re PR target/92744 (error: insn does not satisfy its constraints since r278439)
[gcc.git] / gcc / modulo-sched.c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
46
47 #ifdef INSN_SCHEDULING
48
49 /* This file contains the implementation of the Swing Modulo Scheduler,
50 described in the following references:
51 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
52 Lifetime--sensitive modulo scheduling in a production environment.
53 IEEE Trans. on Comps., 50(3), March 2001
54 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
55 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
56 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
57
58 The basic structure is:
59 1. Build a data-dependence graph (DDG) for each loop.
60 2. Use the DDG to order the insns of a loop (not in topological order
61 necessarily, but rather) trying to place each insn after all its
62 predecessors _or_ after all its successors.
63 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
64 4. Use the ordering to perform list-scheduling of the loop:
65 1. Set II = MII. We will try to schedule the loop within II cycles.
66 2. Try to schedule the insns one by one according to the ordering.
67 For each insn compute an interval of cycles by considering already-
68 scheduled preds and succs (and associated latencies); try to place
69 the insn in the cycles of this window checking for potential
70 resource conflicts (using the DFA interface).
71 Note: this is different from the cycle-scheduling of schedule_insns;
72 here the insns are not scheduled monotonically top-down (nor bottom-
73 up).
74 3. If failed in scheduling all insns - bump II++ and try again, unless
75 II reaches an upper bound MaxII, in which case report failure.
76 5. If we succeeded in scheduling the loop within II cycles, we now
77 generate prolog and epilog, decrease the counter of the loop, and
78 perform modulo variable expansion for live ranges that span more than
79 II cycles (i.e. use register copies to prevent a def from overwriting
80 itself before reaching the use).
81
82 SMS works with countable loops (1) whose control part can be easily
83 decoupled from the rest of the loop and (2) whose loop count can
84 be easily adjusted. This is because we peel a constant number of
85 iterations into a prologue and epilogue for which we want to avoid
86 emitting the control part, and a kernel which is to iterate that
87 constant number of iterations less than the original loop. So the
88 control part should be a set of insns clearly identified and having
89 its own iv, not otherwise used in the loop (at-least for now), which
90 initializes a register before the loop to the number of iterations.
91 Currently SMS relies on the do-loop pattern to recognize such loops,
92 where (1) the control part comprises of all insns defining and/or
93 using a certain 'count' register and (2) the loop count can be
94 adjusted by modifying this register prior to the loop.
95 TODO: Rely on cfgloop analysis instead. */
96 \f
97 /* This page defines partial-schedule structures and functions for
98 modulo scheduling. */
99
100 typedef struct partial_schedule *partial_schedule_ptr;
101 typedef struct ps_insn *ps_insn_ptr;
102
103 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
104 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
105
106 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
107 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
108
109 /* Perform signed modulo, always returning a non-negative value. */
110 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
111
112 /* The number of different iterations the nodes in ps span, assuming
113 the stage boundaries are placed efficiently. */
114 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
115 + 1 + ii - 1) / ii)
116 /* The stage count of ps. */
117 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
118
119 /* A single instruction in the partial schedule. */
120 struct ps_insn
121 {
122 /* Identifies the instruction to be scheduled. Values smaller than
123 the ddg's num_nodes refer directly to ddg nodes. A value of
124 X - num_nodes refers to register move X. */
125 int id;
126
127 /* The (absolute) cycle in which the PS instruction is scheduled.
128 Same as SCHED_TIME (node). */
129 int cycle;
130
131 /* The next/prev PS_INSN in the same row. */
132 ps_insn_ptr next_in_row,
133 prev_in_row;
134
135 };
136
137 /* Information about a register move that has been added to a partial
138 schedule. */
139 struct ps_reg_move_info
140 {
141 /* The source of the move is defined by the ps_insn with id DEF.
142 The destination is used by the ps_insns with the ids in USES. */
143 int def;
144 sbitmap uses;
145
146 /* The original form of USES' instructions used OLD_REG, but they
147 should now use NEW_REG. */
148 rtx old_reg;
149 rtx new_reg;
150
151 /* The number of consecutive stages that the move occupies. */
152 int num_consecutive_stages;
153
154 /* An instruction that sets NEW_REG to the correct value. The first
155 move associated with DEF will have an rhs of OLD_REG; later moves
156 use the result of the previous move. */
157 rtx_insn *insn;
158 };
159
160 /* Holds the partial schedule as an array of II rows. Each entry of the
161 array points to a linked list of PS_INSNs, which represents the
162 instructions that are scheduled for that row. */
163 struct partial_schedule
164 {
165 int ii; /* Number of rows in the partial schedule. */
166 int history; /* Threshold for conflict checking using DFA. */
167
168 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
169 ps_insn_ptr *rows;
170
171 /* All the moves added for this partial schedule. Index X has
172 a ps_insn id of X + g->num_nodes. */
173 vec<ps_reg_move_info> reg_moves;
174
175 /* rows_length[i] holds the number of instructions in the row.
176 It is used only (as an optimization) to back off quickly from
177 trying to schedule a node in a full row; that is, to avoid running
178 through futile DFA state transitions. */
179 int *rows_length;
180
181 /* The earliest absolute cycle of an insn in the partial schedule. */
182 int min_cycle;
183
184 /* The latest absolute cycle of an insn in the partial schedule. */
185 int max_cycle;
186
187 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
188
189 int stage_count; /* The stage count of the partial schedule. */
190 };
191
192
193 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
194 static void free_partial_schedule (partial_schedule_ptr);
195 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
196 void print_partial_schedule (partial_schedule_ptr, FILE *);
197 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
198 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
199 int, int, sbitmap, sbitmap);
200 static void rotate_partial_schedule (partial_schedule_ptr, int);
201 void set_row_column_for_ps (partial_schedule_ptr);
202 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
203 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
204
205 \f
206 /* This page defines constants and structures for the modulo scheduling
207 driver. */
208
209 static int sms_order_nodes (ddg_ptr, int, int *, int *);
210 static void set_node_sched_params (ddg_ptr);
211 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
212 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
213 static void generate_prolog_epilog (partial_schedule_ptr, class loop *,
214 rtx, rtx);
215 static int calculate_stage_count (partial_schedule_ptr, int);
216 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
217 int, int, sbitmap, sbitmap, sbitmap);
218 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
219 sbitmap, int, int *, int *, int *);
220 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
221 sbitmap, int *, sbitmap, sbitmap);
222 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
223
224 #define NODE_ASAP(node) ((node)->aux.count)
225
226 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
227 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
228 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
229 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
230 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
231
232 /* The scheduling parameters held for each node. */
233 typedef struct node_sched_params
234 {
235 int time; /* The absolute scheduling cycle. */
236
237 int row; /* Holds time % ii. */
238 int stage; /* Holds time / ii. */
239
240 /* The column of a node inside the ps. If nodes u, v are on the same row,
241 u will precede v if column (u) < column (v). */
242 int column;
243 } *node_sched_params_ptr;
244 \f
245 /* The following three functions are copied from the current scheduler
246 code in order to use sched_analyze() for computing the dependencies.
247 They are used when initializing the sched_info structure. */
248 static const char *
249 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
250 {
251 static char tmp[80];
252
253 sprintf (tmp, "i%4d", INSN_UID (insn));
254 return tmp;
255 }
256
257 static void
258 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
259 regset used ATTRIBUTE_UNUSED)
260 {
261 }
262
263 static struct common_sched_info_def sms_common_sched_info;
264
265 static struct sched_deps_info_def sms_sched_deps_info =
266 {
267 compute_jump_reg_dependencies,
268 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
269 NULL,
270 0, 0, 0
271 };
272
273 static struct haifa_sched_info sms_sched_info =
274 {
275 NULL,
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 sms_print_insn,
281 NULL,
282 NULL, /* insn_finishes_block_p */
283 NULL, NULL,
284 NULL, NULL,
285 0, 0,
286
287 NULL, NULL, NULL, NULL,
288 NULL, NULL,
289 0
290 };
291
292 /* Partial schedule instruction ID in PS is a register move. Return
293 information about it. */
294 static struct ps_reg_move_info *
295 ps_reg_move (partial_schedule_ptr ps, int id)
296 {
297 gcc_checking_assert (id >= ps->g->num_nodes);
298 return &ps->reg_moves[id - ps->g->num_nodes];
299 }
300
301 /* Return the rtl instruction that is being scheduled by partial schedule
302 instruction ID, which belongs to schedule PS. */
303 static rtx_insn *
304 ps_rtl_insn (partial_schedule_ptr ps, int id)
305 {
306 if (id < ps->g->num_nodes)
307 return ps->g->nodes[id].insn;
308 else
309 return ps_reg_move (ps, id)->insn;
310 }
311
312 /* Partial schedule instruction ID, which belongs to PS, occurred in
313 the original (unscheduled) loop. Return the first instruction
314 in the loop that was associated with ps_rtl_insn (PS, ID).
315 If the instruction had some notes before it, this is the first
316 of those notes. */
317 static rtx_insn *
318 ps_first_note (partial_schedule_ptr ps, int id)
319 {
320 gcc_assert (id < ps->g->num_nodes);
321 return ps->g->nodes[id].first_note;
322 }
323
324 /* Return the number of consecutive stages that are occupied by
325 partial schedule instruction ID in PS. */
326 static int
327 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
328 {
329 if (id < ps->g->num_nodes)
330 return 1;
331 else
332 return ps_reg_move (ps, id)->num_consecutive_stages;
333 }
334
335 /* Given HEAD and TAIL which are the first and last insns in a loop;
336 return the register which controls the loop. Return zero if it has
337 more than one occurrence in the loop besides the control part or the
338 do-loop pattern is not of the form we expect. */
339 static rtx
340 doloop_register_get (rtx_insn *head, rtx_insn *tail)
341 {
342 rtx reg, condition;
343 rtx_insn *insn, *first_insn_not_to_check;
344
345 if (!JUMP_P (tail))
346 return NULL_RTX;
347
348 if (!targetm.code_for_doloop_end)
349 return NULL_RTX;
350
351 /* TODO: Free SMS's dependence on doloop_condition_get. */
352 condition = doloop_condition_get (tail);
353 if (! condition)
354 return NULL_RTX;
355
356 if (REG_P (XEXP (condition, 0)))
357 reg = XEXP (condition, 0);
358 else if (GET_CODE (XEXP (condition, 0)) == PLUS
359 && REG_P (XEXP (XEXP (condition, 0), 0)))
360 reg = XEXP (XEXP (condition, 0), 0);
361 else
362 gcc_unreachable ();
363
364 /* Check that the COUNT_REG has no other occurrences in the loop
365 until the decrement. We assume the control part consists of
366 either a single (parallel) branch-on-count or a (non-parallel)
367 branch immediately preceded by a single (decrement) insn. */
368 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
369 : prev_nondebug_insn (tail));
370
371 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
372 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
373 {
374 if (dump_file)
375 {
376 fprintf (dump_file, "SMS count_reg found ");
377 print_rtl_single (dump_file, reg);
378 fprintf (dump_file, " outside control in insn:\n");
379 print_rtl_single (dump_file, insn);
380 }
381
382 return NULL_RTX;
383 }
384
385 return reg;
386 }
387
388 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
389 that the number of iterations is a compile-time constant. If so,
390 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
391 this constant. Otherwise return 0. */
392 static rtx_insn *
393 const_iteration_count (rtx count_reg, basic_block pre_header,
394 int64_t * count)
395 {
396 rtx_insn *insn;
397 rtx_insn *head, *tail;
398
399 if (! pre_header)
400 return NULL;
401
402 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
403
404 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
405 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
406 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
407 {
408 rtx pat = single_set (insn);
409
410 if (CONST_INT_P (SET_SRC (pat)))
411 {
412 *count = INTVAL (SET_SRC (pat));
413 return insn;
414 }
415
416 return NULL;
417 }
418
419 return NULL;
420 }
421
422 /* A very simple resource-based lower bound on the initiation interval.
423 ??? Improve the accuracy of this bound by considering the
424 utilization of various units. */
425 static int
426 res_MII (ddg_ptr g)
427 {
428 if (targetm.sched.sms_res_mii)
429 return targetm.sched.sms_res_mii (g);
430
431 return ((g->num_nodes - g->num_debug) / issue_rate);
432 }
433
434
435 /* A vector that contains the sched data for each ps_insn. */
436 static vec<node_sched_params> node_sched_param_vec;
437
438 /* Allocate sched_params for each node and initialize it. */
439 static void
440 set_node_sched_params (ddg_ptr g)
441 {
442 node_sched_param_vec.truncate (0);
443 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
444 }
445
446 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
447 static void
448 extend_node_sched_params (partial_schedule_ptr ps)
449 {
450 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
451 + ps->reg_moves.length ());
452 }
453
454 /* Update the sched_params (time, row and stage) for node U using the II,
455 the CYCLE of U and MIN_CYCLE.
