Add IFN_COND_FMA functions
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
80 plus minus
81 mult trunc_div trunc_mod rdiv
82 min max
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
89
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
95
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
99 (convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
102 (view_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
109 @0)
110
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
120
121
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
124
125 (for op (plus pointer_plus minus bit_ior bit_xor)
126 (simplify
127 (op @0 integer_zerop)
128 (non_lvalue @0)))
129
130 /* 0 +p index -> (type)index */
131 (simplify
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
134
135 /* ptr - 0 -> (type)ptr */
136 (simplify
137 (pointer_diff @0 integer_zerop)
138 (convert @0))
139
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
142 (simplify
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
145 (non_lvalue @0)))
146
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
148 (simplify
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
151 (non_lvalue @0)))
152
153 /* Simplify x - x.
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
157 is volatile. */
158 (simplify
159 (minus @0 @0)
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
162 (simplify
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
165
166 (simplify
167 (mult @0 integer_zerop@1)
168 @1)
169
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
174 (simplify
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
177 @1))
178
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
181 (simplify
182 (mult @0 real_onep)
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
186 (non_lvalue @0)))
187
188 /* Transform x * -1.0 into -x. */
189 (simplify
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
194 (negate @0)))
195
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
203 (simplify
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
207 (switch
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
218 (simplify
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
222 (switch
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
229
230 /* Transform X * copysign (1.0, X) into abs(X). */
231 (simplify
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
234 (abs @0)))
235
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
237 (simplify
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
240 (negate (abs @0))))
241
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
243 (simplify
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
247
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
250 (simplify
251 (op @0 integer_onep)
252 (non_lvalue @0)))
253
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
256 toward zero.
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
258 (simplify
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
264 (rshift @0 @2)))
265
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
271 (simplify
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
275 @0))
276 /* X / -1 is -X. */
277 (simplify
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
280 (negate @0)))
281 /* X / X is one. */
282 (simplify
283 (div @0 @0)
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
289 (simplify
290 (div:C @0 (abs @0))
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
295 /* X / -X is -1. */
296 (simplify
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
301
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
304 (simplify
305 (floor_div @0 @1)
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
308 (trunc_div @0 @1)))
309
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
313 (simplify
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
315 (with {
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
319 }
320 (if (!overflow)
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
325
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
328 (simplify
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
330 (with {
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
334 }
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
339
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
342 (simplify
343 (rdiv @0 @0)
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
348
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
351 (simplify
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
357
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
359 (simplify
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
364 (switch
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
371
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
373 (simplify
374 (rdiv @0 real_onep)
375 (if (!HONOR_SNANS (type))
376 (non_lvalue @0)))
377
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
379 (simplify
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
382 (negate @0)))
383
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
386 (simplify
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
389
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
391 (simplify
392 (rdiv @0 (mult:s @1 REAL_CST@2))
393 (with
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
395 (if (tem)
396 (rdiv (mult @0 { tem; } ) @1))))
397
398 /* Convert A/(B/C) to (A/B)*C */
399 (simplify
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
402
403 /* Simplify x / (- y) to -x / y. */
404 (simplify
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
407
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
410 (simplify
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
416 (rshift (convert @0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
419
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
426 (simplify
427 (rdiv @0 cst@1)
428 (if (optimize)
429 (if (flag_reciprocal_math
430 && !real_zerop (@1))
431 (with
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
433 (if (tem)
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
437 (if (inverse)
438 (mult @0 { inverse; } ))))))))
439
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
442 (simplify
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
446 @0))
447 /* X % 1 is always zero. */
448 (simplify
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
452 (simplify
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
456 /* X % X is zero. */
457 (simplify
458 (mod @0 @0)
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
463 (simplify
464 (mod (mod@2 @0 @1) @1)
465 @2)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
467 (simplify
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
472 TYPE_SIGN (type)))
473 { build_zero_cst (type); })))
474
475 /* X % -C is the same as X % C. */
476 (simplify
477 (trunc_mod @0 INTEGER_CST@1)
478 (if (TYPE_SIGN (type) == SIGNED
479 && !TREE_OVERFLOW (@1)
480 && wi::neg_p (wi::to_wide (@1))
481 && !TYPE_OVERFLOW_TRAPS (type)
482 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
483 && !sign_bit_p (@1, @1))
484 (trunc_mod @0 (negate @1))))
485
486 /* X % -Y is the same as X % Y. */
487 (simplify
488 (trunc_mod @0 (convert? (negate @1)))
489 (if (INTEGRAL_TYPE_P (type)
490 && !TYPE_UNSIGNED (type)
491 && !TYPE_OVERFLOW_TRAPS (type)
492 && tree_nop_conversion_p (type, TREE_TYPE (@1))
493 /* Avoid this transformation if X might be INT_MIN or
494 Y might be -1, because we would then change valid
495 INT_MIN % -(-1) into invalid INT_MIN % -1. */
496 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
497 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
498 (TREE_TYPE (@1))))))
499 (trunc_mod @0 (convert @1))))
500
501 /* X - (X / Y) * Y is the same as X % Y. */
502 (simplify
503 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
504 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
505 (convert (trunc_mod @0 @1))))
506
507 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
508 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
509 Also optimize A % (C << N) where C is a power of 2,
510 to A & ((C << N) - 1). */
511 (match (power_of_two_cand @1)
512 INTEGER_CST@1)
513 (match (power_of_two_cand @1)
514 (lshift INTEGER_CST@1 @2))
515 (for mod (trunc_mod floor_mod)
516 (simplify
517 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
518 (if ((TYPE_UNSIGNED (type)
519 || tree_expr_nonnegative_p (@0))
520 && tree_nop_conversion_p (type, TREE_TYPE (@3))
521 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
522 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
523
524 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
525 (simplify
526 (trunc_div (mult @0 integer_pow2p@1) @1)
527 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
528 (bit_and @0 { wide_int_to_tree
529 (type, wi::mask (TYPE_PRECISION (type)
530 - wi::exact_log2 (wi::to_wide (@1)),
531 false, TYPE_PRECISION (type))); })))
532
533 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
534 (simplify
535 (mult (trunc_div @0 integer_pow2p@1) @1)
536 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
537 (bit_and @0 (negate @1))))
538
539 /* Simplify (t * 2) / 2) -> t. */
540 (for div (trunc_div ceil_div floor_div round_div exact_div)
541 (simplify
542 (div (mult:c @0 @1) @1)
543 (if (ANY_INTEGRAL_TYPE_P (type)
544 && TYPE_OVERFLOW_UNDEFINED (type))
545 @0)))
546
547 (for op (negate abs)
548 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
549 (for coss (COS COSH)
550 (simplify
551 (coss (op @0))
552 (coss @0)))
553 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
554 (for pows (POW)
555 (simplify
556 (pows (op @0) REAL_CST@1)
557 (with { HOST_WIDE_INT n; }
558 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
559 (pows @0 @1)))))
560 /* Likewise for powi. */
561 (for pows (POWI)
562 (simplify
563 (pows (op @0) INTEGER_CST@1)
564 (if ((wi::to_wide (@1) & 1) == 0)
565 (pows @0 @1))))
566 /* Strip negate and abs from both operands of hypot. */
567 (for hypots (HYPOT)
568 (simplify
569 (hypots (op @0) @1)
570 (hypots @0 @1))
571 (simplify
572 (hypots @0 (op @1))
573 (hypots @0 @1)))
574 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
575 (for copysigns (COPYSIGN_ALL)
576 (simplify
577 (copysigns (op @0) @1)
578 (copysigns @0 @1))))
579
580 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
581 (simplify
582 (mult (abs@1 @0) @1)
583 (mult @0 @0))
584
585 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
586 (for coss (COS COSH)
587 copysigns (COPYSIGN)
588 (simplify
589 (coss (copysigns @0 @1))
590 (coss @0)))
591
592 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
593 (for pows (POW)
594 copysigns (COPYSIGN)
595 (simplify
596 (pows (copysigns @0 @2) REAL_CST@1)
597 (with { HOST_WIDE_INT n; }
598 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
599 (pows @0 @1)))))
600 /* Likewise for powi. */
601 (for pows (POWI)
602 copysigns (COPYSIGN)
603 (simplify
604 (pows (copysigns @0 @2) INTEGER_CST@1)
605 (if ((wi::to_wide (@1) & 1) == 0)
606 (pows @0 @1))))
607
608 (for hypots (HYPOT)
609 copysigns (COPYSIGN)
610 /* hypot(copysign(x, y), z) -> hypot(x, z). */
611 (simplify
612 (hypots (copysigns @0 @1) @2)
613 (hypots @0 @2))
614 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
615 (simplify
616 (hypots @0 (copysigns @1 @2))
617 (hypots @0 @1)))
618
619 /* copysign(x, CST) -> [-]abs (x). */
620 (for copysigns (COPYSIGN_ALL)
621 (simplify
622 (copysigns @0 REAL_CST@1)
623 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
624 (negate (abs @0))
625 (abs @0))))
626
627 /* copysign(copysign(x, y), z) -> copysign(x, z). */
628 (for copysigns (COPYSIGN_ALL)
629 (simplify
630 (copysigns (copysigns @0 @1) @2)
631 (copysigns @0 @2)))
632
633 /* copysign(x,y)*copysign(x,y) -> x*x. */
634 (for copysigns (COPYSIGN_ALL)
635 (simplify
636 (mult (copysigns@2 @0 @1) @2)
637 (mult @0 @0)))
638
639 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
640 (for ccoss (CCOS CCOSH)
641 (simplify
642 (ccoss (negate @0))
643 (ccoss @0)))
644
645 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
646 (for ops (conj negate)
647 (for cabss (CABS)
648 (simplify
649 (cabss (ops @0))
650 (cabss @0))))
651
652 /* Fold (a * (1 << b)) into (a << b) */
653 (simplify
654 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
655 (if (! FLOAT_TYPE_P (type)
656 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
657 (lshift @0 @2)))
658
659 /* Fold (1 << (C - x)) where C = precision(type) - 1
660 into ((1 << C) >> x). */
661 (simplify
662 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
663 (if (INTEGRAL_TYPE_P (type)
664 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
665 && single_use (@1))
666 (if (TYPE_UNSIGNED (type))
667 (rshift (lshift @0 @2) @3)
668 (with
669 { tree utype = unsigned_type_for (type); }
670 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
671
672 /* Fold (C1/X)*C2 into (C1*C2)/X. */
673 (simplify
674 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
675 (if (flag_associative_math
676 && single_use (@3))
677 (with
678 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
679 (if (tem)
680 (rdiv { tem; } @1)))))
681
682 /* Simplify ~X & X as zero. */
683 (simplify
684 (bit_and:c (convert? @0) (convert? (bit_not @0)))
685 { build_zero_cst (type); })
686
687 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
688 (simplify
689 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
690 (if (TYPE_UNSIGNED (type))
691 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
692
693 (for bitop (bit_and bit_ior)
694 cmp (eq ne)
695 /* PR35691: Transform
696 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
697 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
698 (simplify
699 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
700 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
701 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
702 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
703 (cmp (bit_ior @0 (convert @1)) @2)))
704 /* Transform:
705 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
706 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
707 (simplify
708 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
709 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
710 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
711 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
712 (cmp (bit_and @0 (convert @1)) @2))))
713
714 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
715 (simplify
716 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
717 (minus (bit_xor @0 @1) @1))
718 (simplify
719 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
720 (if (~wi::to_wide (@2) == wi::to_wide (@1))
721 (minus (bit_xor @0 @1) @1)))
722
723 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
724 (simplify
725 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
726 (minus @1 (bit_xor @0 @1)))
727
728 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
729 (for op (bit_ior bit_xor plus)
730 (simplify
731 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
732 (bit_xor @0 @1))
733 (simplify
734 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
735 (if (~wi::to_wide (@2) == wi::to_wide (@1))
736 (bit_xor @0 @1))))
737
738 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
739 (simplify
740 (bit_ior:c (bit_xor:c @0 @1) @0)
741 (bit_ior @0 @1))
742
743 /* (a & ~b) | (a ^ b) --> a ^ b */
744 (simplify
745 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
746 @2)
747
748 /* (a & ~b) ^ ~a --> ~(a & b) */
749 (simplify
750 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
751 (bit_not (bit_and @0 @1)))
752
753 /* (a | b) & ~(a ^ b) --> a & b */
754 (simplify
755 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
756 (bit_and @0 @1))
757
758 /* a | ~(a ^ b) --> a | ~b */
759 (simplify
760 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
761 (bit_ior @0 (bit_not @1)))
762
763 /* (a | b) | (a &^ b) --> a | b */
764 (for op (bit_and bit_xor)
765 (simplify
766 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
767 @2))
768
769 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
770 (simplify
771 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
772 @2)
773
774 /* ~(~a & b) --> a | ~b */
775 (simplify
776 (bit_not (bit_and:cs (bit_not @0) @1))
777 (bit_ior @0 (bit_not @1)))
778
779 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
780 #if GIMPLE
781 (simplify
782 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
783 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
784 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
785 (bit_xor @0 @1)))
786 #endif
787
788 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
789 ((A & N) + B) & M -> (A + B) & M
790 Similarly if (N & M) == 0,
791 ((A | N) + B) & M -> (A + B) & M
792 and for - instead of + (or unary - instead of +)
793 and/or ^ instead of |.
