match.pd ((x & y) ^ (x | y) -> x ^ y): New pattern.
[gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
31 CONSTANT_CLASS_P
32 tree_expr_nonnegative_p)
33
34 /* Operator lists. */
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43
44
45 /* Simplifications of operations with one constant operand and
46 simplifications to constants or single values. */
47
48 (for op (plus pointer_plus minus bit_ior bit_xor)
49 (simplify
50 (op @0 integer_zerop)
51 (non_lvalue @0)))
52
53 /* 0 +p index -> (type)index */
54 (simplify
55 (pointer_plus integer_zerop @1)
56 (non_lvalue (convert @1)))
57
58 /* See if ARG1 is zero and X + ARG1 reduces to X.
59 Likewise if the operands are reversed. */
60 (simplify
61 (plus:c @0 real_zerop@1)
62 (if (fold_real_zero_addition_p (type, @1, 0))
63 (non_lvalue @0)))
64
65 /* See if ARG1 is zero and X - ARG1 reduces to X. */
66 (simplify
67 (minus @0 real_zerop@1)
68 (if (fold_real_zero_addition_p (type, @1, 1))
69 (non_lvalue @0)))
70
71 /* Simplify x - x.
72 This is unsafe for certain floats even in non-IEEE formats.
73 In IEEE, it is unsafe because it does wrong for NaNs.
74 Also note that operand_equal_p is always false if an operand
75 is volatile. */
76 (simplify
77 (minus @0 @0)
78 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
79 { build_zero_cst (type); }))
80
81 (simplify
82 (mult @0 integer_zerop@1)
83 @1)
84
85 /* Maybe fold x * 0 to 0. The expressions aren't the same
86 when x is NaN, since x * 0 is also NaN. Nor are they the
87 same in modes with signed zeros, since multiplying a
88 negative value by 0 gives -0, not +0. */
89 (simplify
90 (mult @0 real_zerop@1)
91 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (element_mode (type)))
92 @1))
93
94 /* In IEEE floating point, x*1 is not equivalent to x for snans.
95 Likewise for complex arithmetic with signed zeros. */
96 (simplify
97 (mult @0 real_onep)
98 (if (!HONOR_SNANS (element_mode (type))
99 && (!HONOR_SIGNED_ZEROS (element_mode (type))
100 || !COMPLEX_FLOAT_TYPE_P (type)))
101 (non_lvalue @0)))
102
103 /* Transform x * -1.0 into -x. */
104 (simplify
105 (mult @0 real_minus_onep)
106 (if (!HONOR_SNANS (element_mode (type))
107 && (!HONOR_SIGNED_ZEROS (element_mode (type))
108 || !COMPLEX_FLOAT_TYPE_P (type)))
109 (negate @0)))
110
111 /* Make sure to preserve divisions by zero. This is the reason why
112 we don't simplify x / x to 1 or 0 / x to 0. */
113 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
114 (simplify
115 (op @0 integer_onep)
116 (non_lvalue @0)))
117
118 /* X / -1 is -X. */
119 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (simplify
121 (div @0 integer_minus_onep@1)
122 (if (!TYPE_UNSIGNED (type))
123 (negate @0))))
124
125 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
126 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
127 (simplify
128 (floor_div @0 @1)
129 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
130 && TYPE_UNSIGNED (type))
131 (trunc_div @0 @1)))
132
133 /* Combine two successive divisions. Note that combining ceil_div
134 and floor_div is trickier and combining round_div even more so. */
135 (for div (trunc_div exact_div)
136 (simplify
137 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
138 (with {
139 bool overflow_p;
140 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
141 }
142 (if (!overflow_p)
143 (div @0 { wide_int_to_tree (type, mul); }))
144 (if (overflow_p
145 && (TYPE_UNSIGNED (type)
146 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
147 { build_zero_cst (type); }))))
148
149 /* Optimize A / A to 1.0 if we don't care about
150 NaNs or Infinities. */
151 (simplify
152 (rdiv @0 @0)
153 (if (FLOAT_TYPE_P (type)
154 && ! HONOR_NANS (type)
155 && ! HONOR_INFINITIES (element_mode (type)))
156 { build_one_cst (type); }))
157
158 /* Optimize -A / A to -1.0 if we don't care about
159 NaNs or Infinities. */
160 (simplify
161 (rdiv:c @0 (negate @0))
162 (if (FLOAT_TYPE_P (type)
163 && ! HONOR_NANS (type)
164 && ! HONOR_INFINITIES (element_mode (type)))
165 { build_minus_one_cst (type); }))
166
167 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
168 (simplify
169 (rdiv @0 real_onep)
170 (if (!HONOR_SNANS (element_mode (type)))
171 (non_lvalue @0)))
172
173 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
174 (simplify
175 (rdiv @0 real_minus_onep)
176 (if (!HONOR_SNANS (element_mode (type)))
177 (negate @0)))
178
179 /* If ARG1 is a constant, we can convert this to a multiply by the
180 reciprocal. This does not have the same rounding properties,
