re PR middle-end/86123 (ICE in prepare_cmp_insn, at optabs.c:3967)
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
80 plus minus
81 mult trunc_div trunc_mod rdiv
82 min max
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
89
90 /* As opposed to convert?, this still creates a single pattern, so
91 it is not a suitable replacement for convert? in all cases. */
92 (match (nop_convert @0)
93 (convert @0)
94 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
95 (match (nop_convert @0)
96 (view_convert @0)
97 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
98 && known_eq (TYPE_VECTOR_SUBPARTS (type),
99 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
100 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
101 /* This one has to be last, or it shadows the others. */
102 (match (nop_convert @0)
103 @0)
104
105 /* Simplifications of operations with one constant operand and
106 simplifications to constants or single values. */
107
108 (for op (plus pointer_plus minus bit_ior bit_xor)
109 (simplify
110 (op @0 integer_zerop)
111 (non_lvalue @0)))
112
113 /* 0 +p index -> (type)index */
114 (simplify
115 (pointer_plus integer_zerop @1)
116 (non_lvalue (convert @1)))
117
118 /* ptr - 0 -> (type)ptr */
119 (simplify
120 (pointer_diff @0 integer_zerop)
121 (convert @0))
122
123 /* See if ARG1 is zero and X + ARG1 reduces to X.
124 Likewise if the operands are reversed. */
125 (simplify
126 (plus:c @0 real_zerop@1)
127 (if (fold_real_zero_addition_p (type, @1, 0))
128 (non_lvalue @0)))
129
130 /* See if ARG1 is zero and X - ARG1 reduces to X. */
131 (simplify
132 (minus @0 real_zerop@1)
133 (if (fold_real_zero_addition_p (type, @1, 1))
134 (non_lvalue @0)))
135
136 /* Simplify x - x.
137 This is unsafe for certain floats even in non-IEEE formats.
138 In IEEE, it is unsafe because it does wrong for NaNs.
139 Also note that operand_equal_p is always false if an operand
140 is volatile. */
141 (simplify
142 (minus @0 @0)
143 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
144 { build_zero_cst (type); }))
145 (simplify
146 (pointer_diff @@0 @0)
147 { build_zero_cst (type); })
148
149 (simplify
150 (mult @0 integer_zerop@1)
151 @1)
152
153 /* Maybe fold x * 0 to 0. The expressions aren't the same
154 when x is NaN, since x * 0 is also NaN. Nor are they the
155 same in modes with signed zeros, since multiplying a
156 negative value by 0 gives -0, not +0. */
157 (simplify
158 (mult @0 real_zerop@1)
159 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
160 @1))
161
162 /* In IEEE floating point, x*1 is not equivalent to x for snans.
163 Likewise for complex arithmetic with signed zeros. */
164 (simplify
165 (mult @0 real_onep)
166 (if (!HONOR_SNANS (type)
167 && (!HONOR_SIGNED_ZEROS (type)
168 || !COMPLEX_FLOAT_TYPE_P (type)))
169 (non_lvalue @0)))
170
171 /* Transform x * -1.0 into -x. */
172 (simplify
173 (mult @0 real_minus_onep)
174 (if (!HONOR_SNANS (type)
175 && (!HONOR_SIGNED_ZEROS (type)
176 || !COMPLEX_FLOAT_TYPE_P (type)))
177 (negate @0)))
178
179 (for cmp (gt ge lt le)
180 outp (convert convert negate negate)
181 outn (negate negate convert convert)
182 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
183 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
184 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
185 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
186 (simplify
187 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
188 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
189 && types_match (type, TREE_TYPE (@0)))
190 (switch
191 (if (types_match (type, float_type_node))
192 (BUILT_IN_COPYSIGNF @1 (outp @0)))
193 (if (types_match (type, double_type_node))
194 (BUILT_IN_COPYSIGN @1 (outp @0)))
195 (if (types_match (type, long_double_type_node))
196 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
197 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
198 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
199 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
200 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
201 (simplify
202 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
204 && types_match (type, TREE_TYPE (@0)))
205 (switch
206 (if (types_match (type, float_type_node))
207 (BUILT_IN_COPYSIGNF @1 (outn @0)))
208 (if (types_match (type, double_type_node))
209 (BUILT_IN_COPYSIGN @1 (outn @0)))
210 (if (types_match (type, long_double_type_node))
211 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
212
213 /* Transform X * copysign (1.0, X) into abs(X). */
214 (simplify
215 (mult:c @0 (COPYSIGN_ALL real_onep @0))
216 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
217 (abs @0)))
218
219 /* Transform X * copysign (1.0, -X) into -abs(X). */
220 (simplify
221 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
222 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
223 (negate (abs @0))))
224
225 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
226 (simplify
227 (COPYSIGN_ALL REAL_CST@0 @1)
228 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
229 (COPYSIGN_ALL (negate @0) @1)))
230
231 /* X * 1, X / 1 -> X. */
232 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
233 (simplify
234 (op @0 integer_onep)
235 (non_lvalue @0)))
236
237 /* (A / (1 << B)) -> (A >> B).
238 Only for unsigned A. For signed A, this would not preserve rounding
239 toward zero.
240 For example: (-1 / ( 1 << B)) != -1 >> B. */
241 (simplify
242 (trunc_div @0 (lshift integer_onep@1 @2))
243 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
244 && (!VECTOR_TYPE_P (type)
245 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
246 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
247 (rshift @0 @2)))
248
249 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
250 undefined behavior in constexpr evaluation, and assuming that the division
251 traps enables better optimizations than these anyway. */
252 (for div (trunc_div ceil_div floor_div round_div exact_div)
253 /* 0 / X is always zero. */
254 (simplify
255 (div integer_zerop@0 @1)
256 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
257 (if (!integer_zerop (@1))
258 @0))
259 /* X / -1 is -X. */
260 (simplify
261 (div @0 integer_minus_onep@1)
262 (if (!TYPE_UNSIGNED (type))
263 (negate @0)))
264 /* X / X is one. */
265 (simplify
266 (div @0 @0)
267 /* But not for 0 / 0 so that we can get the proper warnings and errors.
268 And not for _Fract types where we can't build 1. */
269 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
270 { build_one_cst (type); }))
271 /* X / abs (X) is X < 0 ? -1 : 1. */
272 (simplify
273 (div:C @0 (abs @0))
274 (if (INTEGRAL_TYPE_P (type)
275 && TYPE_OVERFLOW_UNDEFINED (type))
276 (cond (lt @0 { build_zero_cst (type); })
277 { build_minus_one_cst (type); } { build_one_cst (type); })))
278 /* X / -X is -1. */
279 (simplify
280 (div:C @0 (negate @0))
281 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
282 && TYPE_OVERFLOW_UNDEFINED (type))
283 { build_minus_one_cst (type); })))
284
285 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
286 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
287 (simplify
288 (floor_div @0 @1)
289 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
290 && TYPE_UNSIGNED (type))
291 (trunc_div @0 @1)))
292
293 /* Combine two successive divisions. Note that combining ceil_div
294 and floor_div is trickier and combining round_div even more so. */
295 (for div (trunc_div exact_div)
296 (simplify
297 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
298 (with {
299 bool overflow_p;
300 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
301 TYPE_SIGN (type), &overflow_p);
302 }
303 (if (!overflow_p)
304 (div @0 { wide_int_to_tree (type, mul); })
305 (if (TYPE_UNSIGNED (type)
306 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
307 { build_zero_cst (type); })))))
308
309 /* Combine successive multiplications. Similar to above, but handling
310 overflow is different. */
311 (simplify
312 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
313 (with {
314 bool overflow_p;
315 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
316 TYPE_SIGN (type), &overflow_p);
317 }
318 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
319 otherwise undefined overflow implies that @0 must be zero. */
320 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
321 (mult @0 { wide_int_to_tree (type, mul); }))))
322
323 /* Optimize A / A to 1.0 if we don't care about
324 NaNs or Infinities. */
325 (simplify
326 (rdiv @0 @0)
327 (if (FLOAT_TYPE_P (type)
328 && ! HONOR_NANS (type)
329 && ! HONOR_INFINITIES (type))
330 { build_one_cst (type); }))
331
332 /* Optimize -A / A to -1.0 if we don't care about
333 NaNs or Infinities. */
334 (simplify
335 (rdiv:C @0 (negate @0))
336 (if (FLOAT_TYPE_P (type)
337 && ! HONOR_NANS (type)
338 && ! HONOR_INFINITIES (type))
339 { build_minus_one_cst (type); }))
340
341 /* PR71078: x / abs(x) -> copysign (1.0, x) */
342 (simplify
343 (rdiv:C (convert? @0) (convert? (abs @0)))
344 (if (SCALAR_FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 (switch
348 (if (types_match (type, float_type_node))
349 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
350 (if (types_match (type, double_type_node))
351 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
352 (if (types_match (type, long_double_type_node))
353 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
354
355 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
356 (simplify
357 (rdiv @0 real_onep)
358 (if (!HONOR_SNANS (type))
359 (non_lvalue @0)))
360
361 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
362 (simplify
363 (rdiv @0 real_minus_onep)
364 (if (!HONOR_SNANS (type))
365 (negate @0)))
366
367 (if (flag_reciprocal_math)
368 /* Convert (A/B)/C to A/(B*C). */
369 (simplify
370 (rdiv (rdiv:s @0 @1) @2)
371 (rdiv @0 (mult @1 @2)))
372
373 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
374 (simplify
375 (rdiv @0 (mult:s @1 REAL_CST@2))
376 (with
377 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
378 (if (tem)
379 (rdiv (mult @0 { tem; } ) @1))))
380
381 /* Convert A/(B/C) to (A/B)*C */
382 (simplify
383 (rdiv @0 (rdiv:s @1 @2))
384 (mult (rdiv @0 @1) @2)))
385
386 /* Simplify x / (- y) to -x / y. */
387 (simplify
388 (rdiv @0 (negate @1))
389 (rdiv (negate @0) @1))
390
391 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
392 (for div (trunc_div ceil_div floor_div round_div exact_div)
393 (simplify
394 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
395 (if (integer_pow2p (@2)
396 && tree_int_cst_sgn (@2) > 0
397 && tree_nop_conversion_p (type, TREE_TYPE (@0))
398 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
399 (rshift (convert @0)
400 { build_int_cst (integer_type_node,
401 wi::exact_log2 (wi::to_wide (@2))); }))))
402
403 /* If ARG1 is a constant, we can convert this to a multiply by the
404 reciprocal. This does not have the same rounding properties,
405 so only do this if -freciprocal-math. We can actually
406 always safely do it if ARG1 is a power of two, but it's hard to
407 tell if it is or not in a portable manner. */
408 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
409 (simplify
410 (rdiv @0 cst@1)
411 (if (optimize)
412 (if (flag_reciprocal_math
413 && !real_zerop (@1))
414 (with
415 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
416 (if (tem)
417 (mult @0 { tem; } )))
418 (if (cst != COMPLEX_CST)
419 (with { tree inverse = exact_inverse (type, @1); }
420 (if (inverse)
421 (mult @0 { inverse; } ))))))))
422
423 (for mod (ceil_mod floor_mod round_mod trunc_mod)
424 /* 0 % X is always zero. */
425 (simplify
426 (mod integer_zerop@0 @1)
427 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
428 (if (!integer_zerop (@1))
429 @0))
430 /* X % 1 is always zero. */
431 (simplify
432 (mod @0 integer_onep)
433 { build_zero_cst (type); })
434 /* X % -1 is zero. */
435 (simplify
436 (mod @0 integer_minus_onep@1)
437 (if (!TYPE_UNSIGNED (type))
438 { build_zero_cst (type); }))
439 /* X % X is zero. */
440 (simplify
441 (mod @0 @0)
442 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
443 (if (!integer_zerop (@0))
444 { build_zero_cst (type); }))
445 /* (X % Y) % Y is just X % Y. */
446 (simplify
447 (mod (mod@2 @0 @1) @1)
448 @2)
449 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
450 (simplify
451 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
452 (if (ANY_INTEGRAL_TYPE_P (type)
453 && TYPE_OVERFLOW_UNDEFINED (type)
454 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
455 TYPE_SIGN (type)))
456 { build_zero_cst (type); })))
457
458 /* X % -C is the same as X % C. */
459 (simplify
460 (trunc_mod @0 INTEGER_CST@1)
461 (if (TYPE_SIGN (type) == SIGNED
462 && !TREE_OVERFLOW (@1)
463 && wi::neg_p (wi::to_wide (@1))
464 && !TYPE_OVERFLOW_TRAPS (type)
465 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
466 && !sign_bit_p (@1, @1))
467 (trunc_mod @0 (negate @1))))
468
469 /* X % -Y is the same as X % Y. */
470 (simplify
471 (trunc_mod @0 (convert? (negate @1)))
472 (if (INTEGRAL_TYPE_P (type)
473 && !TYPE_UNSIGNED (type)
474 && !TYPE_OVERFLOW_TRAPS (type)
475 && tree_nop_conversion_p (type, TREE_TYPE (@1))
476 /* Avoid this transformation if X might be INT_MIN or
477 Y might be -1, because we would then change valid
478 INT_MIN % -(-1) into invalid INT_MIN % -1. */
479 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
480 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
481 (TREE_TYPE (@1))))))
482 (trunc_mod @0 (convert @1))))
483
484 /* X - (X / Y) * Y is the same as X % Y. */
485 (simplify
486 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
487 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
488 (convert (trunc_mod @0 @1))))
489
490 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
491 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
492 Also optimize A % (C << N) where C is a power of 2,
493 to A & ((C << N) - 1). */
494 (match (power_of_two_cand @1)
495 INTEGER_CST@1)
496 (match (power_of_two_cand @1)
497 (lshift INTEGER_CST@1 @2))
498 (for mod (trunc_mod floor_mod)
499 (simplify
500 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
501 (if ((TYPE_UNSIGNED (type)
502 || tree_expr_nonnegative_p (@0))
503 && tree_nop_conversion_p (type, TREE_TYPE (@3))
504 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
505 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
506
507 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
508 (simplify
509 (trunc_div (mult @0 integer_pow2p@1) @1)
510 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
511 (bit_and @0 { wide_int_to_tree
512 (type, wi::mask (TYPE_PRECISION (type)
513 - wi::exact_log2 (wi::to_wide (@1)),
514 false, TYPE_PRECISION (type))); })))
515
516 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
517 (simplify
518 (mult (trunc_div @0 integer_pow2p@1) @1)
519 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
520 (bit_and @0 (negate @1))))
521
522 /* Simplify (t * 2) / 2) -> t. */
523 (for div (trunc_div ceil_div floor_div round_div exact_div)
524 (simplify
525 (div (mult:c @0 @1) @1)
526 (if (ANY_INTEGRAL_TYPE_P (type)
527 && TYPE_OVERFLOW_UNDEFINED (type))
528 @0)))
529
530 (for op (negate abs)
531 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
532 (for coss (COS COSH)
533 (simplify
534 (coss (op @0))
535 (coss @0)))
536 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
537 (for pows (POW)
538 (simplify
539 (pows (op @0) REAL_CST@1)
540 (with { HOST_WIDE_INT n; }
541 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
542 (pows @0 @1)))))
543 /* Likewise for powi. */
544 (for pows (POWI)
545 (simplify
546 (pows (op @0) INTEGER_CST@1)
547 (if ((wi::to_wide (@1) & 1) == 0)
548 (pows @0 @1))))
549 /* Strip negate and abs from both operands of hypot. */
550 (for hypots (HYPOT)
551 (simplify
552 (hypots (op @0) @1)
553 (hypots @0 @1))
554 (simplify
555 (hypots @0 (op @1))
556 (hypots @0 @1)))
557 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
558 (for copysigns (COPYSIGN_ALL)
559 (simplify
560 (copysigns (op @0) @1)
561 (copysigns @0 @1))))
562
563 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
564 (simplify
565 (mult (abs@1 @0) @1)
566 (mult @0 @0))
567
568 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
569 (for coss (COS COSH)
570 copysigns (COPYSIGN)
571 (simplify
572 (coss (copysigns @0 @1))
573 (coss @0)))
574
575 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
576 (for pows (POW)
577 copysigns (COPYSIGN)
578 (simplify
579 (pows (copysigns @0 @2) REAL_CST@1)
580 (with { HOST_WIDE_INT n; }
581 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
582 (pows @0 @1)))))
583 /* Likewise for powi. */
584 (for pows (POWI)
585 copysigns (COPYSIGN)
586 (simplify
587 (pows (copysigns @0 @2) INTEGER_CST@1)
588 (if ((wi::to_wide (@1) & 1) == 0)
589 (pows @0 @1))))
590
591 (for hypots (HYPOT)
592 copysigns (COPYSIGN)
593 /* hypot(copysign(x, y), z) -> hypot(x, z). */
594 (simplify
595 (hypots (copysigns @0 @1) @2)
596 (hypots @0 @2))
597 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
598 (simplify
599 (hypots @0 (copysigns @1 @2))
600 (hypots @0 @1)))
601
602 /* copysign(x, CST) -> [-]abs (x). */
603 (for copysigns (COPYSIGN_ALL)
604 (simplify
605 (copysigns @0 REAL_CST@1)
606 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
607 (negate (abs @0))
608 (abs @0))))
609
610 /* copysign(copysign(x, y), z) -> copysign(x, z). */
611 (for copysigns (COPYSIGN_ALL)
612 (simplify
613 (copysigns (copysigns @0 @1) @2)
614 (copysigns @0 @2)))
615
616 /* copysign(x,y)*copysign(x,y) -> x*x. */
617 (for copysigns (COPYSIGN_ALL)
618 (simplify
619 (mult (copysigns@2 @0 @1) @2)
620 (mult @0 @0)))
621
622 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
623 (for ccoss (CCOS CCOSH)
624 (simplify
625 (ccoss (negate @0))
626 (ccoss @0)))
627
628 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
629 (for ops (conj negate)
630 (for cabss (CABS)
631 (simplify
632 (cabss (ops @0))
633 (cabss @0))))
634
635 /* Fold (a * (1 << b)) into (a << b) */
636 (simplify
637 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
638 (if (! FLOAT_TYPE_P (type)
639 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
640 (lshift @0 @2)))
641
642 /* Fold (1 << (C - x)) where C = precision(type) - 1
643 into ((1 << C) >> x). */
644 (simplify
645 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
646 (if (INTEGRAL_TYPE_P (type)
647 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
648 && single_use (@1))
649 (if (TYPE_UNSIGNED (type))
650 (rshift (lshift @0 @2) @3)
651 (with
652 { tree utype = unsigned_type_for (type); }
653 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
654
655 /* Fold (C1/X)*C2 into (C1*C2)/X. */
656 (simplify
657 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
658 (if (flag_associative_math
659 && single_use (@3))
660 (with
661 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
662 (if (tem)
663 (rdiv { tem; } @1)))))
664
665 /* Simplify ~X & X as zero. */
666 (simplify
667 (bit_and:c (convert? @0) (convert? (bit_not @0)))
668 { build_zero_cst (type); })
669
670 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
671 (simplify
672 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
673 (if (TYPE_UNSIGNED (type))
674 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
675
676 (for bitop (bit_and bit_ior)
677 cmp (eq ne)
678 /* PR35691: Transform
679 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
680 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
681 (simplify
682 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
683 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
684 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
685 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
686 (cmp (bit_ior @0 (convert @1)) @2)))
687 /* Transform:
688 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
689 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
690 (simplify
691 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
692 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
693 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
694 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
695 (cmp (bit_and @0 (convert @1)) @2))))
696
697 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
698 (simplify
699 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
700 (minus (bit_xor @0 @1) @1))
701 (simplify
702 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
703 (if (~wi::to_wide (@2) == wi::to_wide (@1))
704 (minus (bit_xor @0 @1) @1)))
705
706 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
707 (simplify
708 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
709 (minus @1 (bit_xor @0 @1)))
710
711 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
712 (for op (bit_ior bit_xor plus)
713 (simplify
714 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
715 (bit_xor @0 @1))
716 (simplify
717 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
718 (if (~wi::to_wide (@2) == wi::to_wide (@1))
719 (bit_xor @0 @1))))
720
721 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
722 (simplify
723 (bit_ior:c (bit_xor:c @0 @1) @0)
724 (bit_ior @0 @1))
725
726 /* (a & ~b) | (a ^ b) --> a ^ b */
727 (simplify
728 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
729 @2)
730
731 /* (a & ~b) ^ ~a --> ~(a & b) */
732 (simplify
733 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
734 (bit_not (bit_and @0 @1)))
735
736 /* (a | b) & ~(a ^ b) --> a & b */
737 (simplify
738 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
739 (bit_and @0 @1))
740
741 /* a | ~(a ^ b) --> a | ~b */
742 (simplify
743 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
744 (bit_ior @0 (bit_not @1)))
745
746 /* (a | b) | (a &^ b) --> a | b */
747 (for op (bit_and bit_xor)
748 (simplify
749 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
750 @2))
751
752 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
753 (simplify
754 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
755 @2)
756
757 /* ~(~a & b) --> a | ~b */
758 (simplify
759 (bit_not (bit_and:cs (bit_not @0) @1))
760 (bit_ior @0 (bit_not @1)))
761
762 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
763 #if GIMPLE
764 (simplify
765 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
766 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
767 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
768 (bit_xor @0 @1)))
769 #endif
770
771 /* X % Y is smaller than Y. */
772 (for cmp (lt ge)
773 (simplify
774 (cmp (trunc_mod @0 @1) @1)
775 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
776 { constant_boolean_node (cmp == LT_EXPR, type); })))
777 (for cmp (gt le)
778 (simplify
779 (cmp @1 (trunc_mod @0 @1))
780 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
781 { constant_boolean_node (cmp == GT_EXPR, type); })))
782
783 /* x | ~0 -> ~0 */
784 (simplify
785 (bit_ior @0 integer_all_onesp@1)
786 @1)
787
788 /* x | 0 -> x */
789 (simplify
