84f33364eb12481510daab350da931c3641fb606
[gcc.git] / gcc / modulo-sched.c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 #include "except.h"
39 #include "toplev.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "target.h"
43 #include "cfglayout.h"
44 #include "cfgloop.h"
45 #include "cfghooks.h"
46 #include "expr.h"
47 #include "params.h"
48 #include "gcov-io.h"
49 #include "df.h"
50 #include "ddg.h"
51
52 #ifdef INSN_SCHEDULING
53
54 /* This file contains the implementation of the Swing Modulo Scheduler,
55 described in the following references:
56 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
57 Lifetime--sensitive modulo scheduling in a production environment.
58 IEEE Trans. on Comps., 50(3), March 2001
59 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
60 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
61 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
62
63 The basic structure is:
64 1. Build a data-dependence graph (DDG) for each loop.
65 2. Use the DDG to order the insns of a loop (not in topological order
66 necessarily, but rather) trying to place each insn after all its
67 predecessors _or_ after all its successors.
68 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
69 4. Use the ordering to perform list-scheduling of the loop:
70 1. Set II = MII. We will try to schedule the loop within II cycles.
71 2. Try to schedule the insns one by one according to the ordering.
72 For each insn compute an interval of cycles by considering already-
73 scheduled preds and succs (and associated latencies); try to place
74 the insn in the cycles of this window checking for potential
75 resource conflicts (using the DFA interface).
76 Note: this is different from the cycle-scheduling of schedule_insns;
77 here the insns are not scheduled monotonically top-down (nor bottom-
78 up).
79 3. If failed in scheduling all insns - bump II++ and try again, unless
80 II reaches an upper bound MaxII, in which case report failure.
81 5. If we succeeded in scheduling the loop within II cycles, we now
82 generate prolog and epilog, decrease the counter of the loop, and
83 perform modulo variable expansion for live ranges that span more than
84 II cycles (i.e. use register copies to prevent a def from overwriting
85 itself before reaching the use).
86 */
87
88 \f
89 /* This page defines partial-schedule structures and functions for
90 modulo scheduling. */
91
92 typedef struct partial_schedule *partial_schedule_ptr;
93 typedef struct ps_insn *ps_insn_ptr;
94
95 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
96 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
97
98 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
99 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
100
101 /* Perform signed modulo, always returning a non-negative value. */
102 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
103
104 /* The number of different iterations the nodes in ps span, assuming
105 the stage boundaries are placed efficiently. */
106 #define PS_STAGE_COUNT(ps) ((PS_MAX_CYCLE (ps) - PS_MIN_CYCLE (ps) \
107 + 1 + (ps)->ii - 1) / (ps)->ii)
108
109 #define CFG_HOOKS cfg_layout_rtl_cfg_hooks
110
111 /* A single instruction in the partial schedule. */
112 struct ps_insn
113 {
114 /* The corresponding DDG_NODE. */
115 ddg_node_ptr node;
116
117 /* The (absolute) cycle in which the PS instruction is scheduled.
118 Same as SCHED_TIME (node). */
119 int cycle;
120
121 /* The next/prev PS_INSN in the same row. */
122 ps_insn_ptr next_in_row,
123 prev_in_row;
124
125 /* The number of nodes in the same row that come after this node. */
126 int row_rest_count;
127 };
128
129 /* Holds the partial schedule as an array of II rows. Each entry of the
130 array points to a linked list of PS_INSNs, which represents the
131 instructions that are scheduled for that row. */
132 struct partial_schedule
133 {
134 int ii; /* Number of rows in the partial schedule. */
135 int history; /* Threshold for conflict checking using DFA. */
136
137 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
138 ps_insn_ptr *rows;
139
140 /* The earliest absolute cycle of an insn in the partial schedule. */
141 int min_cycle;
142
143 /* The latest absolute cycle of an insn in the partial schedule. */
144 int max_cycle;
145
146 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
147 };
148
149
150 partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
151 void free_partial_schedule (partial_schedule_ptr);
152 void reset_partial_schedule (partial_schedule_ptr, int new_ii);
153 void print_partial_schedule (partial_schedule_ptr, FILE *);
154 ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
155 ddg_node_ptr node, int cycle,
156 sbitmap must_precede,
157 sbitmap must_follow);
158 void rotate_partial_schedule (partial_schedule_ptr, int);
159 void set_row_column_for_ps (partial_schedule_ptr);
160
161 \f
162 /* This page defines constants and structures for the modulo scheduling
163 driver. */
164
165 /* As in haifa-sched.c: */
166 /* issue_rate is the number of insns that can be scheduled in the same
167 machine cycle. It can be defined in the config/mach/mach.h file,
168 otherwise we set it to 1. */
169
170 static int issue_rate;
171
172 /* For printing statistics. */
173 static FILE *stats_file;
174
175 static int sms_order_nodes (ddg_ptr, int, int * result);
176 static void set_node_sched_params (ddg_ptr);
177 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int,
178 int *, FILE*);
179 static void permute_partial_schedule (partial_schedule_ptr ps, rtx last);
180 static void generate_prolog_epilog (partial_schedule_ptr, rtx, rtx, int);
181 static void duplicate_insns_of_cycles (partial_schedule_ptr ps,
182 int from_stage, int to_stage,
183 int is_prolog);
184
185
186 #define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
187 #define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
188 #define SCHED_FIRST_REG_MOVE(x) \
189 (((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
190 #define SCHED_NREG_MOVES(x) \
191 (((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
192 #define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
193 #define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
194 #define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
195
196 /* The scheduling parameters held for each node. */
197 typedef struct node_sched_params
198 {
199 int asap; /* A lower-bound on the absolute scheduling cycle. */
200 int time; /* The absolute scheduling cycle (time >= asap). */
201
202 /* The following field (first_reg_move) is a pointer to the first
203 register-move instruction added to handle the modulo-variable-expansion
204 of the register defined by this node. This register-move copies the
205 original register defined by the node. */
206 rtx first_reg_move;
207
208 /* The number of register-move instructions added, immediately preceding
209 first_reg_move. */
210 int nreg_moves;
211
212 int row; /* Holds time % ii. */
213 int stage; /* Holds time / ii. */
214
215 /* The column of a node inside the ps. If nodes u, v are on the same row,
216 u will precede v if column (u) < column (v). */
217 int column;
218 } *node_sched_params_ptr;
219
220 \f
221 /* The following three functions are copied from the current scheduler
222 code in order to use sched_analyze() for computing the dependencies.
223 They are used when initializing the sched_info structure. */
224 static const char *
225 sms_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
226 {
227 static char tmp[80];
228
229 sprintf (tmp, "i%4d", INSN_UID (insn));
230 return tmp;
231 }
232
233 static int
234 contributes_to_priority (rtx next, rtx insn)
235 {
236 return BLOCK_NUM (next) == BLOCK_NUM (insn);
237 }
238
239 static void
240 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
241 regset cond_exec ATTRIBUTE_UNUSED,
242 regset used ATTRIBUTE_UNUSED,
243 regset set ATTRIBUTE_UNUSED)
244 {
245 }
246
247 static struct sched_info sms_sched_info =
248 {
249 NULL,
250 NULL,
251 NULL,
252 NULL,
253 NULL,
254 sms_print_insn,
255 contributes_to_priority,
256 compute_jump_reg_dependencies,
257 NULL, NULL,
258 NULL, NULL,
259 0, 0, 0
260 };
261
262
263 /* Return the register decremented and tested or zero if it is not a decrement
264 and branch jump insn (similar to doloop_condition_get). */
265 static rtx
266 doloop_register_get (rtx insn, rtx *comp)
267 {
268 rtx pattern, cmp, inc, reg, condition;
269
270 if (!JUMP_P (insn))
271 return NULL_RTX;
272 pattern = PATTERN (insn);
273
274 /* The canonical doloop pattern we expect is:
275
276 (parallel [(set (pc) (if_then_else (condition)
277 (label_ref (label))
278 (pc)))
279 (set (reg) (plus (reg) (const_int -1)))
280 (additional clobbers and uses)])
281
282 where condition is further restricted to be
283 (ne (reg) (const_int 1)). */
284
285 if (GET_CODE (pattern) != PARALLEL)
286 return NULL_RTX;
287
288 cmp = XVECEXP (pattern, 0, 0);
289 inc = XVECEXP (pattern, 0, 1);
290 /* Return the compare rtx. */
291 *comp = cmp;
292
293 /* Check for (set (reg) (something)). */
294 if (GET_CODE (inc) != SET || ! REG_P (SET_DEST (inc)))
295 return NULL_RTX;
296
297 /* Extract loop counter register. */
298 reg = SET_DEST (inc);
299
300 /* Check if something = (plus (reg) (const_int -1)). */
301 if (GET_CODE (SET_SRC (inc)) != PLUS
302 || XEXP (SET_SRC (inc), 0) != reg
303 || XEXP (SET_SRC (inc), 1) != constm1_rtx)
304 return NULL_RTX;
305
306 /* Check for (set (pc) (if_then_else (condition)
307 (label_ref (label))
308 (pc))). */
309 if (GET_CODE (cmp) != SET
310 || SET_DEST (cmp) != pc_rtx
311 || GET_CODE (SET_SRC (cmp)) != IF_THEN_ELSE
312 || GET_CODE (XEXP (SET_SRC (cmp), 1)) != LABEL_REF
313 || XEXP (SET_SRC (cmp), 2) != pc_rtx)
314 return NULL_RTX;
315
316 /* Extract loop termination condition. */
317 condition = XEXP (SET_SRC (cmp), 0);
318
319 /* Check if condition = (ne (reg) (const_int 1)), which is more
320 restrictive than the check in doloop_condition_get:
321 if ((GET_CODE (condition) != GE && GET_CODE (condition) != NE)
322 || GET_CODE (XEXP (condition, 1)) != CONST_INT). */
323 if (GET_CODE (condition) != NE
324 || XEXP (condition, 1) != const1_rtx)
325 return NULL_RTX;
326
327 if (XEXP (condition, 0) == reg)
328 return reg;
329
330 return NULL_RTX;
331 }
332
333 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
334 that the number of iterations is a compile-time constant. If so,
335 return the rtx that sets COUNT_REG to a constant, and set COUNT to
336 this constant. Otherwise return 0. */
337 static rtx
338 const_iteration_count (rtx count_reg, basic_block pre_header,
339 HOST_WIDEST_INT * count)
340 {
341 rtx insn;
342 rtx head, tail;
343 get_block_head_tail (pre_header->index, &head, &tail);
344
345 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
346 if (INSN_P (insn) && single_set (insn) &&
347 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
348 {
349 rtx pat = single_set (insn);
350
351 if (GET_CODE (SET_SRC (pat)) == CONST_INT)
352 {
353 *count = INTVAL (SET_SRC (pat));
354 return insn;
355 }
356
357 return NULL_RTX;
358 }
359
360 return NULL_RTX;
361 }
362
363 /* A very simple resource-based lower bound on the initiation interval.
