c++: template instantiation during fold_for_warn [PR94038]
[gcc.git] / gcc / modulo-sched.c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
46
47 #ifdef INSN_SCHEDULING
48
49 /* This file contains the implementation of the Swing Modulo Scheduler,
50 described in the following references:
51 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
52 Lifetime--sensitive modulo scheduling in a production environment.
53 IEEE Trans. on Comps., 50(3), March 2001
54 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
55 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
56 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
57
58 The basic structure is:
59 1. Build a data-dependence graph (DDG) for each loop.
60 2. Use the DDG to order the insns of a loop (not in topological order
61 necessarily, but rather) trying to place each insn after all its
62 predecessors _or_ after all its successors.
63 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
64 4. Use the ordering to perform list-scheduling of the loop:
65 1. Set II = MII. We will try to schedule the loop within II cycles.
66 2. Try to schedule the insns one by one according to the ordering.
67 For each insn compute an interval of cycles by considering already-
68 scheduled preds and succs (and associated latencies); try to place
69 the insn in the cycles of this window checking for potential
70 resource conflicts (using the DFA interface).
71 Note: this is different from the cycle-scheduling of schedule_insns;
72 here the insns are not scheduled monotonically top-down (nor bottom-
73 up).
74 3. If failed in scheduling all insns - bump II++ and try again, unless
75 II reaches an upper bound MaxII, in which case report failure.
76 5. If we succeeded in scheduling the loop within II cycles, we now
77 generate prolog and epilog, decrease the counter of the loop, and
78 perform modulo variable expansion for live ranges that span more than
79 II cycles (i.e. use register copies to prevent a def from overwriting
80 itself before reaching the use).
81
82 SMS works with countable loops (1) whose control part can be easily
83 decoupled from the rest of the loop and (2) whose loop count can
84 be easily adjusted. This is because we peel a constant number of
85 iterations into a prologue and epilogue for which we want to avoid
86 emitting the control part, and a kernel which is to iterate that
87 constant number of iterations less than the original loop. So the
88 control part should be a set of insns clearly identified and having
89 its own iv, not otherwise used in the loop (at-least for now), which
90 initializes a register before the loop to the number of iterations.
91 Currently SMS relies on the do-loop pattern to recognize such loops,
92 where (1) the control part comprises of all insns defining and/or
93 using a certain 'count' register and (2) the loop count can be
94 adjusted by modifying this register prior to the loop.
95 TODO: Rely on cfgloop analysis instead. */
96 \f
97 /* This page defines partial-schedule structures and functions for
98 modulo scheduling. */
99
100 typedef struct partial_schedule *partial_schedule_ptr;
101 typedef struct ps_insn *ps_insn_ptr;
102
103 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
104 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
105
106 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
107 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
108
109 /* Perform signed modulo, always returning a non-negative value. */
110 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
111
112 /* The number of different iterations the nodes in ps span, assuming
113 the stage boundaries are placed efficiently. */
114 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
115 + 1 + ii - 1) / ii)
116 /* The stage count of ps. */
117 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
118
119 /* A single instruction in the partial schedule. */
120 struct ps_insn
121 {
122 /* Identifies the instruction to be scheduled. Values smaller than
123 the ddg's num_nodes refer directly to ddg nodes. A value of
124 X - num_nodes refers to register move X. */
125 int id;
126
127 /* The (absolute) cycle in which the PS instruction is scheduled.
128 Same as SCHED_TIME (node). */
129 int cycle;
130
131 /* The next/prev PS_INSN in the same row. */
132 ps_insn_ptr next_in_row,
133 prev_in_row;
134
135 };
136
137 /* Information about a register move that has been added to a partial
138 schedule. */
139 struct ps_reg_move_info
140 {
141 /* The source of the move is defined by the ps_insn with id DEF.
142 The destination is used by the ps_insns with the ids in USES. */
143 int def;
144 sbitmap uses;
145
146 /* The original form of USES' instructions used OLD_REG, but they
147 should now use NEW_REG. */
148 rtx old_reg;
149 rtx new_reg;
150
151 /* The number of consecutive stages that the move occupies. */
152 int num_consecutive_stages;
153
154 /* An instruction that sets NEW_REG to the correct value. The first
155 move associated with DEF will have an rhs of OLD_REG; later moves
156 use the result of the previous move. */
157 rtx_insn *insn;
158 };
159
160 /* Holds the partial schedule as an array of II rows. Each entry of the
161 array points to a linked list of PS_INSNs, which represents the
162 instructions that are scheduled for that row. */
163 struct partial_schedule
164 {
165 int ii; /* Number of rows in the partial schedule. */
166 int history; /* Threshold for conflict checking using DFA. */
167
168 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
169 ps_insn_ptr *rows;
170
171 /* All the moves added for this partial schedule. Index X has
172 a ps_insn id of X + g->num_nodes. */
173 vec<ps_reg_move_info> reg_moves;
174
175 /* rows_length[i] holds the number of instructions in the row.
176 It is used only (as an optimization) to back off quickly from
177 trying to schedule a node in a full row; that is, to avoid running
178 through futile DFA state transitions. */
179 int *rows_length;
180
181 /* The earliest absolute cycle of an insn in the partial schedule. */
182 int min_cycle;
183
184 /* The latest absolute cycle of an insn in the partial schedule. */
185 int max_cycle;
186
187 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
188
189 int stage_count; /* The stage count of the partial schedule. */
190 };
191
192
193 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
194 static void free_partial_schedule (partial_schedule_ptr);
195 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
196 void print_partial_schedule (partial_schedule_ptr, FILE *);
197 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
198 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
199 int, int, sbitmap, sbitmap);
200 static void rotate_partial_schedule (partial_schedule_ptr, int);
201 void set_row_column_for_ps (partial_schedule_ptr);
202 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
203 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
204
205 \f
206 /* This page defines constants and structures for the modulo scheduling
207 driver. */
208
209 static int sms_order_nodes (ddg_ptr, int, int *, int *);
210 static void set_node_sched_params (ddg_ptr);
211 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
212 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
213 static void generate_prolog_epilog (partial_schedule_ptr, class loop *,
214 rtx, rtx);
215 static int calculate_stage_count (partial_schedule_ptr, int);
216 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
217 int, int, sbitmap, sbitmap, sbitmap);
218 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
219 sbitmap, int, int *, int *, int *);
220 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
221 sbitmap, int *, sbitmap, sbitmap);
222 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
223
224 #define NODE_ASAP(node) ((node)->aux.count)
225
226 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
227 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
228 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
229 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
230 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
231
232 /* The scheduling parameters held for each node. */
233 typedef struct node_sched_params
234 {
235 int time; /* The absolute scheduling cycle. */
236
237 int row; /* Holds time % ii. */
238 int stage; /* Holds time / ii. */
239
240 /* The column of a node inside the ps. If nodes u, v are on the same row,
241 u will precede v if column (u) < column (v). */
242 int column;
243 } *node_sched_params_ptr;
244 \f
245 /* The following three functions are copied from the current scheduler
246 code in order to use sched_analyze() for computing the dependencies.
247 They are used when initializing the sched_info structure. */
248 static const char *
249 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
250 {
251 static char tmp[80];
252
253 sprintf (tmp, "i%4d", INSN_UID (insn));
254 return tmp;
255 }
256
257 static void
258 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
259 regset used ATTRIBUTE_UNUSED)
260 {
261 }
262
263 static struct common_sched_info_def sms_common_sched_info;
264
265 static struct sched_deps_info_def sms_sched_deps_info =
266 {
267 compute_jump_reg_dependencies,
268 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
269 NULL,
270 0, 0, 0
271 };
272
273 static struct haifa_sched_info sms_sched_info =
274 {
275 NULL,
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 sms_print_insn,
281 NULL,
282 NULL, /* insn_finishes_block_p */
283 NULL, NULL,
284 NULL, NULL,
285 0, 0,
286
287 NULL, NULL, NULL, NULL,
288 NULL, NULL,
289 0
290 };
291
292 /* Partial schedule instruction ID in PS is a register move. Return
293 information about it. */
294 static struct ps_reg_move_info *
295 ps_reg_move (partial_schedule_ptr ps, int id)
296 {
297 gcc_checking_assert (id >= ps->g->num_nodes);
298 return &ps->reg_moves[id - ps->g->num_nodes];
299 }
300
301 /* Return the rtl instruction that is being scheduled by partial schedule
302 instruction ID, which belongs to schedule PS. */
303 static rtx_insn *
304 ps_rtl_insn (partial_schedule_ptr ps, int id)
305 {
306 if (id < ps->g->num_nodes)
307 return ps->g->nodes[id].insn;
308 else
309 return ps_reg_move (ps, id)->insn;
310 }
311
312 /* Partial schedule instruction ID, which belongs to PS, occurred in
313 the original (unscheduled) loop. Return the first instruction
314 in the loop that was associated with ps_rtl_insn (PS, ID).
315 If the instruction had some notes before it, this is the first
316 of those notes. */
317 static rtx_insn *
318 ps_first_note (partial_schedule_ptr ps, int id)
319 {
320 gcc_assert (id < ps->g->num_nodes);
321 return ps->g->nodes[id].first_note;
322 }
323
324 /* Return the number of consecutive stages that are occupied by
325 partial schedule instruction ID in PS. */
326 static int
327 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
328 {
329 if (id < ps->g->num_nodes)
330 return 1;
331 else
332 return ps_reg_move (ps, id)->num_consecutive_stages;
333 }
334
335 /* Given HEAD and TAIL which are the first and last insns in a loop;
336 return the register which controls the loop. Return zero if it has
337 more than one occurrence in the loop besides the control part or the
338 do-loop pattern is not of the form we expect. */
339 static rtx
340 doloop_register_get (rtx_insn *head, rtx_insn *tail)
341 {
342 rtx reg, condition;
343 rtx_insn *insn, *first_insn_not_to_check;
344
345 if (!JUMP_P (tail))
346 return NULL_RTX;
347
348 if (!targetm.code_for_doloop_end)
349 return NULL_RTX;
350
351 /* TODO: Free SMS's dependence on doloop_condition_get. */
352 condition = doloop_condition_get (tail);
353 if (! condition)
354 return NULL_RTX;
355
356 if (REG_P (XEXP (condition, 0)))
357 reg = XEXP (condition, 0);
358 else if (GET_CODE (XEXP (condition, 0)) == PLUS
359 && REG_P (XEXP (XEXP (condition, 0), 0)))
360 reg = XEXP (XEXP (condition, 0), 0);
361 else
362 gcc_unreachable ();
363
364 /* Check that the COUNT_REG has no other occurrences in the loop
365 until the decrement. We assume the control part consists of
366 either a single (parallel) branch-on-count or a (non-parallel)
367 branch immediately preceded by a single (decrement) insn. */
368 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
369 : prev_nondebug_insn (tail));
370
371 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
372 if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
373 {
374 if (dump_file)
375 {
376 fprintf (dump_file, "SMS count_reg found ");
377 print_rtl_single (dump_file, reg);
378 fprintf (dump_file, " outside control in insn:\n");
379 print_rtl_single (dump_file, insn);
380 }
381
382 return NULL_RTX;
383 }
384
385 return reg;
386 }
387
388 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
389 that the number of iterations is a compile-time constant. If so,
390 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
391 this constant. Otherwise return 0. */
392 static rtx_insn *
393 const_iteration_count (rtx count_reg, basic_block pre_header,
394 int64_t * count)
395 {
396 rtx_insn *insn;
397 rtx_insn *head, *tail;
398
399 if (! pre_header)
400 return NULL;
401
402 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
403
404 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
405 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
406 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
407 {
408 rtx pat = single_set (insn);
409
410 if (CONST_INT_P (SET_SRC (pat)))
411 {
412 *count = INTVAL (SET_SRC (pat));
413 return insn;
414 }
415
416 return NULL;
417 }
418
419 return NULL;
420 }
421
422 /* A very simple resource-based lower bound on the initiation interval.
423 ??? Improve the accuracy of this bound by considering the
424 utilization of various units. */
425 static int
426 res_MII (ddg_ptr g)
427 {
428 if (targetm.sched.sms_res_mii)
429 return targetm.sched.sms_res_mii (g);
430
431 return g->num_nodes / issue_rate;
432 }
433
434
435 /* A vector that contains the sched data for each ps_insn. */
436 static vec<node_sched_params> node_sched_param_vec;
437
438 /* Allocate sched_params for each node and initialize it. */
439 static void
440 set_node_sched_params (ddg_ptr g)
441 {
442 node_sched_param_vec.truncate (0);
443 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
444 }
445
446 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
447 static void
448 extend_node_sched_params (partial_schedule_ptr ps)
449 {
450 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
451 + ps->reg_moves.length ());
452 }
453
454 /* Update the sched_params (time, row and stage) for node U using the II,
455 the CYCLE of U and MIN_CYCLE.
