Daily bump.
[gcc.git] / gcc / modulo-sched.c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "params.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "loop-unroll.h"
47
48 #ifdef INSN_SCHEDULING
49
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
58
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
82
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
97 \f
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
100
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
103
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
106
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
109
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
112
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
119
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
122 {
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
127
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
131
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
135
136 };
137
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
141 {
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
146
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
151
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
154
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
159 };
160
161 /* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164 struct partial_schedule
165 {
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
168
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
171
172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
174 vec<ps_reg_move_info> reg_moves;
175
176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
181
182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
184
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
187
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
189
190 int stage_count; /* The stage count of the partial schedule. */
191 };
192
193
194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195 static void free_partial_schedule (partial_schedule_ptr);
196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
197 void print_partial_schedule (partial_schedule_ptr, FILE *);
198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
200 int, int, sbitmap, sbitmap);
201 static void rotate_partial_schedule (partial_schedule_ptr, int);
202 void set_row_column_for_ps (partial_schedule_ptr);
203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
205
206 \f
207 /* This page defines constants and structures for the modulo scheduling
208 driver. */
209
210 static int sms_order_nodes (ddg_ptr, int, int *, int *);
211 static void set_node_sched_params (ddg_ptr);
212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
214 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
215 rtx, rtx);
216 static int calculate_stage_count (partial_schedule_ptr, int);
217 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
218 int, int, sbitmap, sbitmap, sbitmap);
219 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
220 sbitmap, int, int *, int *, int *);
221 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
222 sbitmap, int *, sbitmap, sbitmap);
223 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
224
225 #define NODE_ASAP(node) ((node)->aux.count)
226
227 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
228 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
229 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
230 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
231 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
232
233 /* The scheduling parameters held for each node. */
234 typedef struct node_sched_params
235 {
236 int time; /* The absolute scheduling cycle. */
237
238 int row; /* Holds time % ii. */
239 int stage; /* Holds time / ii. */
240
241 /* The column of a node inside the ps. If nodes u, v are on the same row,
242 u will precede v if column (u) < column (v). */
243 int column;
244 } *node_sched_params_ptr;
245 \f
246 /* The following three functions are copied from the current scheduler
247 code in order to use sched_analyze() for computing the dependencies.
248 They are used when initializing the sched_info structure. */
249 static const char *
250 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
251 {
252 static char tmp[80];
253
254 sprintf (tmp, "i%4d", INSN_UID (insn));
255 return tmp;
256 }
257
258 static void
259 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
260 regset used ATTRIBUTE_UNUSED)
261 {
262 }
263
264 static struct common_sched_info_def sms_common_sched_info;
265
266 static struct sched_deps_info_def sms_sched_deps_info =
267 {
268 compute_jump_reg_dependencies,
269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
270 NULL,
271 0, 0, 0
272 };
273
274 static struct haifa_sched_info sms_sched_info =
275 {
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 NULL,
281 sms_print_insn,
282 NULL,
283 NULL, /* insn_finishes_block_p */
284 NULL, NULL,
285 NULL, NULL,
286 0, 0,
287
288 NULL, NULL, NULL, NULL,
289 NULL, NULL,
290 0
291 };
292
293 /* Partial schedule instruction ID in PS is a register move. Return
294 information about it. */
295 static struct ps_reg_move_info *
296 ps_reg_move (partial_schedule_ptr ps, int id)
297 {
298 gcc_checking_assert (id >= ps->g->num_nodes);
299 return &ps->reg_moves[id - ps->g->num_nodes];
300 }
301
302 /* Return the rtl instruction that is being scheduled by partial schedule
303 instruction ID, which belongs to schedule PS. */
304 static rtx_insn *
305 ps_rtl_insn (partial_schedule_ptr ps, int id)
306 {
307 if (id < ps->g->num_nodes)
308 return ps->g->nodes[id].insn;
309 else
310 return ps_reg_move (ps, id)->insn;
311 }
312
313 /* Partial schedule instruction ID, which belongs to PS, occurred in
314 the original (unscheduled) loop. Return the first instruction
315 in the loop that was associated with ps_rtl_insn (PS, ID).
316 If the instruction had some notes before it, this is the first
317 of those notes. */
318 static rtx_insn *
319 ps_first_note (partial_schedule_ptr ps, int id)
320 {
321 gcc_assert (id < ps->g->num_nodes);
322 return ps->g->nodes[id].first_note;
323 }
324
325 /* Return the number of consecutive stages that are occupied by
326 partial schedule instruction ID in PS. */
327 static int
328 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
329 {
330 if (id < ps->g->num_nodes)
331 return 1;
332 else
333 return ps_reg_move (ps, id)->num_consecutive_stages;
334 }
335
336 /* Given HEAD and TAIL which are the first and last insns in a loop;
337 return the register which controls the loop. Return zero if it has
338 more than one occurrence in the loop besides the control part or the
339 do-loop pattern is not of the form we expect. */
340 static rtx
341 doloop_register_get (rtx_insn *head, rtx_insn *tail)
342 {
343 rtx reg, condition;
344 rtx_insn *insn, *first_insn_not_to_check;
345
346 if (!JUMP_P (tail))
347 return NULL_RTX;
348
349 if (!targetm.code_for_doloop_end)
350 return NULL_RTX;
351
352 /* TODO: Free SMS's dependence on doloop_condition_get. */
353 condition = doloop_condition_get (tail);
354 if (! condition)
355 return NULL_RTX;
356
357 if (REG_P (XEXP (condition, 0)))
358 reg = XEXP (condition, 0);
359 else if (GET_CODE (XEXP (condition, 0)) == PLUS
360 && REG_P (XEXP (XEXP (condition, 0), 0)))
361 reg = XEXP (XEXP (condition, 0), 0);
362 else
363 gcc_unreachable ();
364
365 /* Check that the COUNT_REG has no other occurrences in the loop
366 until the decrement. We assume the control part consists of
367 either a single (parallel) branch-on-count or a (non-parallel)
368 branch immediately preceded by a single (decrement) insn. */
369 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
370 : prev_nondebug_insn (tail));
371
372 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
373 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
374 {
375 if (dump_file)
376 {
377 fprintf (dump_file, "SMS count_reg found ");
378 print_rtl_single (dump_file, reg);
379 fprintf (dump_file, " outside control in insn:\n");
380 print_rtl_single (dump_file, insn);
381 }
382
383 return NULL_RTX;
384 }
385
386 return reg;
387 }
388
389 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
390 that the number of iterations is a compile-time constant. If so,
391 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
392 this constant. Otherwise return 0. */
393 static rtx_insn *
394 const_iteration_count (rtx count_reg, basic_block pre_header,
395 int64_t * count)
396 {
397 rtx_insn *insn;
398 rtx_insn *head, *tail;
399
400 if (! pre_header)
401 return NULL;
402
403 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
404
405 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
406 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
407 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
408 {
409 rtx pat = single_set (insn);
410
411 if (CONST_INT_P (SET_SRC (pat)))
412 {
413 *count = INTVAL (SET_SRC (pat));
414 return insn;
415 }
416
417 return NULL;
418 }
419
420 return NULL;
421 }
422
423 /* A very simple resource-based lower bound on the initiation interval.
424 ??? Improve the accuracy of this bound by considering the
425 utilization of various units. */
426 static int
427 res_MII (ddg_ptr g)
428 {
429 if (targetm.sched.sms_res_mii)
430 return targetm.sched.sms_res_mii (g);
431
432 return ((g->num_nodes - g->num_debug) / issue_rate);
433 }
434
435
436 /* A vector that contains the sched data for each ps_insn. */
437 static vec<node_sched_params> node_sched_param_vec;
438
439 /* Allocate sched_params for each node and initialize it. */
440 static void
441 set_node_sched_params (ddg_ptr g)
442 {
443 node_sched_param_vec.truncate (0);
444 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
445 }
446
447 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
448 static void
449 extend_node_sched_params (partial_schedule_ptr ps)
450 {
451 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
452 + ps->reg_moves.length ());
453 }
454
455 /* Update the sched_params (time, row and stage) for node U using the II,
456 the CYCLE of U and MIN_CYCLE.
457 We're not simply taking the following
458 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
459 because the stages may not be aligned on cycle 0. */
460 static void
461 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
462 {
463 int sc_until_cycle_zero;
464 int stage;
465
466 SCHED_TIME (u) = cycle;
467 SCHED_ROW (u) = SMODULO (cycle, ii);
468
469 /* The calculation of stage count is done adding the number
470 of stages before cycle zero and after cycle zero. */
471 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
472
473 if (SCHED_TIME (u) < 0)
474 {
475 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
476 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
477 }
478 else
479 {
480 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
482 }
483 }
484
485 static void
486 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
487 {
488 int i;
489
490 if (! file)
491 return;
492 for (i = 0; i < num_nodes; i++)
493 {
494 node_sched_params_ptr nsp = SCHED_PARAMS (i);
495
496 fprintf (file, "Node = %d; INSN = %d\n", i,
497 INSN_UID (ps_rtl_insn (ps, i)));
498 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
499 fprintf (file, " time = %d:\n", nsp->time);
500 fprintf (file, " stage = %d:\n", nsp->stage);
501 }
502 }
503
504 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
505 static void
506 set_columns_for_row (partial_schedule_ptr ps, int row)
507 {
508 ps_insn_ptr cur_insn;
509 int column;
510
511 column = 0;
512 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
513 SCHED_COLUMN (cur_insn->id) = column++;
514 }
515
516 /* Set SCHED_COLUMN for each instruction in PS. */
517 static void
518 set_columns_for_ps (partial_schedule_ptr ps)
519 {
520 int row;
521
522 for (row = 0; row < ps->ii; row++)
523 set_columns_for_row (ps, row);
524 }
525
526 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
527 Its single predecessor has already been scheduled, as has its
528 ddg node successors. (The move may have also another move as its
529 successor, in which case that successor will be scheduled later.)
530
531 The move is part of a chain that satisfies register dependencies
532 between a producing ddg node and various consuming ddg nodes.
533 If some of these dependencies have a distance of 1 (meaning that
534 the use is upward-exposed) then DISTANCE1_USES is nonnull and
535 contains the set of uses with distance-1 dependencies.
536 DISTANCE1_USES is null otherwise.
537
538 MUST_FOLLOW is a scratch bitmap that is big enough to hold
539 all current ps_insn ids.
540
541 Return true on success. */
542 static bool
543 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
544 sbitmap distance1_uses, sbitmap must_follow)
545 {
546 unsigned int u;
547 int this_time, this_distance, this_start, this_end, this_latency;
548 int start, end, c, ii;
549 sbitmap_iterator sbi;
550 ps_reg_move_info *move;
551 rtx_insn *this_insn;
552 ps_insn_ptr psi;
553
554 move = ps_reg_move (ps, i_reg_move);
555 ii = ps->ii;
556 if (dump_file)
557 {
558 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
559 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
560 PS_MIN_CYCLE (ps));
561 print_rtl_single (dump_file, move->insn);
562 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
563 fprintf (dump_file, "=========== =========== =====\n");
564 }
565
566 start = INT_MIN;
567 end = INT_MAX;
568
569 /* For dependencies of distance 1 between a producer ddg node A
570 and consumer ddg node B, we have a chain of dependencies:
571
572 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
573
574 where Mi is the ith move. For dependencies of distance 0 between
575 a producer ddg node A and consumer ddg node C, we have a chain of
576 dependencies:
577
578 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
579
580 where Mi' occupies the same position as Mi but occurs a stage later.
