Move some comparison simplifications to match.pd
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 integer_pow2p
35 HONOR_NANS)
36
37 /* Operator lists. */
38 (define_operator_list tcc_comparison
39 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
40 (define_operator_list inverted_tcc_comparison
41 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
42 (define_operator_list inverted_tcc_comparison_with_nans
43 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list swapped_tcc_comparison
45 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
46 (define_operator_list simple_comparison lt le eq ne ge gt)
47 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
48
49 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
50 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
51 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
52 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
53 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
54 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
55 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
56 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
57 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
58 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
59 (define_operator_list SIN BUILT_IN_SINF BUILT_IN_SIN BUILT_IN_SINL)
60 (define_operator_list COS BUILT_IN_COSF BUILT_IN_COS BUILT_IN_COSL)
61 (define_operator_list TAN BUILT_IN_TANF BUILT_IN_TAN BUILT_IN_TANL)
62 (define_operator_list COSH BUILT_IN_COSHF BUILT_IN_COSH BUILT_IN_COSHL)
63 (define_operator_list CEXPI BUILT_IN_CEXPIF BUILT_IN_CEXPI BUILT_IN_CEXPIL)
64
65 /* Simplifications of operations with one constant operand and
66 simplifications to constants or single values. */
67
68 (for op (plus pointer_plus minus bit_ior bit_xor)
69 (simplify
70 (op @0 integer_zerop)
71 (non_lvalue @0)))
72
73 /* 0 +p index -> (type)index */
74 (simplify
75 (pointer_plus integer_zerop @1)
76 (non_lvalue (convert @1)))
77
78 /* See if ARG1 is zero and X + ARG1 reduces to X.
79 Likewise if the operands are reversed. */
80 (simplify
81 (plus:c @0 real_zerop@1)
82 (if (fold_real_zero_addition_p (type, @1, 0))
83 (non_lvalue @0)))
84
85 /* See if ARG1 is zero and X - ARG1 reduces to X. */
86 (simplify
87 (minus @0 real_zerop@1)
88 (if (fold_real_zero_addition_p (type, @1, 1))
89 (non_lvalue @0)))
90
91 /* Simplify x - x.
92 This is unsafe for certain floats even in non-IEEE formats.
93 In IEEE, it is unsafe because it does wrong for NaNs.
94 Also note that operand_equal_p is always false if an operand
95 is volatile. */
96 (simplify
97 (minus @0 @0)
98 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
99 { build_zero_cst (type); }))
100
101 (simplify
102 (mult @0 integer_zerop@1)
103 @1)
104
105 /* Maybe fold x * 0 to 0. The expressions aren't the same
106 when x is NaN, since x * 0 is also NaN. Nor are they the
107 same in modes with signed zeros, since multiplying a
108 negative value by 0 gives -0, not +0. */
109 (simplify
110 (mult @0 real_zerop@1)
111 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
112 @1))
113
114 /* In IEEE floating point, x*1 is not equivalent to x for snans.
115 Likewise for complex arithmetic with signed zeros. */
116 (simplify
117 (mult @0 real_onep)
118 (if (!HONOR_SNANS (type)
119 && (!HONOR_SIGNED_ZEROS (type)
120 || !COMPLEX_FLOAT_TYPE_P (type)))
121 (non_lvalue @0)))
122
123 /* Transform x * -1.0 into -x. */
124 (simplify
125 (mult @0 real_minus_onep)
126 (if (!HONOR_SNANS (type)
127 && (!HONOR_SIGNED_ZEROS (type)
128 || !COMPLEX_FLOAT_TYPE_P (type)))
129 (negate @0)))
130
131 /* Make sure to preserve divisions by zero. This is the reason why
132 we don't simplify x / x to 1 or 0 / x to 0. */
133 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
134 (simplify
135 (op @0 integer_onep)
136 (non_lvalue @0)))
137
138 /* X / -1 is -X. */
139 (for div (trunc_div ceil_div floor_div round_div exact_div)
140 (simplify
141 (div @0 integer_minus_onep@1)
142 (if (!TYPE_UNSIGNED (type))
143 (negate @0))))
144
145 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
146 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
147 (simplify
148 (floor_div @0 @1)
149 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
150 && TYPE_UNSIGNED (type))
151 (trunc_div @0 @1)))
152
153 /* Combine two successive divisions. Note that combining ceil_div
154 and floor_div is trickier and combining round_div even more so. */
155 (for div (trunc_div exact_div)
156 (simplify
157 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
158 (with {
159 bool overflow_p;
160 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
161 }
162 (if (!overflow_p)
163 (div @0 { wide_int_to_tree (type, mul); })
164 (if (TYPE_UNSIGNED (type)
165 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
166 { build_zero_cst (type); })))))
167
168 /* Optimize A / A to 1.0 if we don't care about
169 NaNs or Infinities. */
170 (simplify
171 (rdiv @0 @0)
172 (if (FLOAT_TYPE_P (type)
173 && ! HONOR_NANS (type)
174 && ! HONOR_INFINITIES (type))
175 { build_one_cst (type); }))
176
177 /* Optimize -A / A to -1.0 if we don't care about
178 NaNs or Infinities. */
179 (simplify
180 (rdiv:c @0 (negate @0))
181 (if (FLOAT_TYPE_P (type)
182 && ! HONOR_NANS (type)
183 && ! HONOR_INFINITIES (type))
184 { build_minus_one_cst (type); }))
185
186 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
187 (simplify
188 (rdiv @0 real_onep)
189 (if (!HONOR_SNANS (type))
190 (non_lvalue @0)))
191
192 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
193 (simplify
194 (rdiv @0 real_minus_onep)
195 (if (!HONOR_SNANS (type))
196 (negate @0)))
197
198 /* If ARG1 is a constant, we can convert this to a multiply by the
199 reciprocal. This does not have the same rounding properties,
200 so only do this if -freciprocal-math. We can actually
201 always safely do it if ARG1 is a power of two, but it's hard to
202 tell if it is or not in a portable manner. */
203 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
204 (simplify
205 (rdiv @0 cst@1)
206 (if (optimize)
207 (if (flag_reciprocal_math
208 && !real_zerop (@1))
209 (with
210 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
211 (if (tem)
212 (mult @0 { tem; } )))
213 (if (cst != COMPLEX_CST)
214 (with { tree inverse = exact_inverse (type, @1); }
215 (if (inverse)
216 (mult @0 { inverse; } ))))))))
217
218 /* Same applies to modulo operations, but fold is inconsistent here
219 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
220 (for mod (ceil_mod floor_mod round_mod trunc_mod)
221 /* 0 % X is always zero. */
222 (simplify
223 (mod integer_zerop@0 @1)
224 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
225 (if (!integer_zerop (@1))
226 @0))
227 /* X % 1 is always zero. */
228 (simplify
229 (mod @0 integer_onep)
230 { build_zero_cst (type); })
231 /* X % -1 is zero. */
232 (simplify
233 (mod @0 integer_minus_onep@1)
234 (if (!TYPE_UNSIGNED (type))
235 { build_zero_cst (type); }))
236 /* (X % Y) % Y is just X % Y. */
237 (simplify
238 (mod (mod@2 @0 @1) @1)
239 @2)
240 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
241 (simplify
242 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
243 (if (ANY_INTEGRAL_TYPE_P (type)
244 && TYPE_OVERFLOW_UNDEFINED (type)
245 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
246 { build_zero_cst (type); })))
247
248 /* X % -C is the same as X % C. */
249 (simplify
250 (trunc_mod @0 INTEGER_CST@1)
251 (if (TYPE_SIGN (type) == SIGNED
252 && !TREE_OVERFLOW (@1)
253 && wi::neg_p (@1)
254 && !TYPE_OVERFLOW_TRAPS (type)
255 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
256 && !sign_bit_p (@1, @1))
257 (trunc_mod @0 (negate @1))))
258
259 /* X % -Y is the same as X % Y. */
260 (simplify
261 (trunc_mod @0 (convert? (negate @1)))
262 (if (!TYPE_UNSIGNED (type)
263 && !TYPE_OVERFLOW_TRAPS (type)
264 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
265 (trunc_mod @0 (convert @1))))
266
267 /* X - (X / Y) * Y is the same as X % Y. */
268 (simplify
269 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
270 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
271 (trunc_mod (convert @0) (convert @1))))
272
273 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
274 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
275 Also optimize A % (C << N) where C is a power of 2,
276 to A & ((C << N) - 1). */
277 (match (power_of_two_cand @1)
278 INTEGER_CST@1)
279 (match (power_of_two_cand @1)
280 (lshift INTEGER_CST@1 @2))
281 (for mod (trunc_mod floor_mod)
282 (simplify
283 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
284 (if ((TYPE_UNSIGNED (type)
285 || tree_expr_nonnegative_p (@0))
286 && tree_nop_conversion_p (type, TREE_TYPE (@3))
287 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
288 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
289
290 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
291 (simplify
292 (trunc_div (mult @0 integer_pow2p@1) @1)
293 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
294 (bit_and @0 { wide_int_to_tree
295 (type, wi::mask (TYPE_PRECISION (type) - wi::exact_log2 (@1),
296 false, TYPE_PRECISION (type))); })))
297
298 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
299 (simplify
300 (mult (trunc_div @0 integer_pow2p@1) @1)
301 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
302 (bit_and @0 (negate @1))))
303
304 /* Simplify (t * 2) / 2) -> t. */
305 (for div (trunc_div ceil_div floor_div round_div exact_div)
306 (simplify
307 (div (mult @0 @1) @1)
308 (if (ANY_INTEGRAL_TYPE_P (type)
309 && TYPE_OVERFLOW_UNDEFINED (type))
310 @0)))
311
312 /* Simplify cos (-x) -> cos (x). */
313 (for op (negate abs)
314 (for coss (COS COSH)
315 (simplify
316 (coss (op @0))
317 (coss @0))))
318
319 /* X % Y is smaller than Y. */
320 (for cmp (lt ge)
321 (simplify
322 (cmp (trunc_mod @0 @1) @1)
323 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
324 { constant_boolean_node (cmp == LT_EXPR, type); })))
325 (for cmp (gt le)
326 (simplify
327 (cmp @1 (trunc_mod @0 @1))
328 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
329 { constant_boolean_node (cmp == GT_EXPR, type); })))
330
331 /* x | ~0 -> ~0 */
332 (simplify
333 (bit_ior @0 integer_all_onesp@1)
334 @1)
335
336 /* x & 0 -> 0 */
337 (simplify
338 (bit_and @0 integer_zerop@1)