456 We're not simply taking the following
457 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
458 because the stages may not be aligned on cycle 0. */
459 static void
460 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
461 {
462 int sc_until_cycle_zero;
463 int stage;
464
465 SCHED_TIME (u) = cycle;
466 SCHED_ROW (u) = SMODULO (cycle, ii);
467
468 /* The calculation of stage count is done adding the number
469 of stages before cycle zero and after cycle zero. */
470 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
471
472 if (SCHED_TIME (u) < 0)
473 {
474 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
475 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
476 }
477 else
478 {
479 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
481 }
482 }
483
484 static void
485 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
486 {
487 int i;
488
489 if (! file)
490 return;
491 for (i = 0; i < num_nodes; i++)
492 {
493 node_sched_params_ptr nsp = SCHED_PARAMS (i);
494
495 fprintf (file, "Node = %d; INSN = %d\n", i,
496 INSN_UID (ps_rtl_insn (ps, i)));
497 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
498 fprintf (file, " time = %d:\n", nsp->time);
499 fprintf (file, " stage = %d:\n", nsp->stage);
500 }
501 }
502
503 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
504 static void
505 set_columns_for_row (partial_schedule_ptr ps, int row)
506 {
507 ps_insn_ptr cur_insn;
508 int column;
509
510 column = 0;
511 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
512 SCHED_COLUMN (cur_insn->id) = column++;
513 }
514
515 /* Set SCHED_COLUMN for each instruction in PS. */
516 static void
517 set_columns_for_ps (partial_schedule_ptr ps)
518 {
519 int row;
520
521 for (row = 0; row < ps->ii; row++)
522 set_columns_for_row (ps, row);
523 }
524
525 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
526 Its single predecessor has already been scheduled, as has its
527 ddg node successors. (The move may have also another move as its
528 successor, in which case that successor will be scheduled later.)
529
530 The move is part of a chain that satisfies register dependencies
531 between a producing ddg node and various consuming ddg nodes.
532 If some of these dependencies have a distance of 1 (meaning that
533 the use is upward-exposed) then DISTANCE1_USES is nonnull and
534 contains the set of uses with distance-1 dependencies.
535 DISTANCE1_USES is null otherwise.
536
537 MUST_FOLLOW is a scratch bitmap that is big enough to hold
538 all current ps_insn ids.
539
540 Return true on success. */
541 static bool
542 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
543 sbitmap distance1_uses, sbitmap must_follow)
544 {
545 unsigned int u;
546 int this_time, this_distance, this_start, this_end, this_latency;
547 int start, end, c, ii;
548 sbitmap_iterator sbi;
549 ps_reg_move_info *move;
550 rtx_insn *this_insn;
551 ps_insn_ptr psi;
552
553 move = ps_reg_move (ps, i_reg_move);
554 ii = ps->ii;
555 if (dump_file)
556 {
557 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
558 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
559 PS_MIN_CYCLE (ps));
560 print_rtl_single (dump_file, move->insn);
561 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
562 fprintf (dump_file, "=========== =========== =====\n");
563 }
564
565 start = INT_MIN;
566 end = INT_MAX;
567
568 /* For dependencies of distance 1 between a producer ddg node A
569 and consumer ddg node B, we have a chain of dependencies:
570
571 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
572
573 where Mi is the ith move. For dependencies of distance 0 between
574 a producer ddg node A and consumer ddg node C, we have a chain of
575 dependencies:
576
577 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
578
579 where Mi' occupies the same position as Mi but occurs a stage later.
580 We can only schedule each move once, so if we have both types of
581 chain, we model the second as:
582
583 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
584
585 First handle the dependencies between the previously-scheduled
586 predecessor and the move. */
587 this_insn = ps_rtl_insn (ps, move->def);
588 this_latency = insn_latency (this_insn, move->insn);
589 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
590 this_time = SCHED_TIME (move->def) - this_distance * ii;
591 this_start = this_time + this_latency;
592 this_end = this_time + ii;
593 if (dump_file)
594 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
595 this_start, this_end, SCHED_TIME (move->def),
596 INSN_UID (this_insn), this_latency, this_distance,
597 INSN_UID (move->insn));
598
599 if (start < this_start)
600 start = this_start;
601 if (end > this_end)
602 end = this_end;
603
604 /* Handle the dependencies between the move and previously-scheduled
605 successors. */
606 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
607 {
608 this_insn = ps_rtl_insn (ps, u);
609 this_latency = insn_latency (move->insn, this_insn);
610 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
611 this_distance = -1;
612 else
613 this_distance = 0;
614 this_time = SCHED_TIME (u) + this_distance * ii;
615 this_start = this_time - ii;
616 this_end = this_time - this_latency;
617 if (dump_file)
618 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
619 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
620 this_latency, this_distance, INSN_UID (this_insn));
621
622 if (start < this_start)
623 start = this_start;
624 if (end > this_end)
625 end = this_end;
626 }
627
628 if (dump_file)
629 {
630 fprintf (dump_file, "----------- ----------- -----\n");
631 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
632 }
633
634 bitmap_clear (must_follow);
635 bitmap_set_bit (must_follow, move->def);
636
637 start = MAX (start, end - (ii - 1));
638 for (c = end; c >= start; c--)
639 {
640 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
641 move->uses, must_follow);
642 if (psi)
643 {
644 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
645 if (dump_file)
646 fprintf (dump_file, "\nScheduled register move INSN %d at"
647 " time %d, row %d\n\n", INSN_UID (move->insn), c,
648 SCHED_ROW (i_reg_move));
649 return true;
650 }
651 }
652
653 if (dump_file)
654 fprintf (dump_file, "\nNo available slot\n\n");
655
656 return false;
657 }
658
659 /*
660 Breaking intra-loop register anti-dependences:
661 Each intra-loop register anti-dependence implies a cross-iteration true
662 dependence of distance 1. Therefore, we can remove such false dependencies
663 and figure out if the partial schedule broke them by checking if (for a
664 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
665 if so generate a register move. The number of such moves is equal to:
666 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
667 nreg_moves = ----------------------------------- + 1 - { dependence.
668 ii { 1 if not.
669 */
670 static bool
671 schedule_reg_moves (partial_schedule_ptr ps)
672 {
673 ddg_ptr g = ps->g;
674 int ii = ps->ii;
675 int i;
676
677 for (i = 0; i < g->num_nodes; i++)
678 {
679 ddg_node_ptr u = &g->nodes[i];
680 ddg_edge_ptr e;
681 int nreg_moves = 0, i_reg_move;
682 rtx prev_reg, old_reg;
683 int first_move;
684 int distances[2];
685 sbitmap distance1_uses;
686 rtx set = single_set (u->insn);
687
688 /* Skip instructions that do not set a register. */
689 if (set && !REG_P (SET_DEST (set)))
690 continue;
691
692 /* Compute the number of reg_moves needed for u, by looking at life
693 ranges started at u (excluding self-loops). */
694 distances[0] = distances[1] = false;
695 for (e = u->out; e; e = e->next_out)
696 if (e->type == TRUE_DEP && e->dest != e->src)
697 {
698 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
699 - SCHED_TIME (e->src->cuid)) / ii;
700
701 if (e->distance == 1)
702 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
703 - SCHED_TIME (e->src->cuid) + ii) / ii;
704
705 /* If dest precedes src in the schedule of the kernel, then dest
706 will read before src writes and we can save one reg_copy. */
707 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
708 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
709 nreg_moves4e--;
710
711 if (nreg_moves4e >= 1)
712 {
713 /* !single_set instructions are not supported yet and
714 thus we do not except to encounter them in the loop
715 except from the doloop part. For the latter case
716 we assume no regmoves are generated as the doloop
717 instructions are tied to the branch with an edge. */
718 gcc_assert (set);
719 /* If the instruction contains auto-inc register then
720 validate that the regmov is being generated for the
721 target regsiter rather then the inc'ed register. */
722 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
723 }
724
725 if (nreg_moves4e)
726 {
727 gcc_assert (e->distance < 2);
728 distances[e->distance] = true;
729 }
730 nreg_moves = MAX (nreg_moves, nreg_moves4e);
731 }
732
733 if (nreg_moves == 0)
734 continue;
735
736 /* Create NREG_MOVES register moves. */
737 first_move = ps->reg_moves.length ();
738 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
739 extend_node_sched_params (ps);
740
741 /* Record the moves associated with this node. */
742 first_move += ps->g->num_nodes;
743
744 /* Generate each move. */
745 old_reg = prev_reg = SET_DEST (set);
746 if (HARD_REGISTER_P (old_reg))
747 return false;
748
749 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
750 {
751 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
752
753 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
754 move->uses = sbitmap_alloc (first_move + nreg_moves);
755 move->old_reg = old_reg;
756 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
757 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
758 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
759 bitmap_clear (move->uses);
760
761 prev_reg = move->new_reg;
762 }
763
764 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
765
766 if (distance1_uses)
767 bitmap_clear (distance1_uses);
768
769 /* Every use of the register defined by node may require a different
770 copy of this register, depending on the time the use is scheduled.