790 (bit_ior @0 integer_zerop)
791 @0)
792
793 /* x & 0 -> 0 */
794 (simplify
795 (bit_and @0 integer_zerop@1)
796 @1)
797
798 /* ~x | x -> -1 */
799 /* ~x ^ x -> -1 */
800 /* ~x + x -> -1 */
801 (for op (bit_ior bit_xor plus)
802 (simplify
803 (op:c (convert? @0) (convert? (bit_not @0)))
804 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
805
806 /* x ^ x -> 0 */
807 (simplify
808 (bit_xor @0 @0)
809 { build_zero_cst (type); })
810
811 /* Canonicalize X ^ ~0 to ~X. */
812 (simplify
813 (bit_xor @0 integer_all_onesp@1)
814 (bit_not @0))
815
816 /* x & ~0 -> x */
817 (simplify
818 (bit_and @0 integer_all_onesp)
819 (non_lvalue @0))
820
821 /* x & x -> x, x | x -> x */
822 (for bitop (bit_and bit_ior)
823 (simplify
824 (bitop @0 @0)
825 (non_lvalue @0)))
826
827 /* x & C -> x if we know that x & ~C == 0. */
828 #if GIMPLE
829 (simplify
830 (bit_and SSA_NAME@0 INTEGER_CST@1)
831 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
832 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
833 @0))
834 #endif
835
836 /* x + (x & 1) -> (x + 1) & ~1 */
837 (simplify
838 (plus:c @0 (bit_and:s @0 integer_onep@1))
839 (bit_and (plus @0 @1) (bit_not @1)))
840
841 /* x & ~(x & y) -> x & ~y */
842 /* x | ~(x | y) -> x | ~y */
843 (for bitop (bit_and bit_ior)
844 (simplify
845 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
846 (bitop @0 (bit_not @1))))
847
848 /* (x | y) & ~x -> y & ~x */
849 /* (x & y) | ~x -> y | ~x */
850 (for bitop (bit_and bit_ior)
851 rbitop (bit_ior bit_and)
852 (simplify
853 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
854 (bitop @1 @2)))
855
856 /* (x & y) ^ (x | y) -> x ^ y */
857 (simplify
858 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
859 (bit_xor @0 @1))
860
861 /* (x ^ y) ^ (x | y) -> x & y */
862 (simplify
863 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
864 (bit_and @0 @1))
865
866 /* (x & y) + (x ^ y) -> x | y */
867 /* (x & y) | (x ^ y) -> x | y */
868 /* (x & y) ^ (x ^ y) -> x | y */
869 (for op (plus bit_ior bit_xor)
870 (simplify
871 (op:c (bit_and @0 @1) (bit_xor @0 @1))
872 (bit_ior @0 @1)))
873
874 /* (x & y) + (x | y) -> x + y */
875 (simplify
876 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
877 (plus @0 @1))
878
879 /* (x + y) - (x | y) -> x & y */
880 (simplify
881 (minus (plus @0 @1) (bit_ior @0 @1))
882 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
883 && !TYPE_SATURATING (type))
884 (bit_and @0 @1)))
885
886 /* (x + y) - (x & y) -> x | y */
887 (simplify
888 (minus (plus @0 @1) (bit_and @0 @1))
889 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
890 && !TYPE_SATURATING (type))
891 (bit_ior @0 @1)))
892
893 /* (x | y) - (x ^ y) -> x & y */
894 (simplify
895 (minus (bit_ior @0 @1) (bit_xor @0 @1))
896 (bit_and @0 @1))
897
898 /* (x | y) - (x & y) -> x ^ y */
899 (simplify
900 (minus (bit_ior @0 @1) (bit_and @0 @1))
901 (bit_xor @0 @1))
902
903 /* (x | y) & ~(x & y) -> x ^ y */
904 (simplify
905 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
906 (bit_xor @0 @1))
907
908 /* (x | y) & (~x ^ y) -> x & y */
909 (simplify
910 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
911 (bit_and @0 @1))
912
913 /* ~x & ~y -> ~(x | y)
914 ~x | ~y -> ~(x & y) */
915 (for op (bit_and bit_ior)
916 rop (bit_ior bit_and)
917 (simplify
918 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
919 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
921 (bit_not (rop (convert @0) (convert @1))))))
922
923 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
924 with a constant, and the two constants have no bits in common,
925 we should treat this as a BIT_IOR_EXPR since this may produce more
926 simplifications. */
927 (for op (bit_xor plus)
928 (simplify
929 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
930 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
931 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
932 && tree_nop_conversion_p (type, TREE_TYPE (@2))
933 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
934 (bit_ior (convert @4) (convert @5)))))
935
936 /* (X | Y) ^ X -> Y & ~ X*/
937 (simplify
938 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
939 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
940 (convert (bit_and @1 (bit_not @0)))))
941
942 /* Convert ~X ^ ~Y to X ^ Y. */
943 (simplify
944 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
945 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
946 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
947 (bit_xor (convert @0) (convert @1))))
948
949 /* Convert ~X ^ C to X ^ ~C. */
950 (simplify
951 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
952 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
953 (bit_xor (convert @0) (bit_not @1))))
954
955 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
956 (for opo (bit_and bit_xor)
957 opi (bit_xor bit_and)
958 (simplify
959 (opo:c (opi:c @0 @1) @1)
960 (bit_and (bit_not @0) @1)))
961
962 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
963 operands are another bit-wise operation with a common input. If so,
964 distribute the bit operations to save an operation and possibly two if
965 constants are involved. For example, convert
966 (A | B) & (A | C) into A | (B & C)
967 Further simplification will occur if B and C are constants. */
968 (for op (bit_and bit_ior bit_xor)
969 rop (bit_ior bit_and bit_and)
970 (simplify
971 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
972 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
973 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
974 (rop (convert @0) (op (convert @1) (convert @2))))))
975
976 /* Some simple reassociation for bit operations, also handled in reassoc. */
977 /* (X & Y) & Y -> X & Y
978 (X | Y) | Y -> X | Y */
979 (for op (bit_and bit_ior)
980 (simplify
981 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
982 @2))
983 /* (X ^ Y) ^ Y -> X */
984 (simplify
985 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
986 (convert @0))
987 /* (X & Y) & (X & Z) -> (X & Y) & Z
988 (X | Y) | (X | Z) -> (X | Y) | Z */
989 (for op (bit_and bit_ior)
990 (simplify
991 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
992 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
993 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
994 (if (single_use (@5) && single_use (@6))
995 (op @3 (convert @2))
996 (if (single_use (@3) && single_use (@4))
997 (op (convert @1) @5))))))
998 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
999 (simplify
1000 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1001 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1002 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1003 (bit_xor (convert @1) (convert @2))))
1004
1005 (simplify
1006 (abs (abs@1 @0))
1007 @1)
1008 (simplify
1009 (abs (negate @0))
1010 (abs @0))
1011 (simplify
1012 (abs tree_expr_nonnegative_p@0)
1013 @0)
1014
1015 /* A few cases of fold-const.c negate_expr_p predicate. */
1016 (match negate_expr_p
1017 INTEGER_CST
1018 (if ((INTEGRAL_TYPE_P (type)
1019 && TYPE_UNSIGNED (type))
1020 || (!TYPE_OVERFLOW_SANITIZED (type)
1021 && may_negate_without_overflow_p (t)))))
1022 (match negate_expr_p
1023 FIXED_CST)
1024 (match negate_expr_p
1025 (negate @0)
1026 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1027 (match negate_expr_p
1028 REAL_CST
1029 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1030 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1031 ways. */
1032 (match negate_expr_p
1033 VECTOR_CST
1034 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1035 (match negate_expr_p
1036 (minus @0 @1)
1037 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1038 || (FLOAT_TYPE_P (type)
1039 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1040 && !HONOR_SIGNED_ZEROS (type)))))
1041
1042 /* (-A) * (-B) -> A * B */
1043 (simplify
1044 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1045 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1046 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1047 (mult (convert @0) (convert (negate @1)))))
1048
1049 /* -(A + B) -> (-B) - A. */
1050 (simplify
1051 (negate (plus:c @0 negate_expr_p@1))
1052 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1053 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1054 (minus (negate @1) @0)))
1055
1056 /* -(A - B) -> B - A. */
1057 (simplify
1058 (negate (minus @0 @1))
1059 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1060 || (FLOAT_TYPE_P (type)
1061 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1062 && !HONOR_SIGNED_ZEROS (type)))
1063 (minus @1 @0)))
1064 (simplify
1065 (negate (pointer_diff @0 @1))
1066 (if (TYPE_OVERFLOW_UNDEFINED (type))
1067 (pointer_diff @1 @0)))
1068
1069 /* A - B -> A + (-B) if B is easily negatable. */
1070 (simplify
1071 (minus @0 negate_expr_p@1)
1072 (if (!FIXED_POINT_TYPE_P (type))
1073 (plus @0 (negate @1))))
1074
1075 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1076 when profitable.
1077 For bitwise binary operations apply operand conversions to the
1078 binary operation result instead of to the operands. This allows
1079 to combine successive conversions and bitwise binary operations.
1080 We combine the above two cases by using a conditional convert. */
1081 (for bitop (bit_and bit_ior bit_xor)
1082 (simplify
1083 (bitop (convert @0) (convert? @1))
1084 (if (((TREE_CODE (@1) == INTEGER_CST
1085 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1086 && int_fits_type_p (@1, TREE_TYPE (@0)))
1087 || types_match (@0, @1))
1088 /* ??? This transform conflicts with fold-const.c doing
1089 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1090 constants (if x has signed type, the sign bit cannot be set
1091 in c). This folds extension into the BIT_AND_EXPR.
1092 Restrict it to GIMPLE to avoid endless recursions. */
1093 && (bitop != BIT_AND_EXPR || GIMPLE)
1094 && (/* That's a good idea if the conversion widens the operand, thus
1095 after hoisting the conversion the operation will be narrower. */
1096 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1097 /* It's also a good idea if the conversion is to a non-integer
1098 mode. */
1099 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1100 /* Or if the precision of TO is not the same as the precision
1101 of its mode. */
1102 || !type_has_mode_precision_p (type)))
1103 (convert (bitop @0 (convert @1))))))
1104
1105 (for bitop (bit_and bit_ior)
1106 rbitop (bit_ior bit_and)
1107 /* (x | y) & x -> x */
1108 /* (x & y) | x -> x */
1109 (simplify
1110 (bitop:c (rbitop:c @0 @1) @0)
1111 @0)
1112 /* (~x | y) & x -> x & y */
1113 /* (~x & y) | x -> x | y */
1114 (simplify
1115 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1116 (bitop @0 @1)))
1117
1118 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1119 (simplify
1120 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1121 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1122
1123 /* Combine successive equal operations with constants. */
1124 (for bitop (bit_and bit_ior bit_xor)
1125 (simplify
1126 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1127 (if (!CONSTANT_CLASS_P (@0))
1128 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1129 folded to a constant. */
1130 (bitop @0 (bitop @1 @2))
1131 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1132 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1133 the values involved are such that the operation can't be decided at
1134 compile time. Try folding one of @0 or @1 with @2 to see whether
1135 that combination can be decided at compile time.
1136
1137 Keep the existing form if both folds fail, to avoid endless
1138 oscillation. */
1139 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1140 (if (cst1)
1141 (bitop @1 { cst1; })
1142 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1143 (if (cst2)
1144 (bitop @0 { cst2; }))))))))
1145
1146 /* Try simple folding for X op !X, and X op X with the help
1147 of the truth_valued_p and logical_inverted_value predicates. */
1148 (match truth_valued_p
1149 @0
1150 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1151 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1152 (match truth_valued_p
1153 (op @0 @1)))
1154 (match truth_valued_p
1155 (truth_not @0))
1156
1157 (match (logical_inverted_value @0)
1158 (truth_not @0))
1159 (match (logical_inverted_value @0)
1160 (bit_not truth_valued_p@0))
1161 (match (logical_inverted_value @0)
1162 (eq @0 integer_zerop))
1163 (match (logical_inverted_value @0)
1164 (ne truth_valued_p@0 integer_truep))
1165 (match (logical_inverted_value @0)
1166 (bit_xor truth_valued_p@0 integer_truep))
1167
1168 /* X & !X -> 0. */
1169 (simplify
1170 (bit_and:c @0 (logical_inverted_value @0))
1171 { build_zero_cst (type); })
1172 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1173 (for op (bit_ior bit_xor)
1174 (simplify
1175 (op:c truth_valued_p@0 (logical_inverted_value @0))
1176 { constant_boolean_node (true, type); }))
1177 /* X ==/!= !X is false/true. */
1178 (for op (eq ne)
1179 (simplify
1180 (op:c truth_valued_p@0 (logical_inverted_value @0))
1181 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1182
1183 /* ~~x -> x */
1184 (simplify
1185 (bit_not (bit_not @0))
1186 @0)
1187
1188 /* Convert ~ (-A) to A - 1. */
1189 (simplify
1190 (bit_not (convert? (negate @0)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1194
1195 /* Convert - (~A) to A + 1. */
1196 (simplify
1197 (negate (nop_convert (bit_not @0)))
1198 (plus (view_convert @0) { build_each_one_cst (type); }))
1199
1200 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1201 (simplify
1202 (bit_not (convert? (minus @0 integer_each_onep)))
1203 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1204 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1205 (convert (negate @0))))
1206 (simplify
1207 (bit_not (convert? (plus @0 integer_all_onesp)))
1208 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1209 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1210 (convert (negate @0))))
1211
1212 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1213 (simplify
1214 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1215 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1216 (convert (bit_xor @0 (bit_not @1)))))
1217 (simplify
1218 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1219 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1220 (convert (bit_xor @0 @1))))
1221
1222 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1223 (simplify
1224 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1225 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1226 (bit_not (bit_xor (view_convert @0) @1))))
1227
1228 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1229 (simplify
1230 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1231 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1232
1233 /* Fold A - (A & B) into ~B & A. */
1234 (simplify
1235 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1236 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1237 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1238 (convert (bit_and (bit_not @1) @0))))
1239
1240 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1241 (for cmp (gt lt ge le)
1242 (simplify
1243 (mult (convert (cmp @0 @1)) @2)
1244 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1245
1246 /* For integral types with undefined overflow and C != 0 fold
1247 x * C EQ/NE y * C into x EQ/NE y. */
1248 (for cmp (eq ne)
1249 (simplify
1250 (cmp (mult:c @0 @1) (mult:c @2 @1))
1251 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1252 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1253 && tree_expr_nonzero_p (@1))
1254 (cmp @0 @2))))
1255
1256 /* For integral types with wrapping overflow and C odd fold
1257 x * C EQ/NE y * C into x EQ/NE y. */
1258 (for cmp (eq ne)
1259 (simplify
1260 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1262 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1263 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1264 (cmp @0 @2))))
1265
1266 /* For integral types with undefined overflow and C != 0 fold
1267 x * C RELOP y * C into:
1268
1269 x RELOP y for nonnegative C
1270 y RELOP x for negative C */
1271 (for cmp (lt gt le ge)
1272 (simplify
1273 (cmp (mult:c @0 @1) (mult:c @2 @1))
1274 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1275 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1276 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1277 (cmp @0 @2)
1278 (if (TREE_CODE (@1) == INTEGER_CST
1279 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1280 (cmp @2 @0))))))
1281
1282 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1283 (for cmp (le gt)
1284 icmp (gt le)
1285 (simplify
1286 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1287 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_UNSIGNED (TREE_TYPE (@0))
1289 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1290 && (wi::to_wide (@2)
1291 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1292 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1293 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1294
1295 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1296 (for cmp (simple_comparison)
1297 (simplify
1298 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1299 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1300 (cmp @0 @1))))
1301
1302 /* X / C1 op C2 into a simple range test. */
1303 (for cmp (simple_comparison)
1304 (simplify
1305 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1306 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1307 && integer_nonzerop (@1)
1308 && !TREE_OVERFLOW (@1)
1309 && !TREE_OVERFLOW (@2))
1310 (with { tree lo, hi; bool neg_overflow;
1311 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1312 &neg_overflow); }
1313 (switch
1314 (if (code == LT_EXPR || code == GE_EXPR)
1315 (if (TREE_OVERFLOW (lo))
1316 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1317 (if (code == LT_EXPR)
1318 (lt @0 { lo; })
1319 (ge @0 { lo; }))))
1320 (if (code == LE_EXPR || code == GT_EXPR)
1321 (if (TREE_OVERFLOW (hi))
1322 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1323 (if (code == LE_EXPR)
1324 (le @0 { hi; })
1325 (gt @0 { hi; }))))
1326 (if (!lo && !hi)
1327 { build_int_cst (type, code == NE_EXPR); })
1328 (if (code == EQ_EXPR && !hi)
1329 (ge @0 { lo; }))
1330 (if (code == EQ_EXPR && !lo)
1331 (le @0 { hi; }))
1332 (if (code == NE_EXPR && !hi)
1333 (lt @0 { lo; }))
1334 (if (code == NE_EXPR && !lo)
1335 (gt @0 { hi; }))
1336 (if (GENERIC)
1337 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1338 lo, hi); })
1339 (with
1340 {
1341 tree etype = range_check_type (TREE_TYPE (@0));
1342 if (etype)
1343 {
1344 if (! TYPE_UNSIGNED (etype))
1345 etype = unsigned_type_for (etype);
1346 hi = fold_convert (etype, hi);
1347 lo = fold_convert (etype, lo);
1348 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1349 }
1350 }
1351 (if (etype && hi && !TREE_OVERFLOW (hi))
1352 (if (code == EQ_EXPR)
1353 (le (minus (convert:etype @0) { lo; }) { hi; })
1354 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1355
1356 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1357 (for op (lt le ge gt)
1358 (simplify
1359 (op (plus:c @0 @2) (plus:c @1 @2))
1360 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1361 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1362 (op @0 @1))))
1363 /* For equality and subtraction, this is also true with wrapping overflow. */
1364 (for op (eq ne minus)
1365 (simplify
1366 (op (plus:c @0 @2) (plus:c @1 @2))
1367 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1368 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1369 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1370 (op @0 @1))))
1371
1372 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1373 (for op (lt le ge gt)
1374 (simplify
1375 (op (minus @0 @2) (minus @1 @2))
1376 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1377 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1378 (op @0 @1))))
1379 /* For equality and subtraction, this is also true with wrapping overflow. */
1380 (for op (eq ne minus)
1381 (simplify
1382 (op (minus @0 @2) (minus @1 @2))
1383 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1384 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1385 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1386 (op @0 @1))))
1387 /* And for pointers... */
1388 (for op (simple_comparison)
1389 (simplify
1390 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1391 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1392 (op @0 @1))))
1393 (simplify
1394 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1395 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1396 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1397 (pointer_diff @0 @1)))
1398
1399 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1400 (for op (lt le ge gt)
1401 (simplify
1402 (op (minus @2 @0) (minus @2 @1))
1403 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1404 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1405 (op @1 @0))))
1406 /* For equality and subtraction, this is also true with wrapping overflow. */
1407 (for op (eq ne minus)
1408 (simplify
1409 (op (minus @2 @0) (minus @2 @1))
1410 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1411 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1412 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1413 (op @1 @0))))
1414 /* And for pointers... */
1415 (for op (simple_comparison)
1416 (simplify
1417 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1418 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1419 (op @1 @0))))
1420 (simplify
1421 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1422 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1423 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1424 (pointer_diff @1 @0)))
1425
1426 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1427 (for op (lt le gt ge)
1428 (simplify
1429 (op:c (plus:c@2 @0 @1) @1)
1430 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1431 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1432 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1433 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1434 /* For equality, this is also true with wrapping overflow. */
1435 (for op (eq ne)
1436 (simplify
1437 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1441 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1442 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1443 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1444 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1445 (simplify
1446 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1447 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1448 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1449 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1452 /* X - Y < X is the same as Y > 0 when there is no overflow.