794 If B is constant and (B & M) == 0, fold into A & M. */
795 (for op (plus minus)
796 (for bitop (bit_and bit_ior bit_xor)
797 (simplify
798 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
799 (with
800 { tree pmop[2];
801 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
802 @3, @4, @1, ERROR_MARK, NULL_TREE,
803 NULL_TREE, pmop); }
804 (if (utype)
805 (convert (bit_and (op (convert:utype { pmop[0]; })
806 (convert:utype { pmop[1]; }))
807 (convert:utype @2))))))
808 (simplify
809 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
810 (with
811 { tree pmop[2];
812 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
813 NULL_TREE, NULL_TREE, @1, bitop, @3,
814 @4, pmop); }
815 (if (utype)
816 (convert (bit_and (op (convert:utype { pmop[0]; })
817 (convert:utype { pmop[1]; }))
818 (convert:utype @2)))))))
819 (simplify
820 (bit_and (op:s @0 @1) INTEGER_CST@2)
821 (with
822 { tree pmop[2];
823 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
824 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
825 NULL_TREE, NULL_TREE, pmop); }
826 (if (utype)
827 (convert (bit_and (op (convert:utype { pmop[0]; })
828 (convert:utype { pmop[1]; }))
829 (convert:utype @2)))))))
830 (for bitop (bit_and bit_ior bit_xor)
831 (simplify
832 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
833 (with
834 { tree pmop[2];
835 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
836 bitop, @2, @3, NULL_TREE, ERROR_MARK,
837 NULL_TREE, NULL_TREE, pmop); }
838 (if (utype)
839 (convert (bit_and (negate (convert:utype { pmop[0]; }))
840 (convert:utype @1)))))))
841
842 /* X % Y is smaller than Y. */
843 (for cmp (lt ge)
844 (simplify
845 (cmp (trunc_mod @0 @1) @1)
846 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
847 { constant_boolean_node (cmp == LT_EXPR, type); })))
848 (for cmp (gt le)
849 (simplify
850 (cmp @1 (trunc_mod @0 @1))
851 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
852 { constant_boolean_node (cmp == GT_EXPR, type); })))
853
854 /* x | ~0 -> ~0 */
855 (simplify
856 (bit_ior @0 integer_all_onesp@1)
857 @1)
858
859 /* x | 0 -> x */
860 (simplify
861 (bit_ior @0 integer_zerop)
862 @0)
863
864 /* x & 0 -> 0 */
865 (simplify
866 (bit_and @0 integer_zerop@1)
867 @1)
868
869 /* ~x | x -> -1 */
870 /* ~x ^ x -> -1 */
871 /* ~x + x -> -1 */
872 (for op (bit_ior bit_xor plus)
873 (simplify
874 (op:c (convert? @0) (convert? (bit_not @0)))
875 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
876
877 /* x ^ x -> 0 */
878 (simplify
879 (bit_xor @0 @0)
880 { build_zero_cst (type); })
881
882 /* Canonicalize X ^ ~0 to ~X. */
883 (simplify
884 (bit_xor @0 integer_all_onesp@1)
885 (bit_not @0))
886
887 /* x & ~0 -> x */
888 (simplify
889 (bit_and @0 integer_all_onesp)
890 (non_lvalue @0))
891
892 /* x & x -> x, x | x -> x */
893 (for bitop (bit_and bit_ior)
894 (simplify
895 (bitop @0 @0)
896 (non_lvalue @0)))
897
898 /* x & C -> x if we know that x & ~C == 0. */
899 #if GIMPLE
900 (simplify
901 (bit_and SSA_NAME@0 INTEGER_CST@1)
902 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
903 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
904 @0))
905 #endif
906
907 /* x + (x & 1) -> (x + 1) & ~1 */
908 (simplify
909 (plus:c @0 (bit_and:s @0 integer_onep@1))
910 (bit_and (plus @0 @1) (bit_not @1)))
911
912 /* x & ~(x & y) -> x & ~y */
913 /* x | ~(x | y) -> x | ~y */
914 (for bitop (bit_and bit_ior)
915 (simplify
916 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
917 (bitop @0 (bit_not @1))))
918
919 /* (x | y) & ~x -> y & ~x */
920 /* (x & y) | ~x -> y | ~x */
921 (for bitop (bit_and bit_ior)
922 rbitop (bit_ior bit_and)
923 (simplify
924 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
925 (bitop @1 @2)))
926
927 /* (x & y) ^ (x | y) -> x ^ y */
928 (simplify
929 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
930 (bit_xor @0 @1))
931
932 /* (x ^ y) ^ (x | y) -> x & y */
933 (simplify
934 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
935 (bit_and @0 @1))
936
937 /* (x & y) + (x ^ y) -> x | y */
938 /* (x & y) | (x ^ y) -> x | y */
939 /* (x & y) ^ (x ^ y) -> x | y */
940 (for op (plus bit_ior bit_xor)
941 (simplify
942 (op:c (bit_and @0 @1) (bit_xor @0 @1))
943 (bit_ior @0 @1)))
944
945 /* (x & y) + (x | y) -> x + y */
946 (simplify
947 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
948 (plus @0 @1))
949
950 /* (x + y) - (x | y) -> x & y */
951 (simplify
952 (minus (plus @0 @1) (bit_ior @0 @1))
953 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
954 && !TYPE_SATURATING (type))
955 (bit_and @0 @1)))
956
957 /* (x + y) - (x & y) -> x | y */
958 (simplify
959 (minus (plus @0 @1) (bit_and @0 @1))
960 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
961 && !TYPE_SATURATING (type))
962 (bit_ior @0 @1)))
963
964 /* (x | y) - (x ^ y) -> x & y */
965 (simplify
966 (minus (bit_ior @0 @1) (bit_xor @0 @1))
967 (bit_and @0 @1))
968
969 /* (x | y) - (x & y) -> x ^ y */
970 (simplify
971 (minus (bit_ior @0 @1) (bit_and @0 @1))
972 (bit_xor @0 @1))
973
974 /* (x | y) & ~(x & y) -> x ^ y */
975 (simplify
976 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
977 (bit_xor @0 @1))
978
979 /* (x | y) & (~x ^ y) -> x & y */
980 (simplify
981 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
982 (bit_and @0 @1))
983
984 /* ~x & ~y -> ~(x | y)
985 ~x | ~y -> ~(x & y) */
986 (for op (bit_and bit_ior)
987 rop (bit_ior bit_and)
988 (simplify
989 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
990 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
991 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
992 (bit_not (rop (convert @0) (convert @1))))))
993
994 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
995 with a constant, and the two constants have no bits in common,
996 we should treat this as a BIT_IOR_EXPR since this may produce more
997 simplifications. */
998 (for op (bit_xor plus)
999 (simplify
1000 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1001 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1002 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1003 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1004 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1005 (bit_ior (convert @4) (convert @5)))))
1006
1007 /* (X | Y) ^ X -> Y & ~ X*/
1008 (simplify
1009 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1010 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1011 (convert (bit_and @1 (bit_not @0)))))
1012
1013 /* Convert ~X ^ ~Y to X ^ Y. */
1014 (simplify
1015 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1016 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1017 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1018 (bit_xor (convert @0) (convert @1))))
1019
1020 /* Convert ~X ^ C to X ^ ~C. */
1021 (simplify
1022 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1023 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1024 (bit_xor (convert @0) (bit_not @1))))
1025
1026 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1027 (for opo (bit_and bit_xor)
1028 opi (bit_xor bit_and)
1029 (simplify
1030 (opo:c (opi:c @0 @1) @1)
1031 (bit_and (bit_not @0) @1)))
1032
1033 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1034 operands are another bit-wise operation with a common input. If so,
1035 distribute the bit operations to save an operation and possibly two if
1036 constants are involved. For example, convert
1037 (A | B) & (A | C) into A | (B & C)
1038 Further simplification will occur if B and C are constants. */
1039 (for op (bit_and bit_ior bit_xor)
1040 rop (bit_ior bit_and bit_and)
1041 (simplify
1042 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1043 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1044 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1045 (rop (convert @0) (op (convert @1) (convert @2))))))
1046
1047 /* Some simple reassociation for bit operations, also handled in reassoc. */
1048 /* (X & Y) & Y -> X & Y
1049 (X | Y) | Y -> X | Y */
1050 (for op (bit_and bit_ior)
1051 (simplify
1052 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1053 @2))
1054 /* (X ^ Y) ^ Y -> X */
1055 (simplify
1056 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1057 (convert @0))
1058 /* (X & Y) & (X & Z) -> (X & Y) & Z
1059 (X | Y) | (X | Z) -> (X | Y) | Z */
1060 (for op (bit_and bit_ior)
1061 (simplify
1062 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1063 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1064 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1065 (if (single_use (@5) && single_use (@6))
1066 (op @3 (convert @2))
1067 (if (single_use (@3) && single_use (@4))
1068 (op (convert @1) @5))))))
1069 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1070 (simplify
1071 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1072 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1073 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1074 (bit_xor (convert @1) (convert @2))))
1075
1076 (simplify
1077 (abs (abs@1 @0))
1078 @1)
1079 (simplify
1080 (abs (negate @0))
1081 (abs @0))
1082 (simplify
1083 (abs tree_expr_nonnegative_p@0)
1084 @0)
1085
1086 /* A few cases of fold-const.c negate_expr_p predicate. */
1087 (match negate_expr_p
1088 INTEGER_CST
1089 (if ((INTEGRAL_TYPE_P (type)
1090 && TYPE_UNSIGNED (type))
1091 || (!TYPE_OVERFLOW_SANITIZED (type)
1092 && may_negate_without_overflow_p (t)))))
1093 (match negate_expr_p
1094 FIXED_CST)
1095 (match negate_expr_p
1096 (negate @0)
1097 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1098 (match negate_expr_p
1099 REAL_CST
1100 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1101 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1102 ways. */
1103 (match negate_expr_p
1104 VECTOR_CST
1105 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1106 (match negate_expr_p
1107 (minus @0 @1)
1108 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1109 || (FLOAT_TYPE_P (type)
1110 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1111 && !HONOR_SIGNED_ZEROS (type)))))
1112
1113 /* (-A) * (-B) -> A * B */
1114 (simplify
1115 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1116 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1117 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1118 (mult (convert @0) (convert (negate @1)))))
1119
1120 /* -(A + B) -> (-B) - A. */
1121 (simplify
1122 (negate (plus:c @0 negate_expr_p@1))
1123 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1124 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1125 (minus (negate @1) @0)))
1126
1127 /* -(A - B) -> B - A. */
1128 (simplify
1129 (negate (minus @0 @1))
1130 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1131 || (FLOAT_TYPE_P (type)
1132 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1133 && !HONOR_SIGNED_ZEROS (type)))
1134 (minus @1 @0)))
1135 (simplify
1136 (negate (pointer_diff @0 @1))
1137 (if (TYPE_OVERFLOW_UNDEFINED (type))
1138 (pointer_diff @1 @0)))
1139
1140 /* A - B -> A + (-B) if B is easily negatable. */
1141 (simplify
1142 (minus @0 negate_expr_p@1)
1143 (if (!FIXED_POINT_TYPE_P (type))
1144 (plus @0 (negate @1))))
1145
1146 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1147 when profitable.
1148 For bitwise binary operations apply operand conversions to the
1149 binary operation result instead of to the operands. This allows
1150 to combine successive conversions and bitwise binary operations.
1151 We combine the above two cases by using a conditional convert. */
1152 (for bitop (bit_and bit_ior bit_xor)
1153 (simplify
1154 (bitop (convert @0) (convert? @1))
1155 (if (((TREE_CODE (@1) == INTEGER_CST
1156 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1157 && int_fits_type_p (@1, TREE_TYPE (@0)))
1158 || types_match (@0, @1))
1159 /* ??? This transform conflicts with fold-const.c doing
1160 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1161 constants (if x has signed type, the sign bit cannot be set
1162 in c). This folds extension into the BIT_AND_EXPR.
1163 Restrict it to GIMPLE to avoid endless recursions. */
1164 && (bitop != BIT_AND_EXPR || GIMPLE)
1165 && (/* That's a good idea if the conversion widens the operand, thus
1166 after hoisting the conversion the operation will be narrower. */
1167 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1168 /* It's also a good idea if the conversion is to a non-integer
1169 mode. */
1170 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1171 /* Or if the precision of TO is not the same as the precision
1172 of its mode. */
1173 || !type_has_mode_precision_p (type)))
1174 (convert (bitop @0 (convert @1))))))
1175
1176 (for bitop (bit_and bit_ior)
1177 rbitop (bit_ior bit_and)
1178 /* (x | y) & x -> x */
1179 /* (x & y) | x -> x */
1180 (simplify
1181 (bitop:c (rbitop:c @0 @1) @0)
1182 @0)
1183 /* (~x | y) & x -> x & y */
1184 /* (~x & y) | x -> x | y */
1185 (simplify
1186 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1187 (bitop @0 @1)))
1188
1189 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1190 (simplify
1191 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1192 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1193
1194 /* Combine successive equal operations with constants. */
1195 (for bitop (bit_and bit_ior bit_xor)
1196 (simplify
1197 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1198 (if (!CONSTANT_CLASS_P (@0))
1199 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1200 folded to a constant. */
1201 (bitop @0 (bitop @1 @2))
1202 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1203 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1204 the values involved are such that the operation can't be decided at
1205 compile time. Try folding one of @0 or @1 with @2 to see whether
1206 that combination can be decided at compile time.
1207
1208 Keep the existing form if both folds fail, to avoid endless
1209 oscillation. */
1210 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1211 (if (cst1)
1212 (bitop @1 { cst1; })
1213 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1214 (if (cst2)
1215 (bitop @0 { cst2; }))))))))
1216
1217 /* Try simple folding for X op !X, and X op X with the help
1218 of the truth_valued_p and logical_inverted_value predicates. */
1219 (match truth_valued_p
1220 @0
1221 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1222 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1223 (match truth_valued_p
1224 (op @0 @1)))
1225 (match truth_valued_p
1226 (truth_not @0))
1227
1228 (match (logical_inverted_value @0)
1229 (truth_not @0))
1230 (match (logical_inverted_value @0)
1231 (bit_not truth_valued_p@0))
1232 (match (logical_inverted_value @0)
1233 (eq @0 integer_zerop))
1234 (match (logical_inverted_value @0)
1235 (ne truth_valued_p@0 integer_truep))
1236 (match (logical_inverted_value @0)
1237 (bit_xor truth_valued_p@0 integer_truep))
1238
1239 /* X & !X -> 0. */
1240 (simplify
1241 (bit_and:c @0 (logical_inverted_value @0))
1242 { build_zero_cst (type); })
1243 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1244 (for op (bit_ior bit_xor)
1245 (simplify
1246 (op:c truth_valued_p@0 (logical_inverted_value @0))
1247 { constant_boolean_node (true, type); }))
1248 /* X ==/!= !X is false/true. */
1249 (for op (eq ne)
1250 (simplify
1251 (op:c truth_valued_p@0 (logical_inverted_value @0))
1252 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1253
1254 /* ~~x -> x */
1255 (simplify
1256 (bit_not (bit_not @0))
1257 @0)
1258
1259 /* Convert ~ (-A) to A - 1. */
1260 (simplify
1261 (bit_not (convert? (negate @0)))
1262 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1263 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1264 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1265
1266 /* Convert - (~A) to A + 1. */
1267 (simplify
1268 (negate (nop_convert (bit_not @0)))
1269 (plus (view_convert @0) { build_each_one_cst (type); }))
1270
1271 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1272 (simplify
1273 (bit_not (convert? (minus @0 integer_each_onep)))
1274 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1275 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1276 (convert (negate @0))))
1277 (simplify
1278 (bit_not (convert? (plus @0 integer_all_onesp)))
1279 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1280 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1281 (convert (negate @0))))
1282
1283 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1284 (simplify
1285 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1286 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1287 (convert (bit_xor @0 (bit_not @1)))))
1288 (simplify
1289 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1290 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1291 (convert (bit_xor @0 @1))))
1292
1293 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1294 (simplify
1295 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1296 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1297 (bit_not (bit_xor (view_convert @0) @1))))
1298
1299 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1300 (simplify
1301 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1302 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1303
1304 /* Fold A - (A & B) into ~B & A. */
1305 (simplify
1306 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1307 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1308 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1309 (convert (bit_and (bit_not @1) @0))))
1310
1311 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1312 (for cmp (gt lt ge le)
1313 (simplify
1314 (mult (convert (cmp @0 @1)) @2)
1315 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1316
1317 /* For integral types with undefined overflow and C != 0 fold
1318 x * C EQ/NE y * C into x EQ/NE y. */
1319 (for cmp (eq ne)
1320 (simplify
1321 (cmp (mult:c @0 @1) (mult:c @2 @1))
1322 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1323 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1324 && tree_expr_nonzero_p (@1))
1325 (cmp @0 @2))))
1326
1327 /* For integral types with wrapping overflow and C odd fold
1328 x * C EQ/NE y * C into x EQ/NE y. */
1329 (for cmp (eq ne)
1330 (simplify
1331 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1332 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1333 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1334 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1335 (cmp @0 @2))))
1336
1337 /* For integral types with undefined overflow and C != 0 fold
1338 x * C RELOP y * C into:
1339
1340 x RELOP y for nonnegative C
1341 y RELOP x for negative C */
1342 (for cmp (lt gt le ge)
1343 (simplify
1344 (cmp (mult:c @0 @1) (mult:c @2 @1))
1345 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1346 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1347 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1348 (cmp @0 @2)
1349 (if (TREE_CODE (@1) == INTEGER_CST
1350 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1351 (cmp @2 @0))))))
1352
1353 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1354 (for cmp (le gt)
1355 icmp (gt le)
1356 (simplify
1357 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1358 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1359 && TYPE_UNSIGNED (TREE_TYPE (@0))
1360 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1361 && (wi::to_wide (@2)
1362 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1363 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1364 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1365
1366 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1367 (for cmp (simple_comparison)
1368 (simplify
1369 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1370 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1371 (cmp @0 @1))))
1372
1373 /* X / C1 op C2 into a simple range test. */
1374 (for cmp (simple_comparison)
1375 (simplify
1376 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1377 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1378 && integer_nonzerop (@1)
1379 && !TREE_OVERFLOW (@1)
1380 && !TREE_OVERFLOW (@2))
1381 (with { tree lo, hi; bool neg_overflow;
1382 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1383 &neg_overflow); }
1384 (switch
1385 (if (code == LT_EXPR || code == GE_EXPR)
1386 (if (TREE_OVERFLOW (lo))
1387 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1388 (if (code == LT_EXPR)
1389 (lt @0 { lo; })
1390 (ge @0 { lo; }))))
1391 (if (code == LE_EXPR || code == GT_EXPR)
1392 (if (TREE_OVERFLOW (hi))
1393 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1394 (if (code == LE_EXPR)
1395 (le @0 { hi; })
1396 (gt @0 { hi; }))))
1397 (if (!lo && !hi)
1398 { build_int_cst (type, code == NE_EXPR); })
1399 (if (code == EQ_EXPR && !hi)
1400 (ge @0 { lo; }))
1401 (if (code == EQ_EXPR && !lo)
1402 (le @0 { hi; }))
1403 (if (code == NE_EXPR && !hi)
1404 (lt @0 { lo; }))
1405 (if (code == NE_EXPR && !lo)
1406 (gt @0 { hi; }))
1407 (if (GENERIC)
1408 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1409 lo, hi); })
1410 (with
1411 {
1412 tree etype = range_check_type (TREE_TYPE (@0));
1413 if (etype)
1414 {
1415 if (! TYPE_UNSIGNED (etype))
1416 etype = unsigned_type_for (etype);
1417 hi = fold_convert (etype, hi);
1418 lo = fold_convert (etype, lo);
1419 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1420 }
1421 }
1422 (if (etype && hi && !TREE_OVERFLOW (hi))
1423 (if (code == EQ_EXPR)
1424 (le (minus (convert:etype @0) { lo; }) { hi; })
1425 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1426
1427 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1428 (for op (lt le ge gt)
1429 (simplify
1430 (op (plus:c @0 @2) (plus:c @1 @2))
1431 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1432 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1433 (op @0 @1))))
1434 /* For equality and subtraction, this is also true with wrapping overflow. */
1435 (for op (eq ne minus)
1436 (simplify
1437 (op (plus:c @0 @2) (plus:c @1 @2))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1441 (op @0 @1))))
1442
1443 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1444 (for op (lt le ge gt)
1445 (simplify
1446 (op (minus @0 @2) (minus @1 @2))
1447 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1448 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1449 (op @0 @1))))
1450 /* For equality and subtraction, this is also true with wrapping overflow. */
1451 (for op (eq ne minus)
1452 (simplify
1453 (op (minus @0 @2) (minus @1 @2))
1454 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1455 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1456 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1457 (op @0 @1))))
1458 /* And for pointers... */
1459 (for op (simple_comparison)
1460 (simplify
1461 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1462 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1463 (op @0 @1))))
1464 (simplify
1465 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1466 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1467 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1468 (pointer_diff @0 @1)))
1469
1470 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1471 (for op (lt le ge gt)
1472 (simplify
1473 (op (minus @2 @0) (minus @2 @1))
1474 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1476 (op @1 @0))))
1477 /* For equality and subtraction, this is also true with wrapping overflow. */
1478 (for op (eq ne minus)
1479 (simplify
1480 (op (minus @2 @0) (minus @2 @1))
1481 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1482 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1483 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1484 (op @1 @0))))
1485 /* And for pointers... */
1486 (for op (simple_comparison)
1487 (simplify
1488 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1489 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1490 (op @1 @0))))
1491 (simplify
1492 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1493 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1494 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1495 (pointer_diff @1 @0)))
1496
1497 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1498 (for op (lt le gt ge)
1499 (simplify
1500 (op:c (plus:c@2 @0 @1) @1)
1501 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1502 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1503 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1504 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1505 /* For equality, this is also true with wrapping overflow. */
1506 (for op (eq ne)
1507 (simplify
1508 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1509 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1510 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1511 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1512 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1513 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1514 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1515 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1516 (simplify
1517 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1518 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1519 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1520 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1521 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1522
1523 /* X - Y < X is the same as Y > 0 when there is no overflow.
1524 For equality, this is also true with wrapping overflow. */
1525 (for op (simple_comparison)
1526 (simplify
1527 (op:c @0 (minus@2 @0 @1))
1528 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1529 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1530 || ((op == EQ_EXPR || op == NE_EXPR)
1531 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1532 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1533 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1534
1535 /* Transform:
1536 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1537 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1538 (for cmp (eq ne)
1539 ocmp (lt ge)
1540 (simplify
1541 (cmp (trunc_div @0 @1) integer_zerop)
1542 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1543 /* Complex ==/!= is allowed, but not </>=. */
1544 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1545 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1546 (ocmp @0 @1))))
1547
1548 /* X == C - X can never be true if C is odd. */
1549 (for cmp (eq ne)
1550 (simplify
1551 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1552 (if (TREE_INT_CST_LOW (@1) & 1)
1553 { constant_boolean_node (cmp == NE_EXPR, type); })))
1554
1555 /* Arguments on which one can call get_nonzero_bits to get the bits
1556 possibly set. */
1557 (match with_possible_nonzero_bits
1558 INTEGER_CST@0)
1559 (match with_possible_nonzero_bits
1560 SSA_NAME@0
1561 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1562 /* Slightly extended version, do not make it recursive to keep it cheap. */
1563 (match (with_possible_nonzero_bits2 @0)
1564 with_possible_nonzero_bits@0)
1565 (match (with_possible_nonzero_bits2 @0)
1566 (bit_and:c with_possible_nonzero_bits@0 @2))
1567
1568 /* Same for bits that are known to be set, but we do not have
1569 an equivalent to get_nonzero_bits yet. */
1570 (match (with_certain_nonzero_bits2 @0)
1571 INTEGER_CST@0)
1572 (match (with_certain_nonzero_bits2 @0)
1573 (bit_ior @1 INTEGER_CST@0))
1574
1575 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1576 (for cmp (eq ne)
1577 (simplify
1578 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1579 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1580 { constant_boolean_node (cmp == NE_EXPR, type); })))
1581
1582 /* ((X inner_op C0) outer_op C1)
1583 With X being a tree where value_range has reasoned certain bits to always be
1584 zero throughout its computed value range,
1585 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1586 where zero_mask has 1's for all bits that are sure to be 0 in
1587 and 0's otherwise.