771 Record which uses require which move results. */
772 for (e = u->out; e; e = e->next_out)
773 if (e->type == TRUE_DEP && e->dest != e->src)
774 {
775 int dest_copy = (SCHED_TIME (e->dest->cuid)
776 - SCHED_TIME (e->src->cuid)) / ii;
777
778 if (e->distance == 1)
779 dest_copy = (SCHED_TIME (e->dest->cuid)
780 - SCHED_TIME (e->src->cuid) + ii) / ii;
781
782 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
783 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
784 dest_copy--;
785
786 if (dest_copy)
787 {
788 ps_reg_move_info *move;
789
790 move = ps_reg_move (ps, first_move + dest_copy - 1);
791 bitmap_set_bit (move->uses, e->dest->cuid);
792 if (e->distance == 1)
793 bitmap_set_bit (distance1_uses, e->dest->cuid);
794 }
795 }
796
797 auto_sbitmap must_follow (first_move + nreg_moves);
798 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
799 if (!schedule_reg_move (ps, first_move + i_reg_move,
800 distance1_uses, must_follow))
801 break;
802 if (distance1_uses)
803 sbitmap_free (distance1_uses);
804 if (i_reg_move < nreg_moves)
805 return false;
806 }
807 return true;
808 }
809
810 /* Emit the moves associated with PS. Apply the substitutions
811 associated with them. */
812 static void
813 apply_reg_moves (partial_schedule_ptr ps)
814 {
815 ps_reg_move_info *move;
816 int i;
817
818 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
819 {
820 unsigned int i_use;
821 sbitmap_iterator sbi;
822
823 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
824 {
825 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
826 df_insn_rescan (ps->g->nodes[i_use].insn);
827 }
828 }
829 }
830
831 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
832 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
833 will move to cycle zero. */
834 static void
835 reset_sched_times (partial_schedule_ptr ps, int amount)
836 {
837 int row;
838 int ii = ps->ii;
839 ps_insn_ptr crr_insn;
840
841 for (row = 0; row < ii; row++)
842 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
843 {
844 int u = crr_insn->id;
845 int normalized_time = SCHED_TIME (u) - amount;
846 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
847
848 if (dump_file)
849 {
850 /* Print the scheduling times after the rotation. */
851 rtx_insn *insn = ps_rtl_insn (ps, u);
852
853 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
854 "crr_insn->cycle=%d, min_cycle=%d", u,
855 INSN_UID (insn), normalized_time, new_min_cycle);
856 if (JUMP_P (insn))
857 fprintf (dump_file, " (branch)");
858 fprintf (dump_file, "\n");
859 }
860
861 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
862 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
863
864 crr_insn->cycle = normalized_time;
865 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
866 }
867 }
868
869 /* Permute the insns according to their order in PS, from row 0 to
870 row ii-1, and position them right before LAST. This schedules
871 the insns of the loop kernel. */
872 static void
873 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
874 {
875 int ii = ps->ii;
876 int row;
877 ps_insn_ptr ps_ij;
878
879 for (row = 0; row < ii ; row++)
880 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
881 {
882 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
883
884 if (PREV_INSN (last) != insn)
885 {
886 if (ps_ij->id < ps->g->num_nodes)
887 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
888 PREV_INSN (last));
889 else
890 add_insn_before (insn, last, NULL);
891 }
892 }
893 }
894
895 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
896 respectively only if cycle C falls on the border of the scheduling
897 window boundaries marked by START and END cycles. STEP is the
898 direction of the window. */
899 static inline void
900 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
901 sbitmap *tmp_precede, sbitmap must_precede, int c,
902 int start, int end, int step)
903 {
904 *tmp_precede = NULL;
905 *tmp_follow = NULL;
906
907 if (c == start)
908 {
909 if (step == 1)
910 *tmp_precede = must_precede;
911 else /* step == -1. */
912 *tmp_follow = must_follow;
913 }
914 if (c == end - step)
915 {
916 if (step == 1)
917 *tmp_follow = must_follow;
918 else /* step == -1. */
919 *tmp_precede = must_precede;
920 }
921
922 }
923
924 /* Return True if the branch can be moved to row ii-1 while
925 normalizing the partial schedule PS to start from cycle zero and thus
926 optimize the SC. Otherwise return False. */
927 static bool
928 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
929 {
930 int amount = PS_MIN_CYCLE (ps);
931 int start, end, step;
932 int ii = ps->ii;
933 bool ok = false;
934 int stage_count, stage_count_curr;
935
936 /* Compare the SC after normalization and SC after bringing the branch
937 to row ii-1. If they are equal just bail out. */
938 stage_count = calculate_stage_count (ps, amount);
939 stage_count_curr =
940 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
941
942 if (stage_count == stage_count_curr)
943 {
944 if (dump_file)
945 fprintf (dump_file, "SMS SC already optimized.\n");
946
947 return false;
948 }
949
950 if (dump_file)
951 {
952 fprintf (dump_file, "SMS Trying to optimize branch location\n");
953 fprintf (dump_file, "SMS partial schedule before trial:\n");
954 print_partial_schedule (ps, dump_file);
955 }
956
957 /* First, normalize the partial scheduling. */
958 reset_sched_times (ps, amount);
959 rotate_partial_schedule (ps, amount);
960 if (dump_file)
961 {
962 fprintf (dump_file,
963 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
964 ii, stage_count);
965 print_partial_schedule (ps, dump_file);
966 }
967
968 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
969 return true;
970
971 auto_sbitmap sched_nodes (g->num_nodes);
972 bitmap_ones (sched_nodes);
973
974 /* Calculate the new placement of the branch. It should be in row
975 ii-1 and fall into it's scheduling window. */
976 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
977 &step, &end) == 0)
978 {
979 bool success;
980 ps_insn_ptr next_ps_i;
981 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
982 int row = SMODULO (branch_cycle, ps->ii);
983 int num_splits = 0;
984 sbitmap tmp_precede, tmp_follow;
985 int min_cycle, c;
986
987 if (dump_file)
988 fprintf (dump_file, "\nTrying to schedule node %d "
989 "INSN = %d in (%d .. %d) step %d\n",
990 g->closing_branch->cuid,
991 (INSN_UID (g->closing_branch->insn)), start, end, step);
992
993 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
994 if (step == 1)
995 {
996 c = start + ii - SMODULO (start, ii) - 1;
997 gcc_assert (c >= start);
998 if (c >= end)
999 {
1000 if (dump_file)
1001 fprintf (dump_file,
1002 "SMS failed to schedule branch at cycle: %d\n", c);
1003 return false;
1004 }
1005 }
1006 else
1007 {
1008 c = start - SMODULO (start, ii) - 1;
1009 gcc_assert (c <= start);
1010
1011 if (c <= end)
1012 {
1013 if (dump_file)
1014 fprintf (dump_file,
1015 "SMS failed to schedule branch at cycle: %d\n", c);
1016 return false;
1017 }
1018 }
1019
1020 auto_sbitmap must_precede (g->num_nodes);
1021 auto_sbitmap must_follow (g->num_nodes);
1022
1023 /* Try to schedule the branch is it's new cycle. */
1024 calculate_must_precede_follow (g->closing_branch, start, end,
1025 step, ii, sched_nodes,
1026 must_precede, must_follow);
1027
1028 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1029 must_precede, c, start, end, step);
1030
1031 /* Find the element in the partial schedule related to the closing
1032 branch so we can remove it from it's current cycle. */
1033 for (next_ps_i = ps->rows[row];
1034 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1035 if (next_ps_i->id == g->closing_branch->cuid)
1036 break;
1037
1038 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1039 remove_node_from_ps (ps, next_ps_i);
1040 success =
1041 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1042 sched_nodes, &num_splits,
1043 tmp_precede, tmp_follow);
1044 gcc_assert (num_splits == 0);
1045 if (!success)
1046 {
1047 if (dump_file)
1048 fprintf (dump_file,
1049 "SMS failed to schedule branch at cycle: %d, "
1050 "bringing it back to cycle %d\n", c, branch_cycle);
1051
1052 /* The branch was failed to be placed in row ii - 1.
1053 Put it back in it's original place in the partial
1054 schedualing. */
1055 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1056 must_precede, branch_cycle, start, end,
1057 step);
1058 success =
1059 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1060 branch_cycle, sched_nodes,
1061 &num_splits, tmp_precede,
1062 tmp_follow);
1063 gcc_assert (success && (num_splits == 0));
1064 ok = false;
1065 }
1066 else
1067 {
1068 /* The branch is placed in row ii - 1. */
1069 if (dump_file)
1070 fprintf (dump_file,
1071 "SMS success in moving branch to cycle %d\n", c);
1072
1073 update_node_sched_params (g->closing_branch->cuid, ii, c,
1074 PS_MIN_CYCLE (ps));
1075 ok = true;
1076 }
1077
1078 /* This might have been added to a new first stage. */
1079 if (PS_MIN_CYCLE (ps) < min_cycle)
1080 reset_sched_times (ps, 0);
1081 }
1082
1083 return ok;
1084 }
1085
1086 static void
1087 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1088 int to_stage, rtx count_reg)
1089 {
1090 int row;
1091 ps_insn_ptr ps_ij;
1092
1093 for (row = 0; row < ps->ii; row++)
1094 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1095 {
1096 int u = ps_ij->id;
1097 int first_u, last_u;
1098 rtx_insn *u_insn;
1099
1100 /* Do not duplicate any insn which refers to count_reg as it
1101 belongs to the control part.
1102 The closing branch is scheduled as well and thus should
1103 be ignored.
1104 TODO: This should be done by analyzing the control part of
1105 the loop. */
1106 u_insn = ps_rtl_insn (ps, u);
1107 if (reg_mentioned_p (count_reg, u_insn)
1108 || JUMP_P (u_insn))
1109 continue;
1110
1111 first_u = SCHED_STAGE (u);
1112 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1113 if (from_stage <= last_u && to_stage >= first_u)
1114 {
1115 if (u < ps->g->num_nodes)
1116 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1117 else
1118 emit_insn (copy_rtx (PATTERN (u_insn)));
1119 }
1120 }
1121 }
1122
1123
1124 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1125 static void
1126 generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop,
1127 rtx count_reg, rtx count_init)
1128 {
1129 int i;
1130 int last_stage = PS_STAGE_COUNT (ps) - 1;
1131 edge e;
1132
1133 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1134 start_sequence ();
1135
1136 if (!count_init)
1137 {
1138 /* Generate instructions at the beginning of the prolog to
1139 adjust the loop count by STAGE_COUNT. If loop count is constant
1140 (count_init), this constant is adjusted by STAGE_COUNT in
1141 generate_prolog_epilog function. */
1142 rtx sub_reg = NULL_RTX;
1143
1144 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1145 gen_int_mode (last_stage,
1146 GET_MODE (count_reg)),
1147 count_reg, 1, OPTAB_DIRECT);
1148 gcc_assert (REG_P (sub_reg));
1149 if (REGNO (sub_reg) != REGNO (count_reg))
1150 emit_move_insn (count_reg, sub_reg);
1151 }
1152
1153 for (i = 0; i < last_stage; i++)
1154 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1155
1156 /* Put the prolog on the entry edge. */
1157 e = loop_preheader_edge (loop);
1158 split_edge_and_insert (e, get_insns ());
1159 if (!flag_resched_modulo_sched)
1160 e->dest->flags |= BB_DISABLE_SCHEDULE;
1161
1162 end_sequence ();
1163
1164 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1165 start_sequence ();
1166
1167 for (i = 0; i < last_stage; i++)
1168 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1169
1170 /* Put the epilogue on the exit edge. */
1171 gcc_assert (single_exit (loop));
1172 e = single_exit (loop);
1173 split_edge_and_insert (e, get_insns ());
1174 if (!flag_resched_modulo_sched)
1175 e->dest->flags |= BB_DISABLE_SCHEDULE;
1176
1177 end_sequence ();
1178 }
1179
1180 /* Mark LOOP as software pipelined so the later
1181 scheduling passes don't touch it. */
1182 static void
1183 mark_loop_unsched (class loop *loop)
1184 {
1185 unsigned i;
1186 basic_block *bbs = get_loop_body (loop);
1187
1188 for (i = 0; i < loop->num_nodes; i++)
1189 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1190
1191 free (bbs);
1192 }
1193
1194 /* Return true if all the BBs of the loop are empty except the
1195 loop header. */
1196 static bool
1197 loop_single_full_bb_p (class loop *loop)
1198 {
1199 unsigned i;
1200 basic_block *bbs = get_loop_body (loop);
1201
1202 for (i = 0; i < loop->num_nodes ; i++)
1203 {
1204 rtx_insn *head, *tail;
1205 bool empty_bb = true;
1206
1207 if (bbs[i] == loop->header)
1208 continue;
1209
1210 /* Make sure that basic blocks other than the header
1211 have only notes labels or jumps. */
1212 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1213 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1214 {
1215 if (NOTE_P (head) || LABEL_P (head)
1216 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1217 continue;
1218 empty_bb = false;
1219 break;
1220 }
1221
1222 if (! empty_bb)
1223 {
1224 free (bbs);
1225 return false;
1226 }
1227 }
1228 free (bbs);
1229 return true;
1230 }
1231
1232 /* Dump file:line from INSN's location info to dump_file. */
1233
1234 static void
1235 dump_insn_location (rtx_insn *insn)
1236 {
1237 if (dump_file && INSN_HAS_LOCATION (insn))
1238 {
1239 expanded_location xloc = insn_location (insn);
1240 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1241 }
1242 }
1243
1244 /* A simple loop from SMS point of view; it is a loop that is composed of
1245 either a single basic block or two BBs - a header and a latch. */
1246 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1247 && (EDGE_COUNT (loop->latch->preds) == 1) \
1248 && (EDGE_COUNT (loop->latch->succs) == 1))
1249
1250 /* Return true if the loop is in its canonical form and false if not.
1251 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1252 static bool
1253 loop_canon_p (class loop *loop)
1254 {
1255
1256 if (loop->inner || !loop_outer (loop))
1257 {
1258 if (dump_file)
1259 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1260 return false;
1261 }
1262
1263 if (!single_exit (loop))
1264 {
1265 if (dump_file)
1266 {
1267 rtx_insn *insn = BB_END (loop->header);
1268
1269 fprintf (dump_file, "SMS loop many exits");
1270 dump_insn_location (insn);
1271 fprintf (dump_file, "\n");
1272 }
1273 return false;
1274 }
1275
1276 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1277 {
1278 if (dump_file)
1279 {
1280 rtx_insn *insn = BB_END (loop->header);
1281
1282 fprintf (dump_file, "SMS loop many BBs.");
1283 dump_insn_location (insn);
1284 fprintf (dump_file, "\n");
1285 }
1286 return false;
1287 }
1288
1289 return true;
1290 }
1291
1292 /* If there are more than one entry for the loop,
1293 make it one by splitting the first entry edge and
1294 redirecting the others to the new BB. */
1295 static void
1296 canon_loop (class loop *loop)
1297 {
1298 edge e;
1299 edge_iterator i;
1300
1301 /* Avoid annoying special cases of edges going to exit
1302 block. */
1303 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1304 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1305 split_edge (e);
1306
1307 if (loop->latch == loop->header
1308 || EDGE_COUNT (loop->latch->succs) > 1)
1309 {
1310 FOR_EACH_EDGE (e, i, loop->header->preds)
1311 if (e->src == loop->latch)
1312 break;
1313 split_edge (e);
1314 }
1315 }
1316
1317 /* Setup infos. */
1318 static void
1319 setup_sched_infos (void)
1320 {
1321 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1322 sizeof (sms_common_sched_info));
1323 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1324 common_sched_info = &sms_common_sched_info;
1325
1326 sched_deps_info = &sms_sched_deps_info;
1327 current_sched_info = &sms_sched_info;
1328 }
1329
1330 /* Probability in % that the sms-ed loop rolls enough so that optimized
1331 version may be entered. Just a guess. */
1332 #define PROB_SMS_ENOUGH_ITERATIONS 80
1333
1334 /* Main entry point, perform SMS scheduling on the loops of the function
1335 that consist of single basic blocks. */
1336 static void
1337 sms_schedule (void)
1338 {
1339 rtx_insn *insn;
1340 ddg_ptr *g_arr, g;
1341 int * node_order;
1342 int maxii, max_asap;
1343 partial_schedule_ptr ps;
1344 basic_block bb = NULL;
1345 class loop *loop;
1346 basic_block condition_bb = NULL;
1347 edge latch_edge;
1348 HOST_WIDE_INT trip_count, max_trip_count;
1349
1350 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1351 | LOOPS_HAVE_RECORDED_EXITS);
1352 if (number_of_loops (cfun) <= 1)
1353 {
1354 loop_optimizer_finalize ();
1355 return; /* There are no loops to schedule. */
1356 }
1357
1358 /* Initialize issue_rate. */
1359 if (targetm.sched.issue_rate)
1360 {
1361 int temp = reload_completed;
1362
1363 reload_completed = 1;
1364 issue_rate = targetm.sched.issue_rate ();
1365 reload_completed = temp;
1366 }
1367 else
1368 issue_rate = 1;
1369
1370 /* Initialize the scheduler. */
1371 setup_sched_infos ();
1372 haifa_sched_init ();
1373
1374 /* Allocate memory to hold the DDG array one entry for each loop.