339 @1)
340
341 /* ~x | x -> -1 */
342 /* ~x ^ x -> -1 */
343 /* ~x + x -> -1 */
344 (for op (bit_ior bit_xor plus)
345 (simplify
346 (op:c (convert? @0) (convert? (bit_not @0)))
347 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
348
349 /* x ^ x -> 0 */
350 (simplify
351 (bit_xor @0 @0)
352 { build_zero_cst (type); })
353
354 /* Canonicalize X ^ ~0 to ~X. */
355 (simplify
356 (bit_xor @0 integer_all_onesp@1)
357 (bit_not @0))
358
359 /* x & ~0 -> x */
360 (simplify
361 (bit_and @0 integer_all_onesp)
362 (non_lvalue @0))
363
364 /* x & x -> x, x | x -> x */
365 (for bitop (bit_and bit_ior)
366 (simplify
367 (bitop @0 @0)
368 (non_lvalue @0)))
369
370 /* x + (x & 1) -> (x + 1) & ~1 */
371 (simplify
372 (plus:c @0 (bit_and:s @0 integer_onep@1))
373 (bit_and (plus @0 @1) (bit_not @1)))
374
375 /* x & ~(x & y) -> x & ~y */
376 /* x | ~(x | y) -> x | ~y */
377 (for bitop (bit_and bit_ior)
378 (simplify
379 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
380 (bitop @0 (bit_not @1))))
381
382 /* (x | y) & ~x -> y & ~x */
383 /* (x & y) | ~x -> y | ~x */
384 (for bitop (bit_and bit_ior)
385 rbitop (bit_ior bit_and)
386 (simplify
387 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
388 (bitop @1 @2)))
389
390 /* (x & y) ^ (x | y) -> x ^ y */
391 (simplify
392 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
393 (bit_xor @0 @1))
394
395 /* (x ^ y) ^ (x | y) -> x & y */
396 (simplify
397 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
398 (bit_and @0 @1))
399
400 /* (x & y) + (x ^ y) -> x | y */
401 /* (x & y) | (x ^ y) -> x | y */
402 /* (x & y) ^ (x ^ y) -> x | y */
403 (for op (plus bit_ior bit_xor)
404 (simplify
405 (op:c (bit_and @0 @1) (bit_xor @0 @1))
406 (bit_ior @0 @1)))
407
408 /* (x & y) + (x | y) -> x + y */
409 (simplify
410 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
411 (plus @0 @1))
412
413 /* (x + y) - (x | y) -> x & y */
414 (simplify
415 (minus (plus @0 @1) (bit_ior @0 @1))
416 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
417 && !TYPE_SATURATING (type))
418 (bit_and @0 @1)))
419
420 /* (x + y) - (x & y) -> x | y */
421 (simplify
422 (minus (plus @0 @1) (bit_and @0 @1))
423 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
424 && !TYPE_SATURATING (type))
425 (bit_ior @0 @1)))
426
427 /* (x | y) - (x ^ y) -> x & y */
428 (simplify
429 (minus (bit_ior @0 @1) (bit_xor @0 @1))
430 (bit_and @0 @1))
431
432 /* (x | y) - (x & y) -> x ^ y */
433 (simplify
434 (minus (bit_ior @0 @1) (bit_and @0 @1))
435 (bit_xor @0 @1))
436
437 /* (x | y) & ~(x & y) -> x ^ y */
438 (simplify
439 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
440 (bit_xor @0 @1))
441
442 /* (x | y) & (~x ^ y) -> x & y */
443 (simplify
444 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
445 (bit_and @0 @1))
446
447 /* ~x & ~y -> ~(x | y)
448 ~x | ~y -> ~(x & y) */
449 (for op (bit_and bit_ior)
450 rop (bit_ior bit_and)
451 (simplify
452 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
453 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
454 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
455 (bit_not (rop (convert @0) (convert @1))))))
456
457 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
458 with a constant, and the two constants have no bits in common,
459 we should treat this as a BIT_IOR_EXPR since this may produce more
460 simplifications. */
461 (for op (bit_xor plus)
462 (simplify
463 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
464 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
465 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
466 && tree_nop_conversion_p (type, TREE_TYPE (@2))
467 && wi::bit_and (@1, @3) == 0)
468 (bit_ior (convert @4) (convert @5)))))
469
470 /* (X | Y) ^ X -> Y & ~ X*/
471 (simplify
472 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
473 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
474 (convert (bit_and @1 (bit_not @0)))))
475
476 /* Convert ~X ^ ~Y to X ^ Y. */
477 (simplify
478 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
479 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
480 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
481 (bit_xor (convert @0) (convert @1))))
482
483 /* Convert ~X ^ C to X ^ ~C. */
484 (simplify
485 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
486 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
487 (bit_xor (convert @0) (bit_not @1))))
488
489 /* Fold (X & Y) ^ Y as ~X & Y. */
490 (simplify
491 (bit_xor:c (bit_and:c @0 @1) @1)
492 (bit_and (bit_not @0) @1))
493
494 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
495 operands are another bit-wise operation with a common input. If so,
496 distribute the bit operations to save an operation and possibly two if
497 constants are involved. For example, convert
498 (A | B) & (A | C) into A | (B & C)
499 Further simplification will occur if B and C are constants. */
500 (for op (bit_and bit_ior)
501 rop (bit_ior bit_and)
502 (simplify
503 (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
504 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
505 (rop (convert @0) (op (convert @1) (convert @2))))))
506
507
508 (simplify
509 (abs (abs@1 @0))
510 @1)
511 (simplify
512 (abs (negate @0))
513 (abs @0))
514 (simplify
515 (abs tree_expr_nonnegative_p@0)
516 @0)
517
518 /* A few cases of fold-const.c negate_expr_p predicate. */
519 (match negate_expr_p
520 INTEGER_CST
521 (if ((INTEGRAL_TYPE_P (type)
522 && TYPE_OVERFLOW_WRAPS (type))
523 || (!TYPE_OVERFLOW_SANITIZED (type)
524 && may_negate_without_overflow_p (t)))))
525 (match negate_expr_p
526 FIXED_CST)
527 (match negate_expr_p
528 (negate @0)
529 (if (!TYPE_OVERFLOW_SANITIZED (type))))
530 (match negate_expr_p
531 REAL_CST
532 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
533 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
534 ways. */
535 (match negate_expr_p
536 VECTOR_CST
537 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
538
539 /* -(A + B) -> (-B) - A. */
540 (simplify
541 (negate (plus:c @0 negate_expr_p@1))
542 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
543 && !HONOR_SIGNED_ZEROS (element_mode (type)))
544 (minus (negate @1) @0)))
545
546 /* A - B -> A + (-B) if B is easily negatable. */
547 (simplify
548 (minus @0 negate_expr_p@1)
549 (if (!FIXED_POINT_TYPE_P (type))
550 (plus @0 (negate @1))))
551
552 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
553 when profitable.
554 For bitwise binary operations apply operand conversions to the
555 binary operation result instead of to the operands. This allows
556 to combine successive conversions and bitwise binary operations.
557 We combine the above two cases by using a conditional convert. */
558 (for bitop (bit_and bit_ior bit_xor)
559 (simplify
560 (bitop (convert @0) (convert? @1))
561 (if (((TREE_CODE (@1) == INTEGER_CST
562 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
563 && int_fits_type_p (@1, TREE_TYPE (@0)))
564 || types_match (@0, @1))
565 /* ??? This transform conflicts with fold-const.c doing
566 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
567 constants (if x has signed type, the sign bit cannot be set
568 in c). This folds extension into the BIT_AND_EXPR.
569 Restrict it to GIMPLE to avoid endless recursions. */
570 && (bitop != BIT_AND_EXPR || GIMPLE)
571 && (/* That's a good idea if the conversion widens the operand, thus
572 after hoisting the conversion the operation will be narrower. */
573 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
574 /* It's also a good idea if the conversion is to a non-integer
575 mode. */
576 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
577 /* Or if the precision of TO is not the same as the precision
578 of its mode. */
579 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
580 (convert (bitop @0 (convert @1))))))
581
582 (for bitop (bit_and bit_ior)
583 rbitop (bit_ior bit_and)
584 /* (x | y) & x -> x */
585 /* (x & y) | x -> x */
586 (simplify
587 (bitop:c (rbitop:c @0 @1) @0)
588 @0)
589 /* (~x | y) & x -> x & y */
590 /* (~x & y) | x -> x | y */
591 (simplify
592 (bitop:c (rbitop:c (bit_not @0) @1) @0)
593 (bitop @0 @1)))
594
595 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
596 (for bitop (bit_and bit_ior bit_xor)
597 (simplify
598 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
599 (bit_and (bitop @0 @2) @1)))
600
601 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
602 (simplify
603 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
604 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
605
606 /* Combine successive equal operations with constants. */
607 (for bitop (bit_and bit_ior bit_xor)
608 (simplify
609 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
610 (bitop @0 (bitop @1 @2))))
611
612 /* Try simple folding for X op !X, and X op X with the help
613 of the truth_valued_p and logical_inverted_value predicates. */
614 (match truth_valued_p
615 @0
616 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
617 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
618 (match truth_valued_p
619 (op @0 @1)))
620 (match truth_valued_p
621 (truth_not @0))
622
623 (match (logical_inverted_value @0)
624 (bit_not truth_valued_p@0))
625 (match (logical_inverted_value @0)
626 (eq @0 integer_zerop))
627 (match (logical_inverted_value @0)
628 (ne truth_valued_p@0 integer_truep))
629 (match (logical_inverted_value @0)
630 (bit_xor truth_valued_p@0 integer_truep))
631
632 /* X & !X -> 0. */
633 (simplify
634 (bit_and:c @0 (logical_inverted_value @0))
635 { build_zero_cst (type); })
636 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
637 (for op (bit_ior bit_xor)
638 (simplify
639 (op:c truth_valued_p@0 (logical_inverted_value @0))
640 { constant_boolean_node (true, type); }))
641 /* X ==/!= !X is false/true. */
642 (for op (eq ne)
643 (simplify
644 (op:c truth_valued_p@0 (logical_inverted_value @0))
645 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
646
647 /* If arg1 and arg2 are booleans (or any single bit type)
648 then try to simplify:
649
650 (~X & Y) -> X < Y
651 (X & ~Y) -> Y < X
652 (~X | Y) -> X <= Y
653 (X | ~Y) -> Y <= X
654
655 But only do this if our result feeds into a comparison as
656 this transformation is not always a win, particularly on
657 targets with and-not instructions.