181 so only do this if -freciprocal-math. We can actually
182 always safely do it if ARG1 is a power of two, but it's hard to
183 tell if it is or not in a portable manner. */
184 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
185 (simplify
186 (rdiv @0 cst@1)
187 (if (optimize)
188 (if (flag_reciprocal_math
189 && !real_zerop (@1))
190 (with
191 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
192 (if (tem)
193 (mult @0 { tem; } ))))
194 (if (cst != COMPLEX_CST)
195 (with { tree inverse = exact_inverse (type, @1); }
196 (if (inverse)
197 (mult @0 { inverse; } )))))))
198
199 /* Same applies to modulo operations, but fold is inconsistent here
200 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
201 (for mod (ceil_mod floor_mod round_mod trunc_mod)
202 /* 0 % X is always zero. */
203 (simplify
204 (mod integer_zerop@0 @1)
205 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
206 (if (!integer_zerop (@1))
207 @0))
208 /* X % 1 is always zero. */
209 (simplify
210 (mod @0 integer_onep)
211 { build_zero_cst (type); })
212 /* X % -1 is zero. */
213 (simplify
214 (mod @0 integer_minus_onep@1)
215 (if (!TYPE_UNSIGNED (type))
216 { build_zero_cst (type); }))
217 /* (X % Y) % Y is just X % Y. */
218 (simplify
219 (mod (mod@2 @0 @1) @1)
220 @2))
221
222 /* X % -C is the same as X % C. */
223 (simplify
224 (trunc_mod @0 INTEGER_CST@1)
225 (if (TYPE_SIGN (type) == SIGNED
226 && !TREE_OVERFLOW (@1)
227 && wi::neg_p (@1)
228 && !TYPE_OVERFLOW_TRAPS (type)
229 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
230 && !sign_bit_p (@1, @1))
231 (trunc_mod @0 (negate @1))))
232
233 /* X % -Y is the same as X % Y. */
234 (simplify
235 (trunc_mod @0 (convert? (negate @1)))
236 (if (!TYPE_UNSIGNED (type)
237 && !TYPE_OVERFLOW_TRAPS (type)
238 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
239 (trunc_mod @0 (convert @1))))
240
241 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
242 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
243 Also optimize A % (C << N) where C is a power of 2,
244 to A & ((C << N) - 1). */
245 (match (power_of_two_cand @1)
246 INTEGER_CST@1)
247 (match (power_of_two_cand @1)
248 (lshift INTEGER_CST@1 @2))
249 (for mod (trunc_mod floor_mod)
250 (simplify
251 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
252 (if ((TYPE_UNSIGNED (type)
253 || tree_expr_nonnegative_p (@0))
254 && tree_nop_conversion_p (type, TREE_TYPE (@3))
255 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
256 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
257
258 /* X % Y is smaller than Y. */
259 (for cmp (lt ge)
260 (simplify
261 (cmp (trunc_mod @0 @1) @1)
262 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
263 { constant_boolean_node (cmp == LT_EXPR, type); })))
264 (for cmp (gt le)
265 (simplify
266 (cmp @1 (trunc_mod @0 @1))
267 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
268 { constant_boolean_node (cmp == GT_EXPR, type); })))
269
270 /* x | ~0 -> ~0 */
271 (simplify
272 (bit_ior @0 integer_all_onesp@1)
273 @1)
274
275 /* x & 0 -> 0 */
276 (simplify
277 (bit_and @0 integer_zerop@1)
278 @1)
279
280 /* x ^ x -> 0 */
281 (simplify
282 (bit_xor @0 @0)
283 { build_zero_cst (type); })
284
285 /* Canonicalize X ^ ~0 to ~X. */
286 (simplify
287 (bit_xor @0 integer_all_onesp@1)
288 (bit_not @0))
289
290 /* x & ~0 -> x */
291 (simplify
292 (bit_and @0 integer_all_onesp)
293 (non_lvalue @0))
294
295 /* x & x -> x, x | x -> x */
296 (for bitop (bit_and bit_ior)
297 (simplify
298 (bitop @0 @0)
299 (non_lvalue @0)))
300
301 /* x + (x & 1) -> (x + 1) & ~1 */
302 (simplify
303 (plus:c @0 (bit_and@2 @0 integer_onep@1))
304 (if (single_use (@2))
305 (bit_and (plus @0 @1) (bit_not @1))))
306
307 /* x & ~(x & y) -> x & ~y */
308 /* x | ~(x | y) -> x | ~y */
309 (for bitop (bit_and bit_ior)
310 (simplify
311 (bitop:c @0 (bit_not (bitop:c@2 @0 @1)))
312 (if (single_use (@2))
313 (bitop @0 (bit_not @1)))))
314
315 /* (x | y) & ~x -> y & ~x */
316 /* (x & y) | ~x -> y | ~x */
317 (for bitop (bit_and bit_ior)
318 rbitop (bit_ior bit_and)
319 (simplify
320 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
321 (bitop @1 @2)))
322
323 /* (x & y) ^ (x | y) -> x ^ y */
324 (simplify
325 (bit_xor:c (bit_and@2 @0 @1) (bit_ior@3 @0 @1))
326 (if (single_use (@2) && single_use (@3))
327 (bit_xor @0 @1)))
328
329 (simplify
330 (abs (negate @0))
331 (abs @0))
332 (simplify
333 (abs tree_expr_nonnegative_p@0)
334 @0)
335
336
337 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
338 when profitable.
