Use std::swap instead of manual swaps.
[gcc.git] / gcc / modulo-sched.c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "function.h"
32 #include "profile.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "cfgrtl.h"
41 #include "predict.h"
42 #include "basic-block.h"
43 #include "sched-int.h"
44 #include "target.h"
45 #include "cfgloop.h"
46 #include "alias.h"
47 #include "symtab.h"
48 #include "tree.h"
49 #include "insn-codes.h"
50 #include "optabs.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "varasm.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "params.h"
60 #include "gcov-io.h"
61 #include "sbitmap.h"
62 #include "df.h"
63 #include "ddg.h"
64 #include "tree-pass.h"
65 #include "dbgcnt.h"
66 #include "loop-unroll.h"
67
68 #ifdef INSN_SCHEDULING
69
70 /* This file contains the implementation of the Swing Modulo Scheduler,
71 described in the following references:
72 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
73 Lifetime--sensitive modulo scheduling in a production environment.
74 IEEE Trans. on Comps., 50(3), March 2001
75 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
76 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
77 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
78
79 The basic structure is:
80 1. Build a data-dependence graph (DDG) for each loop.
81 2. Use the DDG to order the insns of a loop (not in topological order
82 necessarily, but rather) trying to place each insn after all its
83 predecessors _or_ after all its successors.
84 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
85 4. Use the ordering to perform list-scheduling of the loop:
86 1. Set II = MII. We will try to schedule the loop within II cycles.
87 2. Try to schedule the insns one by one according to the ordering.
88 For each insn compute an interval of cycles by considering already-
89 scheduled preds and succs (and associated latencies); try to place
90 the insn in the cycles of this window checking for potential
91 resource conflicts (using the DFA interface).
92 Note: this is different from the cycle-scheduling of schedule_insns;
93 here the insns are not scheduled monotonically top-down (nor bottom-
94 up).
95 3. If failed in scheduling all insns - bump II++ and try again, unless
96 II reaches an upper bound MaxII, in which case report failure.
97 5. If we succeeded in scheduling the loop within II cycles, we now
98 generate prolog and epilog, decrease the counter of the loop, and
99 perform modulo variable expansion for live ranges that span more than
100 II cycles (i.e. use register copies to prevent a def from overwriting
101 itself before reaching the use).
102
103 SMS works with countable loops (1) whose control part can be easily
104 decoupled from the rest of the loop and (2) whose loop count can
105 be easily adjusted. This is because we peel a constant number of
106 iterations into a prologue and epilogue for which we want to avoid
107 emitting the control part, and a kernel which is to iterate that
108 constant number of iterations less than the original loop. So the
109 control part should be a set of insns clearly identified and having
110 its own iv, not otherwise used in the loop (at-least for now), which
111 initializes a register before the loop to the number of iterations.
112 Currently SMS relies on the do-loop pattern to recognize such loops,
113 where (1) the control part comprises of all insns defining and/or
114 using a certain 'count' register and (2) the loop count can be
115 adjusted by modifying this register prior to the loop.
116 TODO: Rely on cfgloop analysis instead. */
117 \f
118 /* This page defines partial-schedule structures and functions for
119 modulo scheduling. */
120
121 typedef struct partial_schedule *partial_schedule_ptr;
122 typedef struct ps_insn *ps_insn_ptr;
123
124 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
125 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
126
127 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
128 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
129
130 /* Perform signed modulo, always returning a non-negative value. */
131 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
132
133 /* The number of different iterations the nodes in ps span, assuming
134 the stage boundaries are placed efficiently. */
135 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
136 + 1 + ii - 1) / ii)
137 /* The stage count of ps. */
138 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
139
140 /* A single instruction in the partial schedule. */
141 struct ps_insn
142 {
143 /* Identifies the instruction to be scheduled. Values smaller than
144 the ddg's num_nodes refer directly to ddg nodes. A value of
145 X - num_nodes refers to register move X. */
146 int id;
147
148 /* The (absolute) cycle in which the PS instruction is scheduled.
149 Same as SCHED_TIME (node). */
150 int cycle;
151
152 /* The next/prev PS_INSN in the same row. */
153 ps_insn_ptr next_in_row,
154 prev_in_row;
155
156 };
157
158 /* Information about a register move that has been added to a partial
159 schedule. */
160 struct ps_reg_move_info
161 {
162 /* The source of the move is defined by the ps_insn with id DEF.
163 The destination is used by the ps_insns with the ids in USES. */
164 int def;
165 sbitmap uses;
166
167 /* The original form of USES' instructions used OLD_REG, but they
168 should now use NEW_REG. */
169 rtx old_reg;
170 rtx new_reg;
171
172 /* The number of consecutive stages that the move occupies. */
173 int num_consecutive_stages;
174
175 /* An instruction that sets NEW_REG to the correct value. The first
176 move associated with DEF will have an rhs of OLD_REG; later moves
177 use the result of the previous move. */
178 rtx_insn *insn;
179 };
180
181 typedef struct ps_reg_move_info ps_reg_move_info;
182
183 /* Holds the partial schedule as an array of II rows. Each entry of the
184 array points to a linked list of PS_INSNs, which represents the
185 instructions that are scheduled for that row. */
186 struct partial_schedule
187 {
188 int ii; /* Number of rows in the partial schedule. */
189 int history; /* Threshold for conflict checking using DFA. */
190
191 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
192 ps_insn_ptr *rows;
193
194 /* All the moves added for this partial schedule. Index X has
195 a ps_insn id of X + g->num_nodes. */
196 vec<ps_reg_move_info> reg_moves;
197
198 /* rows_length[i] holds the number of instructions in the row.
199 It is used only (as an optimization) to back off quickly from
200 trying to schedule a node in a full row; that is, to avoid running
201 through futile DFA state transitions. */
202 int *rows_length;
203
204 /* The earliest absolute cycle of an insn in the partial schedule. */
205 int min_cycle;
206
207 /* The latest absolute cycle of an insn in the partial schedule. */
208 int max_cycle;
209
210 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
211
212 int stage_count; /* The stage count of the partial schedule. */
213 };
214
215
216 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
217 static void free_partial_schedule (partial_schedule_ptr);
218 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
219 void print_partial_schedule (partial_schedule_ptr, FILE *);
220 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
221 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
222 int, int, sbitmap, sbitmap);
223 static void rotate_partial_schedule (partial_schedule_ptr, int);
224 void set_row_column_for_ps (partial_schedule_ptr);
225 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
226 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
227
228 \f
229 /* This page defines constants and structures for the modulo scheduling
230 driver. */
231
232 static int sms_order_nodes (ddg_ptr, int, int *, int *);
233 static void set_node_sched_params (ddg_ptr);
234 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
235 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
236 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
237 rtx, rtx);
238 static int calculate_stage_count (partial_schedule_ptr, int);
239 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
240 int, int, sbitmap, sbitmap, sbitmap);
241 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
242 sbitmap, int, int *, int *, int *);
243 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
244 sbitmap, int *, sbitmap, sbitmap);
245 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
246
247 #define NODE_ASAP(node) ((node)->aux.count)
248
249 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
250 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
251 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
252 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
253 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
254
255 /* The scheduling parameters held for each node. */
256 typedef struct node_sched_params
257 {
258 int time; /* The absolute scheduling cycle. */
259
260 int row; /* Holds time % ii. */
261 int stage; /* Holds time / ii. */
262
263 /* The column of a node inside the ps. If nodes u, v are on the same row,
264 u will precede v if column (u) < column (v). */
265 int column;
266 } *node_sched_params_ptr;
267
268 typedef struct node_sched_params node_sched_params;
269 \f
270 /* The following three functions are copied from the current scheduler
271 code in order to use sched_analyze() for computing the dependencies.
272 They are used when initializing the sched_info structure. */
273 static const char *
274 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
275 {
276 static char tmp[80];
277
278 sprintf (tmp, "i%4d", INSN_UID (insn));
279 return tmp;
280 }
281
282 static void
283 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
284 regset used ATTRIBUTE_UNUSED)
285 {
286 }
287
288 static struct common_sched_info_def sms_common_sched_info;
289
290 static struct sched_deps_info_def sms_sched_deps_info =
291 {
292 compute_jump_reg_dependencies,
293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
294 NULL,
295 0, 0, 0
296 };
297
298 static struct haifa_sched_info sms_sched_info =
299 {
300 NULL,
301 NULL,
302 NULL,
303 NULL,
304 NULL,
305 sms_print_insn,
306 NULL,
307 NULL, /* insn_finishes_block_p */
308 NULL, NULL,
309 NULL, NULL,
310 0, 0,
311
312 NULL, NULL, NULL, NULL,
313 NULL, NULL,
314 0
315 };
316
317 /* Partial schedule instruction ID in PS is a register move. Return
318 information about it. */
319 static struct ps_reg_move_info *
320 ps_reg_move (partial_schedule_ptr ps, int id)
321 {
322 gcc_checking_assert (id >= ps->g->num_nodes);
323 return &ps->reg_moves[id - ps->g->num_nodes];
324 }
325
326 /* Return the rtl instruction that is being scheduled by partial schedule
327 instruction ID, which belongs to schedule PS. */
328 static rtx_insn *
329 ps_rtl_insn (partial_schedule_ptr ps, int id)
330 {
331 if (id < ps->g->num_nodes)
332 return ps->g->nodes[id].insn;
333 else
334 return ps_reg_move (ps, id)->insn;
335 }
336
337 /* Partial schedule instruction ID, which belongs to PS, occurred in
338 the original (unscheduled) loop. Return the first instruction
339 in the loop that was associated with ps_rtl_insn (PS, ID).