1453 For equality, this is also true with wrapping overflow. */
1454 (for op (simple_comparison)
1455 (simplify
1456 (op:c @0 (minus@2 @0 @1))
1457 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1458 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1459 || ((op == EQ_EXPR || op == NE_EXPR)
1460 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1461 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1462 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1463
1464 /* Transform:
1465 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1466 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1467 (for cmp (eq ne)
1468 ocmp (lt ge)
1469 (simplify
1470 (cmp (trunc_div @0 @1) integer_zerop)
1471 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1472 /* Complex ==/!= is allowed, but not </>=. */
1473 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1474 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1475 (ocmp @0 @1))))
1476
1477 /* X == C - X can never be true if C is odd. */
1478 (for cmp (eq ne)
1479 (simplify
1480 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1481 (if (TREE_INT_CST_LOW (@1) & 1)
1482 { constant_boolean_node (cmp == NE_EXPR, type); })))
1483
1484 /* Arguments on which one can call get_nonzero_bits to get the bits
1485 possibly set. */
1486 (match with_possible_nonzero_bits
1487 INTEGER_CST@0)
1488 (match with_possible_nonzero_bits
1489 SSA_NAME@0
1490 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1491 /* Slightly extended version, do not make it recursive to keep it cheap. */
1492 (match (with_possible_nonzero_bits2 @0)
1493 with_possible_nonzero_bits@0)
1494 (match (with_possible_nonzero_bits2 @0)
1495 (bit_and:c with_possible_nonzero_bits@0 @2))
1496
1497 /* Same for bits that are known to be set, but we do not have
1498 an equivalent to get_nonzero_bits yet. */
1499 (match (with_certain_nonzero_bits2 @0)
1500 INTEGER_CST@0)
1501 (match (with_certain_nonzero_bits2 @0)
1502 (bit_ior @1 INTEGER_CST@0))
1503
1504 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1505 (for cmp (eq ne)
1506 (simplify
1507 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1508 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1509 { constant_boolean_node (cmp == NE_EXPR, type); })))
1510
1511 /* ((X inner_op C0) outer_op C1)
1512 With X being a tree where value_range has reasoned certain bits to always be
1513 zero throughout its computed value range,
1514 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1515 where zero_mask has 1's for all bits that are sure to be 0 in
1516 and 0's otherwise.
1517 if (inner_op == '^') C0 &= ~C1;
1518 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1519 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1520 */
1521 (for inner_op (bit_ior bit_xor)
1522 outer_op (bit_xor bit_ior)
1523 (simplify
1524 (outer_op
1525 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1526 (with
1527 {
1528 bool fail = false;
1529 wide_int zero_mask_not;
1530 wide_int C0;
1531 wide_int cst_emit;
1532
1533 if (TREE_CODE (@2) == SSA_NAME)
1534 zero_mask_not = get_nonzero_bits (@2);
1535 else
1536 fail = true;
1537
1538 if (inner_op == BIT_XOR_EXPR)
1539 {
1540 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1541 cst_emit = C0 | wi::to_wide (@1);
1542 }
1543 else
1544 {
1545 C0 = wi::to_wide (@0);
1546 cst_emit = C0 ^ wi::to_wide (@1);
1547 }
1548 }
1549 (if (!fail && (C0 & zero_mask_not) == 0)
1550 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1551 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1552 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1553
1554 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1555 (simplify
1556 (pointer_plus (pointer_plus:s @0 @1) @3)
1557 (pointer_plus @0 (plus @1 @3)))
1558
1559 /* Pattern match
1560 tem1 = (long) ptr1;
1561 tem2 = (long) ptr2;
1562 tem3 = tem2 - tem1;
1563 tem4 = (unsigned long) tem3;
1564 tem5 = ptr1 + tem4;
1565 and produce
1566 tem5 = ptr2; */
1567 (simplify
1568 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1569 /* Conditionally look through a sign-changing conversion. */
1570 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1571 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1572 || (GENERIC && type == TREE_TYPE (@1))))
1573 @1))
1574 (simplify
1575 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1576 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1577 (convert @1)))
1578
1579 /* Pattern match
1580 tem = (sizetype) ptr;
1581 tem = tem & algn;
1582 tem = -tem;
1583 ... = ptr p+ tem;
1584 and produce the simpler and easier to analyze with respect to alignment
1585 ... = ptr & ~algn; */
1586 (simplify
1587 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1588 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1589 (bit_and @0 { algn; })))
1590
1591 /* Try folding difference of addresses. */
1592 (simplify
1593 (minus (convert ADDR_EXPR@0) (convert @1))
1594 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1595 (with { poly_int64 diff; }
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1598 (simplify
1599 (minus (convert @0) (convert ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1601 (with { poly_int64 diff; }
1602 (if (ptr_difference_const (@0, @1, &diff))
1603 { build_int_cst_type (type, diff); }))))
1604 (simplify
1605 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1606 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1607 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1608 (with { poly_int64 diff; }
1609 (if (ptr_difference_const (@0, @1, &diff))
1610 { build_int_cst_type (type, diff); }))))
1611 (simplify
1612 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1613 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1614 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1615 (with { poly_int64 diff; }
1616 (if (ptr_difference_const (@0, @1, &diff))
1617 { build_int_cst_type (type, diff); }))))
1618
1619 /* If arg0 is derived from the address of an object or function, we may
1620 be able to fold this expression using the object or function's
1621 alignment. */
1622 (simplify
1623 (bit_and (convert? @0) INTEGER_CST@1)
1624 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1625 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1626 (with
1627 {
1628 unsigned int align;
1629 unsigned HOST_WIDE_INT bitpos;
1630 get_pointer_alignment_1 (@0, &align, &bitpos);
1631 }
1632 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1633 { wide_int_to_tree (type, (wi::to_wide (@1)
1634 & (bitpos / BITS_PER_UNIT))); }))))
1635
1636
1637 /* We can't reassociate at all for saturating types. */
1638 (if (!TYPE_SATURATING (type))
1639
1640 /* Contract negates. */
1641 /* A + (-B) -> A - B */
1642 (simplify
1643 (plus:c @0 (convert? (negate @1)))
1644 /* Apply STRIP_NOPS on the negate. */
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1646 && !TYPE_OVERFLOW_SANITIZED (type))
1647 (with
1648 {
1649 tree t1 = type;
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653 }
1654 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1655 /* A - (-B) -> A + B */
1656 (simplify
1657 (minus @0 (convert? (negate @1)))
1658 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1659 && !TYPE_OVERFLOW_SANITIZED (type))
1660 (with
1661 {
1662 tree t1 = type;
1663 if (INTEGRAL_TYPE_P (type)
1664 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1665 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1666 }
1667 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1668 /* -(T)(-A) -> (T)A
1669 Sign-extension is ok except for INT_MIN, which thankfully cannot
1670 happen without overflow. */
1671 (simplify
1672 (negate (convert (negate @1)))
1673 (if (INTEGRAL_TYPE_P (type)
1674 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1675 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1676 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1677 && !TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1679 (convert @1)))
1680 (simplify
1681 (negate (convert negate_expr_p@1))
1682 (if (SCALAR_FLOAT_TYPE_P (type)
1683 && ((DECIMAL_FLOAT_TYPE_P (type)
1684 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1685 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1686 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1687 (convert (negate @1))))
1688 (simplify
1689 (negate (nop_convert (negate @1)))
1690 (if (!TYPE_OVERFLOW_SANITIZED (type)
1691 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1692 (view_convert @1)))
1693
1694 /* We can't reassociate floating-point unless -fassociative-math
1695 or fixed-point plus or minus because of saturation to +-Inf. */
1696 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1697 && !FIXED_POINT_TYPE_P (type))
1698
1699 /* Match patterns that allow contracting a plus-minus pair
1700 irrespective of overflow issues. */
1701 /* (A +- B) - A -> +- B */
1702 /* (A +- B) -+ B -> A */
1703 /* A - (A +- B) -> -+ B */
1704 /* A +- (B -+ A) -> +- B */
1705 (simplify
1706 (minus (plus:c @0 @1) @0)
1707 @1)
1708 (simplify
1709 (minus (minus @0 @1) @0)
1710 (negate @1))
1711 (simplify
1712 (plus:c (minus @0 @1) @1)
1713 @0)
1714 (simplify
1715 (minus @0 (plus:c @0 @1))
1716 (negate @1))
1717 (simplify
1718 (minus @0 (minus @0 @1))
1719 @1)
1720 /* (A +- B) + (C - A) -> C +- B */
1721 /* (A + B) - (A - C) -> B + C */
1722 /* More cases are handled with comparisons. */
1723 (simplify
1724 (plus:c (plus:c @0 @1) (minus @2 @0))
1725 (plus @2 @1))
1726 (simplify
1727 (plus:c (minus @0 @1) (minus @2 @0))
1728 (minus @2 @1))
1729 (simplify
1730 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1731 (if (TYPE_OVERFLOW_UNDEFINED (type)
1732 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1733 (pointer_diff @2 @1)))
1734 (simplify
1735 (minus (plus:c @0 @1) (minus @0 @2))
1736 (plus @1 @2))
1737
1738 /* (A +- CST1) +- CST2 -> A + CST3
1739 Use view_convert because it is safe for vectors and equivalent for
1740 scalars. */
1741 (for outer_op (plus minus)
1742 (for inner_op (plus minus)
1743 neg_inner_op (minus plus)
1744 (simplify
1745 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1746 CONSTANT_CLASS_P@2)
1747 /* If one of the types wraps, use that one. */
1748 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1749 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1750 forever if something doesn't simplify into a constant. */
1751 (if (!CONSTANT_CLASS_P (@0))
1752 (if (outer_op == PLUS_EXPR)
1753 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1754 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1755 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1756 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1757 (if (outer_op == PLUS_EXPR)
1758 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1759 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1760 /* If the constant operation overflows we cannot do the transform
1761 directly as we would introduce undefined overflow, for example
1762 with (a - 1) + INT_MIN. */
1763 (if (types_match (type, @0))
1764 (with { tree cst = const_binop (outer_op == inner_op
1765 ? PLUS_EXPR : MINUS_EXPR,
1766 type, @1, @2); }
1767 (if (cst && !TREE_OVERFLOW (cst))
1768 (inner_op @0 { cst; } )
1769 /* X+INT_MAX+1 is X-INT_MIN. */
1770 (if (INTEGRAL_TYPE_P (type) && cst
1771 && wi::to_wide (cst) == wi::min_value (type))
1772 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1773 /* Last resort, use some unsigned type. */
1774 (with { tree utype = unsigned_type_for (type); }
1775 (if (utype)
1776 (view_convert (inner_op
1777 (view_convert:utype @0)
1778 (view_convert:utype
1779 { drop_tree_overflow (cst); }))))))))))))))
1780
1781 /* (CST1 - A) +- CST2 -> CST3 - A */
1782 (for outer_op (plus minus)
1783 (simplify
1784 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1785 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1786 (if (cst && !TREE_OVERFLOW (cst))
1787 (minus { cst; } @0)))))
1788
1789 /* CST1 - (CST2 - A) -> CST3 + A */
1790 (simplify
1791 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1792 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1793 (if (cst && !TREE_OVERFLOW (cst))
1794 (plus { cst; } @0))))
1795
1796 /* ~A + A -> -1 */
1797 (simplify
1798 (plus:c (bit_not @0) @0)
1799 (if (!TYPE_OVERFLOW_TRAPS (type))
1800 { build_all_ones_cst (type); }))
1801
1802 /* ~A + 1 -> -A */
1803 (simplify
1804 (plus (convert? (bit_not @0)) integer_each_onep)
1805 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1806 (negate (convert @0))))
1807
1808 /* -A - 1 -> ~A */
1809 (simplify
1810 (minus (convert? (negate @0)) integer_each_onep)
1811 (if (!TYPE_OVERFLOW_TRAPS (type)
1812 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1813 (bit_not (convert @0))))
1814
1815 /* -1 - A -> ~A */
1816 (simplify
1817 (minus integer_all_onesp @0)
1818 (bit_not @0))
1819
1820 /* (T)(P + A) - (T)P -> (T) A */
1821 (simplify
1822 (minus (convert (plus:c @@0 @1))
1823 (convert? @0))
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For integer types, if A has a smaller type
1826 than T the result depends on the possible
1827 overflow in P + A.
1828 E.g. T=size_t, A=(unsigned)429497295, P>0.
1829 However, if an overflow in P + A would cause
1830 undefined behavior, we can assume that there
1831 is no overflow. */
1832 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1833 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1834 (convert @1)))
1835 (simplify
1836 (minus (convert (pointer_plus @@0 @1))
1837 (convert @0))
1838 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1839 /* For pointer types, if the conversion of A to the
1840 final type requires a sign- or zero-extension,
1841 then we have to punt - it is not defined which
1842 one is correct. */
1843 || (POINTER_TYPE_P (TREE_TYPE (@0))
1844 && TREE_CODE (@1) == INTEGER_CST
1845 && tree_int_cst_sign_bit (@1) == 0))
1846 (convert @1)))
1847 (simplify
1848 (pointer_diff (pointer_plus @@0 @1) @0)
1849 /* The second argument of pointer_plus must be interpreted as signed, and
1850 thus sign-extended if necessary. */
1851 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1852 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1853 second arg is unsigned even when we need to consider it as signed,
1854 we don't want to diagnose overflow here. */
1855 (convert (view_convert:stype @1))))
1856
1857 /* (T)P - (T)(P + A) -> -(T) A */
1858 (simplify
1859 (minus (convert? @0)
1860 (convert (plus:c @@0 @1)))
1861 (if (INTEGRAL_TYPE_P (type)
1862 && TYPE_OVERFLOW_UNDEFINED (type)
1863 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1864 (with { tree utype = unsigned_type_for (type); }
1865 (convert (negate (convert:utype @1))))
1866 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1867 /* For integer types, if A has a smaller type
1868 than T the result depends on the possible
1869 overflow in P + A.
1870 E.g. T=size_t, A=(unsigned)429497295, P>0.
1871 However, if an overflow in P + A would cause
1872 undefined behavior, we can assume that there
1873 is no overflow. */
1874 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1875 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1876 (negate (convert @1)))))
1877 (simplify
1878 (minus (convert @0)
1879 (convert (pointer_plus @@0 @1)))
1880 (if (INTEGRAL_TYPE_P (type)
1881 && TYPE_OVERFLOW_UNDEFINED (type)
1882 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1883 (with { tree utype = unsigned_type_for (type); }
1884 (convert (negate (convert:utype @1))))
1885 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1886 /* For pointer types, if the conversion of A to the
1887 final type requires a sign- or zero-extension,
1888 then we have to punt - it is not defined which
1889 one is correct. */
1890 || (POINTER_TYPE_P (TREE_TYPE (@0))
1891 && TREE_CODE (@1) == INTEGER_CST
1892 && tree_int_cst_sign_bit (@1) == 0))
1893 (negate (convert @1)))))
1894 (simplify
1895 (pointer_diff @0 (pointer_plus @@0 @1))
1896 /* The second argument of pointer_plus must be interpreted as signed, and
1897 thus sign-extended if necessary. */
1898 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1899 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1900 second arg is unsigned even when we need to consider it as signed,
1901 we don't want to diagnose overflow here. */
1902 (negate (convert (view_convert:stype @1)))))
1903
1904 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1905 (simplify
1906 (minus (convert (plus:c @@0 @1))
1907 (convert (plus:c @0 @2)))
1908 (if (INTEGRAL_TYPE_P (type)
1909 && TYPE_OVERFLOW_UNDEFINED (type)
1910 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1911 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1912 (with { tree utype = unsigned_type_for (type); }
1913 (convert (minus (convert:utype @1) (convert:utype @2))))
1914 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1915 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1916 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1917 /* For integer types, if A has a smaller type
1918 than T the result depends on the possible
1919 overflow in P + A.