339 For bitwise binary operations apply operand conversions to the
340 binary operation result instead of to the operands. This allows
341 to combine successive conversions and bitwise binary operations.
342 We combine the above two cases by using a conditional convert. */
343 (for bitop (bit_and bit_ior bit_xor)
344 (simplify
345 (bitop (convert @0) (convert? @1))
346 (if (((TREE_CODE (@1) == INTEGER_CST
347 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
348 && int_fits_type_p (@1, TREE_TYPE (@0)))
349 || types_match (@0, @1))
350 /* ??? This transform conflicts with fold-const.c doing
351 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
352 constants (if x has signed type, the sign bit cannot be set
353 in c). This folds extension into the BIT_AND_EXPR.
354 Restrict it to GIMPLE to avoid endless recursions. */
355 && (bitop != BIT_AND_EXPR || GIMPLE)
356 && (/* That's a good idea if the conversion widens the operand, thus
357 after hoisting the conversion the operation will be narrower. */
358 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
359 /* It's also a good idea if the conversion is to a non-integer
360 mode. */
361 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
362 /* Or if the precision of TO is not the same as the precision
363 of its mode. */
364 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
365 (convert (bitop @0 (convert @1))))))
366
367 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
368 (for bitop (bit_and bit_ior bit_xor)
369 (simplify
370 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
371 (bit_and (bitop @0 @2) @1)))
372
373 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
374 (simplify
375 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
376 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
377
378 /* Combine successive equal operations with constants. */
379 (for bitop (bit_and bit_ior bit_xor)
380 (simplify
381 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
382 (bitop @0 (bitop @1 @2))))
383
384 /* Try simple folding for X op !X, and X op X with the help
385 of the truth_valued_p and logical_inverted_value predicates. */
386 (match truth_valued_p
387 @0
388 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
389 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
390 (match truth_valued_p
391 (op @0 @1)))
392 (match truth_valued_p
393 (truth_not @0))
394
395 (match (logical_inverted_value @0)
396 (bit_not truth_valued_p@0))
397 (match (logical_inverted_value @0)
398 (eq @0 integer_zerop))
399 (match (logical_inverted_value @0)
400 (ne truth_valued_p@0 integer_truep))
401 (match (logical_inverted_value @0)
402 (bit_xor truth_valued_p@0 integer_truep))
403
404 /* X & !X -> 0. */
405 (simplify
406 (bit_and:c @0 (logical_inverted_value @0))
407 { build_zero_cst (type); })
408 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
409 (for op (bit_ior bit_xor)
410 (simplify
411 (op:c truth_valued_p@0 (logical_inverted_value @0))
412 { constant_boolean_node (true, type); }))
413
414 (for bitop (bit_and bit_ior)
415 rbitop (bit_ior bit_and)
416 /* (x | y) & x -> x */
417 /* (x & y) | x -> x */
418 (simplify
419 (bitop:c (rbitop:c @0 @1) @0)
420 @0)
421 /* (~x | y) & x -> x & y */
422 /* (~x & y) | x -> x | y */
423 (simplify
424 (bitop:c (rbitop:c (bit_not @0) @1) @0)
425 (bitop @0 @1)))
426
427 /* If arg1 and arg2 are booleans (or any single bit type)
428 then try to simplify:
429
430 (~X & Y) -> X < Y
431 (X & ~Y) -> Y < X
432 (~X | Y) -> X <= Y
433 (X | ~Y) -> Y <= X
434
435 But only do this if our result feeds into a comparison as
436 this transformation is not always a win, particularly on
437 targets with and-not instructions.