658 -> simplify_bitwise_binary_boolean */
659 (simplify
660 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
661 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
662 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
663 (lt @0 @1)))
664 (simplify
665 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
666 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
667 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
668 (le @0 @1)))
669
670 /* ~~x -> x */
671 (simplify
672 (bit_not (bit_not @0))
673 @0)
674
675 /* Convert ~ (-A) to A - 1. */
676 (simplify
677 (bit_not (convert? (negate @0)))
678 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
679 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
680
681 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
682 (simplify
683 (bit_not (convert? (minus @0 integer_each_onep)))
684 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
685 (convert (negate @0))))
686 (simplify
687 (bit_not (convert? (plus @0 integer_all_onesp)))
688 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
689 (convert (negate @0))))
690
691 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
692 (simplify
693 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
694 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
695 (convert (bit_xor @0 (bit_not @1)))))
696 (simplify
697 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
698 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
699 (convert (bit_xor @0 @1))))
700
701 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
702 (simplify
703 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
704 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
705
706 /* Fold A - (A & B) into ~B & A. */
707 (simplify
708 (minus (convert? @0) (convert?:s (bit_and:cs @0 @1)))
709 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
710 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
711 (convert (bit_and (bit_not @1) @0))))
712
713 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
714 (simplify
715 (pointer_plus (pointer_plus:s @0 @1) @3)
716 (pointer_plus @0 (plus @1 @3)))
717
718 /* Pattern match
719 tem1 = (long) ptr1;
720 tem2 = (long) ptr2;
721 tem3 = tem2 - tem1;
722 tem4 = (unsigned long) tem3;
723 tem5 = ptr1 + tem4;
724 and produce
725 tem5 = ptr2; */
726 (simplify
727 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
728 /* Conditionally look through a sign-changing conversion. */
729 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
730 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
731 || (GENERIC && type == TREE_TYPE (@1))))
732 @1))
733
734 /* Pattern match
735 tem = (sizetype) ptr;
736 tem = tem & algn;
737 tem = -tem;
738 ... = ptr p+ tem;
739 and produce the simpler and easier to analyze with respect to alignment
740 ... = ptr & ~algn; */
741 (simplify
742 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
743 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
744 (bit_and @0 { algn; })))
745
746 /* Try folding difference of addresses. */
747 (simplify
748 (minus (convert ADDR_EXPR@0) (convert @1))
749 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
750 (with { HOST_WIDE_INT diff; }
751 (if (ptr_difference_const (@0, @1, &diff))
752 { build_int_cst_type (type, diff); }))))
753 (simplify
754 (minus (convert @0) (convert ADDR_EXPR@1))
755 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
756 (with { HOST_WIDE_INT diff; }
757 (if (ptr_difference_const (@0, @1, &diff))
758 { build_int_cst_type (type, diff); }))))
759
760 /* If arg0 is derived from the address of an object or function, we may
761 be able to fold this expression using the object or function's
762 alignment. */
763 (simplify
764 (bit_and (convert? @0) INTEGER_CST@1)
765 (if (POINTER_TYPE_P (TREE_TYPE (@0))
766 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
767 (with
768 {
769 unsigned int align;
770 unsigned HOST_WIDE_INT bitpos;
771 get_pointer_alignment_1 (@0, &align, &bitpos);
772 }
773 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
774 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
775
776
777 /* We can't reassociate at all for saturating types. */
778 (if (!TYPE_SATURATING (type))
779
780 /* Contract negates. */
781 /* A + (-B) -> A - B */
782 (simplify
783 (plus:c (convert1? @0) (convert2? (negate @1)))
784 /* Apply STRIP_NOPS on @0 and the negate. */
785 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
786 && tree_nop_conversion_p (type, TREE_TYPE (@1))
787 && !TYPE_OVERFLOW_SANITIZED (type))
788 (minus (convert @0) (convert @1))))
789 /* A - (-B) -> A + B */
790 (simplify
791 (minus (convert1? @0) (convert2? (negate @1)))
792 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
793 && tree_nop_conversion_p (type, TREE_TYPE (@1))
794 && !TYPE_OVERFLOW_SANITIZED (type))
795 (plus (convert @0) (convert @1))))
796 /* -(-A) -> A */
797 (simplify
798 (negate (convert? (negate @1)))
799 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
800 && !TYPE_OVERFLOW_SANITIZED (type))
801 (convert @1)))
802
803 /* We can't reassociate floating-point unless -fassociative-math
804 or fixed-point plus or minus because of saturation to +-Inf. */
805 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
806 && !FIXED_POINT_TYPE_P (type))
807
808 /* Match patterns that allow contracting a plus-minus pair
809 irrespective of overflow issues. */
810 /* (A +- B) - A -> +- B */
811 /* (A +- B) -+ B -> A */
812 /* A - (A +- B) -> -+ B */
813 /* A +- (B -+ A) -> +- B */
814 (simplify
815 (minus (plus:c @0 @1) @0)
816 @1)
817 (simplify
818 (minus (minus @0 @1) @0)
819 (negate @1))
820 (simplify
821 (plus:c (minus @0 @1) @1)
822 @0)
823 (simplify
824 (minus @0 (plus:c @0 @1))
825 (negate @1))
826 (simplify
827 (minus @0 (minus @0 @1))
828 @1)
829
830 /* (A +- CST) +- CST -> A + CST */
831 (for outer_op (plus minus)
832 (for inner_op (plus minus)
833 (simplify
834 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
835 /* If the constant operation overflows we cannot do the transform
836 as we would introduce undefined overflow, for example
837 with (a - 1) + INT_MIN. */
838 (with { tree cst = fold_binary (outer_op == inner_op
839 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
840 (if (cst && !TREE_OVERFLOW (cst))
841 (inner_op @0 { cst; } ))))))
842
843 /* (CST - A) +- CST -> CST - A */
844 (for outer_op (plus minus)
845 (simplify
846 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
847 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
848 (if (cst && !TREE_OVERFLOW (cst))
849 (minus { cst; } @0)))))
850
851 /* ~A + A -> -1 */
852 (simplify
853 (plus:c (bit_not @0) @0)
854 (if (!TYPE_OVERFLOW_TRAPS (type))
855 { build_all_ones_cst (type); }))
856
857 /* ~A + 1 -> -A */
858 (simplify
859 (plus (convert? (bit_not @0)) integer_each_onep)
860 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
861 (negate (convert @0))))
862
863 /* -A - 1 -> ~A */
864 (simplify
865 (minus (convert? (negate @0)) integer_each_onep)
866 (if (!TYPE_OVERFLOW_TRAPS (type)
867 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
868 (bit_not (convert @0))))
869
870 /* -1 - A -> ~A */
871 (simplify
872 (minus integer_all_onesp @0)
873 (bit_not @0))
874
875 /* (T)(P + A) - (T)P -> (T) A */
876 (for add (plus pointer_plus)
877 (simplify
878 (minus (convert (add @0 @1))
879 (convert @0))
880 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
881 /* For integer types, if A has a smaller type
882 than T the result depends on the possible
883 overflow in P + A.