1920 E.g. T=size_t, A=(unsigned)429497295, P>0.
1921 However, if an overflow in P + A would cause
1922 undefined behavior, we can assume that there
1923 is no overflow. */
1924 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1925 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1926 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1927 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1928 (minus (convert @1) (convert @2)))))
1929 (simplify
1930 (minus (convert (pointer_plus @@0 @1))
1931 (convert (pointer_plus @0 @2)))
1932 (if (INTEGRAL_TYPE_P (type)
1933 && TYPE_OVERFLOW_UNDEFINED (type)
1934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1935 (with { tree utype = unsigned_type_for (type); }
1936 (convert (minus (convert:utype @1) (convert:utype @2))))
1937 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1938 /* For pointer types, if the conversion of A to the
1939 final type requires a sign- or zero-extension,
1940 then we have to punt - it is not defined which
1941 one is correct. */
1942 || (POINTER_TYPE_P (TREE_TYPE (@0))
1943 && TREE_CODE (@1) == INTEGER_CST
1944 && tree_int_cst_sign_bit (@1) == 0
1945 && TREE_CODE (@2) == INTEGER_CST
1946 && tree_int_cst_sign_bit (@2) == 0))
1947 (minus (convert @1) (convert @2)))))
1948 (simplify
1949 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1950 /* The second argument of pointer_plus must be interpreted as signed, and
1951 thus sign-extended if necessary. */
1952 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1953 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1954 second arg is unsigned even when we need to consider it as signed,
1955 we don't want to diagnose overflow here. */
1956 (minus (convert (view_convert:stype @1))
1957 (convert (view_convert:stype @2)))))))
1958
1959 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1960 Modeled after fold_plusminus_mult_expr. */
1961 (if (!TYPE_SATURATING (type)
1962 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1963 (for plusminus (plus minus)
1964 (simplify
1965 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1966 (if ((!ANY_INTEGRAL_TYPE_P (type)
1967 || TYPE_OVERFLOW_WRAPS (type)
1968 || (INTEGRAL_TYPE_P (type)
1969 && tree_expr_nonzero_p (@0)
1970 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1971 /* If @1 +- @2 is constant require a hard single-use on either
1972 original operand (but not on both). */
1973 && (single_use (@3) || single_use (@4)))
1974 (mult (plusminus @1 @2) @0)))
1975 /* We cannot generate constant 1 for fract. */
1976 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1977 (simplify
1978 (plusminus @0 (mult:c@3 @0 @2))
1979 (if ((!ANY_INTEGRAL_TYPE_P (type)
1980 || TYPE_OVERFLOW_WRAPS (type)
1981 || (INTEGRAL_TYPE_P (type)
1982 && tree_expr_nonzero_p (@0)
1983 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1984 && single_use (@3))
1985 (mult (plusminus { build_one_cst (type); } @2) @0)))
1986 (simplify
1987 (plusminus (mult:c@3 @0 @2) @0)
1988 (if ((!ANY_INTEGRAL_TYPE_P (type)
1989 || TYPE_OVERFLOW_WRAPS (type)
1990 || (INTEGRAL_TYPE_P (type)
1991 && tree_expr_nonzero_p (@0)
1992 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1993 && single_use (@3))
1994 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1995
1996 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1997
1998 (for minmax (min max FMIN_ALL FMAX_ALL)
1999 (simplify
2000 (minmax @0 @0)
2001 @0))
2002 /* min(max(x,y),y) -> y. */
2003 (simplify
2004 (min:c (max:c @0 @1) @1)
2005 @1)
2006 /* max(min(x,y),y) -> y. */
2007 (simplify
2008 (max:c (min:c @0 @1) @1)
2009 @1)
2010 /* max(a,-a) -> abs(a). */
2011 (simplify
2012 (max:c @0 (negate @0))
2013 (if (TREE_CODE (type) != COMPLEX_TYPE
2014 && (! ANY_INTEGRAL_TYPE_P (type)
2015 || TYPE_OVERFLOW_UNDEFINED (type)))
2016 (abs @0)))
2017 /* min(a,-a) -> -abs(a). */
2018 (simplify
2019 (min:c @0 (negate @0))
2020 (if (TREE_CODE (type) != COMPLEX_TYPE
2021 && (! ANY_INTEGRAL_TYPE_P (type)
2022 || TYPE_OVERFLOW_UNDEFINED (type)))
2023 (negate (abs @0))))
2024 (simplify
2025 (min @0 @1)
2026 (switch
2027 (if (INTEGRAL_TYPE_P (type)
2028 && TYPE_MIN_VALUE (type)
2029 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2030 @1)
2031 (if (INTEGRAL_TYPE_P (type)
2032 && TYPE_MAX_VALUE (type)
2033 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2034 @0)))
2035 (simplify
2036 (max @0 @1)
2037 (switch
2038 (if (INTEGRAL_TYPE_P (type)
2039 && TYPE_MAX_VALUE (type)
2040 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2041 @1)
2042 (if (INTEGRAL_TYPE_P (type)
2043 && TYPE_MIN_VALUE (type)
2044 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2045 @0)))
2046
2047 /* max (a, a + CST) -> a + CST where CST is positive. */
2048 /* max (a, a + CST) -> a where CST is negative. */
2049 (simplify
2050 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2051 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2052 (if (tree_int_cst_sgn (@1) > 0)
2053 @2
2054 @0)))
2055
2056 /* min (a, a + CST) -> a where CST is positive. */
2057 /* min (a, a + CST) -> a + CST where CST is negative. */
2058 (simplify
2059 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2060 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2061 (if (tree_int_cst_sgn (@1) > 0)
2062 @0
2063 @2)))
2064
2065 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2066 and the outer convert demotes the expression back to x's type. */
2067 (for minmax (min max)
2068 (simplify
2069 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2070 (if (INTEGRAL_TYPE_P (type)
2071 && types_match (@1, type) && int_fits_type_p (@2, type)
2072 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2073 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2074 (minmax @1 (convert @2)))))
2075
2076 (for minmax (FMIN_ALL FMAX_ALL)
2077 /* If either argument is NaN, return the other one. Avoid the
2078 transformation if we get (and honor) a signalling NaN. */
2079 (simplify
2080 (minmax:c @0 REAL_CST@1)
2081 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2082 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2083 @0)))
2084 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2085 functions to return the numeric arg if the other one is NaN.
2086 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2087 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2088 worry about it either. */
2089 (if (flag_finite_math_only)
2090 (simplify
2091 (FMIN_ALL @0 @1)
2092 (min @0 @1))
2093 (simplify
2094 (FMAX_ALL @0 @1)
2095 (max @0 @1)))
2096 /* min (-A, -B) -> -max (A, B) */
2097 (for minmax (min max FMIN_ALL FMAX_ALL)
2098 maxmin (max min FMAX_ALL FMIN_ALL)
2099 (simplify
2100 (minmax (negate:s@2 @0) (negate:s@3 @1))
2101 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2102 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2103 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2104 (negate (maxmin @0 @1)))))
2105 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2106 MAX (~X, ~Y) -> ~MIN (X, Y) */
2107 (for minmax (min max)
2108 maxmin (max min)
2109 (simplify
2110 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2111 (bit_not (maxmin @0 @1))))
2112
2113 /* MIN (X, Y) == X -> X <= Y */
2114 (for minmax (min min max max)
2115 cmp (eq ne eq ne )
2116 out (le gt ge lt )
2117 (simplify
2118 (cmp:c (minmax:c @0 @1) @0)
2119 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2120 (out @0 @1))))
2121 /* MIN (X, 5) == 0 -> X == 0
2122 MIN (X, 5) == 7 -> false */
2123 (for cmp (eq ne)
2124 (simplify
2125 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2126 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2127 TYPE_SIGN (TREE_TYPE (@0))))
2128 { constant_boolean_node (cmp == NE_EXPR, type); }
2129 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2130 TYPE_SIGN (TREE_TYPE (@0))))
2131 (cmp @0 @2)))))
2132 (for cmp (eq ne)
2133 (simplify
2134 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2135 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2136 TYPE_SIGN (TREE_TYPE (@0))))
2137 { constant_boolean_node (cmp == NE_EXPR, type); }
2138 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2139 TYPE_SIGN (TREE_TYPE (@0))))
2140 (cmp @0 @2)))))
2141 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2142 (for minmax (min min max max min min max max )
2143 cmp (lt le gt ge gt ge lt le )
2144 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2145 (simplify
2146 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2147 (comb (cmp @0 @2) (cmp @1 @2))))
2148
2149 /* Simplifications of shift and rotates. */
2150
2151 (for rotate (lrotate rrotate)
2152 (simplify
2153 (rotate integer_all_onesp@0 @1)
2154 @0))
2155
2156 /* Optimize -1 >> x for arithmetic right shifts. */
2157 (simplify
2158 (rshift integer_all_onesp@0 @1)
2159 (if (!TYPE_UNSIGNED (type)
2160 && tree_expr_nonnegative_p (@1))
2161 @0))
2162
2163 /* Optimize (x >> c) << c into x & (-1<<c). */
2164 (simplify
2165 (lshift (rshift @0 INTEGER_CST@1) @1)
2166 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2167 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2168
2169 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2170 types. */
2171 (simplify
2172 (rshift (lshift @0 INTEGER_CST@1) @1)
2173 (if (TYPE_UNSIGNED (type)
2174 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2175 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2176
2177 (for shiftrotate (lrotate rrotate lshift rshift)
2178 (simplify
2179 (shiftrotate @0 integer_zerop)
2180 (non_lvalue @0))
2181 (simplify
2182 (shiftrotate integer_zerop@0 @1)
2183 @0)
2184 /* Prefer vector1 << scalar to vector1 << vector2
2185 if vector2 is uniform. */
2186 (for vec (VECTOR_CST CONSTRUCTOR)
2187 (simplify
2188 (shiftrotate @0 vec@1)
2189 (with { tree tem = uniform_vector_p (@1); }
2190 (if (tem)
2191 (shiftrotate @0 { tem; }))))))
2192
2193 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2194 Y is 0. Similarly for X >> Y. */
2195 #if GIMPLE
2196 (for shift (lshift rshift)
2197 (simplify
2198 (shift @0 SSA_NAME@1)
2199 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2200 (with {
2201 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2202 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2203 }
2204 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2205 @0)))))
2206 #endif
2207
2208 /* Rewrite an LROTATE_EXPR by a constant into an
2209 RROTATE_EXPR by a new constant. */
2210 (simplify
2211 (lrotate @0 INTEGER_CST@1)
2212 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2213 build_int_cst (TREE_TYPE (@1),
2214 element_precision (type)), @1); }))
2215
2216 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2217 (for op (lrotate rrotate rshift lshift)
2218 (simplify
2219 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2220 (with { unsigned int prec = element_precision (type); }
2221 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2222 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2223 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2224 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2225 (with { unsigned int low = (tree_to_uhwi (@1)
2226 + tree_to_uhwi (@2)); }
2227 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2228 being well defined. */
2229 (if (low >= prec)
2230 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2231 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2232 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2233 { build_zero_cst (type); }
2234 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2235 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2236
2237
2238 /* ((1 << A) & 1) != 0 -> A == 0
2239 ((1 << A) & 1) == 0 -> A != 0 */
2240 (for cmp (ne eq)
2241 icmp (eq ne)
2242 (simplify
2243 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2244 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2245
2246 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2247 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2248 if CST2 != 0. */
2249 (for cmp (ne eq)
2250 (simplify
2251 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2252 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2253 (if (cand < 0
2254 || (!integer_zerop (@2)
2255 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2256 { constant_boolean_node (cmp == NE_EXPR, type); }
2257 (if (!integer_zerop (@2)
2258 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2259 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2260
2261 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2262 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2263 if the new mask might be further optimized. */
2264 (for shift (lshift rshift)
2265 (simplify
2266 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2267 INTEGER_CST@2)
2268 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2269 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2270 && tree_fits_uhwi_p (@1)
2271 && tree_to_uhwi (@1) > 0
2272 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2273 (with
2274 {
2275 unsigned int shiftc = tree_to_uhwi (@1);
2276 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2277 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2278 tree shift_type = TREE_TYPE (@3);
2279 unsigned int prec;
2280
2281 if (shift == LSHIFT_EXPR)
2282 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2283 else if (shift == RSHIFT_EXPR
2284 && type_has_mode_precision_p (shift_type))
2285 {
2286 prec = TYPE_PRECISION (TREE_TYPE (@3));
2287 tree arg00 = @0;
2288 /* See if more bits can be proven as zero because of
2289 zero extension. */
2290 if (@3 != @0
2291 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2292 {
2293 tree inner_type = TREE_TYPE (@0);
2294 if (type_has_mode_precision_p (inner_type)
2295 && TYPE_PRECISION (inner_type) < prec)
2296 {
2297 prec = TYPE_PRECISION (inner_type);
2298 /* See if we can shorten the right shift. */
2299 if (shiftc < prec)
2300 shift_type = inner_type;
2301 /* Otherwise X >> C1 is all zeros, so we'll optimize
2302 it into (X, 0) later on by making sure zerobits
2303 is all ones. */
2304 }
2305 }
2306 zerobits = HOST_WIDE_INT_M1U;
2307 if (shiftc < prec)
2308 {
2309 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2310 zerobits <<= prec - shiftc;
2311 }
2312 /* For arithmetic shift if sign bit could be set, zerobits
2313 can contain actually sign bits, so no transformation is
2314 possible, unless MASK masks them all away. In that
2315 case the shift needs to be converted into logical shift. */
2316 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2317 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2318 {
2319 if ((mask & zerobits) == 0)
2320 shift_type = unsigned_type_for (TREE_TYPE (@3));
2321 else
2322 zerobits = 0;
2323 }
2324 }
2325 }
2326 /* ((X << 16) & 0xff00) is (X, 0). */
2327 (if ((mask & zerobits) == mask)
2328 { build_int_cst (type, 0); }
2329 (with { newmask = mask | zerobits; }
2330 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2331 (with
2332 {
2333 /* Only do the transformation if NEWMASK is some integer
2334 mode's mask. */
2335 for (prec = BITS_PER_UNIT;
2336 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2337 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2338 break;
2339 }
2340 (if (prec < HOST_BITS_PER_WIDE_INT
2341 || newmask == HOST_WIDE_INT_M1U)
2342 (with
2343 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2344 (if (!tree_int_cst_equal (newmaskt, @2))
2345 (if (shift_type != TREE_TYPE (@3))
2346 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2347 (bit_and @4 { newmaskt; })))))))))))))
2348
2349 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2350 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2351 (for shift (lshift rshift)
2352 (for bit_op (bit_and bit_xor bit_ior)
2353 (simplify
2354 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2355 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2356 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2357 (bit_op (shift (convert @0) @1) { mask; }))))))
2358
2359 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2360 (simplify
2361 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2362 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2363 && (element_precision (TREE_TYPE (@0))
2364 <= element_precision (TREE_TYPE (@1))
2365 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2366 (with
2367 { tree shift_type = TREE_TYPE (@0); }
2368 (convert (rshift (convert:shift_type @1) @2)))))
2369
2370 /* ~(~X >>r Y) -> X >>r Y
2371 ~(~X <<r Y) -> X <<r Y */
2372 (for rotate (lrotate rrotate)
2373 (simplify
2374 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2375 (if ((element_precision (TREE_TYPE (@0))
2376 <= element_precision (TREE_TYPE (@1))
2377 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2378 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2379 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2380 (with
2381 { tree rotate_type = TREE_TYPE (@0); }
2382 (convert (rotate (convert:rotate_type @1) @2))))))
2383
2384 /* Simplifications of conversions. */
2385
2386 /* Basic strip-useless-type-conversions / strip_nops. */
2387 (for cvt (convert view_convert float fix_trunc)
2388 (simplify
2389 (cvt @0)
2390 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2391 || (GENERIC && type == TREE_TYPE (@0)))
2392 @0)))
2393
2394 /* Contract view-conversions. */
2395 (simplify
2396 (view_convert (view_convert @0))
2397 (view_convert @0))
2398
2399 /* For integral conversions with the same precision or pointer
2400 conversions use a NOP_EXPR instead. */
2401 (simplify
2402 (view_convert @0)
2403 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2404 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2405 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2406 (convert @0)))
2407
2408 /* Strip inner integral conversions that do not change precision or size, or
2409 zero-extend while keeping the same size (for bool-to-char). */
2410 (simplify
2411 (view_convert (convert@0 @1))
2412 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2413 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2414 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2415 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2416 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2417 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2418 (view_convert @1)))
2419
2420 /* Re-association barriers around constants and other re-association
2421 barriers can be removed. */
2422 (simplify
2423 (paren CONSTANT_CLASS_P@0)
2424 @0)
2425 (simplify
2426 (paren (paren@1 @0))
2427 @1)
2428
2429 /* Handle cases of two conversions in a row. */
2430 (for ocvt (convert float fix_trunc)
2431 (for icvt (convert float)
2432 (simplify
2433 (ocvt (icvt@1 @0))
2434 (with
2435 {
2436 tree inside_type = TREE_TYPE (@0);
2437 tree inter_type = TREE_TYPE (@1);
2438 int inside_int = INTEGRAL_TYPE_P (inside_type);
2439 int inside_ptr = POINTER_TYPE_P (inside_type);
2440 int inside_float = FLOAT_TYPE_P (inside_type);
