re PR tree-optimization/66739 (FAIL: gcc.target/aarch64/subs.c scan-assembler subs...
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43 (define_operator_list simple_comparison lt le eq ne ge gt)
44 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
45
46 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
47 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
48 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
49 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
50 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
51 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
52 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
53 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
54 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
55 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
56
57
58 /* Simplifications of operations with one constant operand and
59 simplifications to constants or single values. */
60
61 (for op (plus pointer_plus minus bit_ior bit_xor)
62 (simplify
63 (op @0 integer_zerop)
64 (non_lvalue @0)))
65
66 /* 0 +p index -> (type)index */
67 (simplify
68 (pointer_plus integer_zerop @1)
69 (non_lvalue (convert @1)))
70
71 /* See if ARG1 is zero and X + ARG1 reduces to X.
72 Likewise if the operands are reversed. */
73 (simplify
74 (plus:c @0 real_zerop@1)
75 (if (fold_real_zero_addition_p (type, @1, 0))
76 (non_lvalue @0)))
77
78 /* See if ARG1 is zero and X - ARG1 reduces to X. */
79 (simplify
80 (minus @0 real_zerop@1)
81 (if (fold_real_zero_addition_p (type, @1, 1))
82 (non_lvalue @0)))
83
84 /* Simplify x - x.
85 This is unsafe for certain floats even in non-IEEE formats.
86 In IEEE, it is unsafe because it does wrong for NaNs.
87 Also note that operand_equal_p is always false if an operand
88 is volatile. */
89 (simplify
90 (minus @0 @0)
91 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
92 { build_zero_cst (type); }))
93
94 (simplify
95 (mult @0 integer_zerop@1)
96 @1)
97
98 /* Maybe fold x * 0 to 0. The expressions aren't the same
99 when x is NaN, since x * 0 is also NaN. Nor are they the
100 same in modes with signed zeros, since multiplying a
101 negative value by 0 gives -0, not +0. */
102 (simplify
103 (mult @0 real_zerop@1)
104 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
105 @1))
106
107 /* In IEEE floating point, x*1 is not equivalent to x for snans.
108 Likewise for complex arithmetic with signed zeros. */
109 (simplify
110 (mult @0 real_onep)
111 (if (!HONOR_SNANS (type)
112 && (!HONOR_SIGNED_ZEROS (type)
113 || !COMPLEX_FLOAT_TYPE_P (type)))
114 (non_lvalue @0)))
115
116 /* Transform x * -1.0 into -x. */
117 (simplify
118 (mult @0 real_minus_onep)
119 (if (!HONOR_SNANS (type)
120 && (!HONOR_SIGNED_ZEROS (type)
121 || !COMPLEX_FLOAT_TYPE_P (type)))
122 (negate @0)))
123
124 /* Make sure to preserve divisions by zero. This is the reason why
125 we don't simplify x / x to 1 or 0 / x to 0. */
126 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
127 (simplify
128 (op @0 integer_onep)
129 (non_lvalue @0)))
130
131 /* X / -1 is -X. */
132 (for div (trunc_div ceil_div floor_div round_div exact_div)
133 (simplify
134 (div @0 integer_minus_onep@1)
135 (if (!TYPE_UNSIGNED (type))
136 (negate @0))))
137
138 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
139 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
140 (simplify
141 (floor_div @0 @1)
142 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
143 && TYPE_UNSIGNED (type))
144 (trunc_div @0 @1)))
145
146 /* Combine two successive divisions. Note that combining ceil_div
147 and floor_div is trickier and combining round_div even more so. */
148 (for div (trunc_div exact_div)
149 (simplify
150 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
151 (with {
152 bool overflow_p;
153 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
154 }
155 (if (!overflow_p)
156 (div @0 { wide_int_to_tree (type, mul); }))
157 (if (overflow_p
158 && (TYPE_UNSIGNED (type)
159 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
160 { build_zero_cst (type); }))))
161
162 /* Optimize A / A to 1.0 if we don't care about
163 NaNs or Infinities. */
164 (simplify
165 (rdiv @0 @0)
166 (if (FLOAT_TYPE_P (type)
167 && ! HONOR_NANS (type)
168 && ! HONOR_INFINITIES (type))
169 { build_one_cst (type); }))
170
171 /* Optimize -A / A to -1.0 if we don't care about
172 NaNs or Infinities. */
173 (simplify
174 (rdiv:c @0 (negate @0))
175 (if (FLOAT_TYPE_P (type)
176 && ! HONOR_NANS (type)
177 && ! HONOR_INFINITIES (type))
178 { build_minus_one_cst (type); }))
179
180 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
181 (simplify
182 (rdiv @0 real_onep)
183 (if (!HONOR_SNANS (type))
184 (non_lvalue @0)))
185
186 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
187 (simplify
188 (rdiv @0 real_minus_onep)
189 (if (!HONOR_SNANS (type))
190 (negate @0)))
191
192 /* If ARG1 is a constant, we can convert this to a multiply by the
193 reciprocal. This does not have the same rounding properties,
194 so only do this if -freciprocal-math. We can actually
195 always safely do it if ARG1 is a power of two, but it's hard to
196 tell if it is or not in a portable manner. */
197 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
198 (simplify
199 (rdiv @0 cst@1)
200 (if (optimize)
201 (if (flag_reciprocal_math
202 && !real_zerop (@1))
203 (with
204 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
205 (if (tem)
206 (mult @0 { tem; } ))))
207 (if (cst != COMPLEX_CST)
208 (with { tree inverse = exact_inverse (type, @1); }
209 (if (inverse)
210 (mult @0 { inverse; } )))))))
211
212 /* Same applies to modulo operations, but fold is inconsistent here
213 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
214 (for mod (ceil_mod floor_mod round_mod trunc_mod)
215 /* 0 % X is always zero. */
216 (simplify
217 (mod integer_zerop@0 @1)
218 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
219 (if (!integer_zerop (@1))
220 @0))
221 /* X % 1 is always zero. */
222 (simplify
223 (mod @0 integer_onep)
224 { build_zero_cst (type); })
225 /* X % -1 is zero. */
226 (simplify
227 (mod @0 integer_minus_onep@1)
228 (if (!TYPE_UNSIGNED (type))
229 { build_zero_cst (type); }))
230 /* (X % Y) % Y is just X % Y. */
231 (simplify
232 (mod (mod@2 @0 @1) @1)
233 @2))
234
235 /* X % -C is the same as X % C. */
236 (simplify
237 (trunc_mod @0 INTEGER_CST@1)
238 (if (TYPE_SIGN (type) == SIGNED
239 && !TREE_OVERFLOW (@1)
240 && wi::neg_p (@1)
241 && !TYPE_OVERFLOW_TRAPS (type)
242 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
243 && !sign_bit_p (@1, @1))
244 (trunc_mod @0 (negate @1))))
245
246 /* X % -Y is the same as X % Y. */
247 (simplify
248 (trunc_mod @0 (convert? (negate @1)))
249 (if (!TYPE_UNSIGNED (type)
250 && !TYPE_OVERFLOW_TRAPS (type)
251 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
252 (trunc_mod @0 (convert @1))))
253