340 If the instruction had some notes before it, this is the first
341 of those notes. */
342 static rtx_insn *
343 ps_first_note (partial_schedule_ptr ps, int id)
344 {
345 gcc_assert (id < ps->g->num_nodes);
346 return ps->g->nodes[id].first_note;
347 }
348
349 /* Return the number of consecutive stages that are occupied by
350 partial schedule instruction ID in PS. */
351 static int
352 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
353 {
354 if (id < ps->g->num_nodes)
355 return 1;
356 else
357 return ps_reg_move (ps, id)->num_consecutive_stages;
358 }
359
360 /* Given HEAD and TAIL which are the first and last insns in a loop;
361 return the register which controls the loop. Return zero if it has
362 more than one occurrence in the loop besides the control part or the
363 do-loop pattern is not of the form we expect. */
364 static rtx
365 doloop_register_get (rtx_insn *head ATTRIBUTE_UNUSED, rtx_insn *tail ATTRIBUTE_UNUSED)
366 {
367 #ifdef HAVE_doloop_end
368 rtx reg, condition;
369 rtx_insn *insn, *first_insn_not_to_check;
370
371 if (!JUMP_P (tail))
372 return NULL_RTX;
373
374 /* TODO: Free SMS's dependence on doloop_condition_get. */
375 condition = doloop_condition_get (tail);
376 if (! condition)
377 return NULL_RTX;
378
379 if (REG_P (XEXP (condition, 0)))
380 reg = XEXP (condition, 0);
381 else if (GET_CODE (XEXP (condition, 0)) == PLUS
382 && REG_P (XEXP (XEXP (condition, 0), 0)))
383 reg = XEXP (XEXP (condition, 0), 0);
384 else
385 gcc_unreachable ();
386
387 /* Check that the COUNT_REG has no other occurrences in the loop
388 until the decrement. We assume the control part consists of
389 either a single (parallel) branch-on-count or a (non-parallel)
390 branch immediately preceded by a single (decrement) insn. */
391 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
392 : prev_nondebug_insn (tail));
393
394 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
395 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
396 {
397 if (dump_file)
398 {
399 fprintf (dump_file, "SMS count_reg found ");
400 print_rtl_single (dump_file, reg);
401 fprintf (dump_file, " outside control in insn:\n");
402 print_rtl_single (dump_file, insn);
403 }
404
405 return NULL_RTX;
406 }
407
408 return reg;
409 #else
410 return NULL_RTX;
411 #endif
412 }
413
414 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
415 that the number of iterations is a compile-time constant. If so,
416 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
417 this constant. Otherwise return 0. */
418 static rtx_insn *
419 const_iteration_count (rtx count_reg, basic_block pre_header,
420 int64_t * count)
421 {
422 rtx_insn *insn;
423 rtx_insn *head, *tail;
424
425 if (! pre_header)
426 return NULL;
427
428 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
429
430 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
431 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
432 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
433 {
434 rtx pat = single_set (insn);
435
436 if (CONST_INT_P (SET_SRC (pat)))
437 {
438 *count = INTVAL (SET_SRC (pat));
439 return insn;
440 }
441
442 return NULL;
443 }
444
445 return NULL;
446 }
447
448 /* A very simple resource-based lower bound on the initiation interval.
449 ??? Improve the accuracy of this bound by considering the
450 utilization of various units. */
451 static int
452 res_MII (ddg_ptr g)
453 {
454 if (targetm.sched.sms_res_mii)
455 return targetm.sched.sms_res_mii (g);
456
457 return ((g->num_nodes - g->num_debug) / issue_rate);
458 }
459
460
461 /* A vector that contains the sched data for each ps_insn. */
462 static vec<node_sched_params> node_sched_param_vec;
463
464 /* Allocate sched_params for each node and initialize it. */
465 static void
466 set_node_sched_params (ddg_ptr g)
467 {
468 node_sched_param_vec.truncate (0);
469 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
470 }
471
472 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
473 static void
474 extend_node_sched_params (partial_schedule_ptr ps)
475 {
476 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
477 + ps->reg_moves.length ());
478 }
479
480 /* Update the sched_params (time, row and stage) for node U using the II,
481 the CYCLE of U and MIN_CYCLE.
482 We're not simply taking the following
483 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
484 because the stages may not be aligned on cycle 0. */
485 static void
486 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
487 {
488 int sc_until_cycle_zero;
489 int stage;
490
491 SCHED_TIME (u) = cycle;
492 SCHED_ROW (u) = SMODULO (cycle, ii);
493
494 /* The calculation of stage count is done adding the number
495 of stages before cycle zero and after cycle zero. */
496 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
497
498 if (SCHED_TIME (u) < 0)
499 {
500 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
501 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
502 }
503 else
504 {
505 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
506 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
507 }
508 }
509
510 static void
511 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
512 {
513 int i;
514
515 if (! file)
516 return;
517 for (i = 0; i < num_nodes; i++)
518 {
519 node_sched_params_ptr nsp = SCHED_PARAMS (i);
520
521 fprintf (file, "Node = %d; INSN = %d\n", i,
522 INSN_UID (ps_rtl_insn (ps, i)));
523 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
524 fprintf (file, " time = %d:\n", nsp->time);
525 fprintf (file, " stage = %d:\n", nsp->stage);
526 }
527 }
528
529 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
530 static void
531 set_columns_for_row (partial_schedule_ptr ps, int row)
532 {
533 ps_insn_ptr cur_insn;
534 int column;
535
536 column = 0;
537 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
538 SCHED_COLUMN (cur_insn->id) = column++;
539 }
540
541 /* Set SCHED_COLUMN for each instruction in PS. */
542 static void
543 set_columns_for_ps (partial_schedule_ptr ps)
544 {
545 int row;
546
547 for (row = 0; row < ps->ii; row++)
548 set_columns_for_row (ps, row);
549 }
550
551 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
552 Its single predecessor has already been scheduled, as has its
553 ddg node successors. (The move may have also another move as its
554 successor, in which case that successor will be scheduled later.)
555
556 The move is part of a chain that satisfies register dependencies
557 between a producing ddg node and various consuming ddg nodes.
558 If some of these dependencies have a distance of 1 (meaning that
559 the use is upward-exposed) then DISTANCE1_USES is nonnull and
560 contains the set of uses with distance-1 dependencies.
561 DISTANCE1_USES is null otherwise.
562
563 MUST_FOLLOW is a scratch bitmap that is big enough to hold
564 all current ps_insn ids.
565
566 Return true on success. */
567 static bool
568 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
569 sbitmap distance1_uses, sbitmap must_follow)
570 {
571 unsigned int u;
572 int this_time, this_distance, this_start, this_end, this_latency;
573 int start, end, c, ii;
574 sbitmap_iterator sbi;
575 ps_reg_move_info *move;
576 rtx_insn *this_insn;
577 ps_insn_ptr psi;
578
579 move = ps_reg_move (ps, i_reg_move);
580 ii = ps->ii;
581 if (dump_file)
582 {
583 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
584 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
585 PS_MIN_CYCLE (ps));
586 print_rtl_single (dump_file, move->insn);
587 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
588 fprintf (dump_file, "=========== =========== =====\n");
589 }
590
591 start = INT_MIN;
592 end = INT_MAX;
593
594 /* For dependencies of distance 1 between a producer ddg node A
595 and consumer ddg node B, we have a chain of dependencies:
596
597 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
598
599 where Mi is the ith move. For dependencies of distance 0 between
600 a producer ddg node A and consumer ddg node C, we have a chain of
601 dependencies:
602
603 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
604
605 where Mi' occupies the same position as Mi but occurs a stage later.
606 We can only schedule each move once, so if we have both types of
607 chain, we model the second as:
608
609 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
610
611 First handle the dependencies between the previously-scheduled
612 predecessor and the move. */
613 this_insn = ps_rtl_insn (ps, move->def);
614 this_latency = insn_latency (this_insn, move->insn);
615 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
616 this_time = SCHED_TIME (move->def) - this_distance * ii;
617 this_start = this_time + this_latency;
618 this_end = this_time + ii;
619 if (dump_file)
620 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
621 this_start, this_end, SCHED_TIME (move->def),
622 INSN_UID (this_insn), this_latency, this_distance,
623 INSN_UID (move->insn));
624
625 if (start < this_start)
626 start = this_start;
627 if (end > this_end)
628 end = this_end;
629
630 /* Handle the dependencies between the move and previously-scheduled
631 successors. */
632 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
633 {
634 this_insn = ps_rtl_insn (ps, u);
635 this_latency = insn_latency (move->insn, this_insn);
636 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
637 this_distance = -1;
638 else
639 this_distance = 0;
640 this_time = SCHED_TIME (u) + this_distance * ii;
641 this_start = this_time - ii;
642 this_end = this_time - this_latency;
643 if (dump_file)
644 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
645 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
646 this_latency, this_distance, INSN_UID (this_insn));
647
648 if (start < this_start)
649 start = this_start;
650 if (end > this_end)
651 end = this_end;
652 }
653
654 if (dump_file)
655 {
656 fprintf (dump_file, "----------- ----------- -----\n");
657 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
658 }
659
660 bitmap_clear (must_follow);
661 bitmap_set_bit (must_follow, move->def);
662
663 start = MAX (start, end - (ii - 1));
664 for (c = end; c >= start; c--)
665 {
666 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
667 move->uses, must_follow);
668 if (psi)
669 {
670 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
671 if (dump_file)
672 fprintf (dump_file, "\nScheduled register move INSN %d at"
673 " time %d, row %d\n\n", INSN_UID (move->insn), c,
674 SCHED_ROW (i_reg_move));
675 return true;
676 }
677 }
678
679 if (dump_file)
680 fprintf (dump_file, "\nNo available slot\n\n");
681
682 return false;
683 }
684
685 /*
686 Breaking intra-loop register anti-dependences:
687 Each intra-loop register anti-dependence implies a cross-iteration true
688 dependence of distance 1. Therefore, we can remove such false dependencies
689 and figure out if the partial schedule broke them by checking if (for a
690 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
691 if so generate a register move. The number of such moves is equal to:
692 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
693 nreg_moves = ----------------------------------- + 1 - { dependence.
694 ii { 1 if not.
695 */
696 static bool
697 schedule_reg_moves (partial_schedule_ptr ps)
698 {
699 ddg_ptr g = ps->g;
700 int ii = ps->ii;
701 int i;
702
703 for (i = 0; i < g->num_nodes; i++)
704 {
705 ddg_node_ptr u = &g->nodes[i];
706 ddg_edge_ptr e;
707 int nreg_moves = 0, i_reg_move;
708 rtx prev_reg, old_reg;
709 int first_move;
710 int distances[2];
711 sbitmap must_follow;
712 sbitmap distance1_uses;
713 rtx set = single_set (u->insn);
714
715 /* Skip instructions that do not set a register. */
716 if ((set && !REG_P (SET_DEST (set))))
717 continue;
718
719 /* Compute the number of reg_moves needed for u, by looking at life
720 ranges started at u (excluding self-loops). */
721 distances[0] = distances[1] = false;
722 for (e = u->out; e; e = e->next_out)
723 if (e->type == TRUE_DEP && e->dest != e->src)
724 {
725 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
726 - SCHED_TIME (e->src->cuid)) / ii;
727
728 if (e->distance == 1)
729 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
730 - SCHED_TIME (e->src->cuid) + ii) / ii;
731
732 /* If dest precedes src in the schedule of the kernel, then dest
733 will read before src writes and we can save one reg_copy. */
734 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
735 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
736 nreg_moves4e--;
737
738 if (nreg_moves4e >= 1)
739 {
740 /* !single_set instructions are not supported yet and
741 thus we do not except to encounter them in the loop
742 except from the doloop part. For the latter case
743 we assume no regmoves are generated as the doloop
744 instructions are tied to the branch with an edge. */
745 gcc_assert (set);
746 /* If the instruction contains auto-inc register then
747 validate that the regmov is being generated for the
748 target regsiter rather then the inc'ed register. */
749 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
750 }
751
752 if (nreg_moves4e)
753 {
754 gcc_assert (e->distance < 2);
755 distances[e->distance] = true;
756 }
757 nreg_moves = MAX (nreg_moves, nreg_moves4e);
758 }
759
760 if (nreg_moves == 0)
761 continue;
762
763 /* Create NREG_MOVES register moves. */
764 first_move = ps->reg_moves.length ();
765 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
766 extend_node_sched_params (ps);
767
768 /* Record the moves associated with this node. */
769 first_move += ps->g->num_nodes;
770
771 /* Generate each move. */
772 old_reg = prev_reg = SET_DEST (single_set (u->insn));
773 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
774 {
775 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
776
777 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
778 move->uses = sbitmap_alloc (first_move + nreg_moves);
779 move->old_reg = old_reg;
780 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
781 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
782 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
783 bitmap_clear (move->uses);
784
785 prev_reg = move->new_reg;
786 }
787
788 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
789
790 if (distance1_uses)
791 bitmap_clear (distance1_uses);
792
793 /* Every use of the register defined by node may require a different
794 copy of this register, depending on the time the use is scheduled.