1588 if (inner_op == '^') C0 &= ~C1;
1589 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1590 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1591 */
1592 (for inner_op (bit_ior bit_xor)
1593 outer_op (bit_xor bit_ior)
1594 (simplify
1595 (outer_op
1596 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1597 (with
1598 {
1599 bool fail = false;
1600 wide_int zero_mask_not;
1601 wide_int C0;
1602 wide_int cst_emit;
1603
1604 if (TREE_CODE (@2) == SSA_NAME)
1605 zero_mask_not = get_nonzero_bits (@2);
1606 else
1607 fail = true;
1608
1609 if (inner_op == BIT_XOR_EXPR)
1610 {
1611 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1612 cst_emit = C0 | wi::to_wide (@1);
1613 }
1614 else
1615 {
1616 C0 = wi::to_wide (@0);
1617 cst_emit = C0 ^ wi::to_wide (@1);
1618 }
1619 }
1620 (if (!fail && (C0 & zero_mask_not) == 0)
1621 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1622 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1623 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1624
1625 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1626 (simplify
1627 (pointer_plus (pointer_plus:s @0 @1) @3)
1628 (pointer_plus @0 (plus @1 @3)))
1629
1630 /* Pattern match
1631 tem1 = (long) ptr1;
1632 tem2 = (long) ptr2;
1633 tem3 = tem2 - tem1;
1634 tem4 = (unsigned long) tem3;
1635 tem5 = ptr1 + tem4;
1636 and produce
1637 tem5 = ptr2; */
1638 (simplify
1639 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1640 /* Conditionally look through a sign-changing conversion. */
1641 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1642 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1643 || (GENERIC && type == TREE_TYPE (@1))))
1644 @1))
1645 (simplify
1646 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1647 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1648 (convert @1)))
1649
1650 /* Pattern match
1651 tem = (sizetype) ptr;
1652 tem = tem & algn;
1653 tem = -tem;
1654 ... = ptr p+ tem;
1655 and produce the simpler and easier to analyze with respect to alignment
1656 ... = ptr & ~algn; */
1657 (simplify
1658 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1659 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1660 (bit_and @0 { algn; })))
1661
1662 /* Try folding difference of addresses. */
1663 (simplify
1664 (minus (convert ADDR_EXPR@0) (convert @1))
1665 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1666 (with { poly_int64 diff; }
1667 (if (ptr_difference_const (@0, @1, &diff))
1668 { build_int_cst_type (type, diff); }))))
1669 (simplify
1670 (minus (convert @0) (convert ADDR_EXPR@1))
1671 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1672 (with { poly_int64 diff; }
1673 (if (ptr_difference_const (@0, @1, &diff))
1674 { build_int_cst_type (type, diff); }))))
1675 (simplify
1676 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1677 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1678 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1679 (with { poly_int64 diff; }
1680 (if (ptr_difference_const (@0, @1, &diff))
1681 { build_int_cst_type (type, diff); }))))
1682 (simplify
1683 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1684 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1685 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1686 (with { poly_int64 diff; }
1687 (if (ptr_difference_const (@0, @1, &diff))
1688 { build_int_cst_type (type, diff); }))))
1689
1690 /* If arg0 is derived from the address of an object or function, we may
1691 be able to fold this expression using the object or function's
1692 alignment. */
1693 (simplify
1694 (bit_and (convert? @0) INTEGER_CST@1)
1695 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1696 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1697 (with
1698 {
1699 unsigned int align;
1700 unsigned HOST_WIDE_INT bitpos;
1701 get_pointer_alignment_1 (@0, &align, &bitpos);
1702 }
1703 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1704 { wide_int_to_tree (type, (wi::to_wide (@1)
1705 & (bitpos / BITS_PER_UNIT))); }))))
1706
1707
1708 /* We can't reassociate at all for saturating types. */
1709 (if (!TYPE_SATURATING (type))
1710
1711 /* Contract negates. */
1712 /* A + (-B) -> A - B */
1713 (simplify
1714 (plus:c @0 (convert? (negate @1)))
1715 /* Apply STRIP_NOPS on the negate. */
1716 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1717 && !TYPE_OVERFLOW_SANITIZED (type))
1718 (with
1719 {
1720 tree t1 = type;
1721 if (INTEGRAL_TYPE_P (type)
1722 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1723 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1724 }
1725 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1726 /* A - (-B) -> A + B */
1727 (simplify
1728 (minus @0 (convert? (negate @1)))
1729 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1730 && !TYPE_OVERFLOW_SANITIZED (type))
1731 (with
1732 {
1733 tree t1 = type;
1734 if (INTEGRAL_TYPE_P (type)
1735 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1736 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1737 }
1738 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1739 /* -(T)(-A) -> (T)A
1740 Sign-extension is ok except for INT_MIN, which thankfully cannot
1741 happen without overflow. */
1742 (simplify
1743 (negate (convert (negate @1)))
1744 (if (INTEGRAL_TYPE_P (type)
1745 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1746 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1747 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1748 && !TYPE_OVERFLOW_SANITIZED (type)
1749 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1750 (convert @1)))
1751 (simplify
1752 (negate (convert negate_expr_p@1))
1753 (if (SCALAR_FLOAT_TYPE_P (type)
1754 && ((DECIMAL_FLOAT_TYPE_P (type)
1755 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1756 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1757 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1758 (convert (negate @1))))
1759 (simplify
1760 (negate (nop_convert (negate @1)))
1761 (if (!TYPE_OVERFLOW_SANITIZED (type)
1762 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1763 (view_convert @1)))
1764
1765 /* We can't reassociate floating-point unless -fassociative-math
1766 or fixed-point plus or minus because of saturation to +-Inf. */
1767 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1768 && !FIXED_POINT_TYPE_P (type))
1769
1770 /* Match patterns that allow contracting a plus-minus pair
1771 irrespective of overflow issues. */
1772 /* (A +- B) - A -> +- B */
1773 /* (A +- B) -+ B -> A */
1774 /* A - (A +- B) -> -+ B */
1775 /* A +- (B -+ A) -> +- B */
1776 (simplify
1777 (minus (plus:c @0 @1) @0)
1778 @1)
1779 (simplify
1780 (minus (minus @0 @1) @0)
1781 (negate @1))
1782 (simplify
1783 (plus:c (minus @0 @1) @1)
1784 @0)
1785 (simplify
1786 (minus @0 (plus:c @0 @1))
1787 (negate @1))
1788 (simplify
1789 (minus @0 (minus @0 @1))
1790 @1)
1791 /* (A +- B) + (C - A) -> C +- B */
1792 /* (A + B) - (A - C) -> B + C */
1793 /* More cases are handled with comparisons. */
1794 (simplify
1795 (plus:c (plus:c @0 @1) (minus @2 @0))
1796 (plus @2 @1))
1797 (simplify
1798 (plus:c (minus @0 @1) (minus @2 @0))
1799 (minus @2 @1))
1800 (simplify
1801 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1802 (if (TYPE_OVERFLOW_UNDEFINED (type)
1803 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1804 (pointer_diff @2 @1)))
1805 (simplify
1806 (minus (plus:c @0 @1) (minus @0 @2))
1807 (plus @1 @2))
1808
1809 /* (A +- CST1) +- CST2 -> A + CST3
1810 Use view_convert because it is safe for vectors and equivalent for
1811 scalars. */
1812 (for outer_op (plus minus)
1813 (for inner_op (plus minus)
1814 neg_inner_op (minus plus)
1815 (simplify
1816 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1817 CONSTANT_CLASS_P@2)
1818 /* If one of the types wraps, use that one. */
1819 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1820 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1821 forever if something doesn't simplify into a constant. */
1822 (if (!CONSTANT_CLASS_P (@0))
1823 (if (outer_op == PLUS_EXPR)
1824 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1825 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1826 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1827 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1828 (if (outer_op == PLUS_EXPR)
1829 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1830 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1831 /* If the constant operation overflows we cannot do the transform
1832 directly as we would introduce undefined overflow, for example
1833 with (a - 1) + INT_MIN. */
1834 (if (types_match (type, @0))
1835 (with { tree cst = const_binop (outer_op == inner_op
1836 ? PLUS_EXPR : MINUS_EXPR,
1837 type, @1, @2); }
1838 (if (cst && !TREE_OVERFLOW (cst))
1839 (inner_op @0 { cst; } )
1840 /* X+INT_MAX+1 is X-INT_MIN. */
1841 (if (INTEGRAL_TYPE_P (type) && cst
1842 && wi::to_wide (cst) == wi::min_value (type))
1843 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1844 /* Last resort, use some unsigned type. */
1845 (with { tree utype = unsigned_type_for (type); }
1846 (if (utype)
1847 (view_convert (inner_op
1848 (view_convert:utype @0)
1849 (view_convert:utype
1850 { drop_tree_overflow (cst); }))))))))))))))
1851
1852 /* (CST1 - A) +- CST2 -> CST3 - A */
1853 (for outer_op (plus minus)
1854 (simplify
1855 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1856 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1857 (if (cst && !TREE_OVERFLOW (cst))
1858 (minus { cst; } @0)))))
1859
1860 /* CST1 - (CST2 - A) -> CST3 + A */
1861 (simplify
1862 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1863 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1864 (if (cst && !TREE_OVERFLOW (cst))
1865 (plus { cst; } @0))))
1866
1867 /* ~A + A -> -1 */
1868 (simplify
1869 (plus:c (bit_not @0) @0)
1870 (if (!TYPE_OVERFLOW_TRAPS (type))
1871 { build_all_ones_cst (type); }))
1872
1873 /* ~A + 1 -> -A */
1874 (simplify
1875 (plus (convert? (bit_not @0)) integer_each_onep)
1876 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1877 (negate (convert @0))))
1878
1879 /* -A - 1 -> ~A */
1880 (simplify
1881 (minus (convert? (negate @0)) integer_each_onep)
1882 (if (!TYPE_OVERFLOW_TRAPS (type)
1883 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1884 (bit_not (convert @0))))
1885
1886 /* -1 - A -> ~A */
1887 (simplify
1888 (minus integer_all_onesp @0)
1889 (bit_not @0))
1890
1891 /* (T)(P + A) - (T)P -> (T) A */
1892 (simplify
1893 (minus (convert (plus:c @@0 @1))
1894 (convert? @0))
1895 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1896 /* For integer types, if A has a smaller type
1897 than T the result depends on the possible
1898 overflow in P + A.
1899 E.g. T=size_t, A=(unsigned)429497295, P>0.
1900 However, if an overflow in P + A would cause
1901 undefined behavior, we can assume that there
1902 is no overflow. */
1903 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1904 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1905 (convert @1)))
1906 (simplify
1907 (minus (convert (pointer_plus @@0 @1))
1908 (convert @0))
1909 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1910 /* For pointer types, if the conversion of A to the
1911 final type requires a sign- or zero-extension,
1912 then we have to punt - it is not defined which
1913 one is correct. */
1914 || (POINTER_TYPE_P (TREE_TYPE (@0))
1915 && TREE_CODE (@1) == INTEGER_CST
1916 && tree_int_cst_sign_bit (@1) == 0))
1917 (convert @1)))
1918 (simplify
1919 (pointer_diff (pointer_plus @@0 @1) @0)
1920 /* The second argument of pointer_plus must be interpreted as signed, and
1921 thus sign-extended if necessary. */
1922 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1923 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1924 second arg is unsigned even when we need to consider it as signed,
1925 we don't want to diagnose overflow here. */
1926 (convert (view_convert:stype @1))))
1927
1928 /* (T)P - (T)(P + A) -> -(T) A */
1929 (simplify
1930 (minus (convert? @0)
1931 (convert (plus:c @@0 @1)))
1932 (if (INTEGRAL_TYPE_P (type)
1933 && TYPE_OVERFLOW_UNDEFINED (type)
1934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1935 (with { tree utype = unsigned_type_for (type); }
1936 (convert (negate (convert:utype @1))))
1937 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1938 /* For integer types, if A has a smaller type
1939 than T the result depends on the possible
1940 overflow in P + A.
1941 E.g. T=size_t, A=(unsigned)429497295, P>0.
1942 However, if an overflow in P + A would cause
1943 undefined behavior, we can assume that there
1944 is no overflow. */
1945 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1946 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1947 (negate (convert @1)))))
1948 (simplify
1949 (minus (convert @0)
1950 (convert (pointer_plus @@0 @1)))
1951 (if (INTEGRAL_TYPE_P (type)
1952 && TYPE_OVERFLOW_UNDEFINED (type)
1953 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1954 (with { tree utype = unsigned_type_for (type); }
1955 (convert (negate (convert:utype @1))))
1956 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1957 /* For pointer types, if the conversion of A to the
1958 final type requires a sign- or zero-extension,
1959 then we have to punt - it is not defined which
1960 one is correct. */
1961 || (POINTER_TYPE_P (TREE_TYPE (@0))
1962 && TREE_CODE (@1) == INTEGER_CST
1963 && tree_int_cst_sign_bit (@1) == 0))
1964 (negate (convert @1)))))
1965 (simplify
1966 (pointer_diff @0 (pointer_plus @@0 @1))
1967 /* The second argument of pointer_plus must be interpreted as signed, and
1968 thus sign-extended if necessary. */
1969 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1970 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1971 second arg is unsigned even when we need to consider it as signed,
1972 we don't want to diagnose overflow here. */
1973 (negate (convert (view_convert:stype @1)))))
1974
1975 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1976 (simplify
1977 (minus (convert (plus:c @@0 @1))
1978 (convert (plus:c @0 @2)))
1979 (if (INTEGRAL_TYPE_P (type)
1980 && TYPE_OVERFLOW_UNDEFINED (type)
1981 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1982 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1983 (with { tree utype = unsigned_type_for (type); }
1984 (convert (minus (convert:utype @1) (convert:utype @2))))
1985 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1986 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1987 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1988 /* For integer types, if A has a smaller type
1989 than T the result depends on the possible
1990 overflow in P + A.
1991 E.g. T=size_t, A=(unsigned)429497295, P>0.
1992 However, if an overflow in P + A would cause
1993 undefined behavior, we can assume that there
1994 is no overflow. */
1995 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1996 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1999 (minus (convert @1) (convert @2)))))
2000 (simplify
2001 (minus (convert (pointer_plus @@0 @1))
2002 (convert (pointer_plus @0 @2)))
2003 (if (INTEGRAL_TYPE_P (type)
2004 && TYPE_OVERFLOW_UNDEFINED (type)
2005 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2006 (with { tree utype = unsigned_type_for (type); }
2007 (convert (minus (convert:utype @1) (convert:utype @2))))
2008 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2009 /* For pointer types, if the conversion of A to the
2010 final type requires a sign- or zero-extension,
2011 then we have to punt - it is not defined which
2012 one is correct. */
2013 || (POINTER_TYPE_P (TREE_TYPE (@0))
2014 && TREE_CODE (@1) == INTEGER_CST
2015 && tree_int_cst_sign_bit (@1) == 0
2016 && TREE_CODE (@2) == INTEGER_CST
2017 && tree_int_cst_sign_bit (@2) == 0))
2018 (minus (convert @1) (convert @2)))))
2019 (simplify
2020 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2021 /* The second argument of pointer_plus must be interpreted as signed, and
2022 thus sign-extended if necessary. */
2023 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2024 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2025 second arg is unsigned even when we need to consider it as signed,
2026 we don't want to diagnose overflow here. */
2027 (minus (convert (view_convert:stype @1))
2028 (convert (view_convert:stype @2)))))))
2029
2030 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2031 Modeled after fold_plusminus_mult_expr. */
2032 (if (!TYPE_SATURATING (type)
2033 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2034 (for plusminus (plus minus)
2035 (simplify
2036 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2037 (if ((!ANY_INTEGRAL_TYPE_P (type)
2038 || TYPE_OVERFLOW_WRAPS (type)
2039 || (INTEGRAL_TYPE_P (type)
2040 && tree_expr_nonzero_p (@0)
2041 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2042 /* If @1 +- @2 is constant require a hard single-use on either
2043 original operand (but not on both). */
2044 && (single_use (@3) || single_use (@4)))
2045 (mult (plusminus @1 @2) @0)))
2046 /* We cannot generate constant 1 for fract. */
2047 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2048 (simplify
2049 (plusminus @0 (mult:c@3 @0 @2))
2050 (if ((!ANY_INTEGRAL_TYPE_P (type)
2051 || TYPE_OVERFLOW_WRAPS (type)
2052 || (INTEGRAL_TYPE_P (type)
2053 && tree_expr_nonzero_p (@0)
2054 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2055 && single_use (@3))
2056 (mult (plusminus { build_one_cst (type); } @2) @0)))
2057 (simplify
2058 (plusminus (mult:c@3 @0 @2) @0)
2059 (if ((!ANY_INTEGRAL_TYPE_P (type)
2060 || TYPE_OVERFLOW_WRAPS (type)
2061 || (INTEGRAL_TYPE_P (type)
2062 && tree_expr_nonzero_p (@0)
2063 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2064 && single_use (@3))
2065 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2066
2067 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2068
2069 (for minmax (min max FMIN_ALL FMAX_ALL)
2070 (simplify
2071 (minmax @0 @0)
2072 @0))
2073 /* min(max(x,y),y) -> y. */
2074 (simplify
2075 (min:c (max:c @0 @1) @1)
2076 @1)
2077 /* max(min(x,y),y) -> y. */
2078 (simplify
2079 (max:c (min:c @0 @1) @1)
2080 @1)
2081 /* max(a,-a) -> abs(a). */
2082 (simplify
2083 (max:c @0 (negate @0))
2084 (if (TREE_CODE (type) != COMPLEX_TYPE
2085 && (! ANY_INTEGRAL_TYPE_P (type)
2086 || TYPE_OVERFLOW_UNDEFINED (type)))
2087 (abs @0)))
2088 /* min(a,-a) -> -abs(a). */
2089 (simplify
2090 (min:c @0 (negate @0))
2091 (if (TREE_CODE (type) != COMPLEX_TYPE
2092 && (! ANY_INTEGRAL_TYPE_P (type)
2093 || TYPE_OVERFLOW_UNDEFINED (type)))
2094 (negate (abs @0))))
2095 (simplify
2096 (min @0 @1)
2097 (switch
2098 (if (INTEGRAL_TYPE_P (type)
2099 && TYPE_MIN_VALUE (type)
2100 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2101 @1)
2102 (if (INTEGRAL_TYPE_P (type)
2103 && TYPE_MAX_VALUE (type)
2104 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2105 @0)))
2106 (simplify
2107 (max @0 @1)
2108 (switch
2109 (if (INTEGRAL_TYPE_P (type)
2110 && TYPE_MAX_VALUE (type)
2111 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2112 @1)
2113 (if (INTEGRAL_TYPE_P (type)
2114 && TYPE_MIN_VALUE (type)
2115 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2116 @0)))
2117
2118 /* max (a, a + CST) -> a + CST where CST is positive. */
2119 /* max (a, a + CST) -> a where CST is negative. */
2120 (simplify
2121 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2122 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2123 (if (tree_int_cst_sgn (@1) > 0)
2124 @2
2125 @0)))
2126
2127 /* min (a, a + CST) -> a where CST is positive. */
2128 /* min (a, a + CST) -> a + CST where CST is negative. */
2129 (simplify
2130 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2131 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2132 (if (tree_int_cst_sgn (@1) > 0)
2133 @0
2134 @2)))
2135
2136 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2137 and the outer convert demotes the expression back to x's type. */
2138 (for minmax (min max)
2139 (simplify
2140 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2141 (if (INTEGRAL_TYPE_P (type)
2142 && types_match (@1, type) && int_fits_type_p (@2, type)
2143 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2144 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2145 (minmax @1 (convert @2)))))
2146
2147 (for minmax (FMIN_ALL FMAX_ALL)
2148 /* If either argument is NaN, return the other one. Avoid the
2149 transformation if we get (and honor) a signalling NaN. */
2150 (simplify
2151 (minmax:c @0 REAL_CST@1)
2152 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2153 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2154 @0)))
2155 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2156 functions to return the numeric arg if the other one is NaN.
