a string...
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS)
40
41 /* Operator lists. */
42 (define_operator_list tcc_comparison
43 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
44 (define_operator_list inverted_tcc_comparison
45 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list inverted_tcc_comparison_with_nans
47 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
48 (define_operator_list swapped_tcc_comparison
49 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
50 (define_operator_list simple_comparison lt le eq ne ge gt)
51 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
52
53 #include "cfn-operators.pd"
54
55 /* Define operand lists for math rounding functions {,i,l,ll}FN,
56 where the versions prefixed with "i" return an int, those prefixed with
57 "l" return a long and those prefixed with "ll" return a long long.
58
59 Also define operand lists:
60
61 X<FN>F for all float functions, in the order i, l, ll
62 X<FN> for all double functions, in the same order
63 X<FN>L for all long double functions, in the same order. */
64 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
65 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 BUILT_IN_L##FN##F \
67 BUILT_IN_LL##FN##F) \
68 (define_operator_list X##FN BUILT_IN_I##FN \
69 BUILT_IN_L##FN \
70 BUILT_IN_LL##FN) \
71 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
72 BUILT_IN_L##FN##L \
73 BUILT_IN_LL##FN##L)
74
75 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
79
80 /* Binary operations and their associated IFN_COND_* function. */
81 (define_operator_list UNCOND_BINARY
82 plus minus
83 mult trunc_div trunc_mod rdiv
84 min max
85 bit_and bit_ior bit_xor)
86 (define_operator_list COND_BINARY
87 IFN_COND_ADD IFN_COND_SUB
88 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
89 IFN_COND_MIN IFN_COND_MAX
90 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
91
92 /* Same for ternary operations. */
93 (define_operator_list UNCOND_TERNARY
94 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
95 (define_operator_list COND_TERNARY
96 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
97
98 /* As opposed to convert?, this still creates a single pattern, so
99 it is not a suitable replacement for convert? in all cases. */
100 (match (nop_convert @0)
101 (convert @0)
102 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
103 (match (nop_convert @0)
104 (view_convert @0)
105 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
106 && known_eq (TYPE_VECTOR_SUBPARTS (type),
107 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
108 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
109 /* This one has to be last, or it shadows the others. */
110 (match (nop_convert @0)
111 @0)
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
126
127 (for op (plus pointer_plus minus bit_ior bit_xor)
128 (simplify
129 (op @0 integer_zerop)
130 (non_lvalue @0)))
131
132 /* 0 +p index -> (type)index */
133 (simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137 /* ptr - 0 -> (type)ptr */
138 (simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
144 (simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147 (non_lvalue @0)))
148
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
150 (simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153 (non_lvalue @0)))
154
155 /* Simplify x - x.
156 This is unsafe for certain floats even in non-IEEE formats.
157 In IEEE, it is unsafe because it does wrong for NaNs.
158 Also note that operand_equal_p is always false if an operand
159 is volatile. */
160 (simplify
161 (minus @0 @0)
162 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
163 { build_zero_cst (type); }))
164 (simplify
165 (pointer_diff @@0 @0)
166 { build_zero_cst (type); })
167
168 (simplify
169 (mult @0 integer_zerop@1)
170 @1)
171
172 /* Maybe fold x * 0 to 0. The expressions aren't the same
173 when x is NaN, since x * 0 is also NaN. Nor are they the
174 same in modes with signed zeros, since multiplying a
175 negative value by 0 gives -0, not +0. */
176 (simplify
177 (mult @0 real_zerop@1)
178 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
179 @1))
180
181 /* In IEEE floating point, x*1 is not equivalent to x for snans.
182 Likewise for complex arithmetic with signed zeros. */
183 (simplify
184 (mult @0 real_onep)
185 (if (!HONOR_SNANS (type)
186 && (!HONOR_SIGNED_ZEROS (type)
187 || !COMPLEX_FLOAT_TYPE_P (type)))
188 (non_lvalue @0)))
189
190 /* Transform x * -1.0 into -x. */
191 (simplify
192 (mult @0 real_minus_onep)
193 (if (!HONOR_SNANS (type)
194 && (!HONOR_SIGNED_ZEROS (type)
195 || !COMPLEX_FLOAT_TYPE_P (type)))
196 (negate @0)))
197
198 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
199 unless the target has native support for the former but not the latter. */
200 (simplify
201 (mult @0 VECTOR_CST@1)
202 (if (initializer_each_zero_or_onep (@1)
203 && !HONOR_SNANS (type)
204 && !HONOR_SIGNED_ZEROS (type))
205 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
206 (if (itype
207 && (!VECTOR_MODE_P (TYPE_MODE (type))
208 || (VECTOR_MODE_P (TYPE_MODE (itype))
209 && optab_handler (and_optab,
210 TYPE_MODE (itype)) != CODE_FOR_nothing)))
211 (view_convert (bit_and:itype (view_convert @0)
212 (ne @1 { build_zero_cst (type); })))))))
213
214 (for cmp (gt ge lt le)
215 outp (convert convert negate negate)
216 outn (negate negate convert convert)
217 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
218 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
219 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
220 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
221 (simplify
222 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
223 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
224 && types_match (type, TREE_TYPE (@0)))
225 (switch
226 (if (types_match (type, float_type_node))
227 (BUILT_IN_COPYSIGNF @1 (outp @0)))
228 (if (types_match (type, double_type_node))
229 (BUILT_IN_COPYSIGN @1 (outp @0)))
230 (if (types_match (type, long_double_type_node))
231 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
232 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
233 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
234 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
235 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
236 (simplify
237 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
238 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
239 && types_match (type, TREE_TYPE (@0)))
240 (switch
241 (if (types_match (type, float_type_node))
242 (BUILT_IN_COPYSIGNF @1 (outn @0)))
243 (if (types_match (type, double_type_node))
244 (BUILT_IN_COPYSIGN @1 (outn @0)))
245 (if (types_match (type, long_double_type_node))
246 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
247
248 /* Transform X * copysign (1.0, X) into abs(X). */
249 (simplify
250 (mult:c @0 (COPYSIGN_ALL real_onep @0))
251 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
252 (abs @0)))
253
254 /* Transform X * copysign (1.0, -X) into -abs(X). */
255 (simplify
256 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
257 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
258 (negate (abs @0))))
259
260 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
261 (simplify
262 (COPYSIGN_ALL REAL_CST@0 @1)
263 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
264 (COPYSIGN_ALL (negate @0) @1)))
265
266 /* X * 1, X / 1 -> X. */
267 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
268 (simplify
269 (op @0 integer_onep)
270 (non_lvalue @0)))
271
272 /* (A / (1 << B)) -> (A >> B).
273 Only for unsigned A. For signed A, this would not preserve rounding
274 toward zero.
275 For example: (-1 / ( 1 << B)) != -1 >> B. */
276 (simplify
277 (trunc_div @0 (lshift integer_onep@1 @2))
278 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
279 && (!VECTOR_TYPE_P (type)
280 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
281 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
282 (rshift @0 @2)))
283
284 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
285 undefined behavior in constexpr evaluation, and assuming that the division
286 traps enables better optimizations than these anyway. */
287 (for div (trunc_div ceil_div floor_div round_div exact_div)
288 /* 0 / X is always zero. */
289 (simplify
290 (div integer_zerop@0 @1)
291 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
292 (if (!integer_zerop (@1))
293 @0))
294 /* X / -1 is -X. */
295 (simplify
296 (div @0 integer_minus_onep@1)
297 (if (!TYPE_UNSIGNED (type))
298 (negate @0)))
299 /* X / X is one. */
300 (simplify
301 (div @0 @0)
302 /* But not for 0 / 0 so that we can get the proper warnings and errors.
303 And not for _Fract types where we can't build 1. */
304 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
305 { build_one_cst (type); }))
306 /* X / abs (X) is X < 0 ? -1 : 1. */
307 (simplify
308 (div:C @0 (abs @0))
309 (if (INTEGRAL_TYPE_P (type)
310 && TYPE_OVERFLOW_UNDEFINED (type))
311 (cond (lt @0 { build_zero_cst (type); })
312 { build_minus_one_cst (type); } { build_one_cst (type); })))
313 /* X / -X is -1. */
314 (simplify
315 (div:C @0 (negate @0))
316 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
317 && TYPE_OVERFLOW_UNDEFINED (type))
318 { build_minus_one_cst (type); })))
319
320 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
321 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
322 (simplify
323 (floor_div @0 @1)
324 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
325 && TYPE_UNSIGNED (type))
326 (trunc_div @0 @1)))
327
328 /* Combine two successive divisions. Note that combining ceil_div
329 and floor_div is trickier and combining round_div even more so. */
330 (for div (trunc_div exact_div)
331 (simplify
332 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
333 (with {
334 wi::overflow_type overflow;
335 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
336 TYPE_SIGN (type), &overflow);
337 }
338 (if (div == EXACT_DIV_EXPR
339 || optimize_successive_divisions_p (@2, @3))
340 (if (!overflow)
341 (div @0 { wide_int_to_tree (type, mul); })
342 (if (TYPE_UNSIGNED (type)
343 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
344 { build_zero_cst (type); }))))))
345
346 /* Combine successive multiplications. Similar to above, but handling
347 overflow is different. */
348 (simplify
349 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
350 (with {
351 wi::overflow_type overflow;
352 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
353 TYPE_SIGN (type), &overflow);
354 }
355 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
356 otherwise undefined overflow implies that @0 must be zero. */
357 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
358 (mult @0 { wide_int_to_tree (type, mul); }))))
359
360 /* Optimize A / A to 1.0 if we don't care about
361 NaNs or Infinities. */
362 (simplify
363 (rdiv @0 @0)
364 (if (FLOAT_TYPE_P (type)
365 && ! HONOR_NANS (type)
366 && ! HONOR_INFINITIES (type))
367 { build_one_cst (type); }))
368
369 /* Optimize -A / A to -1.0 if we don't care about
370 NaNs or Infinities. */
371 (simplify
372 (rdiv:C @0 (negate @0))
373 (if (FLOAT_TYPE_P (type)
374 && ! HONOR_NANS (type)
375 && ! HONOR_INFINITIES (type))
376 { build_minus_one_cst (type); }))
377
378 /* PR71078: x / abs(x) -> copysign (1.0, x) */
379 (simplify
380 (rdiv:C (convert? @0) (convert? (abs @0)))
381 (if (SCALAR_FLOAT_TYPE_P (type)
382 && ! HONOR_NANS (type)
383 && ! HONOR_INFINITIES (type))
384 (switch
385 (if (types_match (type, float_type_node))
386 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
387 (if (types_match (type, double_type_node))
388 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
389 (if (types_match (type, long_double_type_node))
390 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
391
392 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
393 (simplify
394 (rdiv @0 real_onep)
395 (if (!HONOR_SNANS (type))
396 (non_lvalue @0)))
397
398 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
399 (simplify
400 (rdiv @0 real_minus_onep)
401 (if (!HONOR_SNANS (type))
402 (negate @0)))
403
404 (if (flag_reciprocal_math)
405 /* Convert (A/B)/C to A/(B*C). */
406 (simplify
407 (rdiv (rdiv:s @0 @1) @2)
408 (rdiv @0 (mult @1 @2)))
409
410 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
411 (simplify
412 (rdiv @0 (mult:s @1 REAL_CST@2))
413 (with
414 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
415 (if (tem)
416 (rdiv (mult @0 { tem; } ) @1))))
417
418 /* Convert A/(B/C) to (A/B)*C */
419 (simplify
420 (rdiv @0 (rdiv:s @1 @2))
421 (mult (rdiv @0 @1) @2)))
422
423 /* Simplify x / (- y) to -x / y. */
424 (simplify
425 (rdiv @0 (negate @1))
426 (rdiv (negate @0) @1))
427
428 (if (flag_unsafe_math_optimizations)
429 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
430 Since C / x may underflow to zero, do this only for unsafe math. */
431 (for op (lt le gt ge)
432 neg_op (gt ge lt le)
433 (simplify
434 (op (rdiv REAL_CST@0 @1) real_zerop@2)
435 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
436 (switch
437 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
438 (op @1 @2))
439 /* For C < 0, use the inverted operator. */
440 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
441 (neg_op @1 @2)))))))
442
443 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
444 (for div (trunc_div ceil_div floor_div round_div exact_div)
445 (simplify
446 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
447 (if (integer_pow2p (@2)
448 && tree_int_cst_sgn (@2) > 0
449 && tree_nop_conversion_p (type, TREE_TYPE (@0))
450 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
451 (rshift (convert @0)
452 { build_int_cst (integer_type_node,
453 wi::exact_log2 (wi::to_wide (@2))); }))))
454
455 /* If ARG1 is a constant, we can convert this to a multiply by the
456 reciprocal. This does not have the same rounding properties,
457 so only do this if -freciprocal-math. We can actually
458 always safely do it if ARG1 is a power of two, but it's hard to
459 tell if it is or not in a portable manner. */
460 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
461 (simplify
462 (rdiv @0 cst@1)
463 (if (optimize)
464 (if (flag_reciprocal_math
465 && !real_zerop (@1))
466 (with
467 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
468 (if (tem)
469 (mult @0 { tem; } )))
470 (if (cst != COMPLEX_CST)
471 (with { tree inverse = exact_inverse (type, @1); }
472 (if (inverse)
473 (mult @0 { inverse; } ))))))))
474
475 (for mod (ceil_mod floor_mod round_mod trunc_mod)
476 /* 0 % X is always zero. */
477 (simplify
478 (mod integer_zerop@0 @1)
479 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
480 (if (!integer_zerop (@1))
481 @0))
482 /* X % 1 is always zero. */
483 (simplify
484 (mod @0 integer_onep)
485 { build_zero_cst (type); })
486 /* X % -1 is zero. */
487 (simplify
488 (mod @0 integer_minus_onep@1)
489 (if (!TYPE_UNSIGNED (type))
490 { build_zero_cst (type); }))
491 /* X % X is zero. */
492 (simplify
493 (mod @0 @0)
494 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
495 (if (!integer_zerop (@0))
496 { build_zero_cst (type); }))
497 /* (X % Y) % Y is just X % Y. */
498 (simplify
499 (mod (mod@2 @0 @1) @1)
500 @2)
501 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
502 (simplify
503 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
504 (if (ANY_INTEGRAL_TYPE_P (type)
505 && TYPE_OVERFLOW_UNDEFINED (type)
506 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
507 TYPE_SIGN (type)))
508 { build_zero_cst (type); }))
509 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
510 modulo and comparison, since it is simpler and equivalent. */
511 (for cmp (eq ne)
512 (simplify
513 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
514 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
515 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
516 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
517
518 /* X % -C is the same as X % C. */
519 (simplify
520 (trunc_mod @0 INTEGER_CST@1)
521 (if (TYPE_SIGN (type) == SIGNED
522 && !TREE_OVERFLOW (@1)
523 && wi::neg_p (wi::to_wide (@1))
524 && !TYPE_OVERFLOW_TRAPS (type)
525 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
526 && !sign_bit_p (@1, @1))
527 (trunc_mod @0 (negate @1))))
528
529 /* X % -Y is the same as X % Y. */
530 (simplify
531 (trunc_mod @0 (convert? (negate @1)))
532 (if (INTEGRAL_TYPE_P (type)
533 && !TYPE_UNSIGNED (type)
534 && !TYPE_OVERFLOW_TRAPS (type)
535 && tree_nop_conversion_p (type, TREE_TYPE (@1))
536 /* Avoid this transformation if X might be INT_MIN or
537 Y might be -1, because we would then change valid
538 INT_MIN % -(-1) into invalid INT_MIN % -1. */
539 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
540 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
541 (TREE_TYPE (@1))))))
542 (trunc_mod @0 (convert @1))))
543
544 /* X - (X / Y) * Y is the same as X % Y. */
545 (simplify
546 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
547 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
548 (convert (trunc_mod @0 @1))))
549
550 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
551 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
552 Also optimize A % (C << N) where C is a power of 2,
553 to A & ((C << N) - 1). */
554 (match (power_of_two_cand @1)
555 INTEGER_CST@1)
556 (match (power_of_two_cand @1)
557 (lshift INTEGER_CST@1 @2))
558 (for mod (trunc_mod floor_mod)
559 (simplify
560 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
561 (if ((TYPE_UNSIGNED (type)
562 || tree_expr_nonnegative_p (@0))
563 && tree_nop_conversion_p (type, TREE_TYPE (@3))
564 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
565 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
566
567 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
568 (simplify
569 (trunc_div (mult @0 integer_pow2p@1) @1)
570 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
571 (bit_and @0 { wide_int_to_tree
572 (type, wi::mask (TYPE_PRECISION (type)
573 - wi::exact_log2 (wi::to_wide (@1)),
574 false, TYPE_PRECISION (type))); })))
575
576 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
577 (simplify
578 (mult (trunc_div @0 integer_pow2p@1) @1)
579 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
580 (bit_and @0 (negate @1))))
581
582 /* Simplify (t * 2) / 2) -> t. */
583 (for div (trunc_div ceil_div floor_div round_div exact_div)
584 (simplify
585 (div (mult:c @0 @1) @1)
586 (if (ANY_INTEGRAL_TYPE_P (type)
587 && TYPE_OVERFLOW_UNDEFINED (type))
588 @0)))
589
590 (for op (negate abs)
591 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
592 (for coss (COS COSH)
593 (simplify
594 (coss (op @0))
595 (coss @0)))
596 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
597 (for pows (POW)
598 (simplify
599 (pows (op @0) REAL_CST@1)
600 (with { HOST_WIDE_INT n; }
601 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
602 (pows @0 @1)))))
603 /* Likewise for powi. */
604 (for pows (POWI)
605 (simplify
606 (pows (op @0) INTEGER_CST@1)
607 (if ((wi::to_wide (@1) & 1) == 0)
608 (pows @0 @1))))
609 /* Strip negate and abs from both operands of hypot. */
610 (for hypots (HYPOT)
611 (simplify
612 (hypots (op @0) @1)
613 (hypots @0 @1))
614 (simplify
615 (hypots @0 (op @1))
616 (hypots @0 @1)))
617 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
618 (for copysigns (COPYSIGN_ALL)
619 (simplify
620 (copysigns (op @0) @1)
621 (copysigns @0 @1))))
622
623 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
624 (simplify
625 (mult (abs@1 @0) @1)
626 (mult @0 @0))
627
628 /* Convert absu(x)*absu(x) -> x*x. */
629 (simplify
630 (mult (absu@1 @0) @1)
631 (mult (convert@2 @0) @2))
632
633 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
634 (for coss (COS COSH)
635 copysigns (COPYSIGN)
636 (simplify
637 (coss (copysigns @0 @1))
638 (coss @0)))
639
640 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
641 (for pows (POW)
642 copysigns (COPYSIGN)
643 (simplify
644 (pows (copysigns @0 @2) REAL_CST@1)
645 (with { HOST_WIDE_INT n; }
646 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
647 (pows @0 @1)))))
648 /* Likewise for powi. */
649 (for pows (POWI)
650 copysigns (COPYSIGN)
651 (simplify
652 (pows (copysigns @0 @2) INTEGER_CST@1)
653 (if ((wi::to_wide (@1) & 1) == 0)
654 (pows @0 @1))))
655
656 (for hypots (HYPOT)
657 copysigns (COPYSIGN)
658 /* hypot(copysign(x, y), z) -> hypot(x, z). */
659 (simplify
660 (hypots (copysigns @0 @1) @2)
661 (hypots @0 @2))
662 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
663 (simplify
664 (hypots @0 (copysigns @1 @2))
665 (hypots @0 @1)))
666
667 /* copysign(x, CST) -> [-]abs (x). */
668 (for copysigns (COPYSIGN_ALL)
669 (simplify
670 (copysigns @0 REAL_CST@1)
671 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
672 (negate (abs @0))
673 (abs @0))))
674
675 /* copysign(copysign(x, y), z) -> copysign(x, z). */
676 (for copysigns (COPYSIGN_ALL)
677 (simplify
678 (copysigns (copysigns @0 @1) @2)
679 (copysigns @0 @2)))
680
681 /* copysign(x,y)*copysign(x,y) -> x*x. */
682 (for copysigns (COPYSIGN_ALL)
683 (simplify
684 (mult (copysigns@2 @0 @1) @2)
685 (mult @0 @0)))
686
687 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
688 (for ccoss (CCOS CCOSH)
689 (simplify
690 (ccoss (negate @0))
691 (ccoss @0)))
692
693 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
694 (for ops (conj negate)
695 (for cabss (CABS)
696 (simplify
697 (cabss (ops @0))
698 (cabss @0))))
699
700 /* Fold (a * (1 << b)) into (a << b) */
701 (simplify
702 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
703 (if (! FLOAT_TYPE_P (type)
704 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
705 (lshift @0 @2)))
706
707 /* Fold (1 << (C - x)) where C = precision(type) - 1
708 into ((1 << C) >> x). */
709 (simplify
710 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
711 (if (INTEGRAL_TYPE_P (type)
712 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
713 && single_use (@1))
714 (if (TYPE_UNSIGNED (type))
715 (rshift (lshift @0 @2) @3)
716 (with
717 { tree utype = unsigned_type_for (type); }
718 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
719
720 /* Fold (C1/X)*C2 into (C1*C2)/X. */
721 (simplify
722 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
723 (if (flag_associative_math
724 && single_use (@3))
725 (with
726 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
727 (if (tem)
728 (rdiv { tem; } @1)))))
729
730 /* Simplify ~X & X as zero. */
731 (simplify
732 (bit_and:c (convert? @0) (convert? (bit_not @0)))
733 { build_zero_cst (type); })
734
735 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
736 (simplify
737 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
738 (if (TYPE_UNSIGNED (type))
739 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
740
741 (for bitop (bit_and bit_ior)
742 cmp (eq ne)
743 /* PR35691: Transform
744 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
745 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
746 (simplify
747 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
748 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
749 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
750 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
751 (cmp (bit_ior @0 (convert @1)) @2)))
752 /* Transform:
753 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
754 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
755 (simplify
756 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
757 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
758 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
759 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
760 (cmp (bit_and @0 (convert @1)) @2))))
761
762 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
763 (simplify
764 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
765 (minus (bit_xor @0 @1) @1))
766 (simplify
767 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
768 (if (~wi::to_wide (@2) == wi::to_wide (@1))
769 (minus (bit_xor @0 @1) @1)))
770
771 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
772 (simplify
773 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
774 (minus @1 (bit_xor @0 @1)))
775
776 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
777 (for op (bit_ior bit_xor plus)
778 (simplify
779 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
780 (bit_xor @0 @1))
781 (simplify
782 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
783 (if (~wi::to_wide (@2) == wi::to_wide (@1))
784 (bit_xor @0 @1))))
785
786 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
787 (simplify
788 (bit_ior:c (bit_xor:c @0 @1) @0)
789 (bit_ior @0 @1))
790
791 /* (a & ~b) | (a ^ b) --> a ^ b */
792 (simplify
793 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
794 @2)
795
796 /* (a & ~b) ^ ~a --> ~(a & b) */
797 (simplify
798 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
799 (bit_not (bit_and @0 @1)))
800
801 /* (a | b) & ~(a ^ b) --> a & b */
802 (simplify
803 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
804 (bit_and @0 @1))
805
806 /* a | ~(a ^ b) --> a | ~b */
807 (simplify
808 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
809 (bit_ior @0 (bit_not @1)))
810
811 /* (a | b) | (a &^ b) --> a | b */
812 (for op (bit_and bit_xor)
813 (simplify
814 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
815 @2))
816
817 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
818 (simplify
819 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
820 @2)
821
822 /* ~(~a & b) --> a | ~b */
823 (simplify
824 (bit_not (bit_and:cs (bit_not @0) @1))
825 (bit_ior @0 (bit_not @1)))
826
827 /* ~(~a | b) --> a & ~b */
828 (simplify
829 (bit_not (bit_ior:cs (bit_not @0) @1))
830 (bit_and @0 (bit_not @1)))
831
832 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
833 #if GIMPLE
834 (simplify
835 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
836 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
837 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
838 (bit_xor @0 @1)))
839 #endif
840
841 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
842 ((A & N) + B) & M -> (A + B) & M
843 Similarly if (N & M) == 0,
844 ((A | N) + B) & M -> (A + B) & M
845 and for - instead of + (or unary - instead of +)
846 and/or ^ instead of |.