795 Record which uses require which move results. */
796 for (e = u->out; e; e = e->next_out)
797 if (e->type == TRUE_DEP && e->dest != e->src)
798 {
799 int dest_copy = (SCHED_TIME (e->dest->cuid)
800 - SCHED_TIME (e->src->cuid)) / ii;
801
802 if (e->distance == 1)
803 dest_copy = (SCHED_TIME (e->dest->cuid)
804 - SCHED_TIME (e->src->cuid) + ii) / ii;
805
806 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
807 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
808 dest_copy--;
809
810 if (dest_copy)
811 {
812 ps_reg_move_info *move;
813
814 move = ps_reg_move (ps, first_move + dest_copy - 1);
815 bitmap_set_bit (move->uses, e->dest->cuid);
816 if (e->distance == 1)
817 bitmap_set_bit (distance1_uses, e->dest->cuid);
818 }
819 }
820
821 must_follow = sbitmap_alloc (first_move + nreg_moves);
822 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
823 if (!schedule_reg_move (ps, first_move + i_reg_move,
824 distance1_uses, must_follow))
825 break;
826 sbitmap_free (must_follow);
827 if (distance1_uses)
828 sbitmap_free (distance1_uses);
829 if (i_reg_move < nreg_moves)
830 return false;
831 }
832 return true;
833 }
834
835 /* Emit the moves associatied with PS. Apply the substitutions
836 associated with them. */
837 static void
838 apply_reg_moves (partial_schedule_ptr ps)
839 {
840 ps_reg_move_info *move;
841 int i;
842
843 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
844 {
845 unsigned int i_use;
846 sbitmap_iterator sbi;
847
848 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
849 {
850 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
851 df_insn_rescan (ps->g->nodes[i_use].insn);
852 }
853 }
854 }
855
856 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
857 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
858 will move to cycle zero. */
859 static void
860 reset_sched_times (partial_schedule_ptr ps, int amount)
861 {
862 int row;
863 int ii = ps->ii;
864 ps_insn_ptr crr_insn;
865
866 for (row = 0; row < ii; row++)
867 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
868 {
869 int u = crr_insn->id;
870 int normalized_time = SCHED_TIME (u) - amount;
871 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
872
873 if (dump_file)
874 {
875 /* Print the scheduling times after the rotation. */
876 rtx_insn *insn = ps_rtl_insn (ps, u);
877
878 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
879 "crr_insn->cycle=%d, min_cycle=%d", u,
880 INSN_UID (insn), normalized_time, new_min_cycle);
881 if (JUMP_P (insn))
882 fprintf (dump_file, " (branch)");
883 fprintf (dump_file, "\n");
884 }
885
886 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
887 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
888
889 crr_insn->cycle = normalized_time;
890 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
891 }
892 }
893
894 /* Permute the insns according to their order in PS, from row 0 to
895 row ii-1, and position them right before LAST. This schedules
896 the insns of the loop kernel. */
897 static void
898 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
899 {
900 int ii = ps->ii;
901 int row;
902 ps_insn_ptr ps_ij;
903
904 for (row = 0; row < ii ; row++)
905 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
906 {
907 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
908
909 if (PREV_INSN (last) != insn)
910 {
911 if (ps_ij->id < ps->g->num_nodes)
912 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
913 PREV_INSN (last));
914 else
915 add_insn_before (insn, last, NULL);
916 }
917 }
918 }
919
920 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
921 respectively only if cycle C falls on the border of the scheduling
922 window boundaries marked by START and END cycles. STEP is the
923 direction of the window. */
924 static inline void
925 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
926 sbitmap *tmp_precede, sbitmap must_precede, int c,
927 int start, int end, int step)
928 {
929 *tmp_precede = NULL;
930 *tmp_follow = NULL;
931
932 if (c == start)
933 {
934 if (step == 1)
935 *tmp_precede = must_precede;
936 else /* step == -1. */
937 *tmp_follow = must_follow;
938 }
939 if (c == end - step)
940 {
941 if (step == 1)
942 *tmp_follow = must_follow;
943 else /* step == -1. */
944 *tmp_precede = must_precede;
945 }
946
947 }
948
949 /* Return True if the branch can be moved to row ii-1 while
950 normalizing the partial schedule PS to start from cycle zero and thus
951 optimize the SC. Otherwise return False. */
952 static bool
953 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
954 {
955 int amount = PS_MIN_CYCLE (ps);
956 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
957 int start, end, step;
958 int ii = ps->ii;
959 bool ok = false;
960 int stage_count, stage_count_curr;
961
962 /* Compare the SC after normalization and SC after bringing the branch
963 to row ii-1. If they are equal just bail out. */
964 stage_count = calculate_stage_count (ps, amount);
965 stage_count_curr =
966 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
967
968 if (stage_count == stage_count_curr)
969 {
970 if (dump_file)
971 fprintf (dump_file, "SMS SC already optimized.\n");
972
973 ok = false;
974 goto clear;
975 }
976
977 if (dump_file)
978 {
979 fprintf (dump_file, "SMS Trying to optimize branch location\n");
980 fprintf (dump_file, "SMS partial schedule before trial:\n");
981 print_partial_schedule (ps, dump_file);
982 }
983
984 /* First, normalize the partial scheduling. */
985 reset_sched_times (ps, amount);
986 rotate_partial_schedule (ps, amount);
987 if (dump_file)
988 {
989 fprintf (dump_file,
990 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
991 ii, stage_count);
992 print_partial_schedule (ps, dump_file);
993 }
994
995 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
996 {
997 ok = true;
998 goto clear;
999 }
1000
1001 bitmap_ones (sched_nodes);
1002
1003 /* Calculate the new placement of the branch. It should be in row
1004 ii-1 and fall into it's scheduling window. */
1005 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
1006 &step, &end) == 0)
1007 {
1008 bool success;
1009 ps_insn_ptr next_ps_i;
1010 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
1011 int row = SMODULO (branch_cycle, ps->ii);
1012 int num_splits = 0;
1013 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
1014 int c;
1015
1016 if (dump_file)
1017 fprintf (dump_file, "\nTrying to schedule node %d "
1018 "INSN = %d in (%d .. %d) step %d\n",
1019 g->closing_branch->cuid,
1020 (INSN_UID (g->closing_branch->insn)), start, end, step);
1021
1022 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1023 if (step == 1)
1024 {
1025 c = start + ii - SMODULO (start, ii) - 1;
1026 gcc_assert (c >= start);
1027 if (c >= end)
1028 {
1029 ok = false;
1030 if (dump_file)
1031 fprintf (dump_file,
1032 "SMS failed to schedule branch at cycle: %d\n", c);
1033 goto clear;
1034 }
1035 }
1036 else
1037 {
1038 c = start - SMODULO (start, ii) - 1;
1039 gcc_assert (c <= start);
1040
1041 if (c <= end)
1042 {
1043 if (dump_file)
1044 fprintf (dump_file,
1045 "SMS failed to schedule branch at cycle: %d\n", c);
1046 ok = false;
1047 goto clear;
1048 }
1049 }
1050
1051 must_precede = sbitmap_alloc (g->num_nodes);
1052 must_follow = sbitmap_alloc (g->num_nodes);
1053
1054 /* Try to schedule the branch is it's new cycle. */
1055 calculate_must_precede_follow (g->closing_branch, start, end,
1056 step, ii, sched_nodes,
1057 must_precede, must_follow);
1058
1059 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1060 must_precede, c, start, end, step);
1061
1062 /* Find the element in the partial schedule related to the closing
1063 branch so we can remove it from it's current cycle. */
1064 for (next_ps_i = ps->rows[row];
1065 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1066 if (next_ps_i->id == g->closing_branch->cuid)
1067 break;
1068
1069 remove_node_from_ps (ps, next_ps_i);
1070 success =
1071 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1072 sched_nodes, &num_splits,
1073 tmp_precede, tmp_follow);
1074 gcc_assert (num_splits == 0);
1075 if (!success)
1076 {
1077 if (dump_file)
1078 fprintf (dump_file,
1079 "SMS failed to schedule branch at cycle: %d, "
1080 "bringing it back to cycle %d\n", c, branch_cycle);
1081
1082 /* The branch was failed to be placed in row ii - 1.
1083 Put it back in it's original place in the partial
1084 schedualing. */
1085 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1086 must_precede, branch_cycle, start, end,
1087 step);
1088 success =
1089 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1090 branch_cycle, sched_nodes,
1091 &num_splits, tmp_precede,
1092 tmp_follow);
1093 gcc_assert (success && (num_splits == 0));
1094 ok = false;
1095 }
1096 else
1097 {
1098 /* The branch is placed in row ii - 1. */
1099 if (dump_file)
1100 fprintf (dump_file,
1101 "SMS success in moving branch to cycle %d\n", c);
1102
1103 update_node_sched_params (g->closing_branch->cuid, ii, c,
1104 PS_MIN_CYCLE (ps));
1105 ok = true;
1106 }
1107
1108 free (must_precede);
1109 free (must_follow);
1110 }
1111
1112 clear:
1113 free (sched_nodes);
1114 return ok;
1115 }
1116
1117 static void
1118 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1119 int to_stage, rtx count_reg)
1120 {
1121 int row;
1122 ps_insn_ptr ps_ij;
1123
1124 for (row = 0; row < ps->ii; row++)
1125 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1126 {
1127 int u = ps_ij->id;
1128 int first_u, last_u;
1129 rtx_insn *u_insn;
1130
1131 /* Do not duplicate any insn which refers to count_reg as it
1132 belongs to the control part.