456 We're not simply taking the following
457 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
458 because the stages may not be aligned on cycle 0. */
459 static void
460 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
461 {
462 int sc_until_cycle_zero;
463 int stage;
464
465 SCHED_TIME (u) = cycle;
466 SCHED_ROW (u) = SMODULO (cycle, ii);
467
468 /* The calculation of stage count is done adding the number
469 of stages before cycle zero and after cycle zero. */
470 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
471
472 if (SCHED_TIME (u) < 0)
473 {
474 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
475 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
476 }
477 else
478 {
479 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
480 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
481 }
482 }
483
484 static void
485 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
486 {
487 int i;
488
489 if (! file)
490 return;
491 for (i = 0; i < num_nodes; i++)
492 {
493 node_sched_params_ptr nsp = SCHED_PARAMS (i);
494
495 fprintf (file, "Node = %d; INSN = %d\n", i,
496 INSN_UID (ps_rtl_insn (ps, i)));
497 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
498 fprintf (file, " time = %d:\n", nsp->time);
499 fprintf (file, " stage = %d:\n", nsp->stage);
500 }
501 }
502
503 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
504 static void
505 set_columns_for_row (partial_schedule_ptr ps, int row)
506 {
507 ps_insn_ptr cur_insn;
508 int column;
509
510 column = 0;
511 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
512 SCHED_COLUMN (cur_insn->id) = column++;
513 }
514
515 /* Set SCHED_COLUMN for each instruction in PS. */
516 static void
517 set_columns_for_ps (partial_schedule_ptr ps)
518 {
519 int row;
520
521 for (row = 0; row < ps->ii; row++)
522 set_columns_for_row (ps, row);
523 }
524
525 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
526 Its single predecessor has already been scheduled, as has its
527 ddg node successors. (The move may have also another move as its
528 successor, in which case that successor will be scheduled later.)
529
530 The move is part of a chain that satisfies register dependencies
531 between a producing ddg node and various consuming ddg nodes.
532 If some of these dependencies have a distance of 1 (meaning that
533 the use is upward-exposed) then DISTANCE1_USES is nonnull and
534 contains the set of uses with distance-1 dependencies.
535 DISTANCE1_USES is null otherwise.
536
537 MUST_FOLLOW is a scratch bitmap that is big enough to hold
538 all current ps_insn ids.
539
540 Return true on success. */
541 static bool
542 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
543 sbitmap distance1_uses, sbitmap must_follow)
544 {
545 unsigned int u;
546 int this_time, this_distance, this_start, this_end, this_latency;
547 int start, end, c, ii;
548 sbitmap_iterator sbi;
549 ps_reg_move_info *move;
550 rtx_insn *this_insn;
551 ps_insn_ptr psi;
552
553 move = ps_reg_move (ps, i_reg_move);
554 ii = ps->ii;
555 if (dump_file)
556 {
557 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
558 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
559 PS_MIN_CYCLE (ps));
560 print_rtl_single (dump_file, move->insn);
561 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
562 fprintf (dump_file, "=========== =========== =====\n");
563 }
564
565 start = INT_MIN;
566 end = INT_MAX;
567
568 /* For dependencies of distance 1 between a producer ddg node A
569 and consumer ddg node B, we have a chain of dependencies:
570
571 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
572
573 where Mi is the ith move. For dependencies of distance 0 between
574 a producer ddg node A and consumer ddg node C, we have a chain of
575 dependencies:
576
577 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
578
579 where Mi' occupies the same position as Mi but occurs a stage later.
580 We can only schedule each move once, so if we have both types of
581 chain, we model the second as:
582
583 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
584
585 First handle the dependencies between the previously-scheduled
586 predecessor and the move. */
587 this_insn = ps_rtl_insn (ps, move->def);
588 this_latency = insn_latency (this_insn, move->insn);
589 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
590 this_time = SCHED_TIME (move->def) - this_distance * ii;
591 this_start = this_time + this_latency;
592 this_end = this_time + ii;
593 if (dump_file)
594 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
595 this_start, this_end, SCHED_TIME (move->def),
596 INSN_UID (this_insn), this_latency, this_distance,
597 INSN_UID (move->insn));
598
599 if (start < this_start)
600 start = this_start;
601 if (end > this_end)
602 end = this_end;
603
604 /* Handle the dependencies between the move and previously-scheduled
605 successors. */
606 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
607 {
608 this_insn = ps_rtl_insn (ps, u);
609 this_latency = insn_latency (move->insn, this_insn);
610 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
611 this_distance = -1;
612 else
613 this_distance = 0;
614 this_time = SCHED_TIME (u) + this_distance * ii;
615 this_start = this_time - ii;
616 this_end = this_time - this_latency;
617 if (dump_file)
618 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
619 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
620 this_latency, this_distance, INSN_UID (this_insn));
621
622 if (start < this_start)
623 start = this_start;
624 if (end > this_end)
625 end = this_end;
626 }
627
628 if (dump_file)
629 {
630 fprintf (dump_file, "----------- ----------- -----\n");
631 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
632 }
633
634 bitmap_clear (must_follow);
635 bitmap_set_bit (must_follow, move->def);
636
637 start = MAX (start, end - (ii - 1));
638 for (c = end; c >= start; c--)
639 {
640 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
641 move->uses, must_follow);
642 if (psi)
643 {
644 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
645 if (dump_file)
646 fprintf (dump_file, "\nScheduled register move INSN %d at"
647 " time %d, row %d\n\n", INSN_UID (move->insn), c,
648 SCHED_ROW (i_reg_move));
649 return true;
650 }
651 }
652
653 if (dump_file)
654 fprintf (dump_file, "\nNo available slot\n\n");
655
656 return false;
657 }
658
659 /*
660 Breaking intra-loop register anti-dependences:
661 Each intra-loop register anti-dependence implies a cross-iteration true
662 dependence of distance 1. Therefore, we can remove such false dependencies
663 and figure out if the partial schedule broke them by checking if (for a
664 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
665 if so generate a register move. The number of such moves is equal to:
666 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
667 nreg_moves = ----------------------------------- + 1 - { dependence.
668 ii { 1 if not.
669 */
670 static bool
671 schedule_reg_moves (partial_schedule_ptr ps)
672 {
673 ddg_ptr g = ps->g;
674 int ii = ps->ii;
675 int i;
676
677 for (i = 0; i < g->num_nodes; i++)
678 {
679 ddg_node_ptr u = &g->nodes[i];
680 ddg_edge_ptr e;
681 int nreg_moves = 0, i_reg_move;
682 rtx prev_reg, old_reg;
683 int first_move;
684 int distances[2];
685 sbitmap distance1_uses;
686 rtx set = single_set (u->insn);
687
688 /* Skip instructions that do not set a register. */
689 if (set && !REG_P (SET_DEST (set)))
690 continue;
691
692 /* Compute the number of reg_moves needed for u, by looking at life
693 ranges started at u (excluding self-loops). */
694 distances[0] = distances[1] = false;
695 for (e = u->out; e; e = e->next_out)
696 if (e->type == TRUE_DEP && e->dest != e->src)
697 {
698 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
699 - SCHED_TIME (e->src->cuid)) / ii;
700
701 if (e->distance == 1)
702 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
703 - SCHED_TIME (e->src->cuid) + ii) / ii;
704
705 /* If dest precedes src in the schedule of the kernel, then dest
706 will read before src writes and we can save one reg_copy. */
707 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
708 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
709 nreg_moves4e--;
710
711 if (nreg_moves4e >= 1)
712 {
713 /* !single_set instructions are not supported yet and
714 thus we do not except to encounter them in the loop
715 except from the doloop part. For the latter case
716 we assume no regmoves are generated as the doloop
717 instructions are tied to the branch with an edge. */
718 gcc_assert (set);
719 /* If the instruction contains auto-inc register then
720 validate that the regmov is being generated for the
721 target regsiter rather then the inc'ed register. */
722 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
723 }
724
725 if (nreg_moves4e)
726 {
727 gcc_assert (e->distance < 2);
728 distances[e->distance] = true;
729 }
730 nreg_moves = MAX (nreg_moves, nreg_moves4e);
731 }
732
733 if (nreg_moves == 0)
734 continue;
735
736 /* Create NREG_MOVES register moves. */
737 first_move = ps->reg_moves.length ();
738 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
739 extend_node_sched_params (ps);
740
741 /* Record the moves associated with this node. */
742 first_move += ps->g->num_nodes;
743
744 /* Generate each move. */
745 old_reg = prev_reg = SET_DEST (set);
746 if (HARD_REGISTER_P (old_reg))
747 return false;
748
749 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
750 {
751 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
752
753 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
754 move->uses = sbitmap_alloc (first_move + nreg_moves);
755 move->old_reg = old_reg;
756 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
757 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
758 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
759 bitmap_clear (move->uses);
760
761 prev_reg = move->new_reg;
762 }
763
764 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
765
766 if (distance1_uses)
767 bitmap_clear (distance1_uses);
768
769 /* Every use of the register defined by node may require a different
770 copy of this register, depending on the time the use is scheduled.