364 ??? Improve the accuracy of this bound by considering the
365 utilization of various units. */
366 static int
367 res_MII (ddg_ptr g)
368 {
369 return (g->num_nodes / issue_rate);
370 }
371
372
373 /* Points to the array that contains the sched data for each node. */
374 static node_sched_params_ptr node_sched_params;
375
376 /* Allocate sched_params for each node and initialize it. Assumes that
377 the aux field of each node contain the asap bound (computed earlier),
378 and copies it into the sched_params field. */
379 static void
380 set_node_sched_params (ddg_ptr g)
381 {
382 int i;
383
384 /* Allocate for each node in the DDG a place to hold the "sched_data". */
385 /* Initialize ASAP/ALAP/HIGHT to zero. */
386 node_sched_params = (node_sched_params_ptr)
387 xcalloc (g->num_nodes,
388 sizeof (struct node_sched_params));
389
390 /* Set the pointer of the general data of the node to point to the
391 appropriate sched_params structure. */
392 for (i = 0; i < g->num_nodes; i++)
393 {
394 /* Watch out for aliasing problems? */
395 node_sched_params[i].asap = g->nodes[i].aux.count;
396 g->nodes[i].aux.info = &node_sched_params[i];
397 }
398 }
399
400 static void
401 print_node_sched_params (FILE * dump_file, int num_nodes)
402 {
403 int i;
404
405 for (i = 0; i < num_nodes; i++)
406 {
407 node_sched_params_ptr nsp = &node_sched_params[i];
408 rtx reg_move = nsp->first_reg_move;
409 int j;
410
411 fprintf (dump_file, "Node %d:\n", i);
412 fprintf (dump_file, " asap = %d:\n", nsp->asap);
413 fprintf (dump_file, " time = %d:\n", nsp->time);
414 fprintf (dump_file, " nreg_moves = %d:\n", nsp->nreg_moves);
415 for (j = 0; j < nsp->nreg_moves; j++)
416 {
417 fprintf (dump_file, " reg_move = ");
418 print_rtl_single (dump_file, reg_move);
419 reg_move = PREV_INSN (reg_move);
420 }
421 }
422 }
423
424 /* Calculate an upper bound for II. SMS should not schedule the loop if it
425 requires more cycles than this bound. Currently set to the sum of the
426 longest latency edge for each node. Reset based on experiments. */
427 static int
428 calculate_maxii (ddg_ptr g)
429 {
430 int i;
431 int maxii = 0;
432
433 for (i = 0; i < g->num_nodes; i++)
434 {
435 ddg_node_ptr u = &g->nodes[i];
436 ddg_edge_ptr e;
437 int max_edge_latency = 0;
438
439 for (e = u->out; e; e = e->next_out)
440 max_edge_latency = MAX (max_edge_latency, e->latency);
441
442 maxii += max_edge_latency;
443 }
444 return maxii;
445 }
446
447
448 /* Given the partial schedule, generate register moves when the length
449 of the register live range is more than ii; the number of moves is
450 determined according to the following equation:
451 SCHED_TIME (use) - SCHED_TIME (def) { 1 broken loop-carried
452 nreg_moves = ----------------------------------- - { dependence.
453 ii { 0 if not.
454 This handles the modulo-variable-expansions (mve's) needed for the ps. */
455 static void
456 generate_reg_moves (partial_schedule_ptr ps)
457 {
458 ddg_ptr g = ps->g;
459 int ii = ps->ii;
460 int i;
461
462 for (i = 0; i < g->num_nodes; i++)
463 {
464 ddg_node_ptr u = &g->nodes[i];
465 ddg_edge_ptr e;
466 int nreg_moves = 0, i_reg_move;
467 sbitmap *uses_of_defs;
468 rtx last_reg_move;
469 rtx prev_reg, old_reg;
470
471 /* Compute the number of reg_moves needed for u, by looking at life
472 ranges started at u (excluding self-loops). */
473 for (e = u->out; e; e = e->next_out)
474 if (e->type == TRUE_DEP && e->dest != e->src)
475 {
476 int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
477
478 /* If dest precedes src in the schedule of the kernel, then dest
479 will read before src writes and we can save one reg_copy. */
480 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
481 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
482 nreg_moves4e--;
483
484 nreg_moves = MAX (nreg_moves, nreg_moves4e);
485 }
486
487 if (nreg_moves == 0)
488 continue;
489
490 /* Every use of the register defined by node may require a different
491 copy of this register, depending on the time the use is scheduled.
492 Set a bitmap vector, telling which nodes use each copy of this
493 register. */
494 uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
495 sbitmap_vector_zero (uses_of_defs, nreg_moves);
496 for (e = u->out; e; e = e->next_out)
497 if (e->type == TRUE_DEP && e->dest != e->src)
498 {
499 int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
500
501 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
502 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
503 dest_copy--;
504
505 if (dest_copy)
506 SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
507 }
508
509 /* Now generate the reg_moves, attaching relevant uses to them. */
510 SCHED_NREG_MOVES (u) = nreg_moves;
511 old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
512 last_reg_move = u->insn;
513
514 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
515 {
516 int i_use;
517 rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
518 rtx reg_move = gen_move_insn (new_reg, prev_reg);
519
520 add_insn_before (reg_move, last_reg_move);
521 last_reg_move = reg_move;
522
523 if (!SCHED_FIRST_REG_MOVE (u))
524 SCHED_FIRST_REG_MOVE (u) = reg_move;
525
526 EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use,
527 replace_rtx (g->nodes[i_use].insn, old_reg, new_reg));
528
529 prev_reg = new_reg;
530 }
531 }
532 }
533
534 /* Bump the SCHED_TIMEs of all nodes to start from zero. Set the values
535 of SCHED_ROW and SCHED_STAGE. */
536 static void
537 normalize_sched_times (partial_schedule_ptr ps)
538 {
539 int i;
540 ddg_ptr g = ps->g;
541 int amount = PS_MIN_CYCLE (ps);
542 int ii = ps->ii;
543
544 for (i = 0; i < g->num_nodes; i++)
545 {
546 ddg_node_ptr u = &g->nodes[i];
547 int normalized_time = SCHED_TIME (u) - amount;
548
549 if (normalized_time < 0)
550 abort ();
551
552 SCHED_TIME (u) = normalized_time;
553 SCHED_ROW (u) = normalized_time % ii;
554 SCHED_STAGE (u) = normalized_time / ii;
555 }
556 }
557
558 /* Set SCHED_COLUMN of each node according to its position in PS. */
559 static void
560 set_columns_for_ps (partial_schedule_ptr ps)
561 {
562 int row;
563
564 for (row = 0; row < ps->ii; row++)
565 {
566 ps_insn_ptr cur_insn = ps->rows[row];
567 int column = 0;
568
569 for (; cur_insn; cur_insn = cur_insn->next_in_row)
570 SCHED_COLUMN (cur_insn->node) = column++;
571 }
572 }
573
574 /* Permute the insns according to their order in PS, from row 0 to
575 row ii-1, and position them right before LAST. This schedules
576 the insns of the loop kernel. */
577 static void
578 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
579 {
580 int ii = ps->ii;
581 int row;
582 ps_insn_ptr ps_ij;
583
584 for (row = 0; row < ii ; row++)
585 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
586 if (PREV_INSN (last) != ps_ij->node->insn)
587 reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
588 PREV_INSN (last));
589 }
590
591 /* Used to generate the prologue & epilogue. Duplicate the subset of
592 nodes whose stages are between FROM_STAGE and TO_STAGE (inclusive
593 of both), together with a prefix/suffix of their reg_moves. */
594 static void
595 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
596 int to_stage, int for_prolog)
597 {
598 int row;
599 ps_insn_ptr ps_ij;
600
601 for (row = 0; row < ps->ii; row++)
602 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
603 {
604 ddg_node_ptr u_node = ps_ij->node;
605 int j, i_reg_moves;
606 rtx reg_move = NULL_RTX;
607
608 if (for_prolog)
609 {
610 /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
611 number of reg_moves starting with the second occurrence of
612 u_node, which is generated if its SCHED_STAGE <= to_stage. */
613 i_reg_moves = to_stage - SCHED_STAGE (u_node);
614 i_reg_moves = MAX (i_reg_moves, 0);
615 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
616
617 /* The reg_moves start from the *first* reg_move backwards. */
618 if (i_reg_moves)
619 {
620 reg_move = SCHED_FIRST_REG_MOVE (u_node);
621 for (j = 1; j < i_reg_moves; j++)