581 We can only schedule each move once, so if we have both types of
582 chain, we model the second as:
583
584 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
585
586 First handle the dependencies between the previously-scheduled
587 predecessor and the move. */
588 this_insn = ps_rtl_insn (ps, move->def);
589 this_latency = insn_latency (this_insn, move->insn);
590 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
591 this_time = SCHED_TIME (move->def) - this_distance * ii;
592 this_start = this_time + this_latency;
593 this_end = this_time + ii;
594 if (dump_file)
595 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
596 this_start, this_end, SCHED_TIME (move->def),
597 INSN_UID (this_insn), this_latency, this_distance,
598 INSN_UID (move->insn));
599
600 if (start < this_start)
601 start = this_start;
602 if (end > this_end)
603 end = this_end;
604
605 /* Handle the dependencies between the move and previously-scheduled
606 successors. */
607 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
608 {
609 this_insn = ps_rtl_insn (ps, u);
610 this_latency = insn_latency (move->insn, this_insn);
611 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
612 this_distance = -1;
613 else
614 this_distance = 0;
615 this_time = SCHED_TIME (u) + this_distance * ii;
616 this_start = this_time - ii;
617 this_end = this_time - this_latency;
618 if (dump_file)
619 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
620 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
621 this_latency, this_distance, INSN_UID (this_insn));
622
623 if (start < this_start)
624 start = this_start;
625 if (end > this_end)
626 end = this_end;
627 }
628
629 if (dump_file)
630 {
631 fprintf (dump_file, "----------- ----------- -----\n");
632 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
633 }
634
635 bitmap_clear (must_follow);
636 bitmap_set_bit (must_follow, move->def);
637
638 start = MAX (start, end - (ii - 1));
639 for (c = end; c >= start; c--)
640 {
641 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
642 move->uses, must_follow);
643 if (psi)
644 {
645 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
646 if (dump_file)
647 fprintf (dump_file, "\nScheduled register move INSN %d at"
648 " time %d, row %d\n\n", INSN_UID (move->insn), c,
649 SCHED_ROW (i_reg_move));
650 return true;
651 }
652 }
653
654 if (dump_file)
655 fprintf (dump_file, "\nNo available slot\n\n");
656
657 return false;
658 }
659
660 /*
661 Breaking intra-loop register anti-dependences:
662 Each intra-loop register anti-dependence implies a cross-iteration true
663 dependence of distance 1. Therefore, we can remove such false dependencies
664 and figure out if the partial schedule broke them by checking if (for a
665 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
666 if so generate a register move. The number of such moves is equal to:
667 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
668 nreg_moves = ----------------------------------- + 1 - { dependence.
669 ii { 1 if not.
670 */
671 static bool
672 schedule_reg_moves (partial_schedule_ptr ps)
673 {
674 ddg_ptr g = ps->g;
675 int ii = ps->ii;
676 int i;
677
678 for (i = 0; i < g->num_nodes; i++)
679 {
680 ddg_node_ptr u = &g->nodes[i];
681 ddg_edge_ptr e;
682 int nreg_moves = 0, i_reg_move;
683 rtx prev_reg, old_reg;
684 int first_move;
685 int distances[2];
686 sbitmap distance1_uses;
687 rtx set = single_set (u->insn);
688
689 /* Skip instructions that do not set a register. */
690 if ((set && !REG_P (SET_DEST (set))))
691 continue;
692
693 /* Compute the number of reg_moves needed for u, by looking at life
694 ranges started at u (excluding self-loops). */
695 distances[0] = distances[1] = false;
696 for (e = u->out; e; e = e->next_out)
697 if (e->type == TRUE_DEP && e->dest != e->src)
698 {
699 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
700 - SCHED_TIME (e->src->cuid)) / ii;
701
702 if (e->distance == 1)
703 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
704 - SCHED_TIME (e->src->cuid) + ii) / ii;
705
706 /* If dest precedes src in the schedule of the kernel, then dest
707 will read before src writes and we can save one reg_copy. */
708 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
709 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
710 nreg_moves4e--;
711
712 if (nreg_moves4e >= 1)
713 {
714 /* !single_set instructions are not supported yet and
715 thus we do not except to encounter them in the loop
716 except from the doloop part. For the latter case
717 we assume no regmoves are generated as the doloop
718 instructions are tied to the branch with an edge. */
719 gcc_assert (set);
720 /* If the instruction contains auto-inc register then
721 validate that the regmov is being generated for the
722 target regsiter rather then the inc'ed register. */
723 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
724 }
725
726 if (nreg_moves4e)
727 {
728 gcc_assert (e->distance < 2);
729 distances[e->distance] = true;
730 }
731 nreg_moves = MAX (nreg_moves, nreg_moves4e);
732 }
733
734 if (nreg_moves == 0)
735 continue;
736
737 /* Create NREG_MOVES register moves. */
738 first_move = ps->reg_moves.length ();
739 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
740 extend_node_sched_params (ps);
741
742 /* Record the moves associated with this node. */
743 first_move += ps->g->num_nodes;
744
745 /* Generate each move. */
746 old_reg = prev_reg = SET_DEST (single_set (u->insn));
747 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
748 {
749 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
750
751 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
752 move->uses = sbitmap_alloc (first_move + nreg_moves);
753 move->old_reg = old_reg;
754 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
755 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
756 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
757 bitmap_clear (move->uses);
758
759 prev_reg = move->new_reg;
760 }
761
762 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
763
764 if (distance1_uses)
765 bitmap_clear (distance1_uses);
766
767 /* Every use of the register defined by node may require a different
768 copy of this register, depending on the time the use is scheduled.
769 Record which uses require which move results. */
770 for (e = u->out; e; e = e->next_out)
771 if (e->type == TRUE_DEP && e->dest != e->src)
772 {
773 int dest_copy = (SCHED_TIME (e->dest->cuid)
774 - SCHED_TIME (e->src->cuid)) / ii;
775
776 if (e->distance == 1)
777 dest_copy = (SCHED_TIME (e->dest->cuid)
778 - SCHED_TIME (e->src->cuid) + ii) / ii;
779
780 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
781 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
782 dest_copy--;
783
784 if (dest_copy)
785 {
786 ps_reg_move_info *move;
787
788 move = ps_reg_move (ps, first_move + dest_copy - 1);
789 bitmap_set_bit (move->uses, e->dest->cuid);
790 if (e->distance == 1)
791 bitmap_set_bit (distance1_uses, e->dest->cuid);
792 }
793 }
794
795 auto_sbitmap must_follow (first_move + nreg_moves);
796 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
797 if (!schedule_reg_move (ps, first_move + i_reg_move,
798 distance1_uses, must_follow))
799 break;
800 if (distance1_uses)
801 sbitmap_free (distance1_uses);
802 if (i_reg_move < nreg_moves)
803 return false;
804 }
805 return true;
806 }
807
808 /* Emit the moves associated with PS. Apply the substitutions
809 associated with them. */
810 static void
811 apply_reg_moves (partial_schedule_ptr ps)
812 {
813 ps_reg_move_info *move;
814 int i;
815
816 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
817 {
818 unsigned int i_use;
819 sbitmap_iterator sbi;
820
821 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
822 {
823 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
824 df_insn_rescan (ps->g->nodes[i_use].insn);
825 }
826 }
827 }
828
829 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
830 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
831 will move to cycle zero. */
832 static void
833 reset_sched_times (partial_schedule_ptr ps, int amount)
834 {
835 int row;
836 int ii = ps->ii;
837 ps_insn_ptr crr_insn;
838
839 for (row = 0; row < ii; row++)
840 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
841 {
842 int u = crr_insn->id;
843 int normalized_time = SCHED_TIME (u) - amount;
844 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
845
846 if (dump_file)
847 {
848 /* Print the scheduling times after the rotation. */
849 rtx_insn *insn = ps_rtl_insn (ps, u);
850
851 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
852 "crr_insn->cycle=%d, min_cycle=%d", u,
853 INSN_UID (insn), normalized_time, new_min_cycle);
854 if (JUMP_P (insn))
855 fprintf (dump_file, " (branch)");
856 fprintf (dump_file, "\n");
857 }
858
859 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
860 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
861
862 crr_insn->cycle = normalized_time;
863 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
864 }
865 }
866
867 /* Permute the insns according to their order in PS, from row 0 to
868 row ii-1, and position them right before LAST. This schedules
869 the insns of the loop kernel. */
870 static void
871 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
872 {
873 int ii = ps->ii;
874 int row;
875 ps_insn_ptr ps_ij;
876
877 for (row = 0; row < ii ; row++)
878 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
879 {
880 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
881
882 if (PREV_INSN (last) != insn)
883 {
884 if (ps_ij->id < ps->g->num_nodes)
885 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
886 PREV_INSN (last));
887 else
888 add_insn_before (insn, last, NULL);
889 }
890 }
891 }
892
893 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
894 respectively only if cycle C falls on the border of the scheduling
895 window boundaries marked by START and END cycles. STEP is the
896 direction of the window. */
897 static inline void
898 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
899 sbitmap *tmp_precede, sbitmap must_precede, int c,
900 int start, int end, int step)
901 {
902 *tmp_precede = NULL;
903 *tmp_follow = NULL;
904
905 if (c == start)
906 {
907 if (step == 1)
908 *tmp_precede = must_precede;
909 else /* step == -1. */
910 *tmp_follow = must_follow;
911 }
912 if (c == end - step)
913 {
914 if (step == 1)
915 *tmp_follow = must_follow;
916 else /* step == -1. */
917 *tmp_precede = must_precede;
918 }
919
920 }
921
922 /* Return True if the branch can be moved to row ii-1 while
923 normalizing the partial schedule PS to start from cycle zero and thus
924 optimize the SC. Otherwise return False. */
925 static bool
926 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
927 {
928 int amount = PS_MIN_CYCLE (ps);
929 int start, end, step;
930 int ii = ps->ii;
931 bool ok = false;
932 int stage_count, stage_count_curr;
933
934 /* Compare the SC after normalization and SC after bringing the branch
935 to row ii-1. If they are equal just bail out. */
936 stage_count = calculate_stage_count (ps, amount);
937 stage_count_curr =
938 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
939
940 if (stage_count == stage_count_curr)
941 {
942 if (dump_file)
943 fprintf (dump_file, "SMS SC already optimized.\n");
944
945 return false;
946 }
947
948 if (dump_file)
949 {
950 fprintf (dump_file, "SMS Trying to optimize branch location\n");
951 fprintf (dump_file, "SMS partial schedule before trial:\n");
952 print_partial_schedule (ps, dump_file);
953 }
954
955 /* First, normalize the partial scheduling. */
956 reset_sched_times (ps, amount);
957 rotate_partial_schedule (ps, amount);
958 if (dump_file)
959 {
960 fprintf (dump_file,
961 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
962 ii, stage_count);
963 print_partial_schedule (ps, dump_file);
964 }
965
966 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
967 return true;
968
969 auto_sbitmap sched_nodes (g->num_nodes);
970 bitmap_ones (sched_nodes);
971
972 /* Calculate the new placement of the branch. It should be in row
973 ii-1 and fall into it's scheduling window. */
974 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
975 &step, &end) == 0)
976 {
977 bool success;
978 ps_insn_ptr next_ps_i;
979 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
980 int row = SMODULO (branch_cycle, ps->ii);
981 int num_splits = 0;
982 sbitmap tmp_precede, tmp_follow;
983 int min_cycle, c;
984
985 if (dump_file)
986 fprintf (dump_file, "\nTrying to schedule node %d "
987 "INSN = %d in (%d .. %d) step %d\n",
988 g->closing_branch->cuid,
989 (INSN_UID (g->closing_branch->insn)), start, end, step);
990
991 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
992 if (step == 1)
993 {
994 c = start + ii - SMODULO (start, ii) - 1;
995 gcc_assert (c >= start);
996 if (c >= end)
997 {
998 if (dump_file)
999 fprintf (dump_file,
1000 "SMS failed to schedule branch at cycle: %d\n", c);
1001 return false;
1002 }
1003 }
1004 else
1005 {
1006 c = start - SMODULO (start, ii) - 1;
1007 gcc_assert (c <= start);
1008
1009 if (c <= end)
1010 {
1011 if (dump_file)
1012 fprintf (dump_file,
1013 "SMS failed to schedule branch at cycle: %d\n", c);
1014 return false;
1015 }
1016 }
1017
1018 auto_sbitmap must_precede (g->num_nodes);
1019 auto_sbitmap must_follow (g->num_nodes);
1020
1021 /* Try to schedule the branch is it's new cycle. */
1022 calculate_must_precede_follow (g->closing_branch, start, end,
1023 step, ii, sched_nodes,
1024 must_precede, must_follow);
1025
1026 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1027 must_precede, c, start, end, step);
1028
1029 /* Find the element in the partial schedule related to the closing
1030 branch so we can remove it from it's current cycle. */
1031 for (next_ps_i = ps->rows[row];
1032 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1033 if (next_ps_i->id == g->closing_branch->cuid)
1034 break;
1035
1036 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1037 remove_node_from_ps (ps, next_ps_i);
1038 success =
1039 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1040 sched_nodes, &num_splits,
1041 tmp_precede, tmp_follow);
1042 gcc_assert (num_splits == 0);
1043 if (!success)
1044 {
1045 if (dump_file)
1046 fprintf (dump_file,
1047 "SMS failed to schedule branch at cycle: %d, "
1048 "bringing it back to cycle %d\n", c, branch_cycle);
1049
1050 /* The branch was failed to be placed in row ii - 1.