2157 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2158 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2159 worry about it either. */
2160 (if (flag_finite_math_only)
2161 (simplify
2162 (FMIN_ALL @0 @1)
2163 (min @0 @1))
2164 (simplify
2165 (FMAX_ALL @0 @1)
2166 (max @0 @1)))
2167 /* min (-A, -B) -> -max (A, B) */
2168 (for minmax (min max FMIN_ALL FMAX_ALL)
2169 maxmin (max min FMAX_ALL FMIN_ALL)
2170 (simplify
2171 (minmax (negate:s@2 @0) (negate:s@3 @1))
2172 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2173 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2174 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2175 (negate (maxmin @0 @1)))))
2176 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2177 MAX (~X, ~Y) -> ~MIN (X, Y) */
2178 (for minmax (min max)
2179 maxmin (max min)
2180 (simplify
2181 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2182 (bit_not (maxmin @0 @1))))
2183
2184 /* MIN (X, Y) == X -> X <= Y */
2185 (for minmax (min min max max)
2186 cmp (eq ne eq ne )
2187 out (le gt ge lt )
2188 (simplify
2189 (cmp:c (minmax:c @0 @1) @0)
2190 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2191 (out @0 @1))))
2192 /* MIN (X, 5) == 0 -> X == 0
2193 MIN (X, 5) == 7 -> false */
2194 (for cmp (eq ne)
2195 (simplify
2196 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2197 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2198 TYPE_SIGN (TREE_TYPE (@0))))
2199 { constant_boolean_node (cmp == NE_EXPR, type); }
2200 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2201 TYPE_SIGN (TREE_TYPE (@0))))
2202 (cmp @0 @2)))))
2203 (for cmp (eq ne)
2204 (simplify
2205 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2206 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2207 TYPE_SIGN (TREE_TYPE (@0))))
2208 { constant_boolean_node (cmp == NE_EXPR, type); }
2209 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2210 TYPE_SIGN (TREE_TYPE (@0))))
2211 (cmp @0 @2)))))
2212 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2213 (for minmax (min min max max min min max max )
2214 cmp (lt le gt ge gt ge lt le )
2215 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2216 (simplify
2217 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2218 (comb (cmp @0 @2) (cmp @1 @2))))
2219
2220 /* Simplifications of shift and rotates. */
2221
2222 (for rotate (lrotate rrotate)
2223 (simplify
2224 (rotate integer_all_onesp@0 @1)
2225 @0))
2226
2227 /* Optimize -1 >> x for arithmetic right shifts. */
2228 (simplify
2229 (rshift integer_all_onesp@0 @1)
2230 (if (!TYPE_UNSIGNED (type)
2231 && tree_expr_nonnegative_p (@1))
2232 @0))
2233
2234 /* Optimize (x >> c) << c into x & (-1<<c). */
2235 (simplify
2236 (lshift (rshift @0 INTEGER_CST@1) @1)
2237 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2238 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2239
2240 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2241 types. */
2242 (simplify
2243 (rshift (lshift @0 INTEGER_CST@1) @1)
2244 (if (TYPE_UNSIGNED (type)
2245 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2246 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2247
2248 (for shiftrotate (lrotate rrotate lshift rshift)
2249 (simplify
2250 (shiftrotate @0 integer_zerop)
2251 (non_lvalue @0))
2252 (simplify
2253 (shiftrotate integer_zerop@0 @1)
2254 @0)
2255 /* Prefer vector1 << scalar to vector1 << vector2
2256 if vector2 is uniform. */
2257 (for vec (VECTOR_CST CONSTRUCTOR)
2258 (simplify
2259 (shiftrotate @0 vec@1)
2260 (with { tree tem = uniform_vector_p (@1); }
2261 (if (tem)
2262 (shiftrotate @0 { tem; }))))))
2263
2264 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2265 Y is 0. Similarly for X >> Y. */
2266 #if GIMPLE
2267 (for shift (lshift rshift)
2268 (simplify
2269 (shift @0 SSA_NAME@1)
2270 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2271 (with {
2272 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2273 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2274 }
2275 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2276 @0)))))
2277 #endif
2278
2279 /* Rewrite an LROTATE_EXPR by a constant into an
2280 RROTATE_EXPR by a new constant. */
2281 (simplify
2282 (lrotate @0 INTEGER_CST@1)
2283 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2284 build_int_cst (TREE_TYPE (@1),
2285 element_precision (type)), @1); }))
2286
2287 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2288 (for op (lrotate rrotate rshift lshift)
2289 (simplify
2290 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2291 (with { unsigned int prec = element_precision (type); }
2292 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2293 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2294 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2295 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2296 (with { unsigned int low = (tree_to_uhwi (@1)
2297 + tree_to_uhwi (@2)); }
2298 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2299 being well defined. */
2300 (if (low >= prec)
2301 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2302 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2303 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2304 { build_zero_cst (type); }
2305 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2306 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2307
2308
2309 /* ((1 << A) & 1) != 0 -> A == 0
2310 ((1 << A) & 1) == 0 -> A != 0 */
2311 (for cmp (ne eq)
2312 icmp (eq ne)
2313 (simplify
2314 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2315 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2316
2317 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2318 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2319 if CST2 != 0. */
2320 (for cmp (ne eq)
2321 (simplify
2322 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2323 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2324 (if (cand < 0
2325 || (!integer_zerop (@2)
2326 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2327 { constant_boolean_node (cmp == NE_EXPR, type); }
2328 (if (!integer_zerop (@2)
2329 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2330 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2331
2332 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2333 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2334 if the new mask might be further optimized. */
2335 (for shift (lshift rshift)
2336 (simplify
2337 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2338 INTEGER_CST@2)
2339 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2340 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2341 && tree_fits_uhwi_p (@1)
2342 && tree_to_uhwi (@1) > 0
2343 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2344 (with
2345 {
2346 unsigned int shiftc = tree_to_uhwi (@1);
2347 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2348 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2349 tree shift_type = TREE_TYPE (@3);
2350 unsigned int prec;
2351
2352 if (shift == LSHIFT_EXPR)
2353 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2354 else if (shift == RSHIFT_EXPR
2355 && type_has_mode_precision_p (shift_type))
2356 {
2357 prec = TYPE_PRECISION (TREE_TYPE (@3));
2358 tree arg00 = @0;
2359 /* See if more bits can be proven as zero because of
2360 zero extension. */
2361 if (@3 != @0
2362 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2363 {
2364 tree inner_type = TREE_TYPE (@0);
2365 if (type_has_mode_precision_p (inner_type)
2366 && TYPE_PRECISION (inner_type) < prec)
2367 {
2368 prec = TYPE_PRECISION (inner_type);
2369 /* See if we can shorten the right shift. */
2370 if (shiftc < prec)
2371 shift_type = inner_type;
2372 /* Otherwise X >> C1 is all zeros, so we'll optimize
2373 it into (X, 0) later on by making sure zerobits
2374 is all ones. */
2375 }
2376 }
2377 zerobits = HOST_WIDE_INT_M1U;
2378 if (shiftc < prec)
2379 {
2380 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2381 zerobits <<= prec - shiftc;
2382 }
2383 /* For arithmetic shift if sign bit could be set, zerobits
2384 can contain actually sign bits, so no transformation is
2385 possible, unless MASK masks them all away. In that
2386 case the shift needs to be converted into logical shift. */
2387 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2388 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2389 {
2390 if ((mask & zerobits) == 0)
2391 shift_type = unsigned_type_for (TREE_TYPE (@3));
2392 else
2393 zerobits = 0;
2394 }
2395 }
2396 }
2397 /* ((X << 16) & 0xff00) is (X, 0). */
2398 (if ((mask & zerobits) == mask)
2399 { build_int_cst (type, 0); }
2400 (with { newmask = mask | zerobits; }
2401 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2402 (with
2403 {
2404 /* Only do the transformation if NEWMASK is some integer
2405 mode's mask. */
2406 for (prec = BITS_PER_UNIT;
2407 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2408 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2409 break;
2410 }
2411 (if (prec < HOST_BITS_PER_WIDE_INT
2412 || newmask == HOST_WIDE_INT_M1U)
2413 (with
2414 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2415 (if (!tree_int_cst_equal (newmaskt, @2))
2416 (if (shift_type != TREE_TYPE (@3))
2417 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2418 (bit_and @4 { newmaskt; })))))))))))))
2419
2420 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2421 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2422 (for shift (lshift rshift)
2423 (for bit_op (bit_and bit_xor bit_ior)
2424 (simplify
2425 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2426 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2427 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2428 (bit_op (shift (convert @0) @1) { mask; }))))))
2429
2430 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2431 (simplify
2432 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2433 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2434 && (element_precision (TREE_TYPE (@0))
2435 <= element_precision (TREE_TYPE (@1))
2436 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2437 (with
2438 { tree shift_type = TREE_TYPE (@0); }
2439 (convert (rshift (convert:shift_type @1) @2)))))
2440
2441 /* ~(~X >>r Y) -> X >>r Y
2442 ~(~X <<r Y) -> X <<r Y */
2443 (for rotate (lrotate rrotate)
2444 (simplify
2445 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2446 (if ((element_precision (TREE_TYPE (@0))
2447 <= element_precision (TREE_TYPE (@1))
2448 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2449 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2450 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2451 (with
2452 { tree rotate_type = TREE_TYPE (@0); }
2453 (convert (rotate (convert:rotate_type @1) @2))))))
2454
2455 /* Simplifications of conversions. */
2456
2457 /* Basic strip-useless-type-conversions / strip_nops. */
2458 (for cvt (convert view_convert float fix_trunc)
2459 (simplify
2460 (cvt @0)
2461 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2462 || (GENERIC && type == TREE_TYPE (@0)))
2463 @0)))
2464
2465 /* Contract view-conversions. */
2466 (simplify
2467 (view_convert (view_convert @0))
2468 (view_convert @0))
2469
2470 /* For integral conversions with the same precision or pointer
2471 conversions use a NOP_EXPR instead. */
2472 (simplify
2473 (view_convert @0)
2474 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2475 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2476 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2477 (convert @0)))
2478
2479 /* Strip inner integral conversions that do not change precision or size, or
2480 zero-extend while keeping the same size (for bool-to-char). */
2481 (simplify
2482 (view_convert (convert@0 @1))
2483 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2484 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2485 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2486 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2487 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2488 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2489 (view_convert @1)))
2490
2491 /* Re-association barriers around constants and other re-association
2492 barriers can be removed. */
2493 (simplify
2494 (paren CONSTANT_CLASS_P@0)
2495 @0)
2496 (simplify
2497 (paren (paren@1 @0))
2498 @1)
2499
2500 /* Handle cases of two conversions in a row. */
2501 (for ocvt (convert float fix_trunc)
2502 (for icvt (convert float)
2503 (simplify
2504 (ocvt (icvt@1 @0))
2505 (with
2506 {
2507 tree inside_type = TREE_TYPE (@0);
2508 tree inter_type = TREE_TYPE (@1);
2509 int inside_int = INTEGRAL_TYPE_P (inside_type);
2510 int inside_ptr = POINTER_TYPE_P (inside_type);
2511 int inside_float = FLOAT_TYPE_P (inside_type);
2512 int inside_vec = VECTOR_TYPE_P (inside_type);
2513 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2514 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2515 int inter_int = INTEGRAL_TYPE_P (inter_type);
2516 int inter_ptr = POINTER_TYPE_P (inter_type);
2517 int inter_float = FLOAT_TYPE_P (inter_type);
2518 int inter_vec = VECTOR_TYPE_P (inter_type);
2519 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2520 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2521 int final_int = INTEGRAL_TYPE_P (type);
2522 int final_ptr = POINTER_TYPE_P (type);
2523 int final_float = FLOAT_TYPE_P (type);
2524 int final_vec = VECTOR_TYPE_P (type);
2525 unsigned int final_prec = TYPE_PRECISION (type);
2526 int final_unsignedp = TYPE_UNSIGNED (type);
2527 }
2528 (switch
2529 /* In addition to the cases of two conversions in a row
2530 handled below, if we are converting something to its own
2531 type via an object of identical or wider precision, neither
2532 conversion is needed. */
2533 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2534 || (GENERIC
2535 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2536 && (((inter_int || inter_ptr) && final_int)
2537 || (inter_float && final_float))
2538 && inter_prec >= final_prec)
2539 (ocvt @0))
2540
2541 /* Likewise, if the intermediate and initial types are either both
2542 float or both integer, we don't need the middle conversion if the
2543 former is wider than the latter and doesn't change the signedness
2544 (for integers). Avoid this if the final type is a pointer since
2545 then we sometimes need the middle conversion. */
2546 (if (((inter_int && inside_int) || (inter_float && inside_float))
2547 && (final_int || final_float)
2548 && inter_prec >= inside_prec
2549 && (inter_float || inter_unsignedp == inside_unsignedp))
2550 (ocvt @0))
2551
2552 /* If we have a sign-extension of a zero-extended value, we can
2553 replace that by a single zero-extension. Likewise if the
2554 final conversion does not change precision we can drop the
2555 intermediate conversion. */
2556 (if (inside_int && inter_int && final_int
2557 && ((inside_prec < inter_prec && inter_prec < final_prec
2558 && inside_unsignedp && !inter_unsignedp)
2559 || final_prec == inter_prec))
2560 (ocvt @0))
2561
2562 /* Two conversions in a row are not needed unless:
2563 - some conversion is floating-point (overstrict for now), or
2564 - some conversion is a vector (overstrict for now), or
2565 - the intermediate type is narrower than both initial and
2566 final, or
2567 - the intermediate type and innermost type differ in signedness,
2568 and the outermost type is wider than the intermediate, or
2569 - the initial type is a pointer type and the precisions of the
2570 intermediate and final types differ, or
2571 - the final type is a pointer type and the precisions of the
2572 initial and intermediate types differ. */
2573 (if (! inside_float && ! inter_float && ! final_float
2574 && ! inside_vec && ! inter_vec && ! final_vec
2575 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2576 && ! (inside_int && inter_int
2577 && inter_unsignedp != inside_unsignedp
2578 && inter_prec < final_prec)
2579 && ((inter_unsignedp && inter_prec > inside_prec)
2580 == (final_unsignedp && final_prec > inter_prec))
2581 && ! (inside_ptr && inter_prec != final_prec)
2582 && ! (final_ptr && inside_prec != inter_prec))
2583 (ocvt @0))
2584
2585 /* A truncation to an unsigned type (a zero-extension) should be
2586 canonicalized as bitwise and of a mask. */
2587 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2588 && final_int && inter_int && inside_int
2589 && final_prec == inside_prec
2590 && final_prec > inter_prec
2591 && inter_unsignedp)
2592 (convert (bit_and @0 { wide_int_to_tree
2593 (inside_type,
2594 wi::mask (inter_prec, false,
2595 TYPE_PRECISION (inside_type))); })))
2596
2597 /* If we are converting an integer to a floating-point that can
2598 represent it exactly and back to an integer, we can skip the
2599 floating-point conversion. */
2600 (if (GIMPLE /* PR66211 */
2601 && inside_int && inter_float && final_int &&
2602 (unsigned) significand_size (TYPE_MODE (inter_type))
2603 >= inside_prec - !inside_unsignedp)
2604 (convert @0)))))))
2605
2606 /* If we have a narrowing conversion to an integral type that is fed by a
2607 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2608 masks off bits outside the final type (and nothing else). */
2609 (simplify
2610 (convert (bit_and @0 INTEGER_CST@1))
2611 (if (INTEGRAL_TYPE_P (type)
2612 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2613 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2614 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2615 TYPE_PRECISION (type)), 0))
2616 (convert @0)))
2617
2618
2619 /* (X /[ex] A) * A -> X. */
2620 (simplify
2621 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2622 (convert @0))
2623
2624 /* Canonicalization of binary operations. */
2625
2626 /* Convert X + -C into X - C. */
2627 (simplify
2628 (plus @0 REAL_CST@1)
2629 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2630 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2631 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2632 (minus @0 { tem; })))))
2633
2634 /* Convert x+x into x*2. */
2635 (simplify
2636 (plus @0 @0)
2637 (if (SCALAR_FLOAT_TYPE_P (type))
2638 (mult @0 { build_real (type, dconst2); })
2639 (if (INTEGRAL_TYPE_P (type))
2640 (mult @0 { build_int_cst (type, 2); }))))
2641
2642 /* 0 - X -> -X. */
2643 (simplify
2644 (minus integer_zerop @1)
2645 (negate @1))
2646 (simplify
2647 (pointer_diff integer_zerop @1)
2648 (negate (convert @1)))
2649
2650 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2651 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2652 (-ARG1 + ARG0) reduces to -ARG1. */
2653 (simplify
2654 (minus real_zerop@0 @1)
2655 (if (fold_real_zero_addition_p (type, @0, 0))
2656 (negate @1)))
2657
2658 /* Transform x * -1 into -x. */
2659 (simplify
2660 (mult @0 integer_minus_onep)
2661 (negate @0))
2662
2663 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2664 signed overflow for CST != 0 && CST != -1. */
2665 (simplify
2666 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2667 (if (TREE_CODE (@2) != INTEGER_CST
2668 && single_use (@3)
2669 && !integer_zerop (@1) && !integer_minus_onep (@1))
2670 (mult (mult @0 @2) @1)))
2671
2672 /* True if we can easily extract the real and imaginary parts of a complex
2673 number. */
2674 (match compositional_complex
2675 (convert? (complex @0 @1)))
2676
2677 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2678 (simplify
2679 (complex (realpart @0) (imagpart @0))
2680 @0)
2681 (simplify
2682 (realpart (complex @0 @1))
2683 @0)
2684 (simplify
2685 (imagpart (complex @0 @1))
2686 @1)
2687
2688 /* Sometimes we only care about half of a complex expression. */
2689 (simplify
2690 (realpart (convert?:s (conj:s @0)))
2691 (convert (realpart @0)))
2692 (simplify
2693 (imagpart (convert?:s (conj:s @0)))
2694 (convert (negate (imagpart @0))))
2695 (for part (realpart imagpart)
2696 (for op (plus minus)
2697 (simplify
2698 (part (convert?:s@2 (op:s @0 @1)))
2699 (convert (op (part @0) (part @1))))))
2700 (simplify
2701 (realpart (convert?:s (CEXPI:s @0)))
2702 (convert (COS @0)))
2703 (simplify
2704 (imagpart (convert?:s (CEXPI:s @0)))
2705 (convert (SIN @0)))
2706
2707 /* conj(conj(x)) -> x */
2708 (simplify
2709 (conj (convert? (conj @0)))
2710 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2711 (convert @0)))
2712
2713 /* conj({x,y}) -> {x,-y} */
2714 (simplify
2715 (conj (convert?:s (complex:s @0 @1)))
2716 (with { tree itype = TREE_TYPE (type); }
2717 (complex (convert:itype @0) (negate (convert:itype @1)))))
2718
2719 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2720 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2721 (simplify
2722 (bswap (bswap @0))
2723 @0)
2724 (simplify
2725 (bswap (bit_not (bswap @0)))
2726 (bit_not @0))
2727 (for bitop (bit_xor bit_ior bit_and)
2728 (simplify
2729 (bswap (bitop:c (bswap @0) @1))
2730 (bitop @0 (bswap @1)))))
2731
2732
2733 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2734
2735 /* Simplify constant conditions.