847 If B is constant and (B & M) == 0, fold into A & M. */
848 (for op (plus minus)
849 (for bitop (bit_and bit_ior bit_xor)
850 (simplify
851 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
852 (with
853 { tree pmop[2];
854 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
855 @3, @4, @1, ERROR_MARK, NULL_TREE,
856 NULL_TREE, pmop); }
857 (if (utype)
858 (convert (bit_and (op (convert:utype { pmop[0]; })
859 (convert:utype { pmop[1]; }))
860 (convert:utype @2))))))
861 (simplify
862 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
863 (with
864 { tree pmop[2];
865 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
866 NULL_TREE, NULL_TREE, @1, bitop, @3,
867 @4, pmop); }
868 (if (utype)
869 (convert (bit_and (op (convert:utype { pmop[0]; })
870 (convert:utype { pmop[1]; }))
871 (convert:utype @2)))))))
872 (simplify
873 (bit_and (op:s @0 @1) INTEGER_CST@2)
874 (with
875 { tree pmop[2];
876 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
877 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
878 NULL_TREE, NULL_TREE, pmop); }
879 (if (utype)
880 (convert (bit_and (op (convert:utype { pmop[0]; })
881 (convert:utype { pmop[1]; }))
882 (convert:utype @2)))))))
883 (for bitop (bit_and bit_ior bit_xor)
884 (simplify
885 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
886 (with
887 { tree pmop[2];
888 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
889 bitop, @2, @3, NULL_TREE, ERROR_MARK,
890 NULL_TREE, NULL_TREE, pmop); }
891 (if (utype)
892 (convert (bit_and (negate (convert:utype { pmop[0]; }))
893 (convert:utype @1)))))))
894
895 /* X % Y is smaller than Y. */
896 (for cmp (lt ge)
897 (simplify
898 (cmp (trunc_mod @0 @1) @1)
899 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
900 { constant_boolean_node (cmp == LT_EXPR, type); })))
901 (for cmp (gt le)
902 (simplify
903 (cmp @1 (trunc_mod @0 @1))
904 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
905 { constant_boolean_node (cmp == GT_EXPR, type); })))
906
907 /* x | ~0 -> ~0 */
908 (simplify
909 (bit_ior @0 integer_all_onesp@1)
910 @1)
911
912 /* x | 0 -> x */
913 (simplify
914 (bit_ior @0 integer_zerop)
915 @0)
916
917 /* x & 0 -> 0 */
918 (simplify
919 (bit_and @0 integer_zerop@1)
920 @1)
921
922 /* ~x | x -> -1 */
923 /* ~x ^ x -> -1 */
924 /* ~x + x -> -1 */
925 (for op (bit_ior bit_xor plus)
926 (simplify
927 (op:c (convert? @0) (convert? (bit_not @0)))
928 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
929
930 /* x ^ x -> 0 */
931 (simplify
932 (bit_xor @0 @0)
933 { build_zero_cst (type); })
934
935 /* Canonicalize X ^ ~0 to ~X. */
936 (simplify
937 (bit_xor @0 integer_all_onesp@1)
938 (bit_not @0))
939
940 /* x & ~0 -> x */
941 (simplify
942 (bit_and @0 integer_all_onesp)
943 (non_lvalue @0))
944
945 /* x & x -> x, x | x -> x */
946 (for bitop (bit_and bit_ior)
947 (simplify
948 (bitop @0 @0)
949 (non_lvalue @0)))
950
951 /* x & C -> x if we know that x & ~C == 0. */
952 #if GIMPLE
953 (simplify
954 (bit_and SSA_NAME@0 INTEGER_CST@1)
955 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
956 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
957 @0))
958 #endif
959
960 /* x + (x & 1) -> (x + 1) & ~1 */
961 (simplify
962 (plus:c @0 (bit_and:s @0 integer_onep@1))
963 (bit_and (plus @0 @1) (bit_not @1)))
964
965 /* x & ~(x & y) -> x & ~y */
966 /* x | ~(x | y) -> x | ~y */
967 (for bitop (bit_and bit_ior)
968 (simplify
969 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
970 (bitop @0 (bit_not @1))))
971
972 /* (~x & y) | ~(x | y) -> ~x */
973 (simplify
974 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
975 @2)
976
977 /* (x | y) ^ (x | ~y) -> ~x */
978 (simplify
979 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
980 (bit_not @0))
981
982 /* (x & y) | ~(x | y) -> ~(x ^ y) */
983 (simplify
984 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
985 (bit_not (bit_xor @0 @1)))
986
987 /* (~x | y) ^ (x ^ y) -> x | ~y */
988 (simplify
989 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
990 (bit_ior @0 (bit_not @1)))
991
992 /* (x ^ y) | ~(x | y) -> ~(x & y) */
993 (simplify
994 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
995 (bit_not (bit_and @0 @1)))
996
997 /* (x | y) & ~x -> y & ~x */
998 /* (x & y) | ~x -> y | ~x */
999 (for bitop (bit_and bit_ior)
1000 rbitop (bit_ior bit_and)
1001 (simplify
1002 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1003 (bitop @1 @2)))
1004
1005 /* (x & y) ^ (x | y) -> x ^ y */
1006 (simplify
1007 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1008 (bit_xor @0 @1))
1009
1010 /* (x ^ y) ^ (x | y) -> x & y */
1011 (simplify
1012 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1013 (bit_and @0 @1))
1014
1015 /* (x & y) + (x ^ y) -> x | y */
1016 /* (x & y) | (x ^ y) -> x | y */
1017 /* (x & y) ^ (x ^ y) -> x | y */
1018 (for op (plus bit_ior bit_xor)
1019 (simplify
1020 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1021 (bit_ior @0 @1)))
1022
1023 /* (x & y) + (x | y) -> x + y */
1024 (simplify
1025 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1026 (plus @0 @1))
1027
1028 /* (x + y) - (x | y) -> x & y */
1029 (simplify
1030 (minus (plus @0 @1) (bit_ior @0 @1))
1031 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1032 && !TYPE_SATURATING (type))
1033 (bit_and @0 @1)))
1034
1035 /* (x + y) - (x & y) -> x | y */
1036 (simplify
1037 (minus (plus @0 @1) (bit_and @0 @1))
1038 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1039 && !TYPE_SATURATING (type))
1040 (bit_ior @0 @1)))
1041
1042 /* (x | y) - (x ^ y) -> x & y */
1043 (simplify
1044 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1045 (bit_and @0 @1))
1046
1047 /* (x | y) - (x & y) -> x ^ y */
1048 (simplify
1049 (minus (bit_ior @0 @1) (bit_and @0 @1))
1050 (bit_xor @0 @1))
1051
1052 /* (x | y) & ~(x & y) -> x ^ y */
1053 (simplify
1054 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1055 (bit_xor @0 @1))
1056
1057 /* (x | y) & (~x ^ y) -> x & y */
1058 (simplify
1059 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1060 (bit_and @0 @1))
1061
1062 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1063 (simplify
1064 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1065 (bit_not (bit_xor @0 @1)))
1066
1067 /* (~x | y) ^ (x | ~y) -> x ^ y */
1068 (simplify
1069 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1070 (bit_xor @0 @1))
1071
1072 /* ~x & ~y -> ~(x | y)
1073 ~x | ~y -> ~(x & y) */
1074 (for op (bit_and bit_ior)
1075 rop (bit_ior bit_and)
1076 (simplify
1077 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1078 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1079 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1080 (bit_not (rop (convert @0) (convert @1))))))
1081
1082 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1083 with a constant, and the two constants have no bits in common,
1084 we should treat this as a BIT_IOR_EXPR since this may produce more
1085 simplifications. */
1086 (for op (bit_xor plus)
1087 (simplify
1088 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1089 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1090 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1091 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1092 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1093 (bit_ior (convert @4) (convert @5)))))
1094
1095 /* (X | Y) ^ X -> Y & ~ X*/
1096 (simplify
1097 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1098 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1099 (convert (bit_and @1 (bit_not @0)))))
1100
1101 /* Convert ~X ^ ~Y to X ^ Y. */
1102 (simplify
1103 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1104 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1105 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1106 (bit_xor (convert @0) (convert @1))))
1107
1108 /* Convert ~X ^ C to X ^ ~C. */
1109 (simplify
1110 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1111 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1112 (bit_xor (convert @0) (bit_not @1))))
1113
1114 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1115 (for opo (bit_and bit_xor)
1116 opi (bit_xor bit_and)
1117 (simplify
1118 (opo:c (opi:cs @0 @1) @1)
1119 (bit_and (bit_not @0) @1)))
1120
1121 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1122 operands are another bit-wise operation with a common input. If so,
1123 distribute the bit operations to save an operation and possibly two if
1124 constants are involved. For example, convert
1125 (A | B) & (A | C) into A | (B & C)
1126 Further simplification will occur if B and C are constants. */
1127 (for op (bit_and bit_ior bit_xor)
1128 rop (bit_ior bit_and bit_and)
1129 (simplify
1130 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1131 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1132 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1133 (rop (convert @0) (op (convert @1) (convert @2))))))
1134
1135 /* Some simple reassociation for bit operations, also handled in reassoc. */
1136 /* (X & Y) & Y -> X & Y
1137 (X | Y) | Y -> X | Y */
1138 (for op (bit_and bit_ior)
1139 (simplify
1140 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1141 @2))
1142 /* (X ^ Y) ^ Y -> X */
1143 (simplify
1144 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1145 (convert @0))
1146 /* (X & Y) & (X & Z) -> (X & Y) & Z
1147 (X | Y) | (X | Z) -> (X | Y) | Z */
1148 (for op (bit_and bit_ior)
1149 (simplify
1150 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1152 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1153 (if (single_use (@5) && single_use (@6))
1154 (op @3 (convert @2))
1155 (if (single_use (@3) && single_use (@4))
1156 (op (convert @1) @5))))))
1157 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1158 (simplify
1159 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1160 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1161 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1162 (bit_xor (convert @1) (convert @2))))
1163
1164 /* Convert abs (abs (X)) into abs (X).
1165 also absu (absu (X)) into absu (X). */
1166 (simplify
1167 (abs (abs@1 @0))
1168 @1)
1169
1170 (simplify
1171 (absu (convert@2 (absu@1 @0)))
1172 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1173 @1))
1174
1175 /* Convert abs[u] (-X) -> abs[u] (X). */
1176 (simplify
1177 (abs (negate @0))
1178 (abs @0))
1179
1180 (simplify
1181 (absu (negate @0))
1182 (absu @0))
1183
1184 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1185 (simplify
1186 (abs tree_expr_nonnegative_p@0)
1187 @0)
1188
1189 (simplify
1190 (absu tree_expr_nonnegative_p@0)
1191 (convert @0))
1192
1193 /* A few cases of fold-const.c negate_expr_p predicate. */
1194 (match negate_expr_p
1195 INTEGER_CST
1196 (if ((INTEGRAL_TYPE_P (type)
1197 && TYPE_UNSIGNED (type))
1198 || (!TYPE_OVERFLOW_SANITIZED (type)
1199 && may_negate_without_overflow_p (t)))))
1200 (match negate_expr_p
1201 FIXED_CST)
1202 (match negate_expr_p
1203 (negate @0)
1204 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1205 (match negate_expr_p
1206 REAL_CST
1207 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1208 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1209 ways. */
1210 (match negate_expr_p
1211 VECTOR_CST
1212 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1213 (match negate_expr_p
1214 (minus @0 @1)
1215 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1216 || (FLOAT_TYPE_P (type)
1217 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1218 && !HONOR_SIGNED_ZEROS (type)))))
1219
1220 /* (-A) * (-B) -> A * B */
1221 (simplify
1222 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1223 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1224 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1225 (mult (convert @0) (convert (negate @1)))))
1226
1227 /* -(A + B) -> (-B) - A. */
1228 (simplify
1229 (negate (plus:c @0 negate_expr_p@1))
1230 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1231 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1232 (minus (negate @1) @0)))
1233
1234 /* -(A - B) -> B - A. */
1235 (simplify
1236 (negate (minus @0 @1))
1237 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1238 || (FLOAT_TYPE_P (type)
1239 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1240 && !HONOR_SIGNED_ZEROS (type)))
1241 (minus @1 @0)))
1242 (simplify
1243 (negate (pointer_diff @0 @1))
1244 (if (TYPE_OVERFLOW_UNDEFINED (type))
1245 (pointer_diff @1 @0)))
1246
1247 /* A - B -> A + (-B) if B is easily negatable. */
1248 (simplify
1249 (minus @0 negate_expr_p@1)
1250 (if (!FIXED_POINT_TYPE_P (type))
1251 (plus @0 (negate @1))))
1252
1253 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1254 when profitable.
1255 For bitwise binary operations apply operand conversions to the
1256 binary operation result instead of to the operands. This allows
1257 to combine successive conversions and bitwise binary operations.
1258 We combine the above two cases by using a conditional convert. */
1259 (for bitop (bit_and bit_ior bit_xor)
1260 (simplify
1261 (bitop (convert @0) (convert? @1))
1262 (if (((TREE_CODE (@1) == INTEGER_CST
1263 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1264 && int_fits_type_p (@1, TREE_TYPE (@0)))
1265 || types_match (@0, @1))
1266 /* ??? This transform conflicts with fold-const.c doing
1267 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1268 constants (if x has signed type, the sign bit cannot be set
1269 in c). This folds extension into the BIT_AND_EXPR.
1270 Restrict it to GIMPLE to avoid endless recursions. */
1271 && (bitop != BIT_AND_EXPR || GIMPLE)
1272 && (/* That's a good idea if the conversion widens the operand, thus
1273 after hoisting the conversion the operation will be narrower. */
1274 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1275 /* It's also a good idea if the conversion is to a non-integer
1276 mode. */
1277 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1278 /* Or if the precision of TO is not the same as the precision
1279 of its mode. */
1280 || !type_has_mode_precision_p (type)))
1281 (convert (bitop @0 (convert @1))))))
1282
1283 (for bitop (bit_and bit_ior)
1284 rbitop (bit_ior bit_and)
1285 /* (x | y) & x -> x */
1286 /* (x & y) | x -> x */
1287 (simplify
1288 (bitop:c (rbitop:c @0 @1) @0)
1289 @0)
1290 /* (~x | y) & x -> x & y */
1291 /* (~x & y) | x -> x | y */
1292 (simplify
1293 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1294 (bitop @0 @1)))
1295
1296 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1297 (simplify
1298 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1299 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1300
1301 /* Combine successive equal operations with constants. */
1302 (for bitop (bit_and bit_ior bit_xor)
1303 (simplify
1304 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1305 (if (!CONSTANT_CLASS_P (@0))
1306 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1307 folded to a constant. */
1308 (bitop @0 (bitop @1 @2))
1309 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1310 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1311 the values involved are such that the operation can't be decided at
1312 compile time. Try folding one of @0 or @1 with @2 to see whether
1313 that combination can be decided at compile time.