622 reg_move = PREV_INSN (reg_move);
623 }
624 }
625 else /* It's for the epilog. */
626 {
627 /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
628 starting to decrease one stage after u_node no longer occurs;
629 that is, generate all reg_moves until
630 SCHED_STAGE (u_node) == from_stage - 1. */
631 i_reg_moves = SCHED_NREG_MOVES (u_node)
632 - (from_stage - SCHED_STAGE (u_node) - 1);
633 i_reg_moves = MAX (i_reg_moves, 0);
634 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
635
636 /* The reg_moves start from the *last* reg_move forwards. */
637 if (i_reg_moves)
638 {
639 reg_move = SCHED_FIRST_REG_MOVE (u_node);
640 for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
641 reg_move = PREV_INSN (reg_move);
642 }
643 }
644
645 for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
646 emit_insn (copy_rtx (PATTERN (reg_move)));
647
648 if (SCHED_STAGE (u_node) >= from_stage
649 && SCHED_STAGE (u_node) <= to_stage)
650 duplicate_insn_chain (u_node->first_note, u_node->insn);
651 }
652 }
653
654
655 /* Generate the instructions (including reg_moves) for prolog & epilog. */
656 static void
657 generate_prolog_epilog (partial_schedule_ptr ps, rtx orig_loop_beg,
658 rtx orig_loop_end, int unknown_count)
659 {
660 int i;
661 int last_stage = PS_STAGE_COUNT (ps) - 1;
662 edge e;
663 rtx c_reg = NULL_RTX;
664 rtx cmp = NULL_RTX;
665 rtx precond_jump = NULL_RTX;
666 rtx precond_exit_label = NULL_RTX;
667 rtx precond_exit_label_insn = NULL_RTX;
668 rtx last_epilog_insn = NULL_RTX;
669 rtx loop_exit_label = NULL_RTX;
670 rtx loop_exit_label_insn = NULL_RTX;
671 rtx orig_loop_bct = NULL_RTX;
672
673 /* Loop header edge. */
674 e = ps->g->bb->pred;
675 if (e->src == ps->g->bb)
676 e = e->pred_next;
677
678 /* Generate the prolog, inserting its insns on the loop-entry edge. */
679 start_sequence ();
680
681 /* This is the place where we want to insert the precondition. */
682 if (unknown_count)
683 precond_jump = emit_note (NOTE_INSN_DELETED);
684
685 for (i = 0; i < last_stage; i++)
686 duplicate_insns_of_cycles (ps, 0, i, 1);
687
688 /* No need to call insert_insn_on_edge; we prepared the sequence. */
689 e->insns.r = get_insns ();
690 end_sequence ();
691
692 /* Generate the epilog, inserting its insns on the loop-exit edge. */
693 start_sequence ();
694
695 for (i = 0; i < last_stage; i++)
696 duplicate_insns_of_cycles (ps, i + 1, last_stage, 0);
697
698 last_epilog_insn = emit_note (NOTE_INSN_DELETED);
699
700 /* Emit the label where to put the original loop code. */
701 if (unknown_count)
702 {
703 rtx label, cond;
704
705 precond_exit_label = gen_label_rtx ();
706 precond_exit_label_insn = emit_label (precond_exit_label);
707
708 /* Put the original loop code. */
709 reorder_insns_nobb (orig_loop_beg, orig_loop_end, precond_exit_label_insn);
710
711 /* Change the label of the BCT to be the PRECOND_EXIT_LABEL. */
712 orig_loop_bct = get_last_insn ();
713 c_reg = doloop_register_get (orig_loop_bct, &cmp);
714 label = XEXP (SET_SRC (cmp), 1);
715 cond = XEXP (SET_SRC (cmp), 0);
716
717 if (! c_reg || GET_CODE (cond) != NE)
718 abort ();
719
720 XEXP (label, 0) = precond_exit_label;
721 JUMP_LABEL (orig_loop_bct) = precond_exit_label_insn;
722 LABEL_NUSES (precond_exit_label_insn)++;
723
724 /* Generate the loop exit label. */
725 loop_exit_label = gen_label_rtx ();
726 loop_exit_label_insn = emit_label (loop_exit_label);
727 }
728
729 e = ps->g->bb->succ;
730 if (e->dest == ps->g->bb)
731 e = e->succ_next;
732
733 e->insns.r = get_insns ();
734 end_sequence ();
735
736 commit_edge_insertions ();
737
738 if (unknown_count)
739 {
740 rtx precond_insns, epilog_jump, insert_after_insn;
741 basic_block loop_exit_bb = BLOCK_FOR_INSN (loop_exit_label_insn);
742 basic_block epilog_bb = BLOCK_FOR_INSN (last_epilog_insn);
743 basic_block precond_bb = BLOCK_FOR_INSN (precond_jump);
744 basic_block orig_loop_bb = BLOCK_FOR_INSN (precond_exit_label_insn);
745 edge epilog_exit_edge = epilog_bb->succ;
746
747 /* Do loop preconditioning to take care of cases were the loop count is
748 less than the stage count. Update the CFG properly. */
749 insert_after_insn = precond_jump;
750 start_sequence ();
751 c_reg = doloop_register_get (ps->g->closing_branch->insn, &cmp);
752 emit_cmp_and_jump_insns (c_reg, GEN_INT (PS_STAGE_COUNT (ps)), LT, NULL,
753 GET_MODE (c_reg), 1, precond_exit_label);
754 precond_insns = get_insns ();
755 precond_jump = get_last_insn ();
756 end_sequence ();
757 reorder_insns (precond_insns, precond_jump, insert_after_insn);
758
759 /* Generate a subtract instruction at the beginning of the prolog to
760 adjust the loop count by STAGE_COUNT. */
761 emit_insn_after (gen_sub2_insn (c_reg, GEN_INT (PS_STAGE_COUNT (ps) - 1)),
762 precond_jump);
763 update_bb_for_insn (precond_bb);
764 delete_insn (insert_after_insn);
765
766 /* Update label info for the precondition jump. */
767 JUMP_LABEL (precond_jump) = precond_exit_label_insn;
768 LABEL_NUSES (precond_exit_label_insn)++;
769
770 /* Update the CFG. */
771 split_block (precond_bb, precond_jump);
772 make_edge (precond_bb, orig_loop_bb, 0);
773
774 /* Add a jump at end of the epilog to the LOOP_EXIT_LABEL to jump over the
775 original loop copy and update the CFG. */
776 epilog_jump = emit_jump_insn_after (gen_jump (loop_exit_label),
777 last_epilog_insn);
778 delete_insn (last_epilog_insn);
779 JUMP_LABEL (epilog_jump) = loop_exit_label_insn;
780 LABEL_NUSES (loop_exit_label_insn)++;
781
782 redirect_edge_succ (epilog_exit_edge, loop_exit_bb);
783 epilog_exit_edge->flags &= ~EDGE_FALLTHRU;
784 emit_barrier_after (BB_END (epilog_bb));
785 }
786 }
787
788 /* Return the line note insn preceding INSN, for debugging. Taken from
789 emit-rtl.c. */
790 static rtx
791 find_line_note (rtx insn)
792 {
793 for (; insn; insn = PREV_INSN (insn))
794 if (NOTE_P (insn)
795 && NOTE_LINE_NUMBER (insn) >= 0)
796 break;
797
798 return insn;
799 }
800
801 /* Main entry point, perform SMS scheduling on the loops of the function
802 that consist of single basic blocks. */
803 void
804 sms_schedule (FILE *dump_file)
805 {
806 static int passes = 0;
807 rtx insn;
808 ddg_ptr *g_arr, g;
809 basic_block bb, pre_header = NULL;
810 int * node_order;
811 int maxii;
812 int i;
813 partial_schedule_ptr ps;
814 int max_bb_index = last_basic_block;
815 struct df *df;
816
817 stats_file = dump_file;
818
819 /* Initialize issue_rate. */
820 if (targetm.sched.issue_rate)
821 {
822 int temp = reload_completed;
823
824 reload_completed = 1;
825 issue_rate = (*targetm.sched.issue_rate) ();
826 reload_completed = temp;
827 }
828 else
829 issue_rate = 1;
830
831 /* Initialize the scheduler. */
832 current_sched_info = &sms_sched_info;
833 sched_init (NULL);
834
835 /* Init Data Flow analysis, to be used in interloop dep calculation. */
836 df = df_init ();
837 df_analyze (df, 0, DF_ALL);
838
839 /* Allocate memory to hold the DDG array. */
840 g_arr = xcalloc (max_bb_index, sizeof (ddg_ptr));
841
842 /* Build DDGs for all the relevant loops and hold them in G_ARR
843 indexed by the loop BB index. */
844 FOR_EACH_BB (bb)
845 {
846 rtx head, tail;
847 rtx count_reg, comp;
848 edge e, pre_header_edge;
849
850 if (bb->index < 0)
851 continue;
852
853 /* Check if bb has two successors, one being itself. */
854 e = bb->succ;
855 if (!e || !e->succ_next || e->succ_next->succ_next)
856 continue;
857
858 if (e->dest != bb && e->succ_next->dest != bb)
859 continue;
860
861 if ((e->flags & EDGE_COMPLEX)
862 || (e->succ_next->flags & EDGE_COMPLEX))
863 continue;
864
865 /* Check if bb has two predecessors, one being itself. */
866 /* In view of above tests, suffices to check e->pred_next->pred_next? */
867 e = bb->pred;
868 if (!e || !e->pred_next || e->pred_next->pred_next)
869 continue;
870
871 if (e->src != bb && e->pred_next->src != bb)
872 continue;
873
874 if ((e->flags & EDGE_COMPLEX)
875 || (e->pred_next->flags & EDGE_COMPLEX))
876 continue;
877
878 /* For debugging. */
879 if ((passes++ > MAX_SMS_LOOP_NUMBER) && (MAX_SMS_LOOP_NUMBER != -1))