771 Record which uses require which move results. */
772 for (e = u->out; e; e = e->next_out)
773 if (e->type == TRUE_DEP && e->dest != e->src)
774 {
775 int dest_copy = (SCHED_TIME (e->dest->cuid)
776 - SCHED_TIME (e->src->cuid)) / ii;
777
778 if (e->distance == 1)
779 dest_copy = (SCHED_TIME (e->dest->cuid)
780 - SCHED_TIME (e->src->cuid) + ii) / ii;
781
782 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
783 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
784 dest_copy--;
785
786 if (dest_copy)
787 {
788 ps_reg_move_info *move;
789
790 move = ps_reg_move (ps, first_move + dest_copy - 1);
791 bitmap_set_bit (move->uses, e->dest->cuid);
792 if (e->distance == 1)
793 bitmap_set_bit (distance1_uses, e->dest->cuid);
794 }
795 }
796
797 auto_sbitmap must_follow (first_move + nreg_moves);
798 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
799 if (!schedule_reg_move (ps, first_move + i_reg_move,
800 distance1_uses, must_follow))
801 break;
802 if (distance1_uses)
803 sbitmap_free (distance1_uses);
804 if (i_reg_move < nreg_moves)
805 return false;
806 }
807 return true;
808 }
809
810 /* Emit the moves associated with PS. Apply the substitutions
811 associated with them. */
812 static void
813 apply_reg_moves (partial_schedule_ptr ps)
814 {
815 ps_reg_move_info *move;
816 int i;
817
818 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
819 {
820 unsigned int i_use;
821 sbitmap_iterator sbi;
822
823 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
824 {
825 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
826 df_insn_rescan (ps->g->nodes[i_use].insn);
827 }
828 }
829 }
830
831 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
832 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
833 will move to cycle zero. */
834 static void
835 reset_sched_times (partial_schedule_ptr ps, int amount)
836 {
837 int row;
838 int ii = ps->ii;
839 ps_insn_ptr crr_insn;
840
841 for (row = 0; row < ii; row++)
842 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
843 {
844 int u = crr_insn->id;
845 int normalized_time = SCHED_TIME (u) - amount;
846 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
847
848 if (dump_file)
849 {
850 /* Print the scheduling times after the rotation. */
851 rtx_insn *insn = ps_rtl_insn (ps, u);
852
853 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
854 "crr_insn->cycle=%d, min_cycle=%d", u,
855 INSN_UID (insn), normalized_time, new_min_cycle);
856 if (JUMP_P (insn))
857 fprintf (dump_file, " (branch)");
858 fprintf (dump_file, "\n");
859 }
860
861 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
862 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
863
864 crr_insn->cycle = normalized_time;
865 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
866 }
867 }
868
869 /* Permute the insns according to their order in PS, from row 0 to
870 row ii-1, and position them right before LAST. This schedules
871 the insns of the loop kernel. */
872 static void
873 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
874 {
875 int ii = ps->ii;
876 int row;
877 ps_insn_ptr ps_ij;
878
879 for (row = 0; row < ii ; row++)
880 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
881 {
882 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
883
884 if (PREV_INSN (last) != insn)
885 {
886 if (ps_ij->id < ps->g->num_nodes)
887 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
888 PREV_INSN (last));
889 else
890 add_insn_before (insn, last, NULL);
891 }
892 }
893 }
894
895 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
896 respectively only if cycle C falls on the border of the scheduling
897 window boundaries marked by START and END cycles. STEP is the
898 direction of the window. */
899 static inline void
900 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
901 sbitmap *tmp_precede, sbitmap must_precede, int c,
902 int start, int end, int step)
903 {
904 *tmp_precede = NULL;
905 *tmp_follow = NULL;
906
907 if (c == start)
908 {
909 if (step == 1)
910 *tmp_precede = must_precede;
911 else /* step == -1. */
912 *tmp_follow = must_follow;
913 }
914 if (c == end - step)
915 {
916 if (step == 1)
917 *tmp_follow = must_follow;
918 else /* step == -1. */
919 *tmp_precede = must_precede;
920 }
921
922 }
923
924 /* Return True if the branch can be moved to row ii-1 while
925 normalizing the partial schedule PS to start from cycle zero and thus
926 optimize the SC. Otherwise return False. */
927 static bool
928 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
929 {
930 int amount = PS_MIN_CYCLE (ps);
931 int start, end, step;
932 int ii = ps->ii;
933 bool ok = false;
934 int stage_count, stage_count_curr;
935
936 /* Compare the SC after normalization and SC after bringing the branch
937 to row ii-1. If they are equal just bail out. */
938 stage_count = calculate_stage_count (ps, amount);
939 stage_count_curr =
940 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
941
942 if (stage_count == stage_count_curr)
943 {
944 if (dump_file)
945 fprintf (dump_file, "SMS SC already optimized.\n");
946
947 return false;
948 }
949
950 if (dump_file)
951 {
952 fprintf (dump_file, "SMS Trying to optimize branch location\n");
953 fprintf (dump_file, "SMS partial schedule before trial:\n");
954 print_partial_schedule (ps, dump_file);
955 }
956
957 /* First, normalize the partial scheduling. */
958 reset_sched_times (ps, amount);
959 rotate_partial_schedule (ps, amount);
960 if (dump_file)
961 {
962 fprintf (dump_file,
963 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
964 ii, stage_count);
965 print_partial_schedule (ps, dump_file);
966 }
967
968 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
969 return true;
970
971 auto_sbitmap sched_nodes (g->num_nodes);
972 bitmap_ones (sched_nodes);
973
974 /* Calculate the new placement of the branch. It should be in row
975 ii-1 and fall into it's scheduling window. */
976 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
977 &step, &end) == 0)
978 {
979 bool success;
980 ps_insn_ptr next_ps_i;
981 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
982 int row = SMODULO (branch_cycle, ps->ii);
983 int num_splits = 0;
984 sbitmap tmp_precede, tmp_follow;
985 int min_cycle, c;
986
987 if (dump_file)
988 fprintf (dump_file, "\nTrying to schedule node %d "
989 "INSN = %d in (%d .. %d) step %d\n",
990 g->closing_branch->cuid,
991 (INSN_UID (g->closing_branch->insn)), start, end, step);
992
993 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
994 if (step == 1)
995 {
996 c = start + ii - SMODULO (start, ii) - 1;
997 gcc_assert (c >= start);
998 if (c >= end)
999 {
1000 if (dump_file)
1001 fprintf (dump_file,
1002 "SMS failed to schedule branch at cycle: %d\n", c);
1003 return false;
1004 }
1005 }
1006 else
1007 {
1008 c = start - SMODULO (start, ii) - 1;
1009 gcc_assert (c <= start);
1010
1011 if (c <= end)
1012 {
1013 if (dump_file)
1014 fprintf (dump_file,
1015 "SMS failed to schedule branch at cycle: %d\n", c);
1016 return false;
1017 }
1018 }
1019
1020 auto_sbitmap must_precede (g->num_nodes);
1021 auto_sbitmap must_follow (g->num_nodes);
1022
1023 /* Try to schedule the branch is it's new cycle. */
1024 calculate_must_precede_follow (g->closing_branch, start, end,
1025 step, ii, sched_nodes,
1026 must_precede, must_follow);
1027
1028 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1029 must_precede, c, start, end, step);
1030
1031 /* Find the element in the partial schedule related to the closing
1032 branch so we can remove it from it's current cycle. */
1033 for (next_ps_i = ps->rows[row];
1034 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1035 if (next_ps_i->id == g->closing_branch->cuid)
1036 break;
1037
1038 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1039 remove_node_from_ps (ps, next_ps_i);
1040 success =
1041 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1042 sched_nodes, &num_splits,
1043 tmp_precede, tmp_follow);
1044 gcc_assert (num_splits == 0);
1045 if (!success)
1046 {
1047 if (dump_file)
1048 fprintf (dump_file,
1049 "SMS failed to schedule branch at cycle: %d, "
1050 "bringing it back to cycle %d\n", c, branch_cycle);
1051
1052 /* The branch was failed to be placed in row ii - 1.
1053 Put it back in it's original place in the partial
1054 schedualing. */
1055 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1056 must_precede, branch_cycle, start, end,
1057 step);
1058 success =
1059 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1060 branch_cycle, sched_nodes,
1061 &num_splits, tmp_precede,
1062 tmp_follow);
1063 gcc_assert (success && (num_splits == 0));
1064 ok = false;
1065 }
1066 else
1067 {
1068 /* The branch is placed in row ii - 1. */
1069 if (dump_file)
1070 fprintf (dump_file,
1071 "SMS success in moving branch to cycle %d\n", c);
1072
1073 update_node_sched_params (g->closing_branch->cuid, ii, c,
1074 PS_MIN_CYCLE (ps));
1075 ok = true;
1076 }
1077
1078 /* This might have been added to a new first stage. */
1079 if (PS_MIN_CYCLE (ps) < min_cycle)
1080 reset_sched_times (ps, 0);
1081 }
1082
1083 return ok;
1084 }
1085
1086 static void
1087 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1088 int to_stage, rtx count_reg)
1089 {
1090 int row;
1091 ps_insn_ptr ps_ij;
1092
1093 for (row = 0; row < ps->ii; row++)
1094 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1095 {
1096 int u = ps_ij->id;
1097 int first_u, last_u;
1098 rtx_insn *u_insn;
1099
1100 /* Do not duplicate any insn which refers to count_reg as it
1101 belongs to the control part.
1102 The closing branch is scheduled as well and thus should
1103 be ignored.
1104 TODO: This should be done by analyzing the control part of
1105 the loop. */
1106 u_insn = ps_rtl_insn (ps, u);
1107 if (reg_mentioned_p (count_reg, u_insn)
1108 || JUMP_P (u_insn))
1109 continue;
1110
1111 first_u = SCHED_STAGE (u);
1112 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1113 if (from_stage <= last_u && to_stage >= first_u)
1114 {
1115 if (u < ps->g->num_nodes)
1116 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1117 else
1118 emit_insn (copy_rtx (PATTERN (u_insn)));
1119 }
1120 }
1121 }
1122
1123
1124 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1125 static void
1126 generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop,
1127 rtx count_reg, rtx count_init)
1128 {
1129 int i;
1130 int last_stage = PS_STAGE_COUNT (ps) - 1;
1131 edge e;
1132
1133 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1134 start_sequence ();
1135
1136 if (!count_init)
1137 {
1138 /* Generate instructions at the beginning of the prolog to
1139 adjust the loop count by STAGE_COUNT. If loop count is constant
1140 (count_init), this constant is adjusted by STAGE_COUNT in
1141 generate_prolog_epilog function. */
1142 rtx sub_reg = NULL_RTX;
1143
1144 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1145 gen_int_mode (last_stage,
1146 GET_MODE (count_reg)),
1147 count_reg, 1, OPTAB_DIRECT);
1148 gcc_assert (REG_P (sub_reg));
1149 if (REGNO (sub_reg) != REGNO (count_reg))
1150 emit_move_insn (count_reg, sub_reg);
1151 }
1152
1153 for (i = 0; i < last_stage; i++)
1154 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1155
1156 /* Put the prolog on the entry edge. */
1157 e = loop_preheader_edge (loop);
1158 split_edge_and_insert (e, get_insns ());
1159 if (!flag_resched_modulo_sched)
1160 e->dest->flags |= BB_DISABLE_SCHEDULE;
1161
1162 end_sequence ();
1163
1164 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1165 start_sequence ();
1166
1167 for (i = 0; i < last_stage; i++)
1168 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1169
1170 /* Put the epilogue on the exit edge. */
1171 gcc_assert (single_exit (loop));
1172 e = single_exit (loop);
1173 split_edge_and_insert (e, get_insns ());
1174 if (!flag_resched_modulo_sched)
1175 e->dest->flags |= BB_DISABLE_SCHEDULE;
1176
1177 end_sequence ();
1178 }
1179
1180 /* Mark LOOP as software pipelined so the later
1181 scheduling passes don't touch it. */
1182 static void
1183 mark_loop_unsched (class loop *loop)
1184 {
1185 unsigned i;
1186 basic_block *bbs = get_loop_body (loop);
1187
1188 for (i = 0; i < loop->num_nodes; i++)
1189 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1190
1191 free (bbs);
1192 }
1193
1194 /* Return true if all the BBs of the loop are empty except the
1195 loop header. */
1196 static bool
1197 loop_single_full_bb_p (class loop *loop)
1198 {
1199 unsigned i;
1200 basic_block *bbs = get_loop_body (loop);
1201
1202 for (i = 0; i < loop->num_nodes ; i++)
1203 {
1204 rtx_insn *head, *tail;
1205 bool empty_bb = true;
1206
1207 if (bbs[i] == loop->header)
1208 continue;
1209
1210 /* Make sure that basic blocks other than the header
1211 have only notes labels or jumps. */
1212 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1213 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1214 {
1215 if (NOTE_P (head) || LABEL_P (head)
1216 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1217 continue;
1218 empty_bb = false;
1219 break;
1220 }
1221
1222 if (! empty_bb)
1223 {
1224 free (bbs);
1225 return false;
1226 }
1227 }
1228 free (bbs);
1229 return true;
1230 }
1231
1232 /* Dump file:line from INSN's location info to dump_file. */
1233
1234 static void
1235 dump_insn_location (rtx_insn *insn)
1236 {
1237 if (dump_file && INSN_HAS_LOCATION (insn))
1238 {
1239 expanded_location xloc = insn_location (insn);
1240 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1241 }
1242 }
1243
1244 /* A simple loop from SMS point of view; it is a loop that is composed of
1245 either a single basic block or two BBs - a header and a latch. */
1246 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1247 && (EDGE_COUNT (loop->latch->preds) == 1) \
1248 && (EDGE_COUNT (loop->latch->succs) == 1))
1249
1250 /* Return true if the loop is in its canonical form and false if not.
1251 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1252 static bool
1253 loop_canon_p (class loop *loop)
1254 {
1255
1256 if (loop->inner || !loop_outer (loop))
1257 {
1258 if (dump_file)
1259 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1260 return false;
1261 }
1262
1263 if (!single_exit (loop))
1264 {
1265 if (dump_file)
1266 {
1267 rtx_insn *insn = BB_END (loop->header);
1268
1269 fprintf (dump_file, "SMS loop many exits");
1270 dump_insn_location (insn);
1271 fprintf (dump_file, "\n");
1272 }
1273 return false;
1274 }
1275
1276 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1277 {
1278 if (dump_file)
1279 {
1280 rtx_insn *insn = BB_END (loop->header);
1281
1282 fprintf (dump_file, "SMS loop many BBs.");
1283 dump_insn_location (insn);
1284 fprintf (dump_file, "\n");
1285 }
1286 return false;
1287 }
1288
1289 return true;
1290 }
1291
1292 /* If there are more than one entry for the loop,
1293 make it one by splitting the first entry edge and
1294 redirecting the others to the new BB. */
1295 static void
1296 canon_loop (class loop *loop)
1297 {
1298 edge e;
1299 edge_iterator i;
1300
1301 /* Avoid annoying special cases of edges going to exit
1302 block. */
1303 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1304 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1305 split_edge (e);
1306
1307 if (loop->latch == loop->header
1308 || EDGE_COUNT (loop->latch->succs) > 1)
1309 {
1310 FOR_EACH_EDGE (e, i, loop->header->preds)
1311 if (e->src == loop->latch)
1312 break;
1313 split_edge (e);
1314 }
1315 }
1316
1317 /* Setup infos. */
1318 static void
1319 setup_sched_infos (void)
1320 {
1321 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1322 sizeof (sms_common_sched_info));
1323 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1324 common_sched_info = &sms_common_sched_info;
1325
1326 sched_deps_info = &sms_sched_deps_info;
1327 current_sched_info = &sms_sched_info;
1328 }
1329
1330 /* Probability in % that the sms-ed loop rolls enough so that optimized
1331 version may be entered. Just a guess. */
1332 #define PROB_SMS_ENOUGH_ITERATIONS 80
1333
1334 /* Used to calculate the upper bound of ii. */
1335 #define MAXII_FACTOR 2
1336
1337 /* Main entry point, perform SMS scheduling on the loops of the function
1338 that consist of single basic blocks. */
1339 static void
1340 sms_schedule (void)
1341 {
1342 rtx_insn *insn;
1343 ddg_ptr *g_arr, g;
1344 int * node_order;
1345 int maxii, max_asap;
1346 partial_schedule_ptr ps;
1347 basic_block bb = NULL;
1348 class loop *loop;
1349 basic_block condition_bb = NULL;
1350 edge latch_edge;
1351 HOST_WIDE_INT trip_count, max_trip_count;
1352
1353 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1354 | LOOPS_HAVE_RECORDED_EXITS);
1355 if (number_of_loops (cfun) <= 1)
1356 {
1357 loop_optimizer_finalize ();
1358 return; /* There are no loops to schedule. */
1359 }
1360
1361 /* Initialize issue_rate. */
1362 if (targetm.sched.issue_rate)
1363 {
1364 int temp = reload_completed;
1365
1366 reload_completed = 1;
1367 issue_rate = targetm.sched.issue_rate ();
1368 reload_completed = temp;
1369 }
1370 else
1371 issue_rate = 1;
1372
1373 /* Initialize the scheduler. */
1374 setup_sched_infos ();
1375 haifa_sched_init ();
1376
1377 /* Allocate memory to hold the DDG array one entry for each loop.