1314
1315 Keep the existing form if both folds fail, to avoid endless
1316 oscillation. */
1317 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1318 (if (cst1)
1319 (bitop @1 { cst1; })
1320 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1321 (if (cst2)
1322 (bitop @0 { cst2; }))))))))
1323
1324 /* Try simple folding for X op !X, and X op X with the help
1325 of the truth_valued_p and logical_inverted_value predicates. */
1326 (match truth_valued_p
1327 @0
1328 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1329 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1330 (match truth_valued_p
1331 (op @0 @1)))
1332 (match truth_valued_p
1333 (truth_not @0))
1334
1335 (match (logical_inverted_value @0)
1336 (truth_not @0))
1337 (match (logical_inverted_value @0)
1338 (bit_not truth_valued_p@0))
1339 (match (logical_inverted_value @0)
1340 (eq @0 integer_zerop))
1341 (match (logical_inverted_value @0)
1342 (ne truth_valued_p@0 integer_truep))
1343 (match (logical_inverted_value @0)
1344 (bit_xor truth_valued_p@0 integer_truep))
1345
1346 /* X & !X -> 0. */
1347 (simplify
1348 (bit_and:c @0 (logical_inverted_value @0))
1349 { build_zero_cst (type); })
1350 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1351 (for op (bit_ior bit_xor)
1352 (simplify
1353 (op:c truth_valued_p@0 (logical_inverted_value @0))
1354 { constant_boolean_node (true, type); }))
1355 /* X ==/!= !X is false/true. */
1356 (for op (eq ne)
1357 (simplify
1358 (op:c truth_valued_p@0 (logical_inverted_value @0))
1359 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1360
1361 /* ~~x -> x */
1362 (simplify
1363 (bit_not (bit_not @0))
1364 @0)
1365
1366 /* Convert ~ (-A) to A - 1. */
1367 (simplify
1368 (bit_not (convert? (negate @0)))
1369 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1370 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1371 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1372
1373 /* Convert - (~A) to A + 1. */
1374 (simplify
1375 (negate (nop_convert (bit_not @0)))
1376 (plus (view_convert @0) { build_each_one_cst (type); }))
1377
1378 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1379 (simplify
1380 (bit_not (convert? (minus @0 integer_each_onep)))
1381 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1382 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1383 (convert (negate @0))))
1384 (simplify
1385 (bit_not (convert? (plus @0 integer_all_onesp)))
1386 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1387 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1388 (convert (negate @0))))
1389
1390 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1391 (simplify
1392 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1393 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1394 (convert (bit_xor @0 (bit_not @1)))))
1395 (simplify
1396 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1397 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1398 (convert (bit_xor @0 @1))))
1399
1400 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1401 (simplify
1402 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1403 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1404 (bit_not (bit_xor (view_convert @0) @1))))
1405
1406 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1407 (simplify
1408 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1409 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1410
1411 /* Fold A - (A & B) into ~B & A. */
1412 (simplify
1413 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1414 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1415 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1416 (convert (bit_and (bit_not @1) @0))))
1417
1418 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1419 (for cmp (gt lt ge le)
1420 (simplify
1421 (mult (convert (cmp @0 @1)) @2)
1422 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1423
1424 /* For integral types with undefined overflow and C != 0 fold
1425 x * C EQ/NE y * C into x EQ/NE y. */
1426 (for cmp (eq ne)
1427 (simplify
1428 (cmp (mult:c @0 @1) (mult:c @2 @1))
1429 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1430 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1431 && tree_expr_nonzero_p (@1))
1432 (cmp @0 @2))))
1433
1434 /* For integral types with wrapping overflow and C odd fold
1435 x * C EQ/NE y * C into x EQ/NE y. */
1436 (for cmp (eq ne)
1437 (simplify
1438 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1439 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1440 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1441 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1442 (cmp @0 @2))))
1443
1444 /* For integral types with undefined overflow and C != 0 fold
1445 x * C RELOP y * C into:
1446
1447 x RELOP y for nonnegative C
1448 y RELOP x for negative C */
1449 (for cmp (lt gt le ge)
1450 (simplify
1451 (cmp (mult:c @0 @1) (mult:c @2 @1))
1452 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1453 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1454 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1455 (cmp @0 @2)
1456 (if (TREE_CODE (@1) == INTEGER_CST
1457 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1458 (cmp @2 @0))))))
1459
1460 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1461 (for cmp (le gt)
1462 icmp (gt le)
1463 (simplify
1464 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1465 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1466 && TYPE_UNSIGNED (TREE_TYPE (@0))
1467 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1468 && (wi::to_wide (@2)
1469 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1470 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1471 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1472
1473 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1474 (for cmp (simple_comparison)
1475 (simplify
1476 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1477 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1478 (cmp @0 @1))))
1479
1480 /* X / C1 op C2 into a simple range test. */
1481 (for cmp (simple_comparison)
1482 (simplify
1483 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1484 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1485 && integer_nonzerop (@1)
1486 && !TREE_OVERFLOW (@1)
1487 && !TREE_OVERFLOW (@2))
1488 (with { tree lo, hi; bool neg_overflow;
1489 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1490 &neg_overflow); }
1491 (switch
1492 (if (code == LT_EXPR || code == GE_EXPR)
1493 (if (TREE_OVERFLOW (lo))
1494 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1495 (if (code == LT_EXPR)
1496 (lt @0 { lo; })
1497 (ge @0 { lo; }))))
1498 (if (code == LE_EXPR || code == GT_EXPR)
1499 (if (TREE_OVERFLOW (hi))
1500 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1501 (if (code == LE_EXPR)
1502 (le @0 { hi; })
1503 (gt @0 { hi; }))))
1504 (if (!lo && !hi)
1505 { build_int_cst (type, code == NE_EXPR); })
1506 (if (code == EQ_EXPR && !hi)
1507 (ge @0 { lo; }))
1508 (if (code == EQ_EXPR && !lo)
1509 (le @0 { hi; }))
1510 (if (code == NE_EXPR && !hi)
1511 (lt @0 { lo; }))
1512 (if (code == NE_EXPR && !lo)
1513 (gt @0 { hi; }))
1514 (if (GENERIC)
1515 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1516 lo, hi); })
1517 (with
1518 {
1519 tree etype = range_check_type (TREE_TYPE (@0));
1520 if (etype)
1521 {
1522 if (! TYPE_UNSIGNED (etype))
1523 etype = unsigned_type_for (etype);
1524 hi = fold_convert (etype, hi);
1525 lo = fold_convert (etype, lo);
1526 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1527 }
1528 }
1529 (if (etype && hi && !TREE_OVERFLOW (hi))
1530 (if (code == EQ_EXPR)
1531 (le (minus (convert:etype @0) { lo; }) { hi; })
1532 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1533
1534 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1535 (for op (lt le ge gt)
1536 (simplify
1537 (op (plus:c @0 @2) (plus:c @1 @2))
1538 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1539 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1540 (op @0 @1))))
1541 /* For equality and subtraction, this is also true with wrapping overflow. */
1542 (for op (eq ne minus)
1543 (simplify
1544 (op (plus:c @0 @2) (plus:c @1 @2))
1545 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1546 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1547 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1548 (op @0 @1))))
1549
1550 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1551 (for op (lt le ge gt)
1552 (simplify
1553 (op (minus @0 @2) (minus @1 @2))
1554 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1556 (op @0 @1))))
1557 /* For equality and subtraction, this is also true with wrapping overflow. */
1558 (for op (eq ne minus)
1559 (simplify
1560 (op (minus @0 @2) (minus @1 @2))
1561 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1562 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1563 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1564 (op @0 @1))))
1565 /* And for pointers... */
1566 (for op (simple_comparison)
1567 (simplify
1568 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1569 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1570 (op @0 @1))))
1571 (simplify
1572 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1573 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1574 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1575 (pointer_diff @0 @1)))
1576
1577 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1578 (for op (lt le ge gt)
1579 (simplify
1580 (op (minus @2 @0) (minus @2 @1))
1581 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1582 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1583 (op @1 @0))))
1584 /* For equality and subtraction, this is also true with wrapping overflow. */
1585 (for op (eq ne minus)
1586 (simplify
1587 (op (minus @2 @0) (minus @2 @1))
1588 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1589 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1590 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1591 (op @1 @0))))
1592 /* And for pointers... */
1593 (for op (simple_comparison)
1594 (simplify
1595 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1596 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1597 (op @1 @0))))
1598 (simplify
1599 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1600 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1601 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1602 (pointer_diff @1 @0)))
1603
1604 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1605 (for op (lt le gt ge)
1606 (simplify
1607 (op:c (plus:c@2 @0 @1) @1)
1608 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1609 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1610 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1611 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1612 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1613 /* For equality, this is also true with wrapping overflow. */
1614 (for op (eq ne)
1615 (simplify
1616 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1617 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1618 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1619 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1620 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1621 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1622 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1623 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1624 (simplify
1625 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1626 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1627 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1628 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1629 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1630
1631 /* X - Y < X is the same as Y > 0 when there is no overflow.
1632 For equality, this is also true with wrapping overflow. */
1633 (for op (simple_comparison)
1634 (simplify
1635 (op:c @0 (minus@2 @0 @1))
1636 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1637 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1638 || ((op == EQ_EXPR || op == NE_EXPR)
1639 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1640 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1641 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1642
1643 /* Transform:
1644 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1645 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1646 (for cmp (eq ne)
1647 ocmp (lt ge)
1648 (simplify
1649 (cmp (trunc_div @0 @1) integer_zerop)
1650 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1651 /* Complex ==/!= is allowed, but not </>=. */
1652 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1653 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1654 (ocmp @0 @1))))
1655
1656 /* X == C - X can never be true if C is odd. */
1657 (for cmp (eq ne)
1658 (simplify
1659 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1660 (if (TREE_INT_CST_LOW (@1) & 1)
1661 { constant_boolean_node (cmp == NE_EXPR, type); })))
1662
1663 /* Arguments on which one can call get_nonzero_bits to get the bits
1664 possibly set. */
1665 (match with_possible_nonzero_bits
1666 INTEGER_CST@0)
1667 (match with_possible_nonzero_bits
1668 SSA_NAME@0
1669 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1670 /* Slightly extended version, do not make it recursive to keep it cheap. */
1671 (match (with_possible_nonzero_bits2 @0)
1672 with_possible_nonzero_bits@0)
1673 (match (with_possible_nonzero_bits2 @0)
1674 (bit_and:c with_possible_nonzero_bits@0 @2))
1675
1676 /* Same for bits that are known to be set, but we do not have
1677 an equivalent to get_nonzero_bits yet. */
1678 (match (with_certain_nonzero_bits2 @0)
1679 INTEGER_CST@0)
1680 (match (with_certain_nonzero_bits2 @0)
1681 (bit_ior @1 INTEGER_CST@0))
1682
1683 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1684 (for cmp (eq ne)
1685 (simplify
1686 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1687 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1688 { constant_boolean_node (cmp == NE_EXPR, type); })))
1689
1690 /* ((X inner_op C0) outer_op C1)
1691 With X being a tree where value_range has reasoned certain bits to always be
1692 zero throughout its computed value range,
1693 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1694 where zero_mask has 1's for all bits that are sure to be 0 in
1695 and 0's otherwise.
1696 if (inner_op == '^') C0 &= ~C1;
1697 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1698 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1699 */
1700 (for inner_op (bit_ior bit_xor)
1701 outer_op (bit_xor bit_ior)
1702 (simplify
1703 (outer_op
1704 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1705 (with
1706 {
1707 bool fail = false;
1708 wide_int zero_mask_not;
1709 wide_int C0;
1710 wide_int cst_emit;
1711
1712 if (TREE_CODE (@2) == SSA_NAME)
1713 zero_mask_not = get_nonzero_bits (@2);
1714 else
1715 fail = true;
1716
1717 if (inner_op == BIT_XOR_EXPR)
1718 {
1719 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1720 cst_emit = C0 | wi::to_wide (@1);
1721 }
1722 else
1723 {
1724 C0 = wi::to_wide (@0);
1725 cst_emit = C0 ^ wi::to_wide (@1);
1726 }
1727 }
1728 (if (!fail && (C0 & zero_mask_not) == 0)
1729 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1730 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1731 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1732
1733 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1734 (simplify
1735 (pointer_plus (pointer_plus:s @0 @1) @3)
1736 (pointer_plus @0 (plus @1 @3)))
1737
1738 /* Pattern match
1739 tem1 = (long) ptr1;
1740 tem2 = (long) ptr2;
1741 tem3 = tem2 - tem1;
1742 tem4 = (unsigned long) tem3;
1743 tem5 = ptr1 + tem4;
1744 and produce
1745 tem5 = ptr2; */
1746 (simplify
1747 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1748 /* Conditionally look through a sign-changing conversion. */
1749 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1750 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1751 || (GENERIC && type == TREE_TYPE (@1))))
1752 @1))
1753 (simplify
1754 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1755 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1756 (convert @1)))
1757
1758 /* Pattern match
1759 tem = (sizetype) ptr;
1760 tem = tem & algn;
1761 tem = -tem;
1762 ... = ptr p+ tem;
1763 and produce the simpler and easier to analyze with respect to alignment
1764 ... = ptr & ~algn; */
1765 (simplify
1766 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1767 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1768 (bit_and @0 { algn; })))
1769
1770 /* Try folding difference of addresses. */
1771 (simplify
1772 (minus (convert ADDR_EXPR@0) (convert @1))
1773 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1774 (with { poly_int64 diff; }
1775 (if (ptr_difference_const (@0, @1, &diff))
1776 { build_int_cst_type (type, diff); }))))
1777 (simplify
1778 (minus (convert @0) (convert ADDR_EXPR@1))
1779 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1780 (with { poly_int64 diff; }
1781 (if (ptr_difference_const (@0, @1, &diff))
1782 { build_int_cst_type (type, diff); }))))
1783 (simplify
1784 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1785 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1786 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1787 (with { poly_int64 diff; }
1788 (if (ptr_difference_const (@0, @1, &diff))
1789 { build_int_cst_type (type, diff); }))))
1790 (simplify
1791 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1792 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1793 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1794 (with { poly_int64 diff; }
1795 (if (ptr_difference_const (@0, @1, &diff))
1796 { build_int_cst_type (type, diff); }))))
1797
1798 /* If arg0 is derived from the address of an object or function, we may
1799 be able to fold this expression using the object or function's
1800 alignment. */
1801 (simplify
1802 (bit_and (convert? @0) INTEGER_CST@1)
1803 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1804 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1805 (with
1806 {
1807 unsigned int align;
1808 unsigned HOST_WIDE_INT bitpos;
1809 get_pointer_alignment_1 (@0, &align, &bitpos);
1810 }
1811 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1812 { wide_int_to_tree (type, (wi::to_wide (@1)
1813 & (bitpos / BITS_PER_UNIT))); }))))
1814
1815
1816 /* We can't reassociate at all for saturating types. */
1817 (if (!TYPE_SATURATING (type))
1818
1819 /* Contract negates. */
1820 /* A + (-B) -> A - B */
1821 (simplify
1822 (plus:c @0 (convert? (negate @1)))
1823 /* Apply STRIP_NOPS on the negate. */
1824 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1825 && !TYPE_OVERFLOW_SANITIZED (type))
1826 (with
1827 {
1828 tree t1 = type;
1829 if (INTEGRAL_TYPE_P (type)
1830 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1831 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1832 }
1833 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1834 /* A - (-B) -> A + B */
1835 (simplify
1836 (minus @0 (convert? (negate @1)))
1837 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1838 && !TYPE_OVERFLOW_SANITIZED (type))
1839 (with
1840 {
1841 tree t1 = type;
1842 if (INTEGRAL_TYPE_P (type)
1843 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1844 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1845 }
1846 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1847 /* -(T)(-A) -> (T)A
1848 Sign-extension is ok except for INT_MIN, which thankfully cannot
1849 happen without overflow. */
1850 (simplify
1851 (negate (convert (negate @1)))
1852 (if (INTEGRAL_TYPE_P (type)
1853 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1854 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1855 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1856 && !TYPE_OVERFLOW_SANITIZED (type)
1857 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1858 (convert @1)))
1859 (simplify
1860 (negate (convert negate_expr_p@1))
1861 (if (SCALAR_FLOAT_TYPE_P (type)
1862 && ((DECIMAL_FLOAT_TYPE_P (type)
1863 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1864 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1865 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1866 (convert (negate @1))))
1867 (simplify
1868 (negate (nop_convert (negate @1)))
1869 (if (!TYPE_OVERFLOW_SANITIZED (type)
1870 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1871 (view_convert @1)))
1872
1873 /* We can't reassociate floating-point unless -fassociative-math
1874 or fixed-point plus or minus because of saturation to +-Inf. */
1875 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1876 && !FIXED_POINT_TYPE_P (type))
1877
1878 /* Match patterns that allow contracting a plus-minus pair
1879 irrespective of overflow issues. */
1880 /* (A +- B) - A -> +- B */
1881 /* (A +- B) -+ B -> A */
1882 /* A - (A +- B) -> -+ B */
1883 /* A +- (B -+ A) -> +- B */
1884 (simplify
1885 (minus (plus:c @0 @1) @0)
1886 @1)
1887 (simplify
1888 (minus (minus @0 @1) @0)
1889 (negate @1))
1890 (simplify
1891 (plus:c (minus @0 @1) @1)
1892 @0)
1893 (simplify
1894 (minus @0 (plus:c @0 @1))
1895 (negate @1))
1896 (simplify
1897 (minus @0 (minus @0 @1))
1898 @1)
1899 /* (A +- B) + (C - A) -> C +- B */
1900 /* (A + B) - (A - C) -> B + C */
1901 /* More cases are handled with comparisons. */
1902 (simplify
1903 (plus:c (plus:c @0 @1) (minus @2 @0))
1904 (plus @2 @1))
1905 (simplify
1906 (plus:c (minus @0 @1) (minus @2 @0))
1907 (minus @2 @1))
1908 (simplify
1909 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1910 (if (TYPE_OVERFLOW_UNDEFINED (type)
1911 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1912 (pointer_diff @2 @1)))
1913 (simplify
1914 (minus (plus:c @0 @1) (minus @0 @2))
1915 (plus @1 @2))
1916
1917 /* (A +- CST1) +- CST2 -> A + CST3
1918 Use view_convert because it is safe for vectors and equivalent for
1919 scalars. */
1920 (for outer_op (plus minus)
1921 (for inner_op (plus minus)
1922 neg_inner_op (minus plus)
1923 (simplify
1924 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1925 CONSTANT_CLASS_P@2)
1926 /* If one of the types wraps, use that one. */
1927 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1928 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1929 forever if something doesn't simplify into a constant. */
1930 (if (!CONSTANT_CLASS_P (@0))
1931 (if (outer_op == PLUS_EXPR)
1932 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1933 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1934 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1935 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1936 (if (outer_op == PLUS_EXPR)
1937 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1938 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1939 /* If the constant operation overflows we cannot do the transform
1940 directly as we would introduce undefined overflow, for example
1941 with (a - 1) + INT_MIN. */
1942 (if (types_match (type, @0))
1943 (with { tree cst = const_binop (outer_op == inner_op
1944 ? PLUS_EXPR : MINUS_EXPR,
1945 type, @1, @2); }
1946 (if (cst && !TREE_OVERFLOW (cst))
1947 (inner_op @0 { cst; } )
1948 /* X+INT_MAX+1 is X-INT_MIN. */
1949 (if (INTEGRAL_TYPE_P (type) && cst
1950 && wi::to_wide (cst) == wi::min_value (type))
1951 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1952 /* Last resort, use some unsigned type. */
1953 (with { tree utype = unsigned_type_for (type); }
1954 (if (utype)
1955 (view_convert (inner_op
1956 (view_convert:utype @0)
1957 (view_convert:utype
1958 { drop_tree_overflow (cst); }))))))))))))))
1959
1960 /* (CST1 - A) +- CST2 -> CST3 - A */
1961 (for outer_op (plus minus)
1962 (simplify
1963 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1964 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1965 (if (cst && !TREE_OVERFLOW (cst))
1966 (minus { cst; } @0)))))
1967
1968 /* CST1 - (CST2 - A) -> CST3 + A */
1969 (simplify
1970 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1971 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1972 (if (cst && !TREE_OVERFLOW (cst))
1973 (plus { cst; } @0))))
1974
1975 /* ~A + A -> -1 */
1976 (simplify
1977 (plus:c (bit_not @0) @0)
1978 (if (!TYPE_OVERFLOW_TRAPS (type))
1979 { build_all_ones_cst (type); }))
1980
1981 /* ~A + 1 -> -A */
1982 (simplify
1983 (plus (convert? (bit_not @0)) integer_each_onep)
1984 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1985 (negate (convert @0))))
1986
1987 /* -A - 1 -> ~A */
1988 (simplify
1989 (minus (convert? (negate @0)) integer_each_onep)
1990 (if (!TYPE_OVERFLOW_TRAPS (type)
1991 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1992 (bit_not (convert @0))))
1993
1994 /* -1 - A -> ~A */
1995 (simplify
1996 (minus integer_all_onesp @0)
1997 (bit_not @0))
1998
1999 /* (T)(P + A) - (T)P -> (T) A */
2000 (simplify
2001 (minus (convert (plus:c @@0 @1))
2002 (convert? @0))
2003 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2004 /* For integer types, if A has a smaller type
2005 than T the result depends on the possible
2006 overflow in P + A.
2007 E.g. T=size_t, A=(unsigned)429497295, P>0.
2008 However, if an overflow in P + A would cause
2009 undefined behavior, we can assume that there
2010 is no overflow. */
2011 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2013 (convert @1)))
2014 (simplify
2015 (minus (convert (pointer_plus @@0 @1))
2016 (convert @0))
2017 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2018 /* For pointer types, if the conversion of A to the
2019 final type requires a sign- or zero-extension,
2020 then we have to punt - it is not defined which
2021 one is correct. */
2022 || (POINTER_TYPE_P (TREE_TYPE (@0))
2023 && TREE_CODE (@1) == INTEGER_CST
2024 && tree_int_cst_sign_bit (@1) == 0))
2025 (convert @1)))
2026 (simplify
2027 (pointer_diff (pointer_plus @@0 @1) @0)
2028 /* The second argument of pointer_plus must be interpreted as signed, and
2029 thus sign-extended if necessary. */
2030 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2031 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2032 second arg is unsigned even when we need to consider it as signed,
2033 we don't want to diagnose overflow here. */
2034 (convert (view_convert:stype @1))))
2035
2036 /* (T)P - (T)(P + A) -> -(T) A */
2037 (simplify
2038 (minus (convert? @0)
2039 (convert (plus:c @@0 @1)))
2040 (if (INTEGRAL_TYPE_P (type)
2041 && TYPE_OVERFLOW_UNDEFINED (type)
2042 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2043 (with { tree utype = unsigned_type_for (type); }
2044 (convert (negate (convert:utype @1))))
2045 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2046 /* For integer types, if A has a smaller type
2047 than T the result depends on the possible
2048 overflow in P + A.
2049 E.g. T=size_t, A=(unsigned)429497295, P>0.
2050 However, if an overflow in P + A would cause
2051 undefined behavior, we can assume that there
2052 is no overflow. */
2053 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2054 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2055 (negate (convert @1)))))
2056 (simplify
2057 (minus (convert @0)
2058 (convert (pointer_plus @@0 @1)))
2059 (if (INTEGRAL_TYPE_P (type)
2060 && TYPE_OVERFLOW_UNDEFINED (type)
2061 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2062 (with { tree utype = unsigned_type_for (type); }
2063 (convert (negate (convert:utype @1))))
2064 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2065 /* For pointer types, if the conversion of A to the
2066 final type requires a sign- or zero-extension,
2067 then we have to punt - it is not defined which
2068 one is correct. */
2069 || (POINTER_TYPE_P (TREE_TYPE (@0))
2070 && TREE_CODE (@1) == INTEGER_CST
2071 && tree_int_cst_sign_bit (@1) == 0))
2072 (negate (convert @1)))))
2073 (simplify
2074 (pointer_diff @0 (pointer_plus @@0 @1))
2075 /* The second argument of pointer_plus must be interpreted as signed, and
2076 thus sign-extended if necessary. */
2077 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2078 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2079 second arg is unsigned even when we need to consider it as signed,
2080 we don't want to diagnose overflow here. */
2081 (negate (convert (view_convert:stype @1)))))
2082
2083 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2084 (simplify
2085 (minus (convert (plus:c @@0 @1))
2086 (convert (plus:c @0 @2)))
2087 (if (INTEGRAL_TYPE_P (type)
2088 && TYPE_OVERFLOW_UNDEFINED (type)
2089 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2090 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2091 (with { tree utype = unsigned_type_for (type); }
2092 (convert (minus (convert:utype @1) (convert:utype @2))))
2093 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2094 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2095 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2096 /* For integer types, if A has a smaller type
2097 than T the result depends on the possible
2098 overflow in P + A.