254 /* X - (X / Y) * Y is the same as X % Y. */
255 (simplify
256 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
257 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
258 (trunc_mod (convert @0) (convert @1))))
259
260 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
261 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
262 Also optimize A % (C << N) where C is a power of 2,
263 to A & ((C << N) - 1). */
264 (match (power_of_two_cand @1)
265 INTEGER_CST@1)
266 (match (power_of_two_cand @1)
267 (lshift INTEGER_CST@1 @2))
268 (for mod (trunc_mod floor_mod)
269 (simplify
270 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
271 (if ((TYPE_UNSIGNED (type)
272 || tree_expr_nonnegative_p (@0))
273 && tree_nop_conversion_p (type, TREE_TYPE (@3))
274 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
275 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
276
277 /* X % Y is smaller than Y. */
278 (for cmp (lt ge)
279 (simplify
280 (cmp (trunc_mod @0 @1) @1)
281 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
282 { constant_boolean_node (cmp == LT_EXPR, type); })))
283 (for cmp (gt le)
284 (simplify
285 (cmp @1 (trunc_mod @0 @1))
286 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
287 { constant_boolean_node (cmp == GT_EXPR, type); })))
288
289 /* x | ~0 -> ~0 */
290 (simplify
291 (bit_ior @0 integer_all_onesp@1)
292 @1)
293
294 /* x & 0 -> 0 */
295 (simplify
296 (bit_and @0 integer_zerop@1)
297 @1)
298
299 /* ~x | x -> -1 */
300 /* ~x ^ x -> -1 */
301 /* ~x + x -> -1 */
302 (for op (bit_ior bit_xor plus)
303 (simplify
304 (op:c (convert? @0) (convert? (bit_not @0)))
305 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
306
307 /* x ^ x -> 0 */
308 (simplify
309 (bit_xor @0 @0)
310 { build_zero_cst (type); })
311
312 /* Canonicalize X ^ ~0 to ~X. */
313 (simplify
314 (bit_xor @0 integer_all_onesp@1)
315 (bit_not @0))
316
317 /* x & ~0 -> x */
318 (simplify
319 (bit_and @0 integer_all_onesp)
320 (non_lvalue @0))
321
322 /* x & x -> x, x | x -> x */
323 (for bitop (bit_and bit_ior)
324 (simplify
325 (bitop @0 @0)
326 (non_lvalue @0)))
327
328 /* x + (x & 1) -> (x + 1) & ~1 */
329 (simplify
330 (plus:c @0 (bit_and@2 @0 integer_onep@1))
331 (if (single_use (@2))
332 (bit_and (plus @0 @1) (bit_not @1))))
333
334 /* x & ~(x & y) -> x & ~y */
335 /* x | ~(x | y) -> x | ~y */
336 (for bitop (bit_and bit_ior)
337 (simplify
338 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
339 (if (single_use (@2))
340 (bitop @0 (bit_not @1)))))
341
342 /* (x | y) & ~x -> y & ~x */
343 /* (x & y) | ~x -> y | ~x */
344 (for bitop (bit_and bit_ior)
345 rbitop (bit_ior bit_and)
346 (simplify
347 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
348 (bitop @1 @2)))
349
350 /* (x & y) ^ (x | y) -> x ^ y */
351 (simplify
352 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
353 (bit_xor @0 @1))
354
355 /* (x ^ y) ^ (x | y) -> x & y */
356 (simplify
357 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
358 (bit_and @0 @1))
359
360 /* (x & y) + (x ^ y) -> x | y */
361 /* (x & y) | (x ^ y) -> x | y */
362 /* (x & y) ^ (x ^ y) -> x | y */
363 (for op (plus bit_ior bit_xor)
364 (simplify
365 (op:c (bit_and @0 @1) (bit_xor @0 @1))
366 (bit_ior @0 @1)))
367
368 /* (x & y) + (x | y) -> x + y */
369 (simplify
370 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
371 (plus @0 @1))
372
373 /* (x + y) - (x | y) -> x & y */
374 (simplify
375 (minus (plus @0 @1) (bit_ior @0 @1))
376 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
377 && !TYPE_SATURATING (type))
378 (bit_and @0 @1)))
379
380 /* (x + y) - (x & y) -> x | y */
381 (simplify
382 (minus (plus @0 @1) (bit_and @0 @1))
383 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
384 && !TYPE_SATURATING (type))
385 (bit_ior @0 @1)))
386
387 /* (x | y) - (x ^ y) -> x & y */
388 (simplify
389 (minus (bit_ior @0 @1) (bit_xor @0 @1))
390 (bit_and @0 @1))
391
392 /* (x | y) - (x & y) -> x ^ y */
393 (simplify
394 (minus (bit_ior @0 @1) (bit_and @0 @1))
395 (bit_xor @0 @1))
396
397 /* (x | y) & ~(x & y) -> x ^ y */
398 (simplify
399 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
400 (bit_xor @0 @1))
401
402 /* (x | y) & (~x ^ y) -> x & y */
403 (simplify
404 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
405 (bit_and @0 @1))
406
407 /* ~x & ~y -> ~(x | y)
408 ~x | ~y -> ~(x & y) */
409 (for op (bit_and bit_ior)
410 rop (bit_ior bit_and)
411 (simplify
412 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
413 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
414 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
415 (bit_not (rop (convert @0) (convert @1))))))
416
417 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
418 with a constant, and the two constants have no bits in common,
419 we should treat this as a BIT_IOR_EXPR since this may produce more
420 simplifications. */
421 (simplify
422 (bit_xor (convert1? (bit_and@4 @0 INTEGER_CST@1))
423 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
424 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
425 && tree_nop_conversion_p (type, TREE_TYPE (@2))
426 && wi::bit_and (@1, @3) == 0)
427 (bit_ior (convert @4) (convert @5))))
428
429 /* (X | Y) ^ X -> Y & ~ X*/
430 (simplify
431 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
432 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
433 (convert (bit_and @1 (bit_not @0)))))
434
435 /* Convert ~X ^ ~Y to X ^ Y. */
436 (simplify
437 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
438 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
439 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
440 (bit_xor (convert @0) (convert @1))))
441
442 /* Convert ~X ^ C to X ^ ~C. */
443 (simplify
444 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
445 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
446 (bit_xor (convert @0) (bit_not @1))))
447
448 /* Fold (X & Y) ^ Y as ~X & Y. */
449 (simplify
450 (bit_xor:c (bit_and:c @0 @1) @1)
451 (bit_and (bit_not @0) @1))
452
453
454 (simplify
455 (abs (abs@1 @0))
456 @1)
457 (simplify
458 (abs (negate @0))
459 (abs @0))
460 (simplify
461 (abs tree_expr_nonnegative_p@0)
462 @0)
463
464 /* A - B -> A + (-B) if B is easily negatable. This just covers
465 very few cases of "easily negatable", effectively inlining negate_expr_p. */
466 (simplify
467 (minus @0 INTEGER_CST@1)
468 (if ((INTEGRAL_TYPE_P (type)
469 && TYPE_OVERFLOW_WRAPS (type))
470 || (!TYPE_OVERFLOW_SANITIZED (type)
471 && may_negate_without_overflow_p (@1)))
472 (plus @0 (negate @1))))
473 (simplify
474 (minus @0 REAL_CST@1)
475 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
476 (plus @0 (negate @1))))
477 (simplify
478 (minus @0 VECTOR_CST@1)
479 (if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
480 (plus @0 (negate @1))))
481
482
483 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
484 when profitable.