2441 int inside_vec = VECTOR_TYPE_P (inside_type);
2442 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2443 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2444 int inter_int = INTEGRAL_TYPE_P (inter_type);
2445 int inter_ptr = POINTER_TYPE_P (inter_type);
2446 int inter_float = FLOAT_TYPE_P (inter_type);
2447 int inter_vec = VECTOR_TYPE_P (inter_type);
2448 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2449 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2450 int final_int = INTEGRAL_TYPE_P (type);
2451 int final_ptr = POINTER_TYPE_P (type);
2452 int final_float = FLOAT_TYPE_P (type);
2453 int final_vec = VECTOR_TYPE_P (type);
2454 unsigned int final_prec = TYPE_PRECISION (type);
2455 int final_unsignedp = TYPE_UNSIGNED (type);
2456 }
2457 (switch
2458 /* In addition to the cases of two conversions in a row
2459 handled below, if we are converting something to its own
2460 type via an object of identical or wider precision, neither
2461 conversion is needed. */
2462 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2463 || (GENERIC
2464 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2465 && (((inter_int || inter_ptr) && final_int)
2466 || (inter_float && final_float))
2467 && inter_prec >= final_prec)
2468 (ocvt @0))
2469
2470 /* Likewise, if the intermediate and initial types are either both
2471 float or both integer, we don't need the middle conversion if the
2472 former is wider than the latter and doesn't change the signedness
2473 (for integers). Avoid this if the final type is a pointer since
2474 then we sometimes need the middle conversion. */
2475 (if (((inter_int && inside_int) || (inter_float && inside_float))
2476 && (final_int || final_float)
2477 && inter_prec >= inside_prec
2478 && (inter_float || inter_unsignedp == inside_unsignedp))
2479 (ocvt @0))
2480
2481 /* If we have a sign-extension of a zero-extended value, we can
2482 replace that by a single zero-extension. Likewise if the
2483 final conversion does not change precision we can drop the
2484 intermediate conversion. */
2485 (if (inside_int && inter_int && final_int
2486 && ((inside_prec < inter_prec && inter_prec < final_prec
2487 && inside_unsignedp && !inter_unsignedp)
2488 || final_prec == inter_prec))
2489 (ocvt @0))
2490
2491 /* Two conversions in a row are not needed unless:
2492 - some conversion is floating-point (overstrict for now), or
2493 - some conversion is a vector (overstrict for now), or
2494 - the intermediate type is narrower than both initial and
2495 final, or
2496 - the intermediate type and innermost type differ in signedness,
2497 and the outermost type is wider than the intermediate, or
2498 - the initial type is a pointer type and the precisions of the
2499 intermediate and final types differ, or
2500 - the final type is a pointer type and the precisions of the
2501 initial and intermediate types differ. */
2502 (if (! inside_float && ! inter_float && ! final_float
2503 && ! inside_vec && ! inter_vec && ! final_vec
2504 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2505 && ! (inside_int && inter_int
2506 && inter_unsignedp != inside_unsignedp
2507 && inter_prec < final_prec)
2508 && ((inter_unsignedp && inter_prec > inside_prec)
2509 == (final_unsignedp && final_prec > inter_prec))
2510 && ! (inside_ptr && inter_prec != final_prec)
2511 && ! (final_ptr && inside_prec != inter_prec))
2512 (ocvt @0))
2513
2514 /* A truncation to an unsigned type (a zero-extension) should be
2515 canonicalized as bitwise and of a mask. */
2516 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2517 && final_int && inter_int && inside_int
2518 && final_prec == inside_prec
2519 && final_prec > inter_prec
2520 && inter_unsignedp)
2521 (convert (bit_and @0 { wide_int_to_tree
2522 (inside_type,
2523 wi::mask (inter_prec, false,
2524 TYPE_PRECISION (inside_type))); })))
2525
2526 /* If we are converting an integer to a floating-point that can
2527 represent it exactly and back to an integer, we can skip the
2528 floating-point conversion. */
2529 (if (GIMPLE /* PR66211 */
2530 && inside_int && inter_float && final_int &&
2531 (unsigned) significand_size (TYPE_MODE (inter_type))
2532 >= inside_prec - !inside_unsignedp)
2533 (convert @0)))))))
2534
2535 /* If we have a narrowing conversion to an integral type that is fed by a
2536 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2537 masks off bits outside the final type (and nothing else). */
2538 (simplify
2539 (convert (bit_and @0 INTEGER_CST@1))
2540 (if (INTEGRAL_TYPE_P (type)
2541 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2542 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2543 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2544 TYPE_PRECISION (type)), 0))
2545 (convert @0)))
2546
2547
2548 /* (X /[ex] A) * A -> X. */
2549 (simplify
2550 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2551 (convert @0))
2552
2553 /* Canonicalization of binary operations. */
2554
2555 /* Convert X + -C into X - C. */
2556 (simplify
2557 (plus @0 REAL_CST@1)
2558 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2559 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2560 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2561 (minus @0 { tem; })))))
2562
2563 /* Convert x+x into x*2. */
2564 (simplify
2565 (plus @0 @0)
2566 (if (SCALAR_FLOAT_TYPE_P (type))
2567 (mult @0 { build_real (type, dconst2); })
2568 (if (INTEGRAL_TYPE_P (type))
2569 (mult @0 { build_int_cst (type, 2); }))))
2570
2571 /* 0 - X -> -X. */
2572 (simplify
2573 (minus integer_zerop @1)
2574 (negate @1))
2575 (simplify
2576 (pointer_diff integer_zerop @1)
2577 (negate (convert @1)))
2578
2579 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2580 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2581 (-ARG1 + ARG0) reduces to -ARG1. */
2582 (simplify
2583 (minus real_zerop@0 @1)
2584 (if (fold_real_zero_addition_p (type, @0, 0))
2585 (negate @1)))
2586
2587 /* Transform x * -1 into -x. */
2588 (simplify
2589 (mult @0 integer_minus_onep)
2590 (negate @0))
2591
2592 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2593 signed overflow for CST != 0 && CST != -1. */
2594 (simplify
2595 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2596 (if (TREE_CODE (@2) != INTEGER_CST
2597 && single_use (@3)
2598 && !integer_zerop (@1) && !integer_minus_onep (@1))
2599 (mult (mult @0 @2) @1)))
2600
2601 /* True if we can easily extract the real and imaginary parts of a complex
2602 number. */
2603 (match compositional_complex
2604 (convert? (complex @0 @1)))
2605
2606 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2607 (simplify
2608 (complex (realpart @0) (imagpart @0))
2609 @0)
2610 (simplify
2611 (realpart (complex @0 @1))
2612 @0)
2613 (simplify
2614 (imagpart (complex @0 @1))
2615 @1)
2616
2617 /* Sometimes we only care about half of a complex expression. */
2618 (simplify
2619 (realpart (convert?:s (conj:s @0)))
2620 (convert (realpart @0)))
2621 (simplify
2622 (imagpart (convert?:s (conj:s @0)))
2623 (convert (negate (imagpart @0))))
2624 (for part (realpart imagpart)
2625 (for op (plus minus)
2626 (simplify
2627 (part (convert?:s@2 (op:s @0 @1)))
2628 (convert (op (part @0) (part @1))))))
2629 (simplify
2630 (realpart (convert?:s (CEXPI:s @0)))
2631 (convert (COS @0)))
2632 (simplify
2633 (imagpart (convert?:s (CEXPI:s @0)))
2634 (convert (SIN @0)))
2635
2636 /* conj(conj(x)) -> x */
2637 (simplify
2638 (conj (convert? (conj @0)))
2639 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2640 (convert @0)))
2641
2642 /* conj({x,y}) -> {x,-y} */
2643 (simplify
2644 (conj (convert?:s (complex:s @0 @1)))
2645 (with { tree itype = TREE_TYPE (type); }
2646 (complex (convert:itype @0) (negate (convert:itype @1)))))
2647
2648 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2649 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2650 (simplify
2651 (bswap (bswap @0))
2652 @0)
2653 (simplify
2654 (bswap (bit_not (bswap @0)))
2655 (bit_not @0))
2656 (for bitop (bit_xor bit_ior bit_and)
2657 (simplify
2658 (bswap (bitop:c (bswap @0) @1))
2659 (bitop @0 (bswap @1)))))
2660
2661
2662 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2663
2664 /* Simplify constant conditions.
2665 Only optimize constant conditions when the selected branch
2666 has the same type as the COND_EXPR. This avoids optimizing
2667 away "c ? x : throw", where the throw has a void type.
2668 Note that we cannot throw away the fold-const.c variant nor
2669 this one as we depend on doing this transform before possibly
2670 A ? B : B -> B triggers and the fold-const.c one can optimize
2671 0 ? A : B to B even if A has side-effects. Something
2672 genmatch cannot handle. */
2673 (simplify
2674 (cond INTEGER_CST@0 @1 @2)
2675 (if (integer_zerop (@0))
2676 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2677 @2)
2678 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2679 @1)))
2680 (simplify
2681 (vec_cond VECTOR_CST@0 @1 @2)
2682 (if (integer_all_onesp (@0))
2683 @1
2684 (if (integer_zerop (@0))
2685 @2)))
2686
2687 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2688 be extended. */
2689 /* This pattern implements two kinds simplification:
2690
2691 Case 1)
2692 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2693 1) Conversions are type widening from smaller type.
2694 2) Const c1 equals to c2 after canonicalizing comparison.
2695 3) Comparison has tree code LT, LE, GT or GE.
2696 This specific pattern is needed when (cmp (convert x) c) may not
2697 be simplified by comparison patterns because of multiple uses of
2698 x. It also makes sense here because simplifying across multiple
2699 referred var is always benefitial for complicated cases.
2700
2701 Case 2)
2702 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2703 (for cmp (lt le gt ge eq)
2704 (simplify
2705 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2706 (with
2707 {
2708 tree from_type = TREE_TYPE (@1);
2709 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2710 enum tree_code code = ERROR_MARK;
2711
2712 if (INTEGRAL_TYPE_P (from_type)
2713 && int_fits_type_p (@2, from_type)
2714 && (types_match (c1_type, from_type)
2715 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2716 && (TYPE_UNSIGNED (from_type)
2717 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2718 && (types_match (c2_type, from_type)
2719 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2720 && (TYPE_UNSIGNED (from_type)
2721 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2722 {
2723 if (cmp != EQ_EXPR)
2724 {
2725 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2726 {
2727 /* X <= Y - 1 equals to X < Y. */
2728 if (cmp == LE_EXPR)
2729 code = LT_EXPR;
2730 /* X > Y - 1 equals to X >= Y. */
2731 if (cmp == GT_EXPR)
2732 code = GE_EXPR;
2733 }
2734 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2735 {
2736 /* X < Y + 1 equals to X <= Y. */
2737 if (cmp == LT_EXPR)
2738 code = LE_EXPR;
2739 /* X >= Y + 1 equals to X > Y. */
2740 if (cmp == GE_EXPR)
2741 code = GT_EXPR;
2742 }
2743 if (code != ERROR_MARK
2744 || wi::to_widest (@2) == wi::to_widest (@3))
2745 {
2746 if (cmp == LT_EXPR || cmp == LE_EXPR)
2747 code = MIN_EXPR;
2748 if (cmp == GT_EXPR || cmp == GE_EXPR)
2749 code = MAX_EXPR;
2750 }
2751 }
2752 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2753 else if (int_fits_type_p (@3, from_type))
2754 code = EQ_EXPR;
2755 }
2756 }
2757 (if (code == MAX_EXPR)
2758 (convert (max @1 (convert @2)))
2759 (if (code == MIN_EXPR)
2760 (convert (min @1 (convert @2)))
2761 (if (code == EQ_EXPR)
2762 (convert (cond (eq @1 (convert @3))
2763 (convert:from_type @3) (convert:from_type @2)))))))))
2764
2765 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2766
2767 1) OP is PLUS or MINUS.
2768 2) CMP is LT, LE, GT or GE.
2769 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2770
2771 This pattern also handles special cases like:
2772
2773 A) Operand x is a unsigned to signed type conversion and c1 is
2774 integer zero. In this case,
2775 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2776 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2777 B) Const c1 may not equal to (C3 op' C2). In this case we also
2778 check equality for (c1+1) and (c1-1) by adjusting comparison
2779 code.
2780
2781 TODO: Though signed type is handled by this pattern, it cannot be
2782 simplified at the moment because C standard requires additional
2783 type promotion. In order to match&simplify it here, the IR needs
2784 to be cleaned up by other optimizers, i.e, VRP. */
2785 (for op (plus minus)
2786 (for cmp (lt le gt ge)
2787 (simplify
2788 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2789 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2790 (if (types_match (from_type, to_type)
2791 /* Check if it is special case A). */
2792 || (TYPE_UNSIGNED (from_type)
2793 && !TYPE_UNSIGNED (to_type)
2794 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2795 && integer_zerop (@1)
2796 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2797 (with
2798 {
2799 bool overflow = false;
2800 enum tree_code code, cmp_code = cmp;
2801 wide_int real_c1;
2802 wide_int c1 = wi::to_wide (@1);
2803 wide_int c2 = wi::to_wide (@2);
2804 wide_int c3 = wi::to_wide (@3);
2805 signop sgn = TYPE_SIGN (from_type);
2806
2807 /* Handle special case A), given x of unsigned type:
2808 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2809 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2810 if (!types_match (from_type, to_type))
2811 {
2812 if (cmp_code == LT_EXPR)
2813 cmp_code = GT_EXPR;
2814 if (cmp_code == GE_EXPR)
2815 cmp_code = LE_EXPR;
2816 c1 = wi::max_value (to_type);
2817 }
2818 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2819 compute (c3 op' c2) and check if it equals to c1 with op' being
2820 the inverted operator of op. Make sure overflow doesn't happen
2821 if it is undefined. */
2822 if (op == PLUS_EXPR)
2823 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2824 else
2825 real_c1 = wi::add (c3, c2, sgn, &overflow);
2826
2827 code = cmp_code;
2828 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2829 {
2830 /* Check if c1 equals to real_c1. Boundary condition is handled
2831 by adjusting comparison operation if necessary. */
2832 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2833 && !overflow)
2834 {
2835 /* X <= Y - 1 equals to X < Y. */
2836 if (cmp_code == LE_EXPR)
2837 code = LT_EXPR;
2838 /* X > Y - 1 equals to X >= Y. */
2839 if (cmp_code == GT_EXPR)
2840 code = GE_EXPR;
2841 }
2842 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2843 && !overflow)
2844 {
2845 /* X < Y + 1 equals to X <= Y. */
2846 if (cmp_code == LT_EXPR)
2847 code = LE_EXPR;
2848 /* X >= Y + 1 equals to X > Y. */
2849 if (cmp_code == GE_EXPR)
2850 code = GT_EXPR;
2851 }
2852 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2853 {
2854 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2855 code = MIN_EXPR;
2856 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2857 code = MAX_EXPR;
2858 }
2859 }
2860 }
2861 (if (code == MAX_EXPR)
2862 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2863 { wide_int_to_tree (from_type, c2); })
2864 (if (code == MIN_EXPR)
2865 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2866 { wide_int_to_tree (from_type, c2); })))))))))
2867
2868 (for cnd (cond vec_cond)
2869 /* A ? B : (A ? X : C) -> A ? B : C. */
2870 (simplify
2871 (cnd @0 (cnd @0 @1 @2) @3)
2872 (cnd @0 @1 @3))
2873 (simplify
2874 (cnd @0 @1 (cnd @0 @2 @3))
2875 (cnd @0 @1 @3))
2876 /* A ? B : (!A ? C : X) -> A ? B : C. */
2877 /* ??? This matches embedded conditions open-coded because genmatch
2878 would generate matching code for conditions in separate stmts only.
2879 The following is still important to merge then and else arm cases
2880 from if-conversion. */
2881 (simplify
2882 (cnd @0 @1 (cnd @2 @3 @4))
2883 (if (COMPARISON_CLASS_P (@0)
2884 && COMPARISON_CLASS_P (@2)
2885 && invert_tree_comparison
2886 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2887 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2888 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2889 (cnd @0 @1 @3)))
2890 (simplify
2891 (cnd @0 (cnd @1 @2 @3) @4)
2892 (if (COMPARISON_CLASS_P (@0)
2893 && COMPARISON_CLASS_P (@1)
2894 && invert_tree_comparison
2895 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2896 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2897 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2898 (cnd @0 @3 @4)))
2899
2900 /* A ? B : B -> B. */
2901 (simplify
2902 (cnd @0 @1 @1)
2903 @1)
2904
2905 /* !A ? B : C -> A ? C : B. */
2906 (simplify
2907 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2908 (cnd @0 @2 @1)))
2909
2910 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2911 return all -1 or all 0 results. */
2912 /* ??? We could instead convert all instances of the vec_cond to negate,
2913 but that isn't necessarily a win on its own. */
2914 (simplify
2915 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2916 (if (VECTOR_TYPE_P (type)
2917 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2918 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2919 && (TYPE_MODE (TREE_TYPE (type))
2920 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2921 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2922
2923 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2924 (simplify
2925 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2926 (if (VECTOR_TYPE_P (type)
2927 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2928 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2929 && (TYPE_MODE (TREE_TYPE (type))
2930 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2931 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2932
2933
2934 /* Simplifications of comparisons. */
2935
2936 /* See if we can reduce the magnitude of a constant involved in a
2937 comparison by changing the comparison code. This is a canonicalization
2938 formerly done by maybe_canonicalize_comparison_1. */
2939 (for cmp (le gt)
2940 acmp (lt ge)
2941 (simplify
2942 (cmp @0 INTEGER_CST@1)
2943 (if (tree_int_cst_sgn (@1) == -1)
2944 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2945 (for cmp (ge lt)
2946 acmp (gt le)
2947 (simplify
2948 (cmp @0 INTEGER_CST@1)
2949 (if (tree_int_cst_sgn (@1) == 1)
2950 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2951
2952
2953 /* We can simplify a logical negation of a comparison to the
2954 inverted comparison. As we cannot compute an expression
2955 operator using invert_tree_comparison we have to simulate
2956 that with expression code iteration. */
2957 (for cmp (tcc_comparison)
2958 icmp (inverted_tcc_comparison)
2959 ncmp (inverted_tcc_comparison_with_nans)
2960 /* Ideally we'd like to combine the following two patterns
2961 and handle some more cases by using
2962 (logical_inverted_value (cmp @0 @1))
2963 here but for that genmatch would need to "inline" that.