1051 Put it back in it's original place in the partial
1052 schedualing. */
1053 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1054 must_precede, branch_cycle, start, end,
1055 step);
1056 success =
1057 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1058 branch_cycle, sched_nodes,
1059 &num_splits, tmp_precede,
1060 tmp_follow);
1061 gcc_assert (success && (num_splits == 0));
1062 ok = false;
1063 }
1064 else
1065 {
1066 /* The branch is placed in row ii - 1. */
1067 if (dump_file)
1068 fprintf (dump_file,
1069 "SMS success in moving branch to cycle %d\n", c);
1070
1071 update_node_sched_params (g->closing_branch->cuid, ii, c,
1072 PS_MIN_CYCLE (ps));
1073 ok = true;
1074 }
1075
1076 /* This might have been added to a new first stage. */
1077 if (PS_MIN_CYCLE (ps) < min_cycle)
1078 reset_sched_times (ps, 0);
1079 }
1080
1081 return ok;
1082 }
1083
1084 static void
1085 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1086 int to_stage, rtx count_reg)
1087 {
1088 int row;
1089 ps_insn_ptr ps_ij;
1090
1091 for (row = 0; row < ps->ii; row++)
1092 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1093 {
1094 int u = ps_ij->id;
1095 int first_u, last_u;
1096 rtx_insn *u_insn;
1097
1098 /* Do not duplicate any insn which refers to count_reg as it
1099 belongs to the control part.
1100 The closing branch is scheduled as well and thus should
1101 be ignored.
1102 TODO: This should be done by analyzing the control part of
1103 the loop. */
1104 u_insn = ps_rtl_insn (ps, u);
1105 if (reg_mentioned_p (count_reg, u_insn)
1106 || JUMP_P (u_insn))
1107 continue;
1108
1109 first_u = SCHED_STAGE (u);
1110 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1111 if (from_stage <= last_u && to_stage >= first_u)
1112 {
1113 if (u < ps->g->num_nodes)
1114 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1115 else
1116 emit_insn (copy_rtx (PATTERN (u_insn)));
1117 }
1118 }
1119 }
1120
1121
1122 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1123 static void
1124 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1125 rtx count_reg, rtx count_init)
1126 {
1127 int i;
1128 int last_stage = PS_STAGE_COUNT (ps) - 1;
1129 edge e;
1130
1131 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1132 start_sequence ();
1133
1134 if (!count_init)
1135 {
1136 /* Generate instructions at the beginning of the prolog to
1137 adjust the loop count by STAGE_COUNT. If loop count is constant
1138 (count_init), this constant is adjusted by STAGE_COUNT in
1139 generate_prolog_epilog function. */
1140 rtx sub_reg = NULL_RTX;
1141
1142 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1143 gen_int_mode (last_stage,
1144 GET_MODE (count_reg)),
1145 count_reg, 1, OPTAB_DIRECT);
1146 gcc_assert (REG_P (sub_reg));
1147 if (REGNO (sub_reg) != REGNO (count_reg))
1148 emit_move_insn (count_reg, sub_reg);
1149 }
1150
1151 for (i = 0; i < last_stage; i++)
1152 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1153
1154 /* Put the prolog on the entry edge. */
1155 e = loop_preheader_edge (loop);
1156 split_edge_and_insert (e, get_insns ());
1157 if (!flag_resched_modulo_sched)
1158 e->dest->flags |= BB_DISABLE_SCHEDULE;
1159
1160 end_sequence ();
1161
1162 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1163 start_sequence ();
1164
1165 for (i = 0; i < last_stage; i++)
1166 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1167
1168 /* Put the epilogue on the exit edge. */
1169 gcc_assert (single_exit (loop));
1170 e = single_exit (loop);
1171 split_edge_and_insert (e, get_insns ());
1172 if (!flag_resched_modulo_sched)
1173 e->dest->flags |= BB_DISABLE_SCHEDULE;
1174
1175 end_sequence ();
1176 }
1177
1178 /* Mark LOOP as software pipelined so the later
1179 scheduling passes don't touch it. */
1180 static void
1181 mark_loop_unsched (struct loop *loop)
1182 {
1183 unsigned i;
1184 basic_block *bbs = get_loop_body (loop);
1185
1186 for (i = 0; i < loop->num_nodes; i++)
1187 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1188
1189 free (bbs);
1190 }
1191
1192 /* Return true if all the BBs of the loop are empty except the
1193 loop header. */
1194 static bool
1195 loop_single_full_bb_p (struct loop *loop)
1196 {
1197 unsigned i;
1198 basic_block *bbs = get_loop_body (loop);
1199
1200 for (i = 0; i < loop->num_nodes ; i++)
1201 {
1202 rtx_insn *head, *tail;
1203 bool empty_bb = true;
1204
1205 if (bbs[i] == loop->header)
1206 continue;
1207
1208 /* Make sure that basic blocks other than the header
1209 have only notes labels or jumps. */
1210 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1211 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1212 {
1213 if (NOTE_P (head) || LABEL_P (head)
1214 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1215 continue;
1216 empty_bb = false;
1217 break;
1218 }
1219
1220 if (! empty_bb)
1221 {
1222 free (bbs);
1223 return false;
1224 }
1225 }
1226 free (bbs);
1227 return true;
1228 }
1229
1230 /* Dump file:line from INSN's location info to dump_file. */
1231
1232 static void
1233 dump_insn_location (rtx_insn *insn)
1234 {
1235 if (dump_file && INSN_HAS_LOCATION (insn))
1236 {
1237 expanded_location xloc = insn_location (insn);
1238 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1239 }
1240 }
1241
1242 /* A simple loop from SMS point of view; it is a loop that is composed of
1243 either a single basic block or two BBs - a header and a latch. */
1244 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1245 && (EDGE_COUNT (loop->latch->preds) == 1) \
1246 && (EDGE_COUNT (loop->latch->succs) == 1))
1247
1248 /* Return true if the loop is in its canonical form and false if not.
1249 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1250 static bool
1251 loop_canon_p (struct loop *loop)
1252 {
1253
1254 if (loop->inner || !loop_outer (loop))
1255 {
1256 if (dump_file)
1257 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1258 return false;
1259 }
1260
1261 if (!single_exit (loop))
1262 {
1263 if (dump_file)
1264 {
1265 rtx_insn *insn = BB_END (loop->header);
1266
1267 fprintf (dump_file, "SMS loop many exits");
1268 dump_insn_location (insn);
1269 fprintf (dump_file, "\n");
1270 }
1271 return false;
1272 }
1273
1274 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1275 {
1276 if (dump_file)
1277 {
1278 rtx_insn *insn = BB_END (loop->header);
1279
1280 fprintf (dump_file, "SMS loop many BBs.");
1281 dump_insn_location (insn);
1282 fprintf (dump_file, "\n");
1283 }
1284 return false;
1285 }
1286
1287 return true;
1288 }
1289
1290 /* If there are more than one entry for the loop,
1291 make it one by splitting the first entry edge and
1292 redirecting the others to the new BB. */
1293 static void
1294 canon_loop (struct loop *loop)
1295 {
1296 edge e;
1297 edge_iterator i;
1298
1299 /* Avoid annoying special cases of edges going to exit
1300 block. */
1301 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1302 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1303 split_edge (e);
1304
1305 if (loop->latch == loop->header
1306 || EDGE_COUNT (loop->latch->succs) > 1)
1307 {
1308 FOR_EACH_EDGE (e, i, loop->header->preds)
1309 if (e->src == loop->latch)
1310 break;
1311 split_edge (e);
1312 }
1313 }
1314
1315 /* Setup infos. */
1316 static void
1317 setup_sched_infos (void)
1318 {
1319 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1320 sizeof (sms_common_sched_info));
1321 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1322 common_sched_info = &sms_common_sched_info;
1323
1324 sched_deps_info = &sms_sched_deps_info;
1325 current_sched_info = &sms_sched_info;
1326 }
1327
1328 /* Probability in % that the sms-ed loop rolls enough so that optimized
1329 version may be entered. Just a guess. */
1330 #define PROB_SMS_ENOUGH_ITERATIONS 80
1331
1332 /* Used to calculate the upper bound of ii. */
1333 #define MAXII_FACTOR 2
1334
1335 /* Main entry point, perform SMS scheduling on the loops of the function
1336 that consist of single basic blocks. */
1337 static void
1338 sms_schedule (void)
1339 {
1340 rtx_insn *insn;
1341 ddg_ptr *g_arr, g;
1342 int * node_order;
1343 int maxii, max_asap;
1344 partial_schedule_ptr ps;
1345 basic_block bb = NULL;
1346 struct loop *loop;
1347 basic_block condition_bb = NULL;
1348 edge latch_edge;
1349 gcov_type trip_count = 0;
1350
1351 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1352 | LOOPS_HAVE_RECORDED_EXITS);
1353 if (number_of_loops (cfun) <= 1)
1354 {
1355 loop_optimizer_finalize ();
1356 return; /* There are no loops to schedule. */
1357 }
1358
1359 /* Initialize issue_rate. */
1360 if (targetm.sched.issue_rate)
1361 {
1362 int temp = reload_completed;
1363
1364 reload_completed = 1;
1365 issue_rate = targetm.sched.issue_rate ();
1366 reload_completed = temp;
1367 }
1368 else
1369 issue_rate = 1;
1370
1371 /* Initialize the scheduler. */
1372 setup_sched_infos ();
1373 haifa_sched_init ();
1374
1375 /* Allocate memory to hold the DDG array one entry for each loop.
1376 We use loop->num as index into this array. */
1377 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1378
1379 if (dump_file)
1380 {
1381 fprintf (dump_file, "\n\nSMS analysis phase\n");
1382 fprintf (dump_file, "===================\n\n");
1383 }
1384
1385 /* Build DDGs for all the relevant loops and hold them in G_ARR
1386 indexed by the loop index. */
1387 FOR_EACH_LOOP (loop, 0)
1388 {
1389 rtx_insn *head, *tail;
1390 rtx count_reg;
1391
1392 /* For debugging. */
1393 if (dbg_cnt (sms_sched_loop) == false)
1394 {
1395 if (dump_file)
1396 fprintf (dump_file, "SMS reached max limit... \n");
1397
1398 break;
1399 }
1400
1401 if (dump_file)
1402 {
1403 rtx_insn *insn = BB_END (loop->header);
1404
1405 fprintf (dump_file, "SMS loop num: %d", loop->num);
1406 dump_insn_location (insn);
1407 fprintf (dump_file, "\n");
1408 }
1409
1410 if (! loop_canon_p (loop))
1411 continue;
1412
1413 if (! loop_single_full_bb_p (loop))
1414 {
1415 if (dump_file)
1416 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1417 continue;
1418 }
1419
1420 bb = loop->header;
1421
1422 get_ebb_head_tail (bb, bb, &head, &tail);
1423 latch_edge = loop_latch_edge (loop);
1424 gcc_assert (single_exit (loop));
1425 if (single_exit (loop)->count)
1426 trip_count = latch_edge->count / single_exit (loop)->count;
1427
1428 /* Perform SMS only on loops that their average count is above threshold. */
1429
1430 if ( latch_edge->count
1431 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1432 {
1433 if (dump_file)
1434 {
1435 dump_insn_location (tail);
1436 fprintf (dump_file, "\nSMS single-bb-loop\n");
1437 if (profile_info && flag_branch_probabilities)
1438 {
1439 fprintf (dump_file, "SMS loop-count ");
1440 fprintf (dump_file, "%" PRId64,
1441 (int64_t) bb->count);
1442 fprintf (dump_file, "\n");
1443 fprintf (dump_file, "SMS trip-count ");
1444 fprintf (dump_file, "%" PRId64,
1445 (int64_t) trip_count);
1446 fprintf (dump_file, "\n");
1447 fprintf (dump_file, "SMS profile-sum-max ");
1448 fprintf (dump_file, "%" PRId64,
1449 (int64_t) profile_info->sum_max);
1450 fprintf (dump_file, "\n");
1451 }
1452 }
1453 continue;
1454 }
1455
1456 /* Make sure this is a doloop. */
1457 if ( !(count_reg = doloop_register_get (head, tail)))
1458 {
1459 if (dump_file)
1460 fprintf (dump_file, "SMS doloop_register_get failed\n");
1461 continue;
1462 }
1463
1464 /* Don't handle BBs with calls or barriers
1465 or !single_set with the exception of instructions that include
1466 count_reg---these instructions are part of the control part
1467 that do-loop recognizes.