880 {
881 if (dump_file)
882 fprintf (dump_file, "SMS reached MAX_PASSES... \n");
883 break;
884 }
885
886 get_block_head_tail (bb->index, &head, &tail);
887 pre_header_edge = bb->pred;
888 if (bb->pred->src != bb)
889 pre_header_edge = bb->pred->pred_next;
890
891 /* Perfrom SMS only on loops that their average count is above threshold. */
892 if (bb->count < pre_header_edge->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD)
893 {
894 if (stats_file)
895 {
896 rtx line_note = find_line_note (tail);
897
898 if (line_note)
899 {
900 expanded_location xloc;
901 NOTE_EXPANDED_LOCATION (xloc, line_note);
902 fprintf (stats_file, "SMS bb %s %d (file, line)\n",
903 xloc.file, xloc.line);
904 }
905 fprintf (stats_file, "SMS single-bb-loop\n");
906 if (profile_info && flag_branch_probabilities)
907 {
908 fprintf (stats_file, "SMS loop-count ");
909 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
910 (HOST_WIDEST_INT) bb->count);
911 fprintf (stats_file, "\n");
912 fprintf (stats_file, "SMS preheader-count ");
913 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
914 (HOST_WIDEST_INT) pre_header_edge->count);
915 fprintf (stats_file, "\n");
916 fprintf (stats_file, "SMS profile-sum-max ");
917 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
918 (HOST_WIDEST_INT) profile_info->sum_max);
919 fprintf (stats_file, "\n");
920 }
921 }
922 continue;
923 }
924
925 /* Make sure this is a doloop. */
926 if ( !(count_reg = doloop_register_get (tail, &comp)))
927 continue;
928
929 e = bb->pred;
930 if (e->src == bb)
931 pre_header = e->pred_next->src;
932 else
933 pre_header = e->src;
934
935 /* Don't handle BBs with calls or barriers, or !single_set insns. */
936 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
937 if (CALL_P (insn)
938 || BARRIER_P (insn)
939 || (INSN_P (insn) && !JUMP_P (insn)
940 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
941 break;
942
943 if (insn != NEXT_INSN (tail))
944 {
945 if (stats_file)
946 {
947 if (CALL_P (insn))
948 fprintf (stats_file, "SMS loop-with-call\n");
949 else if (BARRIER_P (insn))
950 fprintf (stats_file, "SMS loop-with-barrier\n");
951 else
952 fprintf (stats_file, "SMS loop-with-not-single-set\n");
953 print_rtl_single (stats_file, insn);
954 }
955
956 continue;
957 }
958
959 if (! (g = create_ddg (bb, df, 0)))
960 {
961 if (stats_file)
962 fprintf (stats_file, "SMS doloop\n");
963 continue;
964 }
965
966 g_arr[bb->index] = g;
967 }
968
969 /* Release Data Flow analysis data structures. */
970 df_finish (df);
971
972 /* Go over the built DDGs and perfrom SMS for each one of them. */
973 for (i = 0; i < max_bb_index; i++)
974 {
975 rtx head, tail;
976 rtx count_reg, count_init, comp;
977 edge pre_header_edge;
978 int mii, rec_mii;
979 int stage_count = 0;
980 HOST_WIDEST_INT loop_count = 0;
981
982 if (! (g = g_arr[i]))
983 continue;
984
985 if (dump_file)
986 print_ddg (dump_file, g);
987
988 get_block_head_tail (g->bb->index, &head, &tail);
989
990 pre_header_edge = g->bb->pred;
991 if (g->bb->pred->src != g->bb)
992 pre_header_edge = g->bb->pred->pred_next;
993
994 if (stats_file)
995 {
996 rtx line_note = find_line_note (tail);
997
998 if (line_note)
999 {
1000 expanded_location xloc;
1001 NOTE_EXPANDED_LOCATION (xloc, line_note);
1002 fprintf (stats_file, "SMS bb %s %d (file, line)\n",
1003 xloc.file, xloc.line);
1004 }
1005 fprintf (stats_file, "SMS single-bb-loop\n");
1006 if (profile_info && flag_branch_probabilities)
1007 {
1008 fprintf (stats_file, "SMS loop-count ");
1009 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1010 (HOST_WIDEST_INT) bb->count);
1011 fprintf (stats_file, "\n");
1012 fprintf (stats_file, "SMS preheader-count ");
1013 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1014 (HOST_WIDEST_INT) pre_header_edge->count);
1015 fprintf (stats_file, "\n");
1016 fprintf (stats_file, "SMS profile-sum-max ");
1017 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC,
1018 (HOST_WIDEST_INT) profile_info->sum_max);
1019 fprintf (stats_file, "\n");
1020 }
1021 fprintf (stats_file, "SMS doloop\n");
1022 fprintf (stats_file, "SMS built-ddg %d\n", g->num_nodes);
1023 fprintf (stats_file, "SMS num-loads %d\n", g->num_loads);
1024 fprintf (stats_file, "SMS num-stores %d\n", g->num_stores);
1025 }
1026
1027 /* Make sure this is a doloop. */
1028 if ( !(count_reg = doloop_register_get (tail, &comp)))
1029 abort ();
1030
1031 /* This should be NULL_RTX if the count is unknown at compile time. */
1032 count_init = const_iteration_count (count_reg, pre_header, &loop_count);
1033
1034 if (stats_file && count_init)
1035 {
1036 fprintf (stats_file, "SMS const-doloop ");
1037 fprintf (stats_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1038 fprintf (stats_file, "\n");
1039 }
1040
1041 node_order = (int *) xmalloc (sizeof (int) * g->num_nodes);
1042
1043 mii = 1; /* Need to pass some estimate of mii. */
1044 rec_mii = sms_order_nodes (g, mii, node_order);
1045 mii = MAX (res_MII (g), rec_mii);
1046 maxii = (calculate_maxii (g) * SMS_MAX_II_FACTOR) / 100;
1047
1048 if (stats_file)
1049 fprintf (stats_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1050 rec_mii, mii, maxii);
1051
1052 /* After sms_order_nodes and before sms_schedule_by_order, to copy over
1053 ASAP. */
1054 set_node_sched_params (g);
1055
1056 ps = sms_schedule_by_order (g, mii, maxii, node_order, dump_file);
1057
1058 if (ps)
1059 stage_count = PS_STAGE_COUNT (ps);
1060
1061 if (stage_count == 0 || (count_init && (stage_count > loop_count)))
1062 {
1063 if (dump_file)
1064 fprintf (dump_file, "SMS failed... \n");
1065 if (stats_file)
1066 fprintf (stats_file, "SMS sched-failed %d\n", stage_count);
1067 }
1068 else
1069 {
1070 rtx orig_loop_beg = NULL_RTX;
1071 rtx orig_loop_end = NULL_RTX;
1072
1073 if (stats_file)
1074 {
1075 fprintf (stats_file,
1076 "SMS succeeded %d %d (with ii, sc)\n", ps->ii,
1077 stage_count);
1078 print_partial_schedule (ps, dump_file);
1079 fprintf (dump_file,
1080 "SMS Branch (%d) will later be scheduled at cycle %d.\n",
1081 g->closing_branch->cuid, PS_MIN_CYCLE (ps) - 1);
1082 }
1083
1084 /* Save the original loop if we want to do loop preconditioning in
1085 case the BCT count is not known. */
1086 if (! count_init)
1087 {
1088 int i;
1089
1090 start_sequence ();
1091 /* Copy the original loop code before modifying it -
1092 so we can use it later. */
1093 for (i = 0; i < ps->g->num_nodes; i++)
1094 duplicate_insn_chain (ps->g->nodes[i].first_note,
1095 ps->g->nodes[i].insn);
1096
1097 orig_loop_beg = get_insns ();
1098 orig_loop_end = get_last_insn ();
1099 end_sequence ();
1100 }
1101 /* Set the stage boundaries. If the DDG is built with closing_branch_deps,
1102 the closing_branch was scheduled and should appear in the last (ii-1)
1103 row. Otherwise, we are free to schedule the branch, and we let nodes
1104 that were scheduled at the first PS_MIN_CYCLE cycle appear in the first
1105 row; this should reduce stage_count to minimum. */
1106 normalize_sched_times (ps);
1107 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
1108 set_columns_for_ps (ps);
1109
1110 permute_partial_schedule (ps, g->closing_branch->first_note);
1111
1112 /* Mark this loop as software pipelined so the later
1113 scheduling passes doesn't touch it. */
1114 if (! flag_resched_modulo_sched)
1115 emit_note_before (NOTE_INSN_DISABLE_SCHED_OF_BLOCK,
1116 g->closing_branch->insn);
1117
1118 generate_reg_moves (ps);
1119 if (dump_file)
1120 print_node_sched_params (dump_file, g->num_nodes);
1121
1122 /* Set new iteration count of loop kernel. */
1123 if (count_init)
1124 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1125 - stage_count + 1);
1126
1127 /* Generate prolog and epilog. */
1128 generate_prolog_epilog (ps, orig_loop_beg, orig_loop_end,
1129 count_init ? 0 : 1);
1130 }
1131 free_partial_schedule (ps);
1132 free (node_sched_params);
1133 free (node_order);
1134 free_ddg (g);
1135 }
1136
1137 /* Release scheduler data, needed until now because of DFA. */
1138 sched_finish ();