485 For bitwise binary operations apply operand conversions to the
486 binary operation result instead of to the operands. This allows
487 to combine successive conversions and bitwise binary operations.
488 We combine the above two cases by using a conditional convert. */
489 (for bitop (bit_and bit_ior bit_xor)
490 (simplify
491 (bitop (convert @0) (convert? @1))
492 (if (((TREE_CODE (@1) == INTEGER_CST
493 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
494 && int_fits_type_p (@1, TREE_TYPE (@0)))
495 || types_match (@0, @1))
496 /* ??? This transform conflicts with fold-const.c doing
497 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
498 constants (if x has signed type, the sign bit cannot be set
499 in c). This folds extension into the BIT_AND_EXPR.
500 Restrict it to GIMPLE to avoid endless recursions. */
501 && (bitop != BIT_AND_EXPR || GIMPLE)
502 && (/* That's a good idea if the conversion widens the operand, thus
503 after hoisting the conversion the operation will be narrower. */
504 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
505 /* It's also a good idea if the conversion is to a non-integer
506 mode. */
507 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
508 /* Or if the precision of TO is not the same as the precision
509 of its mode. */
510 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
511 (convert (bitop @0 (convert @1))))))
512
513 (for bitop (bit_and bit_ior)
514 rbitop (bit_ior bit_and)
515 /* (x | y) & x -> x */
516 /* (x & y) | x -> x */
517 (simplify
518 (bitop:c (rbitop:c @0 @1) @0)
519 @0)
520 /* (~x | y) & x -> x & y */
521 /* (~x & y) | x -> x | y */
522 (simplify
523 (bitop:c (rbitop:c (bit_not @0) @1) @0)
524 (bitop @0 @1)))
525
526 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
527 (for bitop (bit_and bit_ior bit_xor)
528 (simplify
529 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
530 (bit_and (bitop @0 @2) @1)))
531
532 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
533 (simplify
534 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
535 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
536
537 /* Combine successive equal operations with constants. */
538 (for bitop (bit_and bit_ior bit_xor)
539 (simplify
540 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
541 (bitop @0 (bitop @1 @2))))
542
543 /* Try simple folding for X op !X, and X op X with the help
544 of the truth_valued_p and logical_inverted_value predicates. */
545 (match truth_valued_p
546 @0
547 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
548 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
549 (match truth_valued_p
550 (op @0 @1)))
551 (match truth_valued_p
552 (truth_not @0))
553
554 (match (logical_inverted_value @0)
555 (bit_not truth_valued_p@0))
556 (match (logical_inverted_value @0)
557 (eq @0 integer_zerop))
558 (match (logical_inverted_value @0)
559 (ne truth_valued_p@0 integer_truep))
560 (match (logical_inverted_value @0)
561 (bit_xor truth_valued_p@0 integer_truep))
562
563 /* X & !X -> 0. */
564 (simplify
565 (bit_and:c @0 (logical_inverted_value @0))
566 { build_zero_cst (type); })
567 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
568 (for op (bit_ior bit_xor)
569 (simplify
570 (op:c truth_valued_p@0 (logical_inverted_value @0))
571 { constant_boolean_node (true, type); }))
572
573 /* If arg1 and arg2 are booleans (or any single bit type)
574 then try to simplify:
575
576 (~X & Y) -> X < Y
577 (X & ~Y) -> Y < X
578 (~X | Y) -> X <= Y
579 (X | ~Y) -> Y <= X
580
581 But only do this if our result feeds into a comparison as
582 this transformation is not always a win, particularly on
583 targets with and-not instructions.
584 -> simplify_bitwise_binary_boolean */
585 (simplify
586 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
587 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
588 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
589 (lt @0 @1)))
590 (simplify
591 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
592 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
593 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
594 (le @0 @1)))
595
596 /* ~~x -> x */
597 (simplify
598 (bit_not (bit_not @0))
599 @0)
600
601 /* Convert ~ (-A) to A - 1. */
602 (simplify
603 (bit_not (convert? (negate @0)))
604 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
605 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
606
607 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
608 (simplify
609 (bit_not (convert? (minus @0 integer_each_onep)))
610 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
611 (convert (negate @0))))
612 (simplify
613 (bit_not (convert? (plus @0 integer_all_onesp)))
614 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
615 (convert (negate @0))))
616
617 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
618 (simplify
619 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
620 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
621 (convert (bit_xor @0 (bit_not @1)))))
622 (simplify
623 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
624 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
625 (convert (bit_xor @0 @1))))
626
627 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
628 (simplify
629 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
630 (if (single_use (@3) && single_use (@4))
631 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
632
633
634 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
635 (simplify
636 (pointer_plus (pointer_plus@2 @0 @1) @3)
637 (if (single_use (@2)
638 || (TREE_CODE (@1) == INTEGER_CST && TREE_CODE (@3) == INTEGER_CST))
639 (pointer_plus @0 (plus @1 @3))))
640
641 /* Pattern match
642 tem1 = (long) ptr1;
643 tem2 = (long) ptr2;
644 tem3 = tem2 - tem1;
645 tem4 = (unsigned long) tem3;
646 tem5 = ptr1 + tem4;
647 and produce
648 tem5 = ptr2; */
649 (simplify
650 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
651 /* Conditionally look through a sign-changing conversion. */
652 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
653 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
654 || (GENERIC && type == TREE_TYPE (@1))))
655 @1))
656
657 /* Pattern match
658 tem = (sizetype) ptr;
659 tem = tem & algn;
660 tem = -tem;
661 ... = ptr p+ tem;
662 and produce the simpler and easier to analyze with respect to alignment
663 ... = ptr & ~algn; */
664 (simplify
665 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
666 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
667 (bit_and @0 { algn; })))
668
669 /* Try folding difference of addresses. */
670 (simplify
671 (minus (convert ADDR_EXPR@0) (convert @1))
672 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
673 (with { HOST_WIDE_INT diff; }
674 (if (ptr_difference_const (@0, @1, &diff))
675 { build_int_cst_type (type, diff); }))))
676 (simplify
677 (minus (convert @0) (convert ADDR_EXPR@1))
678 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
679 (with { HOST_WIDE_INT diff; }
680 (if (ptr_difference_const (@0, @1, &diff))
681 { build_int_cst_type (type, diff); }))))
682
683 /* If arg0 is derived from the address of an object or function, we may