1468 ??? Should handle insns defining subregs. */
1469 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1470 {
1471 rtx set;
1472
1473 if (CALL_P (insn)
1474 || BARRIER_P (insn)
1475 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1476 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1477 && !reg_mentioned_p (count_reg, insn))
1478 || (INSN_P (insn) && (set = single_set (insn))
1479 && GET_CODE (SET_DEST (set)) == SUBREG))
1480 break;
1481 }
1482
1483 if (insn != NEXT_INSN (tail))
1484 {
1485 if (dump_file)
1486 {
1487 if (CALL_P (insn))
1488 fprintf (dump_file, "SMS loop-with-call\n");
1489 else if (BARRIER_P (insn))
1490 fprintf (dump_file, "SMS loop-with-barrier\n");
1491 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1492 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1493 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1494 else
1495 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1496 print_rtl_single (dump_file, insn);
1497 }
1498
1499 continue;
1500 }
1501
1502 /* Always schedule the closing branch with the rest of the
1503 instructions. The branch is rotated to be in row ii-1 at the
1504 end of the scheduling procedure to make sure it's the last
1505 instruction in the iteration. */
1506 if (! (g = create_ddg (bb, 1)))
1507 {
1508 if (dump_file)
1509 fprintf (dump_file, "SMS create_ddg failed\n");
1510 continue;
1511 }
1512
1513 g_arr[loop->num] = g;
1514 if (dump_file)
1515 fprintf (dump_file, "...OK\n");
1516
1517 }
1518 if (dump_file)
1519 {
1520 fprintf (dump_file, "\nSMS transformation phase\n");
1521 fprintf (dump_file, "=========================\n\n");
1522 }
1523
1524 /* We don't want to perform SMS on new loops - created by versioning. */
1525 FOR_EACH_LOOP (loop, 0)
1526 {
1527 rtx_insn *head, *tail;
1528 rtx count_reg;
1529 rtx_insn *count_init;
1530 int mii, rec_mii, stage_count, min_cycle;
1531 int64_t loop_count = 0;
1532 bool opt_sc_p;
1533
1534 if (! (g = g_arr[loop->num]))
1535 continue;
1536
1537 if (dump_file)
1538 {
1539 rtx_insn *insn = BB_END (loop->header);
1540
1541 fprintf (dump_file, "SMS loop num: %d", loop->num);
1542 dump_insn_location (insn);
1543 fprintf (dump_file, "\n");
1544
1545 print_ddg (dump_file, g);
1546 }
1547
1548 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1549
1550 latch_edge = loop_latch_edge (loop);
1551 gcc_assert (single_exit (loop));
1552 if (single_exit (loop)->count)
1553 trip_count = latch_edge->count / single_exit (loop)->count;
1554
1555 if (dump_file)
1556 {
1557 dump_insn_location (tail);
1558 fprintf (dump_file, "\nSMS single-bb-loop\n");
1559 if (profile_info && flag_branch_probabilities)
1560 {
1561 fprintf (dump_file, "SMS loop-count ");
1562 fprintf (dump_file, "%" PRId64,
1563 (int64_t) bb->count);
1564 fprintf (dump_file, "\n");
1565 fprintf (dump_file, "SMS profile-sum-max ");
1566 fprintf (dump_file, "%" PRId64,
1567 (int64_t) profile_info->sum_max);
1568 fprintf (dump_file, "\n");
1569 }
1570 fprintf (dump_file, "SMS doloop\n");
1571 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1572 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1573 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1574 }
1575
1576
1577 /* In case of th loop have doloop register it gets special
1578 handling. */
1579 count_init = NULL;
1580 if ((count_reg = doloop_register_get (head, tail)))
1581 {
1582 basic_block pre_header;
1583
1584 pre_header = loop_preheader_edge (loop)->src;
1585 count_init = const_iteration_count (count_reg, pre_header,
1586 &loop_count);
1587 }
1588 gcc_assert (count_reg);
1589
1590 if (dump_file && count_init)
1591 {
1592 fprintf (dump_file, "SMS const-doloop ");
1593 fprintf (dump_file, "%" PRId64,
1594 loop_count);
1595 fprintf (dump_file, "\n");
1596 }
1597
1598 node_order = XNEWVEC (int, g->num_nodes);
1599
1600 mii = 1; /* Need to pass some estimate of mii. */
1601 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1602 mii = MAX (res_MII (g), rec_mii);
1603 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1604
1605 if (dump_file)
1606 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1607 rec_mii, mii, maxii);
1608
1609 for (;;)
1610 {
1611 set_node_sched_params (g);
1612
1613 stage_count = 0;
1614 opt_sc_p = false;
1615 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1616
1617 if (ps)
1618 {
1619 /* Try to achieve optimized SC by normalizing the partial
1620 schedule (having the cycles start from cycle zero).
1621 The branch location must be placed in row ii-1 in the
1622 final scheduling. If failed, shift all instructions to
1623 position the branch in row ii-1. */
1624 opt_sc_p = optimize_sc (ps, g);
1625 if (opt_sc_p)
1626 stage_count = calculate_stage_count (ps, 0);
1627 else
1628 {
1629 /* Bring the branch to cycle ii-1. */
1630 int amount = (SCHED_TIME (g->closing_branch->cuid)
1631 - (ps->ii - 1));
1632
1633 if (dump_file)
1634 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1635
1636 stage_count = calculate_stage_count (ps, amount);
1637 }
1638
1639 gcc_assert (stage_count >= 1);
1640 }
1641
1642 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1643 1 means that there is no interleaving between iterations thus
1644 we let the scheduling passes do the job in this case. */
1645 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1646 || (count_init && (loop_count <= stage_count))
1647 || (flag_branch_probabilities && (trip_count <= stage_count)))
1648 {
1649 if (dump_file)
1650 {
1651 fprintf (dump_file, "SMS failed... \n");
1652 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1653 " loop-count=", stage_count);
1654 fprintf (dump_file, "%" PRId64, loop_count);
1655 fprintf (dump_file, ", trip-count=");
1656 fprintf (dump_file, "%" PRId64, trip_count);
1657 fprintf (dump_file, ")\n");
1658 }
1659 break;
1660 }
1661
1662 if (!opt_sc_p)
1663 {
1664 /* Rotate the partial schedule to have the branch in row ii-1. */
1665 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1666
1667 reset_sched_times (ps, amount);
1668 rotate_partial_schedule (ps, amount);
1669 }
1670
1671 set_columns_for_ps (ps);
1672
1673 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1674 if (!schedule_reg_moves (ps))
1675 {
1676 mii = ps->ii + 1;
1677 free_partial_schedule (ps);
1678 continue;
1679 }
1680
1681 /* Moves that handle incoming values might have been added
1682 to a new first stage. Bump the stage count if so.
1683
1684 ??? Perhaps we could consider rotating the schedule here
1685 instead? */
1686 if (PS_MIN_CYCLE (ps) < min_cycle)
1687 {
1688 reset_sched_times (ps, 0);
1689 stage_count++;
1690 }
1691
1692 /* The stage count should now be correct without rotation. */
1693 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1694 PS_STAGE_COUNT (ps) = stage_count;
1695
1696 canon_loop (loop);
1697
1698 if (dump_file)
1699 {
1700 dump_insn_location (tail);
1701 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1702 ps->ii, stage_count);
1703 print_partial_schedule (ps, dump_file);
1704 }
1705
1706 /* case the BCT count is not known , Do loop-versioning */
1707 if (count_reg && ! count_init)
1708 {
1709 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1710 gen_int_mode (stage_count,
1711 GET_MODE (count_reg)));
1712 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1713 * REG_BR_PROB_BASE) / 100;
1714
1715 loop_version (loop, comp_rtx, &condition_bb,
1716 prob, REG_BR_PROB_BASE - prob,
1717 prob, REG_BR_PROB_BASE - prob,
1718 true);
1719 }
1720
1721 /* Set new iteration count of loop kernel. */
1722 if (count_reg && count_init)
1723 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1724 - stage_count + 1);
1725
1726 /* Now apply the scheduled kernel to the RTL of the loop. */
1727 permute_partial_schedule (ps, g->closing_branch->first_note);
1728
1729 /* Mark this loop as software pipelined so the later
1730 scheduling passes don't touch it. */
1731 if (! flag_resched_modulo_sched)
1732 mark_loop_unsched (loop);
1733
1734 /* The life-info is not valid any more. */
1735 df_set_bb_dirty (g->bb);
1736
1737 apply_reg_moves (ps);
1738 if (dump_file)
1739 print_node_sched_params (dump_file, g->num_nodes, ps);
1740 /* Generate prolog and epilog. */
1741 generate_prolog_epilog (ps, loop, count_reg, count_init);
1742 break;
1743 }
1744
1745 free_partial_schedule (ps);
1746 node_sched_param_vec.release ();
1747 free (node_order);
1748 free_ddg (g);
1749 }
1750
1751 free (g_arr);
1752
1753 /* Release scheduler data, needed until now because of DFA. */
1754 haifa_sched_finish ();
1755 loop_optimizer_finalize ();
1756 }
1757
1758 /* The SMS scheduling algorithm itself
1759 -----------------------------------
1760 Input: 'O' an ordered list of insns of a loop.
1761 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1762
1763 'Q' is the empty Set
1764 'PS' is the partial schedule; it holds the currently scheduled nodes with
1765 their cycle/slot.
1766 'PSP' previously scheduled predecessors.
1767 'PSS' previously scheduled successors.
1768 't(u)' the cycle where u is scheduled.
1769 'l(u)' is the latency of u.
1770 'd(v,u)' is the dependence distance from v to u.
1771 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1772 the node ordering phase.
1773 'check_hardware_resources_conflicts(u, PS, c)'
1774 run a trace around cycle/slot through DFA model
1775 to check resource conflicts involving instruction u
1776 at cycle c given the partial schedule PS.
1777 'add_to_partial_schedule_at_time(u, PS, c)'
1778 Add the node/instruction u to the partial schedule
1779 PS at time c.
1780 'calculate_register_pressure(PS)'
1781 Given a schedule of instructions, calculate the register
1782 pressure it implies. One implementation could be the
1783 maximum number of overlapping live ranges.
1784 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1785 registers available in the hardware.
1786
1787 1. II = MII.