2099 E.g. T=size_t, A=(unsigned)429497295, P>0.
2100 However, if an overflow in P + A would cause
2101 undefined behavior, we can assume that there
2102 is no overflow. */
2103 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2104 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2105 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2106 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2107 (minus (convert @1) (convert @2)))))
2108 (simplify
2109 (minus (convert (pointer_plus @@0 @1))
2110 (convert (pointer_plus @0 @2)))
2111 (if (INTEGRAL_TYPE_P (type)
2112 && TYPE_OVERFLOW_UNDEFINED (type)
2113 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2114 (with { tree utype = unsigned_type_for (type); }
2115 (convert (minus (convert:utype @1) (convert:utype @2))))
2116 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2117 /* For pointer types, if the conversion of A to the
2118 final type requires a sign- or zero-extension,
2119 then we have to punt - it is not defined which
2120 one is correct. */
2121 || (POINTER_TYPE_P (TREE_TYPE (@0))
2122 && TREE_CODE (@1) == INTEGER_CST
2123 && tree_int_cst_sign_bit (@1) == 0
2124 && TREE_CODE (@2) == INTEGER_CST
2125 && tree_int_cst_sign_bit (@2) == 0))
2126 (minus (convert @1) (convert @2)))))
2127 (simplify
2128 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2129 /* The second argument of pointer_plus must be interpreted as signed, and
2130 thus sign-extended if necessary. */
2131 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2132 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2133 second arg is unsigned even when we need to consider it as signed,
2134 we don't want to diagnose overflow here. */
2135 (minus (convert (view_convert:stype @1))
2136 (convert (view_convert:stype @2)))))))
2137
2138 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2139 Modeled after fold_plusminus_mult_expr. */
2140 (if (!TYPE_SATURATING (type)
2141 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2142 (for plusminus (plus minus)
2143 (simplify
2144 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2145 (if ((!ANY_INTEGRAL_TYPE_P (type)
2146 || TYPE_OVERFLOW_WRAPS (type)
2147 || (INTEGRAL_TYPE_P (type)
2148 && tree_expr_nonzero_p (@0)
2149 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2150 /* If @1 +- @2 is constant require a hard single-use on either
2151 original operand (but not on both). */
2152 && (single_use (@3) || single_use (@4)))
2153 (mult (plusminus @1 @2) @0)))
2154 /* We cannot generate constant 1 for fract. */
2155 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2156 (simplify
2157 (plusminus @0 (mult:c@3 @0 @2))
2158 (if ((!ANY_INTEGRAL_TYPE_P (type)
2159 || TYPE_OVERFLOW_WRAPS (type)
2160 || (INTEGRAL_TYPE_P (type)
2161 && tree_expr_nonzero_p (@0)
2162 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2163 && single_use (@3))
2164 (mult (plusminus { build_one_cst (type); } @2) @0)))
2165 (simplify
2166 (plusminus (mult:c@3 @0 @2) @0)
2167 (if ((!ANY_INTEGRAL_TYPE_P (type)
2168 || TYPE_OVERFLOW_WRAPS (type)
2169 || (INTEGRAL_TYPE_P (type)
2170 && tree_expr_nonzero_p (@0)
2171 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2172 && single_use (@3))
2173 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2174
2175 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2176
2177 (for minmax (min max FMIN_ALL FMAX_ALL)
2178 (simplify
2179 (minmax @0 @0)
2180 @0))
2181 /* min(max(x,y),y) -> y. */
2182 (simplify
2183 (min:c (max:c @0 @1) @1)
2184 @1)
2185 /* max(min(x,y),y) -> y. */
2186 (simplify
2187 (max:c (min:c @0 @1) @1)
2188 @1)
2189 /* max(a,-a) -> abs(a). */
2190 (simplify
2191 (max:c @0 (negate @0))
2192 (if (TREE_CODE (type) != COMPLEX_TYPE
2193 && (! ANY_INTEGRAL_TYPE_P (type)
2194 || TYPE_OVERFLOW_UNDEFINED (type)))
2195 (abs @0)))
2196 /* min(a,-a) -> -abs(a). */
2197 (simplify
2198 (min:c @0 (negate @0))
2199 (if (TREE_CODE (type) != COMPLEX_TYPE
2200 && (! ANY_INTEGRAL_TYPE_P (type)
2201 || TYPE_OVERFLOW_UNDEFINED (type)))
2202 (negate (abs @0))))
2203 (simplify
2204 (min @0 @1)
2205 (switch
2206 (if (INTEGRAL_TYPE_P (type)
2207 && TYPE_MIN_VALUE (type)
2208 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2209 @1)
2210 (if (INTEGRAL_TYPE_P (type)
2211 && TYPE_MAX_VALUE (type)
2212 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2213 @0)))
2214 (simplify
2215 (max @0 @1)
2216 (switch
2217 (if (INTEGRAL_TYPE_P (type)
2218 && TYPE_MAX_VALUE (type)
2219 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2220 @1)
2221 (if (INTEGRAL_TYPE_P (type)
2222 && TYPE_MIN_VALUE (type)
2223 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2224 @0)))
2225
2226 /* max (a, a + CST) -> a + CST where CST is positive. */
2227 /* max (a, a + CST) -> a where CST is negative. */
2228 (simplify
2229 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2230 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2231 (if (tree_int_cst_sgn (@1) > 0)
2232 @2
2233 @0)))
2234
2235 /* min (a, a + CST) -> a where CST is positive. */
2236 /* min (a, a + CST) -> a + CST where CST is negative. */
2237 (simplify
2238 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2239 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2240 (if (tree_int_cst_sgn (@1) > 0)
2241 @0
2242 @2)))
2243
2244 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2245 and the outer convert demotes the expression back to x's type. */
2246 (for minmax (min max)
2247 (simplify
2248 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2249 (if (INTEGRAL_TYPE_P (type)
2250 && types_match (@1, type) && int_fits_type_p (@2, type)
2251 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2252 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2253 (minmax @1 (convert @2)))))
2254
2255 (for minmax (FMIN_ALL FMAX_ALL)
2256 /* If either argument is NaN, return the other one. Avoid the
2257 transformation if we get (and honor) a signalling NaN. */
2258 (simplify
2259 (minmax:c @0 REAL_CST@1)
2260 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2261 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2262 @0)))
2263 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2264 functions to return the numeric arg if the other one is NaN.
2265 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2266 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2267 worry about it either. */
2268 (if (flag_finite_math_only)
2269 (simplify
2270 (FMIN_ALL @0 @1)
2271 (min @0 @1))
2272 (simplify
2273 (FMAX_ALL @0 @1)
2274 (max @0 @1)))
2275 /* min (-A, -B) -> -max (A, B) */
2276 (for minmax (min max FMIN_ALL FMAX_ALL)
2277 maxmin (max min FMAX_ALL FMIN_ALL)
2278 (simplify
2279 (minmax (negate:s@2 @0) (negate:s@3 @1))
2280 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2281 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2282 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2283 (negate (maxmin @0 @1)))))
2284 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2285 MAX (~X, ~Y) -> ~MIN (X, Y) */
2286 (for minmax (min max)
2287 maxmin (max min)
2288 (simplify
2289 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2290 (bit_not (maxmin @0 @1))))
2291
2292 /* MIN (X, Y) == X -> X <= Y */
2293 (for minmax (min min max max)
2294 cmp (eq ne eq ne )
2295 out (le gt ge lt )
2296 (simplify
2297 (cmp:c (minmax:c @0 @1) @0)
2298 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2299 (out @0 @1))))
2300 /* MIN (X, 5) == 0 -> X == 0
2301 MIN (X, 5) == 7 -> false */
2302 (for cmp (eq ne)
2303 (simplify
2304 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2305 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2306 TYPE_SIGN (TREE_TYPE (@0))))
2307 { constant_boolean_node (cmp == NE_EXPR, type); }
2308 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2309 TYPE_SIGN (TREE_TYPE (@0))))
2310 (cmp @0 @2)))))
2311 (for cmp (eq ne)
2312 (simplify
2313 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2314 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2315 TYPE_SIGN (TREE_TYPE (@0))))
2316 { constant_boolean_node (cmp == NE_EXPR, type); }
2317 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2318 TYPE_SIGN (TREE_TYPE (@0))))
2319 (cmp @0 @2)))))
2320 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2321 (for minmax (min min max max min min max max )
2322 cmp (lt le gt ge gt ge lt le )
2323 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2324 (simplify
2325 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2326 (comb (cmp @0 @2) (cmp @1 @2))))
2327
2328 /* Simplifications of shift and rotates. */
2329
2330 (for rotate (lrotate rrotate)
2331 (simplify
2332 (rotate integer_all_onesp@0 @1)
2333 @0))
2334
2335 /* Optimize -1 >> x for arithmetic right shifts. */
2336 (simplify
2337 (rshift integer_all_onesp@0 @1)
2338 (if (!TYPE_UNSIGNED (type)
2339 && tree_expr_nonnegative_p (@1))
2340 @0))
2341
2342 /* Optimize (x >> c) << c into x & (-1<<c). */
2343 (simplify
2344 (lshift (rshift @0 INTEGER_CST@1) @1)
2345 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2346 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2347
2348 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2349 types. */
2350 (simplify
2351 (rshift (lshift @0 INTEGER_CST@1) @1)
2352 (if (TYPE_UNSIGNED (type)
2353 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2354 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2355
2356 (for shiftrotate (lrotate rrotate lshift rshift)
2357 (simplify
2358 (shiftrotate @0 integer_zerop)
2359 (non_lvalue @0))
2360 (simplify
2361 (shiftrotate integer_zerop@0 @1)
2362 @0)
2363 /* Prefer vector1 << scalar to vector1 << vector2
2364 if vector2 is uniform. */
2365 (for vec (VECTOR_CST CONSTRUCTOR)
2366 (simplify
2367 (shiftrotate @0 vec@1)
2368 (with { tree tem = uniform_vector_p (@1); }
2369 (if (tem)
2370 (shiftrotate @0 { tem; }))))))
2371
2372 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2373 Y is 0. Similarly for X >> Y. */
2374 #if GIMPLE
2375 (for shift (lshift rshift)
2376 (simplify
2377 (shift @0 SSA_NAME@1)
2378 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2379 (with {
2380 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2381 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2382 }
2383 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2384 @0)))))
2385 #endif
2386
2387 /* Rewrite an LROTATE_EXPR by a constant into an
2388 RROTATE_EXPR by a new constant. */
2389 (simplify
2390 (lrotate @0 INTEGER_CST@1)
2391 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2392 build_int_cst (TREE_TYPE (@1),
2393 element_precision (type)), @1); }))
2394
2395 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2396 (for op (lrotate rrotate rshift lshift)
2397 (simplify
2398 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2399 (with { unsigned int prec = element_precision (type); }
2400 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2401 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2402 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2403 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2404 (with { unsigned int low = (tree_to_uhwi (@1)
2405 + tree_to_uhwi (@2)); }
2406 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2407 being well defined. */
2408 (if (low >= prec)
2409 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2410 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2411 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2412 { build_zero_cst (type); }
2413 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2414 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2415
2416
2417 /* ((1 << A) & 1) != 0 -> A == 0
2418 ((1 << A) & 1) == 0 -> A != 0 */
2419 (for cmp (ne eq)
2420 icmp (eq ne)
2421 (simplify
2422 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2423 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2424
2425 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2426 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2427 if CST2 != 0. */
2428 (for cmp (ne eq)
2429 (simplify
2430 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2431 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2432 (if (cand < 0
2433 || (!integer_zerop (@2)
2434 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2435 { constant_boolean_node (cmp == NE_EXPR, type); }
2436 (if (!integer_zerop (@2)
2437 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2438 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2439
2440 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2441 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2442 if the new mask might be further optimized. */
2443 (for shift (lshift rshift)
2444 (simplify
2445 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2446 INTEGER_CST@2)
2447 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2448 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2449 && tree_fits_uhwi_p (@1)
2450 && tree_to_uhwi (@1) > 0
2451 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2452 (with
2453 {
2454 unsigned int shiftc = tree_to_uhwi (@1);
2455 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2456 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2457 tree shift_type = TREE_TYPE (@3);
2458 unsigned int prec;
2459
2460 if (shift == LSHIFT_EXPR)
2461 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2462 else if (shift == RSHIFT_EXPR
2463 && type_has_mode_precision_p (shift_type))
2464 {
2465 prec = TYPE_PRECISION (TREE_TYPE (@3));
2466 tree arg00 = @0;
2467 /* See if more bits can be proven as zero because of
2468 zero extension. */
2469 if (@3 != @0
2470 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2471 {
2472 tree inner_type = TREE_TYPE (@0);
2473 if (type_has_mode_precision_p (inner_type)
2474 && TYPE_PRECISION (inner_type) < prec)
2475 {
2476 prec = TYPE_PRECISION (inner_type);
2477 /* See if we can shorten the right shift. */
2478 if (shiftc < prec)
2479 shift_type = inner_type;
2480 /* Otherwise X >> C1 is all zeros, so we'll optimize
2481 it into (X, 0) later on by making sure zerobits
2482 is all ones. */
2483 }
2484 }
2485 zerobits = HOST_WIDE_INT_M1U;
2486 if (shiftc < prec)
2487 {
2488 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2489 zerobits <<= prec - shiftc;
2490 }
2491 /* For arithmetic shift if sign bit could be set, zerobits
2492 can contain actually sign bits, so no transformation is
2493 possible, unless MASK masks them all away. In that
2494 case the shift needs to be converted into logical shift. */
2495 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2496 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2497 {
2498 if ((mask & zerobits) == 0)
2499 shift_type = unsigned_type_for (TREE_TYPE (@3));
2500 else
2501 zerobits = 0;
2502 }
2503 }
2504 }
2505 /* ((X << 16) & 0xff00) is (X, 0). */
2506 (if ((mask & zerobits) == mask)
2507 { build_int_cst (type, 0); }
2508 (with { newmask = mask | zerobits; }
2509 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2510 (with
2511 {
2512 /* Only do the transformation if NEWMASK is some integer
2513 mode's mask. */
2514 for (prec = BITS_PER_UNIT;
2515 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2516 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2517 break;
2518 }
2519 (if (prec < HOST_BITS_PER_WIDE_INT
2520 || newmask == HOST_WIDE_INT_M1U)
2521 (with
2522 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2523 (if (!tree_int_cst_equal (newmaskt, @2))
2524 (if (shift_type != TREE_TYPE (@3))
2525 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2526 (bit_and @4 { newmaskt; })))))))))))))
2527
2528 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2529 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2530 (for shift (lshift rshift)
2531 (for bit_op (bit_and bit_xor bit_ior)
2532 (simplify
2533 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2534 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2535 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2536 (bit_op (shift (convert @0) @1) { mask; }))))))
2537
2538 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2539 (simplify
2540 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2541 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2542 && (element_precision (TREE_TYPE (@0))
2543 <= element_precision (TREE_TYPE (@1))
2544 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2545 (with
2546 { tree shift_type = TREE_TYPE (@0); }
2547 (convert (rshift (convert:shift_type @1) @2)))))
2548
2549 /* ~(~X >>r Y) -> X >>r Y
2550 ~(~X <<r Y) -> X <<r Y */
2551 (for rotate (lrotate rrotate)
2552 (simplify
2553 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2554 (if ((element_precision (TREE_TYPE (@0))
2555 <= element_precision (TREE_TYPE (@1))
2556 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2557 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2558 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2559 (with
2560 { tree rotate_type = TREE_TYPE (@0); }
2561 (convert (rotate (convert:rotate_type @1) @2))))))
2562
2563 /* Simplifications of conversions. */
2564
2565 /* Basic strip-useless-type-conversions / strip_nops. */
2566 (for cvt (convert view_convert float fix_trunc)
2567 (simplify
2568 (cvt @0)
2569 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2570 || (GENERIC && type == TREE_TYPE (@0)))
2571 @0)))
2572
2573 /* Contract view-conversions. */
2574 (simplify
2575 (view_convert (view_convert @0))
2576 (view_convert @0))
2577
2578 /* For integral conversions with the same precision or pointer
2579 conversions use a NOP_EXPR instead. */
2580 (simplify
2581 (view_convert @0)
2582 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2583 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2584 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2585 (convert @0)))
2586
2587 /* Strip inner integral conversions that do not change precision or size, or
2588 zero-extend while keeping the same size (for bool-to-char). */
2589 (simplify
2590 (view_convert (convert@0 @1))
2591 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2592 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2593 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2594 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2595 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2596 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2597 (view_convert @1)))
2598
2599 /* Simplify a view-converted empty constructor. */
2600 (simplify
2601 (view_convert CONSTRUCTOR@0)
2602 (if (TREE_CODE (@0) != SSA_NAME
2603 && CONSTRUCTOR_NELTS (@0) == 0)
2604 { build_zero_cst (type); }))
2605
2606 /* Re-association barriers around constants and other re-association
2607 barriers can be removed. */
2608 (simplify
2609 (paren CONSTANT_CLASS_P@0)
2610 @0)
2611 (simplify
2612 (paren (paren@1 @0))
2613 @1)
2614
2615 /* Handle cases of two conversions in a row. */
2616 (for ocvt (convert float fix_trunc)
2617 (for icvt (convert float)
2618 (simplify
2619 (ocvt (icvt@1 @0))
2620 (with
2621 {
2622 tree inside_type = TREE_TYPE (@0);
2623 tree inter_type = TREE_TYPE (@1);
2624 int inside_int = INTEGRAL_TYPE_P (inside_type);
2625 int inside_ptr = POINTER_TYPE_P (inside_type);
2626 int inside_float = FLOAT_TYPE_P (inside_type);
2627 int inside_vec = VECTOR_TYPE_P (inside_type);
2628 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2629 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2630 int inter_int = INTEGRAL_TYPE_P (inter_type);
2631 int inter_ptr = POINTER_TYPE_P (inter_type);
2632 int inter_float = FLOAT_TYPE_P (inter_type);
2633 int inter_vec = VECTOR_TYPE_P (inter_type);
2634 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2635 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2636 int final_int = INTEGRAL_TYPE_P (type);
2637 int final_ptr = POINTER_TYPE_P (type);
2638 int final_float = FLOAT_TYPE_P (type);
2639 int final_vec = VECTOR_TYPE_P (type);
2640 unsigned int final_prec = TYPE_PRECISION (type);
2641 int final_unsignedp = TYPE_UNSIGNED (type);
2642 }
2643 (switch
2644 /* In addition to the cases of two conversions in a row
2645 handled below, if we are converting something to its own
2646 type via an object of identical or wider precision, neither
2647 conversion is needed. */
2648 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2649 || (GENERIC
2650 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2651 && (((inter_int || inter_ptr) && final_int)
2652 || (inter_float && final_float))
2653 && inter_prec >= final_prec)
2654 (ocvt @0))
2655
2656 /* Likewise, if the intermediate and initial types are either both
2657 float or both integer, we don't need the middle conversion if the
2658 former is wider than the latter and doesn't change the signedness
2659 (for integers). Avoid this if the final type is a pointer since
2660 then we sometimes need the middle conversion. */
2661 (if (((inter_int && inside_int) || (inter_float && inside_float))
2662 && (final_int || final_float)
2663 && inter_prec >= inside_prec
2664 && (inter_float || inter_unsignedp == inside_unsignedp))
2665 (ocvt @0))
2666
2667 /* If we have a sign-extension of a zero-extended value, we can
2668 replace that by a single zero-extension. Likewise if the
2669 final conversion does not change precision we can drop the
2670 intermediate conversion. */
2671 (if (inside_int && inter_int && final_int
2672 && ((inside_prec < inter_prec && inter_prec < final_prec
2673 && inside_unsignedp && !inter_unsignedp)
2674 || final_prec == inter_prec))
2675 (ocvt @0))
2676
2677 /* Two conversions in a row are not needed unless:
2678 - some conversion is floating-point (overstrict for now), or
2679 - some conversion is a vector (overstrict for now), or
2680 - the intermediate type is narrower than both initial and
2681 final, or
2682 - the intermediate type and innermost type differ in signedness,
2683 and the outermost type is wider than the intermediate, or
2684 - the initial type is a pointer type and the precisions of the
2685 intermediate and final types differ, or
2686 - the final type is a pointer type and the precisions of the
2687 initial and intermediate types differ. */
2688 (if (! inside_float && ! inter_float && ! final_float
2689 && ! inside_vec && ! inter_vec && ! final_vec
2690 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2691 && ! (inside_int && inter_int
2692 && inter_unsignedp != inside_unsignedp
2693 && inter_prec < final_prec)
2694 && ((inter_unsignedp && inter_prec > inside_prec)
2695 == (final_unsignedp && final_prec > inter_prec))
2696 && ! (inside_ptr && inter_prec != final_prec)
2697 && ! (final_ptr && inside_prec != inter_prec))
2698 (ocvt @0))
2699
2700 /* A truncation to an unsigned type (a zero-extension) should be
2701 canonicalized as bitwise and of a mask. */
2702 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2703 && final_int && inter_int && inside_int
2704 && final_prec == inside_prec
2705 && final_prec > inter_prec
2706 && inter_unsignedp)
2707 (convert (bit_and @0 { wide_int_to_tree
2708 (inside_type,
2709 wi::mask (inter_prec, false,
2710 TYPE_PRECISION (inside_type))); })))
2711
2712 /* If we are converting an integer to a floating-point that can
2713 represent it exactly and back to an integer, we can skip the
2714 floating-point conversion. */
2715 (if (GIMPLE /* PR66211 */
2716 && inside_int && inter_float && final_int &&
2717 (unsigned) significand_size (TYPE_MODE (inter_type))
2718 >= inside_prec - !inside_unsignedp)
2719 (convert @0)))))))
2720
2721 /* If we have a narrowing conversion to an integral type that is fed by a
2722 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2723 masks off bits outside the final type (and nothing else). */
2724 (simplify
2725 (convert (bit_and @0 INTEGER_CST@1))
2726 (if (INTEGRAL_TYPE_P (type)
2727 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2728 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2729 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2730 TYPE_PRECISION (type)), 0))
2731 (convert @0)))
2732
2733
2734 /* (X /[ex] A) * A -> X. */
2735 (simplify
2736 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2737 (convert @0))
2738
2739 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2740 (for op (plus minus)
2741 (simplify
2742 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2743 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2744 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2745 (with
2746 {
2747 wi::overflow_type overflow;
2748 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2749 TYPE_SIGN (type), &overflow);
2750 }
2751 (if (types_match (type, TREE_TYPE (@2))
2752 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2753 (op @0 { wide_int_to_tree (type, mul); })
2754 (with { tree utype = unsigned_type_for (type); }
2755 (convert (op (convert:utype @0)
2756 (mult (convert:utype @1) (convert:utype @2))))))))))
2757
2758 /* Canonicalization of binary operations. */
2759
2760 /* Convert X + -C into X - C. */
2761 (simplify
2762 (plus @0 REAL_CST@1)
2763 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2764 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2765 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2766 (minus @0 { tem; })))))
2767
2768 /* Convert x+x into x*2. */
2769 (simplify
2770 (plus @0 @0)
2771 (if (SCALAR_FLOAT_TYPE_P (type))
2772 (mult @0 { build_real (type, dconst2); })
2773 (if (INTEGRAL_TYPE_P (type))
2774 (mult @0 { build_int_cst (type, 2); }))))
2775
2776 /* 0 - X -> -X. */
2777 (simplify
2778 (minus integer_zerop @1)
2779 (negate @1))
2780 (simplify
2781 (pointer_diff integer_zerop @1)
2782 (negate (convert @1)))
2783
2784 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2785 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2786 (-ARG1 + ARG0) reduces to -ARG1. */
2787 (simplify
2788 (minus real_zerop@0 @1)
2789 (if (fold_real_zero_addition_p (type, @0, 0))
2790 (negate @1)))
2791
2792 /* Transform x * -1 into -x. */
2793 (simplify
2794 (mult @0 integer_minus_onep)
2795 (negate @0))
2796
2797 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2798 signed overflow for CST != 0 && CST != -1. */
2799 (simplify
2800 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2801 (if (TREE_CODE (@2) != INTEGER_CST
2802 && single_use (@3)
2803 && !integer_zerop (@1) && !integer_minus_onep (@1))
2804 (mult (mult @0 @2) @1)))
2805
2806 /* True if we can easily extract the real and imaginary parts of a complex
2807 number. */
2808 (match compositional_complex
2809 (convert? (complex @0 @1)))
2810
2811 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2812 (simplify
2813 (complex (realpart @0) (imagpart @0))
2814 @0)
2815 (simplify
2816 (realpart (complex @0 @1))
2817 @0)
2818 (simplify
2819 (imagpart (complex @0 @1))
2820 @1)
2821
2822 /* Sometimes we only care about half of a complex expression. */
2823 (simplify
2824 (realpart (convert?:s (conj:s @0)))
2825 (convert (realpart @0)))
2826 (simplify
2827 (imagpart (convert?:s (conj:s @0)))
2828 (convert (negate (imagpart @0))))
2829 (for part (realpart imagpart)
2830 (for op (plus minus)
2831 (simplify
2832 (part (convert?:s@2 (op:s @0 @1)))
2833 (convert (op (part @0) (part @1))))))
2834 (simplify
2835 (realpart (convert?:s (CEXPI:s @0)))
2836 (convert (COS @0)))
2837 (simplify
2838 (imagpart (convert?:s (CEXPI:s @0)))
2839 (convert (SIN @0)))
2840
2841 /* conj(conj(x)) -> x */
2842 (simplify
2843 (conj (convert? (conj @0)))
2844 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2845 (convert @0)))
2846
2847 /* conj({x,y}) -> {x,-y} */
2848 (simplify
2849 (conj (convert?:s (complex:s @0 @1)))
2850 (with { tree itype = TREE_TYPE (type); }
2851 (complex (convert:itype @0) (negate (convert:itype @1)))))
2852
2853 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2854 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2855 (simplify
2856 (bswap (bswap @0))
2857 @0)
2858 (simplify
2859 (bswap (bit_not (bswap @0)))
2860 (bit_not @0))
2861 (for bitop (bit_xor bit_ior bit_and)
2862 (simplify
2863 (bswap (bitop:c (bswap @0) @1))
2864 (bitop @0 (bswap @1)))))
2865
2866
2867 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2868
2869 /* Simplify constant conditions.