884 E.g. T=size_t, A=(unsigned)429497295, P>0.
885 However, if an overflow in P + A would cause
886 undefined behavior, we can assume that there
887 is no overflow. */
888 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
889 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
890 /* For pointer types, if the conversion of A to the
891 final type requires a sign- or zero-extension,
892 then we have to punt - it is not defined which
893 one is correct. */
894 || (POINTER_TYPE_P (TREE_TYPE (@0))
895 && TREE_CODE (@1) == INTEGER_CST
896 && tree_int_cst_sign_bit (@1) == 0))
897 (convert @1))))))
898
899
900 /* Simplifications of MIN_EXPR and MAX_EXPR. */
901
902 (for minmax (min max)
903 (simplify
904 (minmax @0 @0)
905 @0))
906 (simplify
907 (min @0 @1)
908 (if (INTEGRAL_TYPE_P (type)
909 && TYPE_MIN_VALUE (type)
910 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
911 @1))
912 (simplify
913 (max @0 @1)
914 (if (INTEGRAL_TYPE_P (type)
915 && TYPE_MAX_VALUE (type)
916 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
917 @1))
918
919
920 /* Simplifications of shift and rotates. */
921
922 (for rotate (lrotate rrotate)
923 (simplify
924 (rotate integer_all_onesp@0 @1)
925 @0))
926
927 /* Optimize -1 >> x for arithmetic right shifts. */
928 (simplify
929 (rshift integer_all_onesp@0 @1)
930 (if (!TYPE_UNSIGNED (type)
931 && tree_expr_nonnegative_p (@1))
932 @0))
933
934 (for shiftrotate (lrotate rrotate lshift rshift)
935 (simplify
936 (shiftrotate @0 integer_zerop)
937 (non_lvalue @0))
938 (simplify
939 (shiftrotate integer_zerop@0 @1)
940 @0)
941 /* Prefer vector1 << scalar to vector1 << vector2
942 if vector2 is uniform. */
943 (for vec (VECTOR_CST CONSTRUCTOR)
944 (simplify
945 (shiftrotate @0 vec@1)
946 (with { tree tem = uniform_vector_p (@1); }
947 (if (tem)
948 (shiftrotate @0 { tem; }))))))
949
950 /* Rewrite an LROTATE_EXPR by a constant into an
951 RROTATE_EXPR by a new constant. */
952 (simplify
953 (lrotate @0 INTEGER_CST@1)
954 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
955 build_int_cst (TREE_TYPE (@1),
956 element_precision (type)), @1); }))
957
958 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
959 (for op (lrotate rrotate rshift lshift)
960 (simplify
961 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
962 (with { unsigned int prec = element_precision (type); }
963 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
964 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
965 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
966 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
967 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
968 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
969 being well defined. */
970 (if (low >= prec)
971 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
972 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
973 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
974 { build_zero_cst (type); }
975 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
976 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
977
978
979 /* ((1 << A) & 1) != 0 -> A == 0
980 ((1 << A) & 1) == 0 -> A != 0 */
981 (for cmp (ne eq)
982 icmp (eq ne)
983 (simplify
984 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
985 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
986
987 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
988 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
989 if CST2 != 0. */
990 (for cmp (ne eq)
991 (simplify
992 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
993 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
994 (if (cand < 0
995 || (!integer_zerop (@2)
996 && wi::ne_p (wi::lshift (@0, cand), @2)))
997 { constant_boolean_node (cmp == NE_EXPR, type); }
998 (if (!integer_zerop (@2)
999 && wi::eq_p (wi::lshift (@0, cand), @2))
1000 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
1001
1002 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
1003 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
1004 if the new mask might be further optimized. */
1005 (for shift (lshift rshift)
1006 (simplify
1007 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
1008 INTEGER_CST@2)
1009 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
1010 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
1011 && tree_fits_uhwi_p (@1)
1012 && tree_to_uhwi (@1) > 0
1013 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
1014 (with
1015 {
1016 unsigned int shiftc = tree_to_uhwi (@1);
1017 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
1018 unsigned HOST_WIDE_INT newmask, zerobits = 0;
1019 tree shift_type = TREE_TYPE (@3);
1020 unsigned int prec;
1021
1022 if (shift == LSHIFT_EXPR)
1023 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
1024 else if (shift == RSHIFT_EXPR
1025 && (TYPE_PRECISION (shift_type)
1026 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
1027 {
1028 prec = TYPE_PRECISION (TREE_TYPE (@3));
1029 tree arg00 = @0;
1030 /* See if more bits can be proven as zero because of
1031 zero extension. */
1032 if (@3 != @0
1033 && TYPE_UNSIGNED (TREE_TYPE (@0)))
1034 {
1035 tree inner_type = TREE_TYPE (@0);
1036 if ((TYPE_PRECISION (inner_type)
1037 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
1038 && TYPE_PRECISION (inner_type) < prec)
1039 {
1040 prec = TYPE_PRECISION (inner_type);
1041 /* See if we can shorten the right shift. */
1042 if (shiftc < prec)
1043 shift_type = inner_type;
1044 /* Otherwise X >> C1 is all zeros, so we'll optimize
1045 it into (X, 0) later on by making sure zerobits
1046 is all ones. */
1047 }
1048 }
1049 zerobits = ~(unsigned HOST_WIDE_INT) 0;
1050 if (shiftc < prec)
1051 {
1052 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
1053 zerobits <<= prec - shiftc;
1054 }
1055 /* For arithmetic shift if sign bit could be set, zerobits
1056 can contain actually sign bits, so no transformation is
1057 possible, unless MASK masks them all away. In that
1058 case the shift needs to be converted into logical shift. */
1059 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
1060 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1061 {
1062 if ((mask & zerobits) == 0)
1063 shift_type = unsigned_type_for (TREE_TYPE (@3));
1064 else
1065 zerobits = 0;
1066 }
1067 }
1068 }
1069 /* ((X << 16) & 0xff00) is (X, 0). */
1070 (if ((mask & zerobits) == mask)
1071 { build_int_cst (type, 0); }
1072 (with { newmask = mask | zerobits; }
1073 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1074 (with
1075 {
1076 /* Only do the transformation if NEWMASK is some integer
1077 mode's mask. */
1078 for (prec = BITS_PER_UNIT;
1079 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1080 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1081 break;
1082 }
1083 (if (prec < HOST_BITS_PER_WIDE_INT
1084 || newmask == ~(unsigned HOST_WIDE_INT) 0)
1085 (with
1086 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1087 (if (!tree_int_cst_equal (newmaskt, @2))
1088 (if (shift_type != TREE_TYPE (@3))
1089 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
1090 (bit_and @4 { newmaskt; })))))))))))))
1091
1092 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
1093 (X & C2) >> C1 into (X >> C1) & (C2 >> C1). */
1094 (for shift (lshift rshift)
1095 (simplify
1096 (shift (convert?:s (bit_and:s @0 INTEGER_CST@2)) INTEGER_CST@1)
1097 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1098 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1099 (bit_and (shift (convert @0) @1) { mask; })))))
1100
1101
1102 /* Simplifications of conversions. */
1103
1104 /* Basic strip-useless-type-conversions / strip_nops. */
1105 (for cvt (convert view_convert float fix_trunc)
1106 (simplify
1107 (cvt @0)
1108 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1109 || (GENERIC && type == TREE_TYPE (@0)))
1110 @0)))
1111
1112 /* Contract view-conversions. */
1113 (simplify
1114 (view_convert (view_convert @0))
1115 (view_convert @0))
1116
1117 /* For integral conversions with the same precision or pointer
1118 conversions use a NOP_EXPR instead. */
1119 (simplify
1120 (view_convert @0)
1121 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1122 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1123 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1124 (convert @0)))
1125
1126 /* Strip inner integral conversions that do not change precision or size. */
1127 (simplify
1128 (view_convert (convert@0 @1))
1129 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1130 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1131 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1132 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1133 (view_convert @1)))
1134
1135 /* Re-association barriers around constants and other re-association
1136 barriers can be removed. */
1137 (simplify
1138 (paren CONSTANT_CLASS_P@0)
1139 @0)
1140 (simplify
1141 (paren (paren@1 @0))
1142 @1)
1143
1144 /* Handle cases of two conversions in a row. */
1145 (for ocvt (convert float fix_trunc)
1146 (for icvt (convert float)
1147 (simplify
1148 (ocvt (icvt@1 @0))
1149 (with
1150 {
1151 tree inside_type = TREE_TYPE (@0);
1152 tree inter_type = TREE_TYPE (@1);
1153 int inside_int = INTEGRAL_TYPE_P (inside_type);
1154 int inside_ptr = POINTER_TYPE_P (inside_type);
1155 int inside_float = FLOAT_TYPE_P (inside_type);
1156 int inside_vec = VECTOR_TYPE_P (inside_type);
1157 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1158 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1159 int inter_int = INTEGRAL_TYPE_P (inter_type);
1160 int inter_ptr = POINTER_TYPE_P (inter_type);
1161 int inter_float = FLOAT_TYPE_P (inter_type);
1162 int inter_vec = VECTOR_TYPE_P (inter_type);
1163 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1164 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1165 int final_int = INTEGRAL_TYPE_P (type);
1166 int final_ptr = POINTER_TYPE_P (type);
1167 int final_float = FLOAT_TYPE_P (type);
1168 int final_vec = VECTOR_TYPE_P (type);
1169 unsigned int final_prec = TYPE_PRECISION (type);
1170 int final_unsignedp = TYPE_UNSIGNED (type);
1171 }
1172 (switch
1173 /* In addition to the cases of two conversions in a row
1174 handled below, if we are converting something to its own