1133 The closing branch is scheduled as well and thus should
1134 be ignored.
1135 TODO: This should be done by analyzing the control part of
1136 the loop. */
1137 u_insn = ps_rtl_insn (ps, u);
1138 if (reg_mentioned_p (count_reg, u_insn)
1139 || JUMP_P (u_insn))
1140 continue;
1141
1142 first_u = SCHED_STAGE (u);
1143 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1144 if (from_stage <= last_u && to_stage >= first_u)
1145 {
1146 if (u < ps->g->num_nodes)
1147 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1148 else
1149 emit_insn (copy_rtx (PATTERN (u_insn)));
1150 }
1151 }
1152 }
1153
1154
1155 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1156 static void
1157 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1158 rtx count_reg, rtx count_init)
1159 {
1160 int i;
1161 int last_stage = PS_STAGE_COUNT (ps) - 1;
1162 edge e;
1163
1164 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1165 start_sequence ();
1166
1167 if (!count_init)
1168 {
1169 /* Generate instructions at the beginning of the prolog to
1170 adjust the loop count by STAGE_COUNT. If loop count is constant
1171 (count_init), this constant is adjusted by STAGE_COUNT in
1172 generate_prolog_epilog function. */
1173 rtx sub_reg = NULL_RTX;
1174
1175 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1176 gen_int_mode (last_stage,
1177 GET_MODE (count_reg)),
1178 count_reg, 1, OPTAB_DIRECT);
1179 gcc_assert (REG_P (sub_reg));
1180 if (REGNO (sub_reg) != REGNO (count_reg))
1181 emit_move_insn (count_reg, sub_reg);
1182 }
1183
1184 for (i = 0; i < last_stage; i++)
1185 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1186
1187 /* Put the prolog on the entry edge. */
1188 e = loop_preheader_edge (loop);
1189 split_edge_and_insert (e, get_insns ());
1190 if (!flag_resched_modulo_sched)
1191 e->dest->flags |= BB_DISABLE_SCHEDULE;
1192
1193 end_sequence ();
1194
1195 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1196 start_sequence ();
1197
1198 for (i = 0; i < last_stage; i++)
1199 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1200
1201 /* Put the epilogue on the exit edge. */
1202 gcc_assert (single_exit (loop));
1203 e = single_exit (loop);
1204 split_edge_and_insert (e, get_insns ());
1205 if (!flag_resched_modulo_sched)
1206 e->dest->flags |= BB_DISABLE_SCHEDULE;
1207
1208 end_sequence ();
1209 }
1210
1211 /* Mark LOOP as software pipelined so the later
1212 scheduling passes don't touch it. */
1213 static void
1214 mark_loop_unsched (struct loop *loop)
1215 {
1216 unsigned i;
1217 basic_block *bbs = get_loop_body (loop);
1218
1219 for (i = 0; i < loop->num_nodes; i++)
1220 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1221
1222 free (bbs);
1223 }
1224
1225 /* Return true if all the BBs of the loop are empty except the
1226 loop header. */
1227 static bool
1228 loop_single_full_bb_p (struct loop *loop)
1229 {
1230 unsigned i;
1231 basic_block *bbs = get_loop_body (loop);
1232
1233 for (i = 0; i < loop->num_nodes ; i++)
1234 {
1235 rtx_insn *head, *tail;
1236 bool empty_bb = true;
1237
1238 if (bbs[i] == loop->header)
1239 continue;
1240
1241 /* Make sure that basic blocks other than the header
1242 have only notes labels or jumps. */
1243 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1244 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1245 {
1246 if (NOTE_P (head) || LABEL_P (head)
1247 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1248 continue;
1249 empty_bb = false;
1250 break;
1251 }
1252
1253 if (! empty_bb)
1254 {
1255 free (bbs);
1256 return false;
1257 }
1258 }
1259 free (bbs);
1260 return true;
1261 }
1262
1263 /* Dump file:line from INSN's location info to dump_file. */
1264
1265 static void
1266 dump_insn_location (rtx_insn *insn)
1267 {
1268 if (dump_file && INSN_HAS_LOCATION (insn))
1269 {
1270 expanded_location xloc = insn_location (insn);
1271 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1272 }
1273 }
1274
1275 /* A simple loop from SMS point of view; it is a loop that is composed of
1276 either a single basic block or two BBs - a header and a latch. */
1277 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1278 && (EDGE_COUNT (loop->latch->preds) == 1) \
1279 && (EDGE_COUNT (loop->latch->succs) == 1))
1280
1281 /* Return true if the loop is in its canonical form and false if not.
1282 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1283 static bool
1284 loop_canon_p (struct loop *loop)
1285 {
1286
1287 if (loop->inner || !loop_outer (loop))
1288 {
1289 if (dump_file)
1290 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1291 return false;
1292 }
1293
1294 if (!single_exit (loop))
1295 {
1296 if (dump_file)
1297 {
1298 rtx_insn *insn = BB_END (loop->header);
1299
1300 fprintf (dump_file, "SMS loop many exits");
1301 dump_insn_location (insn);
1302 fprintf (dump_file, "\n");
1303 }
1304 return false;
1305 }
1306
1307 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1308 {
1309 if (dump_file)
1310 {
1311 rtx_insn *insn = BB_END (loop->header);
1312
1313 fprintf (dump_file, "SMS loop many BBs.");
1314 dump_insn_location (insn);
1315 fprintf (dump_file, "\n");
1316 }
1317 return false;
1318 }
1319
1320 return true;
1321 }
1322
1323 /* If there are more than one entry for the loop,
1324 make it one by splitting the first entry edge and
1325 redirecting the others to the new BB. */
1326 static void
1327 canon_loop (struct loop *loop)
1328 {
1329 edge e;
1330 edge_iterator i;
1331
1332 /* Avoid annoying special cases of edges going to exit
1333 block. */
1334 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1335 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1336 split_edge (e);
1337
1338 if (loop->latch == loop->header
1339 || EDGE_COUNT (loop->latch->succs) > 1)
1340 {
1341 FOR_EACH_EDGE (e, i, loop->header->preds)
1342 if (e->src == loop->latch)
1343 break;
1344 split_edge (e);
1345 }
1346 }
1347
1348 /* Setup infos. */
1349 static void
1350 setup_sched_infos (void)
1351 {
1352 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1353 sizeof (sms_common_sched_info));
1354 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1355 common_sched_info = &sms_common_sched_info;
1356
1357 sched_deps_info = &sms_sched_deps_info;
1358 current_sched_info = &sms_sched_info;
1359 }
1360
1361 /* Probability in % that the sms-ed loop rolls enough so that optimized
1362 version may be entered. Just a guess. */
1363 #define PROB_SMS_ENOUGH_ITERATIONS 80
1364
1365 /* Used to calculate the upper bound of ii. */
1366 #define MAXII_FACTOR 2
1367
1368 /* Main entry point, perform SMS scheduling on the loops of the function
1369 that consist of single basic blocks. */
1370 static void
1371 sms_schedule (void)
1372 {
1373 rtx_insn *insn;
1374 ddg_ptr *g_arr, g;
1375 int * node_order;
1376 int maxii, max_asap;
1377 partial_schedule_ptr ps;
1378 basic_block bb = NULL;
1379 struct loop *loop;
1380 basic_block condition_bb = NULL;
1381 edge latch_edge;
1382 gcov_type trip_count = 0;
1383
1384 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1385 | LOOPS_HAVE_RECORDED_EXITS);
1386 if (number_of_loops (cfun) <= 1)
1387 {
1388 loop_optimizer_finalize ();
1389 return; /* There are no loops to schedule. */
1390 }
1391
1392 /* Initialize issue_rate. */
1393 if (targetm.sched.issue_rate)
1394 {
1395 int temp = reload_completed;
1396
1397 reload_completed = 1;
1398 issue_rate = targetm.sched.issue_rate ();
1399 reload_completed = temp;
1400 }
1401 else
1402 issue_rate = 1;
1403
1404 /* Initialize the scheduler. */
1405 setup_sched_infos ();
1406 haifa_sched_init ();
1407
1408 /* Allocate memory to hold the DDG array one entry for each loop.
1409 We use loop->num as index into this array. */
1410 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1411
1412 if (dump_file)
1413 {
1414 fprintf (dump_file, "\n\nSMS analysis phase\n");
1415 fprintf (dump_file, "===================\n\n");
1416 }
1417
1418 /* Build DDGs for all the relevant loops and hold them in G_ARR
1419 indexed by the loop index. */
1420 FOR_EACH_LOOP (loop, 0)
1421 {
1422 rtx_insn *head, *tail;
1423 rtx count_reg;
1424
1425 /* For debugging. */
1426 if (dbg_cnt (sms_sched_loop) == false)
1427 {
1428 if (dump_file)
1429 fprintf (dump_file, "SMS reached max limit... \n");
1430
1431 break;
1432 }
1433
1434 if (dump_file)
1435 {
1436 rtx_insn *insn = BB_END (loop->header);
1437
1438 fprintf (dump_file, "SMS loop num: %d", loop->num);
1439 dump_insn_location (insn);
1440 fprintf (dump_file, "\n");
1441 }
1442
1443 if (! loop_canon_p (loop))
1444 continue;
1445
1446 if (! loop_single_full_bb_p (loop))
1447 {
1448 if (dump_file)
1449 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1450 continue;
1451 }
1452
1453 bb = loop->header;
1454
1455 get_ebb_head_tail (bb, bb, &head, &tail);
1456 latch_edge = loop_latch_edge (loop);
1457 gcc_assert (single_exit (loop));
1458 if (single_exit (loop)->count)
1459 trip_count = latch_edge->count / single_exit (loop)->count;
1460
1461 /* Perform SMS only on loops that their average count is above threshold. */
1462
1463 if ( latch_edge->count
1464 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1465 {
1466 if (dump_file)
1467 {
1468 dump_insn_location (tail);
1469 fprintf (dump_file, "\nSMS single-bb-loop\n");
1470 if (profile_info && flag_branch_probabilities)
1471 {
1472 fprintf (dump_file, "SMS loop-count ");
1473 fprintf (dump_file, "%" PRId64,
1474 (int64_t) bb->count);
1475 fprintf (dump_file, "\n");
1476 fprintf (dump_file, "SMS trip-count ");
1477 fprintf (dump_file, "%" PRId64,
1478 (int64_t) trip_count);
1479 fprintf (dump_file, "\n");
1480 fprintf (dump_file, "SMS profile-sum-max ");
1481 fprintf (dump_file, "%" PRId64,
1482 (int64_t) profile_info->sum_max);
1483 fprintf (dump_file, "\n");
1484 }
1485 }
1486 continue;
1487 }
1488
1489 /* Make sure this is a doloop. */
1490 if ( !(count_reg = doloop_register_get (head, tail)))
1491 {
1492 if (dump_file)
1493 fprintf (dump_file, "SMS doloop_register_get failed\n");
1494 continue;
1495 }
1496
1497 /* Don't handle BBs with calls or barriers
1498 or !single_set with the exception of instructions that include
1499 count_reg---these instructions are part of the control part
1500 that do-loop recognizes.