2870 Only optimize constant conditions when the selected branch
2871 has the same type as the COND_EXPR. This avoids optimizing
2872 away "c ? x : throw", where the throw has a void type.
2873 Note that we cannot throw away the fold-const.c variant nor
2874 this one as we depend on doing this transform before possibly
2875 A ? B : B -> B triggers and the fold-const.c one can optimize
2876 0 ? A : B to B even if A has side-effects. Something
2877 genmatch cannot handle. */
2878 (simplify
2879 (cond INTEGER_CST@0 @1 @2)
2880 (if (integer_zerop (@0))
2881 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2882 @2)
2883 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2884 @1)))
2885 (simplify
2886 (vec_cond VECTOR_CST@0 @1 @2)
2887 (if (integer_all_onesp (@0))
2888 @1
2889 (if (integer_zerop (@0))
2890 @2)))
2891
2892 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2893 be extended. */
2894 /* This pattern implements two kinds simplification:
2895
2896 Case 1)
2897 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2898 1) Conversions are type widening from smaller type.
2899 2) Const c1 equals to c2 after canonicalizing comparison.
2900 3) Comparison has tree code LT, LE, GT or GE.
2901 This specific pattern is needed when (cmp (convert x) c) may not
2902 be simplified by comparison patterns because of multiple uses of
2903 x. It also makes sense here because simplifying across multiple
2904 referred var is always benefitial for complicated cases.
2905
2906 Case 2)
2907 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2908 (for cmp (lt le gt ge eq)
2909 (simplify
2910 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2911 (with
2912 {
2913 tree from_type = TREE_TYPE (@1);
2914 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2915 enum tree_code code = ERROR_MARK;
2916
2917 if (INTEGRAL_TYPE_P (from_type)
2918 && int_fits_type_p (@2, from_type)
2919 && (types_match (c1_type, from_type)
2920 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2921 && (TYPE_UNSIGNED (from_type)
2922 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2923 && (types_match (c2_type, from_type)
2924 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2925 && (TYPE_UNSIGNED (from_type)
2926 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2927 {
2928 if (cmp != EQ_EXPR)
2929 {
2930 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2931 {
2932 /* X <= Y - 1 equals to X < Y. */
2933 if (cmp == LE_EXPR)
2934 code = LT_EXPR;
2935 /* X > Y - 1 equals to X >= Y. */
2936 if (cmp == GT_EXPR)
2937 code = GE_EXPR;
2938 }
2939 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2940 {
2941 /* X < Y + 1 equals to X <= Y. */
2942 if (cmp == LT_EXPR)
2943 code = LE_EXPR;
2944 /* X >= Y + 1 equals to X > Y. */
2945 if (cmp == GE_EXPR)
2946 code = GT_EXPR;
2947 }
2948 if (code != ERROR_MARK
2949 || wi::to_widest (@2) == wi::to_widest (@3))
2950 {
2951 if (cmp == LT_EXPR || cmp == LE_EXPR)
2952 code = MIN_EXPR;
2953 if (cmp == GT_EXPR || cmp == GE_EXPR)
2954 code = MAX_EXPR;
2955 }
2956 }
2957 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2958 else if (int_fits_type_p (@3, from_type))
2959 code = EQ_EXPR;
2960 }
2961 }
2962 (if (code == MAX_EXPR)
2963 (convert (max @1 (convert @2)))
2964 (if (code == MIN_EXPR)
2965 (convert (min @1 (convert @2)))
2966 (if (code == EQ_EXPR)
2967 (convert (cond (eq @1 (convert @3))
2968 (convert:from_type @3) (convert:from_type @2)))))))))
2969
2970 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2971
2972 1) OP is PLUS or MINUS.
2973 2) CMP is LT, LE, GT or GE.
2974 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2975
2976 This pattern also handles special cases like:
2977
2978 A) Operand x is a unsigned to signed type conversion and c1 is
2979 integer zero. In this case,
2980 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2981 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2982 B) Const c1 may not equal to (C3 op' C2). In this case we also
2983 check equality for (c1+1) and (c1-1) by adjusting comparison
2984 code.
2985
2986 TODO: Though signed type is handled by this pattern, it cannot be
2987 simplified at the moment because C standard requires additional
2988 type promotion. In order to match&simplify it here, the IR needs
2989 to be cleaned up by other optimizers, i.e, VRP. */
2990 (for op (plus minus)
2991 (for cmp (lt le gt ge)
2992 (simplify
2993 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2994 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2995 (if (types_match (from_type, to_type)
2996 /* Check if it is special case A). */
2997 || (TYPE_UNSIGNED (from_type)
2998 && !TYPE_UNSIGNED (to_type)
2999 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3000 && integer_zerop (@1)
3001 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3002 (with
3003 {
3004 wi::overflow_type overflow = wi::OVF_NONE;
3005 enum tree_code code, cmp_code = cmp;
3006 wide_int real_c1;
3007 wide_int c1 = wi::to_wide (@1);
3008 wide_int c2 = wi::to_wide (@2);
3009 wide_int c3 = wi::to_wide (@3);
3010 signop sgn = TYPE_SIGN (from_type);
3011
3012 /* Handle special case A), given x of unsigned type:
3013 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3014 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3015 if (!types_match (from_type, to_type))
3016 {
3017 if (cmp_code == LT_EXPR)
3018 cmp_code = GT_EXPR;
3019 if (cmp_code == GE_EXPR)
3020 cmp_code = LE_EXPR;
3021 c1 = wi::max_value (to_type);
3022 }
3023 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3024 compute (c3 op' c2) and check if it equals to c1 with op' being
3025 the inverted operator of op. Make sure overflow doesn't happen
3026 if it is undefined. */
3027 if (op == PLUS_EXPR)
3028 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3029 else
3030 real_c1 = wi::add (c3, c2, sgn, &overflow);
3031
3032 code = cmp_code;
3033 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3034 {
3035 /* Check if c1 equals to real_c1. Boundary condition is handled
3036 by adjusting comparison operation if necessary. */
3037 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3038 && !overflow)
3039 {
3040 /* X <= Y - 1 equals to X < Y. */
3041 if (cmp_code == LE_EXPR)
3042 code = LT_EXPR;
3043 /* X > Y - 1 equals to X >= Y. */
3044 if (cmp_code == GT_EXPR)
3045 code = GE_EXPR;
3046 }
3047 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3048 && !overflow)
3049 {
3050 /* X < Y + 1 equals to X <= Y. */
3051 if (cmp_code == LT_EXPR)
3052 code = LE_EXPR;
3053 /* X >= Y + 1 equals to X > Y. */
3054 if (cmp_code == GE_EXPR)
3055 code = GT_EXPR;
3056 }
3057 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3058 {
3059 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3060 code = MIN_EXPR;
3061 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3062 code = MAX_EXPR;
3063 }
3064 }
3065 }
3066 (if (code == MAX_EXPR)
3067 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3068 { wide_int_to_tree (from_type, c2); })
3069 (if (code == MIN_EXPR)
3070 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3071 { wide_int_to_tree (from_type, c2); })))))))))
3072
3073 (for cnd (cond vec_cond)
3074 /* A ? B : (A ? X : C) -> A ? B : C. */
3075 (simplify
3076 (cnd @0 (cnd @0 @1 @2) @3)
3077 (cnd @0 @1 @3))
3078 (simplify
3079 (cnd @0 @1 (cnd @0 @2 @3))
3080 (cnd @0 @1 @3))
3081 /* A ? B : (!A ? C : X) -> A ? B : C. */
3082 /* ??? This matches embedded conditions open-coded because genmatch
3083 would generate matching code for conditions in separate stmts only.
3084 The following is still important to merge then and else arm cases
3085 from if-conversion. */
3086 (simplify
3087 (cnd @0 @1 (cnd @2 @3 @4))
3088 (if (inverse_conditions_p (@0, @2))
3089 (cnd @0 @1 @3)))
3090 (simplify
3091 (cnd @0 (cnd @1 @2 @3) @4)
3092 (if (inverse_conditions_p (@0, @1))
3093 (cnd @0 @3 @4)))
3094
3095 /* A ? B : B -> B. */
3096 (simplify
3097 (cnd @0 @1 @1)
3098 @1)
3099
3100 /* !A ? B : C -> A ? C : B. */
3101 (simplify
3102 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3103 (cnd @0 @2 @1)))
3104
3105 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3106 return all -1 or all 0 results. */
3107 /* ??? We could instead convert all instances of the vec_cond to negate,
3108 but that isn't necessarily a win on its own. */
3109 (simplify
3110 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3111 (if (VECTOR_TYPE_P (type)
3112 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3113 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3114 && (TYPE_MODE (TREE_TYPE (type))
3115 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3116 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3117
3118 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3119 (simplify
3120 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3121 (if (VECTOR_TYPE_P (type)
3122 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3123 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3124 && (TYPE_MODE (TREE_TYPE (type))
3125 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3126 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3127
3128
3129 /* Simplifications of comparisons. */
3130
3131 /* See if we can reduce the magnitude of a constant involved in a
3132 comparison by changing the comparison code. This is a canonicalization
3133 formerly done by maybe_canonicalize_comparison_1. */
3134 (for cmp (le gt)
3135 acmp (lt ge)
3136 (simplify
3137 (cmp @0 uniform_integer_cst_p@1)
3138 (with { tree cst = uniform_integer_cst_p (@1); }
3139 (if (tree_int_cst_sgn (cst) == -1)
3140 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3141 wide_int_to_tree (TREE_TYPE (cst),
3142 wi::to_wide (cst)
3143 + 1)); })))))
3144 (for cmp (ge lt)
3145 acmp (gt le)
3146 (simplify
3147 (cmp @0 uniform_integer_cst_p@1)
3148 (with { tree cst = uniform_integer_cst_p (@1); }
3149 (if (tree_int_cst_sgn (cst) == 1)
3150 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3151 wide_int_to_tree (TREE_TYPE (cst),
3152 wi::to_wide (cst) - 1)); })))))
3153
3154 /* We can simplify a logical negation of a comparison to the
3155 inverted comparison. As we cannot compute an expression
3156 operator using invert_tree_comparison we have to simulate
3157 that with expression code iteration. */
3158 (for cmp (tcc_comparison)
3159 icmp (inverted_tcc_comparison)
3160 ncmp (inverted_tcc_comparison_with_nans)
3161 /* Ideally we'd like to combine the following two patterns
3162 and handle some more cases by using
3163 (logical_inverted_value (cmp @0 @1))
3164 here but for that genmatch would need to "inline" that.
3165 For now implement what forward_propagate_comparison did. */
3166 (simplify
3167 (bit_not (cmp @0 @1))
3168 (if (VECTOR_TYPE_P (type)
3169 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3170 /* Comparison inversion may be impossible for trapping math,
3171 invert_tree_comparison will tell us. But we can't use
3172 a computed operator in the replacement tree thus we have
3173 to play the trick below. */
3174 (with { enum tree_code ic = invert_tree_comparison
3175 (cmp, HONOR_NANS (@0)); }
3176 (if (ic == icmp)
3177 (icmp @0 @1)
3178 (if (ic == ncmp)
3179 (ncmp @0 @1))))))
3180 (simplify
3181 (bit_xor (cmp @0 @1) integer_truep)
3182 (with { enum tree_code ic = invert_tree_comparison
3183 (cmp, HONOR_NANS (@0)); }
3184 (if (ic == icmp)
3185 (icmp @0 @1)
3186 (if (ic == ncmp)
3187 (ncmp @0 @1))))))
3188
3189 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3190 ??? The transformation is valid for the other operators if overflow
3191 is undefined for the type, but performing it here badly interacts
3192 with the transformation in fold_cond_expr_with_comparison which
3193 attempts to synthetize ABS_EXPR. */
3194 (for cmp (eq ne)
3195 (for sub (minus pointer_diff)
3196 (simplify
3197 (cmp (sub@2 @0 @1) integer_zerop)
3198 (if (single_use (@2))
3199 (cmp @0 @1)))))
3200
3201 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3202 signed arithmetic case. That form is created by the compiler
3203 often enough for folding it to be of value. One example is in
3204 computing loop trip counts after Operator Strength Reduction. */
3205 (for cmp (simple_comparison)
3206 scmp (swapped_simple_comparison)
3207 (simplify
3208 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3209 /* Handle unfolded multiplication by zero. */
3210 (if (integer_zerop (@1))
3211 (cmp @1 @2)
3212 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3213 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3214 && single_use (@3))
3215 /* If @1 is negative we swap the sense of the comparison. */
3216 (if (tree_int_cst_sgn (@1) < 0)
3217 (scmp @0 @2)
3218 (cmp @0 @2))))))
3219
3220 /* Simplify comparison of something with itself. For IEEE
3221 floating-point, we can only do some of these simplifications. */
3222 (for cmp (eq ge le)
3223 (simplify
3224 (cmp @0 @0)
3225 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3226 || ! HONOR_NANS (@0))
3227 { constant_boolean_node (true, type); }
3228 (if (cmp != EQ_EXPR)
3229 (eq @0 @0)))))
3230 (for cmp (ne gt lt)
3231 (simplify
3232 (cmp @0 @0)
3233 (if (cmp != NE_EXPR
3234 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3235 || ! HONOR_NANS (@0))
3236 { constant_boolean_node (false, type); })))
3237 (for cmp (unle unge uneq)
3238 (simplify
3239 (cmp @0 @0)
3240 { constant_boolean_node (true, type); }))
3241 (for cmp (unlt ungt)
3242 (simplify
3243 (cmp @0 @0)
3244 (unordered @0 @0)))
3245 (simplify
3246 (ltgt @0 @0)
3247 (if (!flag_trapping_math)
3248 { constant_boolean_node (false, type); }))
3249
3250 /* Fold ~X op ~Y as Y op X. */
3251 (for cmp (simple_comparison)
3252 (simplify
3253 (cmp (bit_not@2 @0) (bit_not@3 @1))
3254 (if (single_use (@2) && single_use (@3))
3255 (cmp @1 @0))))
3256
3257 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3258 (for cmp (simple_comparison)
3259 scmp (swapped_simple_comparison)
3260 (simplify
3261 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3262 (if (single_use (@2)
3263 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3264 (scmp @0 (bit_not @1)))))
3265
3266 (for cmp (simple_comparison)
3267 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3268 (simplify
3269 (cmp (convert@2 @0) (convert? @1))
3270 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3271 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3272 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3273 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3274 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3275 (with
3276 {
3277 tree type1 = TREE_TYPE (@1);
3278 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3279 {
3280 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3281 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3282 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3283 type1 = float_type_node;
3284 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3285 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3286 type1 = double_type_node;
3287 }
3288 tree newtype
3289 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3290 ? TREE_TYPE (@0) : type1);
3291 }
3292 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3293 (cmp (convert:newtype @0) (convert:newtype @1))))))
3294
3295 (simplify
3296 (cmp @0 REAL_CST@1)
3297 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3298 (switch
3299 /* a CMP (-0) -> a CMP 0 */
3300 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3301 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3302 /* x != NaN is always true, other ops are always false. */
3303 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3304 && ! HONOR_SNANS (@1))
3305 { constant_boolean_node (cmp == NE_EXPR, type); })
3306 /* Fold comparisons against infinity. */
3307 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3308 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3309 (with
3310 {
3311 REAL_VALUE_TYPE max;
3312 enum tree_code code = cmp;
3313 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3314 if (neg)
3315 code = swap_tree_comparison (code);
3316 }
3317 (switch
3318 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3319 (if (code == GT_EXPR
3320 && !(HONOR_NANS (@0) && flag_trapping_math))
3321 { constant_boolean_node (false, type); })
3322 (if (code == LE_EXPR)
3323 /* x <= +Inf is always true, if we don't care about NaNs. */
3324 (if (! HONOR_NANS (@0))
3325 { constant_boolean_node (true, type); }
3326 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3327 an "invalid" exception. */
3328 (if (!flag_trapping_math)
3329 (eq @0 @0))))
3330 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3331 for == this introduces an exception for x a NaN. */
3332 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3333 || code == GE_EXPR)
3334 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3335 (if (neg)
3336 (lt @0 { build_real (TREE_TYPE (@0), max); })
3337 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3338 /* x < +Inf is always equal to x <= DBL_MAX. */
3339 (if (code == LT_EXPR)
3340 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3341 (if (neg)
3342 (ge @0 { build_real (TREE_TYPE (@0), max); })
3343 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3344 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3345 an exception for x a NaN so use an unordered comparison. */
3346 (if (code == NE_EXPR)
3347 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3348 (if (! HONOR_NANS (@0))
3349 (if (neg)
3350 (ge @0 { build_real (TREE_TYPE (@0), max); })
3351 (le @0 { build_real (TREE_TYPE (@0), max); }))
3352 (if (neg)
3353 (unge @0 { build_real (TREE_TYPE (@0), max); })
3354 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3355
3356 /* If this is a comparison of a real constant with a PLUS_EXPR
3357 or a MINUS_EXPR of a real constant, we can convert it into a
3358 comparison with a revised real constant as long as no overflow
3359 occurs when unsafe_math_optimizations are enabled. */
3360 (if (flag_unsafe_math_optimizations)
3361 (for op (plus minus)
3362 (simplify
3363 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3364 (with
3365 {
3366 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3367 TREE_TYPE (@1), @2, @1);
3368 }
3369 (if (tem && !TREE_OVERFLOW (tem))
3370 (cmp @0 { tem; }))))))
3371
3372 /* Likewise, we can simplify a comparison of a real constant with
3373 a MINUS_EXPR whose first operand is also a real constant, i.e.