1175 type via an object of identical or wider precision, neither
1176 conversion is needed. */
1177 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1178 || (GENERIC
1179 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1180 && (((inter_int || inter_ptr) && final_int)
1181 || (inter_float && final_float))
1182 && inter_prec >= final_prec)
1183 (ocvt @0))
1184
1185 /* Likewise, if the intermediate and initial types are either both
1186 float or both integer, we don't need the middle conversion if the
1187 former is wider than the latter and doesn't change the signedness
1188 (for integers). Avoid this if the final type is a pointer since
1189 then we sometimes need the middle conversion. Likewise if the
1190 final type has a precision not equal to the size of its mode. */
1191 (if (((inter_int && inside_int) || (inter_float && inside_float))
1192 && (final_int || final_float)
1193 && inter_prec >= inside_prec
1194 && (inter_float || inter_unsignedp == inside_unsignedp)
1195 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1196 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1197 (ocvt @0))
1198
1199 /* If we have a sign-extension of a zero-extended value, we can
1200 replace that by a single zero-extension. Likewise if the
1201 final conversion does not change precision we can drop the
1202 intermediate conversion. */
1203 (if (inside_int && inter_int && final_int
1204 && ((inside_prec < inter_prec && inter_prec < final_prec
1205 && inside_unsignedp && !inter_unsignedp)
1206 || final_prec == inter_prec))
1207 (ocvt @0))
1208
1209 /* Two conversions in a row are not needed unless:
1210 - some conversion is floating-point (overstrict for now), or
1211 - some conversion is a vector (overstrict for now), or
1212 - the intermediate type is narrower than both initial and
1213 final, or
1214 - the intermediate type and innermost type differ in signedness,
1215 and the outermost type is wider than the intermediate, or
1216 - the initial type is a pointer type and the precisions of the
1217 intermediate and final types differ, or
1218 - the final type is a pointer type and the precisions of the
1219 initial and intermediate types differ. */
1220 (if (! inside_float && ! inter_float && ! final_float
1221 && ! inside_vec && ! inter_vec && ! final_vec
1222 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1223 && ! (inside_int && inter_int
1224 && inter_unsignedp != inside_unsignedp
1225 && inter_prec < final_prec)
1226 && ((inter_unsignedp && inter_prec > inside_prec)
1227 == (final_unsignedp && final_prec > inter_prec))
1228 && ! (inside_ptr && inter_prec != final_prec)
1229 && ! (final_ptr && inside_prec != inter_prec)
1230 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1231 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1232 (ocvt @0))
1233
1234 /* A truncation to an unsigned type (a zero-extension) should be
1235 canonicalized as bitwise and of a mask. */
1236 (if (final_int && inter_int && inside_int
1237 && final_prec == inside_prec
1238 && final_prec > inter_prec
1239 && inter_unsignedp)
1240 (convert (bit_and @0 { wide_int_to_tree
1241 (inside_type,
1242 wi::mask (inter_prec, false,
1243 TYPE_PRECISION (inside_type))); })))
1244
1245 /* If we are converting an integer to a floating-point that can
1246 represent it exactly and back to an integer, we can skip the
1247 floating-point conversion. */
1248 (if (GIMPLE /* PR66211 */
1249 && inside_int && inter_float && final_int &&
1250 (unsigned) significand_size (TYPE_MODE (inter_type))
1251 >= inside_prec - !inside_unsignedp)
1252 (convert @0)))))))
1253
1254 /* If we have a narrowing conversion to an integral type that is fed by a
1255 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1256 masks off bits outside the final type (and nothing else). */
1257 (simplify
1258 (convert (bit_and @0 INTEGER_CST@1))
1259 (if (INTEGRAL_TYPE_P (type)
1260 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1261 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1262 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1263 TYPE_PRECISION (type)), 0))
1264 (convert @0)))
1265
1266
1267 /* (X /[ex] A) * A -> X. */
1268 (simplify
1269 (mult (convert? (exact_div @0 @1)) @1)
1270 /* Look through a sign-changing conversion. */
1271 (convert @0))
1272
1273 /* Canonicalization of binary operations. */
1274
1275 /* Convert X + -C into X - C. */
1276 (simplify
1277 (plus @0 REAL_CST@1)
1278 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1279 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1280 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1281 (minus @0 { tem; })))))
1282
1283 /* Convert x+x into x*2.0. */
1284 (simplify
1285 (plus @0 @0)
1286 (if (SCALAR_FLOAT_TYPE_P (type))
1287 (mult @0 { build_real (type, dconst2); })))
1288
1289 (simplify
1290 (minus integer_zerop @1)
1291 (negate @1))
1292
1293 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1294 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1295 (-ARG1 + ARG0) reduces to -ARG1. */
1296 (simplify
1297 (minus real_zerop@0 @1)
1298 (if (fold_real_zero_addition_p (type, @0, 0))
1299 (negate @1)))
1300
1301 /* Transform x * -1 into -x. */
1302 (simplify
1303 (mult @0 integer_minus_onep)
1304 (negate @0))
1305
1306 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1307 (simplify
1308 (complex (realpart @0) (imagpart @0))
1309 @0)
1310 (simplify
1311 (realpart (complex @0 @1))
1312 @0)
1313 (simplify
1314 (imagpart (complex @0 @1))
1315 @1)
1316
1317 /* Sometimes we only care about half of a complex expression. */
1318 (simplify
1319 (realpart (convert?:s (conj:s @0)))
1320 (convert (realpart @0)))
1321 (simplify
1322 (imagpart (convert?:s (conj:s @0)))
1323 (convert (negate (imagpart @0))))
1324 (for part (realpart imagpart)
1325 (for op (plus minus)
1326 (simplify
1327 (part (convert?:s@2 (op:s @0 @1)))
1328 (convert (op (part @0) (part @1))))))
1329 (simplify
1330 (realpart (convert?:s (CEXPI:s @0)))
1331 (convert (COS @0)))
1332 (simplify
1333 (imagpart (convert?:s (CEXPI:s @0)))
1334 (convert (SIN @0)))
1335
1336 /* conj(conj(x)) -> x */
1337 (simplify
1338 (conj (convert? (conj @0)))
1339 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
1340 (convert @0)))
1341
1342 /* conj({x,y}) -> {x,-y} */
1343 (simplify
1344 (conj (convert?:s (complex:s @0 @1)))
1345 (with { tree itype = TREE_TYPE (type); }
1346 (complex (convert:itype @0) (negate (convert:itype @1)))))
1347
1348 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1349 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1350 (simplify
1351 (bswap (bswap @0))
1352 @0)
1353 (simplify
1354 (bswap (bit_not (bswap @0)))
1355 (bit_not @0))
1356 (for bitop (bit_xor bit_ior bit_and)
1357 (simplify
1358 (bswap (bitop:c (bswap @0) @1))
1359 (bitop @0 (bswap @1)))))
1360
1361
1362 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1363
1364 /* Simplify constant conditions.
1365 Only optimize constant conditions when the selected branch
1366 has the same type as the COND_EXPR. This avoids optimizing
1367 away "c ? x : throw", where the throw has a void type.
1368 Note that we cannot throw away the fold-const.c variant nor
1369 this one as we depend on doing this transform before possibly
1370 A ? B : B -> B triggers and the fold-const.c one can optimize
1371 0 ? A : B to B even if A has side-effects. Something
1372 genmatch cannot handle. */
1373 (simplify
1374 (cond INTEGER_CST@0 @1 @2)
1375 (if (integer_zerop (@0))
1376 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
1377 @2)
1378 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
1379 @1)))
1380 (simplify
1381 (vec_cond VECTOR_CST@0 @1 @2)
1382 (if (integer_all_onesp (@0))
1383 @1
1384 (if (integer_zerop (@0))
1385 @2)))
1386
1387 (for cnd (cond vec_cond)
1388 /* A ? B : (A ? X : C) -> A ? B : C. */
1389 (simplify
1390 (cnd @0 (cnd @0 @1 @2) @3)
1391 (cnd @0 @1 @3))
1392 (simplify
1393 (cnd @0 @1 (cnd @0 @2 @3))
1394 (cnd @0 @1 @3))
1395
1396 /* A ? B : B -> B. */
1397 (simplify
1398 (cnd @0 @1 @1)
1399 @1)
1400
1401 /* !A ? B : C -> A ? C : B. */
1402 (simplify
1403 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1404 (cnd @0 @2 @1)))
1405
1406 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1407 return all-1 or all-0 results. */
1408 /* ??? We could instead convert all instances of the vec_cond to negate,
1409 but that isn't necessarily a win on its own. */
1410 (simplify
1411 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1412 (if (VECTOR_TYPE_P (type)
1413 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1414 && (TYPE_MODE (TREE_TYPE (type))
1415 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1416 (minus @3 (view_convert @0))))
1417
1418 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1419 (simplify
1420 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1421 (if (VECTOR_TYPE_P (type)
1422 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1423 && (TYPE_MODE (TREE_TYPE (type))
1424 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1425 (plus @3 (view_convert @0))))
1426
1427
1428 /* Simplifications of comparisons. */
1429
1430 /* See if we can reduce the magnitude of a constant involved in a
1431 comparison by changing the comparison code. This is a canonicalization
1432 formerly done by maybe_canonicalize_comparison_1. */
1433 (for cmp (le gt)
1434 acmp (lt ge)
1435 (simplify
1436 (cmp @0 INTEGER_CST@1)
1437 (if (tree_int_cst_sgn (@1) == -1)
1438 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
1439 (for cmp (ge lt)
1440 acmp (gt le)
1441 (simplify
1442 (cmp @0 INTEGER_CST@1)
1443 (if (tree_int_cst_sgn (@1) == 1)
1444 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
1445
1446
1447 /* We can simplify a logical negation of a comparison to the
1448 inverted comparison. As we cannot compute an expression
1449 operator using invert_tree_comparison we have to simulate
1450 that with expression code iteration. */
1451 (for cmp (tcc_comparison)
1452 icmp (inverted_tcc_comparison)
1453 ncmp (inverted_tcc_comparison_with_nans)
1454 /* Ideally we'd like to combine the following two patterns
1455 and handle some more cases by using
1456 (logical_inverted_value (cmp @0 @1))
1457 here but for that genmatch would need to "inline" that.