1378 We use loop->num as index into this array. */
1379 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1380
1381 if (dump_file)
1382 {
1383 fprintf (dump_file, "\n\nSMS analysis phase\n");
1384 fprintf (dump_file, "===================\n\n");
1385 }
1386
1387 /* Build DDGs for all the relevant loops and hold them in G_ARR
1388 indexed by the loop index. */
1389 FOR_EACH_LOOP (loop, 0)
1390 {
1391 rtx_insn *head, *tail;
1392 rtx count_reg;
1393
1394 /* For debugging. */
1395 if (dbg_cnt (sms_sched_loop) == false)
1396 {
1397 if (dump_file)
1398 fprintf (dump_file, "SMS reached max limit... \n");
1399
1400 break;
1401 }
1402
1403 if (dump_file)
1404 {
1405 rtx_insn *insn = BB_END (loop->header);
1406
1407 fprintf (dump_file, "SMS loop num: %d", loop->num);
1408 dump_insn_location (insn);
1409 fprintf (dump_file, "\n");
1410 }
1411
1412 if (! loop_canon_p (loop))
1413 continue;
1414
1415 if (! loop_single_full_bb_p (loop))
1416 {
1417 if (dump_file)
1418 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1419 continue;
1420 }
1421
1422 bb = loop->header;
1423
1424 get_ebb_head_tail (bb, bb, &head, &tail);
1425 latch_edge = loop_latch_edge (loop);
1426 gcc_assert (single_exit (loop));
1427 trip_count = get_estimated_loop_iterations_int (loop);
1428 max_trip_count = get_max_loop_iterations_int (loop);
1429
1430 /* Perform SMS only on loops that their average count is above threshold. */
1431
1432 if ( latch_edge->count () > profile_count::zero ()
1433 && (latch_edge->count()
1434 < single_exit (loop)->count ().apply_scale
1435 (param_sms_loop_average_count_threshold, 1)))
1436 {
1437 if (dump_file)
1438 {
1439 dump_insn_location (tail);
1440 fprintf (dump_file, "\nSMS single-bb-loop\n");
1441 if (profile_info && flag_branch_probabilities)
1442 {
1443 fprintf (dump_file, "SMS loop-count ");
1444 fprintf (dump_file, "%" PRId64,
1445 (int64_t) bb->count.to_gcov_type ());
1446 fprintf (dump_file, "\n");
1447 fprintf (dump_file, "SMS trip-count ");
1448 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1449 (int64_t) trip_count, (int64_t) max_trip_count);
1450 fprintf (dump_file, "\n");
1451 }
1452 }
1453 continue;
1454 }
1455
1456 /* Make sure this is a doloop. */
1457 if ( !(count_reg = doloop_register_get (head, tail)))
1458 {
1459 if (dump_file)
1460 fprintf (dump_file, "SMS doloop_register_get failed\n");
1461 continue;
1462 }
1463
1464 /* Don't handle BBs with calls or barriers
1465 or !single_set with the exception of instructions that include
1466 count_reg---these instructions are part of the control part
1467 that do-loop recognizes.
1468 ??? Should handle insns defining subregs. */
1469 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1470 {
1471 rtx set;
1472
1473 if (CALL_P (insn)
1474 || BARRIER_P (insn)
1475 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1476 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1477 && !reg_mentioned_p (count_reg, insn))
1478 || (INSN_P (insn) && (set = single_set (insn))
1479 && GET_CODE (SET_DEST (set)) == SUBREG))
1480 break;
1481 }
1482
1483 if (insn != NEXT_INSN (tail))
1484 {
1485 if (dump_file)
1486 {
1487 if (CALL_P (insn))
1488 fprintf (dump_file, "SMS loop-with-call\n");
1489 else if (BARRIER_P (insn))
1490 fprintf (dump_file, "SMS loop-with-barrier\n");
1491 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1492 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1493 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1494 else
1495 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1496 print_rtl_single (dump_file, insn);
1497 }
1498
1499 continue;
1500 }
1501
1502 /* Always schedule the closing branch with the rest of the
1503 instructions. The branch is rotated to be in row ii-1 at the
1504 end of the scheduling procedure to make sure it's the last
1505 instruction in the iteration. */
1506 if (! (g = create_ddg (bb, 1)))
1507 {
1508 if (dump_file)
1509 fprintf (dump_file, "SMS create_ddg failed\n");
1510 continue;
1511 }
1512
1513 g_arr[loop->num] = g;
1514 if (dump_file)
1515 fprintf (dump_file, "...OK\n");
1516
1517 }
1518 if (dump_file)
1519 {
1520 fprintf (dump_file, "\nSMS transformation phase\n");
1521 fprintf (dump_file, "=========================\n\n");
1522 }
1523
1524 /* We don't want to perform SMS on new loops - created by versioning. */
1525 FOR_EACH_LOOP (loop, 0)
1526 {
1527 rtx_insn *head, *tail;
1528 rtx count_reg;
1529 rtx_insn *count_init;
1530 int mii, rec_mii, stage_count, min_cycle;
1531 int64_t loop_count = 0;
1532 bool opt_sc_p;
1533
1534 if (! (g = g_arr[loop->num]))
1535 continue;
1536
1537 if (dump_file)
1538 {
1539 rtx_insn *insn = BB_END (loop->header);
1540
1541 fprintf (dump_file, "SMS loop num: %d", loop->num);
1542 dump_insn_location (insn);
1543 fprintf (dump_file, "\n");
1544
1545 print_ddg (dump_file, g);
1546 }
1547
1548 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1549
1550 latch_edge = loop_latch_edge (loop);
1551 gcc_assert (single_exit (loop));
1552 trip_count = get_estimated_loop_iterations_int (loop);
1553 max_trip_count = get_max_loop_iterations_int (loop);
1554
1555 if (dump_file)
1556 {
1557 dump_insn_location (tail);
1558 fprintf (dump_file, "\nSMS single-bb-loop\n");
1559 if (profile_info && flag_branch_probabilities)
1560 {
1561 fprintf (dump_file, "SMS loop-count ");
1562 fprintf (dump_file, "%" PRId64,
1563 (int64_t) bb->count.to_gcov_type ());
1564 fprintf (dump_file, "\n");
1565 }
1566 fprintf (dump_file, "SMS doloop\n");
1567 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1568 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1569 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1570 }
1571
1572
1573 /* In case of th loop have doloop register it gets special
1574 handling. */
1575 count_init = NULL;
1576 if ((count_reg = doloop_register_get (head, tail)))
1577 {
1578 basic_block pre_header;
1579
1580 pre_header = loop_preheader_edge (loop)->src;
1581 count_init = const_iteration_count (count_reg, pre_header,
1582 &loop_count);
1583 }
1584 gcc_assert (count_reg);
1585
1586 if (dump_file && count_init)
1587 {
1588 fprintf (dump_file, "SMS const-doloop ");
1589 fprintf (dump_file, "%" PRId64,
1590 loop_count);
1591 fprintf (dump_file, "\n");
1592 }
1593
1594 node_order = XNEWVEC (int, g->num_nodes);
1595
1596 mii = 1; /* Need to pass some estimate of mii. */
1597 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1598 mii = MAX (res_MII (g), rec_mii);
1599 mii = MAX (mii, 1);
1600 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1601
1602 if (dump_file)
1603 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1604 rec_mii, mii, maxii);
1605
1606 for (;;)
1607 {
1608 set_node_sched_params (g);
1609
1610 stage_count = 0;
1611 opt_sc_p = false;
1612 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1613
1614 if (ps)
1615 {
1616 /* Try to achieve optimized SC by normalizing the partial
1617 schedule (having the cycles start from cycle zero).
1618 The branch location must be placed in row ii-1 in the
1619 final scheduling. If failed, shift all instructions to
1620 position the branch in row ii-1. */
1621 opt_sc_p = optimize_sc (ps, g);
1622 if (opt_sc_p)
1623 stage_count = calculate_stage_count (ps, 0);
1624 else
1625 {
1626 /* Bring the branch to cycle ii-1. */
1627 int amount = (SCHED_TIME (g->closing_branch->cuid)
1628 - (ps->ii - 1));
1629
1630 if (dump_file)
1631 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1632
1633 stage_count = calculate_stage_count (ps, amount);
1634 }
1635
1636 gcc_assert (stage_count >= 1);
1637 }
1638
1639 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1640 1 means that there is no interleaving between iterations thus
1641 we let the scheduling passes do the job in this case. */
1642 if (stage_count < param_sms_min_sc
1643 || (count_init && (loop_count <= stage_count))
1644 || (max_trip_count >= 0 && max_trip_count <= stage_count)
1645 || (trip_count >= 0 && trip_count <= stage_count))
1646 {
1647 if (dump_file)
1648 {
1649 fprintf (dump_file, "SMS failed... \n");
1650 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1651 " loop-count=", stage_count);
1652 fprintf (dump_file, "%" PRId64, loop_count);
1653 fprintf (dump_file, ", trip-count=");
1654 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1655 (int64_t) trip_count, (int64_t) max_trip_count);
1656 fprintf (dump_file, ")\n");
1657 }
1658 break;
1659 }
1660
1661 if (!opt_sc_p)
1662 {
1663 /* Rotate the partial schedule to have the branch in row ii-1. */
1664 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1665
1666 reset_sched_times (ps, amount);
1667 rotate_partial_schedule (ps, amount);
1668 }
1669
1670 set_columns_for_ps (ps);
1671
1672 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1673 if (!schedule_reg_moves (ps))
1674 {
1675 mii = ps->ii + 1;
1676 free_partial_schedule (ps);
1677 continue;
1678 }
1679
1680 /* Moves that handle incoming values might have been added
1681 to a new first stage. Bump the stage count if so.
1682
1683 ??? Perhaps we could consider rotating the schedule here
1684 instead? */
1685 if (PS_MIN_CYCLE (ps) < min_cycle)
1686 {
1687 reset_sched_times (ps, 0);
1688 stage_count++;
1689 }
1690
1691 /* The stage count should now be correct without rotation. */
1692 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1693 PS_STAGE_COUNT (ps) = stage_count;
1694
1695 canon_loop (loop);
1696
1697 if (dump_file)
1698 {
1699 dump_insn_location (tail);
1700 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1701 ps->ii, stage_count);
1702 print_partial_schedule (ps, dump_file);
1703 }
1704
1705 /* case the BCT count is not known , Do loop-versioning */
1706 if (count_reg && ! count_init)
1707 {
1708 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1709 gen_int_mode (stage_count,
1710 GET_MODE (count_reg)));
1711 profile_probability prob = profile_probability::guessed_always ()
1712 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1713
1714 loop_version (loop, comp_rtx, &condition_bb,
1715 prob, prob.invert (),
1716 prob, prob.invert (), true);
1717 }
1718
1719 /* Set new iteration count of loop kernel. */
1720 if (count_reg && count_init)
1721 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1722 - stage_count + 1);
1723
1724 /* Now apply the scheduled kernel to the RTL of the loop. */
1725 permute_partial_schedule (ps, g->closing_branch->first_note);
1726
1727 /* Mark this loop as software pipelined so the later
1728 scheduling passes don't touch it. */
1729 if (! flag_resched_modulo_sched)
1730 mark_loop_unsched (loop);
1731
1732 /* The life-info is not valid any more. */
1733 df_set_bb_dirty (g->bb);
1734
1735 apply_reg_moves (ps);
1736 if (dump_file)
1737 print_node_sched_params (dump_file, g->num_nodes, ps);
1738 /* Generate prolog and epilog. */
1739 generate_prolog_epilog (ps, loop, count_reg, count_init);
1740 break;
1741 }
1742
1743 free_partial_schedule (ps);
1744 node_sched_param_vec.release ();
1745 free (node_order);
1746 free_ddg (g);
1747 }
1748
1749 free (g_arr);
1750
1751 /* Release scheduler data, needed until now because of DFA. */
1752 haifa_sched_finish ();
1753 loop_optimizer_finalize ();
1754 }
1755
1756 /* The SMS scheduling algorithm itself
1757 -----------------------------------
1758 Input: 'O' an ordered list of insns of a loop.
1759 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1760
1761 'Q' is the empty Set
1762 'PS' is the partial schedule; it holds the currently scheduled nodes with
1763 their cycle/slot.