3374 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3375 floating-point types only if -fassociative-math is set. */
3376 (if (flag_associative_math)
3377 (simplify
3378 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3379 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3380 (if (tem && !TREE_OVERFLOW (tem))
3381 (cmp { tem; } @1)))))
3382
3383 /* Fold comparisons against built-in math functions. */
3384 (if (flag_unsafe_math_optimizations
3385 && ! flag_errno_math)
3386 (for sq (SQRT)
3387 (simplify
3388 (cmp (sq @0) REAL_CST@1)
3389 (switch
3390 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3391 (switch
3392 /* sqrt(x) < y is always false, if y is negative. */
3393 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3394 { constant_boolean_node (false, type); })
3395 /* sqrt(x) > y is always true, if y is negative and we
3396 don't care about NaNs, i.e. negative values of x. */
3397 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3398 { constant_boolean_node (true, type); })
3399 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3400 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3401 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3402 (switch
3403 /* sqrt(x) < 0 is always false. */
3404 (if (cmp == LT_EXPR)
3405 { constant_boolean_node (false, type); })
3406 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3407 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3408 { constant_boolean_node (true, type); })
3409 /* sqrt(x) <= 0 -> x == 0. */
3410 (if (cmp == LE_EXPR)
3411 (eq @0 @1))
3412 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3413 == or !=. In the last case:
3414
3415 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3416
3417 if x is negative or NaN. Due to -funsafe-math-optimizations,
3418 the results for other x follow from natural arithmetic. */
3419 (cmp @0 @1)))
3420 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3421 (with
3422 {
3423 REAL_VALUE_TYPE c2;
3424 real_arithmetic (&c2, MULT_EXPR,
3425 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3426 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3427 }
3428 (if (REAL_VALUE_ISINF (c2))
3429 /* sqrt(x) > y is x == +Inf, when y is very large. */
3430 (if (HONOR_INFINITIES (@0))
3431 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3432 { constant_boolean_node (false, type); })
3433 /* sqrt(x) > c is the same as x > c*c. */
3434 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3435 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3436 (with
3437 {
3438 REAL_VALUE_TYPE c2;
3439 real_arithmetic (&c2, MULT_EXPR,
3440 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3441 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3442 }
3443 (if (REAL_VALUE_ISINF (c2))
3444 (switch
3445 /* sqrt(x) < y is always true, when y is a very large
3446 value and we don't care about NaNs or Infinities. */
3447 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3448 { constant_boolean_node (true, type); })
3449 /* sqrt(x) < y is x != +Inf when y is very large and we
3450 don't care about NaNs. */
3451 (if (! HONOR_NANS (@0))
3452 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3453 /* sqrt(x) < y is x >= 0 when y is very large and we
3454 don't care about Infinities. */
3455 (if (! HONOR_INFINITIES (@0))
3456 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3457 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3458 (if (GENERIC)
3459 (truth_andif
3460 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3461 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3462 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3463 (if (! HONOR_NANS (@0))
3464 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3465 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3466 (if (GENERIC)
3467 (truth_andif
3468 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3469 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3470 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3471 (simplify
3472 (cmp (sq @0) (sq @1))
3473 (if (! HONOR_NANS (@0))
3474 (cmp @0 @1))))))
3475
3476 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3477 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3478 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3479 (simplify
3480 (cmp (float@0 @1) (float @2))
3481 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3482 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3483 (with
3484 {
3485 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3486 tree type1 = TREE_TYPE (@1);
3487 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3488 tree type2 = TREE_TYPE (@2);
3489 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3490 }
3491 (if (fmt.can_represent_integral_type_p (type1)
3492 && fmt.can_represent_integral_type_p (type2))
3493 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3494 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3495 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3496 && type1_signed_p >= type2_signed_p)
3497 (icmp @1 (convert @2))
3498 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3499 && type1_signed_p <= type2_signed_p)
3500 (icmp (convert:type2 @1) @2)
3501 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3502 && type1_signed_p == type2_signed_p)
3503 (icmp @1 @2))))))))))
3504
3505 /* Optimize various special cases of (FTYPE) N CMP CST. */
3506 (for cmp (lt le eq ne ge gt)
3507 icmp (le le eq ne ge ge)
3508 (simplify
3509 (cmp (float @0) REAL_CST@1)
3510 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3511 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3512 (with
3513 {
3514 tree itype = TREE_TYPE (@0);
3515 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3516 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3517 /* Be careful to preserve any potential exceptions due to
3518 NaNs. qNaNs are ok in == or != context.
3519 TODO: relax under -fno-trapping-math or
3520 -fno-signaling-nans. */
3521 bool exception_p
3522 = real_isnan (cst) && (cst->signalling
3523 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3524 }
3525 /* TODO: allow non-fitting itype and SNaNs when
3526 -fno-trapping-math. */
3527 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3528 (with
3529 {
3530 signop isign = TYPE_SIGN (itype);
3531 REAL_VALUE_TYPE imin, imax;
3532 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3533 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3534
3535 REAL_VALUE_TYPE icst;
3536 if (cmp == GT_EXPR || cmp == GE_EXPR)
3537 real_ceil (&icst, fmt, cst);
3538 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3539 real_floor (&icst, fmt, cst);
3540 else
3541 real_trunc (&icst, fmt, cst);
3542
3543 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3544
3545 bool overflow_p = false;
3546 wide_int icst_val
3547 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3548 }
3549 (switch
3550 /* Optimize cases when CST is outside of ITYPE's range. */
3551 (if (real_compare (LT_EXPR, cst, &imin))
3552 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3553 type); })
3554 (if (real_compare (GT_EXPR, cst, &imax))
3555 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3556 type); })
3557 /* Remove cast if CST is an integer representable by ITYPE. */
3558 (if (cst_int_p)
3559 (cmp @0 { gcc_assert (!overflow_p);
3560 wide_int_to_tree (itype, icst_val); })
3561 )
3562 /* When CST is fractional, optimize
3563 (FTYPE) N == CST -> 0
3564 (FTYPE) N != CST -> 1. */
3565 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3566 { constant_boolean_node (cmp == NE_EXPR, type); })
3567 /* Otherwise replace with sensible integer constant. */
3568 (with
3569 {
3570 gcc_checking_assert (!overflow_p);
3571 }
3572 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3573
3574 /* Fold A /[ex] B CMP C to A CMP B * C. */
3575 (for cmp (eq ne)
3576 (simplify
3577 (cmp (exact_div @0 @1) INTEGER_CST@2)
3578 (if (!integer_zerop (@1))
3579 (if (wi::to_wide (@2) == 0)
3580 (cmp @0 @2)
3581 (if (TREE_CODE (@1) == INTEGER_CST)
3582 (with
3583 {
3584 wi::overflow_type ovf;
3585 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3586 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3587 }
3588 (if (ovf)
3589 { constant_boolean_node (cmp == NE_EXPR, type); }
3590 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3591 (for cmp (lt le gt ge)
3592 (simplify
3593 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3594 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3595 (with
3596 {
3597 wi::overflow_type ovf;
3598 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3599 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3600 }
3601 (if (ovf)
3602 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3603 TYPE_SIGN (TREE_TYPE (@2)))
3604 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3605 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3606
3607 /* Unordered tests if either argument is a NaN. */
3608 (simplify
3609 (bit_ior (unordered @0 @0) (unordered @1 @1))
3610 (if (types_match (@0, @1))
3611 (unordered @0 @1)))
3612 (simplify
3613 (bit_and (ordered @0 @0) (ordered @1 @1))
3614 (if (types_match (@0, @1))
3615 (ordered @0 @1)))
3616 (simplify
3617 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3618 @2)
3619 (simplify
3620 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3621 @2)
3622
3623 /* Simple range test simplifications. */
3624 /* A < B || A >= B -> true. */
3625 (for test1 (lt le le le ne ge)
3626 test2 (ge gt ge ne eq ne)
3627 (simplify
3628 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3629 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3630 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3631 { constant_boolean_node (true, type); })))
3632 /* A < B && A >= B -> false. */
3633 (for test1 (lt lt lt le ne eq)
3634 test2 (ge gt eq gt eq gt)
3635 (simplify
3636 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3637 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3638 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3639 { constant_boolean_node (false, type); })))
3640
3641 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3642 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3643
3644 Note that comparisons
3645 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3646 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3647 will be canonicalized to above so there's no need to
3648 consider them here.
3649 */
3650
3651 (for cmp (le gt)
3652 eqcmp (eq ne)
3653 (simplify
3654 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3655 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3656 (with
3657 {
3658 tree ty = TREE_TYPE (@0);
3659 unsigned prec = TYPE_PRECISION (ty);
3660 wide_int mask = wi::to_wide (@2, prec);
3661 wide_int rhs = wi::to_wide (@3, prec);
3662 signop sgn = TYPE_SIGN (ty);
3663 }
3664 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3665 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3666 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3667 { build_zero_cst (ty); }))))))
3668
3669 /* -A CMP -B -> B CMP A. */
3670 (for cmp (tcc_comparison)
3671 scmp (swapped_tcc_comparison)
3672 (simplify
3673 (cmp (negate @0) (negate @1))
3674 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3675 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3676 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3677 (scmp @0 @1)))
3678 (simplify
3679 (cmp (negate @0) CONSTANT_CLASS_P@1)
3680 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3681 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3682 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3683 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3684 (if (tem && !TREE_OVERFLOW (tem))
3685 (scmp @0 { tem; }))))))
3686
3687 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3688 (for op (eq ne)
3689 (simplify
3690 (op (abs @0) zerop@1)
3691 (op @0 @1)))
3692
3693 /* From fold_sign_changed_comparison and fold_widened_comparison.
3694 FIXME: the lack of symmetry is disturbing. */
3695 (for cmp (simple_comparison)
3696 (simplify
3697 (cmp (convert@0 @00) (convert?@1 @10))
3698 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3699 /* Disable this optimization if we're casting a function pointer
3700 type on targets that require function pointer canonicalization. */
3701 && !(targetm.have_canonicalize_funcptr_for_compare ()
3702 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3703 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3704 || (POINTER_TYPE_P (TREE_TYPE (@10))
3705 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3706 && single_use (@0))
3707 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3708 && (TREE_CODE (@10) == INTEGER_CST
3709 || @1 != @10)
3710 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3711 || cmp == NE_EXPR
3712 || cmp == EQ_EXPR)
3713 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3714 /* ??? The special-casing of INTEGER_CST conversion was in the original
3715 code and here to avoid a spurious overflow flag on the resulting
3716 constant which fold_convert produces. */
3717 (if (TREE_CODE (@1) == INTEGER_CST)
3718 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3719 TREE_OVERFLOW (@1)); })
3720 (cmp @00 (convert @1)))
3721
3722 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3723 /* If possible, express the comparison in the shorter mode. */
3724 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3725 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3726 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3727 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3728 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3729 || ((TYPE_PRECISION (TREE_TYPE (@00))
3730 >= TYPE_PRECISION (TREE_TYPE (@10)))
3731 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3732 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3733 || (TREE_CODE (@10) == INTEGER_CST
3734 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3735 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3736 (cmp @00 (convert @10))
3737 (if (TREE_CODE (@10) == INTEGER_CST
3738 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3739 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3740 (with
3741 {
3742 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3743 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3744 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3745 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3746 }
3747 (if (above || below)
3748 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3749 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3750 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3751 { constant_boolean_node (above ? true : false, type); }
3752 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3753 { constant_boolean_node (above ? false : true, type); }))))))))))))
3754
3755 (for cmp (eq ne)
3756 /* A local variable can never be pointed to by
3757 the default SSA name of an incoming parameter.
3758 SSA names are canonicalized to 2nd place. */
3759 (simplify
3760 (cmp addr@0 SSA_NAME@1)
3761 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3762 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3763 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3764 (if (TREE_CODE (base) == VAR_DECL
3765 && auto_var_in_fn_p (base, current_function_decl))
3766 (if (cmp == NE_EXPR)
3767 { constant_boolean_node (true, type); }
3768 { constant_boolean_node (false, type); }))))))
3769
3770 /* Equality compare simplifications from fold_binary */
3771 (for cmp (eq ne)
3772
3773 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3774 Similarly for NE_EXPR. */
3775 (simplify
3776 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3777 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3778 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3779 { constant_boolean_node (cmp == NE_EXPR, type); }))
3780
3781 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3782 (simplify
3783 (cmp (bit_xor @0 @1) integer_zerop)
3784 (cmp @0 @1))
3785
3786 /* (X ^ Y) == Y becomes X == 0.
3787 Likewise (X ^ Y) == X becomes Y == 0. */
3788 (simplify
3789 (cmp:c (bit_xor:c @0 @1) @0)
3790 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3791
3792 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3793 (simplify
3794 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3795 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3796 (cmp @0 (bit_xor @1 (convert @2)))))
3797
3798 (simplify
3799 (cmp (convert? addr@0) integer_zerop)
3800 (if (tree_single_nonzero_warnv_p (@0, NULL))
3801 { constant_boolean_node (cmp == NE_EXPR, type); })))
3802
3803 /* If we have (A & C) == C where C is a power of 2, convert this into
3804 (A & C) != 0. Similarly for NE_EXPR. */
3805 (for cmp (eq ne)
3806 icmp (ne eq)
3807 (simplify
3808 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3809 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3810
3811 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3812 convert this into a shift followed by ANDing with D. */
3813 (simplify
3814 (cond
3815 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3816 INTEGER_CST@2 integer_zerop)
3817 (if (integer_pow2p (@2))
3818 (with {
3819 int shift = (wi::exact_log2 (wi::to_wide (@2))
3820 - wi::exact_log2 (wi::to_wide (@1)));
3821 }
3822 (if (shift > 0)
3823 (bit_and
3824 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3825 (bit_and
3826 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3827 @2)))))
3828
3829 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3830 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3831 (for cmp (eq ne)
3832 ncmp (ge lt)
3833 (simplify
3834 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3835 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3836 && type_has_mode_precision_p (TREE_TYPE (@0))
3837 && element_precision (@2) >= element_precision (@0)
3838 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3839 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3840 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3841
3842 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3843 this into a right shift or sign extension followed by ANDing with C. */
3844 (simplify
3845 (cond
3846 (lt @0 integer_zerop)
3847 INTEGER_CST@1 integer_zerop)
3848 (if (integer_pow2p (@1)
3849 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3850 (with {
3851 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3852 }
3853 (if (shift >= 0)
3854 (bit_and
3855 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3856 @1)
3857 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3858 sign extension followed by AND with C will achieve the effect. */
3859 (bit_and (convert @0) @1)))))
3860
3861 /* When the addresses are not directly of decls compare base and offset.
3862 This implements some remaining parts of fold_comparison address
3863 comparisons but still no complete part of it. Still it is good
3864 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3865 (for cmp (simple_comparison)
3866 (simplify
3867 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3868 (with
3869 {
3870 poly_int64 off0, off1;
3871 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3872 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3873 if (base0 && TREE_CODE (base0) == MEM_REF)
3874 {
3875 off0 += mem_ref_offset (base0).force_shwi ();
3876 base0 = TREE_OPERAND (base0, 0);
3877 }
3878 if (base1 && TREE_CODE (base1) == MEM_REF)
3879 {
3880 off1 += mem_ref_offset (base1).force_shwi ();
3881 base1 = TREE_OPERAND (base1, 0);
3882 }
3883 }
3884 (if (base0 && base1)
3885 (with
3886 {
3887 int equal = 2;
3888 /* Punt in GENERIC on variables with value expressions;
3889 the value expressions might point to fields/elements
3890 of other vars etc. */
3891 if (GENERIC
3892 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3893 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3894 ;
3895 else if (decl_in_symtab_p (base0)
3896 && decl_in_symtab_p (base1))
3897 equal = symtab_node::get_create (base0)
3898 ->equal_address_to (symtab_node::get_create (base1));
3899 else if ((DECL_P (base0)
3900 || TREE_CODE (base0) == SSA_NAME
3901 || TREE_CODE (base0) == STRING_CST)
3902 && (DECL_P (base1)
3903 || TREE_CODE (base1) == SSA_NAME
3904 || TREE_CODE (base1) == STRING_CST))
3905 equal = (base0 == base1);
3906 if (equal == 0)
3907 {
3908 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
3909 off0.is_constant (&ioff0);
3910 off1.is_constant (&ioff1);
3911 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
3912 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
3913 || (TREE_CODE (base0) == STRING_CST
3914 && TREE_CODE (base1) == STRING_CST
3915 && ioff0 >= 0 && ioff1 >= 0
3916 && ioff0 < TREE_STRING_LENGTH (base0)
3917 && ioff1 < TREE_STRING_LENGTH (base1)
3918 /* This is a too conservative test that the STRING_CSTs
3919 will not end up being string-merged. */
3920 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
3921 TREE_STRING_POINTER (base1) + ioff1,
3922 MIN (TREE_STRING_LENGTH (base0) - ioff0,
3923 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
3924 ;
3925 else if (!DECL_P (base0) || !DECL_P (base1))
3926 equal = 2;
3927 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
3928 equal = 2;
3929 /* If this is a pointer comparison, ignore for now even
3930 valid equalities where one pointer is the offset zero
3931 of one object and the other to one past end of another one. */
3932 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
3933 ;
3934 /* Assume that automatic variables can't be adjacent to global
3935 variables. */
3936 else if (is_global_var (base0) != is_global_var (base1))
3937 ;
3938 else
3939 {
3940 tree sz0 = DECL_SIZE_UNIT (base0);
3941 tree sz1 = DECL_SIZE_UNIT (base1);
3942 /* If sizes are unknown, e.g. VLA or not representable,
3943 punt. */
3944 if (!tree_fits_poly_int64_p (sz0)
3945 || !tree_fits_poly_int64_p (sz1))
3946 equal = 2;
3947 else
3948 {
3949 poly_int64 size0 = tree_to_poly_int64 (sz0);
3950 poly_int64 size1 = tree_to_poly_int64 (sz1);
3951 /* If one offset is pointing (or could be) to the beginning
3952 of one object and the other is pointing to one past the
3953 last byte of the other object, punt. */
3954 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
3955 equal = 2;
3956 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
3957 equal = 2;
3958 /* If both offsets are the same, there are some cases
3959 we know that are ok. Either if we know they aren't
3960 zero, or if we know both sizes are no zero. */
3961 if (equal == 2
3962 && known_eq (off0, off1)
3963 && (known_ne (off0, 0)
3964 || (known_ne (size0, 0) && known_ne (size1, 0))))
3965 equal = 0;
3966 }
3967 }
3968 }
3969 }
3970 (if (equal == 1
3971 && (cmp == EQ_EXPR || cmp == NE_EXPR
3972 /* If the offsets are equal we can ignore overflow. */
3973 || known_eq (off0, off1)
3974 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3975 /* Or if we compare using pointers to decls or strings. */
3976 || (POINTER_TYPE_P (TREE_TYPE (@2))
3977 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3978 (switch
3979 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3980 { constant_boolean_node (known_eq (off0, off1), type); })
3981 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3982 { constant_boolean_node (known_ne (off0, off1), type); })
3983 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3984 { constant_boolean_node (known_lt (off0, off1), type); })
3985 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3986 { constant_boolean_node (known_le (off0, off1), type); })
3987 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3988 { constant_boolean_node (known_ge (off0, off1), type); })
3989 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3990 { constant_boolean_node (known_gt (off0, off1), type); }))
3991 (if (equal == 0)
3992 (switch
3993 (if (cmp == EQ_EXPR)
3994 { constant_boolean_node (false, type); })
3995 (if (cmp == NE_EXPR)
3996 { constant_boolean_node (true, type); })))))))))
3997
3998 /* Simplify pointer equality compares using PTA. */
3999 (for neeq (ne eq)
4000 (simplify
4001 (neeq @0 @1)
4002 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4003 && ptrs_compare_unequal (@0, @1))
4004 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4005
4006 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4007 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4008 Disable the transform if either operand is pointer to function.