2964 For now implement what forward_propagate_comparison did. */
2965 (simplify
2966 (bit_not (cmp @0 @1))
2967 (if (VECTOR_TYPE_P (type)
2968 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2969 /* Comparison inversion may be impossible for trapping math,
2970 invert_tree_comparison will tell us. But we can't use
2971 a computed operator in the replacement tree thus we have
2972 to play the trick below. */
2973 (with { enum tree_code ic = invert_tree_comparison
2974 (cmp, HONOR_NANS (@0)); }
2975 (if (ic == icmp)
2976 (icmp @0 @1)
2977 (if (ic == ncmp)
2978 (ncmp @0 @1))))))
2979 (simplify
2980 (bit_xor (cmp @0 @1) integer_truep)
2981 (with { enum tree_code ic = invert_tree_comparison
2982 (cmp, HONOR_NANS (@0)); }
2983 (if (ic == icmp)
2984 (icmp @0 @1)
2985 (if (ic == ncmp)
2986 (ncmp @0 @1))))))
2987
2988 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2989 ??? The transformation is valid for the other operators if overflow
2990 is undefined for the type, but performing it here badly interacts
2991 with the transformation in fold_cond_expr_with_comparison which
2992 attempts to synthetize ABS_EXPR. */
2993 (for cmp (eq ne)
2994 (for sub (minus pointer_diff)
2995 (simplify
2996 (cmp (sub@2 @0 @1) integer_zerop)
2997 (if (single_use (@2))
2998 (cmp @0 @1)))))
2999
3000 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3001 signed arithmetic case. That form is created by the compiler
3002 often enough for folding it to be of value. One example is in
3003 computing loop trip counts after Operator Strength Reduction. */
3004 (for cmp (simple_comparison)
3005 scmp (swapped_simple_comparison)
3006 (simplify
3007 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3008 /* Handle unfolded multiplication by zero. */
3009 (if (integer_zerop (@1))
3010 (cmp @1 @2)
3011 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3013 && single_use (@3))
3014 /* If @1 is negative we swap the sense of the comparison. */
3015 (if (tree_int_cst_sgn (@1) < 0)
3016 (scmp @0 @2)
3017 (cmp @0 @2))))))
3018
3019 /* Simplify comparison of something with itself. For IEEE
3020 floating-point, we can only do some of these simplifications. */
3021 (for cmp (eq ge le)
3022 (simplify
3023 (cmp @0 @0)
3024 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3025 || ! HONOR_NANS (@0))
3026 { constant_boolean_node (true, type); }
3027 (if (cmp != EQ_EXPR)
3028 (eq @0 @0)))))
3029 (for cmp (ne gt lt)
3030 (simplify
3031 (cmp @0 @0)
3032 (if (cmp != NE_EXPR
3033 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3034 || ! HONOR_NANS (@0))
3035 { constant_boolean_node (false, type); })))
3036 (for cmp (unle unge uneq)
3037 (simplify
3038 (cmp @0 @0)
3039 { constant_boolean_node (true, type); }))
3040 (for cmp (unlt ungt)
3041 (simplify
3042 (cmp @0 @0)
3043 (unordered @0 @0)))
3044 (simplify
3045 (ltgt @0 @0)
3046 (if (!flag_trapping_math)
3047 { constant_boolean_node (false, type); }))
3048
3049 /* Fold ~X op ~Y as Y op X. */
3050 (for cmp (simple_comparison)
3051 (simplify
3052 (cmp (bit_not@2 @0) (bit_not@3 @1))
3053 (if (single_use (@2) && single_use (@3))
3054 (cmp @1 @0))))
3055
3056 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3057 (for cmp (simple_comparison)
3058 scmp (swapped_simple_comparison)
3059 (simplify
3060 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3061 (if (single_use (@2)
3062 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3063 (scmp @0 (bit_not @1)))))
3064
3065 (for cmp (simple_comparison)
3066 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3067 (simplify
3068 (cmp (convert@2 @0) (convert? @1))
3069 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3070 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3071 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3072 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3073 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3074 (with
3075 {
3076 tree type1 = TREE_TYPE (@1);
3077 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3078 {
3079 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3080 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3081 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3082 type1 = float_type_node;
3083 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3084 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3085 type1 = double_type_node;
3086 }
3087 tree newtype
3088 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3089 ? TREE_TYPE (@0) : type1);
3090 }
3091 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3092 (cmp (convert:newtype @0) (convert:newtype @1))))))
3093
3094 (simplify
3095 (cmp @0 REAL_CST@1)
3096 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3097 (switch
3098 /* a CMP (-0) -> a CMP 0 */
3099 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3100 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3101 /* x != NaN is always true, other ops are always false. */
3102 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3103 && ! HONOR_SNANS (@1))
3104 { constant_boolean_node (cmp == NE_EXPR, type); })
3105 /* Fold comparisons against infinity. */
3106 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3107 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3108 (with
3109 {
3110 REAL_VALUE_TYPE max;
3111 enum tree_code code = cmp;
3112 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3113 if (neg)
3114 code = swap_tree_comparison (code);
3115 }
3116 (switch
3117 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3118 (if (code == GT_EXPR
3119 && !(HONOR_NANS (@0) && flag_trapping_math))
3120 { constant_boolean_node (false, type); })
3121 (if (code == LE_EXPR)
3122 /* x <= +Inf is always true, if we don't care about NaNs. */
3123 (if (! HONOR_NANS (@0))
3124 { constant_boolean_node (true, type); }
3125 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3126 an "invalid" exception. */
3127 (if (!flag_trapping_math)
3128 (eq @0 @0))))
3129 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3130 for == this introduces an exception for x a NaN. */
3131 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3132 || code == GE_EXPR)
3133 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3134 (if (neg)
3135 (lt @0 { build_real (TREE_TYPE (@0), max); })
3136 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3137 /* x < +Inf is always equal to x <= DBL_MAX. */
3138 (if (code == LT_EXPR)
3139 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3140 (if (neg)
3141 (ge @0 { build_real (TREE_TYPE (@0), max); })
3142 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3143 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3144 an exception for x a NaN so use an unordered comparison. */
3145 (if (code == NE_EXPR)
3146 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3147 (if (! HONOR_NANS (@0))
3148 (if (neg)
3149 (ge @0 { build_real (TREE_TYPE (@0), max); })
3150 (le @0 { build_real (TREE_TYPE (@0), max); }))
3151 (if (neg)
3152 (unge @0 { build_real (TREE_TYPE (@0), max); })
3153 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3154
3155 /* If this is a comparison of a real constant with a PLUS_EXPR
3156 or a MINUS_EXPR of a real constant, we can convert it into a
3157 comparison with a revised real constant as long as no overflow
3158 occurs when unsafe_math_optimizations are enabled. */
3159 (if (flag_unsafe_math_optimizations)
3160 (for op (plus minus)
3161 (simplify
3162 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3163 (with
3164 {
3165 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3166 TREE_TYPE (@1), @2, @1);
3167 }
3168 (if (tem && !TREE_OVERFLOW (tem))
3169 (cmp @0 { tem; }))))))
3170
3171 /* Likewise, we can simplify a comparison of a real constant with
3172 a MINUS_EXPR whose first operand is also a real constant, i.e.
3173 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3174 floating-point types only if -fassociative-math is set. */
3175 (if (flag_associative_math)
3176 (simplify
3177 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3178 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3179 (if (tem && !TREE_OVERFLOW (tem))
3180 (cmp { tem; } @1)))))
3181
3182 /* Fold comparisons against built-in math functions. */
3183 (if (flag_unsafe_math_optimizations
3184 && ! flag_errno_math)
3185 (for sq (SQRT)
3186 (simplify
3187 (cmp (sq @0) REAL_CST@1)
3188 (switch
3189 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3190 (switch
3191 /* sqrt(x) < y is always false, if y is negative. */
3192 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3193 { constant_boolean_node (false, type); })
3194 /* sqrt(x) > y is always true, if y is negative and we
3195 don't care about NaNs, i.e. negative values of x. */
3196 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3197 { constant_boolean_node (true, type); })
3198 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3199 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3200 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3201 (switch
3202 /* sqrt(x) < 0 is always false. */
3203 (if (cmp == LT_EXPR)
3204 { constant_boolean_node (false, type); })
3205 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3206 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3207 { constant_boolean_node (true, type); })
3208 /* sqrt(x) <= 0 -> x == 0. */
3209 (if (cmp == LE_EXPR)
3210 (eq @0 @1))
3211 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3212 == or !=. In the last case:
3213
3214 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3215
3216 if x is negative or NaN. Due to -funsafe-math-optimizations,
3217 the results for other x follow from natural arithmetic. */
3218 (cmp @0 @1)))
3219 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3220 (with
3221 {
3222 REAL_VALUE_TYPE c2;
3223 real_arithmetic (&c2, MULT_EXPR,
3224 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3225 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3226 }
3227 (if (REAL_VALUE_ISINF (c2))
3228 /* sqrt(x) > y is x == +Inf, when y is very large. */
3229 (if (HONOR_INFINITIES (@0))
3230 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3231 { constant_boolean_node (false, type); })
3232 /* sqrt(x) > c is the same as x > c*c. */
3233 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3234 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3235 (with
3236 {
3237 REAL_VALUE_TYPE c2;
3238 real_arithmetic (&c2, MULT_EXPR,
3239 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3240 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3241 }
3242 (if (REAL_VALUE_ISINF (c2))
3243 (switch
3244 /* sqrt(x) < y is always true, when y is a very large
3245 value and we don't care about NaNs or Infinities. */
3246 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3247 { constant_boolean_node (true, type); })
3248 /* sqrt(x) < y is x != +Inf when y is very large and we
3249 don't care about NaNs. */
3250 (if (! HONOR_NANS (@0))
3251 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3252 /* sqrt(x) < y is x >= 0 when y is very large and we
3253 don't care about Infinities. */
3254 (if (! HONOR_INFINITIES (@0))
3255 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3256 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3257 (if (GENERIC)
3258 (truth_andif
3259 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3260 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3261 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3262 (if (! HONOR_NANS (@0))
3263 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3264 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3265 (if (GENERIC)
3266 (truth_andif
3267 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3268 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3269 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3270 (simplify
3271 (cmp (sq @0) (sq @1))
3272 (if (! HONOR_NANS (@0))
3273 (cmp @0 @1))))))
3274
3275 /* Optimize various special cases of (FTYPE) N CMP CST. */
3276 (for cmp (lt le eq ne ge gt)
3277 icmp (le le eq ne ge ge)
3278 (simplify
3279 (cmp (float @0) REAL_CST@1)
3280 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3281 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3282 (with
3283 {
3284 tree itype = TREE_TYPE (@0);
3285 signop isign = TYPE_SIGN (itype);
3286 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3287 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3288 /* Be careful to preserve any potential exceptions due to
3289 NaNs. qNaNs are ok in == or != context.
3290 TODO: relax under -fno-trapping-math or
3291 -fno-signaling-nans. */
3292 bool exception_p
3293 = real_isnan (cst) && (cst->signalling
3294 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3295 /* INT?_MIN is power-of-two so it takes
3296 only one mantissa bit. */
3297 bool signed_p = isign == SIGNED;
3298 bool itype_fits_ftype_p
3299 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3300 }
3301 /* TODO: allow non-fitting itype and SNaNs when
3302 -fno-trapping-math. */
3303 (if (itype_fits_ftype_p && ! exception_p)
3304 (with
3305 {
3306 REAL_VALUE_TYPE imin, imax;
3307 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3308 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3309
3310 REAL_VALUE_TYPE icst;
3311 if (cmp == GT_EXPR || cmp == GE_EXPR)
3312 real_ceil (&icst, fmt, cst);
3313 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3314 real_floor (&icst, fmt, cst);
3315 else
3316 real_trunc (&icst, fmt, cst);
3317
3318 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3319
3320 bool overflow_p = false;
3321 wide_int icst_val
3322 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3323 }
3324 (switch
3325 /* Optimize cases when CST is outside of ITYPE's range. */
3326 (if (real_compare (LT_EXPR, cst, &imin))
3327 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3328 type); })
3329 (if (real_compare (GT_EXPR, cst, &imax))
3330 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3331 type); })
3332 /* Remove cast if CST is an integer representable by ITYPE. */
3333 (if (cst_int_p)
3334 (cmp @0 { gcc_assert (!overflow_p);
3335 wide_int_to_tree (itype, icst_val); })
3336 )
3337 /* When CST is fractional, optimize
3338 (FTYPE) N == CST -> 0
3339 (FTYPE) N != CST -> 1. */
3340 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3341 { constant_boolean_node (cmp == NE_EXPR, type); })
3342 /* Otherwise replace with sensible integer constant. */
3343 (with
3344 {
3345 gcc_checking_assert (!overflow_p);
3346 }
3347 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3348
3349 /* Fold A /[ex] B CMP C to A CMP B * C. */
3350 (for cmp (eq ne)
3351 (simplify
3352 (cmp (exact_div @0 @1) INTEGER_CST@2)
3353 (if (!integer_zerop (@1))
3354 (if (wi::to_wide (@2) == 0)
3355 (cmp @0 @2)
3356 (if (TREE_CODE (@1) == INTEGER_CST)
3357 (with
3358 {
3359 bool ovf;
3360 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3361 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3362 }
3363 (if (ovf)
3364 { constant_boolean_node (cmp == NE_EXPR, type); }
3365 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3366 (for cmp (lt le gt ge)
3367 (simplify
3368 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3369 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3370 (with
3371 {
3372 bool ovf;
3373 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3374 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3375 }
3376 (if (ovf)
3377 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3378 TYPE_SIGN (TREE_TYPE (@2)))
3379 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3380 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3381
3382 /* Unordered tests if either argument is a NaN. */
3383 (simplify
3384 (bit_ior (unordered @0 @0) (unordered @1 @1))
3385 (if (types_match (@0, @1))
3386 (unordered @0 @1)))
3387 (simplify
3388 (bit_and (ordered @0 @0) (ordered @1 @1))
3389 (if (types_match (@0, @1))
3390 (ordered @0 @1)))
3391 (simplify
3392 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3393 @2)
3394 (simplify
3395 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3396 @2)
3397
3398 /* Simple range test simplifications. */
3399 /* A < B || A >= B -> true. */
3400 (for test1 (lt le le le ne ge)
3401 test2 (ge gt ge ne eq ne)
3402 (simplify
3403 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3404 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3405 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3406 { constant_boolean_node (true, type); })))
3407 /* A < B && A >= B -> false. */
3408 (for test1 (lt lt lt le ne eq)
3409 test2 (ge gt eq gt eq gt)
3410 (simplify
3411 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3412 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3413 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3414 { constant_boolean_node (false, type); })))
3415
3416 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3417 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3418
3419 Note that comparisons
3420 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3421 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3422 will be canonicalized to above so there's no need to
3423 consider them here.
3424 */
3425
3426 (for cmp (le gt)
3427 eqcmp (eq ne)
3428 (simplify
3429 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3430 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3431 (with
3432 {
3433 tree ty = TREE_TYPE (@0);
3434 unsigned prec = TYPE_PRECISION (ty);
3435 wide_int mask = wi::to_wide (@2, prec);
3436 wide_int rhs = wi::to_wide (@3, prec);
3437 signop sgn = TYPE_SIGN (ty);
3438 }
3439 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3440 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3441 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3442 { build_zero_cst (ty); }))))))
3443
3444 /* -A CMP -B -> B CMP A. */
3445 (for cmp (tcc_comparison)
3446 scmp (swapped_tcc_comparison)
3447 (simplify
3448 (cmp (negate @0) (negate @1))
3449 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3450 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3451 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3452 (scmp @0 @1)))
3453 (simplify
3454 (cmp (negate @0) CONSTANT_CLASS_P@1)
3455 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3456 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3457 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3458 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3459 (if (tem && !TREE_OVERFLOW (tem))
3460 (scmp @0 { tem; }))))))
3461
3462 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3463 (for op (eq ne)
3464 (simplify
3465 (op (abs @0) zerop@1)
3466 (op @0 @1)))
3467
3468 /* From fold_sign_changed_comparison and fold_widened_comparison.
3469 FIXME: the lack of symmetry is disturbing. */
3470 (for cmp (simple_comparison)
3471 (simplify
3472 (cmp (convert@0 @00) (convert?@1 @10))
3473 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3474 /* Disable this optimization if we're casting a function pointer
3475 type on targets that require function pointer canonicalization. */
3476 && !(targetm.have_canonicalize_funcptr_for_compare ()
3477 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3478 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3479 && single_use (@0))
3480 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3481 && (TREE_CODE (@10) == INTEGER_CST
3482 || @1 != @10)
3483 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3484 || cmp == NE_EXPR
3485 || cmp == EQ_EXPR)
3486 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3487 /* ??? The special-casing of INTEGER_CST conversion was in the original
3488 code and here to avoid a spurious overflow flag on the resulting
3489 constant which fold_convert produces. */
3490 (if (TREE_CODE (@1) == INTEGER_CST)
3491 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3492 TREE_OVERFLOW (@1)); })
3493 (cmp @00 (convert @1)))
3494
3495 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3496 /* If possible, express the comparison in the shorter mode. */
3497 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3498 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3499 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3500 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3501 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3502 || ((TYPE_PRECISION (TREE_TYPE (@00))
3503 >= TYPE_PRECISION (TREE_TYPE (@10)))
3504 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3505 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3506 || (TREE_CODE (@10) == INTEGER_CST
3507 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3508 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3509 (cmp @00 (convert @10))
3510 (if (TREE_CODE (@10) == INTEGER_CST
3511 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3512 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3513 (with
3514 {
3515 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3516 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3517 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3518 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3519 }
3520 (if (above || below)
3521 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3522 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3523 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3524 { constant_boolean_node (above ? true : false, type); }
3525 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3526 { constant_boolean_node (above ? false : true, type); }))))))))))))
3527
3528 (for cmp (eq ne)
3529 /* A local variable can never be pointed to by
3530 the default SSA name of an incoming parameter.
3531 SSA names are canonicalized to 2nd place. */
3532 (simplify
3533 (cmp addr@0 SSA_NAME@1)
3534 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3535 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3536 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3537 (if (TREE_CODE (base) == VAR_DECL
3538 && auto_var_in_fn_p (base, current_function_decl))
3539 (if (cmp == NE_EXPR)
3540 { constant_boolean_node (true, type); }
3541 { constant_boolean_node (false, type); }))))))
3542
3543 /* Equality compare simplifications from fold_binary */
3544 (for cmp (eq ne)
3545
3546 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3547 Similarly for NE_EXPR. */
3548 (simplify
3549 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3550 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3551 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3552 { constant_boolean_node (cmp == NE_EXPR, type); }))
3553
3554 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3555 (simplify
3556 (cmp (bit_xor @0 @1) integer_zerop)
3557 (cmp @0 @1))
3558
3559 /* (X ^ Y) == Y becomes X == 0.
3560 Likewise (X ^ Y) == X becomes Y == 0. */
3561 (simplify
3562 (cmp:c (bit_xor:c @0 @1) @0)
3563 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3564
3565 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3566 (simplify
3567 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3568 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3569 (cmp @0 (bit_xor @1 (convert @2)))))
3570
3571 (simplify
3572 (cmp (convert? addr@0) integer_zerop)
3573 (if (tree_single_nonzero_warnv_p (@0, NULL))
3574 { constant_boolean_node (cmp == NE_EXPR, type); })))
3575
3576 /* If we have (A & C) == C where C is a power of 2, convert this into
3577 (A & C) != 0. Similarly for NE_EXPR. */
3578 (for cmp (eq ne)
3579 icmp (ne eq)
3580 (simplify
3581 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3582 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3583
3584 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3585 convert this into a shift followed by ANDing with D. */
3586 (simplify
3587 (cond
3588 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3589 INTEGER_CST@2 integer_zerop)
3590 (if (integer_pow2p (@2))
3591 (with {
3592 int shift = (wi::exact_log2 (wi::to_wide (@2))
3593 - wi::exact_log2 (wi::to_wide (@1)));
3594 }
3595 (if (shift > 0)
3596 (bit_and
3597 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3598 (bit_and
3599 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3600 @2)))))
3601
3602 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3603 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3604 (for cmp (eq ne)
3605 ncmp (ge lt)
3606 (simplify
3607 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3608 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3609 && type_has_mode_precision_p (TREE_TYPE (@0))
3610 && element_precision (@2) >= element_precision (@0)
3611 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3612 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3613 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3614
3615 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3616 this into a right shift or sign extension followed by ANDing with C. */
3617 (simplify
3618 (cond
3619 (lt @0 integer_zerop)
3620 INTEGER_CST@1 integer_zerop)
3621 (if (integer_pow2p (@1)
3622 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3623 (with {
3624 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3625 }
3626 (if (shift >= 0)
3627 (bit_and
3628 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3629 @1)
3630 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3631 sign extension followed by AND with C will achieve the effect. */
3632 (bit_and (convert @0) @1)))))
3633
3634 /* When the addresses are not directly of decls compare base and offset.