1375 We use loop->num as index into this array. */
1376 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1377
1378 if (dump_file)
1379 {
1380 fprintf (dump_file, "\n\nSMS analysis phase\n");
1381 fprintf (dump_file, "===================\n\n");
1382 }
1383
1384 /* Build DDGs for all the relevant loops and hold them in G_ARR
1385 indexed by the loop index. */
1386 FOR_EACH_LOOP (loop, 0)
1387 {
1388 rtx_insn *head, *tail;
1389 rtx count_reg;
1390
1391 /* For debugging. */
1392 if (dbg_cnt (sms_sched_loop) == false)
1393 {
1394 if (dump_file)
1395 fprintf (dump_file, "SMS reached max limit... \n");
1396
1397 break;
1398 }
1399
1400 if (dump_file)
1401 {
1402 rtx_insn *insn = BB_END (loop->header);
1403
1404 fprintf (dump_file, "SMS loop num: %d", loop->num);
1405 dump_insn_location (insn);
1406 fprintf (dump_file, "\n");
1407 }
1408
1409 if (! loop_canon_p (loop))
1410 continue;
1411
1412 if (! loop_single_full_bb_p (loop))
1413 {
1414 if (dump_file)
1415 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1416 continue;
1417 }
1418
1419 bb = loop->header;
1420
1421 get_ebb_head_tail (bb, bb, &head, &tail);
1422 latch_edge = loop_latch_edge (loop);
1423 gcc_assert (single_exit (loop));
1424 trip_count = get_estimated_loop_iterations_int (loop);
1425 max_trip_count = get_max_loop_iterations_int (loop);
1426
1427 /* Perform SMS only on loops that their average count is above threshold. */
1428
1429 if ( latch_edge->count () > profile_count::zero ()
1430 && (latch_edge->count()
1431 < single_exit (loop)->count ().apply_scale
1432 (param_sms_loop_average_count_threshold, 1)))
1433 {
1434 if (dump_file)
1435 {
1436 dump_insn_location (tail);
1437 fprintf (dump_file, "\nSMS single-bb-loop\n");
1438 if (profile_info && flag_branch_probabilities)
1439 {
1440 fprintf (dump_file, "SMS loop-count ");
1441 fprintf (dump_file, "%" PRId64,
1442 (int64_t) bb->count.to_gcov_type ());
1443 fprintf (dump_file, "\n");
1444 fprintf (dump_file, "SMS trip-count ");
1445 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1446 (int64_t) trip_count, (int64_t) max_trip_count);
1447 fprintf (dump_file, "\n");
1448 }
1449 }
1450 continue;
1451 }
1452
1453 /* Make sure this is a doloop. */
1454 if ( !(count_reg = doloop_register_get (head, tail)))
1455 {
1456 if (dump_file)
1457 fprintf (dump_file, "SMS doloop_register_get failed\n");
1458 continue;
1459 }
1460
1461 /* Don't handle BBs with calls or barriers
1462 or !single_set with the exception of instructions that include
1463 count_reg---these instructions are part of the control part
1464 that do-loop recognizes.
1465 ??? Should handle insns defining subregs. */
1466 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1467 {
1468 rtx set;
1469
1470 if (CALL_P (insn)
1471 || BARRIER_P (insn)
1472 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1473 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1474 && !reg_mentioned_p (count_reg, insn))
1475 || (INSN_P (insn) && (set = single_set (insn))
1476 && GET_CODE (SET_DEST (set)) == SUBREG))
1477 break;
1478 }
1479
1480 if (insn != NEXT_INSN (tail))
1481 {
1482 if (dump_file)
1483 {
1484 if (CALL_P (insn))
1485 fprintf (dump_file, "SMS loop-with-call\n");
1486 else if (BARRIER_P (insn))
1487 fprintf (dump_file, "SMS loop-with-barrier\n");
1488 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1489 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1490 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1491 else
1492 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1493 print_rtl_single (dump_file, insn);
1494 }
1495
1496 continue;
1497 }
1498
1499 /* Always schedule the closing branch with the rest of the
1500 instructions. The branch is rotated to be in row ii-1 at the
1501 end of the scheduling procedure to make sure it's the last
1502 instruction in the iteration. */
1503 if (! (g = create_ddg (bb, 1)))
1504 {
1505 if (dump_file)
1506 fprintf (dump_file, "SMS create_ddg failed\n");
1507 continue;
1508 }
1509
1510 g_arr[loop->num] = g;
1511 if (dump_file)
1512 fprintf (dump_file, "...OK\n");
1513
1514 }
1515 if (dump_file)
1516 {
1517 fprintf (dump_file, "\nSMS transformation phase\n");
1518 fprintf (dump_file, "=========================\n\n");
1519 }
1520
1521 /* We don't want to perform SMS on new loops - created by versioning. */
1522 FOR_EACH_LOOP (loop, 0)
1523 {
1524 rtx_insn *head, *tail;
1525 rtx count_reg;
1526 rtx_insn *count_init;
1527 int mii, rec_mii, stage_count, min_cycle;
1528 int64_t loop_count = 0;
1529 bool opt_sc_p;
1530
1531 if (! (g = g_arr[loop->num]))
1532 continue;
1533
1534 if (dump_file)
1535 {
1536 rtx_insn *insn = BB_END (loop->header);
1537
1538 fprintf (dump_file, "SMS loop num: %d", loop->num);
1539 dump_insn_location (insn);
1540 fprintf (dump_file, "\n");
1541
1542 print_ddg (dump_file, g);
1543 }
1544
1545 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1546
1547 latch_edge = loop_latch_edge (loop);
1548 gcc_assert (single_exit (loop));
1549 trip_count = get_estimated_loop_iterations_int (loop);
1550 max_trip_count = get_max_loop_iterations_int (loop);
1551
1552 if (dump_file)
1553 {
1554 dump_insn_location (tail);
1555 fprintf (dump_file, "\nSMS single-bb-loop\n");
1556 if (profile_info && flag_branch_probabilities)
1557 {
1558 fprintf (dump_file, "SMS loop-count ");
1559 fprintf (dump_file, "%" PRId64,
1560 (int64_t) bb->count.to_gcov_type ());
1561 fprintf (dump_file, "\n");
1562 }
1563 fprintf (dump_file, "SMS doloop\n");
1564 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1565 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1566 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1567 }
1568
1569
1570 /* In case of th loop have doloop register it gets special
1571 handling. */
1572 count_init = NULL;
1573 if ((count_reg = doloop_register_get (head, tail)))
1574 {
1575 basic_block pre_header;
1576
1577 pre_header = loop_preheader_edge (loop)->src;
1578 count_init = const_iteration_count (count_reg, pre_header,
1579 &loop_count);
1580 }
1581 gcc_assert (count_reg);
1582
1583 if (dump_file && count_init)
1584 {
1585 fprintf (dump_file, "SMS const-doloop ");
1586 fprintf (dump_file, "%" PRId64,
1587 loop_count);
1588 fprintf (dump_file, "\n");
1589 }
1590
1591 node_order = XNEWVEC (int, g->num_nodes);
1592
1593 mii = 1; /* Need to pass some estimate of mii. */
1594 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1595 mii = MAX (res_MII (g), rec_mii);
1596 mii = MAX (mii, 1);
1597 maxii = MAX (max_asap, param_sms_max_ii_factor * mii);
1598
1599 if (dump_file)
1600 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1601 rec_mii, mii, maxii);
1602
1603 for (;;)
1604 {
1605 set_node_sched_params (g);
1606
1607 stage_count = 0;
1608 opt_sc_p = false;
1609 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1610
1611 if (ps)
1612 {
1613 /* Try to achieve optimized SC by normalizing the partial
1614 schedule (having the cycles start from cycle zero).
1615 The branch location must be placed in row ii-1 in the
1616 final scheduling. If failed, shift all instructions to
1617 position the branch in row ii-1. */
1618 opt_sc_p = optimize_sc (ps, g);
1619 if (opt_sc_p)
1620 stage_count = calculate_stage_count (ps, 0);
1621 else
1622 {
1623 /* Bring the branch to cycle ii-1. */
1624 int amount = (SCHED_TIME (g->closing_branch->cuid)
1625 - (ps->ii - 1));
1626
1627 if (dump_file)
1628 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1629
1630 stage_count = calculate_stage_count (ps, amount);
1631 }
1632
1633 gcc_assert (stage_count >= 1);
1634 }
1635
1636 /* The default value of param_sms_min_sc is 2 as stage count of
1637 1 means that there is no interleaving between iterations thus
1638 we let the scheduling passes do the job in this case. */
1639 if (stage_count < param_sms_min_sc
1640 || (count_init && (loop_count <= stage_count))
1641 || (max_trip_count >= 0 && max_trip_count <= stage_count)
1642 || (trip_count >= 0 && trip_count <= stage_count))
1643 {
1644 if (dump_file)
1645 {
1646 fprintf (dump_file, "SMS failed... \n");
1647 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1648 " loop-count=", stage_count);
1649 fprintf (dump_file, "%" PRId64, loop_count);
1650 fprintf (dump_file, ", trip-count=");
1651 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1652 (int64_t) trip_count, (int64_t) max_trip_count);
1653 fprintf (dump_file, ")\n");
1654 }
1655 break;
1656 }
1657
1658 if (!opt_sc_p)
1659 {
1660 /* Rotate the partial schedule to have the branch in row ii-1. */
1661 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1662
1663 reset_sched_times (ps, amount);
1664 rotate_partial_schedule (ps, amount);
1665 }
1666
1667 set_columns_for_ps (ps);
1668
1669 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1670 if (!schedule_reg_moves (ps))
1671 {
1672 mii = ps->ii + 1;
1673 free_partial_schedule (ps);
1674 continue;
1675 }
1676
1677 /* Moves that handle incoming values might have been added
1678 to a new first stage. Bump the stage count if so.
1679
1680 ??? Perhaps we could consider rotating the schedule here
1681 instead? */
1682 if (PS_MIN_CYCLE (ps) < min_cycle)
1683 {
1684 reset_sched_times (ps, 0);
1685 stage_count++;
1686 }
1687
1688 /* The stage count should now be correct without rotation. */
1689 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1690 PS_STAGE_COUNT (ps) = stage_count;
1691
1692 canon_loop (loop);
1693
1694 if (dump_file)
1695 {
1696 dump_insn_location (tail);
1697 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1698 ps->ii, stage_count);
1699 print_partial_schedule (ps, dump_file);
1700 }
1701
1702 /* case the BCT count is not known , Do loop-versioning */
1703 if (count_reg && ! count_init)
1704 {
1705 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1706 gen_int_mode (stage_count,
1707 GET_MODE (count_reg)));
1708 profile_probability prob = profile_probability::guessed_always ()
1709 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1710
1711 loop_version (loop, comp_rtx, &condition_bb,
1712 prob, prob.invert (),
1713 prob, prob.invert (), true);
1714 }
1715
1716 /* Set new iteration count of loop kernel. */
1717 if (count_reg && count_init)
1718 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1719 - stage_count + 1);
1720
1721 /* Now apply the scheduled kernel to the RTL of the loop. */
1722 permute_partial_schedule (ps, g->closing_branch->first_note);
1723
1724 /* Mark this loop as software pipelined so the later
1725 scheduling passes don't touch it. */
1726 if (! flag_resched_modulo_sched)
1727 mark_loop_unsched (loop);
1728
1729 /* The life-info is not valid any more. */
1730 df_set_bb_dirty (g->bb);
1731
1732 apply_reg_moves (ps);
1733 if (dump_file)
1734 print_node_sched_params (dump_file, g->num_nodes, ps);
1735 /* Generate prolog and epilog. */
1736 generate_prolog_epilog (ps, loop, count_reg, count_init);
1737 break;
1738 }
1739
1740 free_partial_schedule (ps);
1741 node_sched_param_vec.release ();
1742 free (node_order);
1743 free_ddg (g);
1744 }
1745
1746 free (g_arr);
1747
1748 /* Release scheduler data, needed until now because of DFA. */
1749 haifa_sched_finish ();
1750 loop_optimizer_finalize ();
1751 }
1752
1753 /* The SMS scheduling algorithm itself
1754 -----------------------------------
1755 Input: 'O' an ordered list of insns of a loop.
1756 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1757
1758 'Q' is the empty Set
1759 'PS' is the partial schedule; it holds the currently scheduled nodes with
1760 their cycle/slot.