2736 Only optimize constant conditions when the selected branch
2737 has the same type as the COND_EXPR. This avoids optimizing
2738 away "c ? x : throw", where the throw has a void type.
2739 Note that we cannot throw away the fold-const.c variant nor
2740 this one as we depend on doing this transform before possibly
2741 A ? B : B -> B triggers and the fold-const.c one can optimize
2742 0 ? A : B to B even if A has side-effects. Something
2743 genmatch cannot handle. */
2744 (simplify
2745 (cond INTEGER_CST@0 @1 @2)
2746 (if (integer_zerop (@0))
2747 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2748 @2)
2749 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2750 @1)))
2751 (simplify
2752 (vec_cond VECTOR_CST@0 @1 @2)
2753 (if (integer_all_onesp (@0))
2754 @1
2755 (if (integer_zerop (@0))
2756 @2)))
2757
2758 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2759 be extended. */
2760 /* This pattern implements two kinds simplification:
2761
2762 Case 1)
2763 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2764 1) Conversions are type widening from smaller type.
2765 2) Const c1 equals to c2 after canonicalizing comparison.
2766 3) Comparison has tree code LT, LE, GT or GE.
2767 This specific pattern is needed when (cmp (convert x) c) may not
2768 be simplified by comparison patterns because of multiple uses of
2769 x. It also makes sense here because simplifying across multiple
2770 referred var is always benefitial for complicated cases.
2771
2772 Case 2)
2773 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2774 (for cmp (lt le gt ge eq)
2775 (simplify
2776 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2777 (with
2778 {
2779 tree from_type = TREE_TYPE (@1);
2780 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2781 enum tree_code code = ERROR_MARK;
2782
2783 if (INTEGRAL_TYPE_P (from_type)
2784 && int_fits_type_p (@2, from_type)
2785 && (types_match (c1_type, from_type)
2786 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2787 && (TYPE_UNSIGNED (from_type)
2788 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2789 && (types_match (c2_type, from_type)
2790 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2791 && (TYPE_UNSIGNED (from_type)
2792 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2793 {
2794 if (cmp != EQ_EXPR)
2795 {
2796 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2797 {
2798 /* X <= Y - 1 equals to X < Y. */
2799 if (cmp == LE_EXPR)
2800 code = LT_EXPR;
2801 /* X > Y - 1 equals to X >= Y. */
2802 if (cmp == GT_EXPR)
2803 code = GE_EXPR;
2804 }
2805 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2806 {
2807 /* X < Y + 1 equals to X <= Y. */
2808 if (cmp == LT_EXPR)
2809 code = LE_EXPR;
2810 /* X >= Y + 1 equals to X > Y. */
2811 if (cmp == GE_EXPR)
2812 code = GT_EXPR;
2813 }
2814 if (code != ERROR_MARK
2815 || wi::to_widest (@2) == wi::to_widest (@3))
2816 {
2817 if (cmp == LT_EXPR || cmp == LE_EXPR)
2818 code = MIN_EXPR;
2819 if (cmp == GT_EXPR || cmp == GE_EXPR)
2820 code = MAX_EXPR;
2821 }
2822 }
2823 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2824 else if (int_fits_type_p (@3, from_type))
2825 code = EQ_EXPR;
2826 }
2827 }
2828 (if (code == MAX_EXPR)
2829 (convert (max @1 (convert @2)))
2830 (if (code == MIN_EXPR)
2831 (convert (min @1 (convert @2)))
2832 (if (code == EQ_EXPR)
2833 (convert (cond (eq @1 (convert @3))
2834 (convert:from_type @3) (convert:from_type @2)))))))))
2835
2836 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2837
2838 1) OP is PLUS or MINUS.
2839 2) CMP is LT, LE, GT or GE.
2840 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2841
2842 This pattern also handles special cases like:
2843
2844 A) Operand x is a unsigned to signed type conversion and c1 is
2845 integer zero. In this case,
2846 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2847 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2848 B) Const c1 may not equal to (C3 op' C2). In this case we also
2849 check equality for (c1+1) and (c1-1) by adjusting comparison
2850 code.
2851
2852 TODO: Though signed type is handled by this pattern, it cannot be
2853 simplified at the moment because C standard requires additional
2854 type promotion. In order to match&simplify it here, the IR needs
2855 to be cleaned up by other optimizers, i.e, VRP. */
2856 (for op (plus minus)
2857 (for cmp (lt le gt ge)
2858 (simplify
2859 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2860 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2861 (if (types_match (from_type, to_type)
2862 /* Check if it is special case A). */
2863 || (TYPE_UNSIGNED (from_type)
2864 && !TYPE_UNSIGNED (to_type)
2865 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2866 && integer_zerop (@1)
2867 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2868 (with
2869 {
2870 wi::overflow_type overflow = wi::OVF_NONE;
2871 enum tree_code code, cmp_code = cmp;
2872 wide_int real_c1;
2873 wide_int c1 = wi::to_wide (@1);
2874 wide_int c2 = wi::to_wide (@2);
2875 wide_int c3 = wi::to_wide (@3);
2876 signop sgn = TYPE_SIGN (from_type);
2877
2878 /* Handle special case A), given x of unsigned type:
2879 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2880 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2881 if (!types_match (from_type, to_type))
2882 {
2883 if (cmp_code == LT_EXPR)
2884 cmp_code = GT_EXPR;
2885 if (cmp_code == GE_EXPR)
2886 cmp_code = LE_EXPR;
2887 c1 = wi::max_value (to_type);
2888 }
2889 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2890 compute (c3 op' c2) and check if it equals to c1 with op' being
2891 the inverted operator of op. Make sure overflow doesn't happen
2892 if it is undefined. */
2893 if (op == PLUS_EXPR)
2894 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2895 else
2896 real_c1 = wi::add (c3, c2, sgn, &overflow);
2897
2898 code = cmp_code;
2899 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2900 {
2901 /* Check if c1 equals to real_c1. Boundary condition is handled
2902 by adjusting comparison operation if necessary. */
2903 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2904 && !overflow)
2905 {
2906 /* X <= Y - 1 equals to X < Y. */
2907 if (cmp_code == LE_EXPR)
2908 code = LT_EXPR;
2909 /* X > Y - 1 equals to X >= Y. */
2910 if (cmp_code == GT_EXPR)
2911 code = GE_EXPR;
2912 }
2913 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2914 && !overflow)
2915 {
2916 /* X < Y + 1 equals to X <= Y. */
2917 if (cmp_code == LT_EXPR)
2918 code = LE_EXPR;
2919 /* X >= Y + 1 equals to X > Y. */
2920 if (cmp_code == GE_EXPR)
2921 code = GT_EXPR;
2922 }
2923 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2924 {
2925 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2926 code = MIN_EXPR;
2927 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2928 code = MAX_EXPR;
2929 }
2930 }
2931 }
2932 (if (code == MAX_EXPR)
2933 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2934 { wide_int_to_tree (from_type, c2); })
2935 (if (code == MIN_EXPR)
2936 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2937 { wide_int_to_tree (from_type, c2); })))))))))
2938
2939 (for cnd (cond vec_cond)
2940 /* A ? B : (A ? X : C) -> A ? B : C. */
2941 (simplify
2942 (cnd @0 (cnd @0 @1 @2) @3)
2943 (cnd @0 @1 @3))
2944 (simplify
2945 (cnd @0 @1 (cnd @0 @2 @3))
2946 (cnd @0 @1 @3))
2947 /* A ? B : (!A ? C : X) -> A ? B : C. */
2948 /* ??? This matches embedded conditions open-coded because genmatch
2949 would generate matching code for conditions in separate stmts only.
2950 The following is still important to merge then and else arm cases
2951 from if-conversion. */
2952 (simplify
2953 (cnd @0 @1 (cnd @2 @3 @4))
2954 (if (COMPARISON_CLASS_P (@0)
2955 && COMPARISON_CLASS_P (@2)
2956 && invert_tree_comparison
2957 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2958 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2959 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2960 (cnd @0 @1 @3)))
2961 (simplify
2962 (cnd @0 (cnd @1 @2 @3) @4)
2963 (if (COMPARISON_CLASS_P (@0)
2964 && COMPARISON_CLASS_P (@1)
2965 && invert_tree_comparison
2966 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2967 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2968 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2969 (cnd @0 @3 @4)))
2970
2971 /* A ? B : B -> B. */
2972 (simplify
2973 (cnd @0 @1 @1)
2974 @1)
2975
2976 /* !A ? B : C -> A ? C : B. */
2977 (simplify
2978 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2979 (cnd @0 @2 @1)))
2980
2981 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2982 return all -1 or all 0 results. */
2983 /* ??? We could instead convert all instances of the vec_cond to negate,
2984 but that isn't necessarily a win on its own. */
2985 (simplify
2986 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2987 (if (VECTOR_TYPE_P (type)
2988 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2989 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2990 && (TYPE_MODE (TREE_TYPE (type))
2991 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2992 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2993
2994 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2995 (simplify
2996 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2997 (if (VECTOR_TYPE_P (type)
2998 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2999 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3000 && (TYPE_MODE (TREE_TYPE (type))
3001 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3002 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3003
3004
3005 /* Simplifications of comparisons. */
3006
3007 /* See if we can reduce the magnitude of a constant involved in a
3008 comparison by changing the comparison code. This is a canonicalization
3009 formerly done by maybe_canonicalize_comparison_1. */
3010 (for cmp (le gt)
3011 acmp (lt ge)
3012 (simplify
3013 (cmp @0 INTEGER_CST@1)
3014 (if (tree_int_cst_sgn (@1) == -1)
3015 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3016 (for cmp (ge lt)
3017 acmp (gt le)
3018 (simplify
3019 (cmp @0 INTEGER_CST@1)
3020 (if (tree_int_cst_sgn (@1) == 1)
3021 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3022
3023
3024 /* We can simplify a logical negation of a comparison to the
3025 inverted comparison. As we cannot compute an expression
3026 operator using invert_tree_comparison we have to simulate
3027 that with expression code iteration. */
3028 (for cmp (tcc_comparison)
3029 icmp (inverted_tcc_comparison)
3030 ncmp (inverted_tcc_comparison_with_nans)
3031 /* Ideally we'd like to combine the following two patterns
3032 and handle some more cases by using
3033 (logical_inverted_value (cmp @0 @1))
3034 here but for that genmatch would need to "inline" that.
3035 For now implement what forward_propagate_comparison did. */
3036 (simplify
3037 (bit_not (cmp @0 @1))
3038 (if (VECTOR_TYPE_P (type)
3039 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3040 /* Comparison inversion may be impossible for trapping math,
3041 invert_tree_comparison will tell us. But we can't use
3042 a computed operator in the replacement tree thus we have
3043 to play the trick below. */
3044 (with { enum tree_code ic = invert_tree_comparison
3045 (cmp, HONOR_NANS (@0)); }
3046 (if (ic == icmp)
3047 (icmp @0 @1)
3048 (if (ic == ncmp)
3049 (ncmp @0 @1))))))
3050 (simplify
3051 (bit_xor (cmp @0 @1) integer_truep)
3052 (with { enum tree_code ic = invert_tree_comparison
3053 (cmp, HONOR_NANS (@0)); }
3054 (if (ic == icmp)
3055 (icmp @0 @1)
3056 (if (ic == ncmp)
3057 (ncmp @0 @1))))))
3058
3059 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3060 ??? The transformation is valid for the other operators if overflow
3061 is undefined for the type, but performing it here badly interacts
3062 with the transformation in fold_cond_expr_with_comparison which
3063 attempts to synthetize ABS_EXPR. */
3064 (for cmp (eq ne)
3065 (for sub (minus pointer_diff)
3066 (simplify
3067 (cmp (sub@2 @0 @1) integer_zerop)
3068 (if (single_use (@2))
3069 (cmp @0 @1)))))
3070
3071 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3072 signed arithmetic case. That form is created by the compiler
3073 often enough for folding it to be of value. One example is in
3074 computing loop trip counts after Operator Strength Reduction. */
3075 (for cmp (simple_comparison)
3076 scmp (swapped_simple_comparison)
3077 (simplify
3078 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3079 /* Handle unfolded multiplication by zero. */
3080 (if (integer_zerop (@1))
3081 (cmp @1 @2)
3082 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3083 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3084 && single_use (@3))
3085 /* If @1 is negative we swap the sense of the comparison. */
3086 (if (tree_int_cst_sgn (@1) < 0)
3087 (scmp @0 @2)
3088 (cmp @0 @2))))))
3089
3090 /* Simplify comparison of something with itself. For IEEE
3091 floating-point, we can only do some of these simplifications. */
3092 (for cmp (eq ge le)
3093 (simplify
3094 (cmp @0 @0)
3095 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3096 || ! HONOR_NANS (@0))
3097 { constant_boolean_node (true, type); }
3098 (if (cmp != EQ_EXPR)
3099 (eq @0 @0)))))
3100 (for cmp (ne gt lt)
3101 (simplify
3102 (cmp @0 @0)
3103 (if (cmp != NE_EXPR
3104 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3105 || ! HONOR_NANS (@0))
3106 { constant_boolean_node (false, type); })))
3107 (for cmp (unle unge uneq)
3108 (simplify
3109 (cmp @0 @0)
3110 { constant_boolean_node (true, type); }))
3111 (for cmp (unlt ungt)
3112 (simplify
3113 (cmp @0 @0)
3114 (unordered @0 @0)))
3115 (simplify
3116 (ltgt @0 @0)
3117 (if (!flag_trapping_math)
3118 { constant_boolean_node (false, type); }))
3119
3120 /* Fold ~X op ~Y as Y op X. */
3121 (for cmp (simple_comparison)
3122 (simplify
3123 (cmp (bit_not@2 @0) (bit_not@3 @1))
3124 (if (single_use (@2) && single_use (@3))
3125 (cmp @1 @0))))
3126
3127 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3128 (for cmp (simple_comparison)
3129 scmp (swapped_simple_comparison)
3130 (simplify
3131 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3132 (if (single_use (@2)
3133 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3134 (scmp @0 (bit_not @1)))))
3135
3136 (for cmp (simple_comparison)
3137 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3138 (simplify
3139 (cmp (convert@2 @0) (convert? @1))
3140 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3141 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3142 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3143 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3144 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3145 (with
3146 {
3147 tree type1 = TREE_TYPE (@1);
3148 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3149 {
3150 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3151 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3152 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3153 type1 = float_type_node;
3154 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3155 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3156 type1 = double_type_node;
3157 }
3158 tree newtype
3159 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3160 ? TREE_TYPE (@0) : type1);
3161 }
3162 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3163 (cmp (convert:newtype @0) (convert:newtype @1))))))
3164
3165 (simplify
3166 (cmp @0 REAL_CST@1)
3167 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3168 (switch
3169 /* a CMP (-0) -> a CMP 0 */
3170 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3171 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3172 /* x != NaN is always true, other ops are always false. */
3173 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3174 && ! HONOR_SNANS (@1))
3175 { constant_boolean_node (cmp == NE_EXPR, type); })
3176 /* Fold comparisons against infinity. */
3177 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3178 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3179 (with
3180 {
3181 REAL_VALUE_TYPE max;
3182 enum tree_code code = cmp;
3183 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3184 if (neg)
3185 code = swap_tree_comparison (code);
3186 }
3187 (switch
3188 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3189 (if (code == GT_EXPR
3190 && !(HONOR_NANS (@0) && flag_trapping_math))
3191 { constant_boolean_node (false, type); })
3192 (if (code == LE_EXPR)
3193 /* x <= +Inf is always true, if we don't care about NaNs. */
3194 (if (! HONOR_NANS (@0))
3195 { constant_boolean_node (true, type); }
3196 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3197 an "invalid" exception. */
3198 (if (!flag_trapping_math)
3199 (eq @0 @0))))
3200 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3201 for == this introduces an exception for x a NaN. */
3202 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3203 || code == GE_EXPR)
3204 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3205 (if (neg)
3206 (lt @0 { build_real (TREE_TYPE (@0), max); })
3207 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3208 /* x < +Inf is always equal to x <= DBL_MAX. */
3209 (if (code == LT_EXPR)
3210 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3211 (if (neg)
3212 (ge @0 { build_real (TREE_TYPE (@0), max); })
3213 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3214 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3215 an exception for x a NaN so use an unordered comparison. */
3216 (if (code == NE_EXPR)
3217 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3218 (if (! HONOR_NANS (@0))
3219 (if (neg)
3220 (ge @0 { build_real (TREE_TYPE (@0), max); })
3221 (le @0 { build_real (TREE_TYPE (@0), max); }))
3222 (if (neg)
3223 (unge @0 { build_real (TREE_TYPE (@0), max); })
3224 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3225
3226 /* If this is a comparison of a real constant with a PLUS_EXPR
3227 or a MINUS_EXPR of a real constant, we can convert it into a
3228 comparison with a revised real constant as long as no overflow
3229 occurs when unsafe_math_optimizations are enabled. */
3230 (if (flag_unsafe_math_optimizations)
3231 (for op (plus minus)
3232 (simplify
3233 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3234 (with
3235 {
3236 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3237 TREE_TYPE (@1), @2, @1);
3238 }
3239 (if (tem && !TREE_OVERFLOW (tem))
3240 (cmp @0 { tem; }))))))
3241
3242 /* Likewise, we can simplify a comparison of a real constant with
3243 a MINUS_EXPR whose first operand is also a real constant, i.e.