438 -> simplify_bitwise_binary_boolean */
439 (simplify
440 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
441 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
442 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
443 (lt @0 @1)))
444 (simplify
445 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
446 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
447 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
448 (le @0 @1)))
449
450 /* ~~x -> x */
451 (simplify
452 (bit_not (bit_not @0))
453 @0)
454
455 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
456 (simplify
457 (bit_ior:c (bit_and:c@3 @0 (bit_not @2)) (bit_and:c@4 @1 @2))
458 (if (single_use (@3) && single_use (@4))
459 (bit_xor (bit_and (bit_xor @0 @1) @2) @0)))
460
461
462 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
463 (simplify
464 (pointer_plus (pointer_plus@2 @0 @1) @3)
465 (if (single_use (@2))
466 (pointer_plus @0 (plus @1 @3))))
467
468 /* Pattern match
469 tem1 = (long) ptr1;
470 tem2 = (long) ptr2;
471 tem3 = tem2 - tem1;
472 tem4 = (unsigned long) tem3;
473 tem5 = ptr1 + tem4;
474 and produce
475 tem5 = ptr2; */
476 (simplify
477 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
478 /* Conditionally look through a sign-changing conversion. */
479 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
480 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
481 || (GENERIC && type == TREE_TYPE (@1))))
482 @1))
483
484 /* Pattern match
485 tem = (sizetype) ptr;
486 tem = tem & algn;
487 tem = -tem;
488 ... = ptr p+ tem;
489 and produce the simpler and easier to analyze with respect to alignment
490 ... = ptr & ~algn; */
491 (simplify
492 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
493 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
494 (bit_and @0 { algn; })))
495
496
497 /* We can't reassociate at all for saturating types. */
498 (if (!TYPE_SATURATING (type))
499
500 /* Contract negates. */
501 /* A + (-B) -> A - B */
502 (simplify
503 (plus:c (convert1? @0) (convert2? (negate @1)))
504 /* Apply STRIP_NOPS on @0 and the negate. */
505 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
506 && tree_nop_conversion_p (type, TREE_TYPE (@1))
507 && !TYPE_OVERFLOW_SANITIZED (type))
508 (minus (convert @0) (convert @1))))
509 /* A - (-B) -> A + B */
510 (simplify
511 (minus (convert1? @0) (convert2? (negate @1)))
512 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
513 && tree_nop_conversion_p (type, TREE_TYPE (@1))
514 && !TYPE_OVERFLOW_SANITIZED (type))
515 (plus (convert @0) (convert @1))))
516 /* -(-A) -> A */
517 (simplify
518 (negate (convert? (negate @1)))
519 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
520 && !TYPE_OVERFLOW_SANITIZED (type))
521 (convert @1)))
522
523 /* We can't reassociate floating-point or fixed-point plus or minus
524 because of saturation to +-Inf. */
525 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
526
527 /* Match patterns that allow contracting a plus-minus pair
528 irrespective of overflow issues. */
529 /* (A +- B) - A -> +- B */
530 /* (A +- B) -+ B -> A */
531 /* A - (A +- B) -> -+ B */
532 /* A +- (B -+ A) -> +- B */
533 (simplify
534 (minus (plus:c @0 @1) @0)
535 @1)
536 (simplify
537 (minus (minus @0 @1) @0)
538 (negate @1))
539 (simplify
540 (plus:c (minus @0 @1) @1)
541 @0)
542 (simplify
543 (minus @0 (plus:c @0 @1))
544 (negate @1))
545 (simplify
546 (minus @0 (minus @0 @1))
547 @1)
548
549 /* (A +- CST) +- CST -> A + CST */
550 (for outer_op (plus minus)
551 (for inner_op (plus minus)
552 (simplify
553 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
554 /* If the constant operation overflows we cannot do the transform
555 as we would introduce undefined overflow, for example
556 with (a - 1) + INT_MIN. */
557 (with { tree cst = fold_binary (outer_op == inner_op
558 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
559 (if (cst && !TREE_OVERFLOW (cst))
560 (inner_op @0 { cst; } ))))))
561
562 /* (CST - A) +- CST -> CST - A */
563 (for outer_op (plus minus)
564 (simplify
565 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
566 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
567 (if (cst && !TREE_OVERFLOW (cst))
568 (minus { cst; } @0)))))
569
570 /* ~A + A -> -1 */
571 (simplify
572 (plus:c (bit_not @0) @0)
573 (if (!TYPE_OVERFLOW_TRAPS (type))
574 { build_all_ones_cst (type); }))
575
576 /* ~A + 1 -> -A */
577 (simplify
578 (plus (convert? (bit_not @0)) integer_each_onep)
579 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
580 (negate (convert @0))))
581
582 /* -A - 1 -> ~A */
583 (simplify
584 (minus (convert? (negate @0)) integer_each_onep)
585 (if (!TYPE_OVERFLOW_TRAPS (type)
586 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
587 (bit_not (convert @0))))
588
589 /* -1 - A -> ~A */
590 (simplify
591 (minus integer_all_onesp @0)
592 (bit_not @0))
593
594 /* (T)(P + A) - (T)P -> (T) A */
595 (for add (plus pointer_plus)
596 (simplify
597 (minus (convert (add @0 @1))
598 (convert @0))
599 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
600 /* For integer types, if A has a smaller type
601 than T the result depends on the possible
602 overflow in P + A.