1761 'PSP' previously scheduled predecessors.
1762 'PSS' previously scheduled successors.
1763 't(u)' the cycle where u is scheduled.
1764 'l(u)' is the latency of u.
1765 'd(v,u)' is the dependence distance from v to u.
1766 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1767 the node ordering phase.
1768 'check_hardware_resources_conflicts(u, PS, c)'
1769 run a trace around cycle/slot through DFA model
1770 to check resource conflicts involving instruction u
1771 at cycle c given the partial schedule PS.
1772 'add_to_partial_schedule_at_time(u, PS, c)'
1773 Add the node/instruction u to the partial schedule
1774 PS at time c.
1775 'calculate_register_pressure(PS)'
1776 Given a schedule of instructions, calculate the register
1777 pressure it implies. One implementation could be the
1778 maximum number of overlapping live ranges.
1779 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1780 registers available in the hardware.
1781
1782 1. II = MII.
1783 2. PS = empty list
1784 3. for each node u in O in pre-computed order
1785 4. if (PSP(u) != Q && PSS(u) == Q) then
1786 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1787 6. start = Early_start; end = Early_start + II - 1; step = 1
1788 11. else if (PSP(u) == Q && PSS(u) != Q) then
1789 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1790 13. start = Late_start; end = Late_start - II + 1; step = -1
1791 14. else if (PSP(u) != Q && PSS(u) != Q) then
1792 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1793 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1794 17. start = Early_start;
1795 18. end = min(Early_start + II - 1 , Late_start);
1796 19. step = 1
1797 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1798 21. start = ASAP(u); end = start + II - 1; step = 1
1799 22. endif
1800
1801 23. success = false
1802 24. for (c = start ; c != end ; c += step)
1803 25. if check_hardware_resources_conflicts(u, PS, c) then
1804 26. add_to_partial_schedule_at_time(u, PS, c)
1805 27. success = true
1806 28. break
1807 29. endif
1808 30. endfor
1809 31. if (success == false) then
1810 32. II = II + 1
1811 33. if (II > maxII) then
1812 34. finish - failed to schedule
1813 35. endif
1814 36. goto 2.
1815 37. endif
1816 38. endfor
1817 39. if (calculate_register_pressure(PS) > maxRP) then
1818 40. goto 32.
1819 41. endif
1820 42. compute epilogue & prologue
1821 43. finish - succeeded to schedule
1822
1823 ??? The algorithm restricts the scheduling window to II cycles.
1824 In rare cases, it may be better to allow windows of II+1 cycles.
1825 The window would then start and end on the same row, but with
1826 different "must precede" and "must follow" requirements. */
1827
1828 /* A threshold for the number of repeated unsuccessful attempts to insert
1829 an empty row, before we flush the partial schedule and start over. */
1830 #define MAX_SPLIT_NUM 10
1831 /* Given the partial schedule PS, this function calculates and returns the
1832 cycles in which we can schedule the node with the given index I.
1833 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1834 noticed that there are several cases in which we fail to SMS the loop
1835 because the sched window of a node is empty due to tight data-deps. In
1836 such cases we want to unschedule some of the predecessors/successors
1837 until we get non-empty scheduling window. It returns -1 if the
1838 scheduling window is empty and zero otherwise. */
1839
1840 static int
1841 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1842 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1843 int *end_p)
1844 {
1845 int start, step, end;
1846 int early_start, late_start;
1847 ddg_edge_ptr e;
1848 auto_sbitmap psp (ps->g->num_nodes);
1849 auto_sbitmap pss (ps->g->num_nodes);
1850 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1851 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1852 int psp_not_empty;
1853 int pss_not_empty;
1854 int count_preds;
1855 int count_succs;
1856
1857 /* 1. compute sched window for u (start, end, step). */
1858 bitmap_clear (psp);
1859 bitmap_clear (pss);
1860 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1861 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1862
1863 /* We first compute a forward range (start <= end), then decide whether
1864 to reverse it. */
1865 early_start = INT_MIN;
1866 late_start = INT_MAX;
1867 start = INT_MIN;
1868 end = INT_MAX;
1869 step = 1;
1870
1871 count_preds = 0;
1872 count_succs = 0;
1873
1874 if (dump_file && (psp_not_empty || pss_not_empty))
1875 {
1876 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1877 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1878 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1879 "start", "early start", "late start", "end", "time");
1880 fprintf (dump_file, "=========== =========== =========== ==========="
1881 " =====\n");
1882 }
1883 /* Calculate early_start and limit end. Both bounds are inclusive. */
1884 if (psp_not_empty)
1885 for (e = u_node->in; e != 0; e = e->next_in)
1886 {
1887 int v = e->src->cuid;
1888
1889 if (bitmap_bit_p (sched_nodes, v))
1890 {
1891 int p_st = SCHED_TIME (v);
1892 int earliest = p_st + e->latency - (e->distance * ii);
1893 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1894
1895 if (dump_file)
1896 {
1897 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1898 "", earliest, "", latest, p_st);
1899 print_ddg_edge (dump_file, e);
1900 fprintf (dump_file, "\n");
1901 }
1902
1903 early_start = MAX (early_start, earliest);
1904 end = MIN (end, latest);
1905
1906 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1907 count_preds++;
1908 }
1909 }
1910
1911 /* Calculate late_start and limit start. Both bounds are inclusive. */
1912 if (pss_not_empty)
1913 for (e = u_node->out; e != 0; e = e->next_out)
1914 {
1915 int v = e->dest->cuid;
1916
1917 if (bitmap_bit_p (sched_nodes, v))
1918 {
1919 int s_st = SCHED_TIME (v);
1920 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1921 int latest = s_st - e->latency + (e->distance * ii);
1922
1923 if (dump_file)
1924 {
1925 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1926 earliest, "", latest, "", s_st);
1927 print_ddg_edge (dump_file, e);
1928 fprintf (dump_file, "\n");
1929 }
1930
1931 start = MAX (start, earliest);
1932 late_start = MIN (late_start, latest);
1933
1934 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1935 count_succs++;
1936 }
1937 }
1938
1939 if (dump_file && (psp_not_empty || pss_not_empty))
1940 {
1941 fprintf (dump_file, "----------- ----------- ----------- -----------"
1942 " -----\n");
1943 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1944 start, early_start, late_start, end, "",
1945 "(max, max, min, min)");
1946 }
1947
1948 /* Get a target scheduling window no bigger than ii. */
1949 if (early_start == INT_MIN && late_start == INT_MAX)
1950 early_start = NODE_ASAP (u_node);
1951 else if (early_start == INT_MIN)
1952 early_start = late_start - (ii - 1);
1953 late_start = MIN (late_start, early_start + (ii - 1));
1954
1955 /* Apply memory dependence limits. */
1956 start = MAX (start, early_start);
1957 end = MIN (end, late_start);
1958
1959 if (dump_file && (psp_not_empty || pss_not_empty))
1960 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1961 "", start, end, "", "");
1962
1963 /* If there are at least as many successors as predecessors, schedule the
1964 node close to its successors. */
1965 if (pss_not_empty && count_succs >= count_preds)
1966 {
1967 std::swap (start, end);
1968 step = -1;
1969 }
1970
1971 /* Now that we've finalized the window, make END an exclusive rather
1972 than an inclusive bound. */
1973 end += step;
1974
1975 *start_p = start;
1976 *step_p = step;
1977 *end_p = end;
1978
1979 if ((start >= end && step == 1) || (start <= end && step == -1))
1980 {
1981 if (dump_file)
1982 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1983 start, end, step);
1984 return -1;
1985 }
1986
1987 return 0;
1988 }
1989
1990 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1991 node currently been scheduled. At the end of the calculation
1992 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
1993 U_NODE which are (1) already scheduled in the first/last row of
1994 U_NODE's scheduling window, (2) whose dependence inequality with U
1995 becomes an equality when U is scheduled in this same row, and (3)
1996 whose dependence latency is zero.
1997
1998 The first and last rows are calculated using the following parameters:
1999 START/END rows - The cycles that begins/ends the traversal on the window;
2000 searching for an empty cycle to schedule U_NODE.
2001 STEP - The direction in which we traverse the window.
2002 II - The initiation interval. */
2003
2004 static void
2005 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2006 int step, int ii, sbitmap sched_nodes,
2007 sbitmap must_precede, sbitmap must_follow)
2008 {
2009 ddg_edge_ptr e;
2010 int first_cycle_in_window, last_cycle_in_window;
2011
2012 gcc_assert (must_precede && must_follow);
2013
2014 /* Consider the following scheduling window:
2015 {first_cycle_in_window, first_cycle_in_window+1, ...,
2016 last_cycle_in_window}. If step is 1 then the following will be
2017 the order we traverse the window: {start=first_cycle_in_window,
2018 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2019 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2020 end=first_cycle_in_window-1} if step is -1. */
2021 first_cycle_in_window = (step == 1) ? start : end - step;
2022 last_cycle_in_window = (step == 1) ? end - step : start;
2023
2024 bitmap_clear (must_precede);
2025 bitmap_clear (must_follow);
2026
2027 if (dump_file)
2028 fprintf (dump_file, "\nmust_precede: ");
2029
2030 /* Instead of checking if:
2031 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2032 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2033 first_cycle_in_window)
2034 && e->latency == 0
2035 we use the fact that latency is non-negative:
2036 SCHED_TIME (e->src) - (e->distance * ii) <=
2037 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2038 first_cycle_in_window
2039 and check only if
2040 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2041 for (e = u_node->in; e != 0; e = e->next_in)
2042 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2043 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2044 first_cycle_in_window))
2045 {
2046 if (dump_file)
2047 fprintf (dump_file, "%d ", e->src->cuid);
2048
2049 bitmap_set_bit (must_precede, e->src->cuid);
2050 }
2051
2052 if (dump_file)
2053 fprintf (dump_file, "\nmust_follow: ");
2054
2055 /* Instead of checking if:
2056 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2057 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2058 last_cycle_in_window)
2059 && e->latency == 0
2060 we use the fact that latency is non-negative:
2061 SCHED_TIME (e->dest) + (e->distance * ii) >=
2062 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2063 last_cycle_in_window
2064 and check only if
2065 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2066 for (e = u_node->out; e != 0; e = e->next_out)
2067 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2068 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2069 last_cycle_in_window))
2070 {
2071 if (dump_file)
2072 fprintf (dump_file, "%d ", e->dest->cuid);
2073
2074 bitmap_set_bit (must_follow, e->dest->cuid);
2075 }
2076
2077 if (dump_file)
2078 fprintf (dump_file, "\n");
2079 }
2080
2081 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2082 parameters to decide if that's possible:
2083 PS - The partial schedule.
2084 U - The serial number of U_NODE.
2085 NUM_SPLITS - The number of row splits made so far.
2086 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2087 the first row of the scheduling window)
2088 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2089 last row of the scheduling window) */
2090
2091 static bool
2092 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2093 int u, int cycle, sbitmap sched_nodes,
2094 int *num_splits, sbitmap must_precede,
2095 sbitmap must_follow)
2096 {
2097 ps_insn_ptr psi;
2098 bool success = 0;
2099
2100 verify_partial_schedule (ps, sched_nodes);
2101 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2102 if (psi)
2103 {
2104 SCHED_TIME (u) = cycle;
2105 bitmap_set_bit (sched_nodes, u);
2106 success = 1;
2107 *num_splits = 0;
2108 if (dump_file)
2109 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2110
2111 }
2112
2113 return success;
2114 }
2115
2116 /* This function implements the scheduling algorithm for SMS according to the
2117 above algorithm. */
2118 static partial_schedule_ptr
2119 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2120 {
2121 int ii = mii;
2122 int i, c, success, num_splits = 0;
2123 int flush_and_start_over = true;
2124 int num_nodes = g->num_nodes;
2125 int start, end, step; /* Place together into one struct? */
2126 auto_sbitmap sched_nodes (num_nodes);
2127 auto_sbitmap must_precede (num_nodes);
2128 auto_sbitmap must_follow (num_nodes);
2129 auto_sbitmap tobe_scheduled (num_nodes);
2130
2131 /* Value of param_sms_dfa_history is a limit on the number of cycles that
2132 resource conflicts can span. ??? Should be provided by DFA, and be
2133 dependent on the type of insn scheduled. Set to 0 by default to save
2134 compile time. */
2135 partial_schedule_ptr ps = create_partial_schedule (ii, g,
2136 param_sms_dfa_history);
2137
2138 bitmap_ones (tobe_scheduled);
2139 bitmap_clear (sched_nodes);
2140
2141 while (flush_and_start_over && (ii < maxii))
2142 {
2143
2144 if (dump_file)
2145 fprintf (dump_file, "Starting with ii=%d\n", ii);
2146 flush_and_start_over = false;
2147 bitmap_clear (sched_nodes);
2148
2149 for (i = 0; i < num_nodes; i++)
2150 {
2151 int u = nodes_order[i];
2152 ddg_node_ptr u_node = &ps->g->nodes[u];
2153 rtx_insn *insn = u_node->insn;
2154
2155 gcc_checking_assert (NONDEBUG_INSN_P (insn));
2156
2157 if (bitmap_bit_p (sched_nodes, u))
2158 continue;
2159
2160 /* Try to get non-empty scheduling window. */
2161 success = 0;
2162 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2163 &step, &end) == 0)
2164 {
2165 if (dump_file)
2166 fprintf (dump_file, "\nTrying to schedule node %d "
2167 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2168 (g->nodes[u].insn)), start, end, step);
2169
2170 gcc_assert ((step > 0 && start < end)
2171 || (step < 0 && start > end));
2172
2173 calculate_must_precede_follow (u_node, start, end, step, ii,
2174 sched_nodes, must_precede,
2175 must_follow);
2176
2177 for (c = start; c != end; c += step)
2178 {
2179 sbitmap tmp_precede, tmp_follow;
2180
2181 set_must_precede_follow (&tmp_follow, must_follow,
2182 &tmp_precede, must_precede,
2183 c, start, end, step);
2184 success =
2185 try_scheduling_node_in_cycle (ps, u, c,
2186 sched_nodes,
2187 &num_splits, tmp_precede,
2188 tmp_follow);
2189 if (success)
2190 break;
2191 }
2192
2193 verify_partial_schedule (ps, sched_nodes);
2194 }
2195 if (!success)
2196 {
2197 int split_row;
2198
2199 if (ii++ == maxii)
2200 break;
2201
2202 if (num_splits >= MAX_SPLIT_NUM)
2203 {
2204 num_splits = 0;
2205 flush_and_start_over = true;
2206 verify_partial_schedule (ps, sched_nodes);
2207 reset_partial_schedule (ps, ii);
2208 verify_partial_schedule (ps, sched_nodes);
2209 break;
2210 }
2211
2212 num_splits++;
2213 /* The scheduling window is exclusive of 'end'
2214 whereas compute_split_window() expects an inclusive,
2215 ordered range. */
2216 if (step == 1)
2217 split_row = compute_split_row (sched_nodes, start, end - 1,
2218 ps->ii, u_node);
2219 else
2220 split_row = compute_split_row (sched_nodes, end + 1, start,
2221 ps->ii, u_node);
2222
2223 ps_insert_empty_row (ps, split_row, sched_nodes);
2224 i--; /* Go back and retry node i. */
2225
2226 if (dump_file)
2227 fprintf (dump_file, "num_splits=%d\n", num_splits);
2228 }
2229
2230 /* ??? If (success), check register pressure estimates. */
2231 } /* Continue with next node. */
2232 } /* While flush_and_start_over. */
2233 if (ii >= maxii)
2234 {
2235 free_partial_schedule (ps);
2236 ps = NULL;
2237 }
2238 else
2239 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2240
2241 return ps;
2242 }
2243
2244 /* This function inserts a new empty row into PS at the position
2245 according to SPLITROW, keeping all already scheduled instructions
2246 intact and updating their SCHED_TIME and cycle accordingly. */
2247 static void
2248 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2249 sbitmap sched_nodes)
2250 {
2251 ps_insn_ptr crr_insn;
2252 ps_insn_ptr *rows_new;
2253 int ii = ps->ii;
2254 int new_ii = ii + 1;
2255 int row;
2256 int *rows_length_new;
2257
2258 verify_partial_schedule (ps, sched_nodes);
2259
2260 /* We normalize sched_time and rotate ps to have only non-negative sched
2261 times, for simplicity of updating cycles after inserting new row. */
2262 split_row -= ps->min_cycle;
2263 split_row = SMODULO (split_row, ii);
2264 if (dump_file)
2265 fprintf (dump_file, "split_row=%d\n", split_row);
2266
2267 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2268 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2269
2270 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2271 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2272 for (row = 0; row < split_row; row++)
2273 {
2274 rows_new[row] = ps->rows[row];
2275 rows_length_new[row] = ps->rows_length[row];
2276 ps->rows[row] = NULL;
2277 for (crr_insn = rows_new[row];
2278 crr_insn; crr_insn = crr_insn->next_in_row)
2279 {
2280 int u = crr_insn->id;
2281 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2282
2283 SCHED_TIME (u) = new_time;
2284 crr_insn->cycle = new_time;
2285 SCHED_ROW (u) = new_time % new_ii;
2286 SCHED_STAGE (u) = new_time / new_ii;
2287 }
2288
2289 }
2290
2291 rows_new[split_row] = NULL;
2292
2293 for (row = split_row; row < ii; row++)
2294 {
2295 rows_new[row + 1] = ps->rows[row];
2296 rows_length_new[row + 1] = ps->rows_length[row];
2297 ps->rows[row] = NULL;
2298 for (crr_insn = rows_new[row + 1];
2299 crr_insn; crr_insn = crr_insn->next_in_row)
2300 {
2301 int u = crr_insn->id;
2302 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2303
2304 SCHED_TIME (u) = new_time;
2305 crr_insn->cycle = new_time;
2306 SCHED_ROW (u) = new_time % new_ii;
2307 SCHED_STAGE (u) = new_time / new_ii;
2308 }
2309 }
2310
2311 /* Updating ps. */
2312 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2313 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2314 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2315 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2316 free (ps->rows);
2317 ps->rows = rows_new;
2318 free (ps->rows_length);
2319 ps->rows_length = rows_length_new;
2320 ps->ii = new_ii;
2321 gcc_assert (ps->min_cycle >= 0);
2322
2323 verify_partial_schedule (ps, sched_nodes);
2324
2325 if (dump_file)
2326 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2327 ps->max_cycle);
2328 }
2329
2330 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2331 UP which are the boundaries of it's scheduling window; compute using
2332 SCHED_NODES and II a row in the partial schedule that can be split
2333 which will separate a critical predecessor from a critical successor
2334 thereby expanding the window, and return it. */
2335 static int
2336 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2337 ddg_node_ptr u_node)
2338 {
2339 ddg_edge_ptr e;
2340 int lower = INT_MIN, upper = INT_MAX;
2341 int crit_pred = -1;
2342 int crit_succ = -1;
2343 int crit_cycle;
2344
2345 for (e = u_node->in; e != 0; e = e->next_in)
2346 {
2347 int v = e->src->cuid;
2348
2349 if (bitmap_bit_p (sched_nodes, v)
2350 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2351 if (SCHED_TIME (v) > lower)
2352 {
2353 crit_pred = v;
2354 lower = SCHED_TIME (v);
2355 }
2356 }
2357
2358 if (crit_pred >= 0)
2359 {
2360 crit_cycle = SCHED_TIME (crit_pred) + 1;
2361 return SMODULO (crit_cycle, ii);
2362 }
2363
2364 for (e = u_node->out; e != 0; e = e->next_out)
2365 {
2366 int v = e->dest->cuid;
2367
2368 if (bitmap_bit_p (sched_nodes, v)
2369 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2370 if (SCHED_TIME (v) < upper)
2371 {
2372 crit_succ = v;
2373 upper = SCHED_TIME (v);
2374 }
2375 }
2376
2377 if (crit_succ >= 0)
2378 {
2379 crit_cycle = SCHED_TIME (crit_succ);
2380 return SMODULO (crit_cycle, ii);
2381 }
2382
2383 if (dump_file)
2384 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2385
2386 return SMODULO ((low + up + 1) / 2, ii);
2387 }
2388
2389 static void
2390 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2391 {
2392 int row;
2393 ps_insn_ptr crr_insn;
2394
2395 for (row = 0; row < ps->ii; row++)
2396 {
2397 int length = 0;
2398
2399 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2400 {
2401 int u = crr_insn->id;
2402
2403 length++;
2404 gcc_assert (bitmap_bit_p (sched_nodes, u));
2405 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2406 popcount (sched_nodes) == number of insns in ps. */
2407 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2408 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2409 }
2410
2411 gcc_assert (ps->rows_length[row] == length);
2412 }
2413 }
2414
2415 \f
2416 /* This page implements the algorithm for ordering the nodes of a DDG
2417 for modulo scheduling, activated through the
2418 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2419
2420 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2421 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2422 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2423 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2424 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2425 #define DEPTH(x) (ASAP ((x)))
2426
2427 typedef struct node_order_params * nopa;
2428
2429 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2430 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2431 static nopa calculate_order_params (ddg_ptr, int, int *);
2432 static int find_max_asap (ddg_ptr, sbitmap);
2433 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2434 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2435
2436 enum sms_direction {BOTTOMUP, TOPDOWN};
2437
2438 struct node_order_params
2439 {
2440 int asap;
2441 int alap;
2442 int height;
2443 };
2444
2445 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2446 static void
2447 check_nodes_order (int *node_order, int num_nodes)
2448 {
2449 int i;
2450 auto_sbitmap tmp (num_nodes);
2451
2452 bitmap_clear (tmp);
2453
2454 if (dump_file)
2455 fprintf (dump_file, "SMS final nodes order: \n");
2456
2457 for (i = 0; i < num_nodes; i++)
2458 {
2459 int u = node_order[i];
2460
2461 if (dump_file)
2462 fprintf (dump_file, "%d ", u);
2463 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2464
2465 bitmap_set_bit (tmp, u);
2466 }
2467
2468 if (dump_file)
2469 fprintf (dump_file, "\n");
2470 }
2471
2472 /* Order the nodes of G for scheduling and pass the result in
2473 NODE_ORDER. Also set aux.count of each node to ASAP.
2474 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2475 static int
2476 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2477 {
2478 int i;
2479 int rec_mii = 0;
2480 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2481
2482 nopa nops = calculate_order_params (g, mii, pmax_asap);
2483
2484 if (dump_file)
2485 print_sccs (dump_file, sccs, g);
2486
2487 order_nodes_of_sccs (sccs, node_order);
2488
2489 if (sccs->num_sccs > 0)
2490 /* First SCC has the largest recurrence_length. */
2491 rec_mii = sccs->sccs[0]->recurrence_length;
2492
2493 /* Save ASAP before destroying node_order_params. */
2494 for (i = 0; i < g->num_nodes; i++)
2495 {
2496 ddg_node_ptr v = &g->nodes[i];
2497 v->aux.count = ASAP (v);
2498 }
2499
2500 free (nops);
2501 free_ddg_all_sccs (sccs);
2502 check_nodes_order (node_order, g->num_nodes);
2503
2504 return rec_mii;
2505 }
2506
2507 static void
2508 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2509 {
2510 int i, pos = 0;
2511 ddg_ptr g = all_sccs->ddg;
2512 int num_nodes = g->num_nodes;
2513 auto_sbitmap prev_sccs (num_nodes);
2514 auto_sbitmap on_path (num_nodes);
2515 auto_sbitmap tmp (num_nodes);
2516 auto_sbitmap ones (num_nodes);
2517
2518 bitmap_clear (prev_sccs);
2519 bitmap_ones (ones);
2520
2521 /* Perform the node ordering starting from the SCC with the highest recMII.