3244 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3245 floating-point types only if -fassociative-math is set. */
3246 (if (flag_associative_math)
3247 (simplify
3248 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3249 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3250 (if (tem && !TREE_OVERFLOW (tem))
3251 (cmp { tem; } @1)))))
3252
3253 /* Fold comparisons against built-in math functions. */
3254 (if (flag_unsafe_math_optimizations
3255 && ! flag_errno_math)
3256 (for sq (SQRT)
3257 (simplify
3258 (cmp (sq @0) REAL_CST@1)
3259 (switch
3260 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3261 (switch
3262 /* sqrt(x) < y is always false, if y is negative. */
3263 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3264 { constant_boolean_node (false, type); })
3265 /* sqrt(x) > y is always true, if y is negative and we
3266 don't care about NaNs, i.e. negative values of x. */
3267 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3268 { constant_boolean_node (true, type); })
3269 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3270 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3271 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3272 (switch
3273 /* sqrt(x) < 0 is always false. */
3274 (if (cmp == LT_EXPR)
3275 { constant_boolean_node (false, type); })
3276 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3277 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3278 { constant_boolean_node (true, type); })
3279 /* sqrt(x) <= 0 -> x == 0. */
3280 (if (cmp == LE_EXPR)
3281 (eq @0 @1))
3282 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3283 == or !=. In the last case:
3284
3285 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3286
3287 if x is negative or NaN. Due to -funsafe-math-optimizations,
3288 the results for other x follow from natural arithmetic. */
3289 (cmp @0 @1)))
3290 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3291 (with
3292 {
3293 REAL_VALUE_TYPE c2;
3294 real_arithmetic (&c2, MULT_EXPR,
3295 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3296 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3297 }
3298 (if (REAL_VALUE_ISINF (c2))
3299 /* sqrt(x) > y is x == +Inf, when y is very large. */
3300 (if (HONOR_INFINITIES (@0))
3301 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3302 { constant_boolean_node (false, type); })
3303 /* sqrt(x) > c is the same as x > c*c. */
3304 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3305 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3306 (with
3307 {
3308 REAL_VALUE_TYPE c2;
3309 real_arithmetic (&c2, MULT_EXPR,
3310 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3311 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3312 }
3313 (if (REAL_VALUE_ISINF (c2))
3314 (switch
3315 /* sqrt(x) < y is always true, when y is a very large
3316 value and we don't care about NaNs or Infinities. */
3317 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3318 { constant_boolean_node (true, type); })
3319 /* sqrt(x) < y is x != +Inf when y is very large and we
3320 don't care about NaNs. */
3321 (if (! HONOR_NANS (@0))
3322 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3323 /* sqrt(x) < y is x >= 0 when y is very large and we
3324 don't care about Infinities. */
3325 (if (! HONOR_INFINITIES (@0))
3326 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3327 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3328 (if (GENERIC)
3329 (truth_andif
3330 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3331 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3332 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3333 (if (! HONOR_NANS (@0))
3334 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3335 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3336 (if (GENERIC)
3337 (truth_andif
3338 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3339 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3340 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3341 (simplify
3342 (cmp (sq @0) (sq @1))
3343 (if (! HONOR_NANS (@0))
3344 (cmp @0 @1))))))
3345
3346 /* Optimize various special cases of (FTYPE) N CMP CST. */
3347 (for cmp (lt le eq ne ge gt)
3348 icmp (le le eq ne ge ge)
3349 (simplify
3350 (cmp (float @0) REAL_CST@1)
3351 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3352 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3353 (with
3354 {
3355 tree itype = TREE_TYPE (@0);
3356 signop isign = TYPE_SIGN (itype);
3357 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3358 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3359 /* Be careful to preserve any potential exceptions due to
3360 NaNs. qNaNs are ok in == or != context.
3361 TODO: relax under -fno-trapping-math or
3362 -fno-signaling-nans. */
3363 bool exception_p
3364 = real_isnan (cst) && (cst->signalling
3365 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3366 /* INT?_MIN is power-of-two so it takes
3367 only one mantissa bit. */
3368 bool signed_p = isign == SIGNED;
3369 bool itype_fits_ftype_p
3370 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3371 }
3372 /* TODO: allow non-fitting itype and SNaNs when
3373 -fno-trapping-math. */
3374 (if (itype_fits_ftype_p && ! exception_p)
3375 (with
3376 {
3377 REAL_VALUE_TYPE imin, imax;
3378 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3379 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3380
3381 REAL_VALUE_TYPE icst;
3382 if (cmp == GT_EXPR || cmp == GE_EXPR)
3383 real_ceil (&icst, fmt, cst);
3384 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3385 real_floor (&icst, fmt, cst);
3386 else
3387 real_trunc (&icst, fmt, cst);
3388
3389 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3390
3391 bool overflow_p = false;
3392 wide_int icst_val
3393 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3394 }
3395 (switch
3396 /* Optimize cases when CST is outside of ITYPE's range. */
3397 (if (real_compare (LT_EXPR, cst, &imin))
3398 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3399 type); })
3400 (if (real_compare (GT_EXPR, cst, &imax))
3401 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3402 type); })
3403 /* Remove cast if CST is an integer representable by ITYPE. */
3404 (if (cst_int_p)
3405 (cmp @0 { gcc_assert (!overflow_p);
3406 wide_int_to_tree (itype, icst_val); })
3407 )
3408 /* When CST is fractional, optimize
3409 (FTYPE) N == CST -> 0
3410 (FTYPE) N != CST -> 1. */
3411 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3412 { constant_boolean_node (cmp == NE_EXPR, type); })
3413 /* Otherwise replace with sensible integer constant. */
3414 (with
3415 {
3416 gcc_checking_assert (!overflow_p);
3417 }
3418 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3419
3420 /* Fold A /[ex] B CMP C to A CMP B * C. */
3421 (for cmp (eq ne)
3422 (simplify
3423 (cmp (exact_div @0 @1) INTEGER_CST@2)
3424 (if (!integer_zerop (@1))
3425 (if (wi::to_wide (@2) == 0)
3426 (cmp @0 @2)
3427 (if (TREE_CODE (@1) == INTEGER_CST)
3428 (with
3429 {
3430 wi::overflow_type ovf;
3431 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3432 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3433 }
3434 (if (ovf)
3435 { constant_boolean_node (cmp == NE_EXPR, type); }
3436 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3437 (for cmp (lt le gt ge)
3438 (simplify
3439 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3440 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3441 (with
3442 {
3443 wi::overflow_type ovf;
3444 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3445 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3446 }
3447 (if (ovf)
3448 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3449 TYPE_SIGN (TREE_TYPE (@2)))
3450 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3451 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3452
3453 /* Unordered tests if either argument is a NaN. */
3454 (simplify
3455 (bit_ior (unordered @0 @0) (unordered @1 @1))
3456 (if (types_match (@0, @1))
3457 (unordered @0 @1)))
3458 (simplify
3459 (bit_and (ordered @0 @0) (ordered @1 @1))
3460 (if (types_match (@0, @1))
3461 (ordered @0 @1)))
3462 (simplify
3463 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3464 @2)
3465 (simplify
3466 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3467 @2)
3468
3469 /* Simple range test simplifications. */
3470 /* A < B || A >= B -> true. */
3471 (for test1 (lt le le le ne ge)
3472 test2 (ge gt ge ne eq ne)
3473 (simplify
3474 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3475 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3476 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3477 { constant_boolean_node (true, type); })))
3478 /* A < B && A >= B -> false. */
3479 (for test1 (lt lt lt le ne eq)
3480 test2 (ge gt eq gt eq gt)
3481 (simplify
3482 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3483 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3484 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3485 { constant_boolean_node (false, type); })))
3486
3487 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3488 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3489
3490 Note that comparisons
3491 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3492 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3493 will be canonicalized to above so there's no need to
3494 consider them here.
3495 */
3496
3497 (for cmp (le gt)
3498 eqcmp (eq ne)
3499 (simplify
3500 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3501 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3502 (with
3503 {
3504 tree ty = TREE_TYPE (@0);
3505 unsigned prec = TYPE_PRECISION (ty);
3506 wide_int mask = wi::to_wide (@2, prec);
3507 wide_int rhs = wi::to_wide (@3, prec);
3508 signop sgn = TYPE_SIGN (ty);
3509 }
3510 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3511 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3512 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3513 { build_zero_cst (ty); }))))))
3514
3515 /* -A CMP -B -> B CMP A. */
3516 (for cmp (tcc_comparison)
3517 scmp (swapped_tcc_comparison)
3518 (simplify
3519 (cmp (negate @0) (negate @1))
3520 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3521 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3522 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3523 (scmp @0 @1)))
3524 (simplify
3525 (cmp (negate @0) CONSTANT_CLASS_P@1)
3526 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3527 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3528 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3529 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3530 (if (tem && !TREE_OVERFLOW (tem))
3531 (scmp @0 { tem; }))))))
3532
3533 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3534 (for op (eq ne)
3535 (simplify
3536 (op (abs @0) zerop@1)
3537 (op @0 @1)))
3538
3539 /* From fold_sign_changed_comparison and fold_widened_comparison.
3540 FIXME: the lack of symmetry is disturbing. */
3541 (for cmp (simple_comparison)
3542 (simplify
3543 (cmp (convert@0 @00) (convert?@1 @10))
3544 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3545 /* Disable this optimization if we're casting a function pointer
3546 type on targets that require function pointer canonicalization. */
3547 && !(targetm.have_canonicalize_funcptr_for_compare ()
3548 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3549 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3550 && single_use (@0))
3551 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3552 && (TREE_CODE (@10) == INTEGER_CST
3553 || @1 != @10)
3554 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3555 || cmp == NE_EXPR
3556 || cmp == EQ_EXPR)
3557 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3558 /* ??? The special-casing of INTEGER_CST conversion was in the original
3559 code and here to avoid a spurious overflow flag on the resulting
3560 constant which fold_convert produces. */
3561 (if (TREE_CODE (@1) == INTEGER_CST)
3562 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3563 TREE_OVERFLOW (@1)); })
3564 (cmp @00 (convert @1)))
3565
3566 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3567 /* If possible, express the comparison in the shorter mode. */
3568 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3569 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3570 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3571 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3572 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3573 || ((TYPE_PRECISION (TREE_TYPE (@00))
3574 >= TYPE_PRECISION (TREE_TYPE (@10)))
3575 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3576 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3577 || (TREE_CODE (@10) == INTEGER_CST
3578 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3579 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3580 (cmp @00 (convert @10))
3581 (if (TREE_CODE (@10) == INTEGER_CST
3582 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3583 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3584 (with
3585 {
3586 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3587 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3588 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3589 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3590 }
3591 (if (above || below)
3592 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3593 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3594 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3595 { constant_boolean_node (above ? true : false, type); }
3596 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3597 { constant_boolean_node (above ? false : true, type); }))))))))))))
3598
3599 (for cmp (eq ne)
3600 /* A local variable can never be pointed to by
3601 the default SSA name of an incoming parameter.
3602 SSA names are canonicalized to 2nd place. */
3603 (simplify
3604 (cmp addr@0 SSA_NAME@1)
3605 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3606 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3607 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3608 (if (TREE_CODE (base) == VAR_DECL
3609 && auto_var_in_fn_p (base, current_function_decl))
3610 (if (cmp == NE_EXPR)
3611 { constant_boolean_node (true, type); }
3612 { constant_boolean_node (false, type); }))))))
3613
3614 /* Equality compare simplifications from fold_binary */
3615 (for cmp (eq ne)
3616
3617 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3618 Similarly for NE_EXPR. */
3619 (simplify
3620 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3621 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3622 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3623 { constant_boolean_node (cmp == NE_EXPR, type); }))
3624
3625 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3626 (simplify
3627 (cmp (bit_xor @0 @1) integer_zerop)
3628 (cmp @0 @1))
3629
3630 /* (X ^ Y) == Y becomes X == 0.
3631 Likewise (X ^ Y) == X becomes Y == 0. */
3632 (simplify
3633 (cmp:c (bit_xor:c @0 @1) @0)
3634 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3635
3636 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3637 (simplify
3638 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3639 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3640 (cmp @0 (bit_xor @1 (convert @2)))))
3641
3642 (simplify
3643 (cmp (convert? addr@0) integer_zerop)
3644 (if (tree_single_nonzero_warnv_p (@0, NULL))
3645 { constant_boolean_node (cmp == NE_EXPR, type); })))
3646
3647 /* If we have (A & C) == C where C is a power of 2, convert this into
3648 (A & C) != 0. Similarly for NE_EXPR. */
3649 (for cmp (eq ne)
3650 icmp (ne eq)
3651 (simplify
3652 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3653 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3654
3655 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3656 convert this into a shift followed by ANDing with D. */
3657 (simplify
3658 (cond
3659 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3660 INTEGER_CST@2 integer_zerop)
3661 (if (integer_pow2p (@2))
3662 (with {
3663 int shift = (wi::exact_log2 (wi::to_wide (@2))
3664 - wi::exact_log2 (wi::to_wide (@1)));
3665 }
3666 (if (shift > 0)
3667 (bit_and
3668 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3669 (bit_and
3670 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3671 @2)))))
3672
3673 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3674 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3675 (for cmp (eq ne)
3676 ncmp (ge lt)
3677 (simplify
3678 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3679 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3680 && type_has_mode_precision_p (TREE_TYPE (@0))
3681 && element_precision (@2) >= element_precision (@0)
3682 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3683 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3684 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3685
3686 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3687 this into a right shift or sign extension followed by ANDing with C. */
3688 (simplify
3689 (cond
3690 (lt @0 integer_zerop)
3691 INTEGER_CST@1 integer_zerop)
3692 (if (integer_pow2p (@1)
3693 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3694 (with {
3695 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3696 }
3697 (if (shift >= 0)
3698 (bit_and
3699 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3700 @1)
3701 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3702 sign extension followed by AND with C will achieve the effect. */
3703 (bit_and (convert @0) @1)))))
3704
3705 /* When the addresses are not directly of decls compare base and offset.
3706 This implements some remaining parts of fold_comparison address
3707 comparisons but still no complete part of it. Still it is good
3708 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3709 (for cmp (simple_comparison)
3710 (simplify
3711 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3712 (with
3713 {
3714 poly_int64 off0, off1;
3715 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3716 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3717 if (base0 && TREE_CODE (base0) == MEM_REF)
3718 {
3719 off0 += mem_ref_offset (base0).force_shwi ();
3720 base0 = TREE_OPERAND (base0, 0);
3721 }
3722 if (base1 && TREE_CODE (base1) == MEM_REF)
3723 {
3724 off1 += mem_ref_offset (base1).force_shwi ();
3725 base1 = TREE_OPERAND (base1, 0);
3726 }
3727 }
3728 (if (base0 && base1)
3729 (with
3730 {
3731 int equal = 2;
3732 /* Punt in GENERIC on variables with value expressions;
3733 the value expressions might point to fields/elements
3734 of other vars etc. */
3735 if (GENERIC
3736 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3737 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3738 ;
3739 else if (decl_in_symtab_p (base0)
3740 && decl_in_symtab_p (base1))
3741 equal = symtab_node::get_create (base0)
3742 ->equal_address_to (symtab_node::get_create (base1));
3743 else if ((DECL_P (base0)
3744 || TREE_CODE (base0) == SSA_NAME
3745 || TREE_CODE (base0) == STRING_CST)
3746 && (DECL_P (base1)
3747 || TREE_CODE (base1) == SSA_NAME
3748 || TREE_CODE (base1) == STRING_CST))
3749 equal = (base0 == base1);
3750 }
3751 (if (equal == 1
3752 && (cmp == EQ_EXPR || cmp == NE_EXPR
3753 /* If the offsets are equal we can ignore overflow. */
3754 || known_eq (off0, off1)
3755 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3756 /* Or if we compare using pointers to decls or strings. */
3757 || (POINTER_TYPE_P (TREE_TYPE (@2))
3758 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3759 (switch
3760 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3761 { constant_boolean_node (known_eq (off0, off1), type); })
3762 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3763 { constant_boolean_node (known_ne (off0, off1), type); })
3764 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3765 { constant_boolean_node (known_lt (off0, off1), type); })
3766 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3767 { constant_boolean_node (known_le (off0, off1), type); })
3768 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3769 { constant_boolean_node (known_ge (off0, off1), type); })
3770 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3771 { constant_boolean_node (known_gt (off0, off1), type); }))
3772 (if (equal == 0
3773 && DECL_P (base0) && DECL_P (base1)
3774 /* If we compare this as integers require equal offset. */
3775 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3776 || known_eq (off0, off1)))
3777 (switch
3778 (if (cmp == EQ_EXPR)
3779 { constant_boolean_node (false, type); })
3780 (if (cmp == NE_EXPR)
3781 { constant_boolean_node (true, type); })))))))))
3782
3783 /* Simplify pointer equality compares using PTA. */
3784 (for neeq (ne eq)
3785 (simplify
3786 (neeq @0 @1)
3787 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3788 && ptrs_compare_unequal (@0, @1))
3789 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3790
3791 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3792 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3793 Disable the transform if either operand is pointer to function.