684 be able to fold this expression using the object or function's
685 alignment. */
686 (simplify
687 (bit_and (convert? @0) INTEGER_CST@1)
688 (if (POINTER_TYPE_P (TREE_TYPE (@0))
689 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
690 (with
691 {
692 unsigned int align;
693 unsigned HOST_WIDE_INT bitpos;
694 get_pointer_alignment_1 (@0, &align, &bitpos);
695 }
696 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
697 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
698
699
700 /* We can't reassociate at all for saturating types. */
701 (if (!TYPE_SATURATING (type))
702
703 /* Contract negates. */
704 /* A + (-B) -> A - B */
705 (simplify
706 (plus:c (convert1? @0) (convert2? (negate @1)))
707 /* Apply STRIP_NOPS on @0 and the negate. */
708 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
709 && tree_nop_conversion_p (type, TREE_TYPE (@1))
710 && !TYPE_OVERFLOW_SANITIZED (type))
711 (minus (convert @0) (convert @1))))
712 /* A - (-B) -> A + B */
713 (simplify
714 (minus (convert1? @0) (convert2? (negate @1)))
715 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
716 && tree_nop_conversion_p (type, TREE_TYPE (@1))
717 && !TYPE_OVERFLOW_SANITIZED (type))
718 (plus (convert @0) (convert @1))))
719 /* -(-A) -> A */
720 (simplify
721 (negate (convert? (negate @1)))
722 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
723 && !TYPE_OVERFLOW_SANITIZED (type))
724 (convert @1)))
725
726 /* We can't reassociate floating-point unless -fassociative-math
727 or fixed-point plus or minus because of saturation to +-Inf. */
728 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
729 && !FIXED_POINT_TYPE_P (type))
730
731 /* Match patterns that allow contracting a plus-minus pair
732 irrespective of overflow issues. */
733 /* (A +- B) - A -> +- B */
734 /* (A +- B) -+ B -> A */
735 /* A - (A +- B) -> -+ B */
736 /* A +- (B -+ A) -> +- B */
737 (simplify
738 (minus (plus:c @0 @1) @0)
739 @1)
740 (simplify
741 (minus (minus @0 @1) @0)
742 (negate @1))
743 (simplify
744 (plus:c (minus @0 @1) @1)
745 @0)
746 (simplify
747 (minus @0 (plus:c @0 @1))
748 (negate @1))
749 (simplify
750 (minus @0 (minus @0 @1))
751 @1)
752
753 /* (A +- CST) +- CST -> A + CST */
754 (for outer_op (plus minus)
755 (for inner_op (plus minus)
756 (simplify
757 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
758 /* If the constant operation overflows we cannot do the transform
759 as we would introduce undefined overflow, for example
760 with (a - 1) + INT_MIN. */
761 (with { tree cst = fold_binary (outer_op == inner_op
762 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
763 (if (cst && !TREE_OVERFLOW (cst))
764 (inner_op @0 { cst; } ))))))
765
766 /* (CST - A) +- CST -> CST - A */
767 (for outer_op (plus minus)
768 (simplify
769 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
770 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
771 (if (cst && !TREE_OVERFLOW (cst))
772 (minus { cst; } @0)))))
773
774 /* ~A + A -> -1 */
775 (simplify
776 (plus:c (bit_not @0) @0)
777 (if (!TYPE_OVERFLOW_TRAPS (type))
778 { build_all_ones_cst (type); }))
779
780 /* ~A + 1 -> -A */
781 (simplify
782 (plus (convert? (bit_not @0)) integer_each_onep)
783 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
784 (negate (convert @0))))
785
786 /* -A - 1 -> ~A */
787 (simplify
788 (minus (convert? (negate @0)) integer_each_onep)
789 (if (!TYPE_OVERFLOW_TRAPS (type)
790 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
791 (bit_not (convert @0))))
792
793 /* -1 - A -> ~A */
794 (simplify
795 (minus integer_all_onesp @0)
796 (bit_not @0))
797
798 /* (T)(P + A) - (T)P -> (T) A */
799 (for add (plus pointer_plus)
800 (simplify
801 (minus (convert (add @0 @1))
802 (convert @0))
803 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
804 /* For integer types, if A has a smaller type
805 than T the result depends on the possible
806 overflow in P + A.
807 E.g. T=size_t, A=(unsigned)429497295, P>0.
808 However, if an overflow in P + A would cause
809 undefined behavior, we can assume that there
810 is no overflow. */
811 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
812 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
813 /* For pointer types, if the conversion of A to the
814 final type requires a sign- or zero-extension,
815 then we have to punt - it is not defined which
816 one is correct. */
817 || (POINTER_TYPE_P (TREE_TYPE (@0))
818 && TREE_CODE (@1) == INTEGER_CST
819 && tree_int_cst_sign_bit (@1) == 0))
820 (convert @1))))))
821
822
823 /* Simplifications of MIN_EXPR and MAX_EXPR. */
824
825 (for minmax (min max)
826 (simplify
827 (minmax @0 @0)
828 @0))
829 (simplify
830 (min @0 @1)
831 (if (INTEGRAL_TYPE_P (type)
832 && TYPE_MIN_VALUE (type)
833 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
834 @1))
835 (simplify
836 (max @0 @1)
837 (if (INTEGRAL_TYPE_P (type)
838 && TYPE_MAX_VALUE (type)
839 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
840 @1))
841
842
843 /* Simplifications of shift and rotates. */
844
845 (for rotate (lrotate rrotate)
846 (simplify
847 (rotate integer_all_onesp@0 @1)
848 @0))
849
850 /* Optimize -1 >> x for arithmetic right shifts. */
851 (simplify
852 (rshift integer_all_onesp@0 @1)
853 (if (!TYPE_UNSIGNED (type)
854 && tree_expr_nonnegative_p (@1))
855 @0))
856
857 (for shiftrotate (lrotate rrotate lshift rshift)
858 (simplify
859 (shiftrotate @0 integer_zerop)
860 (non_lvalue @0))
861 (simplify
862 (shiftrotate integer_zerop@0 @1)
863 @0)
864 /* Prefer vector1 << scalar to vector1 << vector2
865 if vector2 is uniform. */
866 (for vec (VECTOR_CST CONSTRUCTOR)
867 (simplify
868 (shiftrotate @0 vec@1)
869 (with { tree tem = uniform_vector_p (@1); }
870 (if (tem)
871 (shiftrotate @0 { tem; }))))))
872
873 /* Rewrite an LROTATE_EXPR by a constant into an
874 RROTATE_EXPR by a new constant. */
875 (simplify
876 (lrotate @0 INTEGER_CST@1)
877 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
878 build_int_cst (TREE_TYPE (@1),
879 element_precision (type)), @1); }))
880
881 /* ((1 << A) & 1) != 0 -> A == 0
882 ((1 << A) & 1) == 0 -> A != 0 */
883 (for cmp (ne eq)
884 icmp (eq ne)
885 (simplify
886 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
887 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
888
889 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
890 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
891 if CST2 != 0. */
892 (for cmp (ne eq)
893 (simplify
894 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
895 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
896 (if (cand < 0
897 || (!integer_zerop (@2)
898 && wi::ne_p (wi::lshift (@0, cand), @2)))
899 { constant_boolean_node (cmp == NE_EXPR, type); })
900 (if (!integer_zerop (@2)
901 && wi::eq_p (wi::lshift (@0, cand), @2))
902 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
903
904 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
905 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
906 if the new mask might be further optimized. */
907 (for shift (lshift rshift)
908 (simplify
909 (bit_and (convert?@4 (shift@5 (convert1?@3 @0) INTEGER_CST@1)) INTEGER_CST@2)
910 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