2522 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2523 for (i = 0; i < all_sccs->num_sccs; i++)
2524 {
2525 ddg_scc_ptr scc = all_sccs->sccs[i];
2526
2527 /* Add nodes on paths from previous SCCs to the current SCC. */
2528 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2529 bitmap_ior (tmp, scc->nodes, on_path);
2530
2531 /* Add nodes on paths from the current SCC to previous SCCs. */
2532 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2533 bitmap_ior (tmp, tmp, on_path);
2534
2535 /* Remove nodes of previous SCCs from current extended SCC. */
2536 bitmap_and_compl (tmp, tmp, prev_sccs);
2537
2538 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2539 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2540 }
2541
2542 /* Handle the remaining nodes that do not belong to any scc. Each call
2543 to order_nodes_in_scc handles a single connected component. */
2544 while (pos < g->num_nodes)
2545 {
2546 bitmap_and_compl (tmp, ones, prev_sccs);
2547 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2548 }
2549 }
2550
2551 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2552 static struct node_order_params *
2553 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2554 {
2555 int u;
2556 int max_asap;
2557 int num_nodes = g->num_nodes;
2558 ddg_edge_ptr e;
2559 /* Allocate a place to hold ordering params for each node in the DDG. */
2560 nopa node_order_params_arr;
2561
2562 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2563 node_order_params_arr = (nopa) xcalloc (num_nodes,
2564 sizeof (struct node_order_params));
2565
2566 /* Set the aux pointer of each node to point to its order_params structure. */
2567 for (u = 0; u < num_nodes; u++)
2568 g->nodes[u].aux.info = &node_order_params_arr[u];
2569
2570 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2571 calculate ASAP, ALAP, mobility, distance, and height for each node
2572 in the dependence (direct acyclic) graph. */
2573
2574 /* We assume that the nodes in the array are in topological order. */
2575
2576 max_asap = 0;
2577 for (u = 0; u < num_nodes; u++)
2578 {
2579 ddg_node_ptr u_node = &g->nodes[u];
2580
2581 ASAP (u_node) = 0;
2582 for (e = u_node->in; e; e = e->next_in)
2583 if (e->distance == 0)
2584 ASAP (u_node) = MAX (ASAP (u_node),
2585 ASAP (e->src) + e->latency);
2586 max_asap = MAX (max_asap, ASAP (u_node));
2587 }
2588
2589 for (u = num_nodes - 1; u > -1; u--)
2590 {
2591 ddg_node_ptr u_node = &g->nodes[u];
2592
2593 ALAP (u_node) = max_asap;
2594 HEIGHT (u_node) = 0;
2595 for (e = u_node->out; e; e = e->next_out)
2596 if (e->distance == 0)
2597 {
2598 ALAP (u_node) = MIN (ALAP (u_node),
2599 ALAP (e->dest) - e->latency);
2600 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2601 HEIGHT (e->dest) + e->latency);
2602 }
2603 }
2604 if (dump_file)
2605 {
2606 fprintf (dump_file, "\nOrder params\n");
2607 for (u = 0; u < num_nodes; u++)
2608 {
2609 ddg_node_ptr u_node = &g->nodes[u];
2610
2611 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2612 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2613 }
2614 }
2615
2616 *pmax_asap = max_asap;
2617 return node_order_params_arr;
2618 }
2619
2620 static int
2621 find_max_asap (ddg_ptr g, sbitmap nodes)
2622 {
2623 unsigned int u = 0;
2624 int max_asap = -1;
2625 int result = -1;
2626 sbitmap_iterator sbi;
2627
2628 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2629 {
2630 ddg_node_ptr u_node = &g->nodes[u];
2631
2632 if (max_asap < ASAP (u_node))
2633 {
2634 max_asap = ASAP (u_node);
2635 result = u;
2636 }
2637 }
2638 return result;
2639 }
2640
2641 static int
2642 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2643 {
2644 unsigned int u = 0;
2645 int max_hv = -1;
2646 int min_mob = INT_MAX;
2647 int result = -1;
2648 sbitmap_iterator sbi;
2649
2650 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2651 {
2652 ddg_node_ptr u_node = &g->nodes[u];
2653
2654 if (max_hv < HEIGHT (u_node))
2655 {
2656 max_hv = HEIGHT (u_node);
2657 min_mob = MOB (u_node);
2658 result = u;
2659 }
2660 else if ((max_hv == HEIGHT (u_node))
2661 && (min_mob > MOB (u_node)))
2662 {
2663 min_mob = MOB (u_node);
2664 result = u;
2665 }
2666 }
2667 return result;
2668 }
2669
2670 static int
2671 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2672 {
2673 unsigned int u = 0;
2674 int max_dv = -1;
2675 int min_mob = INT_MAX;
2676 int result = -1;
2677 sbitmap_iterator sbi;
2678
2679 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2680 {
2681 ddg_node_ptr u_node = &g->nodes[u];
2682
2683 if (max_dv < DEPTH (u_node))
2684 {
2685 max_dv = DEPTH (u_node);
2686 min_mob = MOB (u_node);
2687 result = u;
2688 }
2689 else if ((max_dv == DEPTH (u_node))
2690 && (min_mob > MOB (u_node)))
2691 {
2692 min_mob = MOB (u_node);
2693 result = u;
2694 }
2695 }
2696 return result;
2697 }
2698
2699 /* Places the nodes of SCC into the NODE_ORDER array starting
2700 at position POS, according to the SMS ordering algorithm.
2701 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2702 the NODE_ORDER array, starting from position zero. */
2703 static int
2704 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2705 int * node_order, int pos)
2706 {
2707 enum sms_direction dir;
2708 int num_nodes = g->num_nodes;
2709 auto_sbitmap workset (num_nodes);
2710 auto_sbitmap tmp (num_nodes);
2711 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2712 auto_sbitmap predecessors (num_nodes);
2713 auto_sbitmap successors (num_nodes);
2714
2715 bitmap_clear (predecessors);
2716 find_predecessors (predecessors, g, nodes_ordered);
2717
2718 bitmap_clear (successors);
2719 find_successors (successors, g, nodes_ordered);
2720
2721 bitmap_clear (tmp);
2722 if (bitmap_and (tmp, predecessors, scc))
2723 {
2724 bitmap_copy (workset, tmp);
2725 dir = BOTTOMUP;
2726 }
2727 else if (bitmap_and (tmp, successors, scc))
2728 {
2729 bitmap_copy (workset, tmp);
2730 dir = TOPDOWN;
2731 }
2732 else
2733 {
2734 int u;
2735
2736 bitmap_clear (workset);
2737 if ((u = find_max_asap (g, scc)) >= 0)
2738 bitmap_set_bit (workset, u);
2739 dir = BOTTOMUP;
2740 }
2741
2742 bitmap_clear (zero_bitmap);
2743 while (!bitmap_equal_p (workset, zero_bitmap))
2744 {
2745 int v;
2746 ddg_node_ptr v_node;
2747 sbitmap v_node_preds;
2748 sbitmap v_node_succs;
2749
2750 if (dir == TOPDOWN)
2751 {
2752 while (!bitmap_equal_p (workset, zero_bitmap))
2753 {
2754 v = find_max_hv_min_mob (g, workset);
2755 v_node = &g->nodes[v];
2756 node_order[pos++] = v;
2757 v_node_succs = NODE_SUCCESSORS (v_node);
2758 bitmap_and (tmp, v_node_succs, scc);
2759
2760 /* Don't consider the already ordered successors again. */
2761 bitmap_and_compl (tmp, tmp, nodes_ordered);
2762 bitmap_ior (workset, workset, tmp);
2763 bitmap_clear_bit (workset, v);
2764 bitmap_set_bit (nodes_ordered, v);
2765 }
2766 dir = BOTTOMUP;
2767 bitmap_clear (predecessors);
2768 find_predecessors (predecessors, g, nodes_ordered);
2769 bitmap_and (workset, predecessors, scc);
2770 }
2771 else
2772 {
2773 while (!bitmap_equal_p (workset, zero_bitmap))
2774 {
2775 v = find_max_dv_min_mob (g, workset);
2776 v_node = &g->nodes[v];
2777 node_order[pos++] = v;
2778 v_node_preds = NODE_PREDECESSORS (v_node);
2779 bitmap_and (tmp, v_node_preds, scc);
2780
2781 /* Don't consider the already ordered predecessors again. */
2782 bitmap_and_compl (tmp, tmp, nodes_ordered);
2783 bitmap_ior (workset, workset, tmp);
2784 bitmap_clear_bit (workset, v);
2785 bitmap_set_bit (nodes_ordered, v);
2786 }
2787 dir = TOPDOWN;
2788 bitmap_clear (successors);
2789 find_successors (successors, g, nodes_ordered);
2790 bitmap_and (workset, successors, scc);
2791 }
2792 }
2793 sbitmap_free (zero_bitmap);
2794 return pos;
2795 }
2796
2797 \f
2798 /* This page contains functions for manipulating partial-schedules during
2799 modulo scheduling. */
2800
2801 /* Create a partial schedule and allocate a memory to hold II rows. */
2802
2803 static partial_schedule_ptr
2804 create_partial_schedule (int ii, ddg_ptr g, int history)
2805 {
2806 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2807 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2808 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2809 ps->reg_moves.create (0);
2810 ps->ii = ii;
2811 ps->history = history;
2812 ps->min_cycle = INT_MAX;
2813 ps->max_cycle = INT_MIN;
2814 ps->g = g;
2815
2816 return ps;
2817 }
2818
2819 /* Free the PS_INSNs in rows array of the given partial schedule.