1139 }
1140
1141 /* The SMS scheduling algorithm itself
1142 -----------------------------------
1143 Input: 'O' an ordered list of insns of a loop.
1144 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1145
1146 'Q' is the empty Set
1147 'PS' is the partial schedule; it holds the currently scheduled nodes with
1148 their cycle/slot.
1149 'PSP' previously scheduled predecessors.
1150 'PSS' previously scheduled successors.
1151 't(u)' the cycle where u is scheduled.
1152 'l(u)' is the latency of u.
1153 'd(v,u)' is the dependence distance from v to u.
1154 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1155 the node ordering phase.
1156 'check_hardware_resources_conflicts(u, PS, c)'
1157 run a trace around cycle/slot through DFA model
1158 to check resource conflicts involving instruction u
1159 at cycle c given the partial schedule PS.
1160 'add_to_partial_schedule_at_time(u, PS, c)'
1161 Add the node/instruction u to the partial schedule
1162 PS at time c.
1163 'calculate_register_pressure(PS)'
1164 Given a schedule of instructions, calculate the register
1165 pressure it implies. One implementation could be the
1166 maximum number of overlapping live ranges.
1167 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1168 registers available in the hardware.
1169
1170 1. II = MII.
1171 2. PS = empty list
1172 3. for each node u in O in pre-computed order
1173 4. if (PSP(u) != Q && PSS(u) == Q) then
1174 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1175 6. start = Early_start; end = Early_start + II - 1; step = 1
1176 11. else if (PSP(u) == Q && PSS(u) != Q) then
1177 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1178 13. start = Late_start; end = Late_start - II + 1; step = -1
1179 14. else if (PSP(u) != Q && PSS(u) != Q) then
1180 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1181 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1182 17. start = Early_start;
1183 18. end = min(Early_start + II - 1 , Late_start);
1184 19. step = 1
1185 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1186 21. start = ASAP(u); end = start + II - 1; step = 1
1187 22. endif
1188
1189 23. success = false
1190 24. for (c = start ; c != end ; c += step)
1191 25. if check_hardware_resources_conflicts(u, PS, c) then
1192 26. add_to_partial_schedule_at_time(u, PS, c)
1193 27. success = true
1194 28. break
1195 29. endif
1196 30. endfor
1197 31. if (success == false) then
1198 32. II = II + 1
1199 33. if (II > maxII) then
1200 34. finish - failed to schedule
1201 35. endif
1202 36. goto 2.
1203 37. endif
1204 38. endfor
1205 39. if (calculate_register_pressure(PS) > maxRP) then
1206 40. goto 32.
1207 41. endif
1208 42. compute epilogue & prologue
1209 43. finish - succeeded to schedule
1210 */
1211
1212 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1213 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1214 set to 0 to save compile time. */
1215 #define DFA_HISTORY SMS_DFA_HISTORY
1216
1217 static partial_schedule_ptr
1218 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order, FILE *dump_file)
1219 {
1220 int ii = mii;
1221 int i, c, success;
1222 int try_again_with_larger_ii = true;
1223 int num_nodes = g->num_nodes;
1224 ddg_edge_ptr e;
1225 int start, end, step; /* Place together into one struct? */
1226 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
1227 sbitmap psp = sbitmap_alloc (num_nodes);
1228 sbitmap pss = sbitmap_alloc (num_nodes);
1229 sbitmap must_precede = sbitmap_alloc (num_nodes);
1230 sbitmap must_follow = sbitmap_alloc (num_nodes);
1231
1232 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
1233
1234 while (try_again_with_larger_ii && ii < maxii)
1235 {
1236 if (dump_file)
1237 fprintf(dump_file, "Starting with ii=%d\n", ii);
1238 try_again_with_larger_ii = false;
1239 sbitmap_zero (sched_nodes);
1240
1241 for (i = 0; i < num_nodes; i++)
1242 {
1243 int u = nodes_order[i];
1244 ddg_node_ptr u_node = &g->nodes[u];
1245 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1246 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1247 int psp_not_empty;
1248 int pss_not_empty;
1249 rtx insn = u_node->insn;
1250
1251 if (!INSN_P (insn))
1252 continue;
1253
1254 if (JUMP_P (insn)) /* Closing branch handled later. */
1255 continue;
1256
1257 /* 1. compute sched window for u (start, end, step). */
1258 sbitmap_zero (psp);
1259 sbitmap_zero (pss);
1260 psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1261 pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1262
1263 if (psp_not_empty && !pss_not_empty)
1264 {
1265 int early_start = 0;
1266
1267 end = INT_MAX;
1268 for (e = u_node->in; e != 0; e = e->next_in)
1269 {
1270 ddg_node_ptr v_node = e->src;
1271 if (TEST_BIT (sched_nodes, v_node->cuid))
1272 {
1273 int node_st = SCHED_TIME (v_node)
1274 + e->latency - (e->distance * ii);
1275
1276 early_start = MAX (early_start, node_st);
1277
1278 if (e->data_type == MEM_DEP)
1279 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1280 }
1281 }
1282 start = early_start;
1283 end = MIN (end, early_start + ii);
1284 step = 1;
1285 }
1286
1287 else if (!psp_not_empty && pss_not_empty)
1288 {
1289 int late_start = INT_MAX;
1290
1291 end = INT_MIN;
1292 for (e = u_node->out; e != 0; e = e->next_out)
1293 {
1294 ddg_node_ptr v_node = e->dest;
1295 if (TEST_BIT (sched_nodes, v_node->cuid))
1296 {
1297 late_start = MIN (late_start,
1298 SCHED_TIME (v_node) - e->latency
1299 + (e->distance * ii));
1300 if (e->data_type == MEM_DEP)
1301 end = MAX (end, SCHED_TIME (v_node) - ii + 1);
1302 }
1303 }
1304 start = late_start;
1305 end = MAX (end, late_start - ii);
1306 step = -1;
1307 }
1308
1309 else if (psp_not_empty && pss_not_empty)
1310 {
1311 int early_start = 0;
1312 int late_start = INT_MAX;
1313
1314 start = INT_MIN;
1315 end = INT_MAX;
1316 for (e = u_node->in; e != 0; e = e->next_in)
1317 {
1318 ddg_node_ptr v_node = e->src;
1319
1320 if (TEST_BIT (sched_nodes, v_node->cuid))
1321 {
1322 early_start = MAX (early_start,
1323 SCHED_TIME (v_node) + e->latency
1324 - (e->distance * ii));
1325 if (e->data_type == MEM_DEP)
1326 end = MIN (end, SCHED_TIME (v_node) + ii - 1);
1327 }
1328 }
1329 for (e = u_node->out; e != 0; e = e->next_out)
1330 {
1331 ddg_node_ptr v_node = e->dest;
1332
1333 if (TEST_BIT (sched_nodes, v_node->cuid))
1334 {
1335 late_start = MIN (late_start,
1336 SCHED_TIME (v_node) - e->latency
1337 + (e->distance * ii));
1338 if (e->data_type == MEM_DEP)
1339 start = MAX (start, SCHED_TIME (v_node) - ii + 1);
1340 }
1341 }
1342 start = MAX (start, early_start);
1343 end = MIN (end, MIN (early_start + ii, late_start + 1));
1344 step = 1;
1345 }
1346 else /* psp is empty && pss is empty. */
1347 {
1348 start = SCHED_ASAP (u_node);
1349 end = start + ii;
1350 step = 1;
1351 }
1352
1353 /* 2. Try scheduling u in window. */
1354 if (dump_file)
1355 fprintf(dump_file, "Trying to schedule node %d in (%d .. %d) step %d\n",
1356 u, start, end, step);
1357
1358 /* use must_follow & must_precede bitmaps to determine order
1359 of nodes within the cycle. */
1360 sbitmap_zero (must_precede);
1361 sbitmap_zero (must_follow);
1362 for (e = u_node->in; e != 0; e = e->next_in)
1363 if (TEST_BIT (sched_nodes, e->src->cuid)
1364 && e->latency == (ii * e->distance)
1365 && start == SCHED_TIME (e->src))
1366 SET_BIT (must_precede, e->src->cuid);
1367
1368 for (e = u_node->out; e != 0; e = e->next_out)
1369 if (TEST_BIT (sched_nodes, e->dest->cuid)
1370 && e->latency == (ii * e->distance)
1371 && end == SCHED_TIME (e->dest))
1372 SET_BIT (must_follow, e->dest->cuid);
1373
1374 success = 0;
1375 if ((step > 0 && start < end) || (step < 0 && start > end))
1376 for (c = start; c != end; c += step)
1377 {
1378 ps_insn_ptr psi;
1379
1380 psi = ps_add_node_check_conflicts (ps, u_node, c,
1381 must_precede,
1382 must_follow);
1383
1384 if (psi)
1385 {
1386 SCHED_TIME (u_node) = c;
1387 SET_BIT (sched_nodes, u);
1388 success = 1;
1389 if (dump_file)
1390 fprintf(dump_file, "Schedule in %d\n", c);
1391 break;
1392 }
1393 }
1394 if (!success)
1395 {
1396 /* ??? Try backtracking instead of immediately ii++? */