603 E.g. T=size_t, A=(unsigned)429497295, P>0.
604 However, if an overflow in P + A would cause
605 undefined behavior, we can assume that there
606 is no overflow. */
607 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
608 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
609 /* For pointer types, if the conversion of A to the
610 final type requires a sign- or zero-extension,
611 then we have to punt - it is not defined which
612 one is correct. */
613 || (POINTER_TYPE_P (TREE_TYPE (@0))
614 && TREE_CODE (@1) == INTEGER_CST
615 && tree_int_cst_sign_bit (@1) == 0))
616 (convert @1))))))
617
618
619 /* Simplifications of MIN_EXPR and MAX_EXPR. */
620
621 (for minmax (min max)
622 (simplify
623 (minmax @0 @0)
624 @0))
625 (simplify
626 (min @0 @1)
627 (if (INTEGRAL_TYPE_P (type)
628 && TYPE_MIN_VALUE (type)
629 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
630 @1))
631 (simplify
632 (max @0 @1)
633 (if (INTEGRAL_TYPE_P (type)
634 && TYPE_MAX_VALUE (type)
635 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
636 @1))
637
638
639 /* Simplifications of shift and rotates. */
640
641 (for rotate (lrotate rrotate)
642 (simplify
643 (rotate integer_all_onesp@0 @1)
644 @0))
645
646 /* Optimize -1 >> x for arithmetic right shifts. */
647 (simplify
648 (rshift integer_all_onesp@0 @1)
649 (if (!TYPE_UNSIGNED (type)
650 && tree_expr_nonnegative_p (@1))
651 @0))
652
653 (for shiftrotate (lrotate rrotate lshift rshift)
654 (simplify
655 (shiftrotate @0 integer_zerop)
656 (non_lvalue @0))
657 (simplify
658 (shiftrotate integer_zerop@0 @1)
659 @0)
660 /* Prefer vector1 << scalar to vector1 << vector2
661 if vector2 is uniform. */
662 (for vec (VECTOR_CST CONSTRUCTOR)
663 (simplify
664 (shiftrotate @0 vec@1)
665 (with { tree tem = uniform_vector_p (@1); }
666 (if (tem)
667 (shiftrotate @0 { tem; }))))))
668
669 /* Rewrite an LROTATE_EXPR by a constant into an
670 RROTATE_EXPR by a new constant. */
671 (simplify
672 (lrotate @0 INTEGER_CST@1)
673 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
674 build_int_cst (TREE_TYPE (@1),
675 element_precision (type)), @1); }))
676
677 /* ((1 << A) & 1) != 0 -> A == 0
678 ((1 << A) & 1) == 0 -> A != 0 */
679 (for cmp (ne eq)
680 icmp (eq ne)
681 (simplify
682 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
683 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
684
685 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
686 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
687 if CST2 != 0. */
688 (for cmp (ne eq)
689 (simplify
690 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
691 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
692 (if (cand < 0
693 || (!integer_zerop (@2)
694 && wi::ne_p (wi::lshift (@0, cand), @2)))
695 { constant_boolean_node (cmp == NE_EXPR, type); })
696 (if (!integer_zerop (@2)
697 && wi::eq_p (wi::lshift (@0, cand), @2))
698 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
699
700 /* Simplifications of conversions. */
701
702 /* Basic strip-useless-type-conversions / strip_nops. */
703 (for cvt (convert view_convert float fix_trunc)
704 (simplify
705 (cvt @0)
706 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
707 || (GENERIC && type == TREE_TYPE (@0)))
708 @0)))
709
710 /* Contract view-conversions. */
711 (simplify
712 (view_convert (view_convert @0))
713 (view_convert @0))
714
715 /* For integral conversions with the same precision or pointer
716 conversions use a NOP_EXPR instead. */
717 (simplify
718 (view_convert @0)
719 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
720 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
721 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
722 (convert @0)))
723
724 /* Strip inner integral conversions that do not change precision or size. */
725 (simplify
726 (view_convert (convert@0 @1))
727 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
728 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
729 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
730 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
731 (view_convert @1)))
732
733 /* Re-association barriers around constants and other re-association
734 barriers can be removed. */
735 (simplify
736 (paren CONSTANT_CLASS_P@0)
737 @0)
738 (simplify
739 (paren (paren@1 @0))
740 @1)
741
742 /* Handle cases of two conversions in a row. */
743 (for ocvt (convert float fix_trunc)
744 (for icvt (convert float)
745 (simplify
746 (ocvt (icvt@1 @0))
747 (with
748 {
749 tree inside_type = TREE_TYPE (@0);
750 tree inter_type = TREE_TYPE (@1);
751 int inside_int = INTEGRAL_TYPE_P (inside_type);
752 int inside_ptr = POINTER_TYPE_P (inside_type);
753 int inside_float = FLOAT_TYPE_P (inside_type);
754 int inside_vec = VECTOR_TYPE_P (inside_type);
755 unsigned int inside_prec = TYPE_PRECISION (inside_type);
756 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
757 int inter_int = INTEGRAL_TYPE_P (inter_type);
758 int inter_ptr = POINTER_TYPE_P (inter_type);
759 int inter_float = FLOAT_TYPE_P (inter_type);
760 int inter_vec = VECTOR_TYPE_P (inter_type);
761 unsigned int inter_prec = TYPE_PRECISION (inter_type);
762 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
763 int final_int = INTEGRAL_TYPE_P (type);
764 int final_ptr = POINTER_TYPE_P (type);
765 int final_float = FLOAT_TYPE_P (type);
766 int final_vec = VECTOR_TYPE_P (type);
767 unsigned int final_prec = TYPE_PRECISION (type);
768 int final_unsignedp = TYPE_UNSIGNED (type);
769 }
770 /* In addition to the cases of two conversions in a row
771 handled below, if we are converting something to its own
772 type via an object of identical or wider precision, neither
773 conversion is needed. */
774 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