1764 'PSP' previously scheduled predecessors.
1765 'PSS' previously scheduled successors.
1766 't(u)' the cycle where u is scheduled.
1767 'l(u)' is the latency of u.
1768 'd(v,u)' is the dependence distance from v to u.
1769 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1770 the node ordering phase.
1771 'check_hardware_resources_conflicts(u, PS, c)'
1772 run a trace around cycle/slot through DFA model
1773 to check resource conflicts involving instruction u
1774 at cycle c given the partial schedule PS.
1775 'add_to_partial_schedule_at_time(u, PS, c)'
1776 Add the node/instruction u to the partial schedule
1777 PS at time c.
1778 'calculate_register_pressure(PS)'
1779 Given a schedule of instructions, calculate the register
1780 pressure it implies. One implementation could be the
1781 maximum number of overlapping live ranges.
1782 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1783 registers available in the hardware.
1784
1785 1. II = MII.
1786 2. PS = empty list
1787 3. for each node u in O in pre-computed order
1788 4. if (PSP(u) != Q && PSS(u) == Q) then
1789 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1790 6. start = Early_start; end = Early_start + II - 1; step = 1
1791 11. else if (PSP(u) == Q && PSS(u) != Q) then
1792 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1793 13. start = Late_start; end = Late_start - II + 1; step = -1
1794 14. else if (PSP(u) != Q && PSS(u) != Q) then
1795 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1796 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1797 17. start = Early_start;
1798 18. end = min(Early_start + II - 1 , Late_start);
1799 19. step = 1
1800 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1801 21. start = ASAP(u); end = start + II - 1; step = 1
1802 22. endif
1803
1804 23. success = false
1805 24. for (c = start ; c != end ; c += step)
1806 25. if check_hardware_resources_conflicts(u, PS, c) then
1807 26. add_to_partial_schedule_at_time(u, PS, c)
1808 27. success = true
1809 28. break
1810 29. endif
1811 30. endfor
1812 31. if (success == false) then
1813 32. II = II + 1
1814 33. if (II > maxII) then
1815 34. finish - failed to schedule
1816 35. endif
1817 36. goto 2.
1818 37. endif
1819 38. endfor
1820 39. if (calculate_register_pressure(PS) > maxRP) then
1821 40. goto 32.
1822 41. endif
1823 42. compute epilogue & prologue
1824 43. finish - succeeded to schedule
1825
1826 ??? The algorithm restricts the scheduling window to II cycles.
1827 In rare cases, it may be better to allow windows of II+1 cycles.
1828 The window would then start and end on the same row, but with
1829 different "must precede" and "must follow" requirements. */
1830
1831 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1832 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1833 set to 0 to save compile time. */
1834 #define DFA_HISTORY param_sms_dfa_history
1835
1836 /* A threshold for the number of repeated unsuccessful attempts to insert
1837 an empty row, before we flush the partial schedule and start over. */
1838 #define MAX_SPLIT_NUM 10
1839 /* Given the partial schedule PS, this function calculates and returns the
1840 cycles in which we can schedule the node with the given index I.
1841 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1842 noticed that there are several cases in which we fail to SMS the loop
1843 because the sched window of a node is empty due to tight data-deps. In
1844 such cases we want to unschedule some of the predecessors/successors
1845 until we get non-empty scheduling window. It returns -1 if the
1846 scheduling window is empty and zero otherwise. */
1847
1848 static int
1849 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1850 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1851 int *end_p)
1852 {
1853 int start, step, end;
1854 int early_start, late_start;
1855 ddg_edge_ptr e;
1856 auto_sbitmap psp (ps->g->num_nodes);
1857 auto_sbitmap pss (ps->g->num_nodes);
1858 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1859 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1860 int psp_not_empty;
1861 int pss_not_empty;
1862 int count_preds;
1863 int count_succs;
1864
1865 /* 1. compute sched window for u (start, end, step). */
1866 bitmap_clear (psp);
1867 bitmap_clear (pss);
1868 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1869 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1870
1871 /* We first compute a forward range (start <= end), then decide whether
1872 to reverse it. */
1873 early_start = INT_MIN;
1874 late_start = INT_MAX;
1875 start = INT_MIN;
1876 end = INT_MAX;
1877 step = 1;
1878
1879 count_preds = 0;
1880 count_succs = 0;
1881
1882 if (dump_file && (psp_not_empty || pss_not_empty))
1883 {
1884 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1885 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1886 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1887 "start", "early start", "late start", "end", "time");
1888 fprintf (dump_file, "=========== =========== =========== ==========="
1889 " =====\n");
1890 }
1891 /* Calculate early_start and limit end. Both bounds are inclusive. */
1892 if (psp_not_empty)
1893 for (e = u_node->in; e != 0; e = e->next_in)
1894 {
1895 int v = e->src->cuid;
1896
1897 if (bitmap_bit_p (sched_nodes, v))
1898 {
1899 int p_st = SCHED_TIME (v);
1900 int earliest = p_st + e->latency - (e->distance * ii);
1901 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1902
1903 if (dump_file)
1904 {
1905 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1906 "", earliest, "", latest, p_st);
1907 print_ddg_edge (dump_file, e);
1908 fprintf (dump_file, "\n");
1909 }
1910
1911 early_start = MAX (early_start, earliest);
1912 end = MIN (end, latest);
1913
1914 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1915 count_preds++;
1916 }
1917 }
1918
1919 /* Calculate late_start and limit start. Both bounds are inclusive. */
1920 if (pss_not_empty)
1921 for (e = u_node->out; e != 0; e = e->next_out)
1922 {
1923 int v = e->dest->cuid;
1924
1925 if (bitmap_bit_p (sched_nodes, v))
1926 {
1927 int s_st = SCHED_TIME (v);
1928 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1929 int latest = s_st - e->latency + (e->distance * ii);
1930
1931 if (dump_file)
1932 {
1933 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1934 earliest, "", latest, "", s_st);
1935 print_ddg_edge (dump_file, e);
1936 fprintf (dump_file, "\n");
1937 }
1938
1939 start = MAX (start, earliest);
1940 late_start = MIN (late_start, latest);
1941
1942 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1943 count_succs++;
1944 }
1945 }
1946
1947 if (dump_file && (psp_not_empty || pss_not_empty))
1948 {
1949 fprintf (dump_file, "----------- ----------- ----------- -----------"
1950 " -----\n");
1951 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1952 start, early_start, late_start, end, "",
1953 "(max, max, min, min)");
1954 }
1955
1956 /* Get a target scheduling window no bigger than ii. */
1957 if (early_start == INT_MIN && late_start == INT_MAX)
1958 early_start = NODE_ASAP (u_node);
1959 else if (early_start == INT_MIN)
1960 early_start = late_start - (ii - 1);
1961 late_start = MIN (late_start, early_start + (ii - 1));
1962
1963 /* Apply memory dependence limits. */
1964 start = MAX (start, early_start);
1965 end = MIN (end, late_start);
1966
1967 if (dump_file && (psp_not_empty || pss_not_empty))
1968 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1969 "", start, end, "", "");
1970
1971 /* If there are at least as many successors as predecessors, schedule the
1972 node close to its successors. */
1973 if (pss_not_empty && count_succs >= count_preds)
1974 {
1975 std::swap (start, end);
1976 step = -1;
1977 }
1978
1979 /* Now that we've finalized the window, make END an exclusive rather
1980 than an inclusive bound. */
1981 end += step;
1982
1983 *start_p = start;
1984 *step_p = step;
1985 *end_p = end;
1986
1987 if ((start >= end && step == 1) || (start <= end && step == -1))
1988 {
1989 if (dump_file)
1990 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1991 start, end, step);
1992 return -1;
1993 }
1994
1995 return 0;
1996 }
1997
1998 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1999 node currently been scheduled. At the end of the calculation
2000 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2001 U_NODE which are (1) already scheduled in the first/last row of
2002 U_NODE's scheduling window, (2) whose dependence inequality with U
2003 becomes an equality when U is scheduled in this same row, and (3)
2004 whose dependence latency is zero.
2005
2006 The first and last rows are calculated using the following parameters:
2007 START/END rows - The cycles that begins/ends the traversal on the window;
2008 searching for an empty cycle to schedule U_NODE.
2009 STEP - The direction in which we traverse the window.
2010 II - The initiation interval. */
2011
2012 static void
2013 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2014 int step, int ii, sbitmap sched_nodes,
2015 sbitmap must_precede, sbitmap must_follow)
2016 {
2017 ddg_edge_ptr e;
2018 int first_cycle_in_window, last_cycle_in_window;
2019
2020 gcc_assert (must_precede && must_follow);
2021
2022 /* Consider the following scheduling window:
2023 {first_cycle_in_window, first_cycle_in_window+1, ...,
2024 last_cycle_in_window}. If step is 1 then the following will be
2025 the order we traverse the window: {start=first_cycle_in_window,
2026 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2027 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2028 end=first_cycle_in_window-1} if step is -1. */
2029 first_cycle_in_window = (step == 1) ? start : end - step;
2030 last_cycle_in_window = (step == 1) ? end - step : start;
2031
2032 bitmap_clear (must_precede);
2033 bitmap_clear (must_follow);
2034
2035 if (dump_file)
2036 fprintf (dump_file, "\nmust_precede: ");
2037
2038 /* Instead of checking if:
2039 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2040 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2041 first_cycle_in_window)
2042 && e->latency == 0
2043 we use the fact that latency is non-negative:
2044 SCHED_TIME (e->src) - (e->distance * ii) <=
2045 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2046 first_cycle_in_window
2047 and check only if
2048 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2049 for (e = u_node->in; e != 0; e = e->next_in)
2050 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2051 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2052 first_cycle_in_window))
2053 {
2054 if (dump_file)
2055 fprintf (dump_file, "%d ", e->src->cuid);
2056
2057 bitmap_set_bit (must_precede, e->src->cuid);
2058 }
2059
2060 if (dump_file)
2061 fprintf (dump_file, "\nmust_follow: ");
2062
2063 /* Instead of checking if:
2064 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2065 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2066 last_cycle_in_window)
2067 && e->latency == 0
2068 we use the fact that latency is non-negative:
2069 SCHED_TIME (e->dest) + (e->distance * ii) >=
2070 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2071 last_cycle_in_window
2072 and check only if
2073 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2074 for (e = u_node->out; e != 0; e = e->next_out)
2075 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2076 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2077 last_cycle_in_window))
2078 {
2079 if (dump_file)
2080 fprintf (dump_file, "%d ", e->dest->cuid);
2081
2082 bitmap_set_bit (must_follow, e->dest->cuid);
2083 }
2084
2085 if (dump_file)
2086 fprintf (dump_file, "\n");
2087 }
2088
2089 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2090 parameters to decide if that's possible:
2091 PS - The partial schedule.
2092 U - The serial number of U_NODE.
2093 NUM_SPLITS - The number of row splits made so far.
2094 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2095 the first row of the scheduling window)
2096 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2097 last row of the scheduling window) */
2098
2099 static bool
2100 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2101 int u, int cycle, sbitmap sched_nodes,
2102 int *num_splits, sbitmap must_precede,
2103 sbitmap must_follow)
2104 {
2105 ps_insn_ptr psi;
2106 bool success = 0;
2107
2108 verify_partial_schedule (ps, sched_nodes);
2109 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2110 if (psi)
2111 {
2112 SCHED_TIME (u) = cycle;
2113 bitmap_set_bit (sched_nodes, u);
2114 success = 1;
2115 *num_splits = 0;
2116 if (dump_file)
2117 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2118
2119 }
2120
2121 return success;
2122 }
2123
2124 /* This function implements the scheduling algorithm for SMS according to the
2125 above algorithm. */
2126 static partial_schedule_ptr
2127 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2128 {
2129 int ii = mii;
2130 int i, c, success, num_splits = 0;
2131 int flush_and_start_over = true;
2132 int num_nodes = g->num_nodes;
2133 int start, end, step; /* Place together into one struct? */
2134 auto_sbitmap sched_nodes (num_nodes);
2135 auto_sbitmap must_precede (num_nodes);
2136 auto_sbitmap must_follow (num_nodes);
2137 auto_sbitmap tobe_scheduled (num_nodes);
2138
2139 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2140
2141 bitmap_ones (tobe_scheduled);
2142 bitmap_clear (sched_nodes);
2143
2144 while (flush_and_start_over && (ii < maxii))
2145 {
2146
2147 if (dump_file)
2148 fprintf (dump_file, "Starting with ii=%d\n", ii);
2149 flush_and_start_over = false;
2150 bitmap_clear (sched_nodes);
2151
2152 for (i = 0; i < num_nodes; i++)
2153 {
2154 int u = nodes_order[i];
2155 ddg_node_ptr u_node = &ps->g->nodes[u];
2156 rtx_insn *insn = u_node->insn;
2157
2158 if (!NONDEBUG_INSN_P (insn))
2159 {
2160 bitmap_clear_bit (tobe_scheduled, u);
2161 continue;
2162 }
2163
2164 if (bitmap_bit_p (sched_nodes, u))
2165 continue;
2166
2167 /* Try to get non-empty scheduling window. */
2168 success = 0;
2169 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2170 &step, &end) == 0)
2171 {
2172 if (dump_file)
2173 fprintf (dump_file, "\nTrying to schedule node %d "
2174 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2175 (g->nodes[u].insn)), start, end, step);
2176
2177 gcc_assert ((step > 0 && start < end)
2178 || (step < 0 && start > end));
2179
2180 calculate_must_precede_follow (u_node, start, end, step, ii,
2181 sched_nodes, must_precede,
2182 must_follow);
2183
2184 for (c = start; c != end; c += step)
2185 {
2186 sbitmap tmp_precede, tmp_follow;
2187
2188 set_must_precede_follow (&tmp_follow, must_follow,
2189 &tmp_precede, must_precede,
2190 c, start, end, step);
2191 success =
2192 try_scheduling_node_in_cycle (ps, u, c,
2193 sched_nodes,
2194 &num_splits, tmp_precede,
2195 tmp_follow);
2196 if (success)
2197 break;
2198 }
2199
2200 verify_partial_schedule (ps, sched_nodes);
2201 }
2202 if (!success)
2203 {
2204 int split_row;
2205
2206 if (ii++ == maxii)
2207 break;
2208
2209 if (num_splits >= MAX_SPLIT_NUM)
2210 {
2211 num_splits = 0;
2212 flush_and_start_over = true;
2213 verify_partial_schedule (ps, sched_nodes);
2214 reset_partial_schedule (ps, ii);
2215 verify_partial_schedule (ps, sched_nodes);
2216 break;
2217 }
2218
2219 num_splits++;
2220 /* The scheduling window is exclusive of 'end'
2221 whereas compute_split_window() expects an inclusive,
2222 ordered range. */
2223 if (step == 1)
2224 split_row = compute_split_row (sched_nodes, start, end - 1,
2225 ps->ii, u_node);
2226 else
2227 split_row = compute_split_row (sched_nodes, end + 1, start,
2228 ps->ii, u_node);
2229
2230 ps_insert_empty_row (ps, split_row, sched_nodes);
2231 i--; /* Go back and retry node i. */
2232
2233 if (dump_file)
2234 fprintf (dump_file, "num_splits=%d\n", num_splits);
2235 }
2236
2237 /* ??? If (success), check register pressure estimates. */
2238 } /* Continue with next node. */
2239 } /* While flush_and_start_over. */
2240 if (ii >= maxii)
2241 {
2242 free_partial_schedule (ps);
2243 ps = NULL;
2244 }
2245 else
2246 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2247
2248 return ps;
2249 }
2250
2251 /* This function inserts a new empty row into PS at the position
2252 according to SPLITROW, keeping all already scheduled instructions
2253 intact and updating their SCHED_TIME and cycle accordingly. */
2254 static void
2255 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2256 sbitmap sched_nodes)
2257 {
2258 ps_insn_ptr crr_insn;
2259 ps_insn_ptr *rows_new;
2260 int ii = ps->ii;
2261 int new_ii = ii + 1;
2262 int row;
2263 int *rows_length_new;
2264
2265 verify_partial_schedule (ps, sched_nodes);
2266
2267 /* We normalize sched_time and rotate ps to have only non-negative sched
2268 times, for simplicity of updating cycles after inserting new row. */
2269 split_row -= ps->min_cycle;
2270 split_row = SMODULO (split_row, ii);
2271 if (dump_file)
2272 fprintf (dump_file, "split_row=%d\n", split_row);
2273
2274 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2275 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2276
2277 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2278 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2279 for (row = 0; row < split_row; row++)
2280 {
2281 rows_new[row] = ps->rows[row];
2282 rows_length_new[row] = ps->rows_length[row];
2283 ps->rows[row] = NULL;
2284 for (crr_insn = rows_new[row];
2285 crr_insn; crr_insn = crr_insn->next_in_row)
2286 {
2287 int u = crr_insn->id;
2288 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2289
2290 SCHED_TIME (u) = new_time;
2291 crr_insn->cycle = new_time;
2292 SCHED_ROW (u) = new_time % new_ii;
2293 SCHED_STAGE (u) = new_time / new_ii;
2294 }
2295
2296 }
2297
2298 rows_new[split_row] = NULL;
2299
2300 for (row = split_row; row < ii; row++)
2301 {
2302 rows_new[row + 1] = ps->rows[row];
2303 rows_length_new[row + 1] = ps->rows_length[row];
2304 ps->rows[row] = NULL;
2305 for (crr_insn = rows_new[row + 1];
2306 crr_insn; crr_insn = crr_insn->next_in_row)
2307 {
2308 int u = crr_insn->id;
2309 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2310
2311 SCHED_TIME (u) = new_time;
2312 crr_insn->cycle = new_time;
2313 SCHED_ROW (u) = new_time % new_ii;
2314 SCHED_STAGE (u) = new_time / new_ii;
2315 }
2316 }
2317
2318 /* Updating ps. */
2319 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2320 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2321 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2322 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2323 free (ps->rows);
2324 ps->rows = rows_new;
2325 free (ps->rows_length);
2326 ps->rows_length = rows_length_new;
2327 ps->ii = new_ii;
2328 gcc_assert (ps->min_cycle >= 0);
2329
2330 verify_partial_schedule (ps, sched_nodes);
2331
2332 if (dump_file)
2333 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2334 ps->max_cycle);
2335 }
2336
2337 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2338 UP which are the boundaries of it's scheduling window; compute using
2339 SCHED_NODES and II a row in the partial schedule that can be split
2340 which will separate a critical predecessor from a critical successor
2341 thereby expanding the window, and return it. */
2342 static int
2343 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2344 ddg_node_ptr u_node)
2345 {
2346 ddg_edge_ptr e;
2347 int lower = INT_MIN, upper = INT_MAX;
2348 int crit_pred = -1;
2349 int crit_succ = -1;
2350 int crit_cycle;
2351
2352 for (e = u_node->in; e != 0; e = e->next_in)
2353 {
2354 int v = e->src->cuid;
2355
2356 if (bitmap_bit_p (sched_nodes, v)
2357 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2358 if (SCHED_TIME (v) > lower)
2359 {
2360 crit_pred = v;
2361 lower = SCHED_TIME (v);
2362 }
2363 }
2364
2365 if (crit_pred >= 0)
2366 {
2367 crit_cycle = SCHED_TIME (crit_pred) + 1;
2368 return SMODULO (crit_cycle, ii);
2369 }
2370
2371 for (e = u_node->out; e != 0; e = e->next_out)
2372 {
2373 int v = e->dest->cuid;
2374
2375 if (bitmap_bit_p (sched_nodes, v)
2376 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2377 if (SCHED_TIME (v) < upper)
2378 {
2379 crit_succ = v;
2380 upper = SCHED_TIME (v);
2381 }
2382 }
2383
2384 if (crit_succ >= 0)
2385 {
2386 crit_cycle = SCHED_TIME (crit_succ);
2387 return SMODULO (crit_cycle, ii);
2388 }
2389
2390 if (dump_file)
2391 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2392
2393 return SMODULO ((low + up + 1) / 2, ii);
2394 }
2395
2396 static void
2397 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2398 {
2399 int row;
2400 ps_insn_ptr crr_insn;
2401
2402 for (row = 0; row < ps->ii; row++)
2403 {
2404 int length = 0;
2405
2406 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2407 {
2408 int u = crr_insn->id;
2409
2410 length++;
2411 gcc_assert (bitmap_bit_p (sched_nodes, u));
2412 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2413 popcount (sched_nodes) == number of insns in ps. */
2414 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2415 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2416 }
2417
2418 gcc_assert (ps->rows_length[row] == length);
2419 }
2420 }
2421
2422 \f
2423 /* This page implements the algorithm for ordering the nodes of a DDG
2424 for modulo scheduling, activated through the
2425 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2426
2427 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2428 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2429 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2430 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2431 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2432 #define DEPTH(x) (ASAP ((x)))
2433
2434 typedef struct node_order_params * nopa;
2435
2436 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2437 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2438 static nopa calculate_order_params (ddg_ptr, int, int *);
2439 static int find_max_asap (ddg_ptr, sbitmap);
2440 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2441 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2442
2443 enum sms_direction {BOTTOMUP, TOPDOWN};
2444
2445 struct node_order_params
2446 {
2447 int asap;
2448 int alap;
2449 int height;
2450 };
2451
2452 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2453 static void
2454 check_nodes_order (int *node_order, int num_nodes)
2455 {
2456 int i;
2457 auto_sbitmap tmp (num_nodes);
2458
2459 bitmap_clear (tmp);
2460
2461 if (dump_file)
2462 fprintf (dump_file, "SMS final nodes order: \n");
2463
2464 for (i = 0; i < num_nodes; i++)
2465 {
2466 int u = node_order[i];
2467
2468 if (dump_file)
2469 fprintf (dump_file, "%d ", u);
2470 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2471
2472 bitmap_set_bit (tmp, u);
2473 }
2474
2475 if (dump_file)
2476 fprintf (dump_file, "\n");
2477 }
2478
2479 /* Order the nodes of G for scheduling and pass the result in
2480 NODE_ORDER. Also set aux.count of each node to ASAP.
2481 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2482 static int
2483 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2484 {
2485 int i;
2486 int rec_mii = 0;
2487 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2488
2489 nopa nops = calculate_order_params (g, mii, pmax_asap);
2490
2491 if (dump_file)
2492 print_sccs (dump_file, sccs, g);
2493
2494 order_nodes_of_sccs (sccs, node_order);
2495
2496 if (sccs->num_sccs > 0)
2497 /* First SCC has the largest recurrence_length. */
2498 rec_mii = sccs->sccs[0]->recurrence_length;
2499
2500 /* Save ASAP before destroying node_order_params. */
2501 for (i = 0; i < g->num_nodes; i++)
2502 {
2503 ddg_node_ptr v = &g->nodes[i];
2504 v->aux.count = ASAP (v);
2505 }
2506
2507 free (nops);
2508 free_ddg_all_sccs (sccs);
2509 check_nodes_order (node_order, g->num_nodes);
2510
2511 return rec_mii;
2512 }
2513
2514 static void
2515 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2516 {
2517 int i, pos = 0;
2518 ddg_ptr g = all_sccs->ddg;
2519 int num_nodes = g->num_nodes;
2520 auto_sbitmap prev_sccs (num_nodes);
2521 auto_sbitmap on_path (num_nodes);
2522 auto_sbitmap tmp (num_nodes);
2523 auto_sbitmap ones (num_nodes);
2524
2525 bitmap_clear (prev_sccs);
2526 bitmap_ones (ones);
2527
2528 /* Perform the node ordering starting from the SCC with the highest recMII.