1397 ii++;
1398 try_again_with_larger_ii = true;
1399 reset_partial_schedule (ps, ii);
1400 break;
1401 }
1402 /* ??? If (success), check register pressure estimates. */
1403 } /* Continue with next node. */
1404 } /* While try_again_with_larger_ii. */
1405
1406 sbitmap_free (sched_nodes);
1407 sbitmap_free (psp);
1408 sbitmap_free (pss);
1409
1410 if (ii >= maxii)
1411 {
1412 free_partial_schedule (ps);
1413 ps = NULL;
1414 }
1415 return ps;
1416 }
1417
1418 \f
1419 /* This page implements the algorithm for ordering the nodes of a DDG
1420 for modulo scheduling, activated through the
1421 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
1422
1423 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
1424 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
1425 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
1426 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
1427 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
1428 #define DEPTH(x) (ASAP ((x)))
1429
1430 typedef struct node_order_params * nopa;
1431
1432 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
1433 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
1434 static nopa calculate_order_params (ddg_ptr, int mii);
1435 static int find_max_asap (ddg_ptr, sbitmap);
1436 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
1437 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
1438
1439 enum sms_direction {BOTTOMUP, TOPDOWN};
1440
1441 struct node_order_params
1442 {
1443 int asap;
1444 int alap;
1445 int height;
1446 };
1447
1448 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
1449 static void
1450 check_nodes_order (int *node_order, int num_nodes)
1451 {
1452 int i;
1453 sbitmap tmp = sbitmap_alloc (num_nodes);
1454
1455 sbitmap_zero (tmp);
1456
1457 for (i = 0; i < num_nodes; i++)
1458 {
1459 int u = node_order[i];
1460
1461 if (u >= num_nodes || u < 0 || TEST_BIT (tmp, u))
1462 abort ();
1463
1464 SET_BIT (tmp, u);
1465 }
1466
1467 sbitmap_free (tmp);
1468 }
1469
1470 /* Order the nodes of G for scheduling and pass the result in
1471 NODE_ORDER. Also set aux.count of each node to ASAP.
1472 Return the recMII for the given DDG. */
1473 static int
1474 sms_order_nodes (ddg_ptr g, int mii, int * node_order)
1475 {
1476 int i;
1477 int rec_mii = 0;
1478 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
1479
1480 nopa nops = calculate_order_params (g, mii);
1481
1482 order_nodes_of_sccs (sccs, node_order);
1483
1484 if (sccs->num_sccs > 0)
1485 /* First SCC has the largest recurrence_length. */
1486 rec_mii = sccs->sccs[0]->recurrence_length;
1487
1488 /* Save ASAP before destroying node_order_params. */
1489 for (i = 0; i < g->num_nodes; i++)
1490 {
1491 ddg_node_ptr v = &g->nodes[i];
1492 v->aux.count = ASAP (v);
1493 }
1494
1495 free (nops);
1496 free_ddg_all_sccs (sccs);
1497 check_nodes_order (node_order, g->num_nodes);
1498
1499 return rec_mii;
1500 }
1501
1502 static void
1503 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
1504 {
1505 int i, pos = 0;
1506 ddg_ptr g = all_sccs->ddg;
1507 int num_nodes = g->num_nodes;
1508 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
1509 sbitmap on_path = sbitmap_alloc (num_nodes);
1510 sbitmap tmp = sbitmap_alloc (num_nodes);
1511 sbitmap ones = sbitmap_alloc (num_nodes);
1512
1513 sbitmap_zero (prev_sccs);
1514 sbitmap_ones (ones);
1515
1516 /* Perfrom the node ordering starting from the SCC with the highest recMII.
1517 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
1518 for (i = 0; i < all_sccs->num_sccs; i++)
1519 {
1520 ddg_scc_ptr scc = all_sccs->sccs[i];
1521
1522 /* Add nodes on paths from previous SCCs to the current SCC. */
1523 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
1524 sbitmap_a_or_b (tmp, scc->nodes, on_path);
1525
1526 /* Add nodes on paths from the current SCC to previous SCCs. */
1527 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
1528 sbitmap_a_or_b (tmp, tmp, on_path);
1529
1530 /* Remove nodes of previous SCCs from current extended SCC. */
1531 sbitmap_difference (tmp, tmp, prev_sccs);
1532
1533 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
1534 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
1535 }
1536
1537 /* Handle the remaining nodes that do not belong to any scc. Each call
1538 to order_nodes_in_scc handles a single connected component. */
1539 while (pos < g->num_nodes)
1540 {
1541 sbitmap_difference (tmp, ones, prev_sccs);
1542 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
1543 }
1544 sbitmap_free (prev_sccs);
1545 sbitmap_free (on_path);
1546 sbitmap_free (tmp);
1547 sbitmap_free (ones);
1548 }
1549
1550 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
1551 static struct node_order_params *
1552 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED)
1553 {
1554 int u;
1555 int max_asap;
1556 int num_nodes = g->num_nodes;
1557 ddg_edge_ptr e;
1558 /* Allocate a place to hold ordering params for each node in the DDG. */
1559 nopa node_order_params_arr;
1560
1561 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
1562 node_order_params_arr = (nopa) xcalloc (num_nodes,
1563 sizeof (struct node_order_params));
1564
1565 /* Set the aux pointer of each node to point to its order_params structure. */
1566 for (u = 0; u < num_nodes; u++)
1567 g->nodes[u].aux.info = &node_order_params_arr[u];
1568
1569 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
1570 calculate ASAP, ALAP, mobility, distance, and height for each node
1571 in the dependence (direct acyclic) graph. */
1572
1573 /* We assume that the nodes in the array are in topological order. */
1574
1575 max_asap = 0;
1576 for (u = 0; u < num_nodes; u++)
1577 {
1578 ddg_node_ptr u_node = &g->nodes[u];
1579
1580 ASAP (u_node) = 0;
1581 for (e = u_node->in; e; e = e->next_in)
1582 if (e->distance == 0)
1583 ASAP (u_node) = MAX (ASAP (u_node),
1584 ASAP (e->src) + e->latency);
1585 max_asap = MAX (max_asap, ASAP (u_node));
1586 }
1587
1588 for (u = num_nodes - 1; u > -1; u--)
1589 {
1590 ddg_node_ptr u_node = &g->nodes[u];
1591
1592 ALAP (u_node) = max_asap;
1593 HEIGHT (u_node) = 0;
1594 for (e = u_node->out; e; e = e->next_out)
1595 if (e->distance == 0)
1596 {
1597 ALAP (u_node) = MIN (ALAP (u_node),
1598 ALAP (e->dest) - e->latency);
1599 HEIGHT (u_node) = MAX (HEIGHT (u_node),
1600 HEIGHT (e->dest) + e->latency);
1601 }
1602 }
1603
1604 return node_order_params_arr;
1605 }
1606
1607 static int
1608 find_max_asap (ddg_ptr g, sbitmap nodes)
1609 {
1610 int u;
1611 int max_asap = -1;
1612 int result = -1;
1613
1614 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
1615 {
1616 ddg_node_ptr u_node = &g->nodes[u];
1617
1618 if (max_asap < ASAP (u_node))
1619 {
1620 max_asap = ASAP (u_node);
1621 result = u;
1622 }
1623 });
1624 return result;
1625 }
1626
1627 static int
1628 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
1629 {
1630 int u;
1631 int max_hv = -1;
1632 int min_mob = INT_MAX;
1633 int result = -1;
1634
1635 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
1636 {
1637 ddg_node_ptr u_node = &g->nodes[u];
1638
1639 if (max_hv < HEIGHT (u_node))
1640 {
1641 max_hv = HEIGHT (u_node);
1642 min_mob = MOB (u_node);
1643 result = u;
1644 }
1645 else if ((max_hv == HEIGHT (u_node))
1646 && (min_mob > MOB (u_node)))
1647 {
1648 min_mob = MOB (u_node);
1649 result = u;
1650 }
1651 });
1652 return result;
1653 }
1654
1655 static int
1656 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
1657 {
1658 int u;
1659 int max_dv = -1;
1660 int min_mob = INT_MAX;
1661 int result = -1;
1662
1663 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
1664 {
1665 ddg_node_ptr u_node = &g->nodes[u];
1666
1667 if (max_dv < DEPTH (u_node))
1668 {
1669 max_dv = DEPTH (u_node);
1670 min_mob = MOB (u_node);
1671 result = u;
1672 }
1673 else if ((max_dv == DEPTH (u_node))
1674 && (min_mob > MOB (u_node)))
1675 {
1676 min_mob = MOB (u_node);
1677 result = u;
1678 }
1679 });
1680 return result;
1681 }
1682
1683 /* Places the nodes of SCC into the NODE_ORDER array starting
1684 at position POS, according to the SMS ordering algorithm.