775 || (GENERIC
776 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
777 && (((inter_int || inter_ptr) && final_int)
778 || (inter_float && final_float))
779 && inter_prec >= final_prec)
780 (ocvt @0))
781
782 /* Likewise, if the intermediate and initial types are either both
783 float or both integer, we don't need the middle conversion if the
784 former is wider than the latter and doesn't change the signedness
785 (for integers). Avoid this if the final type is a pointer since
786 then we sometimes need the middle conversion. Likewise if the
787 final type has a precision not equal to the size of its mode. */
788 (if (((inter_int && inside_int) || (inter_float && inside_float))
789 && (final_int || final_float)
790 && inter_prec >= inside_prec
791 && (inter_float || inter_unsignedp == inside_unsignedp)
792 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
793 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
794 (ocvt @0))
795
796 /* If we have a sign-extension of a zero-extended value, we can
797 replace that by a single zero-extension. Likewise if the
798 final conversion does not change precision we can drop the
799 intermediate conversion. */
800 (if (inside_int && inter_int && final_int
801 && ((inside_prec < inter_prec && inter_prec < final_prec
802 && inside_unsignedp && !inter_unsignedp)
803 || final_prec == inter_prec))
804 (ocvt @0))
805
806 /* Two conversions in a row are not needed unless:
807 - some conversion is floating-point (overstrict for now), or
808 - some conversion is a vector (overstrict for now), or
809 - the intermediate type is narrower than both initial and
810 final, or
811 - the intermediate type and innermost type differ in signedness,
812 and the outermost type is wider than the intermediate, or
813 - the initial type is a pointer type and the precisions of the
814 intermediate and final types differ, or
815 - the final type is a pointer type and the precisions of the
816 initial and intermediate types differ. */
817 (if (! inside_float && ! inter_float && ! final_float
818 && ! inside_vec && ! inter_vec && ! final_vec
819 && (inter_prec >= inside_prec || inter_prec >= final_prec)
820 && ! (inside_int && inter_int
821 && inter_unsignedp != inside_unsignedp
822 && inter_prec < final_prec)
823 && ((inter_unsignedp && inter_prec > inside_prec)
824 == (final_unsignedp && final_prec > inter_prec))
825 && ! (inside_ptr && inter_prec != final_prec)
826 && ! (final_ptr && inside_prec != inter_prec)
827 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
828 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
829 (ocvt @0))
830
831 /* A truncation to an unsigned type (a zero-extension) should be
832 canonicalized as bitwise and of a mask. */
833 (if (final_int && inter_int && inside_int
834 && final_prec == inside_prec
835 && final_prec > inter_prec
836 && inter_unsignedp)
837 (convert (bit_and @0 { wide_int_to_tree
838 (inside_type,
839 wi::mask (inter_prec, false,
840 TYPE_PRECISION (inside_type))); })))
841
842 /* If we are converting an integer to a floating-point that can
843 represent it exactly and back to an integer, we can skip the
844 floating-point conversion. */
845 (if (GIMPLE /* PR66211 */
846 && inside_int && inter_float && final_int &&
847 (unsigned) significand_size (TYPE_MODE (inter_type))
848 >= inside_prec - !inside_unsignedp)
849 (convert @0))))))
850
851 /* If we have a narrowing conversion to an integral type that is fed by a
852 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
853 masks off bits outside the final type (and nothing else). */
854 (simplify
855 (convert (bit_and @0 INTEGER_CST@1))
856 (if (INTEGRAL_TYPE_P (type)
857 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
858 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
859 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
860 TYPE_PRECISION (type)), 0))
861 (convert @0)))
862
863
864 /* (X /[ex] A) * A -> X. */
865 (simplify
866 (mult (convert? (exact_div @0 @1)) @1)
867 /* Look through a sign-changing conversion. */
868 (convert @0))
869
870 /* Canonicalization of binary operations. */
871
872 /* Convert X + -C into X - C. */
873 (simplify
874 (plus @0 REAL_CST@1)
875 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
876 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
877 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
878 (minus @0 { tem; })))))
879
880 /* Convert x+x into x*2.0. */
881 (simplify
882 (plus @0 @0)
883 (if (SCALAR_FLOAT_TYPE_P (type))
884 (mult @0 { build_real (type, dconst2); })))
885
886 (simplify
887 (minus integer_zerop @1)
888 (negate @1))
889
890 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
891 ARG0 is zero and X + ARG0 reduces to X, since that would mean
892 (-ARG1 + ARG0) reduces to -ARG1. */
893 (simplify
894 (minus real_zerop@0 @1)
895 (if (fold_real_zero_addition_p (type, @0, 0))
896 (negate @1)))
897
898 /* Transform x * -1 into -x. */
899 (simplify
900 (mult @0 integer_minus_onep)
901 (negate @0))
902
903 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
904 (simplify
905 (complex (realpart @0) (imagpart @0))
906 @0)
907 (simplify
908 (realpart (complex @0 @1))
909 @0)
910 (simplify
911 (imagpart (complex @0 @1))
912 @1)
913
914
915 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
916 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
917 (simplify
918 (bswap (bswap @0))
919 @0)
920 (simplify
921 (bswap (bit_not (bswap @0)))
922 (bit_not @0))
923 (for bitop (bit_xor bit_ior bit_and)
924 (simplify
925 (bswap (bitop:c (bswap @0) @1))
926 (bitop @0 (bswap @1)))))
927
928
929 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
930
931 /* Simplify constant conditions.