2820 ??? Consider caching the PS_INSN's. */
2821 static void
2822 free_ps_insns (partial_schedule_ptr ps)
2823 {
2824 int i;
2825
2826 for (i = 0; i < ps->ii; i++)
2827 {
2828 while (ps->rows[i])
2829 {
2830 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2831
2832 free (ps->rows[i]);
2833 ps->rows[i] = ps_insn;
2834 }
2835 ps->rows[i] = NULL;
2836 }
2837 }
2838
2839 /* Free all the memory allocated to the partial schedule. */
2840
2841 static void
2842 free_partial_schedule (partial_schedule_ptr ps)
2843 {
2844 ps_reg_move_info *move;
2845 unsigned int i;
2846
2847 if (!ps)
2848 return;
2849
2850 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2851 sbitmap_free (move->uses);
2852 ps->reg_moves.release ();
2853
2854 free_ps_insns (ps);
2855 free (ps->rows);
2856 free (ps->rows_length);
2857 free (ps);
2858 }
2859
2860 /* Clear the rows array with its PS_INSNs, and create a new one with
2861 NEW_II rows. */
2862
2863 static void
2864 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2865 {
2866 if (!ps)
2867 return;
2868 free_ps_insns (ps);
2869 if (new_ii == ps->ii)
2870 return;
2871 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2872 * sizeof (ps_insn_ptr));
2873 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2874 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2875 memset (ps->rows_length, 0, new_ii * sizeof (int));
2876 ps->ii = new_ii;
2877 ps->min_cycle = INT_MAX;
2878 ps->max_cycle = INT_MIN;
2879 }
2880
2881 /* Prints the partial schedule as an ii rows array, for each rows
2882 print the ids of the insns in it. */
2883 void
2884 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2885 {
2886 int i;
2887
2888 for (i = 0; i < ps->ii; i++)
2889 {
2890 ps_insn_ptr ps_i = ps->rows[i];
2891
2892 fprintf (dump, "\n[ROW %d ]: ", i);
2893 while (ps_i)
2894 {
2895 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2896
2897 if (JUMP_P (insn))
2898 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2899 else
2900 fprintf (dump, "%d, ", INSN_UID (insn));
2901
2902 ps_i = ps_i->next_in_row;
2903 }
2904 }
2905 }
2906
2907 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2908 static ps_insn_ptr
2909 create_ps_insn (int id, int cycle)
2910 {
2911 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2912
2913 ps_i->id = id;
2914 ps_i->next_in_row = NULL;
2915 ps_i->prev_in_row = NULL;
2916 ps_i->cycle = cycle;
2917
2918 return ps_i;
2919 }
2920
2921
2922 /* Removes the given PS_INSN from the partial schedule. */
2923 static void
2924 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2925 {
2926 int row;
2927
2928 gcc_assert (ps && ps_i);
2929
2930 row = SMODULO (ps_i->cycle, ps->ii);
2931 if (! ps_i->prev_in_row)
2932 {
2933 gcc_assert (ps_i == ps->rows[row]);
2934 ps->rows[row] = ps_i->next_in_row;
2935 if (ps->rows[row])
2936 ps->rows[row]->prev_in_row = NULL;
2937 }
2938 else
2939 {
2940 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2941 if (ps_i->next_in_row)
2942 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2943 }
2944
2945 ps->rows_length[row] -= 1;
2946 free (ps_i);
2947 return;
2948 }
2949
2950 /* Unlike what literature describes for modulo scheduling (which focuses
2951 on VLIW machines) the order of the instructions inside a cycle is
2952 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2953 where the current instruction should go relative to the already
2954 scheduled instructions in the given cycle. Go over these
2955 instructions and find the first possible column to put it in. */
2956 static bool
2957 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2958 sbitmap must_precede, sbitmap must_follow)
2959 {
2960 ps_insn_ptr next_ps_i;
2961 ps_insn_ptr first_must_follow = NULL;
2962 ps_insn_ptr last_must_precede = NULL;
2963 ps_insn_ptr last_in_row = NULL;
2964 int row;
2965
2966 if (! ps_i)
2967 return false;
2968
2969 row = SMODULO (ps_i->cycle, ps->ii);
2970
2971 /* Find the first must follow and the last must precede
2972 and insert the node immediately after the must precede
2973 but make sure that it there is no must follow after it. */
2974 for (next_ps_i = ps->rows[row];
2975 next_ps_i;
2976 next_ps_i = next_ps_i->next_in_row)
2977 {
2978 if (must_follow
2979 && bitmap_bit_p (must_follow, next_ps_i->id)
2980 && ! first_must_follow)
2981 first_must_follow = next_ps_i;
2982 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2983 {
2984 /* If we have already met a node that must follow, then
2985 there is no possible column. */
2986 if (first_must_follow)
2987 return false;
2988 else
2989 last_must_precede = next_ps_i;
2990 }
2991 /* The closing branch must be the last in the row. */
2992 if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
2993 return false;
2994
2995 last_in_row = next_ps_i;
2996 }
2997
2998 /* The closing branch is scheduled as well. Make sure there is no
2999 dependent instruction after it as the branch should be the last
3000 instruction in the row. */
3001 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3002 {
3003 if (first_must_follow)
3004 return false;
3005 if (last_in_row)
3006 {
3007 /* Make the branch the last in the row. New instructions
3008 will be inserted at the beginning of the row or after the
3009 last must_precede instruction thus the branch is guaranteed
3010 to remain the last instruction in the row. */
3011 last_in_row->next_in_row = ps_i;
3012 ps_i->prev_in_row = last_in_row;
3013 ps_i->next_in_row = NULL;
3014 }
3015 else
3016 ps->rows[row] = ps_i;
3017 return true;
3018 }
3019
3020 /* Now insert the node after INSERT_AFTER_PSI. */
3021
3022 if (! last_must_precede)
3023 {
3024 ps_i->next_in_row = ps->rows[row];
3025 ps_i->prev_in_row = NULL;
3026 if (ps_i->next_in_row)
3027 ps_i->next_in_row->prev_in_row = ps_i;
3028 ps->rows[row] = ps_i;
3029 }
3030 else
3031 {
3032 ps_i->next_in_row = last_must_precede->next_in_row;
3033 last_must_precede->next_in_row = ps_i;
3034 ps_i->prev_in_row = last_must_precede;
3035 if (ps_i->next_in_row)
3036 ps_i->next_in_row->prev_in_row = ps_i;
3037 }
3038
3039 return true;
3040 }
3041
3042 /* Advances the PS_INSN one column in its current row; returns false
3043 in failure and true in success. Bit N is set in MUST_FOLLOW if
3044 the node with cuid N must be come after the node pointed to by
3045 PS_I when scheduled in the same cycle. */
3046 static int
3047 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3048 sbitmap must_follow)
3049 {
3050 ps_insn_ptr prev, next;
3051 int row;
3052
3053 if (!ps || !ps_i)
3054 return false;
3055
3056 row = SMODULO (ps_i->cycle, ps->ii);
3057
3058 if (! ps_i->next_in_row)
3059 return false;
3060
3061 /* Check if next_in_row is dependent on ps_i, both having same sched
3062 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3063 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3064 return false;
3065
3066 /* Advance PS_I over its next_in_row in the doubly linked list. */
3067 prev = ps_i->prev_in_row;
3068 next = ps_i->next_in_row;
3069
3070 if (ps_i == ps->rows[row])
3071 ps->rows[row] = next;
3072
3073 ps_i->next_in_row = next->next_in_row;
3074
3075 if (next->next_in_row)
3076 next->next_in_row->prev_in_row = ps_i;
3077
3078 next->next_in_row = ps_i;
3079 ps_i->prev_in_row = next;
3080
3081 next->prev_in_row = prev;
3082 if (prev)
3083 prev->next_in_row = next;
3084
3085 return true;
3086 }
3087
3088 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3089 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3090 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3091 before/after (respectively) the node pointed to by PS_I when scheduled
3092 in the same cycle. */
3093 static ps_insn_ptr
3094 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3095 sbitmap must_precede, sbitmap must_follow)
3096 {
3097 ps_insn_ptr ps_i;
3098 int row = SMODULO (cycle, ps->ii);
3099
3100 if (ps->rows_length[row] >= issue_rate)
3101 return NULL;
3102
3103 ps_i = create_ps_insn (id, cycle);
3104
3105 /* Finds and inserts PS_I according to MUST_FOLLOW and
3106 MUST_PRECEDE. */
3107 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3108 {
3109 free (ps_i);
3110 return NULL;
3111 }
3112
3113 ps->rows_length[row] += 1;
3114 return ps_i;
3115 }
3116
3117 /* Advance time one cycle. Assumes DFA is being used. */
3118 static void
3119 advance_one_cycle (void)
3120 {
3121 if (targetm.sched.dfa_pre_cycle_insn)
3122 state_transition (curr_state,
3123 targetm.sched.dfa_pre_cycle_insn ());
3124
3125 state_transition (curr_state, NULL);
3126
3127 if (targetm.sched.dfa_post_cycle_insn)
3128 state_transition (curr_state,
3129 targetm.sched.dfa_post_cycle_insn ());
3130 }
3131
3132
3133
3134 /* Checks if PS has resource conflicts according to DFA, starting from
3135 FROM cycle to TO cycle; returns true if there are conflicts and false
3136 if there are no conflicts. Assumes DFA is being used. */
3137 static int
3138 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3139 {
3140 int cycle;
3141
3142 state_reset (curr_state);
3143
3144 for (cycle = from; cycle <= to; cycle++)
3145 {
3146 ps_insn_ptr crr_insn;
3147 /* Holds the remaining issue slots in the current row. */
3148 int can_issue_more = issue_rate;
3149
3150 /* Walk through the DFA for the current row. */
3151 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3152 crr_insn;
3153 crr_insn = crr_insn->next_in_row)
3154 {
3155 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3156
3157 /* Check if there is room for the current insn. */
3158 if (!can_issue_more || state_dead_lock_p (curr_state))
3159 return true;
3160
3161 /* Update the DFA state and return with failure if the DFA found
3162 resource conflicts. */
3163 if (state_transition (curr_state, insn) >= 0)
3164 return true;
3165
3166 if (targetm.sched.variable_issue)
3167 can_issue_more =
3168 targetm.sched.variable_issue (sched_dump, sched_verbose,
3169 insn, can_issue_more);
3170 /* A naked CLOBBER or USE generates no instruction, so don't
3171 let them consume issue slots. */
3172 else if (GET_CODE (PATTERN (insn)) != USE
3173 && GET_CODE (PATTERN (insn)) != CLOBBER)
3174 can_issue_more--;
3175 }
3176
3177 /* Advance the DFA to the next cycle. */
3178 advance_one_cycle ();
3179 }
3180 return false;
3181 }
3182
3183 /* Checks if the given node causes resource conflicts when added to PS at
3184 cycle C. If not the node is added to PS and returned; otherwise zero
3185 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3186 cuid N must be come before/after (respectively) the node pointed to by
3187 PS_I when scheduled in the same cycle. */
3188 ps_insn_ptr
3189 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3190 int c, sbitmap must_precede,
3191 sbitmap must_follow)
3192 {
3193 int i, first, amount, has_conflicts = 0;
3194 ps_insn_ptr ps_i;
3195
3196 /* First add the node to the PS, if this succeeds check for
3197 conflicts, trying different issue slots in the same row. */
3198 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3199 return NULL; /* Failed to insert the node at the given cycle. */
3200
3201 while (1)
3202 {
3203 has_conflicts = ps_has_conflicts (ps, c, c);
3204 if (ps->history > 0 && !has_conflicts)
3205 {
3206 /* Check all 2h+1 intervals, starting from c-2h..c up to c..2h,
3207 but not more than ii intervals. */
3208 first = c - ps->history;
3209 amount = 2 * ps->history + 1;
3210 if (amount > ps->ii)
3211 amount = ps->ii;
3212 for (i = first; i < first + amount; i++)
3213 {
3214 has_conflicts = ps_has_conflicts (ps,
3215 i - ps->history,
3216 i + ps->history);
3217 if (has_conflicts)
3218 break;
3219 }
3220 }
3221 if (!has_conflicts)
3222 break;
3223 /* Try different issue slots to find one that the given node can be
3224 scheduled in without conflicts. */
3225 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3226 break;
3227 }
3228
3229 if (has_conflicts)
3230 {
3231 remove_node_from_ps (ps, ps_i);
3232 return NULL;
3233 }
3234
3235 ps->min_cycle = MIN (ps->min_cycle, c);
3236 ps->max_cycle = MAX (ps->max_cycle, c);
3237 return ps_i;
3238 }
3239
3240 /* Calculate the stage count of the partial schedule PS. The calculation
3241 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3242 int
3243 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3244 {
3245 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3246 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3247 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3248
3249 /* The calculation of stage count is done adding the number of stages
3250 before cycle zero and after cycle zero. */
3251 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3252
3253 return stage_count;
3254 }
3255
3256 /* Rotate the rows of PS such that insns scheduled at time
3257 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3258 void
3259 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3260 {
3261 int i, row, backward_rotates;
3262 int last_row = ps->ii - 1;
3263
3264 if (start_cycle == 0)
3265 return;
3266
3267 backward_rotates = SMODULO (start_cycle, ps->ii);
3268
3269 /* Revisit later and optimize this into a single loop. */
3270 for (i = 0; i < backward_rotates; i++)
3271 {
3272 ps_insn_ptr first_row = ps->rows[0];
3273 int first_row_length = ps->rows_length[0];
3274
3275 for (row = 0; row < last_row; row++)
3276 {
3277 ps->rows[row] = ps->rows[row + 1];
3278 ps->rows_length[row] = ps->rows_length[row + 1];
3279 }
3280
3281 ps->rows[last_row] = first_row;
3282 ps->rows_length[last_row] = first_row_length;
3283 }
3284
3285 ps->max_cycle -= start_cycle;
3286 ps->min_cycle -= start_cycle;
3287 }
3288
3289 #endif /* INSN_SCHEDULING */
3290 \f
3291 /* Run instruction scheduler. */
3292 /* Perform SMS module scheduling. */
3293
3294 namespace {
3295
3296 const pass_data pass_data_sms =
3297 {
3298 RTL_PASS, /* type */
3299 "sms", /* name */
3300 OPTGROUP_NONE, /* optinfo_flags */
3301 TV_SMS, /* tv_id */
3302 0, /* properties_required */
3303 0, /* properties_provided */
3304 0, /* properties_destroyed */
3305 0, /* todo_flags_start */
3306 TODO_df_finish, /* todo_flags_finish */
3307 };
3308
3309 class pass_sms : public rtl_opt_pass
3310 {
3311 public:
3312 pass_sms (gcc::context *ctxt)
3313 : rtl_opt_pass (pass_data_sms, ctxt)
3314 {}
3315
3316 /* opt_pass methods: */
3317 virtual bool gate (function *)
3318 {
3319 return (optimize > 0 && flag_modulo_sched);
3320 }
3321
3322 virtual unsigned int execute (function *);
3323
3324 }; // class pass_sms
3325
3326 unsigned int
3327 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3328 {
3329 #ifdef INSN_SCHEDULING
3330 basic_block bb;
3331
3332 /* Collect loop information to be used in SMS. */
3333 cfg_layout_initialize (0);
3334 sms_schedule ();
3335
3336 /* Update the life information, because we add pseudos. */
3337 max_regno = max_reg_num ();
3338
3339 /* Finalize layout changes. */
3340 FOR_EACH_BB_FN (bb, fun)
3341 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3342 bb->aux = bb->next_bb;
3343 free_dominance_info (CDI_DOMINATORS);
3344 cfg_layout_finalize ();
3345 #endif /* INSN_SCHEDULING */
3346 return 0;
3347 }
3348
3349 } // anon namespace
3350
3351 rtl_opt_pass *
3352 make_pass_sms (gcc::context *ctxt)
3353 {
3354 return new pass_sms (ctxt);
3355 }