3794 This broke pr22051-2.c for arm where function pointer
3795 canonicalizaion is not wanted. */
3796
3797 (for cmp (ne eq)
3798 (simplify
3799 (cmp (convert @0) INTEGER_CST@1)
3800 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3801 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3802 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3803 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3804 && POINTER_TYPE_P (TREE_TYPE (@1))
3805 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3806 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3807 (cmp @0 (convert @1)))))
3808
3809 /* Non-equality compare simplifications from fold_binary */
3810 (for cmp (lt gt le ge)
3811 /* Comparisons with the highest or lowest possible integer of
3812 the specified precision will have known values. */
3813 (simplify
3814 (cmp (convert?@2 @0) INTEGER_CST@1)
3815 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3816 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3817 (with
3818 {
3819 tree arg1_type = TREE_TYPE (@1);
3820 unsigned int prec = TYPE_PRECISION (arg1_type);
3821 wide_int max = wi::max_value (arg1_type);
3822 wide_int signed_max = wi::max_value (prec, SIGNED);
3823 wide_int min = wi::min_value (arg1_type);
3824 }
3825 (switch
3826 (if (wi::to_wide (@1) == max)
3827 (switch
3828 (if (cmp == GT_EXPR)
3829 { constant_boolean_node (false, type); })
3830 (if (cmp == GE_EXPR)
3831 (eq @2 @1))
3832 (if (cmp == LE_EXPR)
3833 { constant_boolean_node (true, type); })
3834 (if (cmp == LT_EXPR)
3835 (ne @2 @1))))
3836 (if (wi::to_wide (@1) == min)
3837 (switch
3838 (if (cmp == LT_EXPR)
3839 { constant_boolean_node (false, type); })
3840 (if (cmp == LE_EXPR)
3841 (eq @2 @1))
3842 (if (cmp == GE_EXPR)
3843 { constant_boolean_node (true, type); })
3844 (if (cmp == GT_EXPR)
3845 (ne @2 @1))))
3846 (if (wi::to_wide (@1) == max - 1)
3847 (switch
3848 (if (cmp == GT_EXPR)
3849 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3850 (if (cmp == LE_EXPR)
3851 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3852 (if (wi::to_wide (@1) == min + 1)
3853 (switch
3854 (if (cmp == GE_EXPR)
3855 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3856 (if (cmp == LT_EXPR)
3857 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3858 (if (wi::to_wide (@1) == signed_max
3859 && TYPE_UNSIGNED (arg1_type)
3860 /* We will flip the signedness of the comparison operator
3861 associated with the mode of @1, so the sign bit is
3862 specified by this mode. Check that @1 is the signed
3863 max associated with this sign bit. */
3864 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3865 /* signed_type does not work on pointer types. */
3866 && INTEGRAL_TYPE_P (arg1_type))
3867 /* The following case also applies to X < signed_max+1
3868 and X >= signed_max+1 because previous transformations. */
3869 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3870 (with { tree st = signed_type_for (arg1_type); }
3871 (if (cmp == LE_EXPR)
3872 (ge (convert:st @0) { build_zero_cst (st); })
3873 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3874
3875 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3876 /* If the second operand is NaN, the result is constant. */
3877 (simplify
3878 (cmp @0 REAL_CST@1)
3879 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3880 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3881 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3882 ? false : true, type); })))
3883
3884 /* bool_var != 0 becomes bool_var. */
3885 (simplify
3886 (ne @0 integer_zerop)
3887 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3888 && types_match (type, TREE_TYPE (@0)))
3889 (non_lvalue @0)))
3890 /* bool_var == 1 becomes bool_var. */
3891 (simplify
3892 (eq @0 integer_onep)
3893 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3894 && types_match (type, TREE_TYPE (@0)))
3895 (non_lvalue @0)))
3896 /* Do not handle
3897 bool_var == 0 becomes !bool_var or
3898 bool_var != 1 becomes !bool_var
3899 here because that only is good in assignment context as long
3900 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3901 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3902 clearly less optimal and which we'll transform again in forwprop. */
3903
3904 /* When one argument is a constant, overflow detection can be simplified.
3905 Currently restricted to single use so as not to interfere too much with
3906 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3907 A + CST CMP A -> A CMP' CST' */
3908 (for cmp (lt le ge gt)
3909 out (gt gt le le)
3910 (simplify
3911 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3912 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3913 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3914 && wi::to_wide (@1) != 0
3915 && single_use (@2))
3916 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3917 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3918 wi::max_value (prec, UNSIGNED)
3919 - wi::to_wide (@1)); })))))
3920
3921 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3922 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3923 expects the long form, so we restrict the transformation for now. */
3924 (for cmp (gt le)
3925 (simplify
3926 (cmp:c (minus@2 @0 @1) @0)
3927 (if (single_use (@2)
3928 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3929 && TYPE_UNSIGNED (TREE_TYPE (@0))
3930 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3931 (cmp @1 @0))))
3932
3933 /* Testing for overflow is unnecessary if we already know the result. */
3934 /* A - B > A */
3935 (for cmp (gt le)
3936 out (ne eq)
3937 (simplify
3938 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3939 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3940 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3941 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3942 /* A + B < A */
3943 (for cmp (lt ge)
3944 out (ne eq)
3945 (simplify
3946 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3947 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3948 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3949 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3950
3951 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3952 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3953 (for cmp (lt ge)
3954 out (ne eq)
3955 (simplify
3956 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3957 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3958 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3959 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3960
3961 /* Simplification of math builtins. These rules must all be optimizations
3962 as well as IL simplifications. If there is a possibility that the new
3963 form could be a pessimization, the rule should go in the canonicalization
3964 section that follows this one.
3965
3966 Rules can generally go in this section if they satisfy one of
3967 the following:
3968
3969 - the rule describes an identity
3970
3971 - the rule replaces calls with something as simple as addition or
3972 multiplication
3973
3974 - the rule contains unary calls only and simplifies the surrounding
3975 arithmetic. (The idea here is to exclude non-unary calls in which
3976 one operand is constant and in which the call is known to be cheap
3977 when the operand has that value.) */
3978
3979 (if (flag_unsafe_math_optimizations)
3980 /* Simplify sqrt(x) * sqrt(x) -> x. */
3981 (simplify
3982 (mult (SQRT_ALL@1 @0) @1)
3983 (if (!HONOR_SNANS (type))
3984 @0))
3985
3986 (for op (plus minus)
3987 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3988 (simplify
3989 (op (rdiv @0 @1)
3990 (rdiv @2 @1))
3991 (rdiv (op @0 @2) @1)))
3992
3993 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3994 (for root (SQRT CBRT)
3995 (simplify
3996 (mult (root:s @0) (root:s @1))
3997 (root (mult @0 @1))))
3998
3999 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4000 (for exps (EXP EXP2 EXP10 POW10)
4001 (simplify
4002 (mult (exps:s @0) (exps:s @1))
4003 (exps (plus @0 @1))))
4004
4005 /* Simplify a/root(b/c) into a*root(c/b). */
4006 (for root (SQRT CBRT)
4007 (simplify
4008 (rdiv @0 (root:s (rdiv:s @1 @2)))
4009 (mult @0 (root (rdiv @2 @1)))))
4010
4011 /* Simplify x/expN(y) into x*expN(-y). */
4012 (for exps (EXP EXP2 EXP10 POW10)
4013 (simplify
4014 (rdiv @0 (exps:s @1))
4015 (mult @0 (exps (negate @1)))))
4016
4017 (for logs (LOG LOG2 LOG10 LOG10)
4018 exps (EXP EXP2 EXP10 POW10)
4019 /* logN(expN(x)) -> x. */
4020 (simplify
4021 (logs (exps @0))
4022 @0)
4023 /* expN(logN(x)) -> x. */
4024 (simplify
4025 (exps (logs @0))
4026 @0))
4027
4028 /* Optimize logN(func()) for various exponential functions. We
4029 want to determine the value "x" and the power "exponent" in
4030 order to transform logN(x**exponent) into exponent*logN(x). */
4031 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4032 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4033 (simplify
4034 (logs (exps @0))
4035 (if (SCALAR_FLOAT_TYPE_P (type))
4036 (with {
4037 tree x;
4038 switch (exps)
4039 {
4040 CASE_CFN_EXP:
4041 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4042 x = build_real_truncate (type, dconst_e ());
4043 break;
4044 CASE_CFN_EXP2:
4045 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4046 x = build_real (type, dconst2);
4047 break;
4048 CASE_CFN_EXP10:
4049 CASE_CFN_POW10:
4050 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4051 {
4052 REAL_VALUE_TYPE dconst10;
4053 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4054 x = build_real (type, dconst10);
4055 }
4056 break;
4057 default:
4058 gcc_unreachable ();
4059 }
4060 }
4061 (mult (logs { x; }) @0)))))
4062
4063 (for logs (LOG LOG
4064 LOG2 LOG2
4065 LOG10 LOG10)
4066 exps (SQRT CBRT)
4067 (simplify
4068 (logs (exps @0))
4069 (if (SCALAR_FLOAT_TYPE_P (type))
4070 (with {
4071 tree x;
4072 switch (exps)
4073 {
4074 CASE_CFN_SQRT:
4075 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4076 x = build_real (type, dconsthalf);
4077 break;
4078 CASE_CFN_CBRT:
4079 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4080 x = build_real_truncate (type, dconst_third ());
4081 break;
4082 default:
4083 gcc_unreachable ();
4084 }
4085 }
4086 (mult { x; } (logs @0))))))
4087
4088 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4089 (for logs (LOG LOG2 LOG10)
4090 pows (POW)
4091 (simplify
4092 (logs (pows @0 @1))
4093 (mult @1 (logs @0))))
4094
4095 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4096 or if C is a positive power of 2,
4097 pow(C,x) -> exp2(log2(C)*x). */
4098 #if GIMPLE
4099 (for pows (POW)
4100 exps (EXP)
4101 logs (LOG)
4102 exp2s (EXP2)
4103 log2s (LOG2)
4104 (simplify
4105 (pows REAL_CST@0 @1)
4106 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4107 && real_isfinite (TREE_REAL_CST_PTR (@0))
4108 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4109 the use_exp2 case until after vectorization. It seems actually
4110 beneficial for all constants to postpone this until later,
4111 because exp(log(C)*x), while faster, will have worse precision
4112 and if x folds into a constant too, that is unnecessary
4113 pessimization. */
4114 && canonicalize_math_after_vectorization_p ())
4115 (with {
4116 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4117 bool use_exp2 = false;
4118 if (targetm.libc_has_function (function_c99_misc)
4119 && value->cl == rvc_normal)
4120 {
4121 REAL_VALUE_TYPE frac_rvt = *value;
4122 SET_REAL_EXP (&frac_rvt, 1);
4123 if (real_equal (&frac_rvt, &dconst1))
4124 use_exp2 = true;
4125 }
4126 }
4127 (if (!use_exp2)
4128 (if (optimize_pow_to_exp (@0, @1))
4129 (exps (mult (logs @0) @1)))
4130 (exp2s (mult (log2s @0) @1)))))))
4131 #endif
4132
4133 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4134 (for pows (POW)
4135 exps (EXP EXP2 EXP10 POW10)
4136 logs (LOG LOG2 LOG10 LOG10)
4137 (simplify
4138 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4139 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4140 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4141 (exps (plus (mult (logs @0) @1) @2)))))
4142
4143 (for sqrts (SQRT)
4144 cbrts (CBRT)
4145 pows (POW)
4146 exps (EXP EXP2 EXP10 POW10)
4147 /* sqrt(expN(x)) -> expN(x*0.5). */
4148 (simplify
4149 (sqrts (exps @0))
4150 (exps (mult @0 { build_real (type, dconsthalf); })))
4151 /* cbrt(expN(x)) -> expN(x/3). */
4152 (simplify
4153 (cbrts (exps @0))
4154 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4155 /* pow(expN(x), y) -> expN(x*y). */
4156 (simplify
4157 (pows (exps @0) @1)
4158 (exps (mult @0 @1))))
4159
4160 /* tan(atan(x)) -> x. */
4161 (for tans (TAN)
4162 atans (ATAN)
4163 (simplify
4164 (tans (atans @0))
4165 @0)))
4166
4167 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4168 (simplify
4169 (CABS (complex:C @0 real_zerop@1))
4170 (abs @0))
4171
4172 /* trunc(trunc(x)) -> trunc(x), etc. */
4173 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4174 (simplify
4175 (fns (fns @0))
4176 (fns @0)))
4177 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4178 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4179 (simplify
4180 (fns integer_valued_real_p@0)
4181 @0))
4182
4183 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4184 (simplify
4185 (HYPOT:c @0 real_zerop@1)
4186 (abs @0))
4187
4188 /* pow(1,x) -> 1. */
4189 (simplify
4190 (POW real_onep@0 @1)
4191 @0)
4192
4193 (simplify
4194 /* copysign(x,x) -> x. */
4195 (COPYSIGN_ALL @0 @0)
4196 @0)
4197
4198 (simplify
4199 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4200 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4201 (abs @0))
4202
4203 (for scale (LDEXP SCALBN SCALBLN)
4204 /* ldexp(0, x) -> 0. */
4205 (simplify
4206 (scale real_zerop@0 @1)
4207 @0)
4208 /* ldexp(x, 0) -> x. */
4209 (simplify
4210 (scale @0 integer_zerop@1)
4211 @0)
4212 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4213 (simplify
4214 (scale REAL_CST@0 @1)
4215 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4216 @0)))
4217
4218 /* Canonicalization of sequences of math builtins. These rules represent
4219 IL simplifications but are not necessarily optimizations.
4220
4221 The sincos pass is responsible for picking "optimal" implementations
4222 of math builtins, which may be more complicated and can sometimes go
4223 the other way, e.g. converting pow into a sequence of sqrts.
4224 We only want to do these canonicalizations before the pass has run. */
4225
4226 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4227 /* Simplify tan(x) * cos(x) -> sin(x). */
4228 (simplify
4229 (mult:c (TAN:s @0) (COS:s @0))
4230 (SIN @0))
4231
4232 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4233 (simplify
4234 (mult:c @0 (POW:s @0 REAL_CST@1))
4235 (if (!TREE_OVERFLOW (@1))
4236 (POW @0 (plus @1 { build_one_cst (type); }))))
4237
4238 /* Simplify sin(x) / cos(x) -> tan(x). */
4239 (simplify
4240 (rdiv (SIN:s @0) (COS:s @0))
4241 (TAN @0))
4242
4243 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4244 (simplify
4245 (rdiv (COS:s @0) (SIN:s @0))
4246 (rdiv { build_one_cst (type); } (TAN @0)))
4247
4248 /* Simplify sin(x) / tan(x) -> cos(x). */
4249 (simplify
4250 (rdiv (SIN:s @0) (TAN:s @0))
4251 (if (! HONOR_NANS (@0)
4252 && ! HONOR_INFINITIES (@0))
4253 (COS @0)))
4254
4255 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4256 (simplify
4257 (rdiv (TAN:s @0) (SIN:s @0))
4258 (if (! HONOR_NANS (@0)
4259 && ! HONOR_INFINITIES (@0))
4260 (rdiv { build_one_cst (type); } (COS @0))))
4261
4262 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4263 (simplify
4264 (mult (POW:s @0 @1) (POW:s @0 @2))
4265 (POW @0 (plus @1 @2)))
4266
4267 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4268 (simplify
4269 (mult (POW:s @0 @1) (POW:s @2 @1))
4270 (POW (mult @0 @2) @1))
4271
4272 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4273 (simplify
4274 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4275 (POWI (mult @0 @2) @1))
4276
4277 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4278 (simplify
4279 (rdiv (POW:s @0 REAL_CST@1) @0)
4280 (if (!TREE_OVERFLOW (@1))
4281 (POW @0 (minus @1 { build_one_cst (type); }))))
4282
4283 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4284 (simplify
4285 (rdiv @0 (POW:s @1 @2))
4286 (mult @0 (POW @1 (negate @2))))
4287
4288 (for sqrts (SQRT)
4289 cbrts (CBRT)
4290 pows (POW)
4291 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4292 (simplify
4293 (sqrts (sqrts @0))
4294 (pows @0 { build_real (type, dconst_quarter ()); }))
4295 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4296 (simplify
4297 (sqrts (cbrts @0))
4298 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4299 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4300 (simplify
4301 (cbrts (sqrts @0))
4302 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4303 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4304 (simplify
4305 (cbrts (cbrts tree_expr_nonnegative_p@0))
4306 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4307 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4308 (simplify
4309 (sqrts (pows @0 @1))
4310 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4311 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4312 (simplify
4313 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4314 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4315 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4316 (simplify
4317 (pows (sqrts @0) @1)
4318 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4319 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4320 (simplify
4321 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4322 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4323 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4324 (simplify
4325 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4326 (pows @0 (mult @1 @2))))
4327
4328 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4329 (simplify
4330 (CABS (complex @0 @0))
4331 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4332
4333 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4334 (simplify
4335 (HYPOT @0 @0)
4336 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4337
4338 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4339 (for cexps (CEXP)
4340 exps (EXP)
4341 cexpis (CEXPI)
4342 (simplify
4343 (cexps compositional_complex@0)
4344 (if (targetm.libc_has_function (function_c99_math_complex))
4345 (complex
4346 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4347 (mult @1 (imagpart @2)))))))
4348
4349 (if (canonicalize_math_p ())
4350 /* floor(x) -> trunc(x) if x is nonnegative. */
4351 (for floors (FLOOR_ALL)
4352 truncs (TRUNC_ALL)
4353 (simplify
4354 (floors tree_expr_nonnegative_p@0)
4355 (truncs @0))))
4356
4357 (match double_value_p
4358 @0
4359 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4360 (for froms (BUILT_IN_TRUNCL
4361 BUILT_IN_FLOORL
4362 BUILT_IN_CEILL
4363 BUILT_IN_ROUNDL
4364 BUILT_IN_NEARBYINTL
4365 BUILT_IN_RINTL)
4366 tos (BUILT_IN_TRUNC
4367 BUILT_IN_FLOOR
4368 BUILT_IN_CEIL
4369 BUILT_IN_ROUND
4370 BUILT_IN_NEARBYINT
4371 BUILT_IN_RINT)
4372 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4373 (if (optimize && canonicalize_math_p ())
4374 (simplify
4375 (froms (convert double_value_p@0))
4376 (convert (tos @0)))))
4377
4378 (match float_value_p
4379 @0
4380 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4381 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4382 BUILT_IN_FLOORL BUILT_IN_FLOOR
4383 BUILT_IN_CEILL BUILT_IN_CEIL
4384 BUILT_IN_ROUNDL BUILT_IN_ROUND
4385 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4386 BUILT_IN_RINTL BUILT_IN_RINT)
4387 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4388 BUILT_IN_FLOORF BUILT_IN_FLOORF
4389 BUILT_IN_CEILF BUILT_IN_CEILF
4390 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4391 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4392 BUILT_IN_RINTF BUILT_IN_RINTF)
4393 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4394 if x is a float. */
4395 (if (optimize && canonicalize_math_p ()
4396 && targetm.libc_has_function (function_c99_misc))
4397 (simplify
4398 (froms (convert float_value_p@0))
4399 (convert (tos @0)))))
4400
4401 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4402 tos (XFLOOR XCEIL XROUND XRINT)
4403 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4404 (if (optimize && canonicalize_math_p ())
4405 (simplify
4406 (froms (convert double_value_p@0))
4407 (tos @0))))
4408
4409 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4410 XFLOOR XCEIL XROUND XRINT)
4411 tos (XFLOORF XCEILF XROUNDF XRINTF)
4412 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4413 if x is a float. */
4414 (if (optimize && canonicalize_math_p ())
4415 (simplify
4416 (froms (convert float_value_p@0))
4417 (tos @0))))
4418
4419 (if (canonicalize_math_p ())
4420 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4421 (for floors (IFLOOR LFLOOR LLFLOOR)
4422 (simplify
4423 (floors tree_expr_nonnegative_p@0)
4424 (fix_trunc @0))))
4425
4426 (if (canonicalize_math_p ())
4427 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4428 (for fns (IFLOOR LFLOOR LLFLOOR
4429 ICEIL LCEIL LLCEIL
4430 IROUND LROUND LLROUND)
4431 (simplify
4432 (fns integer_valued_real_p@0)
4433 (fix_trunc @0)))
4434 (if (!flag_errno_math)
4435 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4436 (for rints (IRINT LRINT LLRINT)
4437 (simplify
4438 (rints integer_valued_real_p@0)
4439 (fix_trunc @0)))))
4440
4441 (if (canonicalize_math_p ())
4442 (for ifn (IFLOOR ICEIL IROUND IRINT)
4443 lfn (LFLOOR LCEIL LROUND LRINT)
4444 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4445 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4446 sizeof (int) == sizeof (long). */
4447 (if (TYPE_PRECISION (integer_type_node)
4448 == TYPE_PRECISION (long_integer_type_node))
4449 (simplify
4450 (ifn @0)
4451 (lfn:long_integer_type_node @0)))
4452 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4453 sizeof (long long) == sizeof (long). */
4454 (if (TYPE_PRECISION (long_long_integer_type_node)
4455 == TYPE_PRECISION (long_integer_type_node))
4456 (simplify
4457 (llfn @0)
4458 (lfn:long_integer_type_node @0)))))
4459
4460 /* cproj(x) -> x if we're ignoring infinities. */
4461 (simplify
4462 (CPROJ @0)
4463 (if (!HONOR_INFINITIES (type))
4464 @0))
4465
4466 /* If the real part is inf and the imag part is known to be
4467 nonnegative, return (inf + 0i). */
4468 (simplify
4469 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4470 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4471 { build_complex_inf (type, false); }))
4472
4473 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4474 (simplify
4475 (CPROJ (complex @0 REAL_CST@1))
4476 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4477 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4478
4479 (for pows (POW)
4480 sqrts (SQRT)
4481 cbrts (CBRT)
4482 (simplify
4483 (pows @0 REAL_CST@1)
4484 (with {
4485 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4486 REAL_VALUE_TYPE tmp;
4487 }
4488 (switch
4489 /* pow(x,0) -> 1. */
4490 (if (real_equal (value, &dconst0))
4491 { build_real (type, dconst1); })
4492 /* pow(x,1) -> x. */
4493 (if (real_equal (value, &dconst1))
4494 @0)
4495 /* pow(x,-1) -> 1/x. */
4496 (if (real_equal (value, &dconstm1))
4497 (rdiv { build_real (type, dconst1); } @0))
4498 /* pow(x,0.5) -> sqrt(x). */
4499 (if (flag_unsafe_math_optimizations
4500 && canonicalize_math_p ()
4501 && real_equal (value, &dconsthalf))
4502 (sqrts @0))
4503 /* pow(x,1/3) -> cbrt(x). */
4504 (if (flag_unsafe_math_optimizations
4505 && canonicalize_math_p ()
4506 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4507 real_equal (value, &tmp)))
4508 (cbrts @0))))))
4509
4510 /* powi(1,x) -> 1. */
4511 (simplify
4512 (POWI real_onep@0 @1)
4513 @0)
4514
4515 (simplify
4516 (POWI @0 INTEGER_CST@1)
4517 (switch
4518 /* powi(x,0) -> 1. */
4519 (if (wi::to_wide (@1) == 0)
4520 { build_real (type, dconst1); })
4521 /* powi(x,1) -> x. */
4522 (if (wi::to_wide (@1) == 1)
4523 @0)
4524 /* powi(x,-1) -> 1/x. */
4525 (if (wi::to_wide (@1) == -1)
4526 (rdiv { build_real (type, dconst1); } @0))))
4527
4528 /* Narrowing of arithmetic and logical operations.