932 Only optimize constant conditions when the selected branch
933 has the same type as the COND_EXPR. This avoids optimizing
934 away "c ? x : throw", where the throw has a void type.
935 Note that we cannot throw away the fold-const.c variant nor
936 this one as we depend on doing this transform before possibly
937 A ? B : B -> B triggers and the fold-const.c one can optimize
938 0 ? A : B to B even if A has side-effects. Something
939 genmatch cannot handle. */
940 (simplify
941 (cond INTEGER_CST@0 @1 @2)
942 (if (integer_zerop (@0)
943 && (!VOID_TYPE_P (TREE_TYPE (@2))
944 || VOID_TYPE_P (type)))
945 @2)
946 (if (!integer_zerop (@0)
947 && (!VOID_TYPE_P (TREE_TYPE (@1))
948 || VOID_TYPE_P (type)))
949 @1))
950 (simplify
951 (vec_cond VECTOR_CST@0 @1 @2)
952 (if (integer_all_onesp (@0))
953 @1)
954 (if (integer_zerop (@0))
955 @2))
956
957 (for cnd (cond vec_cond)
958 /* A ? B : (A ? X : C) -> A ? B : C. */
959 (simplify
960 (cnd @0 (cnd @0 @1 @2) @3)
961 (cnd @0 @1 @3))
962 (simplify
963 (cnd @0 @1 (cnd @0 @2 @3))
964 (cnd @0 @1 @3))
965
966 /* A ? B : B -> B. */
967 (simplify
968 (cnd @0 @1 @1)
969 @1)
970
971 /* !A ? B : C -> A ? C : B. */
972 (simplify
973 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
974 (cnd @0 @2 @1)))
975
976
977 /* Simplifications of comparisons. */
978
979 /* We can simplify a logical negation of a comparison to the
980 inverted comparison. As we cannot compute an expression
981 operator using invert_tree_comparison we have to simulate
982 that with expression code iteration. */
983 (for cmp (tcc_comparison)
984 icmp (inverted_tcc_comparison)
985 ncmp (inverted_tcc_comparison_with_nans)
986 /* Ideally we'd like to combine the following two patterns
987 and handle some more cases by using
988 (logical_inverted_value (cmp @0 @1))
989 here but for that genmatch would need to "inline" that.
990 For now implement what forward_propagate_comparison did. */
991 (simplify
992 (bit_not (cmp @0 @1))
993 (if (VECTOR_TYPE_P (type)
994 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
995 /* Comparison inversion may be impossible for trapping math,
996 invert_tree_comparison will tell us. But we can't use
997 a computed operator in the replacement tree thus we have
998 to play the trick below. */
999 (with { enum tree_code ic = invert_tree_comparison
1000 (cmp, HONOR_NANS (@0)); }
1001 (if (ic == icmp)
1002 (icmp @0 @1))
1003 (if (ic == ncmp)
1004 (ncmp @0 @1)))))
1005 (simplify
1006 (bit_xor (cmp @0 @1) integer_truep)
1007 (with { enum tree_code ic = invert_tree_comparison
1008 (cmp, HONOR_NANS (@0)); }
1009 (if (ic == icmp)
1010 (icmp @0 @1))
1011 (if (ic == ncmp)
1012 (ncmp @0 @1)))))
1013
1014 /* Unordered tests if either argument is a NaN. */
1015 (simplify
1016 (bit_ior (unordered @0 @0) (unordered @1 @1))
1017 (if (types_match (@0, @1))
1018 (unordered @0 @1)))
1019 (simplify
1020 (bit_and (ordered @0 @0) (ordered @1 @1))
1021 (if (types_match (@0, @1))
1022 (ordered @0 @1)))
1023 (simplify
1024 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1025 @2)
1026 (simplify
1027 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1028 @2)
1029
1030 /* -A CMP -B -> B CMP A. */
1031 (for cmp (tcc_comparison)
1032 scmp (swapped_tcc_comparison)
1033 (simplify
1034 (cmp (negate @0) (negate @1))
1035 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1036 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1037 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1038 (scmp @0 @1)))
1039 (simplify
1040 (cmp (negate @0) CONSTANT_CLASS_P@1)
1041 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1042 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1043 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1044 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1045 (if (tem && !TREE_OVERFLOW (tem))
1046 (scmp @0 { tem; }))))))
1047
1048 /* Simplification of math builtins. */
1049
1050 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
1051 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
1052 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
1053 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
1054 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
1055 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
1056 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
1057 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
1058 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
1059 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
1060
1061
1062 /* fold_builtin_logarithm */
1063 (if (flag_unsafe_math_optimizations)
1064 /* Special case, optimize logN(expN(x)) = x. */
1065 (for logs (LOG LOG2 LOG10)
1066 exps (EXP EXP2 EXP10)
1067 (simplify
1068 (logs (exps @0))
1069 @0))
1070 /* Optimize logN(func()) for various exponential functions. We
1071 want to determine the value "x" and the power "exponent" in
1072 order to transform logN(x**exponent) into exponent*logN(x). */
1073 (for logs (LOG LOG LOG LOG
1074 LOG2 LOG2 LOG2 LOG2
1075 LOG10 LOG10 LOG10 LOG10)
1076 exps (EXP EXP2 EXP10 POW10)
1077 (simplify