911 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
912 && tree_fits_uhwi_p (@1)
913 && tree_to_uhwi (@1) > 0
914 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
915 (with
916 {
917 unsigned int shiftc = tree_to_uhwi (@1);
918 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
919 unsigned HOST_WIDE_INT newmask, zerobits = 0;
920 tree shift_type = TREE_TYPE (@3);
921 unsigned int prec;
922
923 if (shift == LSHIFT_EXPR)
924 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
925 else if (shift == RSHIFT_EXPR
926 && (TYPE_PRECISION (shift_type)
927 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
928 {
929 prec = TYPE_PRECISION (TREE_TYPE (@3));
930 tree arg00 = @0;
931 /* See if more bits can be proven as zero because of
932 zero extension. */
933 if (@3 != @0
934 && TYPE_UNSIGNED (TREE_TYPE (@0)))
935 {
936 tree inner_type = TREE_TYPE (@0);
937 if ((TYPE_PRECISION (inner_type)
938 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
939 && TYPE_PRECISION (inner_type) < prec)
940 {
941 prec = TYPE_PRECISION (inner_type);
942 /* See if we can shorten the right shift. */
943 if (shiftc < prec)
944 shift_type = inner_type;
945 /* Otherwise X >> C1 is all zeros, so we'll optimize
946 it into (X, 0) later on by making sure zerobits
947 is all ones. */
948 }
949 }
950 zerobits = ~(unsigned HOST_WIDE_INT) 0;
951 if (shiftc < prec)
952 {
953 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
954 zerobits <<= prec - shiftc;
955 }
956 /* For arithmetic shift if sign bit could be set, zerobits
957 can contain actually sign bits, so no transformation is
958 possible, unless MASK masks them all away. In that
959 case the shift needs to be converted into logical shift. */
960 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
961 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
962 {
963 if ((mask & zerobits) == 0)
964 shift_type = unsigned_type_for (TREE_TYPE (@3));
965 else
966 zerobits = 0;
967 }
968 }
969 }
970 /* ((X << 16) & 0xff00) is (X, 0). */
971 (if ((mask & zerobits) == mask)
972 { build_int_cst (type, 0); })
973 (with { newmask = mask | zerobits; }
974 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
975 (with
976 {
977 /* Only do the transformation if NEWMASK is some integer
978 mode's mask. */
979 for (prec = BITS_PER_UNIT;
980 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
981 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
982 break;
983 }
984 (if (prec < HOST_BITS_PER_WIDE_INT
985 || newmask == ~(unsigned HOST_WIDE_INT) 0)
986 (with
987 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
988 (if (!tree_int_cst_equal (newmaskt, @2))
989 (if (shift_type != TREE_TYPE (@3)
990 && single_use (@4) && single_use (@5))
991 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
992 (if (shift_type == TREE_TYPE (@3))
993 (bit_and @4 { newmaskt; }))))))))))))
994
995 /* Simplifications of conversions. */
996
997 /* Basic strip-useless-type-conversions / strip_nops. */
998 (for cvt (convert view_convert float fix_trunc)
999 (simplify
1000 (cvt @0)
1001 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1002 || (GENERIC && type == TREE_TYPE (@0)))
1003 @0)))
1004
1005 /* Contract view-conversions. */
1006 (simplify
1007 (view_convert (view_convert @0))
1008 (view_convert @0))
1009
1010 /* For integral conversions with the same precision or pointer
1011 conversions use a NOP_EXPR instead. */
1012 (simplify
1013 (view_convert @0)
1014 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1015 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1016 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1017 (convert @0)))
1018
1019 /* Strip inner integral conversions that do not change precision or size. */
1020 (simplify
1021 (view_convert (convert@0 @1))
1022 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1023 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1024 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1025 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1026 (view_convert @1)))
1027
1028 /* Re-association barriers around constants and other re-association
1029 barriers can be removed. */
1030 (simplify
1031 (paren CONSTANT_CLASS_P@0)
1032 @0)
1033 (simplify
1034 (paren (paren@1 @0))
1035 @1)
1036
1037 /* Handle cases of two conversions in a row. */
1038 (for ocvt (convert float fix_trunc)
1039 (for icvt (convert float)
1040 (simplify
1041 (ocvt (icvt@1 @0))
1042 (with
1043 {
1044 tree inside_type = TREE_TYPE (@0);
1045 tree inter_type = TREE_TYPE (@1);
1046 int inside_int = INTEGRAL_TYPE_P (inside_type);
1047 int inside_ptr = POINTER_TYPE_P (inside_type);
1048 int inside_float = FLOAT_TYPE_P (inside_type);
1049 int inside_vec = VECTOR_TYPE_P (inside_type);
1050 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1051 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1052 int inter_int = INTEGRAL_TYPE_P (inter_type);
1053 int inter_ptr = POINTER_TYPE_P (inter_type);
1054 int inter_float = FLOAT_TYPE_P (inter_type);
1055 int inter_vec = VECTOR_TYPE_P (inter_type);
1056 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1057 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1058 int final_int = INTEGRAL_TYPE_P (type);
1059 int final_ptr = POINTER_TYPE_P (type);
1060 int final_float = FLOAT_TYPE_P (type);
1061 int final_vec = VECTOR_TYPE_P (type);
1062 unsigned int final_prec = TYPE_PRECISION (type);
1063 int final_unsignedp = TYPE_UNSIGNED (type);
1064 }
1065 /* In addition to the cases of two conversions in a row
1066 handled below, if we are converting something to its own
1067 type via an object of identical or wider precision, neither
1068 conversion is needed. */
1069 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1070 || (GENERIC
1071 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1072 && (((inter_int || inter_ptr) && final_int)
1073 || (inter_float && final_float))
1074 && inter_prec >= final_prec)
1075 (ocvt @0))
1076
1077 /* Likewise, if the intermediate and initial types are either both
1078 float or both integer, we don't need the middle conversion if the
1079 former is wider than the latter and doesn't change the signedness
1080 (for integers). Avoid this if the final type is a pointer since
1081 then we sometimes need the middle conversion. Likewise if the
1082 final type has a precision not equal to the size of its mode. */
1083 (if (((inter_int && inside_int) || (inter_float && inside_float))
1084 && (final_int || final_float)
1085 && inter_prec >= inside_prec
1086 && (inter_float || inter_unsignedp == inside_unsignedp)
1087 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1088 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1089 (ocvt @0))
1090
1091 /* If we have a sign-extension of a zero-extended value, we can
1092 replace that by a single zero-extension. Likewise if the
1093 final conversion does not change precision we can drop the
1094 intermediate conversion. */
1095 (if (inside_int && inter_int && final_int
1096 && ((inside_prec < inter_prec && inter_prec < final_prec
1097 && inside_unsignedp && !inter_unsignedp)
1098 || final_prec == inter_prec))
1099 (ocvt @0))
1100