3635 This implements some remaining parts of fold_comparison address
3636 comparisons but still no complete part of it. Still it is good
3637 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3638 (for cmp (simple_comparison)
3639 (simplify
3640 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3641 (with
3642 {
3643 poly_int64 off0, off1;
3644 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3645 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3646 if (base0 && TREE_CODE (base0) == MEM_REF)
3647 {
3648 off0 += mem_ref_offset (base0).force_shwi ();
3649 base0 = TREE_OPERAND (base0, 0);
3650 }
3651 if (base1 && TREE_CODE (base1) == MEM_REF)
3652 {
3653 off1 += mem_ref_offset (base1).force_shwi ();
3654 base1 = TREE_OPERAND (base1, 0);
3655 }
3656 }
3657 (if (base0 && base1)
3658 (with
3659 {
3660 int equal = 2;
3661 /* Punt in GENERIC on variables with value expressions;
3662 the value expressions might point to fields/elements
3663 of other vars etc. */
3664 if (GENERIC
3665 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3666 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3667 ;
3668 else if (decl_in_symtab_p (base0)
3669 && decl_in_symtab_p (base1))
3670 equal = symtab_node::get_create (base0)
3671 ->equal_address_to (symtab_node::get_create (base1));
3672 else if ((DECL_P (base0)
3673 || TREE_CODE (base0) == SSA_NAME
3674 || TREE_CODE (base0) == STRING_CST)
3675 && (DECL_P (base1)
3676 || TREE_CODE (base1) == SSA_NAME
3677 || TREE_CODE (base1) == STRING_CST))
3678 equal = (base0 == base1);
3679 }
3680 (if (equal == 1
3681 && (cmp == EQ_EXPR || cmp == NE_EXPR
3682 /* If the offsets are equal we can ignore overflow. */
3683 || known_eq (off0, off1)
3684 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3685 /* Or if we compare using pointers to decls or strings. */
3686 || (POINTER_TYPE_P (TREE_TYPE (@2))
3687 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3688 (switch
3689 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3690 { constant_boolean_node (known_eq (off0, off1), type); })
3691 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3692 { constant_boolean_node (known_ne (off0, off1), type); })
3693 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3694 { constant_boolean_node (known_lt (off0, off1), type); })
3695 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3696 { constant_boolean_node (known_le (off0, off1), type); })
3697 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3698 { constant_boolean_node (known_ge (off0, off1), type); })
3699 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3700 { constant_boolean_node (known_gt (off0, off1), type); }))
3701 (if (equal == 0
3702 && DECL_P (base0) && DECL_P (base1)
3703 /* If we compare this as integers require equal offset. */
3704 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3705 || known_eq (off0, off1)))
3706 (switch
3707 (if (cmp == EQ_EXPR)
3708 { constant_boolean_node (false, type); })
3709 (if (cmp == NE_EXPR)
3710 { constant_boolean_node (true, type); })))))))))
3711
3712 /* Simplify pointer equality compares using PTA. */
3713 (for neeq (ne eq)
3714 (simplify
3715 (neeq @0 @1)
3716 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3717 && ptrs_compare_unequal (@0, @1))
3718 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3719
3720 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3721 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3722 Disable the transform if either operand is pointer to function.
3723 This broke pr22051-2.c for arm where function pointer
3724 canonicalizaion is not wanted. */
3725
3726 (for cmp (ne eq)
3727 (simplify
3728 (cmp (convert @0) INTEGER_CST@1)
3729 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3730 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3731 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3732 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3733 && POINTER_TYPE_P (TREE_TYPE (@1))
3734 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3735 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3736 (cmp @0 (convert @1)))))
3737
3738 /* Non-equality compare simplifications from fold_binary */
3739 (for cmp (lt gt le ge)
3740 /* Comparisons with the highest or lowest possible integer of
3741 the specified precision will have known values. */
3742 (simplify
3743 (cmp (convert?@2 @0) INTEGER_CST@1)
3744 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3745 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3746 (with
3747 {
3748 tree arg1_type = TREE_TYPE (@1);
3749 unsigned int prec = TYPE_PRECISION (arg1_type);
3750 wide_int max = wi::max_value (arg1_type);
3751 wide_int signed_max = wi::max_value (prec, SIGNED);
3752 wide_int min = wi::min_value (arg1_type);
3753 }
3754 (switch
3755 (if (wi::to_wide (@1) == max)
3756 (switch
3757 (if (cmp == GT_EXPR)
3758 { constant_boolean_node (false, type); })
3759 (if (cmp == GE_EXPR)
3760 (eq @2 @1))
3761 (if (cmp == LE_EXPR)
3762 { constant_boolean_node (true, type); })
3763 (if (cmp == LT_EXPR)
3764 (ne @2 @1))))
3765 (if (wi::to_wide (@1) == min)
3766 (switch
3767 (if (cmp == LT_EXPR)
3768 { constant_boolean_node (false, type); })
3769 (if (cmp == LE_EXPR)
3770 (eq @2 @1))
3771 (if (cmp == GE_EXPR)
3772 { constant_boolean_node (true, type); })
3773 (if (cmp == GT_EXPR)
3774 (ne @2 @1))))
3775 (if (wi::to_wide (@1) == max - 1)
3776 (switch
3777 (if (cmp == GT_EXPR)
3778 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3779 (if (cmp == LE_EXPR)
3780 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3781 (if (wi::to_wide (@1) == min + 1)
3782 (switch
3783 (if (cmp == GE_EXPR)
3784 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3785 (if (cmp == LT_EXPR)
3786 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3787 (if (wi::to_wide (@1) == signed_max
3788 && TYPE_UNSIGNED (arg1_type)
3789 /* We will flip the signedness of the comparison operator
3790 associated with the mode of @1, so the sign bit is
3791 specified by this mode. Check that @1 is the signed
3792 max associated with this sign bit. */
3793 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3794 /* signed_type does not work on pointer types. */
3795 && INTEGRAL_TYPE_P (arg1_type))
3796 /* The following case also applies to X < signed_max+1
3797 and X >= signed_max+1 because previous transformations. */
3798 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3799 (with { tree st = signed_type_for (arg1_type); }
3800 (if (cmp == LE_EXPR)
3801 (ge (convert:st @0) { build_zero_cst (st); })
3802 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3803
3804 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3805 /* If the second operand is NaN, the result is constant. */
3806 (simplify
3807 (cmp @0 REAL_CST@1)
3808 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3809 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3810 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3811 ? false : true, type); })))
3812
3813 /* bool_var != 0 becomes bool_var. */
3814 (simplify
3815 (ne @0 integer_zerop)
3816 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3817 && types_match (type, TREE_TYPE (@0)))
3818 (non_lvalue @0)))
3819 /* bool_var == 1 becomes bool_var. */
3820 (simplify
3821 (eq @0 integer_onep)
3822 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3823 && types_match (type, TREE_TYPE (@0)))
3824 (non_lvalue @0)))
3825 /* Do not handle
3826 bool_var == 0 becomes !bool_var or
3827 bool_var != 1 becomes !bool_var
3828 here because that only is good in assignment context as long
3829 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3830 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3831 clearly less optimal and which we'll transform again in forwprop. */
3832
3833 /* When one argument is a constant, overflow detection can be simplified.
3834 Currently restricted to single use so as not to interfere too much with
3835 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3836 A + CST CMP A -> A CMP' CST' */
3837 (for cmp (lt le ge gt)
3838 out (gt gt le le)
3839 (simplify
3840 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3841 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3842 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3843 && wi::to_wide (@1) != 0
3844 && single_use (@2))
3845 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3846 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3847 wi::max_value (prec, UNSIGNED)
3848 - wi::to_wide (@1)); })))))
3849
3850 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3851 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3852 expects the long form, so we restrict the transformation for now. */
3853 (for cmp (gt le)
3854 (simplify
3855 (cmp:c (minus@2 @0 @1) @0)
3856 (if (single_use (@2)
3857 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3858 && TYPE_UNSIGNED (TREE_TYPE (@0))
3859 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3860 (cmp @1 @0))))
3861
3862 /* Testing for overflow is unnecessary if we already know the result. */
3863 /* A - B > A */
3864 (for cmp (gt le)
3865 out (ne eq)
3866 (simplify
3867 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3868 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3869 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3870 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3871 /* A + B < A */
3872 (for cmp (lt ge)
3873 out (ne eq)
3874 (simplify
3875 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3876 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3877 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3878 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3879
3880 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3881 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3882 (for cmp (lt ge)
3883 out (ne eq)
3884 (simplify
3885 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3886 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3887 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3888 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3889
3890 /* Simplification of math builtins. These rules must all be optimizations
3891 as well as IL simplifications. If there is a possibility that the new
3892 form could be a pessimization, the rule should go in the canonicalization
3893 section that follows this one.
3894
3895 Rules can generally go in this section if they satisfy one of
3896 the following:
3897
3898 - the rule describes an identity
3899
3900 - the rule replaces calls with something as simple as addition or
3901 multiplication
3902
3903 - the rule contains unary calls only and simplifies the surrounding
3904 arithmetic. (The idea here is to exclude non-unary calls in which
3905 one operand is constant and in which the call is known to be cheap
3906 when the operand has that value.) */
3907
3908 (if (flag_unsafe_math_optimizations)
3909 /* Simplify sqrt(x) * sqrt(x) -> x. */
3910 (simplify
3911 (mult (SQRT_ALL@1 @0) @1)
3912 (if (!HONOR_SNANS (type))
3913 @0))
3914
3915 (for op (plus minus)
3916 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3917 (simplify
3918 (op (rdiv @0 @1)
3919 (rdiv @2 @1))
3920 (rdiv (op @0 @2) @1)))
3921
3922 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3923 (for root (SQRT CBRT)
3924 (simplify
3925 (mult (root:s @0) (root:s @1))
3926 (root (mult @0 @1))))
3927
3928 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3929 (for exps (EXP EXP2 EXP10 POW10)
3930 (simplify
3931 (mult (exps:s @0) (exps:s @1))
3932 (exps (plus @0 @1))))
3933
3934 /* Simplify a/root(b/c) into a*root(c/b). */
3935 (for root (SQRT CBRT)
3936 (simplify
3937 (rdiv @0 (root:s (rdiv:s @1 @2)))
3938 (mult @0 (root (rdiv @2 @1)))))
3939
3940 /* Simplify x/expN(y) into x*expN(-y). */
3941 (for exps (EXP EXP2 EXP10 POW10)
3942 (simplify
3943 (rdiv @0 (exps:s @1))
3944 (mult @0 (exps (negate @1)))))
3945
3946 (for logs (LOG LOG2 LOG10 LOG10)
3947 exps (EXP EXP2 EXP10 POW10)
3948 /* logN(expN(x)) -> x. */
3949 (simplify
3950 (logs (exps @0))
3951 @0)
3952 /* expN(logN(x)) -> x. */
3953 (simplify
3954 (exps (logs @0))
3955 @0))
3956
3957 /* Optimize logN(func()) for various exponential functions. We
3958 want to determine the value "x" and the power "exponent" in
3959 order to transform logN(x**exponent) into exponent*logN(x). */
3960 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3961 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3962 (simplify
3963 (logs (exps @0))
3964 (if (SCALAR_FLOAT_TYPE_P (type))
3965 (with {
3966 tree x;
3967 switch (exps)
3968 {
3969 CASE_CFN_EXP:
3970 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3971 x = build_real_truncate (type, dconst_e ());
3972 break;
3973 CASE_CFN_EXP2:
3974 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3975 x = build_real (type, dconst2);
3976 break;
3977 CASE_CFN_EXP10:
3978 CASE_CFN_POW10:
3979 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3980 {
3981 REAL_VALUE_TYPE dconst10;
3982 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3983 x = build_real (type, dconst10);
3984 }
3985 break;
3986 default:
3987 gcc_unreachable ();
3988 }
3989 }
3990 (mult (logs { x; }) @0)))))
3991
3992 (for logs (LOG LOG
3993 LOG2 LOG2
3994 LOG10 LOG10)
3995 exps (SQRT CBRT)
3996 (simplify
3997 (logs (exps @0))
3998 (if (SCALAR_FLOAT_TYPE_P (type))
3999 (with {
4000 tree x;
4001 switch (exps)
4002 {
4003 CASE_CFN_SQRT:
4004 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4005 x = build_real (type, dconsthalf);
4006 break;
4007 CASE_CFN_CBRT:
4008 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4009 x = build_real_truncate (type, dconst_third ());
4010 break;
4011 default:
4012 gcc_unreachable ();
4013 }
4014 }
4015 (mult { x; } (logs @0))))))
4016
4017 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4018 (for logs (LOG LOG2 LOG10)
4019 pows (POW)
4020 (simplify
4021 (logs (pows @0 @1))
4022 (mult @1 (logs @0))))
4023
4024 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4025 or if C is a positive power of 2,
4026 pow(C,x) -> exp2(log2(C)*x). */
4027 #if GIMPLE
4028 (for pows (POW)
4029 exps (EXP)
4030 logs (LOG)
4031 exp2s (EXP2)
4032 log2s (LOG2)
4033 (simplify
4034 (pows REAL_CST@0 @1)
4035 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4036 && real_isfinite (TREE_REAL_CST_PTR (@0))
4037 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4038 the use_exp2 case until after vectorization. It seems actually
4039 beneficial for all constants to postpone this until later,
4040 because exp(log(C)*x), while faster, will have worse precision
4041 and if x folds into a constant too, that is unnecessary
4042 pessimization. */
4043 && canonicalize_math_after_vectorization_p ())
4044 (with {
4045 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4046 bool use_exp2 = false;
4047 if (targetm.libc_has_function (function_c99_misc)
4048 && value->cl == rvc_normal)
4049 {
4050 REAL_VALUE_TYPE frac_rvt = *value;
4051 SET_REAL_EXP (&frac_rvt, 1);
4052 if (real_equal (&frac_rvt, &dconst1))
4053 use_exp2 = true;
4054 }
4055 }
4056 (if (!use_exp2)
4057 (if (optimize_pow_to_exp (@0, @1))
4058 (exps (mult (logs @0) @1)))
4059 (exp2s (mult (log2s @0) @1)))))))
4060 #endif
4061
4062 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4063 (for pows (POW)
4064 exps (EXP EXP2 EXP10 POW10)
4065 logs (LOG LOG2 LOG10 LOG10)
4066 (simplify
4067 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4068 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4069 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4070 (exps (plus (mult (logs @0) @1) @2)))))
4071
4072 (for sqrts (SQRT)
4073 cbrts (CBRT)
4074 pows (POW)
4075 exps (EXP EXP2 EXP10 POW10)
4076 /* sqrt(expN(x)) -> expN(x*0.5). */
4077 (simplify
4078 (sqrts (exps @0))
4079 (exps (mult @0 { build_real (type, dconsthalf); })))
4080 /* cbrt(expN(x)) -> expN(x/3). */
4081 (simplify
4082 (cbrts (exps @0))
4083 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4084 /* pow(expN(x), y) -> expN(x*y). */
4085 (simplify
4086 (pows (exps @0) @1)
4087 (exps (mult @0 @1))))
4088
4089 /* tan(atan(x)) -> x. */
4090 (for tans (TAN)
4091 atans (ATAN)
4092 (simplify
4093 (tans (atans @0))
4094 @0)))
4095
4096 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4097 (simplify
4098 (CABS (complex:C @0 real_zerop@1))
4099 (abs @0))
4100
4101 /* trunc(trunc(x)) -> trunc(x), etc. */
4102 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4103 (simplify
4104 (fns (fns @0))
4105 (fns @0)))
4106 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4107 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4108 (simplify
4109 (fns integer_valued_real_p@0)
4110 @0))
4111
4112 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4113 (simplify
4114 (HYPOT:c @0 real_zerop@1)
4115 (abs @0))
4116
4117 /* pow(1,x) -> 1. */
4118 (simplify
4119 (POW real_onep@0 @1)
4120 @0)
4121
4122 (simplify
4123 /* copysign(x,x) -> x. */
4124 (COPYSIGN_ALL @0 @0)
4125 @0)
4126
4127 (simplify
4128 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4129 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4130 (abs @0))
4131
4132 (for scale (LDEXP SCALBN SCALBLN)
4133 /* ldexp(0, x) -> 0. */
4134 (simplify
4135 (scale real_zerop@0 @1)
4136 @0)
4137 /* ldexp(x, 0) -> x. */
4138 (simplify
4139 (scale @0 integer_zerop@1)
4140 @0)
4141 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4142 (simplify
4143 (scale REAL_CST@0 @1)
4144 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4145 @0)))
4146
4147 /* Canonicalization of sequences of math builtins. These rules represent
4148 IL simplifications but are not necessarily optimizations.
4149
4150 The sincos pass is responsible for picking "optimal" implementations
4151 of math builtins, which may be more complicated and can sometimes go
4152 the other way, e.g. converting pow into a sequence of sqrts.