4529
4530 These are conceptually similar to the transformations performed for
4531 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4532 term we want to move all that code out of the front-ends into here. */
4533
4534 /* If we have a narrowing conversion of an arithmetic operation where
4535 both operands are widening conversions from the same type as the outer
4536 narrowing conversion. Then convert the innermost operands to a suitable
4537 unsigned type (to avoid introducing undefined behavior), perform the
4538 operation and convert the result to the desired type. */
4539 (for op (plus minus)
4540 (simplify
4541 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4542 (if (INTEGRAL_TYPE_P (type)
4543 /* We check for type compatibility between @0 and @1 below,
4544 so there's no need to check that @1/@3 are integral types. */
4545 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4546 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4547 /* The precision of the type of each operand must match the
4548 precision of the mode of each operand, similarly for the
4549 result. */
4550 && type_has_mode_precision_p (TREE_TYPE (@0))
4551 && type_has_mode_precision_p (TREE_TYPE (@1))
4552 && type_has_mode_precision_p (type)
4553 /* The inner conversion must be a widening conversion. */
4554 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4555 && types_match (@0, type)
4556 && (types_match (@0, @1)
4557 /* Or the second operand is const integer or converted const
4558 integer from valueize. */
4559 || TREE_CODE (@1) == INTEGER_CST))
4560 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4561 (op @0 (convert @1))
4562 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4563 (convert (op (convert:utype @0)
4564 (convert:utype @1))))))))
4565
4566 /* This is another case of narrowing, specifically when there's an outer
4567 BIT_AND_EXPR which masks off bits outside the type of the innermost
4568 operands. Like the previous case we have to convert the operands
4569 to unsigned types to avoid introducing undefined behavior for the
4570 arithmetic operation. */
4571 (for op (minus plus)
4572 (simplify
4573 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4574 (if (INTEGRAL_TYPE_P (type)
4575 /* We check for type compatibility between @0 and @1 below,
4576 so there's no need to check that @1/@3 are integral types. */
4577 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4578 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4579 /* The precision of the type of each operand must match the
4580 precision of the mode of each operand, similarly for the
4581 result. */
4582 && type_has_mode_precision_p (TREE_TYPE (@0))
4583 && type_has_mode_precision_p (TREE_TYPE (@1))
4584 && type_has_mode_precision_p (type)
4585 /* The inner conversion must be a widening conversion. */
4586 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4587 && types_match (@0, @1)
4588 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4589 <= TYPE_PRECISION (TREE_TYPE (@0)))
4590 && (wi::to_wide (@4)
4591 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4592 true, TYPE_PRECISION (type))) == 0)
4593 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4594 (with { tree ntype = TREE_TYPE (@0); }
4595 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4596 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4597 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4598 (convert:utype @4))))))))
4599
4600 /* Transform (@0 < @1 and @0 < @2) to use min,
4601 (@0 > @1 and @0 > @2) to use max */
4602 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4603 op (lt le gt ge lt le gt ge )
4604 ext (min min max max max max min min )
4605 (simplify
4606 (logic (op:cs @0 @1) (op:cs @0 @2))
4607 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4608 && TREE_CODE (@0) != INTEGER_CST)
4609 (op @0 (ext @1 @2)))))
4610
4611 (simplify
4612 /* signbit(x) -> 0 if x is nonnegative. */
4613 (SIGNBIT tree_expr_nonnegative_p@0)
4614 { integer_zero_node; })
4615
4616 (simplify
4617 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4618 (SIGNBIT @0)
4619 (if (!HONOR_SIGNED_ZEROS (@0))
4620 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4621
4622 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4623 (for cmp (eq ne)
4624 (for op (plus minus)
4625 rop (minus plus)
4626 (simplify
4627 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4628 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4629 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4630 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4631 && !TYPE_SATURATING (TREE_TYPE (@0)))
4632 (with { tree res = int_const_binop (rop, @2, @1); }
4633 (if (TREE_OVERFLOW (res)
4634 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4635 { constant_boolean_node (cmp == NE_EXPR, type); }
4636 (if (single_use (@3))
4637 (cmp @0 { TREE_OVERFLOW (res)
4638 ? drop_tree_overflow (res) : res; }))))))))
4639 (for cmp (lt le gt ge)
4640 (for op (plus minus)
4641 rop (minus plus)
4642 (simplify
4643 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4644 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4645 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4646 (with { tree res = int_const_binop (rop, @2, @1); }
4647 (if (TREE_OVERFLOW (res))
4648 {
4649 fold_overflow_warning (("assuming signed overflow does not occur "
4650 "when simplifying conditional to constant"),
4651 WARN_STRICT_OVERFLOW_CONDITIONAL);
4652 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4653 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4654 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4655 TYPE_SIGN (TREE_TYPE (@1)))
4656 != (op == MINUS_EXPR);
4657 constant_boolean_node (less == ovf_high, type);
4658 }
4659 (if (single_use (@3))
4660 (with
4661 {
4662 fold_overflow_warning (("assuming signed overflow does not occur "
4663 "when changing X +- C1 cmp C2 to "
4664 "X cmp C2 -+ C1"),
4665 WARN_STRICT_OVERFLOW_COMPARISON);
4666 }
4667 (cmp @0 { res; })))))))))
4668
4669 /* Canonicalizations of BIT_FIELD_REFs. */
4670
4671 (simplify
4672 (BIT_FIELD_REF @0 @1 @2)
4673 (switch
4674 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4675 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4676 (switch
4677 (if (integer_zerop (@2))
4678 (view_convert (realpart @0)))
4679 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4680 (view_convert (imagpart @0)))))
4681 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4682 && INTEGRAL_TYPE_P (type)
4683 /* On GIMPLE this should only apply to register arguments. */
4684 && (! GIMPLE || is_gimple_reg (@0))
4685 /* A bit-field-ref that referenced the full argument can be stripped. */
4686 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4687 && integer_zerop (@2))
4688 /* Low-parts can be reduced to integral conversions.
4689 ??? The following doesn't work for PDP endian. */
4690 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4691 /* Don't even think about BITS_BIG_ENDIAN. */
4692 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4693 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4694 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4695 ? (TYPE_PRECISION (TREE_TYPE (@0))
4696 - TYPE_PRECISION (type))
4697 : 0)) == 0)))
4698 (convert @0))))
4699
4700 /* Simplify vector extracts. */
4701
4702 (simplify
4703 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4704 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4705 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4706 || (VECTOR_TYPE_P (type)
4707 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4708 (with
4709 {
4710 tree ctor = (TREE_CODE (@0) == SSA_NAME
4711 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4712 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4713 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4714 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4715 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4716 }
4717 (if (n != 0
4718 && (idx % width) == 0
4719 && (n % width) == 0
4720 && known_le ((idx + n) / width,
4721 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4722 (with
4723 {
4724 idx = idx / width;
4725 n = n / width;
4726 /* Constructor elements can be subvectors. */
4727 poly_uint64 k = 1;
4728 if (CONSTRUCTOR_NELTS (ctor) != 0)
4729 {
4730 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4731 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4732 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4733 }
4734 unsigned HOST_WIDE_INT elt, count, const_k;
4735 }
4736 (switch
4737 /* We keep an exact subset of the constructor elements. */
4738 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4739 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4740 { build_constructor (type, NULL); }
4741 (if (count == 1)
4742 (if (elt < CONSTRUCTOR_NELTS (ctor))
4743 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4744 { build_zero_cst (type); })
4745 {
4746 vec<constructor_elt, va_gc> *vals;
4747 vec_alloc (vals, count);
4748 for (unsigned i = 0;
4749 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4750 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4751 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4752 build_constructor (type, vals);
4753 })))
4754 /* The bitfield references a single constructor element. */
4755 (if (k.is_constant (&const_k)
4756 && idx + n <= (idx / const_k + 1) * const_k)
4757 (switch
4758 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4759 { build_zero_cst (type); })
4760 (if (n == const_k)
4761 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4762 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4763 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4764
4765 /* Simplify a bit extraction from a bit insertion for the cases with
4766 the inserted element fully covering the extraction or the insertion
4767 not touching the extraction. */
4768 (simplify
4769 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4770 (with
4771 {
4772 unsigned HOST_WIDE_INT isize;
4773 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4774 isize = TYPE_PRECISION (TREE_TYPE (@1));
4775 else
4776 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4777 }
4778 (switch
4779 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4780 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4781 wi::to_wide (@ipos) + isize))
4782 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4783 wi::to_wide (@rpos)
4784 - wi::to_wide (@ipos)); }))
4785 (if (wi::geu_p (wi::to_wide (@ipos),
4786 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4787 || wi::geu_p (wi::to_wide (@rpos),
4788 wi::to_wide (@ipos) + isize))
4789 (BIT_FIELD_REF @0 @rsize @rpos)))))
4790
4791 (if (canonicalize_math_after_vectorization_p ())
4792 (for fmas (FMA)
4793 (simplify
4794 (fmas:c (negate @0) @1 @2)
4795 (IFN_FNMA @0 @1 @2))
4796 (simplify
4797 (fmas @0 @1 (negate @2))
4798 (IFN_FMS @0 @1 @2))
4799 (simplify
4800 (fmas:c (negate @0) @1 (negate @2))
4801 (IFN_FNMS @0 @1 @2))
4802 (simplify
4803 (negate (fmas@3 @0 @1 @2))
4804 (if (single_use (@3))
4805 (IFN_FNMS @0 @1 @2))))
4806
4807 (simplify
4808 (IFN_FMS:c (negate @0) @1 @2)
4809 (IFN_FNMS @0 @1 @2))
4810 (simplify
4811 (IFN_FMS @0 @1 (negate @2))
4812 (IFN_FMA @0 @1 @2))
4813 (simplify
4814 (IFN_FMS:c (negate @0) @1 (negate @2))
4815 (IFN_FNMA @0 @1 @2))
4816 (simplify
4817 (negate (IFN_FMS@3 @0 @1 @2))
4818 (if (single_use (@3))
4819 (IFN_FNMA @0 @1 @2)))
4820
4821 (simplify
4822 (IFN_FNMA:c (negate @0) @1 @2)
4823 (IFN_FMA @0 @1 @2))
4824 (simplify
4825 (IFN_FNMA @0 @1 (negate @2))
4826 (IFN_FNMS @0 @1 @2))
4827 (simplify
4828 (IFN_FNMA:c (negate @0) @1 (negate @2))
4829 (IFN_FMS @0 @1 @2))
4830 (simplify
4831 (negate (IFN_FNMA@3 @0 @1 @2))
4832 (if (single_use (@3))
4833 (IFN_FMS @0 @1 @2)))
4834
4835 (simplify
4836 (IFN_FNMS:c (negate @0) @1 @2)
4837 (IFN_FMS @0 @1 @2))
4838 (simplify
4839 (IFN_FNMS @0 @1 (negate @2))
4840 (IFN_FNMA @0 @1 @2))
4841 (simplify
4842 (IFN_FNMS:c (negate @0) @1 (negate @2))
4843 (IFN_FMA @0 @1 @2))
4844 (simplify
4845 (negate (IFN_FNMS@3 @0 @1 @2))
4846 (if (single_use (@3))
4847 (IFN_FMA @0 @1 @2))))
4848
4849 /* POPCOUNT simplifications. */
4850 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4851 BUILT_IN_POPCOUNTIMAX)
4852 /* popcount(X&1) is nop_expr(X&1). */
4853 (simplify
4854 (popcount @0)
4855 (if (tree_nonzero_bits (@0) == 1)
4856 (convert @0)))
4857 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4858 (simplify
4859 (plus (popcount:s @0) (popcount:s @1))
4860 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4861 (popcount (bit_ior @0 @1))))
4862 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4863 (for cmp (le eq ne gt)
4864 rep (eq eq ne ne)
4865 (simplify
4866 (cmp (popcount @0) integer_zerop)
4867 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4868
4869 /* Simplify:
4870
4871 a = a1 op a2
4872 r = c ? a : b;
4873
4874 to:
4875
4876 r = c ? a1 op a2 : b;
4877
4878 if the target can do it in one go. This makes the operation conditional
4879 on c, so could drop potentially-trapping arithmetic, but that's a valid
4880 simplification if the result of the operation isn't needed. */
4881 (for uncond_op (UNCOND_BINARY)
4882 cond_op (COND_BINARY)
4883 (simplify
4884 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4885 (with { tree op_type = TREE_TYPE (@4); }
4886 (if (element_precision (type) == element_precision (op_type))
4887 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4888 (simplify
4889 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4890 (with { tree op_type = TREE_TYPE (@4); }
4891 (if (element_precision (type) == element_precision (op_type))
4892 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
4893
4894 /* Same for ternary operations. */
4895 (for uncond_op (UNCOND_TERNARY)
4896 cond_op (COND_TERNARY)
4897 (simplify
4898 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
4899 (with { tree op_type = TREE_TYPE (@5); }
4900 (if (element_precision (type) == element_precision (op_type))
4901 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
4902 (simplify
4903 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
4904 (with { tree op_type = TREE_TYPE (@5); }
4905 (if (element_precision (type) == element_precision (op_type))
4906 (view_convert (cond_op (bit_not @0) @2 @3 @4
4907 (view_convert:op_type @1)))))))
4908
4909 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
4910 "else" value of an IFN_COND_*. */
4911 (for cond_op (COND_BINARY)
4912 (simplify
4913 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
4914 (with { tree op_type = TREE_TYPE (@3); }
4915 (if (element_precision (type) == element_precision (op_type))
4916 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4)))))))
4917
4918 /* Same for ternary operations. */
4919 (for cond_op (COND_TERNARY)
4920 (simplify
4921 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
4922 (with { tree op_type = TREE_TYPE (@4); }
4923 (if (element_precision (type) == element_precision (op_type))
4924 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5)))))))