1101 /* Two conversions in a row are not needed unless:
1102 - some conversion is floating-point (overstrict for now), or
1103 - some conversion is a vector (overstrict for now), or
1104 - the intermediate type is narrower than both initial and
1105 final, or
1106 - the intermediate type and innermost type differ in signedness,
1107 and the outermost type is wider than the intermediate, or
1108 - the initial type is a pointer type and the precisions of the
1109 intermediate and final types differ, or
1110 - the final type is a pointer type and the precisions of the
1111 initial and intermediate types differ. */
1112 (if (! inside_float && ! inter_float && ! final_float
1113 && ! inside_vec && ! inter_vec && ! final_vec
1114 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1115 && ! (inside_int && inter_int
1116 && inter_unsignedp != inside_unsignedp
1117 && inter_prec < final_prec)
1118 && ((inter_unsignedp && inter_prec > inside_prec)
1119 == (final_unsignedp && final_prec > inter_prec))
1120 && ! (inside_ptr && inter_prec != final_prec)
1121 && ! (final_ptr && inside_prec != inter_prec)
1122 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1123 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1124 (ocvt @0))
1125
1126 /* A truncation to an unsigned type (a zero-extension) should be
1127 canonicalized as bitwise and of a mask. */
1128 (if (final_int && inter_int && inside_int
1129 && final_prec == inside_prec
1130 && final_prec > inter_prec
1131 && inter_unsignedp)
1132 (convert (bit_and @0 { wide_int_to_tree
1133 (inside_type,
1134 wi::mask (inter_prec, false,
1135 TYPE_PRECISION (inside_type))); })))
1136
1137 /* If we are converting an integer to a floating-point that can
1138 represent it exactly and back to an integer, we can skip the
1139 floating-point conversion. */
1140 (if (GIMPLE /* PR66211 */
1141 && inside_int && inter_float && final_int &&
1142 (unsigned) significand_size (TYPE_MODE (inter_type))
1143 >= inside_prec - !inside_unsignedp)
1144 (convert @0))))))
1145
1146 /* If we have a narrowing conversion to an integral type that is fed by a
1147 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1148 masks off bits outside the final type (and nothing else). */
1149 (simplify
1150 (convert (bit_and @0 INTEGER_CST@1))
1151 (if (INTEGRAL_TYPE_P (type)
1152 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1153 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1154 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1155 TYPE_PRECISION (type)), 0))
1156 (convert @0)))
1157
1158
1159 /* (X /[ex] A) * A -> X. */
1160 (simplify
1161 (mult (convert? (exact_div @0 @1)) @1)
1162 /* Look through a sign-changing conversion. */
1163 (convert @0))
1164
1165 /* Canonicalization of binary operations. */
1166
1167 /* Convert X + -C into X - C. */
1168 (simplify
1169 (plus @0 REAL_CST@1)
1170 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1171 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1172 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1173 (minus @0 { tem; })))))
1174
1175 /* Convert x+x into x*2.0. */
1176 (simplify
1177 (plus @0 @0)
1178 (if (SCALAR_FLOAT_TYPE_P (type))
1179 (mult @0 { build_real (type, dconst2); })))
1180
1181 (simplify
1182 (minus integer_zerop @1)
1183 (negate @1))
1184
1185 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1186 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1187 (-ARG1 + ARG0) reduces to -ARG1. */
1188 (simplify
1189 (minus real_zerop@0 @1)
1190 (if (fold_real_zero_addition_p (type, @0, 0))
1191 (negate @1)))
1192
1193 /* Transform x * -1 into -x. */
1194 (simplify
1195 (mult @0 integer_minus_onep)
1196 (negate @0))
1197
1198 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1199 (simplify
1200 (complex (realpart @0) (imagpart @0))
1201 @0)
1202 (simplify
1203 (realpart (complex @0 @1))
1204 @0)
1205 (simplify
1206 (imagpart (complex @0 @1))
1207 @1)
1208
1209
1210 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1211 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1212 (simplify
1213 (bswap (bswap @0))
1214 @0)
1215 (simplify
1216 (bswap (bit_not (bswap @0)))
1217 (bit_not @0))
1218 (for bitop (bit_xor bit_ior bit_and)
1219 (simplify
1220 (bswap (bitop:c (bswap @0) @1))
1221 (bitop @0 (bswap @1)))))
1222
1223
1224 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1225
1226 /* Simplify constant conditions.
1227 Only optimize constant conditions when the selected branch
1228 has the same type as the COND_EXPR. This avoids optimizing
1229 away "c ? x : throw", where the throw has a void type.
1230 Note that we cannot throw away the fold-const.c variant nor
1231 this one as we depend on doing this transform before possibly
1232 A ? B : B -> B triggers and the fold-const.c one can optimize
1233 0 ? A : B to B even if A has side-effects. Something
1234 genmatch cannot handle. */
1235 (simplify
1236 (cond INTEGER_CST@0 @1 @2)
1237 (if (integer_zerop (@0)
1238 && (!VOID_TYPE_P (TREE_TYPE (@2))
1239 || VOID_TYPE_P (type)))
1240 @2)
1241 (if (!integer_zerop (@0)
1242 && (!VOID_TYPE_P (TREE_TYPE (@1))
1243 || VOID_TYPE_P (type)))
1244 @1))
1245 (simplify
1246 (vec_cond VECTOR_CST@0 @1 @2)
1247 (if (integer_all_onesp (@0))
1248 @1)
1249 (if (integer_zerop (@0))
1250 @2))
1251
1252 (for cnd (cond vec_cond)
1253 /* A ? B : (A ? X : C) -> A ? B : C. */
1254 (simplify
1255 (cnd @0 (cnd @0 @1 @2) @3)
1256 (cnd @0 @1 @3))
1257 (simplify
1258 (cnd @0 @1 (cnd @0 @2 @3))
1259 (cnd @0 @1 @3))
1260
1261 /* A ? B : B -> B. */
1262 (simplify
1263 (cnd @0 @1 @1)
1264 @1)
1265
1266 /* !A ? B : C -> A ? C : B. */
1267 (simplify
1268 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1269 (cnd @0 @2 @1)))
1270
1271 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1272 return all-1 or all-0 results. */
1273 /* ??? We could instead convert all instances of the vec_cond to negate,
1274 but that isn't necessarily a win on its own. */
1275 (simplify
1276 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1277 (if (VECTOR_TYPE_P (type)
1278 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1279 && (TYPE_MODE (TREE_TYPE (type))
1280 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1281 (minus @3 (view_convert @0))))
1282
1283 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1284 (simplify
1285 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1286 (if (VECTOR_TYPE_P (type)
1287 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1288 && (TYPE_MODE (TREE_TYPE (type))
1289 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1290 (plus @3 (view_convert @0))))
1291
1292
1293 /* Simplifications of comparisons. */
1294
1295 /* We can simplify a logical negation of a comparison to the
1296 inverted comparison. As we cannot compute an expression
1297 operator using invert_tree_comparison we have to simulate
1298 that with expression code iteration. */
1299 (for cmp (tcc_comparison)
1300 icmp (inverted_tcc_comparison)
1301 ncmp (inverted_tcc_comparison_with_nans)
1302 /* Ideally we'd like to combine the following two patterns
1303 and handle some more cases by using
1304 (logical_inverted_value (cmp @0 @1))
1305 here but for that genmatch would need to "inline" that.