1078 (logs (exps @0))
1079 (with {
1080 tree x;
1081 switch (exps)
1082 {
1083 CASE_FLT_FN (BUILT_IN_EXP):
1084 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1085 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1086 dconst_e ()));
1087 break;
1088 CASE_FLT_FN (BUILT_IN_EXP2):
1089 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1090 x = build_real (type, dconst2);
1091 break;
1092 CASE_FLT_FN (BUILT_IN_EXP10):
1093 CASE_FLT_FN (BUILT_IN_POW10):
1094 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1095 {
1096 REAL_VALUE_TYPE dconst10;
1097 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1098 x = build_real (type, dconst10);
1099 }
1100 break;
1101 }
1102 }
1103 (mult (logs { x; }) @0))))
1104 (for logs (LOG LOG
1105 LOG2 LOG2
1106 LOG10 LOG10)
1107 exps (SQRT CBRT)
1108 (simplify
1109 (logs (exps @0))
1110 (with {
1111 tree x;
1112 switch (exps)
1113 {
1114 CASE_FLT_FN (BUILT_IN_SQRT):
1115 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1116 x = build_real (type, dconsthalf);
1117 break;
1118 CASE_FLT_FN (BUILT_IN_CBRT):
1119 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1120 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1121 dconst_third ()));
1122 break;
1123 }
1124 }
1125 (mult { x; } (logs @0)))))
1126 /* logN(pow(x,exponent) -> exponent*logN(x). */
1127 (for logs (LOG LOG2 LOG10)
1128 pows (POW)
1129 (simplify
1130 (logs (pows @0 @1))
1131 (mult @1 (logs @0)))))
1132
1133 /* Narrowing of arithmetic and logical operations.
1134
1135 These are conceptually similar to the transformations performed for
1136 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1137 term we want to move all that code out of the front-ends into here. */
1138
1139 /* If we have a narrowing conversion of an arithmetic operation where
1140 both operands are widening conversions from the same type as the outer
1141 narrowing conversion. Then convert the innermost operands to a suitable
1142 unsigned type (to avoid introducing undefined behaviour), perform the
1143 operation and convert the result to the desired type. */
1144 (for op (plus minus)
1145 (simplify
1146 (convert (op@4 (convert@2 @0) (convert@3 @1)))
1147 (if (INTEGRAL_TYPE_P (type)
1148 /* We check for type compatibility between @0 and @1 below,
1149 so there's no need to check that @1/@3 are integral types. */
1150 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1151 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1152 /* The precision of the type of each operand must match the
1153 precision of the mode of each operand, similarly for the
1154 result. */
1155 && (TYPE_PRECISION (TREE_TYPE (@0))
1156 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1157 && (TYPE_PRECISION (TREE_TYPE (@1))
1158 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1159 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1160 /* The inner conversion must be a widening conversion. */
1161 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1162 && types_match (@0, @1)
1163 && types_match (@0, type)
1164 && single_use (@4))
1165 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1166 (convert (op @0 @1)))
1167 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1168 (convert (op (convert:utype @0) (convert:utype @1)))))))
1169
1170 /* This is another case of narrowing, specifically when there's an outer
1171 BIT_AND_EXPR which masks off bits outside the type of the innermost
1172 operands. Like the previous case we have to convert the operands
1173 to unsigned types to avoid introducing undefined behaviour for the
1174 arithmetic operation. */
1175 (for op (minus plus)
1176 (simplify
1177 (bit_and (op@5 (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1178 (if (INTEGRAL_TYPE_P (type)
1179 /* We check for type compatibility between @0 and @1 below,
1180 so there's no need to check that @1/@3 are integral types. */
1181 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1182 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1183 /* The precision of the type of each operand must match the
1184 precision of the mode of each operand, similarly for the
1185 result. */
1186 && (TYPE_PRECISION (TREE_TYPE (@0))
1187 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1188 && (TYPE_PRECISION (TREE_TYPE (@1))
1189 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1190 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1191 /* The inner conversion must be a widening conversion. */
1192 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1193 && types_match (@0, @1)
1194 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1195 <= TYPE_PRECISION (TREE_TYPE (@0)))
1196 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1197 || tree_int_cst_sgn (@4) >= 0)
1198 && single_use (@5))
1199 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1200 (with { tree ntype = TREE_TYPE (@0); }
1201 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1202 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1203 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1204 (convert:utype @4)))))))
1205