1458 For now implement what forward_propagate_comparison did. */
1459 (simplify
1460 (bit_not (cmp @0 @1))
1461 (if (VECTOR_TYPE_P (type)
1462 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1463 /* Comparison inversion may be impossible for trapping math,
1464 invert_tree_comparison will tell us. But we can't use
1465 a computed operator in the replacement tree thus we have
1466 to play the trick below. */
1467 (with { enum tree_code ic = invert_tree_comparison
1468 (cmp, HONOR_NANS (@0)); }
1469 (if (ic == icmp)
1470 (icmp @0 @1)
1471 (if (ic == ncmp)
1472 (ncmp @0 @1))))))
1473 (simplify
1474 (bit_xor (cmp @0 @1) integer_truep)
1475 (with { enum tree_code ic = invert_tree_comparison
1476 (cmp, HONOR_NANS (@0)); }
1477 (if (ic == icmp)
1478 (icmp @0 @1)
1479 (if (ic == ncmp)
1480 (ncmp @0 @1))))))
1481
1482 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1483 ??? The transformation is valid for the other operators if overflow
1484 is undefined for the type, but performing it here badly interacts
1485 with the transformation in fold_cond_expr_with_comparison which
1486 attempts to synthetize ABS_EXPR. */
1487 (for cmp (eq ne)
1488 (simplify
1489 (cmp (minus@2 @0 @1) integer_zerop)
1490 (if (single_use (@2))
1491 (cmp @0 @1))))
1492
1493 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1494 signed arithmetic case. That form is created by the compiler
1495 often enough for folding it to be of value. One example is in
1496 computing loop trip counts after Operator Strength Reduction. */
1497 (for cmp (simple_comparison)
1498 scmp (swapped_simple_comparison)
1499 (simplify
1500 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1501 /* Handle unfolded multiplication by zero. */
1502 (if (integer_zerop (@1))
1503 (cmp @1 @2)
1504 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1505 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1506 /* If @1 is negative we swap the sense of the comparison. */
1507 (if (tree_int_cst_sgn (@1) < 0)
1508 (scmp @0 @2)
1509 (cmp @0 @2))))))
1510
1511 /* Simplify comparison of something with itself. For IEEE
1512 floating-point, we can only do some of these simplifications. */
1513 (simplify
1514 (eq @0 @0)
1515 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1516 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1517 { constant_boolean_node (true, type); }))
1518 (for cmp (ge le)
1519 (simplify
1520 (cmp @0 @0)
1521 (eq @0 @0)))
1522 (for cmp (ne gt lt)
1523 (simplify
1524 (cmp @0 @0)
1525 (if (cmp != NE_EXPR
1526 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1527 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1528 { constant_boolean_node (false, type); })))
1529 (for cmp (unle unge uneq)
1530 (simplify
1531 (cmp @0 @0)
1532 { constant_boolean_node (true, type); }))
1533 (simplify
1534 (ltgt @0 @0)
1535 (if (!flag_trapping_math)
1536 { constant_boolean_node (false, type); }))
1537
1538 /* Fold ~X op ~Y as Y op X. */
1539 (for cmp (simple_comparison)
1540 (simplify
1541 (cmp (bit_not @0) (bit_not @1))
1542 (cmp @1 @0)))
1543
1544 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1545 (for cmp (simple_comparison)
1546 scmp (swapped_simple_comparison)
1547 (simplify
1548 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1549 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1550 (scmp @0 (bit_not @1)))))
1551
1552 (for cmp (simple_comparison)
1553 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1554 (simplify
1555 (cmp (convert@2 @0) (convert? @1))
1556 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1557 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1558 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1559 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1560 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1561 (with
1562 {
1563 tree type1 = TREE_TYPE (@1);
1564 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1565 {
1566 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1567 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1568 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1569 type1 = float_type_node;
1570 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1571 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1572 type1 = double_type_node;
1573 }
1574 tree newtype
1575 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1576 ? TREE_TYPE (@0) : type1);
1577 }
1578 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1579 (cmp (convert:newtype @0) (convert:newtype @1))))))
1580
1581 (simplify
1582 (cmp @0 REAL_CST@1)
1583 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1584 (switch
1585 /* a CMP (-0) -> a CMP 0 */
1586 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1587 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1588 /* x != NaN is always true, other ops are always false. */
1589 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1590 && ! HONOR_SNANS (@1))
1591 { constant_boolean_node (cmp == NE_EXPR, type); })
1592 /* Fold comparisons against infinity. */
1593 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1594 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1595 (with
1596 {
1597 REAL_VALUE_TYPE max;
1598 enum tree_code code = cmp;
1599 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1600 if (neg)
1601 code = swap_tree_comparison (code);
1602 }
1603 (switch
1604 /* x > +Inf is always false, if with ignore sNANs. */
1605 (if (code == GT_EXPR
1606 && ! HONOR_SNANS (@0))
1607 { constant_boolean_node (false, type); })
1608 (if (code == LE_EXPR)
1609 /* x <= +Inf is always true, if we don't case about NaNs. */
1610 (if (! HONOR_NANS (@0))
1611 { constant_boolean_node (true, type); }
1612 /* x <= +Inf is the same as x == x, i.e. !isnan(x). */
1613 (eq @0 @0)))
1614 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1615 (if (code == EQ_EXPR || code == GE_EXPR)
1616 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1617 (if (neg)
1618 (lt @0 { build_real (TREE_TYPE (@0), max); })
1619 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
1620 /* x < +Inf is always equal to x <= DBL_MAX. */
1621 (if (code == LT_EXPR)
1622 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1623 (if (neg)
1624 (ge @0 { build_real (TREE_TYPE (@0), max); })
1625 (le @0 { build_real (TREE_TYPE (@0), max); }))))
1626 /* x != +Inf is always equal to !(x > DBL_MAX). */
1627 (if (code == NE_EXPR)
1628 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1629 (if (! HONOR_NANS (@0))
1630 (if (neg)
1631 (ge @0 { build_real (TREE_TYPE (@0), max); })
1632 (le @0 { build_real (TREE_TYPE (@0), max); }))
1633 (if (neg)
1634 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1635 { build_one_cst (type); })
1636 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1637 { build_one_cst (type); }))))))))))
1638
1639 /* If this is a comparison of a real constant with a PLUS_EXPR
1640 or a MINUS_EXPR of a real constant, we can convert it into a
1641 comparison with a revised real constant as long as no overflow
1642 occurs when unsafe_math_optimizations are enabled. */
1643 (if (flag_unsafe_math_optimizations)
1644 (for op (plus minus)
1645 (simplify
1646 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1647 (with
1648 {
1649 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1650 TREE_TYPE (@1), @2, @1);
1651 }
1652 (if (tem && !TREE_OVERFLOW (tem))
1653 (cmp @0 { tem; }))))))
1654
1655 /* Likewise, we can simplify a comparison of a real constant with
1656 a MINUS_EXPR whose first operand is also a real constant, i.e.
1657 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1658 floating-point types only if -fassociative-math is set. */
1659 (if (flag_associative_math)
1660 (simplify
1661 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
1662 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1663 (if (tem && !TREE_OVERFLOW (tem))
1664 (cmp { tem; } @1)))))
1665
1666 /* Fold comparisons against built-in math functions. */
1667 (if (flag_unsafe_math_optimizations
1668 && ! flag_errno_math)
1669 (for sq (SQRT)
1670 (simplify
1671 (cmp (sq @0) REAL_CST@1)
1672 (switch
1673 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1674 (switch
1675 /* sqrt(x) < y is always false, if y is negative. */
1676 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1677 { constant_boolean_node (false, type); })
1678 /* sqrt(x) > y is always true, if y is negative and we
1679 don't care about NaNs, i.e. negative values of x. */
1680 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1681 { constant_boolean_node (true, type); })
1682 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1683 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
1684 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1685 (with
1686 {
1687 REAL_VALUE_TYPE c2;
1688 REAL_ARITHMETIC (c2, MULT_EXPR,
1689 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1690 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1691 }
1692 (if (REAL_VALUE_ISINF (c2))
1693 /* sqrt(x) > y is x == +Inf, when y is very large. */
1694 (if (HONOR_INFINITIES (@0))
1695 (eq @0 { build_real (TREE_TYPE (@0), c2); })
1696 { constant_boolean_node (false, type); })
1697 /* sqrt(x) > c is the same as x > c*c. */
1698 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
1699 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1700 (with
1701 {
1702 REAL_VALUE_TYPE c2;
1703 REAL_ARITHMETIC (c2, MULT_EXPR,
1704 TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1705 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1706 }
1707 (if (REAL_VALUE_ISINF (c2))
1708 (switch
1709 /* sqrt(x) < y is always true, when y is a very large
1710 value and we don't care about NaNs or Infinities. */
1711 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1712 { constant_boolean_node (true, type); })
1713 /* sqrt(x) < y is x != +Inf when y is very large and we
1714 don't care about NaNs. */
1715 (if (! HONOR_NANS (@0))
1716 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1717 /* sqrt(x) < y is x >= 0 when y is very large and we
1718 don't care about Infinities. */
1719 (if (! HONOR_INFINITIES (@0))
1720 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1721 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1722 (if (GENERIC)
1723 (truth_andif
1724 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1725 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1726 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1727 (if (! HONOR_NANS (@0))
1728 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
1729 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1730 (if (GENERIC)
1731 (truth_andif
1732 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1733 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))))))))))
1734
1735 /* Unordered tests if either argument is a NaN. */
1736 (simplify
1737 (bit_ior (unordered @0 @0) (unordered @1 @1))
1738 (if (types_match (@0, @1))
1739 (unordered @0 @1)))
1740 (simplify
1741 (bit_and (ordered @0 @0) (ordered @1 @1))
1742 (if (types_match (@0, @1))
1743 (ordered @0 @1)))
1744 (simplify
1745 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1746 @2)
1747 (simplify
1748 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1749 @2)
1750
1751 /* -A CMP -B -> B CMP A. */
1752 (for cmp (tcc_comparison)
1753 scmp (swapped_tcc_comparison)
1754 (simplify
1755 (cmp (negate @0) (negate @1))
1756 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1757 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1758 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1759 (scmp @0 @1)))
1760 (simplify
1761 (cmp (negate @0) CONSTANT_CLASS_P@1)
1762 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1763 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1764 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1765 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1766 (if (tem && !TREE_OVERFLOW (tem))
1767 (scmp @0 { tem; }))))))
1768
1769 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
1770 (for op (eq ne)
1771 (simplify
1772 (op (abs @0) zerop@1)
1773 (op @0 @1)))
1774
1775 /* From fold_sign_changed_comparison and fold_widened_comparison. */
1776 (for cmp (simple_comparison)
1777 (simplify
1778 (cmp (convert@0 @00) (convert?@1 @10))
1779 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
1780 /* Disable this optimization if we're casting a function pointer
1781 type on targets that require function pointer canonicalization. */
1782 && !(targetm.have_canonicalize_funcptr_for_compare ()
1783 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
1784 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
1785 && single_use (@0))
1786 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
1787 && (TREE_CODE (@10) == INTEGER_CST
1788 || (@1 != @10 && types_match (TREE_TYPE (@10), TREE_TYPE (@00))))
1789 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
1790 || cmp == NE_EXPR
1791 || cmp == EQ_EXPR)
1792 && (POINTER_TYPE_P (TREE_TYPE (@00)) == POINTER_TYPE_P (TREE_TYPE (@0))))
1793 /* ??? The special-casing of INTEGER_CST conversion was in the original
1794 code and here to avoid a spurious overflow flag on the resulting
1795 constant which fold_convert produces. */
1796 (if (TREE_CODE (@1) == INTEGER_CST)
1797 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
1798 TREE_OVERFLOW (@1)); })
1799 (cmp @00 (convert @1)))
1800
1801 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
1802 /* If possible, express the comparison in the shorter mode. */
1803 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
1804 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00)))
1805 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
1806 || ((TYPE_PRECISION (TREE_TYPE (@00))
1807 >= TYPE_PRECISION (TREE_TYPE (@10)))
1808 && (TYPE_UNSIGNED (TREE_TYPE (@00))
1809 == TYPE_UNSIGNED (TREE_TYPE (@10))))
1810 || (TREE_CODE (@10) == INTEGER_CST
1811 && (TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1812 || TREE_CODE (TREE_TYPE (@00)) == BOOLEAN_TYPE)
1813 && int_fits_type_p (@10, TREE_TYPE (@00)))))
1814 (cmp @00 (convert @10))
1815 (if (TREE_CODE (@10) == INTEGER_CST
1816 && TREE_CODE (TREE_TYPE (@00)) == INTEGER_TYPE
1817 && !int_fits_type_p (@10, TREE_TYPE (@00)))
1818 (with
1819 {
1820 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1821 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
1822 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
1823 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
1824 }
1825 (if (above || below)
1826 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
1827 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
1828 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1829 { constant_boolean_node (above ? true : false, type); }
1830 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1831 { constant_boolean_node (above ? false : true, type); }))))))))))))
1832
1833 (for cmp (eq ne)
1834 /* A local variable can never be pointed to by
1835 the default SSA name of an incoming parameter.