1501 ??? Should handle insns defining subregs. */
1502 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1503 {
1504 rtx set;
1505
1506 if (CALL_P (insn)
1507 || BARRIER_P (insn)
1508 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1509 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1510 && !reg_mentioned_p (count_reg, insn))
1511 || (INSN_P (insn) && (set = single_set (insn))
1512 && GET_CODE (SET_DEST (set)) == SUBREG))
1513 break;
1514 }
1515
1516 if (insn != NEXT_INSN (tail))
1517 {
1518 if (dump_file)
1519 {
1520 if (CALL_P (insn))
1521 fprintf (dump_file, "SMS loop-with-call\n");
1522 else if (BARRIER_P (insn))
1523 fprintf (dump_file, "SMS loop-with-barrier\n");
1524 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1525 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1526 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1527 else
1528 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1529 print_rtl_single (dump_file, insn);
1530 }
1531
1532 continue;
1533 }
1534
1535 /* Always schedule the closing branch with the rest of the
1536 instructions. The branch is rotated to be in row ii-1 at the
1537 end of the scheduling procedure to make sure it's the last
1538 instruction in the iteration. */
1539 if (! (g = create_ddg (bb, 1)))
1540 {
1541 if (dump_file)
1542 fprintf (dump_file, "SMS create_ddg failed\n");
1543 continue;
1544 }
1545
1546 g_arr[loop->num] = g;
1547 if (dump_file)
1548 fprintf (dump_file, "...OK\n");
1549
1550 }
1551 if (dump_file)
1552 {
1553 fprintf (dump_file, "\nSMS transformation phase\n");
1554 fprintf (dump_file, "=========================\n\n");
1555 }
1556
1557 /* We don't want to perform SMS on new loops - created by versioning. */
1558 FOR_EACH_LOOP (loop, 0)
1559 {
1560 rtx_insn *head, *tail;
1561 rtx count_reg;
1562 rtx_insn *count_init;
1563 int mii, rec_mii, stage_count, min_cycle;
1564 int64_t loop_count = 0;
1565 bool opt_sc_p;
1566
1567 if (! (g = g_arr[loop->num]))
1568 continue;
1569
1570 if (dump_file)
1571 {
1572 rtx_insn *insn = BB_END (loop->header);
1573
1574 fprintf (dump_file, "SMS loop num: %d", loop->num);
1575 dump_insn_location (insn);
1576 fprintf (dump_file, "\n");
1577
1578 print_ddg (dump_file, g);
1579 }
1580
1581 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1582
1583 latch_edge = loop_latch_edge (loop);
1584 gcc_assert (single_exit (loop));
1585 if (single_exit (loop)->count)
1586 trip_count = latch_edge->count / single_exit (loop)->count;
1587
1588 if (dump_file)
1589 {
1590 dump_insn_location (tail);
1591 fprintf (dump_file, "\nSMS single-bb-loop\n");
1592 if (profile_info && flag_branch_probabilities)
1593 {
1594 fprintf (dump_file, "SMS loop-count ");
1595 fprintf (dump_file, "%" PRId64,
1596 (int64_t) bb->count);
1597 fprintf (dump_file, "\n");
1598 fprintf (dump_file, "SMS profile-sum-max ");
1599 fprintf (dump_file, "%" PRId64,
1600 (int64_t) profile_info->sum_max);
1601 fprintf (dump_file, "\n");
1602 }
1603 fprintf (dump_file, "SMS doloop\n");
1604 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1605 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1606 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1607 }
1608
1609
1610 /* In case of th loop have doloop register it gets special
1611 handling. */
1612 count_init = NULL;
1613 if ((count_reg = doloop_register_get (head, tail)))
1614 {
1615 basic_block pre_header;
1616
1617 pre_header = loop_preheader_edge (loop)->src;
1618 count_init = const_iteration_count (count_reg, pre_header,
1619 &loop_count);
1620 }
1621 gcc_assert (count_reg);
1622
1623 if (dump_file && count_init)
1624 {
1625 fprintf (dump_file, "SMS const-doloop ");
1626 fprintf (dump_file, "%" PRId64,
1627 loop_count);
1628 fprintf (dump_file, "\n");
1629 }
1630
1631 node_order = XNEWVEC (int, g->num_nodes);
1632
1633 mii = 1; /* Need to pass some estimate of mii. */
1634 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1635 mii = MAX (res_MII (g), rec_mii);
1636 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1637
1638 if (dump_file)
1639 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1640 rec_mii, mii, maxii);
1641
1642 for (;;)
1643 {
1644 set_node_sched_params (g);
1645
1646 stage_count = 0;
1647 opt_sc_p = false;
1648 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1649
1650 if (ps)
1651 {
1652 /* Try to achieve optimized SC by normalizing the partial
1653 schedule (having the cycles start from cycle zero).
1654 The branch location must be placed in row ii-1 in the
1655 final scheduling. If failed, shift all instructions to
1656 position the branch in row ii-1. */
1657 opt_sc_p = optimize_sc (ps, g);
1658 if (opt_sc_p)
1659 stage_count = calculate_stage_count (ps, 0);
1660 else
1661 {
1662 /* Bring the branch to cycle ii-1. */
1663 int amount = (SCHED_TIME (g->closing_branch->cuid)
1664 - (ps->ii - 1));
1665
1666 if (dump_file)
1667 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1668
1669 stage_count = calculate_stage_count (ps, amount);
1670 }
1671
1672 gcc_assert (stage_count >= 1);
1673 }
1674
1675 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1676 1 means that there is no interleaving between iterations thus
1677 we let the scheduling passes do the job in this case. */
1678 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1679 || (count_init && (loop_count <= stage_count))
1680 || (flag_branch_probabilities && (trip_count <= stage_count)))
1681 {
1682 if (dump_file)
1683 {
1684 fprintf (dump_file, "SMS failed... \n");
1685 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1686 " loop-count=", stage_count);
1687 fprintf (dump_file, "%" PRId64, loop_count);
1688 fprintf (dump_file, ", trip-count=");
1689 fprintf (dump_file, "%" PRId64, trip_count);
1690 fprintf (dump_file, ")\n");
1691 }
1692 break;
1693 }
1694
1695 if (!opt_sc_p)
1696 {
1697 /* Rotate the partial schedule to have the branch in row ii-1. */
1698 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1699
1700 reset_sched_times (ps, amount);
1701 rotate_partial_schedule (ps, amount);
1702 }
1703
1704 set_columns_for_ps (ps);
1705
1706 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1707 if (!schedule_reg_moves (ps))
1708 {
1709 mii = ps->ii + 1;
1710 free_partial_schedule (ps);
1711 continue;
1712 }
1713
1714 /* Moves that handle incoming values might have been added
1715 to a new first stage. Bump the stage count if so.
1716
1717 ??? Perhaps we could consider rotating the schedule here
1718 instead? */
1719 if (PS_MIN_CYCLE (ps) < min_cycle)
1720 {
1721 reset_sched_times (ps, 0);
1722 stage_count++;
1723 }
1724
1725 /* The stage count should now be correct without rotation. */
1726 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1727 PS_STAGE_COUNT (ps) = stage_count;
1728
1729 canon_loop (loop);
1730
1731 if (dump_file)
1732 {
1733 dump_insn_location (tail);
1734 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1735 ps->ii, stage_count);
1736 print_partial_schedule (ps, dump_file);
1737 }
1738
1739 /* case the BCT count is not known , Do loop-versioning */
1740 if (count_reg && ! count_init)
1741 {
1742 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1743 gen_int_mode (stage_count,
1744 GET_MODE (count_reg)));
1745 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1746 * REG_BR_PROB_BASE) / 100;
1747
1748 loop_version (loop, comp_rtx, &condition_bb,
1749 prob, prob, REG_BR_PROB_BASE - prob,
1750 true);
1751 }
1752
1753 /* Set new iteration count of loop kernel. */
1754 if (count_reg && count_init)
1755 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1756 - stage_count + 1);
1757
1758 /* Now apply the scheduled kernel to the RTL of the loop. */
1759 permute_partial_schedule (ps, g->closing_branch->first_note);
1760
1761 /* Mark this loop as software pipelined so the later
1762 scheduling passes don't touch it. */
1763 if (! flag_resched_modulo_sched)
1764 mark_loop_unsched (loop);
1765
1766 /* The life-info is not valid any more. */
1767 df_set_bb_dirty (g->bb);
1768
1769 apply_reg_moves (ps);
1770 if (dump_file)
1771 print_node_sched_params (dump_file, g->num_nodes, ps);
1772 /* Generate prolog and epilog. */
1773 generate_prolog_epilog (ps, loop, count_reg, count_init);
1774 break;
1775 }
1776
1777 free_partial_schedule (ps);
1778 node_sched_param_vec.release ();
1779 free (node_order);
1780 free_ddg (g);
1781 }
1782
1783 free (g_arr);
1784
1785 /* Release scheduler data, needed until now because of DFA. */
1786 haifa_sched_finish ();
1787 loop_optimizer_finalize ();
1788 }
1789
1790 /* The SMS scheduling algorithm itself
1791 -----------------------------------
1792 Input: 'O' an ordered list of insns of a loop.
1793 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1794
1795 'Q' is the empty Set
1796 'PS' is the partial schedule; it holds the currently scheduled nodes with
1797 their cycle/slot.
1798 'PSP' previously scheduled predecessors.
1799 'PSS' previously scheduled successors.
1800 't(u)' the cycle where u is scheduled.
1801 'l(u)' is the latency of u.
1802 'd(v,u)' is the dependence distance from v to u.
1803 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1804 the node ordering phase.
1805 'check_hardware_resources_conflicts(u, PS, c)'
1806 run a trace around cycle/slot through DFA model
1807 to check resource conflicts involving instruction u
1808 at cycle c given the partial schedule PS.
1809 'add_to_partial_schedule_at_time(u, PS, c)'
1810 Add the node/instruction u to the partial schedule
1811 PS at time c.
1812 'calculate_register_pressure(PS)'
1813 Given a schedule of instructions, calculate the register
1814 pressure it implies. One implementation could be the
1815 maximum number of overlapping live ranges.