1788 2. PS = empty list
1789 3. for each node u in O in pre-computed order
1790 4. if (PSP(u) != Q && PSS(u) == Q) then
1791 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1792 6. start = Early_start; end = Early_start + II - 1; step = 1
1793 11. else if (PSP(u) == Q && PSS(u) != Q) then
1794 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1795 13. start = Late_start; end = Late_start - II + 1; step = -1
1796 14. else if (PSP(u) != Q && PSS(u) != Q) then
1797 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1798 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1799 17. start = Early_start;
1800 18. end = min(Early_start + II - 1 , Late_start);
1801 19. step = 1
1802 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1803 21. start = ASAP(u); end = start + II - 1; step = 1
1804 22. endif
1805
1806 23. success = false
1807 24. for (c = start ; c != end ; c += step)
1808 25. if check_hardware_resources_conflicts(u, PS, c) then
1809 26. add_to_partial_schedule_at_time(u, PS, c)
1810 27. success = true
1811 28. break
1812 29. endif
1813 30. endfor
1814 31. if (success == false) then
1815 32. II = II + 1
1816 33. if (II > maxII) then
1817 34. finish - failed to schedule
1818 35. endif
1819 36. goto 2.
1820 37. endif
1821 38. endfor
1822 39. if (calculate_register_pressure(PS) > maxRP) then
1823 40. goto 32.
1824 41. endif
1825 42. compute epilogue & prologue
1826 43. finish - succeeded to schedule
1827
1828 ??? The algorithm restricts the scheduling window to II cycles.
1829 In rare cases, it may be better to allow windows of II+1 cycles.
1830 The window would then start and end on the same row, but with
1831 different "must precede" and "must follow" requirements. */
1832
1833 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1834 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1835 set to 0 to save compile time. */
1836 #define DFA_HISTORY SMS_DFA_HISTORY
1837
1838 /* A threshold for the number of repeated unsuccessful attempts to insert
1839 an empty row, before we flush the partial schedule and start over. */
1840 #define MAX_SPLIT_NUM 10
1841 /* Given the partial schedule PS, this function calculates and returns the
1842 cycles in which we can schedule the node with the given index I.
1843 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1844 noticed that there are several cases in which we fail to SMS the loop
1845 because the sched window of a node is empty due to tight data-deps. In
1846 such cases we want to unschedule some of the predecessors/successors
1847 until we get non-empty scheduling window. It returns -1 if the
1848 scheduling window is empty and zero otherwise. */
1849
1850 static int
1851 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1852 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1853 int *end_p)
1854 {
1855 int start, step, end;
1856 int early_start, late_start;
1857 ddg_edge_ptr e;
1858 auto_sbitmap psp (ps->g->num_nodes);
1859 auto_sbitmap pss (ps->g->num_nodes);
1860 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1861 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1862 int psp_not_empty;
1863 int pss_not_empty;
1864 int count_preds;
1865 int count_succs;
1866
1867 /* 1. compute sched window for u (start, end, step). */
1868 bitmap_clear (psp);
1869 bitmap_clear (pss);
1870 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1871 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1872
1873 /* We first compute a forward range (start <= end), then decide whether
1874 to reverse it. */
1875 early_start = INT_MIN;
1876 late_start = INT_MAX;
1877 start = INT_MIN;
1878 end = INT_MAX;
1879 step = 1;
1880
1881 count_preds = 0;
1882 count_succs = 0;
1883
1884 if (dump_file && (psp_not_empty || pss_not_empty))
1885 {
1886 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1887 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1888 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1889 "start", "early start", "late start", "end", "time");
1890 fprintf (dump_file, "=========== =========== =========== ==========="
1891 " =====\n");
1892 }
1893 /* Calculate early_start and limit end. Both bounds are inclusive. */
1894 if (psp_not_empty)
1895 for (e = u_node->in; e != 0; e = e->next_in)
1896 {
1897 int v = e->src->cuid;
1898
1899 if (bitmap_bit_p (sched_nodes, v))
1900 {
1901 int p_st = SCHED_TIME (v);
1902 int earliest = p_st + e->latency - (e->distance * ii);
1903 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1904
1905 if (dump_file)
1906 {
1907 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1908 "", earliest, "", latest, p_st);
1909 print_ddg_edge (dump_file, e);
1910 fprintf (dump_file, "\n");
1911 }
1912
1913 early_start = MAX (early_start, earliest);
1914 end = MIN (end, latest);
1915
1916 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1917 count_preds++;
1918 }
1919 }
1920
1921 /* Calculate late_start and limit start. Both bounds are inclusive. */
1922 if (pss_not_empty)
1923 for (e = u_node->out; e != 0; e = e->next_out)
1924 {
1925 int v = e->dest->cuid;
1926
1927 if (bitmap_bit_p (sched_nodes, v))
1928 {
1929 int s_st = SCHED_TIME (v);
1930 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1931 int latest = s_st - e->latency + (e->distance * ii);
1932
1933 if (dump_file)
1934 {
1935 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1936 earliest, "", latest, "", s_st);
1937 print_ddg_edge (dump_file, e);
1938 fprintf (dump_file, "\n");
1939 }
1940
1941 start = MAX (start, earliest);
1942 late_start = MIN (late_start, latest);
1943
1944 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1945 count_succs++;
1946 }
1947 }
1948
1949 if (dump_file && (psp_not_empty || pss_not_empty))
1950 {
1951 fprintf (dump_file, "----------- ----------- ----------- -----------"
1952 " -----\n");
1953 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1954 start, early_start, late_start, end, "",
1955 "(max, max, min, min)");
1956 }
1957
1958 /* Get a target scheduling window no bigger than ii. */
1959 if (early_start == INT_MIN && late_start == INT_MAX)
1960 early_start = NODE_ASAP (u_node);
1961 else if (early_start == INT_MIN)
1962 early_start = late_start - (ii - 1);
1963 late_start = MIN (late_start, early_start + (ii - 1));
1964
1965 /* Apply memory dependence limits. */
1966 start = MAX (start, early_start);
1967 end = MIN (end, late_start);
1968
1969 if (dump_file && (psp_not_empty || pss_not_empty))
1970 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1971 "", start, end, "", "");
1972
1973 /* If there are at least as many successors as predecessors, schedule the
1974 node close to its successors. */
1975 if (pss_not_empty && count_succs >= count_preds)
1976 {
1977 std::swap (start, end);
1978 step = -1;
1979 }
1980
1981 /* Now that we've finalized the window, make END an exclusive rather
1982 than an inclusive bound. */
1983 end += step;
1984
1985 *start_p = start;
1986 *step_p = step;
1987 *end_p = end;
1988
1989 if ((start >= end && step == 1) || (start <= end && step == -1))
1990 {
1991 if (dump_file)
1992 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1993 start, end, step);
1994 return -1;
1995 }
1996
1997 return 0;
1998 }
1999
2000 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2001 node currently been scheduled. At the end of the calculation
2002 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2003 U_NODE which are (1) already scheduled in the first/last row of
2004 U_NODE's scheduling window, (2) whose dependence inequality with U
2005 becomes an equality when U is scheduled in this same row, and (3)
2006 whose dependence latency is zero.
2007
2008 The first and last rows are calculated using the following parameters:
2009 START/END rows - The cycles that begins/ends the traversal on the window;
2010 searching for an empty cycle to schedule U_NODE.
2011 STEP - The direction in which we traverse the window.
2012 II - The initiation interval. */
2013
2014 static void
2015 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2016 int step, int ii, sbitmap sched_nodes,
2017 sbitmap must_precede, sbitmap must_follow)
2018 {
2019 ddg_edge_ptr e;
2020 int first_cycle_in_window, last_cycle_in_window;
2021
2022 gcc_assert (must_precede && must_follow);
2023
2024 /* Consider the following scheduling window:
2025 {first_cycle_in_window, first_cycle_in_window+1, ...,
2026 last_cycle_in_window}. If step is 1 then the following will be
2027 the order we traverse the window: {start=first_cycle_in_window,
2028 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2029 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2030 end=first_cycle_in_window-1} if step is -1. */
2031 first_cycle_in_window = (step == 1) ? start : end - step;
2032 last_cycle_in_window = (step == 1) ? end - step : start;
2033
2034 bitmap_clear (must_precede);
2035 bitmap_clear (must_follow);
2036
2037 if (dump_file)
2038 fprintf (dump_file, "\nmust_precede: ");
2039
2040 /* Instead of checking if:
2041 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2042 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2043 first_cycle_in_window)
2044 && e->latency == 0
2045 we use the fact that latency is non-negative:
2046 SCHED_TIME (e->src) - (e->distance * ii) <=
2047 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2048 first_cycle_in_window
2049 and check only if
2050 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2051 for (e = u_node->in; e != 0; e = e->next_in)
2052 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2053 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2054 first_cycle_in_window))
2055 {
2056 if (dump_file)
2057 fprintf (dump_file, "%d ", e->src->cuid);
2058
2059 bitmap_set_bit (must_precede, e->src->cuid);
2060 }
2061
2062 if (dump_file)
2063 fprintf (dump_file, "\nmust_follow: ");
2064
2065 /* Instead of checking if:
2066 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2067 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2068 last_cycle_in_window)
2069 && e->latency == 0
2070 we use the fact that latency is non-negative:
2071 SCHED_TIME (e->dest) + (e->distance * ii) >=
2072 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2073 last_cycle_in_window
2074 and check only if
2075 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2076 for (e = u_node->out; e != 0; e = e->next_out)
2077 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2078 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2079 last_cycle_in_window))
2080 {
2081 if (dump_file)
2082 fprintf (dump_file, "%d ", e->dest->cuid);
2083
2084 bitmap_set_bit (must_follow, e->dest->cuid);
2085 }
2086
2087 if (dump_file)
2088 fprintf (dump_file, "\n");
2089 }
2090
2091 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2092 parameters to decide if that's possible:
2093 PS - The partial schedule.
2094 U - The serial number of U_NODE.
2095 NUM_SPLITS - The number of row splits made so far.
2096 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2097 the first row of the scheduling window)
2098 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2099 last row of the scheduling window) */
2100
2101 static bool
2102 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2103 int u, int cycle, sbitmap sched_nodes,
2104 int *num_splits, sbitmap must_precede,
2105 sbitmap must_follow)
2106 {
2107 ps_insn_ptr psi;
2108 bool success = 0;
2109
2110 verify_partial_schedule (ps, sched_nodes);
2111 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2112 if (psi)
2113 {
2114 SCHED_TIME (u) = cycle;
2115 bitmap_set_bit (sched_nodes, u);
2116 success = 1;
2117 *num_splits = 0;
2118 if (dump_file)
2119 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2120
2121 }
2122
2123 return success;
2124 }
2125
2126 /* This function implements the scheduling algorithm for SMS according to the
2127 above algorithm. */
2128 static partial_schedule_ptr
2129 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2130 {
2131 int ii = mii;
2132 int i, c, success, num_splits = 0;
2133 int flush_and_start_over = true;
2134 int num_nodes = g->num_nodes;
2135 int start, end, step; /* Place together into one struct? */
2136 auto_sbitmap sched_nodes (num_nodes);
2137 auto_sbitmap must_precede (num_nodes);
2138 auto_sbitmap must_follow (num_nodes);
2139 auto_sbitmap tobe_scheduled (num_nodes);
2140
2141 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2142
2143 bitmap_ones (tobe_scheduled);
2144 bitmap_clear (sched_nodes);
2145
2146 while (flush_and_start_over && (ii < maxii))
2147 {
2148
2149 if (dump_file)
2150 fprintf (dump_file, "Starting with ii=%d\n", ii);
2151 flush_and_start_over = false;
2152 bitmap_clear (sched_nodes);
2153
2154 for (i = 0; i < num_nodes; i++)
2155 {
2156 int u = nodes_order[i];
2157 ddg_node_ptr u_node = &ps->g->nodes[u];
2158 rtx_insn *insn = u_node->insn;
2159
2160 if (!NONDEBUG_INSN_P (insn))
2161 {
2162 bitmap_clear_bit (tobe_scheduled, u);
2163 continue;
2164 }
2165
2166 if (bitmap_bit_p (sched_nodes, u))
2167 continue;
2168
2169 /* Try to get non-empty scheduling window. */
2170 success = 0;
2171 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2172 &step, &end) == 0)
2173 {
2174 if (dump_file)
2175 fprintf (dump_file, "\nTrying to schedule node %d "
2176 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2177 (g->nodes[u].insn)), start, end, step);
2178
2179 gcc_assert ((step > 0 && start < end)
2180 || (step < 0 && start > end));
2181
2182 calculate_must_precede_follow (u_node, start, end, step, ii,
2183 sched_nodes, must_precede,
2184 must_follow);
2185
2186 for (c = start; c != end; c += step)
2187 {
2188 sbitmap tmp_precede, tmp_follow;
2189
2190 set_must_precede_follow (&tmp_follow, must_follow,
2191 &tmp_precede, must_precede,
2192 c, start, end, step);
2193 success =
2194 try_scheduling_node_in_cycle (ps, u, c,
2195 sched_nodes,
2196 &num_splits, tmp_precede,
2197 tmp_follow);
2198 if (success)
2199 break;
2200 }
2201
2202 verify_partial_schedule (ps, sched_nodes);
2203 }
2204 if (!success)
2205 {
2206 int split_row;
2207
2208 if (ii++ == maxii)
2209 break;
2210
2211 if (num_splits >= MAX_SPLIT_NUM)
2212 {
2213 num_splits = 0;
2214 flush_and_start_over = true;
2215 verify_partial_schedule (ps, sched_nodes);
2216 reset_partial_schedule (ps, ii);
2217 verify_partial_schedule (ps, sched_nodes);
2218 break;
2219 }
2220
2221 num_splits++;
2222 /* The scheduling window is exclusive of 'end'
2223 whereas compute_split_window() expects an inclusive,
2224 ordered range. */
2225 if (step == 1)
2226 split_row = compute_split_row (sched_nodes, start, end - 1,
2227 ps->ii, u_node);
2228 else
2229 split_row = compute_split_row (sched_nodes, end + 1, start,
2230 ps->ii, u_node);
2231
2232 ps_insert_empty_row (ps, split_row, sched_nodes);
2233 i--; /* Go back and retry node i. */
2234
2235 if (dump_file)
2236 fprintf (dump_file, "num_splits=%d\n", num_splits);
2237 }
2238
2239 /* ??? If (success), check register pressure estimates. */
2240 } /* Continue with next node. */
2241 } /* While flush_and_start_over. */
2242 if (ii >= maxii)
2243 {
2244 free_partial_schedule (ps);
2245 ps = NULL;
2246 }
2247 else
2248 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2249
2250 return ps;
2251 }
2252
2253 /* This function inserts a new empty row into PS at the position
2254 according to SPLITROW, keeping all already scheduled instructions
2255 intact and updating their SCHED_TIME and cycle accordingly. */
2256 static void
2257 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2258 sbitmap sched_nodes)
2259 {
2260 ps_insn_ptr crr_insn;
2261 ps_insn_ptr *rows_new;
2262 int ii = ps->ii;
2263 int new_ii = ii + 1;
2264 int row;
2265 int *rows_length_new;
2266
2267 verify_partial_schedule (ps, sched_nodes);
2268
2269 /* We normalize sched_time and rotate ps to have only non-negative sched
2270 times, for simplicity of updating cycles after inserting new row. */
2271 split_row -= ps->min_cycle;
2272 split_row = SMODULO (split_row, ii);
2273 if (dump_file)
2274 fprintf (dump_file, "split_row=%d\n", split_row);
2275
2276 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2277 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2278
2279 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2280 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2281 for (row = 0; row < split_row; row++)
2282 {
2283 rows_new[row] = ps->rows[row];
2284 rows_length_new[row] = ps->rows_length[row];
2285 ps->rows[row] = NULL;
2286 for (crr_insn = rows_new[row];
2287 crr_insn; crr_insn = crr_insn->next_in_row)
2288 {
2289 int u = crr_insn->id;
2290 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2291
2292 SCHED_TIME (u) = new_time;
2293 crr_insn->cycle = new_time;
2294 SCHED_ROW (u) = new_time % new_ii;
2295 SCHED_STAGE (u) = new_time / new_ii;
2296 }
2297
2298 }
2299
2300 rows_new[split_row] = NULL;
2301
2302 for (row = split_row; row < ii; row++)
2303 {
2304 rows_new[row + 1] = ps->rows[row];
2305 rows_length_new[row + 1] = ps->rows_length[row];
2306 ps->rows[row] = NULL;
2307 for (crr_insn = rows_new[row + 1];
2308 crr_insn; crr_insn = crr_insn->next_in_row)
2309 {
2310 int u = crr_insn->id;
2311 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2312
2313 SCHED_TIME (u) = new_time;
2314 crr_insn->cycle = new_time;
2315 SCHED_ROW (u) = new_time % new_ii;
2316 SCHED_STAGE (u) = new_time / new_ii;
2317 }
2318 }
2319
2320 /* Updating ps. */
2321 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2322 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2323 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2324 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2325 free (ps->rows);
2326 ps->rows = rows_new;
2327 free (ps->rows_length);
2328 ps->rows_length = rows_length_new;
2329 ps->ii = new_ii;
2330 gcc_assert (ps->min_cycle >= 0);
2331
2332 verify_partial_schedule (ps, sched_nodes);
2333
2334 if (dump_file)
2335 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2336 ps->max_cycle);
2337 }
2338
2339 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2340 UP which are the boundaries of it's scheduling window; compute using
2341 SCHED_NODES and II a row in the partial schedule that can be split
2342 which will separate a critical predecessor from a critical successor
2343 thereby expanding the window, and return it. */
2344 static int
2345 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2346 ddg_node_ptr u_node)
2347 {
2348 ddg_edge_ptr e;
2349 int lower = INT_MIN, upper = INT_MAX;
2350 int crit_pred = -1;
2351 int crit_succ = -1;
2352 int crit_cycle;
2353
2354 for (e = u_node->in; e != 0; e = e->next_in)
2355 {
2356 int v = e->src->cuid;
2357
2358 if (bitmap_bit_p (sched_nodes, v)
2359 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2360 if (SCHED_TIME (v) > lower)
2361 {
2362 crit_pred = v;
2363 lower = SCHED_TIME (v);
2364 }
2365 }
2366
2367 if (crit_pred >= 0)
2368 {
2369 crit_cycle = SCHED_TIME (crit_pred) + 1;
2370 return SMODULO (crit_cycle, ii);
2371 }
2372
2373 for (e = u_node->out; e != 0; e = e->next_out)
2374 {
2375 int v = e->dest->cuid;
2376
2377 if (bitmap_bit_p (sched_nodes, v)
2378 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2379 if (SCHED_TIME (v) < upper)
2380 {
2381 crit_succ = v;
2382 upper = SCHED_TIME (v);
2383 }
2384 }
2385
2386 if (crit_succ >= 0)
2387 {
2388 crit_cycle = SCHED_TIME (crit_succ);
2389 return SMODULO (crit_cycle, ii);
2390 }
2391
2392 if (dump_file)
2393 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2394
2395 return SMODULO ((low + up + 1) / 2, ii);
2396 }
2397
2398 static void
2399 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2400 {
2401 int row;
2402 ps_insn_ptr crr_insn;
2403
2404 for (row = 0; row < ps->ii; row++)
2405 {
2406 int length = 0;
2407
2408 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2409 {
2410 int u = crr_insn->id;
2411
2412 length++;
2413 gcc_assert (bitmap_bit_p (sched_nodes, u));
2414 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2415 popcount (sched_nodes) == number of insns in ps. */
2416 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2417 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2418 }
2419
2420 gcc_assert (ps->rows_length[row] == length);
2421 }
2422 }
2423
2424 \f
2425 /* This page implements the algorithm for ordering the nodes of a DDG
2426 for modulo scheduling, activated through the
2427 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2428
2429 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2430 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2431 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2432 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2433 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2434 #define DEPTH(x) (ASAP ((x)))
2435
2436 typedef struct node_order_params * nopa;
2437
2438 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2439 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2440 static nopa calculate_order_params (ddg_ptr, int, int *);
2441 static int find_max_asap (ddg_ptr, sbitmap);
2442 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2443 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2444
2445 enum sms_direction {BOTTOMUP, TOPDOWN};
2446
2447 struct node_order_params
2448 {
2449 int asap;
2450 int alap;
2451 int height;
2452 };
2453
2454 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2455 static void
2456 check_nodes_order (int *node_order, int num_nodes)
2457 {
2458 int i;
2459 auto_sbitmap tmp (num_nodes);
2460
2461 bitmap_clear (tmp);
2462
2463 if (dump_file)
2464 fprintf (dump_file, "SMS final nodes order: \n");
2465
2466 for (i = 0; i < num_nodes; i++)
2467 {
2468 int u = node_order[i];
2469
2470 if (dump_file)
2471 fprintf (dump_file, "%d ", u);
2472 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2473
2474 bitmap_set_bit (tmp, u);
2475 }
2476
2477 if (dump_file)
2478 fprintf (dump_file, "\n");
2479 }
2480
2481 /* Order the nodes of G for scheduling and pass the result in
2482 NODE_ORDER. Also set aux.count of each node to ASAP.
2483 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2484 static int
2485 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2486 {
2487 int i;
2488 int rec_mii = 0;
2489 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2490
2491 nopa nops = calculate_order_params (g, mii, pmax_asap);
2492
2493 if (dump_file)
2494 print_sccs (dump_file, sccs, g);
2495
2496 order_nodes_of_sccs (sccs, node_order);
2497
2498 if (sccs->num_sccs > 0)
2499 /* First SCC has the largest recurrence_length. */
2500 rec_mii = sccs->sccs[0]->recurrence_length;
2501
2502 /* Save ASAP before destroying node_order_params. */
2503 for (i = 0; i < g->num_nodes; i++)
2504 {
2505 ddg_node_ptr v = &g->nodes[i];
2506 v->aux.count = ASAP (v);
2507 }
2508
2509 free (nops);
2510 free_ddg_all_sccs (sccs);
2511 check_nodes_order (node_order, g->num_nodes);
2512
2513 return rec_mii;
2514 }
2515
2516 static void
2517 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2518 {
2519 int i, pos = 0;
2520 ddg_ptr g = all_sccs->ddg;
2521 int num_nodes = g->num_nodes;
2522 auto_sbitmap prev_sccs (num_nodes);
2523 auto_sbitmap on_path (num_nodes);
2524 auto_sbitmap tmp (num_nodes);
2525 auto_sbitmap ones (num_nodes);
2526
2527 bitmap_clear (prev_sccs);
2528 bitmap_ones (ones);
2529
2530 /* Perform the node ordering starting from the SCC with the highest recMII.