1836 SSA names are canonicalized to 2nd place. */
1837 (simplify
1838 (cmp addr@0 SSA_NAME@1)
1839 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
1840 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
1841 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
1842 (if (TREE_CODE (base) == VAR_DECL
1843 && auto_var_in_fn_p (base, current_function_decl))
1844 (if (cmp == NE_EXPR)
1845 { constant_boolean_node (true, type); }
1846 { constant_boolean_node (false, type); }))))))
1847
1848 /* Equality compare simplifications from fold_binary */
1849 (for cmp (eq ne)
1850
1851 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1852 Similarly for NE_EXPR. */
1853 (simplify
1854 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1855 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1856 && wi::bit_and_not (@1, @2) != 0)
1857 { constant_boolean_node (cmp == NE_EXPR, type); }))
1858
1859 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1860 (simplify
1861 (cmp (bit_xor @0 @1) integer_zerop)
1862 (cmp @0 @1))
1863
1864 /* (X ^ Y) == Y becomes X == 0.
1865 Likewise (X ^ Y) == X becomes Y == 0. */
1866 (simplify
1867 (cmp:c (bit_xor:c @0 @1) @0)
1868 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1869
1870 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1871 (simplify
1872 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1873 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1874 (cmp @0 (bit_xor @1 (convert @2)))))
1875
1876 (simplify
1877 (cmp (convert? addr@0) integer_zerop)
1878 (if (tree_single_nonzero_warnv_p (@0, NULL))
1879 { constant_boolean_node (cmp == NE_EXPR, type); })))
1880
1881 /* If we have (A & C) == C where C is a power of 2, convert this into
1882 (A & C) != 0. Similarly for NE_EXPR. */
1883 (for cmp (eq ne)
1884 icmp (ne eq)
1885 (simplify
1886 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
1887 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
1888
1889 /* If we have (A & C) != 0 where C is the sign bit of A, convert
1890 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
1891 (for cmp (eq ne)
1892 ncmp (ge lt)
1893 (simplify
1894 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
1895 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1896 && (TYPE_PRECISION (TREE_TYPE (@0))
1897 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1898 && element_precision (@2) >= element_precision (@0)
1899 && wi::only_sign_bit_p (@1, element_precision (@0)))
1900 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1901 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
1902
1903 /* When the addresses are not directly of decls compare base and offset.
1904 This implements some remaining parts of fold_comparison address
1905 comparisons but still no complete part of it. Still it is good
1906 enough to make fold_stmt not regress when not dispatching to fold_binary. */
1907 (for cmp (simple_comparison)
1908 (simplify
1909 (cmp (convert1?@2 addr@0) (convert2? addr@1))
1910 (with
1911 {
1912 HOST_WIDE_INT off0, off1;
1913 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
1914 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
1915 if (base0 && TREE_CODE (base0) == MEM_REF)
1916 {
1917 off0 += mem_ref_offset (base0).to_short_addr ();
1918 base0 = TREE_OPERAND (base0, 0);
1919 }
1920 if (base1 && TREE_CODE (base1) == MEM_REF)
1921 {
1922 off1 += mem_ref_offset (base1).to_short_addr ();
1923 base1 = TREE_OPERAND (base1, 0);
1924 }
1925 }
1926 (if (base0 && base1)
1927 (with
1928 {
1929 int equal = 2;
1930 if (decl_in_symtab_p (base0)
1931 && decl_in_symtab_p (base1))
1932 equal = symtab_node::get_create (base0)
1933 ->equal_address_to (symtab_node::get_create (base1));
1934 else if ((DECL_P (base0) || TREE_CODE (base0) == SSA_NAME)
1935 && (DECL_P (base1) || TREE_CODE (base1) == SSA_NAME))
1936 equal = (base0 == base1);
1937 }
1938 (if (equal == 1
1939 && (cmp == EQ_EXPR || cmp == NE_EXPR
1940 /* If the offsets are equal we can ignore overflow. */
1941 || off0 == off1
1942 || POINTER_TYPE_OVERFLOW_UNDEFINED
1943 /* Or if we compare using pointers to decls. */
1944 || (POINTER_TYPE_P (TREE_TYPE (@2))
1945 && DECL_P (base0))))
1946 (switch
1947 (if (cmp == EQ_EXPR)
1948 { constant_boolean_node (off0 == off1, type); })
1949 (if (cmp == NE_EXPR)
1950 { constant_boolean_node (off0 != off1, type); })
1951 (if (cmp == LT_EXPR)
1952 { constant_boolean_node (off0 < off1, type); })
1953 (if (cmp == LE_EXPR)
1954 { constant_boolean_node (off0 <= off1, type); })
1955 (if (cmp == GE_EXPR)
1956 { constant_boolean_node (off0 >= off1, type); })
1957 (if (cmp == GT_EXPR)
1958 { constant_boolean_node (off0 > off1, type); }))
1959 (if (equal == 0
1960 && DECL_P (base0) && DECL_P (base1)
1961 /* If we compare this as integers require equal offset. */
1962 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
1963 || off0 == off1))
1964 (switch
1965 (if (cmp == EQ_EXPR)
1966 { constant_boolean_node (false, type); })
1967 (if (cmp == NE_EXPR)
1968 { constant_boolean_node (true, type); })))))))))
1969
1970 /* Non-equality compare simplifications from fold_binary */
1971 (for cmp (lt gt le ge)
1972 /* Comparisons with the highest or lowest possible integer of
1973 the specified precision will have known values. */
1974 (simplify
1975 (cmp (convert?@2 @0) INTEGER_CST@1)
1976 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1977 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
1978 (with
1979 {
1980 tree arg1_type = TREE_TYPE (@1);
1981 unsigned int prec = TYPE_PRECISION (arg1_type);
1982 wide_int max = wi::max_value (arg1_type);
1983 wide_int signed_max = wi::max_value (prec, SIGNED);
1984 wide_int min = wi::min_value (arg1_type);
1985 }
1986 (switch
1987 (if (wi::eq_p (@1, max))
1988 (switch
1989 (if (cmp == GT_EXPR)
1990 { constant_boolean_node (false, type); })
1991 (if (cmp == GE_EXPR)
1992 (eq @2 @1))
1993 (if (cmp == LE_EXPR)
1994 { constant_boolean_node (true, type); })
1995 (if (cmp == LT_EXPR)
1996 (ne @2 @1))))
1997 (if (wi::eq_p (@1, min))
1998 (switch
1999 (if (cmp == LT_EXPR)
2000 { constant_boolean_node (false, type); })
2001 (if (cmp == LE_EXPR)
2002 (eq @2 @1))
2003 (if (cmp == GE_EXPR)
2004 { constant_boolean_node (true, type); })
2005 (if (cmp == GT_EXPR)
2006 (ne @2 @1))))
2007 (if (wi::eq_p (@1, max - 1))
2008 (switch
2009 (if (cmp == GT_EXPR)
2010 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))
2011 (if (cmp == LE_EXPR)
2012 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::add (@1, 1)); }))))
2013 (if (wi::eq_p (@1, min + 1))
2014 (switch
2015 (if (cmp == GE_EXPR)
2016 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))
2017 (if (cmp == LT_EXPR)
2018 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::sub (@1, 1)); }))))
2019 (if (wi::eq_p (@1, signed_max)
2020 && TYPE_UNSIGNED (arg1_type)
2021 /* We will flip the signedness of the comparison operator
2022 associated with the mode of @1, so the sign bit is
2023 specified by this mode. Check that @1 is the signed
2024 max associated with this sign bit. */
2025 && prec == GET_MODE_PRECISION (TYPE_MODE (arg1_type))
2026 /* signed_type does not work on pointer types. */
2027 && INTEGRAL_TYPE_P (arg1_type))
2028 /* The following case also applies to X < signed_max+1
2029 and X >= signed_max+1 because previous transformations. */
2030 (if (cmp == LE_EXPR || cmp == GT_EXPR)
2031 (with { tree st = signed_type_for (arg1_type); }
2032 (if (cmp == LE_EXPR)
2033 (ge (convert:st @0) { build_zero_cst (st); })
2034 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
2035
2036 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
2037 /* If the second operand is NaN, the result is constant. */
2038 (simplify
2039 (cmp @0 REAL_CST@1)
2040 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
2041 && (cmp != LTGT_EXPR || ! flag_trapping_math))
2042 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
2043 ? false : true, type); })))
2044
2045 /* bool_var != 0 becomes bool_var. */
2046 (simplify
2047 (ne @0 integer_zerop)
2048 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2049 && types_match (type, TREE_TYPE (@0)))
2050 (non_lvalue @0)))
2051 /* bool_var == 1 becomes bool_var. */
2052 (simplify
2053 (eq @0 integer_onep)
2054 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
2055 && types_match (type, TREE_TYPE (@0)))
2056 (non_lvalue @0)))
2057 /* Do not handle
2058 bool_var == 0 becomes !bool_var or
2059 bool_var != 1 becomes !bool_var