1816 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1817 registers available in the hardware.
1818
1819 1. II = MII.
1820 2. PS = empty list
1821 3. for each node u in O in pre-computed order
1822 4. if (PSP(u) != Q && PSS(u) == Q) then
1823 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1824 6. start = Early_start; end = Early_start + II - 1; step = 1
1825 11. else if (PSP(u) == Q && PSS(u) != Q) then
1826 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1827 13. start = Late_start; end = Late_start - II + 1; step = -1
1828 14. else if (PSP(u) != Q && PSS(u) != Q) then
1829 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1830 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1831 17. start = Early_start;
1832 18. end = min(Early_start + II - 1 , Late_start);
1833 19. step = 1
1834 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1835 21. start = ASAP(u); end = start + II - 1; step = 1
1836 22. endif
1837
1838 23. success = false
1839 24. for (c = start ; c != end ; c += step)
1840 25. if check_hardware_resources_conflicts(u, PS, c) then
1841 26. add_to_partial_schedule_at_time(u, PS, c)
1842 27. success = true
1843 28. break
1844 29. endif
1845 30. endfor
1846 31. if (success == false) then
1847 32. II = II + 1
1848 33. if (II > maxII) then
1849 34. finish - failed to schedule
1850 35. endif
1851 36. goto 2.
1852 37. endif
1853 38. endfor
1854 39. if (calculate_register_pressure(PS) > maxRP) then
1855 40. goto 32.
1856 41. endif
1857 42. compute epilogue & prologue
1858 43. finish - succeeded to schedule
1859
1860 ??? The algorithm restricts the scheduling window to II cycles.
1861 In rare cases, it may be better to allow windows of II+1 cycles.
1862 The window would then start and end on the same row, but with
1863 different "must precede" and "must follow" requirements. */
1864
1865 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1866 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1867 set to 0 to save compile time. */
1868 #define DFA_HISTORY SMS_DFA_HISTORY
1869
1870 /* A threshold for the number of repeated unsuccessful attempts to insert
1871 an empty row, before we flush the partial schedule and start over. */
1872 #define MAX_SPLIT_NUM 10
1873 /* Given the partial schedule PS, this function calculates and returns the
1874 cycles in which we can schedule the node with the given index I.
1875 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1876 noticed that there are several cases in which we fail to SMS the loop
1877 because the sched window of a node is empty due to tight data-deps. In
1878 such cases we want to unschedule some of the predecessors/successors
1879 until we get non-empty scheduling window. It returns -1 if the
1880 scheduling window is empty and zero otherwise. */
1881
1882 static int
1883 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1884 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1885 int *end_p)
1886 {
1887 int start, step, end;
1888 int early_start, late_start;
1889 ddg_edge_ptr e;
1890 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1891 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1892 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1893 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1894 int psp_not_empty;
1895 int pss_not_empty;
1896 int count_preds;
1897 int count_succs;
1898
1899 /* 1. compute sched window for u (start, end, step). */
1900 bitmap_clear (psp);
1901 bitmap_clear (pss);
1902 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1903 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1904
1905 /* We first compute a forward range (start <= end), then decide whether
1906 to reverse it. */
1907 early_start = INT_MIN;
1908 late_start = INT_MAX;
1909 start = INT_MIN;
1910 end = INT_MAX;
1911 step = 1;
1912
1913 count_preds = 0;
1914 count_succs = 0;
1915
1916 if (dump_file && (psp_not_empty || pss_not_empty))
1917 {
1918 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1919 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1920 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1921 "start", "early start", "late start", "end", "time");
1922 fprintf (dump_file, "=========== =========== =========== ==========="
1923 " =====\n");
1924 }
1925 /* Calculate early_start and limit end. Both bounds are inclusive. */
1926 if (psp_not_empty)
1927 for (e = u_node->in; e != 0; e = e->next_in)
1928 {
1929 int v = e->src->cuid;
1930
1931 if (bitmap_bit_p (sched_nodes, v))
1932 {
1933 int p_st = SCHED_TIME (v);
1934 int earliest = p_st + e->latency - (e->distance * ii);
1935 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1936
1937 if (dump_file)
1938 {
1939 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1940 "", earliest, "", latest, p_st);
1941 print_ddg_edge (dump_file, e);
1942 fprintf (dump_file, "\n");
1943 }
1944
1945 early_start = MAX (early_start, earliest);
1946 end = MIN (end, latest);
1947
1948 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1949 count_preds++;
1950 }
1951 }
1952
1953 /* Calculate late_start and limit start. Both bounds are inclusive. */
1954 if (pss_not_empty)
1955 for (e = u_node->out; e != 0; e = e->next_out)
1956 {
1957 int v = e->dest->cuid;
1958
1959 if (bitmap_bit_p (sched_nodes, v))
1960 {
1961 int s_st = SCHED_TIME (v);
1962 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1963 int latest = s_st - e->latency + (e->distance * ii);
1964
1965 if (dump_file)
1966 {
1967 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1968 earliest, "", latest, "", s_st);
1969 print_ddg_edge (dump_file, e);
1970 fprintf (dump_file, "\n");
1971 }
1972
1973 start = MAX (start, earliest);
1974 late_start = MIN (late_start, latest);
1975
1976 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1977 count_succs++;
1978 }
1979 }
1980
1981 if (dump_file && (psp_not_empty || pss_not_empty))
1982 {
1983 fprintf (dump_file, "----------- ----------- ----------- -----------"
1984 " -----\n");
1985 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1986 start, early_start, late_start, end, "",
1987 "(max, max, min, min)");
1988 }
1989
1990 /* Get a target scheduling window no bigger than ii. */
1991 if (early_start == INT_MIN && late_start == INT_MAX)
1992 early_start = NODE_ASAP (u_node);
1993 else if (early_start == INT_MIN)
1994 early_start = late_start - (ii - 1);
1995 late_start = MIN (late_start, early_start + (ii - 1));
1996
1997 /* Apply memory dependence limits. */
1998 start = MAX (start, early_start);
1999 end = MIN (end, late_start);
2000
2001 if (dump_file && (psp_not_empty || pss_not_empty))
2002 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
2003 "", start, end, "", "");
2004
2005 /* If there are at least as many successors as predecessors, schedule the
2006 node close to its successors. */
2007 if (pss_not_empty && count_succs >= count_preds)
2008 {
2009 std::swap (start, end);
2010 step = -1;
2011 }
2012
2013 /* Now that we've finalized the window, make END an exclusive rather
2014 than an inclusive bound. */
2015 end += step;
2016
2017 *start_p = start;
2018 *step_p = step;
2019 *end_p = end;
2020 sbitmap_free (psp);
2021 sbitmap_free (pss);
2022
2023 if ((start >= end && step == 1) || (start <= end && step == -1))
2024 {
2025 if (dump_file)
2026 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2027 start, end, step);
2028 return -1;
2029 }
2030
2031 return 0;
2032 }
2033
2034 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2035 node currently been scheduled. At the end of the calculation
2036 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2037 U_NODE which are (1) already scheduled in the first/last row of
2038 U_NODE's scheduling window, (2) whose dependence inequality with U
2039 becomes an equality when U is scheduled in this same row, and (3)
2040 whose dependence latency is zero.
2041
2042 The first and last rows are calculated using the following parameters:
2043 START/END rows - The cycles that begins/ends the traversal on the window;
2044 searching for an empty cycle to schedule U_NODE.
2045 STEP - The direction in which we traverse the window.
2046 II - The initiation interval. */
2047
2048 static void
2049 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2050 int step, int ii, sbitmap sched_nodes,
2051 sbitmap must_precede, sbitmap must_follow)
2052 {
2053 ddg_edge_ptr e;
2054 int first_cycle_in_window, last_cycle_in_window;
2055
2056 gcc_assert (must_precede && must_follow);
2057
2058 /* Consider the following scheduling window:
2059 {first_cycle_in_window, first_cycle_in_window+1, ...,
2060 last_cycle_in_window}. If step is 1 then the following will be
2061 the order we traverse the window: {start=first_cycle_in_window,
2062 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2063 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2064 end=first_cycle_in_window-1} if step is -1. */
2065 first_cycle_in_window = (step == 1) ? start : end - step;
2066 last_cycle_in_window = (step == 1) ? end - step : start;
2067
2068 bitmap_clear (must_precede);
2069 bitmap_clear (must_follow);
2070
2071 if (dump_file)
2072 fprintf (dump_file, "\nmust_precede: ");
2073
2074 /* Instead of checking if:
2075 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2076 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2077 first_cycle_in_window)
2078 && e->latency == 0
2079 we use the fact that latency is non-negative:
2080 SCHED_TIME (e->src) - (e->distance * ii) <=
2081 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2082 first_cycle_in_window
2083 and check only if
2084 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2085 for (e = u_node->in; e != 0; e = e->next_in)
2086 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2087 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2088 first_cycle_in_window))
2089 {
2090 if (dump_file)
2091 fprintf (dump_file, "%d ", e->src->cuid);
2092
2093 bitmap_set_bit (must_precede, e->src->cuid);
2094 }
2095
2096 if (dump_file)
2097 fprintf (dump_file, "\nmust_follow: ");
2098
2099 /* Instead of checking if:
2100 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2101 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2102 last_cycle_in_window)
2103 && e->latency == 0
2104 we use the fact that latency is non-negative:
2105 SCHED_TIME (e->dest) + (e->distance * ii) >=
2106 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2107 last_cycle_in_window
2108 and check only if
2109 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2110 for (e = u_node->out; e != 0; e = e->next_out)
2111 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2112 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2113 last_cycle_in_window))
2114 {
2115 if (dump_file)
2116 fprintf (dump_file, "%d ", e->dest->cuid);
2117
2118 bitmap_set_bit (must_follow, e->dest->cuid);
2119 }
2120
2121 if (dump_file)
2122 fprintf (dump_file, "\n");
2123 }
2124
2125 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2126 parameters to decide if that's possible:
2127 PS - The partial schedule.
2128 U - The serial number of U_NODE.
2129 NUM_SPLITS - The number of row splits made so far.
2130 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2131 the first row of the scheduling window)
2132 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2133 last row of the scheduling window) */
2134
2135 static bool
2136 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2137 int u, int cycle, sbitmap sched_nodes,
2138 int *num_splits, sbitmap must_precede,
2139 sbitmap must_follow)
2140 {
2141 ps_insn_ptr psi;
2142 bool success = 0;
2143
2144 verify_partial_schedule (ps, sched_nodes);
2145 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2146 if (psi)
2147 {
2148 SCHED_TIME (u) = cycle;
2149 bitmap_set_bit (sched_nodes, u);
2150 success = 1;
2151 *num_splits = 0;
2152 if (dump_file)
2153 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2154
2155 }
2156
2157 return success;
2158 }
2159
2160 /* This function implements the scheduling algorithm for SMS according to the
2161 above algorithm. */
2162 static partial_schedule_ptr
2163 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2164 {
2165 int ii = mii;
2166 int i, c, success, num_splits = 0;
2167 int flush_and_start_over = true;
2168 int num_nodes = g->num_nodes;
2169 int start, end, step; /* Place together into one struct? */
2170 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2171 sbitmap must_precede = sbitmap_alloc (num_nodes);
2172 sbitmap must_follow = sbitmap_alloc (num_nodes);
2173 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2174
2175 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2176
2177 bitmap_ones (tobe_scheduled);
2178 bitmap_clear (sched_nodes);
2179
2180 while (flush_and_start_over && (ii < maxii))
2181 {
2182
2183 if (dump_file)
2184 fprintf (dump_file, "Starting with ii=%d\n", ii);
2185 flush_and_start_over = false;
2186 bitmap_clear (sched_nodes);
2187
2188 for (i = 0; i < num_nodes; i++)
2189 {
2190 int u = nodes_order[i];
2191 ddg_node_ptr u_node = &ps->g->nodes[u];
2192 rtx_insn *insn = u_node->insn;
2193
2194 if (!NONDEBUG_INSN_P (insn))
2195 {
2196 bitmap_clear_bit (tobe_scheduled, u);
2197 continue;
2198 }
2199
2200 if (bitmap_bit_p (sched_nodes, u))
2201 continue;
2202
2203 /* Try to get non-empty scheduling window. */
2204 success = 0;
2205 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2206 &step, &end) == 0)
2207 {
2208 if (dump_file)
2209 fprintf (dump_file, "\nTrying to schedule node %d "
2210 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2211 (g->nodes[u].insn)), start, end, step);
2212
2213 gcc_assert ((step > 0 && start < end)
2214 || (step < 0 && start > end));
2215
2216 calculate_must_precede_follow (u_node, start, end, step, ii,
2217 sched_nodes, must_precede,
2218 must_follow);
2219
2220 for (c = start; c != end; c += step)
2221 {
2222 sbitmap tmp_precede, tmp_follow;
2223
2224 set_must_precede_follow (&tmp_follow, must_follow,
2225 &tmp_precede, must_precede,
2226 c, start, end, step);
2227 success =
2228 try_scheduling_node_in_cycle (ps, u, c,
2229 sched_nodes,
2230 &num_splits, tmp_precede,
2231 tmp_follow);
2232 if (success)
2233 break;
2234 }
2235
2236 verify_partial_schedule (ps, sched_nodes);
2237 }
2238 if (!success)
2239 {
2240 int split_row;
2241
2242 if (ii++ == maxii)
2243 break;
2244
2245 if (num_splits >= MAX_SPLIT_NUM)
2246 {
2247 num_splits = 0;
2248 flush_and_start_over = true;
2249 verify_partial_schedule (ps, sched_nodes);
2250 reset_partial_schedule (ps, ii);
2251 verify_partial_schedule (ps, sched_nodes);
2252 break;
2253 }
2254
2255 num_splits++;
2256 /* The scheduling window is exclusive of 'end'
2257 whereas compute_split_window() expects an inclusive,
2258 ordered range. */
2259 if (step == 1)
2260 split_row = compute_split_row (sched_nodes, start, end - 1,
2261 ps->ii, u_node);
2262 else
2263 split_row = compute_split_row (sched_nodes, end + 1, start,
2264 ps->ii, u_node);
2265
2266 ps_insert_empty_row (ps, split_row, sched_nodes);
2267 i--; /* Go back and retry node i. */
2268
2269 if (dump_file)
2270 fprintf (dump_file, "num_splits=%d\n", num_splits);
2271 }
2272
2273 /* ??? If (success), check register pressure estimates. */
2274 } /* Continue with next node. */
2275 } /* While flush_and_start_over. */
2276 if (ii >= maxii)
2277 {
2278 free_partial_schedule (ps);
2279 ps = NULL;
2280 }
2281 else
2282 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2283
2284 sbitmap_free (sched_nodes);
2285 sbitmap_free (must_precede);
2286 sbitmap_free (must_follow);
2287 sbitmap_free (tobe_scheduled);
2288
2289 return ps;
2290 }
2291
2292 /* This function inserts a new empty row into PS at the position
2293 according to SPLITROW, keeping all already scheduled instructions
2294 intact and updating their SCHED_TIME and cycle accordingly. */
2295 static void
2296 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2297 sbitmap sched_nodes)
2298 {
2299 ps_insn_ptr crr_insn;
2300 ps_insn_ptr *rows_new;
2301 int ii = ps->ii;
2302 int new_ii = ii + 1;
2303 int row;
2304 int *rows_length_new;
2305
2306 verify_partial_schedule (ps, sched_nodes);
2307
2308 /* We normalize sched_time and rotate ps to have only non-negative sched
2309 times, for simplicity of updating cycles after inserting new row. */
2310 split_row -= ps->min_cycle;
2311 split_row = SMODULO (split_row, ii);
2312 if (dump_file)
2313 fprintf (dump_file, "split_row=%d\n", split_row);
2314
2315 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2316 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2317
2318 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2319 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2320 for (row = 0; row < split_row; row++)
2321 {
2322 rows_new[row] = ps->rows[row];
2323 rows_length_new[row] = ps->rows_length[row];
2324 ps->rows[row] = NULL;
2325 for (crr_insn = rows_new[row];
2326 crr_insn; crr_insn = crr_insn->next_in_row)
2327 {
2328 int u = crr_insn->id;
2329 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2330
2331 SCHED_TIME (u) = new_time;
2332 crr_insn->cycle = new_time;
2333 SCHED_ROW (u) = new_time % new_ii;
2334 SCHED_STAGE (u) = new_time / new_ii;
2335 }
2336
2337 }
2338
2339 rows_new[split_row] = NULL;
2340
2341 for (row = split_row; row < ii; row++)
2342 {
2343 rows_new[row + 1] = ps->rows[row];
2344 rows_length_new[row + 1] = ps->rows_length[row];
2345 ps->rows[row] = NULL;
2346 for (crr_insn = rows_new[row + 1];
2347 crr_insn; crr_insn = crr_insn->next_in_row)
2348 {
2349 int u = crr_insn->id;
2350 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2351
2352 SCHED_TIME (u) = new_time;
2353 crr_insn->cycle = new_time;
2354 SCHED_ROW (u) = new_time % new_ii;
2355 SCHED_STAGE (u) = new_time / new_ii;
2356 }
2357 }
2358
2359 /* Updating ps. */
2360 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2361 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2362 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2363 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2364 free (ps->rows);
2365 ps->rows = rows_new;
2366 free (ps->rows_length);
2367 ps->rows_length = rows_length_new;
2368 ps->ii = new_ii;
2369 gcc_assert (ps->min_cycle >= 0);
2370
2371 verify_partial_schedule (ps, sched_nodes);
2372
2373 if (dump_file)
2374 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2375 ps->max_cycle);
2376 }
2377
2378 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2379 UP which are the boundaries of it's scheduling window; compute using
2380 SCHED_NODES and II a row in the partial schedule that can be split
2381 which will separate a critical predecessor from a critical successor
2382 thereby expanding the window, and return it. */
2383 static int
2384 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2385 ddg_node_ptr u_node)
2386 {
2387 ddg_edge_ptr e;
2388 int lower = INT_MIN, upper = INT_MAX;
2389 int crit_pred = -1;
2390 int crit_succ = -1;
2391 int crit_cycle;
2392
2393 for (e = u_node->in; e != 0; e = e->next_in)
2394 {
2395 int v = e->src->cuid;
2396
2397 if (bitmap_bit_p (sched_nodes, v)
2398 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2399 if (SCHED_TIME (v) > lower)
2400 {
2401 crit_pred = v;
2402 lower = SCHED_TIME (v);
2403 }
2404 }
2405
2406 if (crit_pred >= 0)
2407 {
2408 crit_cycle = SCHED_TIME (crit_pred) + 1;
2409 return SMODULO (crit_cycle, ii);
2410 }
2411
2412 for (e = u_node->out; e != 0; e = e->next_out)
2413 {
2414 int v = e->dest->cuid;
2415
2416 if (bitmap_bit_p (sched_nodes, v)
2417 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2418 if (SCHED_TIME (v) < upper)
2419 {
2420 crit_succ = v;
2421 upper = SCHED_TIME (v);
2422 }
2423 }
2424
2425 if (crit_succ >= 0)
2426 {
2427 crit_cycle = SCHED_TIME (crit_succ);
2428 return SMODULO (crit_cycle, ii);
2429 }
2430
2431 if (dump_file)
2432 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2433
2434 return SMODULO ((low + up + 1) / 2, ii);
2435 }
2436
2437 static void
2438 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2439 {
2440 int row;
2441 ps_insn_ptr crr_insn;
2442
2443 for (row = 0; row < ps->ii; row++)
2444 {
2445 int length = 0;
2446
2447 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2448 {
2449 int u = crr_insn->id;
2450
2451 length++;
2452 gcc_assert (bitmap_bit_p (sched_nodes, u));
2453 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2454 popcount (sched_nodes) == number of insns in ps. */
2455 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2456 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2457 }
2458
2459 gcc_assert (ps->rows_length[row] == length);
2460 }
2461 }
2462
2463 \f
2464 /* This page implements the algorithm for ordering the nodes of a DDG
2465 for modulo scheduling, activated through the
2466 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2467
2468 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2469 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2470 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2471 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2472 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2473 #define DEPTH(x) (ASAP ((x)))
2474
2475 typedef struct node_order_params * nopa;
2476
2477 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2478 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2479 static nopa calculate_order_params (ddg_ptr, int, int *);
2480 static int find_max_asap (ddg_ptr, sbitmap);
2481 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2482 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2483
2484 enum sms_direction {BOTTOMUP, TOPDOWN};
2485
2486 struct node_order_params
2487 {
2488 int asap;
2489 int alap;
2490 int height;
2491 };
2492
2493 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2494 static void
2495 check_nodes_order (int *node_order, int num_nodes)
2496 {
2497 int i;
2498 sbitmap tmp = sbitmap_alloc (num_nodes);
2499
2500 bitmap_clear (tmp);
2501
2502 if (dump_file)
2503 fprintf (dump_file, "SMS final nodes order: \n");
2504
2505 for (i = 0; i < num_nodes; i++)
2506 {
2507 int u = node_order[i];
2508
2509 if (dump_file)
2510 fprintf (dump_file, "%d ", u);
2511 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2512
2513 bitmap_set_bit (tmp, u);
2514 }
2515
2516 if (dump_file)
2517 fprintf (dump_file, "\n");
2518
2519 sbitmap_free (tmp);