1306 For now implement what forward_propagate_comparison did. */
1307 (simplify
1308 (bit_not (cmp @0 @1))
1309 (if (VECTOR_TYPE_P (type)
1310 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1311 /* Comparison inversion may be impossible for trapping math,
1312 invert_tree_comparison will tell us. But we can't use
1313 a computed operator in the replacement tree thus we have
1314 to play the trick below. */
1315 (with { enum tree_code ic = invert_tree_comparison
1316 (cmp, HONOR_NANS (@0)); }
1317 (if (ic == icmp)
1318 (icmp @0 @1))
1319 (if (ic == ncmp)
1320 (ncmp @0 @1)))))
1321 (simplify
1322 (bit_xor (cmp @0 @1) integer_truep)
1323 (with { enum tree_code ic = invert_tree_comparison
1324 (cmp, HONOR_NANS (@0)); }
1325 (if (ic == icmp)
1326 (icmp @0 @1))
1327 (if (ic == ncmp)
1328 (ncmp @0 @1)))))
1329
1330 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1331 ??? The transformation is valid for the other operators if overflow
1332 is undefined for the type, but performing it here badly interacts
1333 with the transformation in fold_cond_expr_with_comparison which
1334 attempts to synthetize ABS_EXPR. */
1335 (for cmp (eq ne)
1336 (simplify
1337 (cmp (minus@2 @0 @1) integer_zerop)
1338 (if (single_use (@2))
1339 (cmp @0 @1))))
1340
1341 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1342 signed arithmetic case. That form is created by the compiler
1343 often enough for folding it to be of value. One example is in
1344 computing loop trip counts after Operator Strength Reduction. */
1345 (for cmp (simple_comparison)
1346 scmp (swapped_simple_comparison)
1347 (simplify
1348 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1349 /* Handle unfolded multiplication by zero. */
1350 (if (integer_zerop (@1))
1351 (cmp @1 @2))
1352 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1353 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1354 /* If @1 is negative we swap the sense of the comparison. */
1355 (if (tree_int_cst_sgn (@1) < 0)
1356 (scmp @0 @2))
1357 (cmp @0 @2))))
1358
1359 /* Simplify comparison of something with itself. For IEEE
1360 floating-point, we can only do some of these simplifications. */
1361 (simplify
1362 (eq @0 @0)
1363 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1364 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1365 { constant_boolean_node (true, type); }))
1366 (for cmp (ge le)
1367 (simplify
1368 (cmp @0 @0)
1369 (eq @0 @0)))
1370 (for cmp (ne gt lt)
1371 (simplify
1372 (cmp @0 @0)
1373 (if (cmp != NE_EXPR
1374 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1375 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1376 { constant_boolean_node (false, type); })))
1377
1378 /* Fold ~X op ~Y as Y op X. */
1379 (for cmp (simple_comparison)
1380 (simplify
1381 (cmp (bit_not @0) (bit_not @1))
1382 (cmp @1 @0)))
1383
1384 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1385 (for cmp (simple_comparison)
1386 scmp (swapped_simple_comparison)
1387 (simplify
1388 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1389 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1390 (scmp @0 (bit_not @1)))))
1391
1392 (for cmp (simple_comparison)
1393 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1394 (simplify
1395 (cmp (convert@2 @0) (convert? @1))
1396 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1397 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1398 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1399 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1400 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1401 (with
1402 {
1403 tree type1 = TREE_TYPE (@1);
1404 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1405 {
1406 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1407 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1408 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1409 type1 = float_type_node;
1410 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1411 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1412 type1 = double_type_node;
1413 }
1414 tree newtype
1415 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1416 ? TREE_TYPE (@0) : type1);
1417 }
1418 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1419 (cmp (convert:newtype @0) (convert:newtype @1))))))
1420
1421 (simplify
1422 (cmp @0 REAL_CST@1)
1423 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1424 /* a CMP (-0) -> a CMP 0 */
1425 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1426 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1427 /* x != NaN is always true, other ops are always false. */
1428 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1429 && ! HONOR_SNANS (@1))
1430 { constant_boolean_node (cmp == NE_EXPR, type); })
1431 /* Fold comparisons against infinity. */
1432 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1433 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1434 (with
1435 {
1436 REAL_VALUE_TYPE max;
1437 enum tree_code code = cmp;
1438 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1439 if (neg)
1440 code = swap_tree_comparison (code);
1441 }
1442 /* x > +Inf is always false, if with ignore sNANs. */
1443 (if (code == GT_EXPR
1444 && ! HONOR_SNANS (@0))
1445 { constant_boolean_node (false, type); })
1446 (if (code == LE_EXPR)
1447 /* x <= +Inf is always true, if we don't case about NaNs. */
1448 (if (! HONOR_NANS (@0))
1449 { constant_boolean_node (true, type); })
1450 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
1451 (eq @0 @0))
1452 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1453 (if (code == EQ_EXPR || code == GE_EXPR)
1454 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1455 (if (neg)
1456 (lt @0 { build_real (TREE_TYPE (@0), max); }))
1457 (gt @0 { build_real (TREE_TYPE (@0), max); })))
1458 /* x < +Inf is always equal to x <= DBL_MAX. */
1459 (if (code == LT_EXPR)
1460 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1461 (if (neg)
1462 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1463 (le @0 { build_real (TREE_TYPE (@0), max); })))
1464 /* x != +Inf is always equal to !(x > DBL_MAX). */
1465 (if (code == NE_EXPR)
1466 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1467 (if (! HONOR_NANS (@0))
1468 (if (neg)
1469 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1470 (le @0 { build_real (TREE_TYPE (@0), max); }))
1471 (if (neg)
1472 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1473 { build_one_cst (type); }))
1474 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1475 { build_one_cst (type); }))))))
1476
1477 /* If this is a comparison of a real constant with a PLUS_EXPR
1478 or a MINUS_EXPR of a real constant, we can convert it into a
1479 comparison with a revised real constant as long as no overflow
1480 occurs when unsafe_math_optimizations are enabled. */
1481 (if (flag_unsafe_math_optimizations)
1482 (for op (plus minus)
1483 (simplify
1484 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1485 (with
1486 {
1487 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1488 TREE_TYPE (@1), @2, @1);
1489 }
1490 (if (!TREE_OVERFLOW (tem))
1491 (cmp @0 { tem; }))))))
1492
1493 /* Likewise, we can simplify a comparison of a real constant with
1494 a MINUS_EXPR whose first operand is also a real constant, i.e.
1495 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1496 floating-point types only if -fassociative-math is set. */
1497 (if (flag_associative_math)
1498 (simplify
1499 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
1500 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1501 (if (!TREE_OVERFLOW (tem))
1502 (cmp { tem; } @1)))))
1503
1504 /* Fold comparisons against built-in math functions. */
1505 (if (flag_unsafe_math_optimizations
1506 && ! flag_errno_math)
1507 (for sq (SQRT)
1508 (simplify
1509 (cmp (sq @0) REAL_CST@1)
1510 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1511 /* sqrt(x) < y is always false, if y is negative. */
1512 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1513 { constant_boolean_node (false, type); })
1514 /* sqrt(x) > y is always true, if y is negative and we
1515 don't care about NaNs, i.e. negative values of x. */
1516 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1517 { constant_boolean_node (true, type); })
1518 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1519 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1520 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1521 (with
1522 {
1523 REAL_VALUE_TYPE c2;
1524 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1525 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1526 }
1527 (if (REAL_VALUE_ISINF (c2))
1528 /* sqrt(x) > y is x == +Inf, when y is very large. */
1529 (if (HONOR_INFINITIES (@0))
1530 (eq @0 { build_real (TREE_TYPE (@0), c2); }))
1531 { constant_boolean_node (false, type); })
1532 /* sqrt(x) > c is the same as x > c*c. */
1533 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))
1534 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1535 (with
1536 {
1537 REAL_VALUE_TYPE c2;
1538 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1539 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1540 }
1541 (if (REAL_VALUE_ISINF (c2))
1542 /* sqrt(x) < y is always true, when y is a very large
1543 value and we don't care about NaNs or Infinities. */
1544 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1545 { constant_boolean_node (true, type); })
1546 /* sqrt(x) < y is x != +Inf when y is very large and we
1547 don't care about NaNs. */
1548 (if (! HONOR_NANS (@0))
1549 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1550 /* sqrt(x) < y is x >= 0 when y is very large and we
1551 don't care about Infinities. */
1552 (if (! HONOR_INFINITIES (@0))
1553 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1554 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1555 (if (GENERIC)
1556 (truth_andif
1557 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1558 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1559 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1560 (if (! REAL_VALUE_ISINF (c2)
1561 && ! HONOR_NANS (@0))
1562 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))
1563 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1564 (if (! REAL_VALUE_ISINF (c2)
1565 && GENERIC)
1566 (truth_andif
1567 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1568 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
1569
1570 /* Unordered tests if either argument is a NaN. */
1571 (simplify
1572 (bit_ior (unordered @0 @0) (unordered @1 @1))
1573 (if (types_match (@0, @1))
1574 (unordered @0 @1)))
1575 (simplify
1576 (bit_and (ordered @0 @0) (ordered @1 @1))
1577 (if (types_match (@0, @1))
1578 (ordered @0 @1)))
1579 (simplify
1580 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1581 @2)
1582 (simplify
1583 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1584 @2)
1585
1586 /* -A CMP -B -> B CMP A. */
1587 (for cmp (tcc_comparison)
1588 scmp (swapped_tcc_comparison)
1589 (simplify
1590 (cmp (negate @0) (negate @1))
1591 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1592 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1593 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1594 (scmp @0 @1)))
1595 (simplify
1596 (cmp (negate @0) CONSTANT_CLASS_P@1)
1597 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1598 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1599 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1600 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1601 (if (tem && !TREE_OVERFLOW (tem))
1602 (scmp @0 { tem; }))))))
1603
1604
1605 /* Equality compare simplifications from fold_binary */
1606 (for cmp (eq ne)
1607
1608 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1609 Similarly for NE_EXPR. */
1610 (simplify
1611 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1612 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1613 && wi::bit_and_not (@1, @2) != 0)
1614 { constant_boolean_node (cmp == NE_EXPR, type); }))
1615
1616 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1617 (simplify
1618 (cmp (bit_xor @0 @1) integer_zerop)
1619 (cmp @0 @1))
1620
1621 /* (X ^ Y) == Y becomes X == 0.