2531 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2532 for (i = 0; i < all_sccs->num_sccs; i++)
2533 {
2534 ddg_scc_ptr scc = all_sccs->sccs[i];
2535
2536 /* Add nodes on paths from previous SCCs to the current SCC. */
2537 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2538 bitmap_ior (tmp, scc->nodes, on_path);
2539
2540 /* Add nodes on paths from the current SCC to previous SCCs. */
2541 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2542 bitmap_ior (tmp, tmp, on_path);
2543
2544 /* Remove nodes of previous SCCs from current extended SCC. */
2545 bitmap_and_compl (tmp, tmp, prev_sccs);
2546
2547 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2548 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2549 }
2550
2551 /* Handle the remaining nodes that do not belong to any scc. Each call
2552 to order_nodes_in_scc handles a single connected component. */
2553 while (pos < g->num_nodes)
2554 {
2555 bitmap_and_compl (tmp, ones, prev_sccs);
2556 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2557 }
2558 }
2559
2560 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2561 static struct node_order_params *
2562 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2563 {
2564 int u;
2565 int max_asap;
2566 int num_nodes = g->num_nodes;
2567 ddg_edge_ptr e;
2568 /* Allocate a place to hold ordering params for each node in the DDG. */
2569 nopa node_order_params_arr;
2570
2571 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2572 node_order_params_arr = (nopa) xcalloc (num_nodes,
2573 sizeof (struct node_order_params));
2574
2575 /* Set the aux pointer of each node to point to its order_params structure. */
2576 for (u = 0; u < num_nodes; u++)
2577 g->nodes[u].aux.info = &node_order_params_arr[u];
2578
2579 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2580 calculate ASAP, ALAP, mobility, distance, and height for each node
2581 in the dependence (direct acyclic) graph. */
2582
2583 /* We assume that the nodes in the array are in topological order. */
2584
2585 max_asap = 0;
2586 for (u = 0; u < num_nodes; u++)
2587 {
2588 ddg_node_ptr u_node = &g->nodes[u];
2589
2590 ASAP (u_node) = 0;
2591 for (e = u_node->in; e; e = e->next_in)
2592 if (e->distance == 0)
2593 ASAP (u_node) = MAX (ASAP (u_node),
2594 ASAP (e->src) + e->latency);
2595 max_asap = MAX (max_asap, ASAP (u_node));
2596 }
2597
2598 for (u = num_nodes - 1; u > -1; u--)
2599 {
2600 ddg_node_ptr u_node = &g->nodes[u];
2601
2602 ALAP (u_node) = max_asap;
2603 HEIGHT (u_node) = 0;
2604 for (e = u_node->out; e; e = e->next_out)
2605 if (e->distance == 0)
2606 {
2607 ALAP (u_node) = MIN (ALAP (u_node),
2608 ALAP (e->dest) - e->latency);
2609 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2610 HEIGHT (e->dest) + e->latency);
2611 }
2612 }
2613 if (dump_file)
2614 {
2615 fprintf (dump_file, "\nOrder params\n");
2616 for (u = 0; u < num_nodes; u++)
2617 {
2618 ddg_node_ptr u_node = &g->nodes[u];
2619
2620 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2621 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2622 }
2623 }
2624
2625 *pmax_asap = max_asap;
2626 return node_order_params_arr;
2627 }
2628
2629 static int
2630 find_max_asap (ddg_ptr g, sbitmap nodes)
2631 {
2632 unsigned int u = 0;
2633 int max_asap = -1;
2634 int result = -1;
2635 sbitmap_iterator sbi;
2636
2637 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2638 {
2639 ddg_node_ptr u_node = &g->nodes[u];
2640
2641 if (max_asap < ASAP (u_node))
2642 {
2643 max_asap = ASAP (u_node);
2644 result = u;
2645 }
2646 }
2647 return result;
2648 }
2649
2650 static int
2651 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2652 {
2653 unsigned int u = 0;
2654 int max_hv = -1;
2655 int min_mob = INT_MAX;
2656 int result = -1;
2657 sbitmap_iterator sbi;
2658
2659 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2660 {
2661 ddg_node_ptr u_node = &g->nodes[u];
2662
2663 if (max_hv < HEIGHT (u_node))
2664 {
2665 max_hv = HEIGHT (u_node);
2666 min_mob = MOB (u_node);
2667 result = u;
2668 }
2669 else if ((max_hv == HEIGHT (u_node))
2670 && (min_mob > MOB (u_node)))
2671 {
2672 min_mob = MOB (u_node);
2673 result = u;
2674 }
2675 }
2676 return result;
2677 }
2678
2679 static int
2680 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2681 {
2682 unsigned int u = 0;
2683 int max_dv = -1;
2684 int min_mob = INT_MAX;
2685 int result = -1;
2686 sbitmap_iterator sbi;
2687
2688 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2689 {
2690 ddg_node_ptr u_node = &g->nodes[u];
2691
2692 if (max_dv < DEPTH (u_node))
2693 {
2694 max_dv = DEPTH (u_node);
2695 min_mob = MOB (u_node);
2696 result = u;
2697 }
2698 else if ((max_dv == DEPTH (u_node))
2699 && (min_mob > MOB (u_node)))
2700 {
2701 min_mob = MOB (u_node);
2702 result = u;
2703 }
2704 }
2705 return result;
2706 }
2707
2708 /* Places the nodes of SCC into the NODE_ORDER array starting
2709 at position POS, according to the SMS ordering algorithm.
2710 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2711 the NODE_ORDER array, starting from position zero. */
2712 static int
2713 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2714 int * node_order, int pos)
2715 {
2716 enum sms_direction dir;
2717 int num_nodes = g->num_nodes;
2718 auto_sbitmap workset (num_nodes);
2719 auto_sbitmap tmp (num_nodes);
2720 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2721 auto_sbitmap predecessors (num_nodes);
2722 auto_sbitmap successors (num_nodes);
2723
2724 bitmap_clear (predecessors);
2725 find_predecessors (predecessors, g, nodes_ordered);
2726
2727 bitmap_clear (successors);
2728 find_successors (successors, g, nodes_ordered);
2729
2730 bitmap_clear (tmp);
2731 if (bitmap_and (tmp, predecessors, scc))
2732 {
2733 bitmap_copy (workset, tmp);
2734 dir = BOTTOMUP;
2735 }
2736 else if (bitmap_and (tmp, successors, scc))
2737 {
2738 bitmap_copy (workset, tmp);
2739 dir = TOPDOWN;
2740 }
2741 else
2742 {
2743 int u;
2744
2745 bitmap_clear (workset);
2746 if ((u = find_max_asap (g, scc)) >= 0)
2747 bitmap_set_bit (workset, u);
2748 dir = BOTTOMUP;
2749 }
2750
2751 bitmap_clear (zero_bitmap);
2752 while (!bitmap_equal_p (workset, zero_bitmap))
2753 {
2754 int v;
2755 ddg_node_ptr v_node;
2756 sbitmap v_node_preds;
2757 sbitmap v_node_succs;
2758
2759 if (dir == TOPDOWN)
2760 {
2761 while (!bitmap_equal_p (workset, zero_bitmap))
2762 {
2763 v = find_max_hv_min_mob (g, workset);
2764 v_node = &g->nodes[v];
2765 node_order[pos++] = v;
2766 v_node_succs = NODE_SUCCESSORS (v_node);
2767 bitmap_and (tmp, v_node_succs, scc);
2768
2769 /* Don't consider the already ordered successors again. */
2770 bitmap_and_compl (tmp, tmp, nodes_ordered);
2771 bitmap_ior (workset, workset, tmp);
2772 bitmap_clear_bit (workset, v);
2773 bitmap_set_bit (nodes_ordered, v);
2774 }
2775 dir = BOTTOMUP;
2776 bitmap_clear (predecessors);
2777 find_predecessors (predecessors, g, nodes_ordered);
2778 bitmap_and (workset, predecessors, scc);
2779 }
2780 else
2781 {
2782 while (!bitmap_equal_p (workset, zero_bitmap))
2783 {
2784 v = find_max_dv_min_mob (g, workset);
2785 v_node = &g->nodes[v];
2786 node_order[pos++] = v;
2787 v_node_preds = NODE_PREDECESSORS (v_node);
2788 bitmap_and (tmp, v_node_preds, scc);
2789
2790 /* Don't consider the already ordered predecessors again. */
2791 bitmap_and_compl (tmp, tmp, nodes_ordered);
2792 bitmap_ior (workset, workset, tmp);
2793 bitmap_clear_bit (workset, v);
2794 bitmap_set_bit (nodes_ordered, v);
2795 }
2796 dir = TOPDOWN;
2797 bitmap_clear (successors);
2798 find_successors (successors, g, nodes_ordered);
2799 bitmap_and (workset, successors, scc);
2800 }
2801 }
2802 sbitmap_free (zero_bitmap);
2803 return pos;
2804 }
2805
2806 \f
2807 /* This page contains functions for manipulating partial-schedules during
2808 modulo scheduling. */
2809
2810 /* Create a partial schedule and allocate a memory to hold II rows. */
2811
2812 static partial_schedule_ptr
2813 create_partial_schedule (int ii, ddg_ptr g, int history)
2814 {
2815 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2816 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2817 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2818 ps->reg_moves.create (0);
2819 ps->ii = ii;
2820 ps->history = history;
2821 ps->min_cycle = INT_MAX;
2822 ps->max_cycle = INT_MIN;
2823 ps->g = g;
2824
2825 return ps;
2826 }
2827
2828 /* Free the PS_INSNs in rows array of the given partial schedule.
2829 ??? Consider caching the PS_INSN's. */
2830 static void
2831 free_ps_insns (partial_schedule_ptr ps)
2832 {
2833 int i;
2834
2835 for (i = 0; i < ps->ii; i++)
2836 {
2837 while (ps->rows[i])
2838 {
2839 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2840
2841 free (ps->rows[i]);
2842 ps->rows[i] = ps_insn;
2843 }
2844 ps->rows[i] = NULL;
2845 }
2846 }
2847
2848 /* Free all the memory allocated to the partial schedule. */
2849
2850 static void
2851 free_partial_schedule (partial_schedule_ptr ps)
2852 {
2853 ps_reg_move_info *move;
2854 unsigned int i;
2855
2856 if (!ps)
2857 return;
2858
2859 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2860 sbitmap_free (move->uses);
2861 ps->reg_moves.release ();
2862
2863 free_ps_insns (ps);
2864 free (ps->rows);
2865 free (ps->rows_length);
2866 free (ps);
2867 }
2868
2869 /* Clear the rows array with its PS_INSNs, and create a new one with
2870 NEW_II rows. */
2871
2872 static void
2873 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2874 {
2875 if (!ps)
2876 return;
2877 free_ps_insns (ps);
2878 if (new_ii == ps->ii)
2879 return;
2880 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2881 * sizeof (ps_insn_ptr));
2882 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2883 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2884 memset (ps->rows_length, 0, new_ii * sizeof (int));
2885 ps->ii = new_ii;
2886 ps->min_cycle = INT_MAX;
2887 ps->max_cycle = INT_MIN;
2888 }
2889
2890 /* Prints the partial schedule as an ii rows array, for each rows
2891 print the ids of the insns in it. */
2892 void
2893 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2894 {
2895 int i;
2896
2897 for (i = 0; i < ps->ii; i++)
2898 {
2899 ps_insn_ptr ps_i = ps->rows[i];
2900
2901 fprintf (dump, "\n[ROW %d ]: ", i);
2902 while (ps_i)
2903 {
2904 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2905
2906 if (JUMP_P (insn))
2907 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2908 else
2909 fprintf (dump, "%d, ", INSN_UID (insn));
2910
2911 ps_i = ps_i->next_in_row;
2912 }
2913 }
2914 }
2915
2916 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2917 static ps_insn_ptr
2918 create_ps_insn (int id, int cycle)
2919 {
2920 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2921
2922 ps_i->id = id;
2923 ps_i->next_in_row = NULL;
2924 ps_i->prev_in_row = NULL;
2925 ps_i->cycle = cycle;
2926
2927 return ps_i;
2928 }
2929
2930
2931 /* Removes the given PS_INSN from the partial schedule. */
2932 static void
2933 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2934 {
2935 int row;
2936
2937 gcc_assert (ps && ps_i);
2938
2939 row = SMODULO (ps_i->cycle, ps->ii);
2940 if (! ps_i->prev_in_row)
2941 {
2942 gcc_assert (ps_i == ps->rows[row]);
2943 ps->rows[row] = ps_i->next_in_row;
2944 if (ps->rows[row])
2945 ps->rows[row]->prev_in_row = NULL;
2946 }
2947 else
2948 {
2949 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2950 if (ps_i->next_in_row)
2951 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2952 }
2953
2954 ps->rows_length[row] -= 1;
2955 free (ps_i);
2956 return;
2957 }
2958
2959 /* Unlike what literature describes for modulo scheduling (which focuses
2960 on VLIW machines) the order of the instructions inside a cycle is