1685 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
1686 the NODE_ORDER array, starting from position zero. */
1687 static int
1688 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
1689 int * node_order, int pos)
1690 {
1691 enum sms_direction dir;
1692 int num_nodes = g->num_nodes;
1693 sbitmap workset = sbitmap_alloc (num_nodes);
1694 sbitmap tmp = sbitmap_alloc (num_nodes);
1695 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
1696 sbitmap predecessors = sbitmap_alloc (num_nodes);
1697 sbitmap successors = sbitmap_alloc (num_nodes);
1698
1699 sbitmap_zero (predecessors);
1700 find_predecessors (predecessors, g, nodes_ordered);
1701
1702 sbitmap_zero (successors);
1703 find_successors (successors, g, nodes_ordered);
1704
1705 sbitmap_zero (tmp);
1706 if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
1707 {
1708 sbitmap_copy (workset, tmp);
1709 dir = BOTTOMUP;
1710 }
1711 else if (sbitmap_a_and_b_cg (tmp, successors, scc))
1712 {
1713 sbitmap_copy (workset, tmp);
1714 dir = TOPDOWN;
1715 }
1716 else
1717 {
1718 int u;
1719
1720 sbitmap_zero (workset);
1721 if ((u = find_max_asap (g, scc)) >= 0)
1722 SET_BIT (workset, u);
1723 dir = BOTTOMUP;
1724 }
1725
1726 sbitmap_zero (zero_bitmap);
1727 while (!sbitmap_equal (workset, zero_bitmap))
1728 {
1729 int v;
1730 ddg_node_ptr v_node;
1731 sbitmap v_node_preds;
1732 sbitmap v_node_succs;
1733
1734 if (dir == TOPDOWN)
1735 {
1736 while (!sbitmap_equal (workset, zero_bitmap))
1737 {
1738 v = find_max_hv_min_mob (g, workset);
1739 v_node = &g->nodes[v];
1740 node_order[pos++] = v;
1741 v_node_succs = NODE_SUCCESSORS (v_node);
1742 sbitmap_a_and_b (tmp, v_node_succs, scc);
1743
1744 /* Don't consider the already ordered successors again. */
1745 sbitmap_difference (tmp, tmp, nodes_ordered);
1746 sbitmap_a_or_b (workset, workset, tmp);
1747 RESET_BIT (workset, v);
1748 SET_BIT (nodes_ordered, v);
1749 }
1750 dir = BOTTOMUP;
1751 sbitmap_zero (predecessors);
1752 find_predecessors (predecessors, g, nodes_ordered);
1753 sbitmap_a_and_b (workset, predecessors, scc);
1754 }
1755 else
1756 {
1757 while (!sbitmap_equal (workset, zero_bitmap))
1758 {
1759 v = find_max_dv_min_mob (g, workset);
1760 v_node = &g->nodes[v];
1761 node_order[pos++] = v;
1762 v_node_preds = NODE_PREDECESSORS (v_node);
1763 sbitmap_a_and_b (tmp, v_node_preds, scc);
1764
1765 /* Don't consider the already ordered predecessors again. */
1766 sbitmap_difference (tmp, tmp, nodes_ordered);
1767 sbitmap_a_or_b (workset, workset, tmp);
1768 RESET_BIT (workset, v);
1769 SET_BIT (nodes_ordered, v);
1770 }
1771 dir = TOPDOWN;
1772 sbitmap_zero (successors);
1773 find_successors (successors, g, nodes_ordered);
1774 sbitmap_a_and_b (workset, successors, scc);
1775 }
1776 }
1777 sbitmap_free (tmp);
1778 sbitmap_free (workset);
1779 sbitmap_free (zero_bitmap);
1780 sbitmap_free (predecessors);
1781 sbitmap_free (successors);
1782 return pos;
1783 }
1784
1785 \f
1786 /* This page contains functions for manipulating partial-schedules during
1787 modulo scheduling. */
1788
1789 /* Create a partial schedule and allocate a memory to hold II rows. */
1790 partial_schedule_ptr
1791 create_partial_schedule (int ii, ddg_ptr g, int history)
1792 {
1793 partial_schedule_ptr ps = (partial_schedule_ptr)
1794 xmalloc (sizeof (struct partial_schedule));
1795 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
1796 ps->ii = ii;
1797 ps->history = history;
1798 ps->min_cycle = INT_MAX;
1799 ps->max_cycle = INT_MIN;
1800 ps->g = g;
1801
1802 return ps;
1803 }
1804
1805 /* Free the PS_INSNs in rows array of the given partial schedule.
1806 ??? Consider caching the PS_INSN's. */
1807 static void
1808 free_ps_insns (partial_schedule_ptr ps)
1809 {
1810 int i;
1811
1812 for (i = 0; i < ps->ii; i++)
1813 {
1814 while (ps->rows[i])
1815 {
1816 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
1817
1818 free (ps->rows[i]);
1819 ps->rows[i] = ps_insn;
1820 }
1821 ps->rows[i] = NULL;
1822 }
1823 }
1824
1825 /* Free all the memory allocated to the partial schedule. */
1826 void
1827 free_partial_schedule (partial_schedule_ptr ps)
1828 {
1829 if (!ps)
1830 return;
1831 free_ps_insns (ps);
1832 free (ps->rows);
1833 free (ps);
1834 }
1835
1836 /* Clear the rows array with its PS_INSNs, and create a new one with
1837 NEW_II rows. */
1838 void
1839 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
1840 {
1841 if (!ps)
1842 return;
1843 free_ps_insns (ps);
1844 if (new_ii == ps->ii)
1845 return;
1846 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
1847 * sizeof (ps_insn_ptr));
1848 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
1849 ps->ii = new_ii;
1850 ps->min_cycle = INT_MAX;
1851 ps->max_cycle = INT_MIN;
1852 }
1853
1854 /* Prints the partial schedule as an ii rows array, for each rows
1855 print the ids of the insns in it. */
1856 void
1857 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
1858 {
1859 int i;
1860
1861 for (i = 0; i < ps->ii; i++)
1862 {
1863 ps_insn_ptr ps_i = ps->rows[i];
1864
1865 fprintf (dump, "\n[CYCLE %d ]: ", i);
1866 while (ps_i)
1867 {
1868 fprintf (dump, "%d, ",
1869 INSN_UID (ps_i->node->insn));
1870 ps_i = ps_i->next_in_row;
1871 }
1872 }
1873 }
1874
1875 /* Creates an object of PS_INSN and initializes it to the given parameters. */
1876 static ps_insn_ptr
1877 create_ps_insn (ddg_node_ptr node, int rest_count, int cycle)
1878 {
1879 ps_insn_ptr ps_i = xmalloc (sizeof (struct ps_insn));
1880
1881 ps_i->node = node;
1882 ps_i->next_in_row = NULL;
1883 ps_i->prev_in_row = NULL;
1884 ps_i->row_rest_count = rest_count;
1885 ps_i->cycle = cycle;
1886
1887 return ps_i;
1888 }
1889
1890
1891 /* Removes the given PS_INSN from the partial schedule. Returns false if the
1892 node is not found in the partial schedule, else returns true. */
1893 static int
1894 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
1895 {
1896 int row;
1897
1898 if (!ps || !ps_i)
1899 return false;
1900
1901 row = SMODULO (ps_i->cycle, ps->ii);
1902 if (! ps_i->prev_in_row)
1903 {
1904 if (ps_i != ps->rows[row])
1905 return false;
1906
1907 ps->rows[row] = ps_i->next_in_row;
1908 if (ps->rows[row])
1909 ps->rows[row]->prev_in_row = NULL;
1910 }
1911 else
1912 {
1913 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
1914 if (ps_i->next_in_row)
1915 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
1916 }
1917 free (ps_i);
1918 return true;
1919 }
1920
1921 /* Unlike what literature describes for modulo scheduling (which focuses
1922 on VLIW machines) the order of the instructions inside a cycle is
1923 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
1924 where the current instruction should go relative to the already
1925 scheduled instructions in the given cycle. Go over these
1926 instructions and find the first possible column to put it in. */
1927 static bool
1928 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
1929 sbitmap must_precede, sbitmap must_follow)
1930 {
1931 ps_insn_ptr next_ps_i;
1932 ps_insn_ptr first_must_follow = NULL;
1933 ps_insn_ptr last_must_precede = NULL;
1934 int row;
1935
1936 if (! ps_i)
1937 return false;
1938
1939 row = SMODULO (ps_i->cycle, ps->ii);
1940
1941 /* Find the first must follow and the last must precede
1942 and insert the node immediatly after the must precede
1943 but make sure that it there is no must follow after it. */
1944 for (next_ps_i = ps->rows[row];
1945 next_ps_i;
1946 next_ps_i = next_ps_i->next_in_row)
1947 {
1948 if (TEST_BIT (must_follow, next_ps_i->node->cuid)
1949 && ! first_must_follow)
1950 first_must_follow = next_ps_i;