4009 This broke pr22051-2.c for arm where function pointer
4010 canonicalizaion is not wanted. */
4011
4012 (for cmp (ne eq)
4013 (simplify
4014 (cmp (convert @0) INTEGER_CST@1)
4015 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4016 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4017 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4018 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4019 && POINTER_TYPE_P (TREE_TYPE (@1))
4020 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4021 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4022 (cmp @0 (convert @1)))))
4023
4024 /* Non-equality compare simplifications from fold_binary */
4025 (for cmp (lt gt le ge)
4026 /* Comparisons with the highest or lowest possible integer of
4027 the specified precision will have known values. */
4028 (simplify
4029 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4030 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4031 || POINTER_TYPE_P (TREE_TYPE (@1))
4032 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4033 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4034 (with
4035 {
4036 tree cst = uniform_integer_cst_p (@1);
4037 tree arg1_type = TREE_TYPE (cst);
4038 unsigned int prec = TYPE_PRECISION (arg1_type);
4039 wide_int max = wi::max_value (arg1_type);
4040 wide_int signed_max = wi::max_value (prec, SIGNED);
4041 wide_int min = wi::min_value (arg1_type);
4042 }
4043 (switch
4044 (if (wi::to_wide (cst) == max)
4045 (switch
4046 (if (cmp == GT_EXPR)
4047 { constant_boolean_node (false, type); })
4048 (if (cmp == GE_EXPR)
4049 (eq @2 @1))
4050 (if (cmp == LE_EXPR)
4051 { constant_boolean_node (true, type); })
4052 (if (cmp == LT_EXPR)
4053 (ne @2 @1))))
4054 (if (wi::to_wide (cst) == min)
4055 (switch
4056 (if (cmp == LT_EXPR)
4057 { constant_boolean_node (false, type); })
4058 (if (cmp == LE_EXPR)
4059 (eq @2 @1))
4060 (if (cmp == GE_EXPR)
4061 { constant_boolean_node (true, type); })
4062 (if (cmp == GT_EXPR)
4063 (ne @2 @1))))
4064 (if (wi::to_wide (cst) == max - 1)
4065 (switch
4066 (if (cmp == GT_EXPR)
4067 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4068 wide_int_to_tree (TREE_TYPE (cst),
4069 wi::to_wide (cst)
4070 + 1)); }))
4071 (if (cmp == LE_EXPR)
4072 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4073 wide_int_to_tree (TREE_TYPE (cst),
4074 wi::to_wide (cst)
4075 + 1)); }))))
4076 (if (wi::to_wide (cst) == min + 1)
4077 (switch
4078 (if (cmp == GE_EXPR)
4079 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4080 wide_int_to_tree (TREE_TYPE (cst),
4081 wi::to_wide (cst)
4082 - 1)); }))
4083 (if (cmp == LT_EXPR)
4084 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4085 wide_int_to_tree (TREE_TYPE (cst),
4086 wi::to_wide (cst)
4087 - 1)); }))))
4088 (if (wi::to_wide (cst) == signed_max
4089 && TYPE_UNSIGNED (arg1_type)
4090 /* We will flip the signedness of the comparison operator
4091 associated with the mode of @1, so the sign bit is
4092 specified by this mode. Check that @1 is the signed
4093 max associated with this sign bit. */
4094 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4095 /* signed_type does not work on pointer types. */
4096 && INTEGRAL_TYPE_P (arg1_type))
4097 /* The following case also applies to X < signed_max+1
4098 and X >= signed_max+1 because previous transformations. */
4099 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4100 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4101 (switch
4102 (if (cst == @1 && cmp == LE_EXPR)
4103 (ge (convert:st @0) { build_zero_cst (st); }))
4104 (if (cst == @1 && cmp == GT_EXPR)
4105 (lt (convert:st @0) { build_zero_cst (st); }))
4106 (if (cmp == LE_EXPR)
4107 (ge (view_convert:st @0) { build_zero_cst (st); }))
4108 (if (cmp == GT_EXPR)
4109 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4110
4111 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4112 /* If the second operand is NaN, the result is constant. */
4113 (simplify
4114 (cmp @0 REAL_CST@1)
4115 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4116 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4117 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4118 ? false : true, type); })))
4119
4120 /* bool_var != 0 becomes bool_var. */
4121 (simplify
4122 (ne @0 integer_zerop)
4123 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4124 && types_match (type, TREE_TYPE (@0)))
4125 (non_lvalue @0)))
4126 /* bool_var == 1 becomes bool_var. */
4127 (simplify
4128 (eq @0 integer_onep)
4129 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4130 && types_match (type, TREE_TYPE (@0)))
4131 (non_lvalue @0)))
4132 /* Do not handle
4133 bool_var == 0 becomes !bool_var or
4134 bool_var != 1 becomes !bool_var
4135 here because that only is good in assignment context as long
4136 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4137 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4138 clearly less optimal and which we'll transform again in forwprop. */
4139
4140 /* When one argument is a constant, overflow detection can be simplified.
4141 Currently restricted to single use so as not to interfere too much with
4142 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4143 A + CST CMP A -> A CMP' CST' */
4144 (for cmp (lt le ge gt)
4145 out (gt gt le le)
4146 (simplify
4147 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4148 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4149 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4150 && wi::to_wide (@1) != 0
4151 && single_use (@2))
4152 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4153 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4154 wi::max_value (prec, UNSIGNED)
4155 - wi::to_wide (@1)); })))))
4156
4157 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4158 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4159 expects the long form, so we restrict the transformation for now. */
4160 (for cmp (gt le)
4161 (simplify
4162 (cmp:c (minus@2 @0 @1) @0)
4163 (if (single_use (@2)
4164 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4165 && TYPE_UNSIGNED (TREE_TYPE (@0))
4166 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4167 (cmp @1 @0))))
4168
4169 /* Testing for overflow is unnecessary if we already know the result. */
4170 /* A - B > A */
4171 (for cmp (gt le)
4172 out (ne eq)
4173 (simplify
4174 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4175 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4176 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4177 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4178 /* A + B < A */
4179 (for cmp (lt ge)
4180 out (ne eq)
4181 (simplify
4182 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4183 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4184 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4185 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4186
4187 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4188 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4189 (for cmp (lt ge)
4190 out (ne eq)
4191 (simplify
4192 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4193 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4194 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4195 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4196
4197 /* Simplification of math builtins. These rules must all be optimizations
4198 as well as IL simplifications. If there is a possibility that the new
4199 form could be a pessimization, the rule should go in the canonicalization
4200 section that follows this one.
4201
4202 Rules can generally go in this section if they satisfy one of
4203 the following:
4204
4205 - the rule describes an identity
4206
4207 - the rule replaces calls with something as simple as addition or
4208 multiplication
4209
4210 - the rule contains unary calls only and simplifies the surrounding
4211 arithmetic. (The idea here is to exclude non-unary calls in which
4212 one operand is constant and in which the call is known to be cheap
4213 when the operand has that value.) */
4214
4215 (if (flag_unsafe_math_optimizations)
4216 /* Simplify sqrt(x) * sqrt(x) -> x. */
4217 (simplify
4218 (mult (SQRT_ALL@1 @0) @1)
4219 (if (!HONOR_SNANS (type))
4220 @0))
4221
4222 (for op (plus minus)
4223 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4224 (simplify
4225 (op (rdiv @0 @1)
4226 (rdiv @2 @1))
4227 (rdiv (op @0 @2) @1)))
4228
4229 (for cmp (lt le gt ge)
4230 neg_cmp (gt ge lt le)
4231 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4232 (simplify
4233 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4234 (with
4235 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4236 (if (tem
4237 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4238 || (real_zerop (tem) && !real_zerop (@1))))
4239 (switch
4240 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4241 (cmp @0 { tem; }))
4242 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4243 (neg_cmp @0 { tem; })))))))
4244
4245 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4246 (for root (SQRT CBRT)
4247 (simplify
4248 (mult (root:s @0) (root:s @1))
4249 (root (mult @0 @1))))
4250
4251 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4252 (for exps (EXP EXP2 EXP10 POW10)
4253 (simplify
4254 (mult (exps:s @0) (exps:s @1))
4255 (exps (plus @0 @1))))
4256
4257 /* Simplify a/root(b/c) into a*root(c/b). */
4258 (for root (SQRT CBRT)
4259 (simplify
4260 (rdiv @0 (root:s (rdiv:s @1 @2)))
4261 (mult @0 (root (rdiv @2 @1)))))
4262
4263 /* Simplify x/expN(y) into x*expN(-y). */
4264 (for exps (EXP EXP2 EXP10 POW10)
4265 (simplify
4266 (rdiv @0 (exps:s @1))
4267 (mult @0 (exps (negate @1)))))
4268
4269 (for logs (LOG LOG2 LOG10 LOG10)
4270 exps (EXP EXP2 EXP10 POW10)
4271 /* logN(expN(x)) -> x. */
4272 (simplify
4273 (logs (exps @0))
4274 @0)
4275 /* expN(logN(x)) -> x. */
4276 (simplify
4277 (exps (logs @0))
4278 @0))
4279
4280 /* Optimize logN(func()) for various exponential functions. We
4281 want to determine the value "x" and the power "exponent" in
4282 order to transform logN(x**exponent) into exponent*logN(x). */
4283 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4284 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4285 (simplify
4286 (logs (exps @0))
4287 (if (SCALAR_FLOAT_TYPE_P (type))
4288 (with {
4289 tree x;
4290 switch (exps)
4291 {
4292 CASE_CFN_EXP:
4293 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4294 x = build_real_truncate (type, dconst_e ());
4295 break;
4296 CASE_CFN_EXP2:
4297 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4298 x = build_real (type, dconst2);
4299 break;
4300 CASE_CFN_EXP10:
4301 CASE_CFN_POW10:
4302 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4303 {
4304 REAL_VALUE_TYPE dconst10;
4305 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4306 x = build_real (type, dconst10);
4307 }
4308 break;
4309 default:
4310 gcc_unreachable ();
4311 }
4312 }
4313 (mult (logs { x; }) @0)))))
4314
4315 (for logs (LOG LOG
4316 LOG2 LOG2
4317 LOG10 LOG10)
4318 exps (SQRT CBRT)
4319 (simplify
4320 (logs (exps @0))
4321 (if (SCALAR_FLOAT_TYPE_P (type))
4322 (with {
4323 tree x;
4324 switch (exps)
4325 {
4326 CASE_CFN_SQRT:
4327 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4328 x = build_real (type, dconsthalf);
4329 break;
4330 CASE_CFN_CBRT:
4331 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4332 x = build_real_truncate (type, dconst_third ());
4333 break;
4334 default:
4335 gcc_unreachable ();
4336 }
4337 }
4338 (mult { x; } (logs @0))))))
4339
4340 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4341 (for logs (LOG LOG2 LOG10)
4342 pows (POW)
4343 (simplify
4344 (logs (pows @0 @1))
4345 (mult @1 (logs @0))))
4346
4347 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4348 or if C is a positive power of 2,
4349 pow(C,x) -> exp2(log2(C)*x). */
4350 #if GIMPLE
4351 (for pows (POW)
4352 exps (EXP)
4353 logs (LOG)
4354 exp2s (EXP2)
4355 log2s (LOG2)
4356 (simplify
4357 (pows REAL_CST@0 @1)
4358 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4359 && real_isfinite (TREE_REAL_CST_PTR (@0))
4360 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4361 the use_exp2 case until after vectorization. It seems actually
4362 beneficial for all constants to postpone this until later,
4363 because exp(log(C)*x), while faster, will have worse precision
4364 and if x folds into a constant too, that is unnecessary
4365 pessimization. */
4366 && canonicalize_math_after_vectorization_p ())
4367 (with {
4368 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4369 bool use_exp2 = false;
4370 if (targetm.libc_has_function (function_c99_misc)
4371 && value->cl == rvc_normal)
4372 {
4373 REAL_VALUE_TYPE frac_rvt = *value;
4374 SET_REAL_EXP (&frac_rvt, 1);
4375 if (real_equal (&frac_rvt, &dconst1))
4376 use_exp2 = true;
4377 }
4378 }
4379 (if (!use_exp2)
4380 (if (optimize_pow_to_exp (@0, @1))
4381 (exps (mult (logs @0) @1)))
4382 (exp2s (mult (log2s @0) @1)))))))
4383 #endif
4384
4385 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4386 (for pows (POW)
4387 exps (EXP EXP2 EXP10 POW10)
4388 logs (LOG LOG2 LOG10 LOG10)
4389 (simplify
4390 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4391 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4392 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4393 (exps (plus (mult (logs @0) @1) @2)))))
4394
4395 (for sqrts (SQRT)
4396 cbrts (CBRT)
4397 pows (POW)
4398 exps (EXP EXP2 EXP10 POW10)
4399 /* sqrt(expN(x)) -> expN(x*0.5). */
4400 (simplify
4401 (sqrts (exps @0))
4402 (exps (mult @0 { build_real (type, dconsthalf); })))
4403 /* cbrt(expN(x)) -> expN(x/3). */
4404 (simplify
4405 (cbrts (exps @0))
4406 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4407 /* pow(expN(x), y) -> expN(x*y). */
4408 (simplify
4409 (pows (exps @0) @1)
4410 (exps (mult @0 @1))))
4411
4412 /* tan(atan(x)) -> x. */
4413 (for tans (TAN)
4414 atans (ATAN)
4415 (simplify
4416 (tans (atans @0))
4417 @0)))
4418
4419 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4420 (for sins (SIN)
4421 atans (ATAN)
4422 sqrts (SQRT)
4423 copysigns (COPYSIGN)
4424 (simplify
4425 (sins (atans:s @0))
4426 (with
4427 {
4428 REAL_VALUE_TYPE r_cst;
4429 build_sinatan_real (&r_cst, type);
4430 tree t_cst = build_real (type, r_cst);
4431 tree t_one = build_one_cst (type);
4432 }
4433 (if (SCALAR_FLOAT_TYPE_P (type))
4434 (cond (lt (abs @0) { t_cst; })
4435 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4436 (copysigns { t_one; } @0))))))
4437
4438 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4439 (for coss (COS)
4440 atans (ATAN)
4441 sqrts (SQRT)
4442 copysigns (COPYSIGN)
4443 (simplify
4444 (coss (atans:s @0))
4445 (with
4446 {
4447 REAL_VALUE_TYPE r_cst;
4448 build_sinatan_real (&r_cst, type);
4449 tree t_cst = build_real (type, r_cst);
4450 tree t_one = build_one_cst (type);
4451 tree t_zero = build_zero_cst (type);
4452 }
4453 (if (SCALAR_FLOAT_TYPE_P (type))
4454 (cond (lt (abs @0) { t_cst; })
4455 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4456 (copysigns { t_zero; } @0))))))
4457
4458 (if (!flag_errno_math)
4459 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4460 (for sinhs (SINH)
4461 atanhs (ATANH)
4462 sqrts (SQRT)
4463 (simplify
4464 (sinhs (atanhs:s @0))
4465 (with { tree t_one = build_one_cst (type); }
4466 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4467
4468 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4469 (for coshs (COSH)
4470 atanhs (ATANH)
4471 sqrts (SQRT)
4472 (simplify
4473 (coshs (atanhs:s @0))
4474 (with { tree t_one = build_one_cst (type); }
4475 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4476
4477 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4478 (simplify
4479 (CABS (complex:C @0 real_zerop@1))
4480 (abs @0))
4481
4482 /* trunc(trunc(x)) -> trunc(x), etc. */
4483 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4484 (simplify
4485 (fns (fns @0))
4486 (fns @0)))
4487 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4488 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4489 (simplify
4490 (fns integer_valued_real_p@0)
4491 @0))
4492
4493 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4494 (simplify
4495 (HYPOT:c @0 real_zerop@1)
4496 (abs @0))
4497
4498 /* pow(1,x) -> 1. */
4499 (simplify
4500 (POW real_onep@0 @1)
4501 @0)
4502
4503 (simplify
4504 /* copysign(x,x) -> x. */
4505 (COPYSIGN_ALL @0 @0)
4506 @0)
4507
4508 (simplify
4509 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4510 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4511 (abs @0))
4512
4513 (for scale (LDEXP SCALBN SCALBLN)
4514 /* ldexp(0, x) -> 0. */
4515 (simplify
4516 (scale real_zerop@0 @1)
4517 @0)
4518 /* ldexp(x, 0) -> x. */
4519 (simplify
4520 (scale @0 integer_zerop@1)
4521 @0)
4522 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4523 (simplify
4524 (scale REAL_CST@0 @1)
4525 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4526 @0)))
4527
4528 /* Canonicalization of sequences of math builtins. These rules represent
4529 IL simplifications but are not necessarily optimizations.
4530
4531 The sincos pass is responsible for picking "optimal" implementations
4532 of math builtins, which may be more complicated and can sometimes go
4533 the other way, e.g. converting pow into a sequence of sqrts.
4534 We only want to do these canonicalizations before the pass has run. */
4535
4536 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4537 /* Simplify tan(x) * cos(x) -> sin(x). */
4538 (simplify
4539 (mult:c (TAN:s @0) (COS:s @0))
4540 (SIN @0))
4541
4542 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4543 (simplify
4544 (mult:c @0 (POW:s @0 REAL_CST@1))
4545 (if (!TREE_OVERFLOW (@1))
4546 (POW @0 (plus @1 { build_one_cst (type); }))))
4547
4548 /* Simplify sin(x) / cos(x) -> tan(x). */
4549 (simplify
4550 (rdiv (SIN:s @0) (COS:s @0))
4551 (TAN @0))
4552
4553 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4554 (simplify
4555 (rdiv (COS:s @0) (SIN:s @0))
4556 (rdiv { build_one_cst (type); } (TAN @0)))
4557
4558 /* Simplify sin(x) / tan(x) -> cos(x). */
4559 (simplify
4560 (rdiv (SIN:s @0) (TAN:s @0))
4561 (if (! HONOR_NANS (@0)
4562 && ! HONOR_INFINITIES (@0))
4563 (COS @0)))
4564
4565 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4566 (simplify
4567 (rdiv (TAN:s @0) (SIN:s @0))
4568 (if (! HONOR_NANS (@0)
4569 && ! HONOR_INFINITIES (@0))
4570 (rdiv { build_one_cst (type); } (COS @0))))
4571
4572 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4573 (simplify
4574 (mult (POW:s @0 @1) (POW:s @0 @2))
4575 (POW @0 (plus @1 @2)))
4576
4577 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4578 (simplify
4579 (mult (POW:s @0 @1) (POW:s @2 @1))
4580 (POW (mult @0 @2) @1))
4581
4582 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4583 (simplify
4584 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4585 (POWI (mult @0 @2) @1))
4586
4587 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4588 (simplify
4589 (rdiv (POW:s @0 REAL_CST@1) @0)
4590 (if (!TREE_OVERFLOW (@1))
4591 (POW @0 (minus @1 { build_one_cst (type); }))))
4592
4593 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4594 (simplify
4595 (rdiv @0 (POW:s @1 @2))
4596 (mult @0 (POW @1 (negate @2))))
4597
4598 (for sqrts (SQRT)
4599 cbrts (CBRT)
4600 pows (POW)
4601 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4602 (simplify
4603 (sqrts (sqrts @0))
4604 (pows @0 { build_real (type, dconst_quarter ()); }))
4605 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4606 (simplify
4607 (sqrts (cbrts @0))
4608 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4609 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4610 (simplify
4611 (cbrts (sqrts @0))
4612 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4613 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4614 (simplify
4615 (cbrts (cbrts tree_expr_nonnegative_p@0))
4616 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4617 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4618 (simplify
4619 (sqrts (pows @0 @1))
4620 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4621 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4622 (simplify
4623 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4624 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4625 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4626 (simplify
4627 (pows (sqrts @0) @1)
4628 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4629 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4630 (simplify
4631 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4632 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4633 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4634 (simplify
4635 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4636 (pows @0 (mult @1 @2))))
4637
4638 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4639 (simplify
4640 (CABS (complex @0 @0))
4641 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4642
4643 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4644 (simplify
4645 (HYPOT @0 @0)
4646 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4647
4648 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4649 (for cexps (CEXP)
4650 exps (EXP)
4651 cexpis (CEXPI)
4652 (simplify
4653 (cexps compositional_complex@0)
4654 (if (targetm.libc_has_function (function_c99_math_complex))
4655 (complex
4656 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4657 (mult @1 (imagpart @2)))))))
4658
4659 (if (canonicalize_math_p ())
4660 /* floor(x) -> trunc(x) if x is nonnegative. */
4661 (for floors (FLOOR_ALL)
4662 truncs (TRUNC_ALL)
4663 (simplify
4664 (floors tree_expr_nonnegative_p@0)
4665 (truncs @0))))
4666
4667 (match double_value_p
4668 @0
4669 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4670 (for froms (BUILT_IN_TRUNCL
4671 BUILT_IN_FLOORL
4672 BUILT_IN_CEILL
4673 BUILT_IN_ROUNDL
4674 BUILT_IN_NEARBYINTL
4675 BUILT_IN_RINTL)
4676 tos (BUILT_IN_TRUNC
4677 BUILT_IN_FLOOR
4678 BUILT_IN_CEIL
4679 BUILT_IN_ROUND
4680 BUILT_IN_NEARBYINT
4681 BUILT_IN_RINT)
4682 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4683 (if (optimize && canonicalize_math_p ())
4684 (simplify
4685 (froms (convert double_value_p@0))
4686 (convert (tos @0)))))
4687
4688 (match float_value_p
4689 @0
4690 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4691 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4692 BUILT_IN_FLOORL BUILT_IN_FLOOR
4693 BUILT_IN_CEILL BUILT_IN_CEIL
4694 BUILT_IN_ROUNDL BUILT_IN_ROUND
4695 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4696 BUILT_IN_RINTL BUILT_IN_RINT)
4697 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4698 BUILT_IN_FLOORF BUILT_IN_FLOORF
4699 BUILT_IN_CEILF BUILT_IN_CEILF
4700 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4701 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4702 BUILT_IN_RINTF BUILT_IN_RINTF)
4703 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4704 if x is a float. */
4705 (if (optimize && canonicalize_math_p ()
4706 && targetm.libc_has_function (function_c99_misc))
4707 (simplify
4708 (froms (convert float_value_p@0))
4709 (convert (tos @0)))))
4710
4711 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4712 tos (XFLOOR XCEIL XROUND XRINT)
4713 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4714 (if (optimize && canonicalize_math_p ())
4715 (simplify
4716 (froms (convert double_value_p@0))
4717 (tos @0))))
4718
4719 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4720 XFLOOR XCEIL XROUND XRINT)
4721 tos (XFLOORF XCEILF XROUNDF XRINTF)
4722 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4723 if x is a float. */
4724 (if (optimize && canonicalize_math_p ())
4725 (simplify
4726 (froms (convert float_value_p@0))
4727 (tos @0))))
4728
4729 (if (canonicalize_math_p ())
4730 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4731 (for floors (IFLOOR LFLOOR LLFLOOR)
4732 (simplify
4733 (floors tree_expr_nonnegative_p@0)
4734 (fix_trunc @0))))
4735
4736 (if (canonicalize_math_p ())
4737 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4738 (for fns (IFLOOR LFLOOR LLFLOOR
4739 ICEIL LCEIL LLCEIL
4740 IROUND LROUND LLROUND)
4741 (simplify
4742 (fns integer_valued_real_p@0)
4743 (fix_trunc @0)))
4744 (if (!flag_errno_math)
4745 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4746 (for rints (IRINT LRINT LLRINT)
4747 (simplify
4748 (rints integer_valued_real_p@0)
4749 (fix_trunc @0)))))
4750
4751 (if (canonicalize_math_p ())
4752 (for ifn (IFLOOR ICEIL IROUND IRINT)
4753 lfn (LFLOOR LCEIL LROUND LRINT)
4754 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4755 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4756 sizeof (int) == sizeof (long). */
4757 (if (TYPE_PRECISION (integer_type_node)
4758 == TYPE_PRECISION (long_integer_type_node))
4759 (simplify
4760 (ifn @0)
4761 (lfn:long_integer_type_node @0)))
4762 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4763 sizeof (long long) == sizeof (long). */
4764 (if (TYPE_PRECISION (long_long_integer_type_node)
4765 == TYPE_PRECISION (long_integer_type_node))
4766 (simplify
4767 (llfn @0)
4768 (lfn:long_integer_type_node @0)))))
4769
4770 /* cproj(x) -> x if we're ignoring infinities. */
4771 (simplify
4772 (CPROJ @0)
4773 (if (!HONOR_INFINITIES (type))
4774 @0))
4775
4776 /* If the real part is inf and the imag part is known to be
4777 nonnegative, return (inf + 0i). */
4778 (simplify
4779 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4780 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4781 { build_complex_inf (type, false); }))
4782
4783 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4784 (simplify
4785 (CPROJ (complex @0 REAL_CST@1))
4786 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4787 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4788
4789 (for pows (POW)
4790 sqrts (SQRT)
4791 cbrts (CBRT)
4792 (simplify
4793 (pows @0 REAL_CST@1)
4794 (with {
4795 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4796 REAL_VALUE_TYPE tmp;
4797 }
4798 (switch
4799 /* pow(x,0) -> 1. */
4800 (if (real_equal (value, &dconst0))
4801 { build_real (type, dconst1); })
4802 /* pow(x,1) -> x. */
4803 (if (real_equal (value, &dconst1))
4804 @0)
4805 /* pow(x,-1) -> 1/x. */
4806 (if (real_equal (value, &dconstm1))
4807 (rdiv { build_real (type, dconst1); } @0))
4808 /* pow(x,0.5) -> sqrt(x). */
4809 (if (flag_unsafe_math_optimizations
4810 && canonicalize_math_p ()
4811 && real_equal (value, &dconsthalf))
4812 (sqrts @0))
4813 /* pow(x,1/3) -> cbrt(x). */
4814 (if (flag_unsafe_math_optimizations
4815 && canonicalize_math_p ()
4816 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4817 real_equal (value, &tmp)))
4818 (cbrts @0))))))
4819
4820 /* powi(1,x) -> 1. */
4821 (simplify
4822 (POWI real_onep@0 @1)
4823 @0)
4824
4825 (simplify
4826 (POWI @0 INTEGER_CST@1)
4827 (switch
4828 /* powi(x,0) -> 1. */
4829 (if (wi::to_wide (@1) == 0)
4830 { build_real (type, dconst1); })
4831 /* powi(x,1) -> x. */
4832 (if (wi::to_wide (@1) == 1)
4833 @0)
4834 /* powi(x,-1) -> 1/x. */
4835 (if (wi::to_wide (@1) == -1)
4836 (rdiv { build_real (type, dconst1); } @0))))
4837
4838 /* Narrowing of arithmetic and logical operations.