1622 Likewise (X ^ Y) == X becomes Y == 0. */
1623 (simplify
1624 (cmp:c (bit_xor:c @0 @1) @0)
1625 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1626
1627 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1628 (simplify
1629 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1630 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1631 (cmp @0 (bit_xor @1 (convert @2))))))
1632
1633 /* Simplification of math builtins. */
1634
1635 /* fold_builtin_logarithm */
1636 (if (flag_unsafe_math_optimizations)
1637 /* Special case, optimize logN(expN(x)) = x. */
1638 (for logs (LOG LOG2 LOG10)
1639 exps (EXP EXP2 EXP10)
1640 (simplify
1641 (logs (exps @0))
1642 @0))
1643 /* Optimize logN(func()) for various exponential functions. We
1644 want to determine the value "x" and the power "exponent" in
1645 order to transform logN(x**exponent) into exponent*logN(x). */
1646 (for logs (LOG LOG LOG LOG
1647 LOG2 LOG2 LOG2 LOG2
1648 LOG10 LOG10 LOG10 LOG10)
1649 exps (EXP EXP2 EXP10 POW10)
1650 (simplify
1651 (logs (exps @0))
1652 (with {
1653 tree x;
1654 switch (exps)
1655 {
1656 CASE_FLT_FN (BUILT_IN_EXP):
1657 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1658 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1659 dconst_e ()));
1660 break;
1661 CASE_FLT_FN (BUILT_IN_EXP2):
1662 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1663 x = build_real (type, dconst2);
1664 break;
1665 CASE_FLT_FN (BUILT_IN_EXP10):
1666 CASE_FLT_FN (BUILT_IN_POW10):
1667 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1668 {
1669 REAL_VALUE_TYPE dconst10;
1670 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1671 x = build_real (type, dconst10);
1672 }
1673 break;
1674 }
1675 }
1676 (mult (logs { x; }) @0))))
1677 (for logs (LOG LOG
1678 LOG2 LOG2
1679 LOG10 LOG10)
1680 exps (SQRT CBRT)
1681 (simplify
1682 (logs (exps @0))
1683 (with {
1684 tree x;
1685 switch (exps)
1686 {
1687 CASE_FLT_FN (BUILT_IN_SQRT):
1688 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1689 x = build_real (type, dconsthalf);
1690 break;
1691 CASE_FLT_FN (BUILT_IN_CBRT):
1692 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1693 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1694 dconst_third ()));
1695 break;
1696 }
1697 }
1698 (mult { x; } (logs @0)))))
1699 /* logN(pow(x,exponent) -> exponent*logN(x). */
1700 (for logs (LOG LOG2 LOG10)
1701 pows (POW)
1702 (simplify
1703 (logs (pows @0 @1))
1704 (mult @1 (logs @0)))))
1705
1706 /* Narrowing of arithmetic and logical operations.
1707
1708 These are conceptually similar to the transformations performed for
1709 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1710 term we want to move all that code out of the front-ends into here. */
1711
1712 /* If we have a narrowing conversion of an arithmetic operation where
1713 both operands are widening conversions from the same type as the outer
1714 narrowing conversion. Then convert the innermost operands to a suitable
1715 unsigned type (to avoid introducing undefined behaviour), perform the
1716 operation and convert the result to the desired type. */
1717 (for op (plus minus)
1718 (simplify
1719 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1720 (if (INTEGRAL_TYPE_P (type)
1721 /* We check for type compatibility between @0 and @1 below,
1722 so there's no need to check that @1/@3 are integral types. */
1723 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1724 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1725 /* The precision of the type of each operand must match the
1726 precision of the mode of each operand, similarly for the
1727 result. */
1728 && (TYPE_PRECISION (TREE_TYPE (@0))
1729 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1730 && (TYPE_PRECISION (TREE_TYPE (@1))
1731 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1732 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1733 /* The inner conversion must be a widening conversion. */
1734 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1735 && types_match (@0, @1)
1736 && types_match (@0, type)
1737 && single_use (@4))
1738 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1739 (convert (op @0 @1)))
1740 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1741 (convert (op (convert:utype @0) (convert:utype @1)))))))
1742
1743 /* This is another case of narrowing, specifically when there's an outer
1744 BIT_AND_EXPR which masks off bits outside the type of the innermost
1745 operands. Like the previous case we have to convert the operands
1746 to unsigned types to avoid introducing undefined behaviour for the
1747 arithmetic operation. */
1748 (for op (minus plus)
1749 (simplify
1750 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1751 (if (INTEGRAL_TYPE_P (type)
1752 /* We check for type compatibility between @0 and @1 below,
1753 so there's no need to check that @1/@3 are integral types. */
1754 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1755 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1756 /* The precision of the type of each operand must match the
1757 precision of the mode of each operand, similarly for the
1758 result. */
1759 && (TYPE_PRECISION (TREE_TYPE (@0))
1760 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1761 && (TYPE_PRECISION (TREE_TYPE (@1))
1762 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1763 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1764 /* The inner conversion must be a widening conversion. */
1765 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1766 && types_match (@0, @1)
1767 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1768 <= TYPE_PRECISION (TREE_TYPE (@0)))
1769 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1770 || tree_int_cst_sgn (@4) >= 0)
1771 && single_use (@5))
1772 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1773 (with { tree ntype = TREE_TYPE (@0); }
1774 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1775 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1776 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1777 (convert:utype @4)))))))
1778