2529 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2530 for (i = 0; i < all_sccs->num_sccs; i++)
2531 {
2532 ddg_scc_ptr scc = all_sccs->sccs[i];
2533
2534 /* Add nodes on paths from previous SCCs to the current SCC. */
2535 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2536 bitmap_ior (tmp, scc->nodes, on_path);
2537
2538 /* Add nodes on paths from the current SCC to previous SCCs. */
2539 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2540 bitmap_ior (tmp, tmp, on_path);
2541
2542 /* Remove nodes of previous SCCs from current extended SCC. */
2543 bitmap_and_compl (tmp, tmp, prev_sccs);
2544
2545 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2546 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2547 }
2548
2549 /* Handle the remaining nodes that do not belong to any scc. Each call
2550 to order_nodes_in_scc handles a single connected component. */
2551 while (pos < g->num_nodes)
2552 {
2553 bitmap_and_compl (tmp, ones, prev_sccs);
2554 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2555 }
2556 }
2557
2558 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2559 static struct node_order_params *
2560 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2561 {
2562 int u;
2563 int max_asap;
2564 int num_nodes = g->num_nodes;
2565 ddg_edge_ptr e;
2566 /* Allocate a place to hold ordering params for each node in the DDG. */
2567 nopa node_order_params_arr;
2568
2569 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2570 node_order_params_arr = (nopa) xcalloc (num_nodes,
2571 sizeof (struct node_order_params));
2572
2573 /* Set the aux pointer of each node to point to its order_params structure. */
2574 for (u = 0; u < num_nodes; u++)
2575 g->nodes[u].aux.info = &node_order_params_arr[u];
2576
2577 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2578 calculate ASAP, ALAP, mobility, distance, and height for each node
2579 in the dependence (direct acyclic) graph. */
2580
2581 /* We assume that the nodes in the array are in topological order. */
2582
2583 max_asap = 0;
2584 for (u = 0; u < num_nodes; u++)
2585 {
2586 ddg_node_ptr u_node = &g->nodes[u];
2587
2588 ASAP (u_node) = 0;
2589 for (e = u_node->in; e; e = e->next_in)
2590 if (e->distance == 0)
2591 ASAP (u_node) = MAX (ASAP (u_node),
2592 ASAP (e->src) + e->latency);
2593 max_asap = MAX (max_asap, ASAP (u_node));
2594 }
2595
2596 for (u = num_nodes - 1; u > -1; u--)
2597 {
2598 ddg_node_ptr u_node = &g->nodes[u];
2599
2600 ALAP (u_node) = max_asap;
2601 HEIGHT (u_node) = 0;
2602 for (e = u_node->out; e; e = e->next_out)
2603 if (e->distance == 0)
2604 {
2605 ALAP (u_node) = MIN (ALAP (u_node),
2606 ALAP (e->dest) - e->latency);
2607 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2608 HEIGHT (e->dest) + e->latency);
2609 }
2610 }
2611 if (dump_file)
2612 {
2613 fprintf (dump_file, "\nOrder params\n");
2614 for (u = 0; u < num_nodes; u++)
2615 {
2616 ddg_node_ptr u_node = &g->nodes[u];
2617
2618 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2619 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2620 }
2621 }
2622
2623 *pmax_asap = max_asap;
2624 return node_order_params_arr;
2625 }
2626
2627 static int
2628 find_max_asap (ddg_ptr g, sbitmap nodes)
2629 {
2630 unsigned int u = 0;
2631 int max_asap = -1;
2632 int result = -1;
2633 sbitmap_iterator sbi;
2634
2635 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2636 {
2637 ddg_node_ptr u_node = &g->nodes[u];
2638
2639 if (max_asap < ASAP (u_node))
2640 {
2641 max_asap = ASAP (u_node);
2642 result = u;
2643 }
2644 }
2645 return result;
2646 }
2647
2648 static int
2649 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2650 {
2651 unsigned int u = 0;
2652 int max_hv = -1;
2653 int min_mob = INT_MAX;
2654 int result = -1;
2655 sbitmap_iterator sbi;
2656
2657 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2658 {
2659 ddg_node_ptr u_node = &g->nodes[u];
2660
2661 if (max_hv < HEIGHT (u_node))
2662 {
2663 max_hv = HEIGHT (u_node);
2664 min_mob = MOB (u_node);
2665 result = u;
2666 }
2667 else if ((max_hv == HEIGHT (u_node))
2668 && (min_mob > MOB (u_node)))
2669 {
2670 min_mob = MOB (u_node);
2671 result = u;
2672 }
2673 }
2674 return result;
2675 }
2676
2677 static int
2678 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2679 {
2680 unsigned int u = 0;
2681 int max_dv = -1;
2682 int min_mob = INT_MAX;
2683 int result = -1;
2684 sbitmap_iterator sbi;
2685
2686 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2687 {
2688 ddg_node_ptr u_node = &g->nodes[u];
2689
2690 if (max_dv < DEPTH (u_node))
2691 {
2692 max_dv = DEPTH (u_node);
2693 min_mob = MOB (u_node);
2694 result = u;
2695 }
2696 else if ((max_dv == DEPTH (u_node))
2697 && (min_mob > MOB (u_node)))
2698 {
2699 min_mob = MOB (u_node);
2700 result = u;
2701 }
2702 }
2703 return result;
2704 }
2705
2706 /* Places the nodes of SCC into the NODE_ORDER array starting
2707 at position POS, according to the SMS ordering algorithm.
2708 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2709 the NODE_ORDER array, starting from position zero. */
2710 static int
2711 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2712 int * node_order, int pos)
2713 {
2714 enum sms_direction dir;
2715 int num_nodes = g->num_nodes;
2716 auto_sbitmap workset (num_nodes);
2717 auto_sbitmap tmp (num_nodes);
2718 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2719 auto_sbitmap predecessors (num_nodes);
2720 auto_sbitmap successors (num_nodes);
2721
2722 bitmap_clear (predecessors);
2723 find_predecessors (predecessors, g, nodes_ordered);
2724
2725 bitmap_clear (successors);
2726 find_successors (successors, g, nodes_ordered);
2727
2728 bitmap_clear (tmp);
2729 if (bitmap_and (tmp, predecessors, scc))
2730 {
2731 bitmap_copy (workset, tmp);
2732 dir = BOTTOMUP;
2733 }
2734 else if (bitmap_and (tmp, successors, scc))
2735 {
2736 bitmap_copy (workset, tmp);
2737 dir = TOPDOWN;
2738 }
2739 else
2740 {
2741 int u;
2742
2743 bitmap_clear (workset);
2744 if ((u = find_max_asap (g, scc)) >= 0)
2745 bitmap_set_bit (workset, u);
2746 dir = BOTTOMUP;
2747 }
2748
2749 bitmap_clear (zero_bitmap);
2750 while (!bitmap_equal_p (workset, zero_bitmap))
2751 {
2752 int v;
2753 ddg_node_ptr v_node;
2754 sbitmap v_node_preds;
2755 sbitmap v_node_succs;
2756
2757 if (dir == TOPDOWN)
2758 {
2759 while (!bitmap_equal_p (workset, zero_bitmap))
2760 {
2761 v = find_max_hv_min_mob (g, workset);
2762 v_node = &g->nodes[v];
2763 node_order[pos++] = v;
2764 v_node_succs = NODE_SUCCESSORS (v_node);
2765 bitmap_and (tmp, v_node_succs, scc);
2766
2767 /* Don't consider the already ordered successors again. */
2768 bitmap_and_compl (tmp, tmp, nodes_ordered);
2769 bitmap_ior (workset, workset, tmp);
2770 bitmap_clear_bit (workset, v);
2771 bitmap_set_bit (nodes_ordered, v);
2772 }
2773 dir = BOTTOMUP;
2774 bitmap_clear (predecessors);
2775 find_predecessors (predecessors, g, nodes_ordered);
2776 bitmap_and (workset, predecessors, scc);
2777 }
2778 else
2779 {
2780 while (!bitmap_equal_p (workset, zero_bitmap))
2781 {
2782 v = find_max_dv_min_mob (g, workset);
2783 v_node = &g->nodes[v];
2784 node_order[pos++] = v;
2785 v_node_preds = NODE_PREDECESSORS (v_node);
2786 bitmap_and (tmp, v_node_preds, scc);
2787
2788 /* Don't consider the already ordered predecessors again. */
2789 bitmap_and_compl (tmp, tmp, nodes_ordered);
2790 bitmap_ior (workset, workset, tmp);
2791 bitmap_clear_bit (workset, v);
2792 bitmap_set_bit (nodes_ordered, v);
2793 }
2794 dir = TOPDOWN;
2795 bitmap_clear (successors);
2796 find_successors (successors, g, nodes_ordered);
2797 bitmap_and (workset, successors, scc);
2798 }
2799 }
2800 sbitmap_free (zero_bitmap);
2801 return pos;
2802 }
2803
2804 \f
2805 /* This page contains functions for manipulating partial-schedules during
2806 modulo scheduling. */
2807
2808 /* Create a partial schedule and allocate a memory to hold II rows. */
2809
2810 static partial_schedule_ptr
2811 create_partial_schedule (int ii, ddg_ptr g, int history)
2812 {
2813 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2814 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2815 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2816 ps->reg_moves.create (0);
2817 ps->ii = ii;
2818 ps->history = history;
2819 ps->min_cycle = INT_MAX;
2820 ps->max_cycle = INT_MIN;
2821 ps->g = g;
2822
2823 return ps;
2824 }
2825
2826 /* Free the PS_INSNs in rows array of the given partial schedule.