2060 here because that only is good in assignment context as long
2061 as we require a tcc_comparison in GIMPLE_CONDs where we'd
2062 replace if (x == 0) with tem = ~x; if (tem != 0) which is
2063 clearly less optimal and which we'll transform again in forwprop. */
2064
2065
2066 /* Simplification of math builtins. */
2067
2068 /* fold_builtin_logarithm */
2069 (if (flag_unsafe_math_optimizations)
2070
2071 /* Simplify sqrt(x) * sqrt(x) -> x. */
2072 (simplify
2073 (mult (SQRT@1 @0) @1)
2074 (if (!HONOR_SNANS (type))
2075 @0))
2076
2077 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
2078 (for root (SQRT CBRT)
2079 (simplify
2080 (mult (root:s @0) (root:s @1))
2081 (root (mult @0 @1))))
2082
2083 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
2084 (simplify
2085 (mult (POW:s @0 @1) (POW:s @0 @2))
2086 (POW @0 (plus @1 @2)))
2087
2088 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
2089 (simplify
2090 (mult (POW:s @0 @1) (POW:s @2 @1))
2091 (POW (mult @0 @2) @1))
2092
2093 /* Simplify expN(x) * expN(y) -> expN(x+y). */
2094 (for exps (EXP EXP2 EXP10 POW10)
2095 (simplify
2096 (mult (exps:s @0) (exps:s @1))
2097 (exps (plus @0 @1))))
2098
2099 /* Simplify tan(x) * cos(x) -> sin(x). */
2100 (simplify
2101 (mult:c (TAN:s @0) (COS:s @0))
2102 (SIN @0))
2103
2104 /* Simplify x * pow(x,c) -> pow(x,c+1). */
2105 (simplify
2106 (mult @0 (POW:s @0 REAL_CST@1))
2107 (if (!TREE_OVERFLOW (@1))
2108 (POW @0 (plus @1 { build_one_cst (type); }))))
2109
2110 /* Simplify sin(x) / cos(x) -> tan(x). */
2111 (simplify
2112 (rdiv (SIN:s @0) (COS:s @0))
2113 (TAN @0))
2114
2115 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
2116 (simplify
2117 (rdiv (COS:s @0) (SIN:s @0))
2118 (rdiv { build_one_cst (type); } (TAN @0)))
2119
2120 /* Simplify sin(x) / tan(x) -> cos(x). */
2121 (simplify
2122 (rdiv (SIN:s @0) (TAN:s @0))
2123 (if (! HONOR_NANS (@0)
2124 && ! HONOR_INFINITIES (@0))
2125 (cos @0)))
2126
2127 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
2128 (simplify
2129 (rdiv (TAN:s @0) (SIN:s @0))
2130 (if (! HONOR_NANS (@0)
2131 && ! HONOR_INFINITIES (@0))
2132 (rdiv { build_one_cst (type); } (COS @0))))
2133
2134 /* Simplify pow(x,c) / x -> pow(x,c-1). */
2135 (simplify
2136 (rdiv (POW:s @0 REAL_CST@1) @0)
2137 (if (!TREE_OVERFLOW (@1))
2138 (POW @0 (minus @1 { build_one_cst (type); }))))
2139
2140 /* Simplify a/root(b/c) into a*root(c/b). */
2141 (for root (SQRT CBRT)
2142 (simplify
2143 (rdiv @0 (root:s (rdiv:s @1 @2)))
2144 (mult @0 (root (rdiv @2 @1)))))
2145
2146 /* Simplify x/expN(y) into x*expN(-y). */
2147 (for exps (EXP EXP2 EXP10 POW10)
2148 (simplify
2149 (rdiv @0 (exps:s @1))
2150 (mult @0 (exps (negate @1)))))
2151
2152 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
2153 (simplify
2154 (rdiv @0 (POW:s @1 @2))
2155 (mult @0 (POW @1 (negate @2))))
2156
2157 /* Special case, optimize logN(expN(x)) = x. */
2158 (for logs (LOG LOG2 LOG10)
2159 exps (EXP EXP2 EXP10)
2160 (simplify
2161 (logs (exps @0))
2162 @0))
2163 /* Optimize logN(func()) for various exponential functions. We
2164 want to determine the value "x" and the power "exponent" in
2165 order to transform logN(x**exponent) into exponent*logN(x). */
2166 (for logs (LOG LOG LOG LOG
2167 LOG2 LOG2 LOG2 LOG2
2168 LOG10 LOG10 LOG10 LOG10)
2169 exps (EXP EXP2 EXP10 POW10)
2170 (simplify
2171 (logs (exps @0))
2172 (with {
2173 tree x;
2174 switch (exps)
2175 {
2176 CASE_FLT_FN (BUILT_IN_EXP):
2177 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
2178 x = build_real (type, real_value_truncate (TYPE_MODE (type),
2179 dconst_e ()));
2180 break;
2181 CASE_FLT_FN (BUILT_IN_EXP2):
2182 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
2183 x = build_real (type, dconst2);
2184 break;
2185 CASE_FLT_FN (BUILT_IN_EXP10):
2186 CASE_FLT_FN (BUILT_IN_POW10):
2187 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
2188 {
2189 REAL_VALUE_TYPE dconst10;
2190 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
2191 x = build_real (type, dconst10);
2192 }
2193 break;
2194 default:
2195 gcc_unreachable ();
2196 }
2197 }
2198 (mult (logs { x; }) @0))))
2199 (for logs (LOG LOG
2200 LOG2 LOG2
2201 LOG10 LOG10)
2202 exps (SQRT CBRT)
2203 (simplify
2204 (logs (exps @0))
2205 (with {
2206 tree x;
2207 switch (exps)
2208 {
2209 CASE_FLT_FN (BUILT_IN_SQRT):
2210 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
2211 x = build_real (type, dconsthalf);
2212 break;
2213 CASE_FLT_FN (BUILT_IN_CBRT):
2214 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
2215 x = build_real (type, real_value_truncate (TYPE_MODE (type),
2216 dconst_third ()));
2217 break;
2218 default:
2219 gcc_unreachable ();
2220 }
2221 }
2222 (mult { x; } (logs @0)))))
2223 /* logN(pow(x,exponent) -> exponent*logN(x). */
2224 (for logs (LOG LOG2 LOG10)
2225 pows (POW)
2226 (simplify
2227 (logs (pows @0 @1))
2228 (mult @1 (logs @0)))))
2229
2230 /* Narrowing of arithmetic and logical operations.
2231
2232 These are conceptually similar to the transformations performed for
2233 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
2234 term we want to move all that code out of the front-ends into here. */
2235
2236 /* If we have a narrowing conversion of an arithmetic operation where
2237 both operands are widening conversions from the same type as the outer
2238 narrowing conversion. Then convert the innermost operands to a suitable
2239 unsigned type (to avoid introducing undefined behaviour), perform the
2240 operation and convert the result to the desired type. */
2241 (for op (plus minus)
2242 (simplify
2243 (convert (op:s (convert@2 @0) (convert@3 @1)))
2244 (if (INTEGRAL_TYPE_P (type)
2245 /* We check for type compatibility between @0 and @1 below,
2246 so there's no need to check that @1/@3 are integral types. */
2247 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2248 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2249 /* The precision of the type of each operand must match the
2250 precision of the mode of each operand, similarly for the
2251 result. */
2252 && (TYPE_PRECISION (TREE_TYPE (@0))
2253 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2254 && (TYPE_PRECISION (TREE_TYPE (@1))
2255 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2256 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2257 /* The inner conversion must be a widening conversion. */
2258 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
2259 && types_match (@0, @1)
2260 && types_match (@0, type))
2261 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2262 (convert (op @0 @1))
2263 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2264 (convert (op (convert:utype @0) (convert:utype @1))))))))
2265
2266 /* This is another case of narrowing, specifically when there's an outer
2267 BIT_AND_EXPR which masks off bits outside the type of the innermost
2268 operands. Like the previous case we have to convert the operands
2269 to unsigned types to avoid introducing undefined behaviour for the
2270 arithmetic operation. */
2271 (for op (minus plus)
2272 (simplify
2273 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
2274 (if (INTEGRAL_TYPE_P (type)
2275 /* We check for type compatibility between @0 and @1 below,
2276 so there's no need to check that @1/@3 are integral types. */
2277 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2278 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2279 /* The precision of the type of each operand must match the
2280 precision of the mode of each operand, similarly for the
2281 result. */
2282 && (TYPE_PRECISION (TREE_TYPE (@0))
2283 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
2284 && (TYPE_PRECISION (TREE_TYPE (@1))
2285 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
2286 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
2287 /* The inner conversion must be a widening conversion. */
2288 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
2289 && types_match (@0, @1)
2290 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
2291 <= TYPE_PRECISION (TREE_TYPE (@0)))
2292 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2293 || tree_int_cst_sgn (@4) >= 0))
2294 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2295 (with { tree ntype = TREE_TYPE (@0); }
2296 (convert (bit_and (op @0 @1) (convert:ntype @4))))
2297 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
2298 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
2299 (convert:utype @4))))))))