4839
4840 These are conceptually similar to the transformations performed for
4841 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4842 term we want to move all that code out of the front-ends into here. */
4843
4844 /* If we have a narrowing conversion of an arithmetic operation where
4845 both operands are widening conversions from the same type as the outer
4846 narrowing conversion. Then convert the innermost operands to a suitable
4847 unsigned type (to avoid introducing undefined behavior), perform the
4848 operation and convert the result to the desired type. */
4849 (for op (plus minus)
4850 (simplify
4851 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4852 (if (INTEGRAL_TYPE_P (type)
4853 /* We check for type compatibility between @0 and @1 below,
4854 so there's no need to check that @1/@3 are integral types. */
4855 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4856 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4857 /* The precision of the type of each operand must match the
4858 precision of the mode of each operand, similarly for the
4859 result. */
4860 && type_has_mode_precision_p (TREE_TYPE (@0))
4861 && type_has_mode_precision_p (TREE_TYPE (@1))
4862 && type_has_mode_precision_p (type)
4863 /* The inner conversion must be a widening conversion. */
4864 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4865 && types_match (@0, type)
4866 && (types_match (@0, @1)
4867 /* Or the second operand is const integer or converted const
4868 integer from valueize. */
4869 || TREE_CODE (@1) == INTEGER_CST))
4870 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4871 (op @0 (convert @1))
4872 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4873 (convert (op (convert:utype @0)
4874 (convert:utype @1))))))))
4875
4876 /* This is another case of narrowing, specifically when there's an outer
4877 BIT_AND_EXPR which masks off bits outside the type of the innermost
4878 operands. Like the previous case we have to convert the operands
4879 to unsigned types to avoid introducing undefined behavior for the
4880 arithmetic operation. */
4881 (for op (minus plus)
4882 (simplify
4883 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4884 (if (INTEGRAL_TYPE_P (type)
4885 /* We check for type compatibility between @0 and @1 below,
4886 so there's no need to check that @1/@3 are integral types. */
4887 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4888 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4889 /* The precision of the type of each operand must match the
4890 precision of the mode of each operand, similarly for the
4891 result. */
4892 && type_has_mode_precision_p (TREE_TYPE (@0))
4893 && type_has_mode_precision_p (TREE_TYPE (@1))
4894 && type_has_mode_precision_p (type)
4895 /* The inner conversion must be a widening conversion. */
4896 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4897 && types_match (@0, @1)
4898 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4899 <= TYPE_PRECISION (TREE_TYPE (@0)))
4900 && (wi::to_wide (@4)
4901 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4902 true, TYPE_PRECISION (type))) == 0)
4903 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4904 (with { tree ntype = TREE_TYPE (@0); }
4905 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4906 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4907 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4908 (convert:utype @4))))))))
4909
4910 /* Transform (@0 < @1 and @0 < @2) to use min,
4911 (@0 > @1 and @0 > @2) to use max */
4912 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4913 op (lt le gt ge lt le gt ge )
4914 ext (min min max max max max min min )
4915 (simplify
4916 (logic (op:cs @0 @1) (op:cs @0 @2))
4917 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4918 && TREE_CODE (@0) != INTEGER_CST)
4919 (op @0 (ext @1 @2)))))
4920
4921 (simplify
4922 /* signbit(x) -> 0 if x is nonnegative. */
4923 (SIGNBIT tree_expr_nonnegative_p@0)
4924 { integer_zero_node; })
4925
4926 (simplify
4927 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4928 (SIGNBIT @0)
4929 (if (!HONOR_SIGNED_ZEROS (@0))
4930 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4931
4932 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4933 (for cmp (eq ne)
4934 (for op (plus minus)
4935 rop (minus plus)
4936 (simplify
4937 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4938 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4939 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4940 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4941 && !TYPE_SATURATING (TREE_TYPE (@0)))
4942 (with { tree res = int_const_binop (rop, @2, @1); }
4943 (if (TREE_OVERFLOW (res)
4944 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4945 { constant_boolean_node (cmp == NE_EXPR, type); }
4946 (if (single_use (@3))
4947 (cmp @0 { TREE_OVERFLOW (res)
4948 ? drop_tree_overflow (res) : res; }))))))))
4949 (for cmp (lt le gt ge)
4950 (for op (plus minus)
4951 rop (minus plus)
4952 (simplify
4953 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4954 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4955 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4956 (with { tree res = int_const_binop (rop, @2, @1); }
4957 (if (TREE_OVERFLOW (res))
4958 {
4959 fold_overflow_warning (("assuming signed overflow does not occur "
4960 "when simplifying conditional to constant"),
4961 WARN_STRICT_OVERFLOW_CONDITIONAL);
4962 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4963 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4964 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4965 TYPE_SIGN (TREE_TYPE (@1)))
4966 != (op == MINUS_EXPR);
4967 constant_boolean_node (less == ovf_high, type);
4968 }
4969 (if (single_use (@3))
4970 (with
4971 {
4972 fold_overflow_warning (("assuming signed overflow does not occur "
4973 "when changing X +- C1 cmp C2 to "
4974 "X cmp C2 -+ C1"),
4975 WARN_STRICT_OVERFLOW_COMPARISON);
4976 }
4977 (cmp @0 { res; })))))))))
4978
4979 /* Canonicalizations of BIT_FIELD_REFs. */
4980
4981 (simplify
4982 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4983 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4984
4985 (simplify
4986 (BIT_FIELD_REF (view_convert @0) @1 @2)
4987 (BIT_FIELD_REF @0 @1 @2))
4988
4989 (simplify
4990 (BIT_FIELD_REF @0 @1 integer_zerop)
4991 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4992 (view_convert @0)))
4993
4994 (simplify
4995 (BIT_FIELD_REF @0 @1 @2)
4996 (switch
4997 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4998 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4999 (switch
5000 (if (integer_zerop (@2))
5001 (view_convert (realpart @0)))
5002 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5003 (view_convert (imagpart @0)))))
5004 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5005 && INTEGRAL_TYPE_P (type)
5006 /* On GIMPLE this should only apply to register arguments. */
5007 && (! GIMPLE || is_gimple_reg (@0))
5008 /* A bit-field-ref that referenced the full argument can be stripped. */
5009 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5010 && integer_zerop (@2))
5011 /* Low-parts can be reduced to integral conversions.
5012 ??? The following doesn't work for PDP endian. */
5013 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5014 /* Don't even think about BITS_BIG_ENDIAN. */
5015 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5016 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5017 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5018 ? (TYPE_PRECISION (TREE_TYPE (@0))
5019 - TYPE_PRECISION (type))
5020 : 0)) == 0)))
5021 (convert @0))))
5022
5023 /* Simplify vector extracts. */
5024
5025 (simplify
5026 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5027 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5028 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5029 || (VECTOR_TYPE_P (type)
5030 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5031 (with
5032 {
5033 tree ctor = (TREE_CODE (@0) == SSA_NAME
5034 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5035 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5036 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5037 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5038 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5039 }
5040 (if (n != 0
5041 && (idx % width) == 0
5042 && (n % width) == 0
5043 && known_le ((idx + n) / width,
5044 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5045 (with
5046 {
5047 idx = idx / width;
5048 n = n / width;
5049 /* Constructor elements can be subvectors. */
5050 poly_uint64 k = 1;
5051 if (CONSTRUCTOR_NELTS (ctor) != 0)
5052 {
5053 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5054 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5055 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5056 }
5057 unsigned HOST_WIDE_INT elt, count, const_k;
5058 }
5059 (switch
5060 /* We keep an exact subset of the constructor elements. */
5061 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5062 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5063 { build_constructor (type, NULL); }
5064 (if (count == 1)
5065 (if (elt < CONSTRUCTOR_NELTS (ctor))
5066 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5067 { build_zero_cst (type); })
5068 {
5069 vec<constructor_elt, va_gc> *vals;
5070 vec_alloc (vals, count);
5071 for (unsigned i = 0;
5072 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5073 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5074 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5075 build_constructor (type, vals);
5076 })))
5077 /* The bitfield references a single constructor element. */
5078 (if (k.is_constant (&const_k)
5079 && idx + n <= (idx / const_k + 1) * const_k)
5080 (switch
5081 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5082 { build_zero_cst (type); })
5083 (if (n == const_k)
5084 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5085 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5086 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5087
5088 /* Simplify a bit extraction from a bit insertion for the cases with
5089 the inserted element fully covering the extraction or the insertion
5090 not touching the extraction. */
5091 (simplify
5092 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5093 (with
5094 {
5095 unsigned HOST_WIDE_INT isize;
5096 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5097 isize = TYPE_PRECISION (TREE_TYPE (@1));
5098 else
5099 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5100 }
5101 (switch
5102 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5103 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5104 wi::to_wide (@ipos) + isize))
5105 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5106 wi::to_wide (@rpos)
5107 - wi::to_wide (@ipos)); }))
5108 (if (wi::geu_p (wi::to_wide (@ipos),
5109 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5110 || wi::geu_p (wi::to_wide (@rpos),
5111 wi::to_wide (@ipos) + isize))
5112 (BIT_FIELD_REF @0 @rsize @rpos)))))
5113
5114 (if (canonicalize_math_after_vectorization_p ())
5115 (for fmas (FMA)
5116 (simplify
5117 (fmas:c (negate @0) @1 @2)
5118 (IFN_FNMA @0 @1 @2))
5119 (simplify
5120 (fmas @0 @1 (negate @2))
5121 (IFN_FMS @0 @1 @2))
5122 (simplify
5123 (fmas:c (negate @0) @1 (negate @2))
5124 (IFN_FNMS @0 @1 @2))
5125 (simplify
5126 (negate (fmas@3 @0 @1 @2))
5127 (if (single_use (@3))
5128 (IFN_FNMS @0 @1 @2))))
5129
5130 (simplify
5131 (IFN_FMS:c (negate @0) @1 @2)
5132 (IFN_FNMS @0 @1 @2))
5133 (simplify
5134 (IFN_FMS @0 @1 (negate @2))
5135 (IFN_FMA @0 @1 @2))
5136 (simplify
5137 (IFN_FMS:c (negate @0) @1 (negate @2))
5138 (IFN_FNMA @0 @1 @2))
5139 (simplify
5140 (negate (IFN_FMS@3 @0 @1 @2))
5141 (if (single_use (@3))
5142 (IFN_FNMA @0 @1 @2)))
5143
5144 (simplify
5145 (IFN_FNMA:c (negate @0) @1 @2)
5146 (IFN_FMA @0 @1 @2))
5147 (simplify
5148 (IFN_FNMA @0 @1 (negate @2))
5149 (IFN_FNMS @0 @1 @2))
5150 (simplify
5151 (IFN_FNMA:c (negate @0) @1 (negate @2))
5152 (IFN_FMS @0 @1 @2))
5153 (simplify
5154 (negate (IFN_FNMA@3 @0 @1 @2))
5155 (if (single_use (@3))
5156 (IFN_FMS @0 @1 @2)))
5157
5158 (simplify
5159 (IFN_FNMS:c (negate @0) @1 @2)
5160 (IFN_FMS @0 @1 @2))
5161 (simplify
5162 (IFN_FNMS @0 @1 (negate @2))
5163 (IFN_FNMA @0 @1 @2))
5164 (simplify
5165 (IFN_FNMS:c (negate @0) @1 (negate @2))
5166 (IFN_FMA @0 @1 @2))
5167 (simplify
5168 (negate (IFN_FNMS@3 @0 @1 @2))
5169 (if (single_use (@3))
5170 (IFN_FMA @0 @1 @2))))
5171
5172 /* POPCOUNT simplifications. */
5173 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5174 BUILT_IN_POPCOUNTIMAX)
5175 /* popcount(X&1) is nop_expr(X&1). */
5176 (simplify
5177 (popcount @0)
5178 (if (tree_nonzero_bits (@0) == 1)
5179 (convert @0)))
5180 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5181 (simplify
5182 (plus (popcount:s @0) (popcount:s @1))
5183 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5184 (popcount (bit_ior @0 @1))))
5185 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5186 (for cmp (le eq ne gt)
5187 rep (eq eq ne ne)
5188 (simplify
5189 (cmp (popcount @0) integer_zerop)
5190 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5191
5192 /* Simplify:
5193
5194 a = a1 op a2
5195 r = c ? a : b;
5196
5197 to:
5198
5199 r = c ? a1 op a2 : b;
5200
5201 if the target can do it in one go. This makes the operation conditional
5202 on c, so could drop potentially-trapping arithmetic, but that's a valid
5203 simplification if the result of the operation isn't needed.
5204
5205 Avoid speculatively generating a stand-alone vector comparison
5206 on targets that might not support them. Any target implementing
5207 conditional internal functions must support the same comparisons
5208 inside and outside a VEC_COND_EXPR. */
5209
5210 #if GIMPLE
5211 (for uncond_op (UNCOND_BINARY)
5212 cond_op (COND_BINARY)
5213 (simplify
5214 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5215 (with { tree op_type = TREE_TYPE (@4); }
5216 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5217 && element_precision (type) == element_precision (op_type))
5218 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5219 (simplify
5220 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5221 (with { tree op_type = TREE_TYPE (@4); }
5222 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5223 && element_precision (type) == element_precision (op_type))
5224 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5225
5226 /* Same for ternary operations. */
5227 (for uncond_op (UNCOND_TERNARY)
5228 cond_op (COND_TERNARY)
5229 (simplify
5230 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5231 (with { tree op_type = TREE_TYPE (@5); }
5232 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5233 && element_precision (type) == element_precision (op_type))
5234 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5235 (simplify
5236 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5237 (with { tree op_type = TREE_TYPE (@5); }
5238 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5239 && element_precision (type) == element_precision (op_type))
5240 (view_convert (cond_op (bit_not @0) @2 @3 @4
5241 (view_convert:op_type @1)))))))
5242 #endif
5243
5244 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5245 "else" value of an IFN_COND_*. */
5246 (for cond_op (COND_BINARY)
5247 (simplify
5248 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5249 (with { tree op_type = TREE_TYPE (@3); }
5250 (if (element_precision (type) == element_precision (op_type))
5251 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5252 (simplify
5253 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5254 (with { tree op_type = TREE_TYPE (@5); }
5255 (if (inverse_conditions_p (@0, @2)
5256 && element_precision (type) == element_precision (op_type))
5257 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5258
5259 /* Same for ternary operations. */
5260 (for cond_op (COND_TERNARY)
5261 (simplify
5262 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5263 (with { tree op_type = TREE_TYPE (@4); }
5264 (if (element_precision (type) == element_precision (op_type))
5265 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5266 (simplify
5267 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5268 (with { tree op_type = TREE_TYPE (@6); }
5269 (if (inverse_conditions_p (@0, @2)
5270 && element_precision (type) == element_precision (op_type))
5271 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5272
5273 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5274 expressions like:
5275
5276 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5277 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5278
5279 If pointers are known not to wrap, B checks whether @1 bytes starting
5280 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5281 bytes. A is more efficiently tested as:
5282
5283 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5284
5285 The equivalent expression for B is given by replacing @1 with @1 - 1:
5286
5287 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5288
5289 @0 and @2 can be swapped in both expressions without changing the result.
5290
5291 The folds rely on sizetype's being unsigned (which is always true)
5292 and on its being the same width as the pointer (which we have to check).
5293
5294 The fold replaces two pointer_plus expressions, two comparisons and
5295 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5296 the best case it's a saving of two operations. The A fold retains one
5297 of the original pointer_pluses, so is a win even if both pointer_pluses
5298 are used elsewhere. The B fold is a wash if both pointer_pluses are
5299 used elsewhere, since all we end up doing is replacing a comparison with
5300 a pointer_plus. We do still apply the fold under those circumstances
5301 though, in case applying it to other conditions eventually makes one of the
5302 pointer_pluses dead. */
5303 (for ior (truth_orif truth_or bit_ior)
5304 (for cmp (le lt)
5305 (simplify
5306 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5307 (cmp:cs (pointer_plus@4 @2 @1) @0))
5308 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5309 && TYPE_OVERFLOW_WRAPS (sizetype)
5310 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5311 /* Calculate the rhs constant. */
5312 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5313 offset_int rhs = off * 2; }
5314 /* Always fails for negative values. */
5315 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5316 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5317 pick a canonical order. This increases the chances of using the
5318 same pointer_plus in multiple checks. */
5319 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5320 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5321 (if (cmp == LT_EXPR)
5322 (gt (convert:sizetype
5323 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5324 { swap_p ? @0 : @2; }))
5325 { rhs_tree; })
5326 (gt (convert:sizetype
5327 (pointer_diff:ssizetype
5328 (pointer_plus { swap_p ? @2 : @0; }
5329 { wide_int_to_tree (sizetype, off); })
5330 { swap_p ? @0 : @2; }))
5331 { rhs_tree; })))))))))
5332
5333 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5334 element of @1. */
5335 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5336 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5337 (with { int i = single_nonzero_element (@1); }
5338 (if (i >= 0)
5339 (with { tree elt = vector_cst_elt (@1, i);
5340 tree elt_type = TREE_TYPE (elt);
5341 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5342 tree size = bitsize_int (elt_bits);
5343 tree pos = bitsize_int (elt_bits * i); }
5344 (view_convert
5345 (bit_and:elt_type
5346 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5347 { elt; })))))))