4153 We only want to do these canonicalizations before the pass has run. */
4154
4155 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4156 /* Simplify tan(x) * cos(x) -> sin(x). */
4157 (simplify
4158 (mult:c (TAN:s @0) (COS:s @0))
4159 (SIN @0))
4160
4161 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4162 (simplify
4163 (mult:c @0 (POW:s @0 REAL_CST@1))
4164 (if (!TREE_OVERFLOW (@1))
4165 (POW @0 (plus @1 { build_one_cst (type); }))))
4166
4167 /* Simplify sin(x) / cos(x) -> tan(x). */
4168 (simplify
4169 (rdiv (SIN:s @0) (COS:s @0))
4170 (TAN @0))
4171
4172 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4173 (simplify
4174 (rdiv (COS:s @0) (SIN:s @0))
4175 (rdiv { build_one_cst (type); } (TAN @0)))
4176
4177 /* Simplify sin(x) / tan(x) -> cos(x). */
4178 (simplify
4179 (rdiv (SIN:s @0) (TAN:s @0))
4180 (if (! HONOR_NANS (@0)
4181 && ! HONOR_INFINITIES (@0))
4182 (COS @0)))
4183
4184 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4185 (simplify
4186 (rdiv (TAN:s @0) (SIN:s @0))
4187 (if (! HONOR_NANS (@0)
4188 && ! HONOR_INFINITIES (@0))
4189 (rdiv { build_one_cst (type); } (COS @0))))
4190
4191 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4192 (simplify
4193 (mult (POW:s @0 @1) (POW:s @0 @2))
4194 (POW @0 (plus @1 @2)))
4195
4196 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4197 (simplify
4198 (mult (POW:s @0 @1) (POW:s @2 @1))
4199 (POW (mult @0 @2) @1))
4200
4201 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4202 (simplify
4203 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4204 (POWI (mult @0 @2) @1))
4205
4206 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4207 (simplify
4208 (rdiv (POW:s @0 REAL_CST@1) @0)
4209 (if (!TREE_OVERFLOW (@1))
4210 (POW @0 (minus @1 { build_one_cst (type); }))))
4211
4212 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4213 (simplify
4214 (rdiv @0 (POW:s @1 @2))
4215 (mult @0 (POW @1 (negate @2))))
4216
4217 (for sqrts (SQRT)
4218 cbrts (CBRT)
4219 pows (POW)
4220 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4221 (simplify
4222 (sqrts (sqrts @0))
4223 (pows @0 { build_real (type, dconst_quarter ()); }))
4224 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4225 (simplify
4226 (sqrts (cbrts @0))
4227 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4228 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4229 (simplify
4230 (cbrts (sqrts @0))
4231 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4232 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4233 (simplify
4234 (cbrts (cbrts tree_expr_nonnegative_p@0))
4235 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4236 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4237 (simplify
4238 (sqrts (pows @0 @1))
4239 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4240 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4241 (simplify
4242 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4243 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4244 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4245 (simplify
4246 (pows (sqrts @0) @1)
4247 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4248 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4249 (simplify
4250 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4251 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4252 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4253 (simplify
4254 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4255 (pows @0 (mult @1 @2))))
4256
4257 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4258 (simplify
4259 (CABS (complex @0 @0))
4260 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4261
4262 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4263 (simplify
4264 (HYPOT @0 @0)
4265 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4266
4267 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4268 (for cexps (CEXP)
4269 exps (EXP)
4270 cexpis (CEXPI)
4271 (simplify
4272 (cexps compositional_complex@0)
4273 (if (targetm.libc_has_function (function_c99_math_complex))
4274 (complex
4275 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4276 (mult @1 (imagpart @2)))))))
4277
4278 (if (canonicalize_math_p ())
4279 /* floor(x) -> trunc(x) if x is nonnegative. */
4280 (for floors (FLOOR_ALL)
4281 truncs (TRUNC_ALL)
4282 (simplify
4283 (floors tree_expr_nonnegative_p@0)
4284 (truncs @0))))
4285
4286 (match double_value_p
4287 @0
4288 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4289 (for froms (BUILT_IN_TRUNCL
4290 BUILT_IN_FLOORL
4291 BUILT_IN_CEILL
4292 BUILT_IN_ROUNDL
4293 BUILT_IN_NEARBYINTL
4294 BUILT_IN_RINTL)
4295 tos (BUILT_IN_TRUNC
4296 BUILT_IN_FLOOR
4297 BUILT_IN_CEIL
4298 BUILT_IN_ROUND
4299 BUILT_IN_NEARBYINT
4300 BUILT_IN_RINT)
4301 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4302 (if (optimize && canonicalize_math_p ())
4303 (simplify
4304 (froms (convert double_value_p@0))
4305 (convert (tos @0)))))
4306
4307 (match float_value_p
4308 @0
4309 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4310 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4311 BUILT_IN_FLOORL BUILT_IN_FLOOR
4312 BUILT_IN_CEILL BUILT_IN_CEIL
4313 BUILT_IN_ROUNDL BUILT_IN_ROUND
4314 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4315 BUILT_IN_RINTL BUILT_IN_RINT)
4316 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4317 BUILT_IN_FLOORF BUILT_IN_FLOORF
4318 BUILT_IN_CEILF BUILT_IN_CEILF
4319 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4320 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4321 BUILT_IN_RINTF BUILT_IN_RINTF)
4322 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4323 if x is a float. */
4324 (if (optimize && canonicalize_math_p ()
4325 && targetm.libc_has_function (function_c99_misc))
4326 (simplify
4327 (froms (convert float_value_p@0))
4328 (convert (tos @0)))))
4329
4330 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4331 tos (XFLOOR XCEIL XROUND XRINT)
4332 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4333 (if (optimize && canonicalize_math_p ())
4334 (simplify
4335 (froms (convert double_value_p@0))
4336 (tos @0))))
4337
4338 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4339 XFLOOR XCEIL XROUND XRINT)
4340 tos (XFLOORF XCEILF XROUNDF XRINTF)
4341 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4342 if x is a float. */
4343 (if (optimize && canonicalize_math_p ())
4344 (simplify
4345 (froms (convert float_value_p@0))
4346 (tos @0))))
4347
4348 (if (canonicalize_math_p ())
4349 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4350 (for floors (IFLOOR LFLOOR LLFLOOR)
4351 (simplify
4352 (floors tree_expr_nonnegative_p@0)
4353 (fix_trunc @0))))
4354
4355 (if (canonicalize_math_p ())
4356 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4357 (for fns (IFLOOR LFLOOR LLFLOOR
4358 ICEIL LCEIL LLCEIL
4359 IROUND LROUND LLROUND)
4360 (simplify
4361 (fns integer_valued_real_p@0)
4362 (fix_trunc @0)))
4363 (if (!flag_errno_math)
4364 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4365 (for rints (IRINT LRINT LLRINT)
4366 (simplify
4367 (rints integer_valued_real_p@0)
4368 (fix_trunc @0)))))
4369
4370 (if (canonicalize_math_p ())
4371 (for ifn (IFLOOR ICEIL IROUND IRINT)
4372 lfn (LFLOOR LCEIL LROUND LRINT)
4373 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4374 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4375 sizeof (int) == sizeof (long). */
4376 (if (TYPE_PRECISION (integer_type_node)
4377 == TYPE_PRECISION (long_integer_type_node))
4378 (simplify
4379 (ifn @0)
4380 (lfn:long_integer_type_node @0)))
4381 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4382 sizeof (long long) == sizeof (long). */
4383 (if (TYPE_PRECISION (long_long_integer_type_node)
4384 == TYPE_PRECISION (long_integer_type_node))
4385 (simplify
4386 (llfn @0)
4387 (lfn:long_integer_type_node @0)))))
4388
4389 /* cproj(x) -> x if we're ignoring infinities. */
4390 (simplify
4391 (CPROJ @0)
4392 (if (!HONOR_INFINITIES (type))
4393 @0))
4394
4395 /* If the real part is inf and the imag part is known to be
4396 nonnegative, return (inf + 0i). */
4397 (simplify
4398 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4399 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4400 { build_complex_inf (type, false); }))
4401
4402 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4403 (simplify
4404 (CPROJ (complex @0 REAL_CST@1))
4405 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4406 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4407
4408 (for pows (POW)
4409 sqrts (SQRT)
4410 cbrts (CBRT)
4411 (simplify
4412 (pows @0 REAL_CST@1)
4413 (with {
4414 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4415 REAL_VALUE_TYPE tmp;
4416 }
4417 (switch
4418 /* pow(x,0) -> 1. */
4419 (if (real_equal (value, &dconst0))
4420 { build_real (type, dconst1); })
4421 /* pow(x,1) -> x. */
4422 (if (real_equal (value, &dconst1))
4423 @0)
4424 /* pow(x,-1) -> 1/x. */
4425 (if (real_equal (value, &dconstm1))
4426 (rdiv { build_real (type, dconst1); } @0))
4427 /* pow(x,0.5) -> sqrt(x). */
4428 (if (flag_unsafe_math_optimizations
4429 && canonicalize_math_p ()
4430 && real_equal (value, &dconsthalf))
4431 (sqrts @0))
4432 /* pow(x,1/3) -> cbrt(x). */
4433 (if (flag_unsafe_math_optimizations
4434 && canonicalize_math_p ()
4435 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4436 real_equal (value, &tmp)))
4437 (cbrts @0))))))
4438
4439 /* powi(1,x) -> 1. */
4440 (simplify
4441 (POWI real_onep@0 @1)
4442 @0)
4443
4444 (simplify
4445 (POWI @0 INTEGER_CST@1)
4446 (switch
4447 /* powi(x,0) -> 1. */
4448 (if (wi::to_wide (@1) == 0)
4449 { build_real (type, dconst1); })
4450 /* powi(x,1) -> x. */
4451 (if (wi::to_wide (@1) == 1)
4452 @0)
4453 /* powi(x,-1) -> 1/x. */
4454 (if (wi::to_wide (@1) == -1)
4455 (rdiv { build_real (type, dconst1); } @0))))
4456
4457 /* Narrowing of arithmetic and logical operations.
4458
4459 These are conceptually similar to the transformations performed for
4460 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4461 term we want to move all that code out of the front-ends into here. */
4462
4463 /* If we have a narrowing conversion of an arithmetic operation where
4464 both operands are widening conversions from the same type as the outer
4465 narrowing conversion. Then convert the innermost operands to a suitable
4466 unsigned type (to avoid introducing undefined behavior), perform the
4467 operation and convert the result to the desired type. */
4468 (for op (plus minus)
4469 (simplify
4470 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4471 (if (INTEGRAL_TYPE_P (type)
4472 /* We check for type compatibility between @0 and @1 below,
4473 so there's no need to check that @1/@3 are integral types. */
4474 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4475 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4476 /* The precision of the type of each operand must match the
4477 precision of the mode of each operand, similarly for the
4478 result. */
4479 && type_has_mode_precision_p (TREE_TYPE (@0))
4480 && type_has_mode_precision_p (TREE_TYPE (@1))
4481 && type_has_mode_precision_p (type)
4482 /* The inner conversion must be a widening conversion. */
4483 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4484 && types_match (@0, type)
4485 && (types_match (@0, @1)
4486 /* Or the second operand is const integer or converted const
4487 integer from valueize. */
4488 || TREE_CODE (@1) == INTEGER_CST))
4489 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4490 (op @0 (convert @1))
4491 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4492 (convert (op (convert:utype @0)
4493 (convert:utype @1))))))))
4494
4495 /* This is another case of narrowing, specifically when there's an outer
4496 BIT_AND_EXPR which masks off bits outside the type of the innermost
4497 operands. Like the previous case we have to convert the operands
4498 to unsigned types to avoid introducing undefined behavior for the
4499 arithmetic operation. */
4500 (for op (minus plus)
4501 (simplify
4502 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4503 (if (INTEGRAL_TYPE_P (type)
4504 /* We check for type compatibility between @0 and @1 below,
4505 so there's no need to check that @1/@3 are integral types. */
4506 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4507 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4508 /* The precision of the type of each operand must match the
4509 precision of the mode of each operand, similarly for the
4510 result. */
4511 && type_has_mode_precision_p (TREE_TYPE (@0))
4512 && type_has_mode_precision_p (TREE_TYPE (@1))
4513 && type_has_mode_precision_p (type)
4514 /* The inner conversion must be a widening conversion. */
4515 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4516 && types_match (@0, @1)
4517 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4518 <= TYPE_PRECISION (TREE_TYPE (@0)))
4519 && (wi::to_wide (@4)
4520 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4521 true, TYPE_PRECISION (type))) == 0)
4522 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4523 (with { tree ntype = TREE_TYPE (@0); }
4524 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4525 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4526 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4527 (convert:utype @4))))))))
4528
4529 /* Transform (@0 < @1 and @0 < @2) to use min,
4530 (@0 > @1 and @0 > @2) to use max */
4531 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4532 op (lt le gt ge lt le gt ge )
4533 ext (min min max max max max min min )
4534 (simplify
4535 (logic (op:cs @0 @1) (op:cs @0 @2))
4536 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4537 && TREE_CODE (@0) != INTEGER_CST)
4538 (op @0 (ext @1 @2)))))
4539
4540 (simplify
4541 /* signbit(x) -> 0 if x is nonnegative. */
4542 (SIGNBIT tree_expr_nonnegative_p@0)
4543 { integer_zero_node; })
4544
4545 (simplify
4546 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4547 (SIGNBIT @0)
4548 (if (!HONOR_SIGNED_ZEROS (@0))
4549 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4550
4551 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4552 (for cmp (eq ne)
4553 (for op (plus minus)
4554 rop (minus plus)
4555 (simplify
4556 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4557 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4558 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4559 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4560 && !TYPE_SATURATING (TREE_TYPE (@0)))
4561 (with { tree res = int_const_binop (rop, @2, @1); }
4562 (if (TREE_OVERFLOW (res)
4563 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4564 { constant_boolean_node (cmp == NE_EXPR, type); }
4565 (if (single_use (@3))
4566 (cmp @0 { TREE_OVERFLOW (res)
4567 ? drop_tree_overflow (res) : res; }))))))))
4568 (for cmp (lt le gt ge)
4569 (for op (plus minus)
4570 rop (minus plus)
4571 (simplify
4572 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4573 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4575 (with { tree res = int_const_binop (rop, @2, @1); }
4576 (if (TREE_OVERFLOW (res))
4577 {
4578 fold_overflow_warning (("assuming signed overflow does not occur "
4579 "when simplifying conditional to constant"),
4580 WARN_STRICT_OVERFLOW_CONDITIONAL);
4581 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4582 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4583 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4584 TYPE_SIGN (TREE_TYPE (@1)))
4585 != (op == MINUS_EXPR);
4586 constant_boolean_node (less == ovf_high, type);
4587 }
4588 (if (single_use (@3))
4589 (with
4590 {
4591 fold_overflow_warning (("assuming signed overflow does not occur "
4592 "when changing X +- C1 cmp C2 to "
4593 "X cmp C2 -+ C1"),
4594 WARN_STRICT_OVERFLOW_COMPARISON);
4595 }
4596 (cmp @0 { res; })))))))))
4597
4598 /* Canonicalizations of BIT_FIELD_REFs. */
4599
4600 (simplify
4601 (BIT_FIELD_REF @0 @1 @2)
4602 (switch
4603 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4604 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4605 (switch
4606 (if (integer_zerop (@2))
4607 (view_convert (realpart @0)))
4608 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4609 (view_convert (imagpart @0)))))
4610 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4611 && INTEGRAL_TYPE_P (type)
4612 /* On GIMPLE this should only apply to register arguments. */
4613 && (! GIMPLE || is_gimple_reg (@0))
4614 /* A bit-field-ref that referenced the full argument can be stripped. */
4615 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4616 && integer_zerop (@2))
4617 /* Low-parts can be reduced to integral conversions.
4618 ??? The following doesn't work for PDP endian. */
4619 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4620 /* Don't even think about BITS_BIG_ENDIAN. */
4621 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4622 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4623 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4624 ? (TYPE_PRECISION (TREE_TYPE (@0))
4625 - TYPE_PRECISION (type))
4626 : 0)) == 0)))
4627 (convert @0))))
4628
4629 /* Simplify vector extracts. */
4630
4631 (simplify
4632 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4633 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4634 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4635 || (VECTOR_TYPE_P (type)
4636 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4637 (with
4638 {
4639 tree ctor = (TREE_CODE (@0) == SSA_NAME
4640 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4641 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4642 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4643 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4644 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4645 }
4646 (if (n != 0
4647 && (idx % width) == 0
4648 && (n % width) == 0
4649 && known_le ((idx + n) / width,
4650 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4651 (with
4652 {
4653 idx = idx / width;
4654 n = n / width;
4655 /* Constructor elements can be subvectors. */
4656 poly_uint64 k = 1;
4657 if (CONSTRUCTOR_NELTS (ctor) != 0)
4658 {
4659 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4660 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4661 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4662 }
4663 unsigned HOST_WIDE_INT elt, count, const_k;
4664 }
4665 (switch
4666 /* We keep an exact subset of the constructor elements. */
4667 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4668 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4669 { build_constructor (type, NULL); }
4670 (if (count == 1)
4671 (if (elt < CONSTRUCTOR_NELTS (ctor))
4672 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4673 { build_zero_cst (type); })
4674 {
4675 vec<constructor_elt, va_gc> *vals;
4676 vec_alloc (vals, count);
4677 for (unsigned i = 0;
4678 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4679 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4680 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4681 build_constructor (type, vals);
4682 })))
4683 /* The bitfield references a single constructor element. */
4684 (if (k.is_constant (&const_k)
4685 && idx + n <= (idx / const_k + 1) * const_k)
4686 (switch
4687 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4688 { build_zero_cst (type); })
4689 (if (n == const_k)
4690 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4691 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4692 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4693
4694 /* Simplify a bit extraction from a bit insertion for the cases with
4695 the inserted element fully covering the extraction or the insertion
4696 not touching the extraction. */
4697 (simplify
4698 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4699 (with
4700 {
4701 unsigned HOST_WIDE_INT isize;
4702 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4703 isize = TYPE_PRECISION (TREE_TYPE (@1));
4704 else
4705 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4706 }
4707 (switch
4708 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4709 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4710 wi::to_wide (@ipos) + isize))
4711 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4712 wi::to_wide (@rpos)
4713 - wi::to_wide (@ipos)); }))
4714 (if (wi::geu_p (wi::to_wide (@ipos),
4715 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4716 || wi::geu_p (wi::to_wide (@rpos),
4717 wi::to_wide (@ipos) + isize))
4718 (BIT_FIELD_REF @0 @rsize @rpos)))))
4719
4720 (if (canonicalize_math_after_vectorization_p ())
4721 (for fmas (FMA)
4722 (simplify
4723 (fmas:c (negate @0) @1 @2)
4724 (IFN_FNMA @0 @1 @2))
4725 (simplify
4726 (fmas @0 @1 (negate @2))
4727 (IFN_FMS @0 @1 @2))
4728 (simplify
4729 (fmas:c (negate @0) @1 (negate @2))
4730 (IFN_FNMS @0 @1 @2))
4731 (simplify
4732 (negate (fmas@3 @0 @1 @2))
4733 (if (single_use (@3))
4734 (IFN_FNMS @0 @1 @2))))
4735
4736 (simplify
4737 (IFN_FMS:c (negate @0) @1 @2)
4738 (IFN_FNMS @0 @1 @2))
4739 (simplify
4740 (IFN_FMS @0 @1 (negate @2))
4741 (IFN_FMA @0 @1 @2))
4742 (simplify
4743 (IFN_FMS:c (negate @0) @1 (negate @2))
4744 (IFN_FNMA @0 @1 @2))
4745 (simplify
4746 (negate (IFN_FMS@3 @0 @1 @2))
4747 (if (single_use (@3))
4748 (IFN_FNMA @0 @1 @2)))
4749
4750 (simplify
4751 (IFN_FNMA:c (negate @0) @1 @2)
4752 (IFN_FMA @0 @1 @2))
4753 (simplify
4754 (IFN_FNMA @0 @1 (negate @2))
4755 (IFN_FNMS @0 @1 @2))
4756 (simplify
4757 (IFN_FNMA:c (negate @0) @1 (negate @2))
4758 (IFN_FMS @0 @1 @2))
4759 (simplify
4760 (negate (IFN_FNMA@3 @0 @1 @2))
4761 (if (single_use (@3))
4762 (IFN_FMS @0 @1 @2)))
4763
4764 (simplify
4765 (IFN_FNMS:c (negate @0) @1 @2)
4766 (IFN_FMS @0 @1 @2))
4767 (simplify
4768 (IFN_FNMS @0 @1 (negate @2))
4769 (IFN_FNMA @0 @1 @2))
4770 (simplify
4771 (IFN_FNMS:c (negate @0) @1 (negate @2))
4772 (IFN_FMA @0 @1 @2))
4773 (simplify
4774 (negate (IFN_FNMS@3 @0 @1 @2))
4775 (if (single_use (@3))
4776 (IFN_FMA @0 @1 @2))))
4777
4778 /* POPCOUNT simplifications. */
4779 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4780 BUILT_IN_POPCOUNTIMAX)
4781 /* popcount(X&1) is nop_expr(X&1). */
4782 (simplify
4783 (popcount @0)
4784 (if (tree_nonzero_bits (@0) == 1)
4785 (convert @0)))
4786 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4787 (simplify
4788 (plus (popcount:s @0) (popcount:s @1))
4789 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4790 (popcount (bit_ior @0 @1))))
4791 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4792 (for cmp (le eq ne gt)
4793 rep (eq eq ne ne)
4794 (simplify
4795 (cmp (popcount @0) integer_zerop)
4796 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4797
4798 /* Simplify:
4799
4800 a = a1 op a2
4801 r = c ? a : b;
4802
4803 to:
4804
4805 r = c ? a1 op a2 : b;
4806
4807 if the target can do it in one go. This makes the operation conditional
4808 on c, so could drop potentially-trapping arithmetic, but that's a valid
4809 simplification if the result of the operation isn't needed. */
4810 (for uncond_op (UNCOND_BINARY)
4811 cond_op (COND_BINARY)
4812 (simplify
4813 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4814 (with { tree op_type = TREE_TYPE (@4); }
4815 (if (element_precision (type) == element_precision (op_type))
4816 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4817 (simplify
4818 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4819 (with { tree op_type = TREE_TYPE (@4); }
4820 (if (element_precision (type) == element_precision (op_type))
4821 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))