1951 if (TEST_BIT (must_precede, next_ps_i->node->cuid))
1952 {
1953 /* If we have already met a node that must follow, then
1954 there is no possible column. */
1955 if (first_must_follow)
1956 return false;
1957 else
1958 last_must_precede = next_ps_i;
1959 }
1960 }
1961
1962 /* Now insert the node after INSERT_AFTER_PSI. */
1963
1964 if (! last_must_precede)
1965 {
1966 ps_i->next_in_row = ps->rows[row];
1967 ps_i->prev_in_row = NULL;
1968 if (ps_i->next_in_row)
1969 ps_i->next_in_row->prev_in_row = ps_i;
1970 ps->rows[row] = ps_i;
1971 }
1972 else
1973 {
1974 ps_i->next_in_row = last_must_precede->next_in_row;
1975 last_must_precede->next_in_row = ps_i;
1976 ps_i->prev_in_row = last_must_precede;
1977 if (ps_i->next_in_row)
1978 ps_i->next_in_row->prev_in_row = ps_i;
1979 }
1980
1981 return true;
1982 }
1983
1984 /* Advances the PS_INSN one column in its current row; returns false
1985 in failure and true in success. Bit N is set in MUST_FOLLOW if
1986 the node with cuid N must be come after the node pointed to by
1987 PS_I when scheduled in the same cycle. */
1988 static int
1989 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
1990 sbitmap must_follow)
1991 {
1992 ps_insn_ptr prev, next;
1993 int row;
1994 ddg_node_ptr next_node;
1995
1996 if (!ps || !ps_i)
1997 return false;
1998
1999 row = SMODULO (ps_i->cycle, ps->ii);
2000
2001 if (! ps_i->next_in_row)
2002 return false;
2003
2004 next_node = ps_i->next_in_row->node;
2005
2006 /* Check if next_in_row is dependent on ps_i, both having same sched
2007 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
2008 if (TEST_BIT (must_follow, next_node->cuid))
2009 return false;
2010
2011 /* Advace PS_I over its next_in_row in the doubly linked list. */
2012 prev = ps_i->prev_in_row;
2013 next = ps_i->next_in_row;
2014
2015 if (ps_i == ps->rows[row])
2016 ps->rows[row] = next;
2017
2018 ps_i->next_in_row = next->next_in_row;
2019
2020 if (next->next_in_row)
2021 next->next_in_row->prev_in_row = ps_i;
2022
2023 next->next_in_row = ps_i;
2024 ps_i->prev_in_row = next;
2025
2026 next->prev_in_row = prev;
2027 if (prev)
2028 prev->next_in_row = next;
2029
2030 return true;
2031 }
2032
2033 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
2034 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
2035 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
2036 before/after (respectively) the node pointed to by PS_I when scheduled
2037 in the same cycle. */
2038 static ps_insn_ptr
2039 add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
2040 sbitmap must_precede, sbitmap must_follow)
2041 {
2042 ps_insn_ptr ps_i;
2043 int rest_count = 1;
2044 int row = SMODULO (cycle, ps->ii);
2045
2046 if (ps->rows[row]
2047 && ps->rows[row]->row_rest_count >= issue_rate)
2048 return NULL;
2049
2050 if (ps->rows[row])
2051 rest_count += ps->rows[row]->row_rest_count;
2052
2053 ps_i = create_ps_insn (node, rest_count, cycle);
2054
2055 /* Finds and inserts PS_I according to MUST_FOLLOW and
2056 MUST_PRECEDE. */
2057 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
2058 {
2059 free (ps_i);
2060 return NULL;
2061 }
2062
2063 return ps_i;
2064 }
2065
2066 /* Advance time one cycle. Assumes DFA is being used. */
2067 static void
2068 advance_one_cycle (void)
2069 {
2070 if (targetm.sched.dfa_pre_cycle_insn)
2071 state_transition (curr_state,
2072 (*targetm.sched.dfa_pre_cycle_insn) ());
2073
2074 state_transition (curr_state, NULL);
2075
2076 if (targetm.sched.dfa_post_cycle_insn)
2077 state_transition (curr_state,
2078 (*targetm.sched.dfa_post_cycle_insn) ());
2079 }
2080
2081 /* Checks if PS has resource conflicts according to DFA, starting from
2082 FROM cycle to TO cycle; returns true if there are conflicts and false
2083 if there are no conflicts. Assumes DFA is being used. */
2084 static int
2085 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
2086 {
2087 int cycle;
2088
2089 state_reset (curr_state);
2090
2091 for (cycle = from; cycle <= to; cycle++)
2092 {
2093 ps_insn_ptr crr_insn;
2094 /* Holds the remaining issue slots in the current row. */
2095 int can_issue_more = issue_rate;
2096
2097 /* Walk through the DFA for the current row. */
2098 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
2099 crr_insn;
2100 crr_insn = crr_insn->next_in_row)
2101 {
2102 rtx insn = crr_insn->node->insn;
2103
2104 if (!INSN_P (insn))
2105 continue;
2106
2107 /* Check if there is room for the current insn. */
2108 if (!can_issue_more || state_dead_lock_p (curr_state))
2109 return true;
2110
2111 /* Update the DFA state and return with failure if the DFA found
2112 recource conflicts. */
2113 if (state_transition (curr_state, insn) >= 0)
2114 return true;
2115
2116 if (targetm.sched.variable_issue)
2117 can_issue_more =
2118 (*targetm.sched.variable_issue) (sched_dump, sched_verbose,
2119 insn, can_issue_more);
2120 /* A naked CLOBBER or USE generates no instruction, so don't
2121 let them consume issue slots. */
2122 else if (GET_CODE (PATTERN (insn)) != USE
2123 && GET_CODE (PATTERN (insn)) != CLOBBER)
2124 can_issue_more--;
2125 }
2126
2127 /* Advance the DFA to the next cycle. */
2128 advance_one_cycle ();
2129 }
2130 return false;
2131 }
2132
2133 /* Checks if the given node causes resource conflicts when added to PS at
2134 cycle C. If not the node is added to PS and returned; otherwise zero
2135 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
2136 cuid N must be come before/after (respectively) the node pointed to by
2137 PS_I when scheduled in the same cycle. */
2138 ps_insn_ptr
2139 ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
2140 int c, sbitmap must_precede,
2141 sbitmap must_follow)
2142 {
2143 int has_conflicts = 0;
2144 ps_insn_ptr ps_i;
2145
2146 /* First add the node to the PS, if this succeeds check for
2147 conflicts, trying different issue slots in the same row. */
2148 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
2149 return NULL; /* Failed to insert the node at the given cycle. */
2150
2151 has_conflicts = ps_has_conflicts (ps, c, c)
2152 || (ps->history > 0
2153 && ps_has_conflicts (ps,
2154 c - ps->history,
2155 c + ps->history));
2156
2157 /* Try different issue slots to find one that the given node can be
2158 scheduled in without conflicts. */
2159 while (has_conflicts)
2160 {
2161 if (! ps_insn_advance_column (ps, ps_i, must_follow))
2162 break;
2163 has_conflicts = ps_has_conflicts (ps, c, c)
2164 || (ps->history > 0
2165 && ps_has_conflicts (ps,
2166 c - ps->history,
2167 c + ps->history));
2168 }
2169
2170 if (has_conflicts)
2171 {
2172 remove_node_from_ps (ps, ps_i);
2173 return NULL;
2174 }
2175
2176 ps->min_cycle = MIN (ps->min_cycle, c);
2177 ps->max_cycle = MAX (ps->max_cycle, c);
2178 return ps_i;
2179 }
2180
2181 /* Rotate the rows of PS such that insns scheduled at time
2182 START_CYCLE will appear in row 0. Updates max/min_cycles. */
2183 void
2184 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
2185 {
2186 int i, row, backward_rotates;
2187 int last_row = ps->ii - 1;
2188
2189 if (start_cycle == 0)
2190 return;
2191
2192 backward_rotates = SMODULO (start_cycle, ps->ii);
2193
2194 /* Revisit later and optimize this into a single loop. */
2195 for (i = 0; i < backward_rotates; i++)
2196 {
2197 ps_insn_ptr first_row = ps->rows[0];
2198
2199 for (row = 0; row < last_row; row++)
2200 ps->rows[row] = ps->rows[row+1];
2201
2202 ps->rows[last_row] = first_row;
2203 }
2204
2205 ps->max_cycle -= start_cycle;
2206 ps->min_cycle -= start_cycle;
2207 }
2208
2209 #endif /* INSN_SCHEDULING*/