2961 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2962 where the current instruction should go relative to the already
2963 scheduled instructions in the given cycle. Go over these
2964 instructions and find the first possible column to put it in. */
2965 static bool
2966 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2967 sbitmap must_precede, sbitmap must_follow)
2968 {
2969 ps_insn_ptr next_ps_i;
2970 ps_insn_ptr first_must_follow = NULL;
2971 ps_insn_ptr last_must_precede = NULL;
2972 ps_insn_ptr last_in_row = NULL;
2973 int row;
2974
2975 if (! ps_i)
2976 return false;
2977
2978 row = SMODULO (ps_i->cycle, ps->ii);
2979
2980 /* Find the first must follow and the last must precede
2981 and insert the node immediately after the must precede
2982 but make sure that it there is no must follow after it. */
2983 for (next_ps_i = ps->rows[row];
2984 next_ps_i;
2985 next_ps_i = next_ps_i->next_in_row)
2986 {
2987 if (must_follow
2988 && bitmap_bit_p (must_follow, next_ps_i->id)
2989 && ! first_must_follow)
2990 first_must_follow = next_ps_i;
2991 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2992 {
2993 /* If we have already met a node that must follow, then
2994 there is no possible column. */
2995 if (first_must_follow)
2996 return false;
2997 else
2998 last_must_precede = next_ps_i;
2999 }
3000 /* The closing branch must be the last in the row. */
3001 if (must_precede
3002 && bitmap_bit_p (must_precede, next_ps_i->id)
3003 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3004 return false;
3005
3006 last_in_row = next_ps_i;
3007 }
3008
3009 /* The closing branch is scheduled as well. Make sure there is no
3010 dependent instruction after it as the branch should be the last
3011 instruction in the row. */
3012 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3013 {
3014 if (first_must_follow)
3015 return false;
3016 if (last_in_row)
3017 {
3018 /* Make the branch the last in the row. New instructions
3019 will be inserted at the beginning of the row or after the
3020 last must_precede instruction thus the branch is guaranteed
3021 to remain the last instruction in the row. */
3022 last_in_row->next_in_row = ps_i;
3023 ps_i->prev_in_row = last_in_row;
3024 ps_i->next_in_row = NULL;
3025 }
3026 else
3027 ps->rows[row] = ps_i;
3028 return true;
3029 }
3030
3031 /* Now insert the node after INSERT_AFTER_PSI. */
3032
3033 if (! last_must_precede)
3034 {
3035 ps_i->next_in_row = ps->rows[row];
3036 ps_i->prev_in_row = NULL;
3037 if (ps_i->next_in_row)
3038 ps_i->next_in_row->prev_in_row = ps_i;
3039 ps->rows[row] = ps_i;
3040 }
3041 else
3042 {
3043 ps_i->next_in_row = last_must_precede->next_in_row;
3044 last_must_precede->next_in_row = ps_i;
3045 ps_i->prev_in_row = last_must_precede;
3046 if (ps_i->next_in_row)
3047 ps_i->next_in_row->prev_in_row = ps_i;
3048 }
3049
3050 return true;
3051 }
3052
3053 /* Advances the PS_INSN one column in its current row; returns false
3054 in failure and true in success. Bit N is set in MUST_FOLLOW if
3055 the node with cuid N must be come after the node pointed to by
3056 PS_I when scheduled in the same cycle. */
3057 static int
3058 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3059 sbitmap must_follow)
3060 {
3061 ps_insn_ptr prev, next;
3062 int row;
3063
3064 if (!ps || !ps_i)
3065 return false;
3066
3067 row = SMODULO (ps_i->cycle, ps->ii);
3068
3069 if (! ps_i->next_in_row)
3070 return false;
3071
3072 /* Check if next_in_row is dependent on ps_i, both having same sched
3073 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3074 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3075 return false;
3076
3077 /* Advance PS_I over its next_in_row in the doubly linked list. */
3078 prev = ps_i->prev_in_row;
3079 next = ps_i->next_in_row;
3080
3081 if (ps_i == ps->rows[row])
3082 ps->rows[row] = next;
3083
3084 ps_i->next_in_row = next->next_in_row;
3085
3086 if (next->next_in_row)
3087 next->next_in_row->prev_in_row = ps_i;
3088
3089 next->next_in_row = ps_i;
3090 ps_i->prev_in_row = next;
3091
3092 next->prev_in_row = prev;
3093 if (prev)
3094 prev->next_in_row = next;
3095
3096 return true;
3097 }
3098
3099 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3100 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3101 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3102 before/after (respectively) the node pointed to by PS_I when scheduled
3103 in the same cycle. */
3104 static ps_insn_ptr
3105 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3106 sbitmap must_precede, sbitmap must_follow)
3107 {
3108 ps_insn_ptr ps_i;
3109 int row = SMODULO (cycle, ps->ii);
3110
3111 if (ps->rows_length[row] >= issue_rate)
3112 return NULL;
3113
3114 ps_i = create_ps_insn (id, cycle);
3115
3116 /* Finds and inserts PS_I according to MUST_FOLLOW and
3117 MUST_PRECEDE. */
3118 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3119 {
3120 free (ps_i);
3121 return NULL;
3122 }
3123
3124 ps->rows_length[row] += 1;
3125 return ps_i;
3126 }
3127
3128 /* Advance time one cycle. Assumes DFA is being used. */
3129 static void
3130 advance_one_cycle (void)
3131 {
3132 if (targetm.sched.dfa_pre_cycle_insn)
3133 state_transition (curr_state,
3134 targetm.sched.dfa_pre_cycle_insn ());
3135
3136 state_transition (curr_state, NULL);
3137
3138 if (targetm.sched.dfa_post_cycle_insn)
3139 state_transition (curr_state,
3140 targetm.sched.dfa_post_cycle_insn ());
3141 }
3142
3143
3144
3145 /* Checks if PS has resource conflicts according to DFA, starting from
3146 FROM cycle to TO cycle; returns true if there are conflicts and false
3147 if there are no conflicts. Assumes DFA is being used. */
3148 static int
3149 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3150 {
3151 int cycle;
3152
3153 state_reset (curr_state);
3154
3155 for (cycle = from; cycle <= to; cycle++)
3156 {
3157 ps_insn_ptr crr_insn;
3158 /* Holds the remaining issue slots in the current row. */
3159 int can_issue_more = issue_rate;
3160
3161 /* Walk through the DFA for the current row. */
3162 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3163 crr_insn;
3164 crr_insn = crr_insn->next_in_row)
3165 {
3166 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3167
3168 if (!NONDEBUG_INSN_P (insn))
3169 continue;
3170
3171 /* Check if there is room for the current insn. */
3172 if (!can_issue_more || state_dead_lock_p (curr_state))
3173 return true;
3174
3175 /* Update the DFA state and return with failure if the DFA found
3176 resource conflicts. */
3177 if (state_transition (curr_state, insn) >= 0)
3178 return true;
3179
3180 if (targetm.sched.variable_issue)
3181 can_issue_more =
3182 targetm.sched.variable_issue (sched_dump, sched_verbose,
3183 insn, can_issue_more);
3184 /* A naked CLOBBER or USE generates no instruction, so don't
3185 let them consume issue slots. */
3186 else if (GET_CODE (PATTERN (insn)) != USE
3187 && GET_CODE (PATTERN (insn)) != CLOBBER)
3188 can_issue_more--;
3189 }
3190
3191 /* Advance the DFA to the next cycle. */
3192 advance_one_cycle ();
3193 }
3194 return false;
3195 }
3196
3197 /* Checks if the given node causes resource conflicts when added to PS at
3198 cycle C. If not the node is added to PS and returned; otherwise zero
3199 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3200 cuid N must be come before/after (respectively) the node pointed to by
3201 PS_I when scheduled in the same cycle. */
3202 ps_insn_ptr
3203 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3204 int c, sbitmap must_precede,
3205 sbitmap must_follow)
3206 {
3207 int has_conflicts = 0;
3208 ps_insn_ptr ps_i;
3209
3210 /* First add the node to the PS, if this succeeds check for
3211 conflicts, trying different issue slots in the same row. */
3212 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3213 return NULL; /* Failed to insert the node at the given cycle. */
3214
3215 has_conflicts = ps_has_conflicts (ps, c, c)
3216 || (ps->history > 0
3217 && ps_has_conflicts (ps,
3218 c - ps->history,
3219 c + ps->history));
3220
3221 /* Try different issue slots to find one that the given node can be
3222 scheduled in without conflicts. */
3223 while (has_conflicts)
3224 {
3225 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3226 break;
3227 has_conflicts = ps_has_conflicts (ps, c, c)
3228 || (ps->history > 0
3229 && ps_has_conflicts (ps,
3230 c - ps->history,
3231 c + ps->history));
3232 }
3233
3234 if (has_conflicts)
3235 {
3236 remove_node_from_ps (ps, ps_i);
3237 return NULL;
3238 }
3239
3240 ps->min_cycle = MIN (ps->min_cycle, c);
3241 ps->max_cycle = MAX (ps->max_cycle, c);
3242 return ps_i;
3243 }
3244
3245 /* Calculate the stage count of the partial schedule PS. The calculation
3246 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3247 int
3248 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3249 {
3250 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3251 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3252 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3253
3254 /* The calculation of stage count is done adding the number of stages
3255 before cycle zero and after cycle zero. */
3256 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3257
3258 return stage_count;
3259 }
3260
3261 /* Rotate the rows of PS such that insns scheduled at time
3262 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3263 void
3264 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3265 {
3266 int i, row, backward_rotates;
3267 int last_row = ps->ii - 1;
3268
3269 if (start_cycle == 0)
3270 return;
3271
3272 backward_rotates = SMODULO (start_cycle, ps->ii);
3273
3274 /* Revisit later and optimize this into a single loop. */
3275 for (i = 0; i < backward_rotates; i++)
3276 {
3277 ps_insn_ptr first_row = ps->rows[0];
3278 int first_row_length = ps->rows_length[0];
3279
3280 for (row = 0; row < last_row; row++)
3281 {
3282 ps->rows[row] = ps->rows[row + 1];
3283 ps->rows_length[row] = ps->rows_length[row + 1];
3284 }
3285
3286 ps->rows[last_row] = first_row;
3287 ps->rows_length[last_row] = first_row_length;
3288 }
3289
3290 ps->max_cycle -= start_cycle;
3291 ps->min_cycle -= start_cycle;
3292 }
3293
3294 #endif /* INSN_SCHEDULING */
3295 \f
3296 /* Run instruction scheduler. */
3297 /* Perform SMS module scheduling. */
3298
3299 namespace {
3300
3301 const pass_data pass_data_sms =
3302 {
3303 RTL_PASS, /* type */
3304 "sms", /* name */
3305 OPTGROUP_NONE, /* optinfo_flags */
3306 TV_SMS, /* tv_id */
3307 0, /* properties_required */
3308 0, /* properties_provided */
3309 0, /* properties_destroyed */
3310 0, /* todo_flags_start */
3311 TODO_df_finish, /* todo_flags_finish */
3312 };
3313
3314 class pass_sms : public rtl_opt_pass
3315 {
3316 public:
3317 pass_sms (gcc::context *ctxt)
3318 : rtl_opt_pass (pass_data_sms, ctxt)
3319 {}
3320
3321 /* opt_pass methods: */
3322 virtual bool gate (function *)
3323 {
3324 return (optimize > 0 && flag_modulo_sched);
3325 }
3326
3327 virtual unsigned int execute (function *);
3328
3329 }; // class pass_sms
3330
3331 unsigned int
3332 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3333 {
3334 #ifdef INSN_SCHEDULING
3335 basic_block bb;
3336
3337 /* Collect loop information to be used in SMS. */
3338 cfg_layout_initialize (0);
3339 sms_schedule ();
3340
3341 /* Update the life information, because we add pseudos. */
3342 max_regno = max_reg_num ();
3343
3344 /* Finalize layout changes. */
3345 FOR_EACH_BB_FN (bb, fun)
3346 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3347 bb->aux = bb->next_bb;
3348 free_dominance_info (CDI_DOMINATORS);
3349 cfg_layout_finalize ();
3350 #endif /* INSN_SCHEDULING */
3351 return 0;
3352 }
3353
3354 } // anon namespace
3355
3356 rtl_opt_pass *
3357 make_pass_sms (gcc::context *ctxt)
3358 {
3359 return new pass_sms (ctxt);
3360 }