2827 ??? Consider caching the PS_INSN's. */
2828 static void
2829 free_ps_insns (partial_schedule_ptr ps)
2830 {
2831 int i;
2832
2833 for (i = 0; i < ps->ii; i++)
2834 {
2835 while (ps->rows[i])
2836 {
2837 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2838
2839 free (ps->rows[i]);
2840 ps->rows[i] = ps_insn;
2841 }
2842 ps->rows[i] = NULL;
2843 }
2844 }
2845
2846 /* Free all the memory allocated to the partial schedule. */
2847
2848 static void
2849 free_partial_schedule (partial_schedule_ptr ps)
2850 {
2851 ps_reg_move_info *move;
2852 unsigned int i;
2853
2854 if (!ps)
2855 return;
2856
2857 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2858 sbitmap_free (move->uses);
2859 ps->reg_moves.release ();
2860
2861 free_ps_insns (ps);
2862 free (ps->rows);
2863 free (ps->rows_length);
2864 free (ps);
2865 }
2866
2867 /* Clear the rows array with its PS_INSNs, and create a new one with
2868 NEW_II rows. */
2869
2870 static void
2871 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2872 {
2873 if (!ps)
2874 return;
2875 free_ps_insns (ps);
2876 if (new_ii == ps->ii)
2877 return;
2878 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2879 * sizeof (ps_insn_ptr));
2880 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2881 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2882 memset (ps->rows_length, 0, new_ii * sizeof (int));
2883 ps->ii = new_ii;
2884 ps->min_cycle = INT_MAX;
2885 ps->max_cycle = INT_MIN;
2886 }
2887
2888 /* Prints the partial schedule as an ii rows array, for each rows
2889 print the ids of the insns in it. */
2890 void
2891 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2892 {
2893 int i;
2894
2895 for (i = 0; i < ps->ii; i++)
2896 {
2897 ps_insn_ptr ps_i = ps->rows[i];
2898
2899 fprintf (dump, "\n[ROW %d ]: ", i);
2900 while (ps_i)
2901 {
2902 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2903
2904 if (JUMP_P (insn))
2905 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2906 else
2907 fprintf (dump, "%d, ", INSN_UID (insn));
2908
2909 ps_i = ps_i->next_in_row;
2910 }
2911 }
2912 }
2913
2914 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2915 static ps_insn_ptr
2916 create_ps_insn (int id, int cycle)
2917 {
2918 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2919
2920 ps_i->id = id;
2921 ps_i->next_in_row = NULL;
2922 ps_i->prev_in_row = NULL;
2923 ps_i->cycle = cycle;
2924
2925 return ps_i;
2926 }
2927
2928
2929 /* Removes the given PS_INSN from the partial schedule. */
2930 static void
2931 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2932 {
2933 int row;
2934
2935 gcc_assert (ps && ps_i);
2936
2937 row = SMODULO (ps_i->cycle, ps->ii);
2938 if (! ps_i->prev_in_row)
2939 {
2940 gcc_assert (ps_i == ps->rows[row]);
2941 ps->rows[row] = ps_i->next_in_row;
2942 if (ps->rows[row])
2943 ps->rows[row]->prev_in_row = NULL;
2944 }
2945 else
2946 {
2947 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2948 if (ps_i->next_in_row)
2949 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2950 }
2951
2952 ps->rows_length[row] -= 1;
2953 free (ps_i);
2954 return;
2955 }
2956
2957 /* Unlike what literature describes for modulo scheduling (which focuses
2958 on VLIW machines) the order of the instructions inside a cycle is
2959 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2960 where the current instruction should go relative to the already
2961 scheduled instructions in the given cycle. Go over these
2962 instructions and find the first possible column to put it in. */
2963 static bool
2964 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2965 sbitmap must_precede, sbitmap must_follow)
2966 {
2967 ps_insn_ptr next_ps_i;
2968 ps_insn_ptr first_must_follow = NULL;
2969 ps_insn_ptr last_must_precede = NULL;
2970 ps_insn_ptr last_in_row = NULL;
2971 int row;
2972
2973 if (! ps_i)
2974 return false;
2975
2976 row = SMODULO (ps_i->cycle, ps->ii);
2977
2978 /* Find the first must follow and the last must precede
2979 and insert the node immediately after the must precede
2980 but make sure that it there is no must follow after it. */
2981 for (next_ps_i = ps->rows[row];
2982 next_ps_i;
2983 next_ps_i = next_ps_i->next_in_row)
2984 {
2985 if (must_follow
2986 && bitmap_bit_p (must_follow, next_ps_i->id)
2987 && ! first_must_follow)
2988 first_must_follow = next_ps_i;
2989 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2990 {
2991 /* If we have already met a node that must follow, then
2992 there is no possible column. */
2993 if (first_must_follow)
2994 return false;
2995 else
2996 last_must_precede = next_ps_i;
2997 }
2998 /* The closing branch must be the last in the row. */
2999 if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3000 return false;
3001
3002 last_in_row = next_ps_i;
3003 }
3004
3005 /* The closing branch is scheduled as well. Make sure there is no
3006 dependent instruction after it as the branch should be the last
3007 instruction in the row. */
3008 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3009 {
3010 if (first_must_follow)
3011 return false;
3012 if (last_in_row)
3013 {
3014 /* Make the branch the last in the row. New instructions
3015 will be inserted at the beginning of the row or after the
3016 last must_precede instruction thus the branch is guaranteed
3017 to remain the last instruction in the row. */
3018 last_in_row->next_in_row = ps_i;
3019 ps_i->prev_in_row = last_in_row;
3020 ps_i->next_in_row = NULL;
3021 }
3022 else
3023 ps->rows[row] = ps_i;
3024 return true;
3025 }
3026
3027 /* Now insert the node after INSERT_AFTER_PSI. */
3028
3029 if (! last_must_precede)
3030 {
3031 ps_i->next_in_row = ps->rows[row];
3032 ps_i->prev_in_row = NULL;
3033 if (ps_i->next_in_row)
3034 ps_i->next_in_row->prev_in_row = ps_i;
3035 ps->rows[row] = ps_i;
3036 }
3037 else
3038 {
3039 ps_i->next_in_row = last_must_precede->next_in_row;
3040 last_must_precede->next_in_row = ps_i;
3041 ps_i->prev_in_row = last_must_precede;
3042 if (ps_i->next_in_row)
3043 ps_i->next_in_row->prev_in_row = ps_i;
3044 }
3045
3046 return true;
3047 }
3048
3049 /* Advances the PS_INSN one column in its current row; returns false
3050 in failure and true in success. Bit N is set in MUST_FOLLOW if
3051 the node with cuid N must be come after the node pointed to by
3052 PS_I when scheduled in the same cycle. */
3053 static int
3054 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3055 sbitmap must_follow)
3056 {
3057 ps_insn_ptr prev, next;
3058 int row;
3059
3060 if (!ps || !ps_i)
3061 return false;
3062
3063 row = SMODULO (ps_i->cycle, ps->ii);
3064
3065 if (! ps_i->next_in_row)
3066 return false;
3067
3068 /* Check if next_in_row is dependent on ps_i, both having same sched
3069 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3070 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3071 return false;
3072
3073 /* Advance PS_I over its next_in_row in the doubly linked list. */
3074 prev = ps_i->prev_in_row;
3075 next = ps_i->next_in_row;
3076
3077 if (ps_i == ps->rows[row])
3078 ps->rows[row] = next;
3079
3080 ps_i->next_in_row = next->next_in_row;
3081
3082 if (next->next_in_row)
3083 next->next_in_row->prev_in_row = ps_i;
3084
3085 next->next_in_row = ps_i;
3086 ps_i->prev_in_row = next;
3087
3088 next->prev_in_row = prev;
3089 if (prev)
3090 prev->next_in_row = next;
3091
3092 return true;
3093 }
3094
3095 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3096 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3097 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3098 before/after (respectively) the node pointed to by PS_I when scheduled
3099 in the same cycle. */
3100 static ps_insn_ptr
3101 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3102 sbitmap must_precede, sbitmap must_follow)
3103 {
3104 ps_insn_ptr ps_i;
3105 int row = SMODULO (cycle, ps->ii);
3106
3107 if (ps->rows_length[row] >= issue_rate)
3108 return NULL;
3109
3110 ps_i = create_ps_insn (id, cycle);
3111
3112 /* Finds and inserts PS_I according to MUST_FOLLOW and
3113 MUST_PRECEDE. */
3114 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3115 {
3116 free (ps_i);
3117 return NULL;
3118 }
3119
3120 ps->rows_length[row] += 1;
3121 return ps_i;
3122 }
3123
3124 /* Advance time one cycle. Assumes DFA is being used. */
3125 static void
3126 advance_one_cycle (void)
3127 {
3128 if (targetm.sched.dfa_pre_cycle_insn)
3129 state_transition (curr_state,
3130 targetm.sched.dfa_pre_cycle_insn ());
3131
3132 state_transition (curr_state, NULL);
3133
3134 if (targetm.sched.dfa_post_cycle_insn)
3135 state_transition (curr_state,
3136 targetm.sched.dfa_post_cycle_insn ());
3137 }
3138
3139
3140
3141 /* Checks if PS has resource conflicts according to DFA, starting from
3142 FROM cycle to TO cycle; returns true if there are conflicts and false
3143 if there are no conflicts. Assumes DFA is being used. */
3144 static int
3145 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3146 {
3147 int cycle;
3148
3149 state_reset (curr_state);
3150
3151 for (cycle = from; cycle <= to; cycle++)
3152 {
3153 ps_insn_ptr crr_insn;
3154 /* Holds the remaining issue slots in the current row. */
3155 int can_issue_more = issue_rate;
3156
3157 /* Walk through the DFA for the current row. */
3158 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3159 crr_insn;
3160 crr_insn = crr_insn->next_in_row)
3161 {
3162 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3163
3164 if (!NONDEBUG_INSN_P (insn))
3165 continue;
3166
3167 /* Check if there is room for the current insn. */
3168 if (!can_issue_more || state_dead_lock_p (curr_state))
3169 return true;
3170
3171 /* Update the DFA state and return with failure if the DFA found
3172 resource conflicts. */
3173 if (state_transition (curr_state, insn) >= 0)
3174 return true;
3175
3176 if (targetm.sched.variable_issue)
3177 can_issue_more =
3178 targetm.sched.variable_issue (sched_dump, sched_verbose,
3179 insn, can_issue_more);
3180 /* A naked CLOBBER or USE generates no instruction, so don't
3181 let them consume issue slots. */
3182 else if (GET_CODE (PATTERN (insn)) != USE
3183 && GET_CODE (PATTERN (insn)) != CLOBBER)
3184 can_issue_more--;
3185 }
3186
3187 /* Advance the DFA to the next cycle. */
3188 advance_one_cycle ();
3189 }
3190 return false;
3191 }
3192
3193 /* Checks if the given node causes resource conflicts when added to PS at
3194 cycle C. If not the node is added to PS and returned; otherwise zero
3195 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3196 cuid N must be come before/after (respectively) the node pointed to by
3197 PS_I when scheduled in the same cycle. */
3198 ps_insn_ptr
3199 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3200 int c, sbitmap must_precede,
3201 sbitmap must_follow)
3202 {
3203 int has_conflicts = 0;
3204 ps_insn_ptr ps_i;
3205
3206 /* First add the node to the PS, if this succeeds check for
3207 conflicts, trying different issue slots in the same row. */
3208 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3209 return NULL; /* Failed to insert the node at the given cycle. */
3210
3211 has_conflicts = ps_has_conflicts (ps, c, c)
3212 || (ps->history > 0
3213 && ps_has_conflicts (ps,
3214 c - ps->history,
3215 c + ps->history));
3216
3217 /* Try different issue slots to find one that the given node can be
3218 scheduled in without conflicts. */
3219 while (has_conflicts)
3220 {
3221 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3222 break;
3223 has_conflicts = ps_has_conflicts (ps, c, c)
3224 || (ps->history > 0
3225 && ps_has_conflicts (ps,
3226 c - ps->history,
3227 c + ps->history));
3228 }
3229
3230 if (has_conflicts)
3231 {
3232 remove_node_from_ps (ps, ps_i);
3233 return NULL;
3234 }
3235
3236 ps->min_cycle = MIN (ps->min_cycle, c);
3237 ps->max_cycle = MAX (ps->max_cycle, c);
3238 return ps_i;
3239 }
3240
3241 /* Calculate the stage count of the partial schedule PS. The calculation
3242 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3243 int
3244 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3245 {
3246 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3247 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3248 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3249
3250 /* The calculation of stage count is done adding the number of stages
3251 before cycle zero and after cycle zero. */
3252 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3253
3254 return stage_count;
3255 }
3256
3257 /* Rotate the rows of PS such that insns scheduled at time
3258 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3259 void
3260 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3261 {
3262 int i, row, backward_rotates;
3263 int last_row = ps->ii - 1;
3264
3265 if (start_cycle == 0)
3266 return;
3267
3268 backward_rotates = SMODULO (start_cycle, ps->ii);
3269
3270 /* Revisit later and optimize this into a single loop. */
3271 for (i = 0; i < backward_rotates; i++)
3272 {
3273 ps_insn_ptr first_row = ps->rows[0];
3274 int first_row_length = ps->rows_length[0];
3275
3276 for (row = 0; row < last_row; row++)
3277 {
3278 ps->rows[row] = ps->rows[row + 1];
3279 ps->rows_length[row] = ps->rows_length[row + 1];
3280 }
3281
3282 ps->rows[last_row] = first_row;
3283 ps->rows_length[last_row] = first_row_length;
3284 }
3285
3286 ps->max_cycle -= start_cycle;
3287 ps->min_cycle -= start_cycle;
3288 }
3289
3290 #endif /* INSN_SCHEDULING */
3291 \f
3292 /* Run instruction scheduler. */
3293 /* Perform SMS module scheduling. */
3294
3295 namespace {
3296
3297 const pass_data pass_data_sms =
3298 {
3299 RTL_PASS, /* type */
3300 "sms", /* name */
3301 OPTGROUP_NONE, /* optinfo_flags */
3302 TV_SMS, /* tv_id */
3303 0, /* properties_required */
3304 0, /* properties_provided */
3305 0, /* properties_destroyed */
3306 0, /* todo_flags_start */
3307 TODO_df_finish, /* todo_flags_finish */
3308 };
3309
3310 class pass_sms : public rtl_opt_pass
3311 {
3312 public:
3313 pass_sms (gcc::context *ctxt)
3314 : rtl_opt_pass (pass_data_sms, ctxt)
3315 {}
3316
3317 /* opt_pass methods: */
3318 virtual bool gate (function *)
3319 {
3320 return (optimize > 0 && flag_modulo_sched);
3321 }
3322
3323 virtual unsigned int execute (function *);
3324
3325 }; // class pass_sms
3326
3327 unsigned int
3328 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3329 {
3330 #ifdef INSN_SCHEDULING
3331 basic_block bb;
3332
3333 /* Collect loop information to be used in SMS. */
3334 cfg_layout_initialize (0);
3335 sms_schedule ();
3336
3337 /* Update the life information, because we add pseudos. */
3338 max_regno = max_reg_num ();
3339
3340 /* Finalize layout changes. */
3341 FOR_EACH_BB_FN (bb, fun)
3342 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3343 bb->aux = bb->next_bb;
3344 free_dominance_info (CDI_DOMINATORS);
3345 cfg_layout_finalize ();
3346 #endif /* INSN_SCHEDULING */
3347 return 0;
3348 }
3349
3350 } // anon namespace
3351
3352 rtl_opt_pass *
3353 make_pass_sms (gcc::context *ctxt)
3354 {
3355 return new pass_sms (ctxt);
3356 }