2520 }
2521
2522 /* Order the nodes of G for scheduling and pass the result in
2523 NODE_ORDER. Also set aux.count of each node to ASAP.
2524 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2525 static int
2526 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2527 {
2528 int i;
2529 int rec_mii = 0;
2530 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2531
2532 nopa nops = calculate_order_params (g, mii, pmax_asap);
2533
2534 if (dump_file)
2535 print_sccs (dump_file, sccs, g);
2536
2537 order_nodes_of_sccs (sccs, node_order);
2538
2539 if (sccs->num_sccs > 0)
2540 /* First SCC has the largest recurrence_length. */
2541 rec_mii = sccs->sccs[0]->recurrence_length;
2542
2543 /* Save ASAP before destroying node_order_params. */
2544 for (i = 0; i < g->num_nodes; i++)
2545 {
2546 ddg_node_ptr v = &g->nodes[i];
2547 v->aux.count = ASAP (v);
2548 }
2549
2550 free (nops);
2551 free_ddg_all_sccs (sccs);
2552 check_nodes_order (node_order, g->num_nodes);
2553
2554 return rec_mii;
2555 }
2556
2557 static void
2558 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2559 {
2560 int i, pos = 0;
2561 ddg_ptr g = all_sccs->ddg;
2562 int num_nodes = g->num_nodes;
2563 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2564 sbitmap on_path = sbitmap_alloc (num_nodes);
2565 sbitmap tmp = sbitmap_alloc (num_nodes);
2566 sbitmap ones = sbitmap_alloc (num_nodes);
2567
2568 bitmap_clear (prev_sccs);
2569 bitmap_ones (ones);
2570
2571 /* Perform the node ordering starting from the SCC with the highest recMII.
2572 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2573 for (i = 0; i < all_sccs->num_sccs; i++)
2574 {
2575 ddg_scc_ptr scc = all_sccs->sccs[i];
2576
2577 /* Add nodes on paths from previous SCCs to the current SCC. */
2578 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2579 bitmap_ior (tmp, scc->nodes, on_path);
2580
2581 /* Add nodes on paths from the current SCC to previous SCCs. */
2582 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2583 bitmap_ior (tmp, tmp, on_path);
2584
2585 /* Remove nodes of previous SCCs from current extended SCC. */
2586 bitmap_and_compl (tmp, tmp, prev_sccs);
2587
2588 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2589 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2590 }
2591
2592 /* Handle the remaining nodes that do not belong to any scc. Each call
2593 to order_nodes_in_scc handles a single connected component. */
2594 while (pos < g->num_nodes)
2595 {
2596 bitmap_and_compl (tmp, ones, prev_sccs);
2597 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2598 }
2599 sbitmap_free (prev_sccs);
2600 sbitmap_free (on_path);
2601 sbitmap_free (tmp);
2602 sbitmap_free (ones);
2603 }
2604
2605 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2606 static struct node_order_params *
2607 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2608 {
2609 int u;
2610 int max_asap;
2611 int num_nodes = g->num_nodes;
2612 ddg_edge_ptr e;
2613 /* Allocate a place to hold ordering params for each node in the DDG. */
2614 nopa node_order_params_arr;
2615
2616 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2617 node_order_params_arr = (nopa) xcalloc (num_nodes,
2618 sizeof (struct node_order_params));
2619
2620 /* Set the aux pointer of each node to point to its order_params structure. */
2621 for (u = 0; u < num_nodes; u++)
2622 g->nodes[u].aux.info = &node_order_params_arr[u];
2623
2624 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2625 calculate ASAP, ALAP, mobility, distance, and height for each node
2626 in the dependence (direct acyclic) graph. */
2627
2628 /* We assume that the nodes in the array are in topological order. */
2629
2630 max_asap = 0;
2631 for (u = 0; u < num_nodes; u++)
2632 {
2633 ddg_node_ptr u_node = &g->nodes[u];
2634
2635 ASAP (u_node) = 0;
2636 for (e = u_node->in; e; e = e->next_in)
2637 if (e->distance == 0)
2638 ASAP (u_node) = MAX (ASAP (u_node),
2639 ASAP (e->src) + e->latency);
2640 max_asap = MAX (max_asap, ASAP (u_node));
2641 }
2642
2643 for (u = num_nodes - 1; u > -1; u--)
2644 {
2645 ddg_node_ptr u_node = &g->nodes[u];
2646
2647 ALAP (u_node) = max_asap;
2648 HEIGHT (u_node) = 0;
2649 for (e = u_node->out; e; e = e->next_out)
2650 if (e->distance == 0)
2651 {
2652 ALAP (u_node) = MIN (ALAP (u_node),
2653 ALAP (e->dest) - e->latency);
2654 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2655 HEIGHT (e->dest) + e->latency);
2656 }
2657 }
2658 if (dump_file)
2659 {
2660 fprintf (dump_file, "\nOrder params\n");
2661 for (u = 0; u < num_nodes; u++)
2662 {
2663 ddg_node_ptr u_node = &g->nodes[u];
2664
2665 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2666 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2667 }
2668 }
2669
2670 *pmax_asap = max_asap;
2671 return node_order_params_arr;
2672 }
2673
2674 static int
2675 find_max_asap (ddg_ptr g, sbitmap nodes)
2676 {
2677 unsigned int u = 0;
2678 int max_asap = -1;
2679 int result = -1;
2680 sbitmap_iterator sbi;
2681
2682 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2683 {
2684 ddg_node_ptr u_node = &g->nodes[u];
2685
2686 if (max_asap < ASAP (u_node))
2687 {
2688 max_asap = ASAP (u_node);
2689 result = u;
2690 }
2691 }
2692 return result;
2693 }
2694
2695 static int
2696 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2697 {
2698 unsigned int u = 0;
2699 int max_hv = -1;
2700 int min_mob = INT_MAX;
2701 int result = -1;
2702 sbitmap_iterator sbi;
2703
2704 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2705 {
2706 ddg_node_ptr u_node = &g->nodes[u];
2707
2708 if (max_hv < HEIGHT (u_node))
2709 {
2710 max_hv = HEIGHT (u_node);
2711 min_mob = MOB (u_node);
2712 result = u;
2713 }
2714 else if ((max_hv == HEIGHT (u_node))
2715 && (min_mob > MOB (u_node)))
2716 {
2717 min_mob = MOB (u_node);
2718 result = u;
2719 }
2720 }
2721 return result;
2722 }
2723
2724 static int
2725 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2726 {
2727 unsigned int u = 0;
2728 int max_dv = -1;
2729 int min_mob = INT_MAX;
2730 int result = -1;
2731 sbitmap_iterator sbi;
2732
2733 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2734 {
2735 ddg_node_ptr u_node = &g->nodes[u];
2736
2737 if (max_dv < DEPTH (u_node))
2738 {
2739 max_dv = DEPTH (u_node);
2740 min_mob = MOB (u_node);
2741 result = u;
2742 }
2743 else if ((max_dv == DEPTH (u_node))
2744 && (min_mob > MOB (u_node)))
2745 {
2746 min_mob = MOB (u_node);
2747 result = u;
2748 }
2749 }
2750 return result;
2751 }
2752
2753 /* Places the nodes of SCC into the NODE_ORDER array starting
2754 at position POS, according to the SMS ordering algorithm.
2755 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2756 the NODE_ORDER array, starting from position zero. */
2757 static int
2758 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2759 int * node_order, int pos)
2760 {
2761 enum sms_direction dir;
2762 int num_nodes = g->num_nodes;
2763 sbitmap workset = sbitmap_alloc (num_nodes);
2764 sbitmap tmp = sbitmap_alloc (num_nodes);
2765 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2766 sbitmap predecessors = sbitmap_alloc (num_nodes);
2767 sbitmap successors = sbitmap_alloc (num_nodes);
2768
2769 bitmap_clear (predecessors);
2770 find_predecessors (predecessors, g, nodes_ordered);
2771
2772 bitmap_clear (successors);
2773 find_successors (successors, g, nodes_ordered);
2774
2775 bitmap_clear (tmp);
2776 if (bitmap_and (tmp, predecessors, scc))
2777 {
2778 bitmap_copy (workset, tmp);
2779 dir = BOTTOMUP;
2780 }
2781 else if (bitmap_and (tmp, successors, scc))
2782 {
2783 bitmap_copy (workset, tmp);
2784 dir = TOPDOWN;
2785 }
2786 else
2787 {
2788 int u;
2789
2790 bitmap_clear (workset);
2791 if ((u = find_max_asap (g, scc)) >= 0)
2792 bitmap_set_bit (workset, u);
2793 dir = BOTTOMUP;
2794 }
2795
2796 bitmap_clear (zero_bitmap);
2797 while (!bitmap_equal_p (workset, zero_bitmap))
2798 {
2799 int v;
2800 ddg_node_ptr v_node;
2801 sbitmap v_node_preds;
2802 sbitmap v_node_succs;
2803
2804 if (dir == TOPDOWN)
2805 {
2806 while (!bitmap_equal_p (workset, zero_bitmap))
2807 {
2808 v = find_max_hv_min_mob (g, workset);
2809 v_node = &g->nodes[v];
2810 node_order[pos++] = v;
2811 v_node_succs = NODE_SUCCESSORS (v_node);
2812 bitmap_and (tmp, v_node_succs, scc);
2813
2814 /* Don't consider the already ordered successors again. */
2815 bitmap_and_compl (tmp, tmp, nodes_ordered);
2816 bitmap_ior (workset, workset, tmp);
2817 bitmap_clear_bit (workset, v);
2818 bitmap_set_bit (nodes_ordered, v);
2819 }
2820 dir = BOTTOMUP;
2821 bitmap_clear (predecessors);
2822 find_predecessors (predecessors, g, nodes_ordered);
2823 bitmap_and (workset, predecessors, scc);
2824 }
2825 else
2826 {
2827 while (!bitmap_equal_p (workset, zero_bitmap))
2828 {
2829 v = find_max_dv_min_mob (g, workset);
2830 v_node = &g->nodes[v];
2831 node_order[pos++] = v;
2832 v_node_preds = NODE_PREDECESSORS (v_node);
2833 bitmap_and (tmp, v_node_preds, scc);
2834
2835 /* Don't consider the already ordered predecessors again. */
2836 bitmap_and_compl (tmp, tmp, nodes_ordered);
2837 bitmap_ior (workset, workset, tmp);
2838 bitmap_clear_bit (workset, v);
2839 bitmap_set_bit (nodes_ordered, v);
2840 }
2841 dir = TOPDOWN;
2842 bitmap_clear (successors);
2843 find_successors (successors, g, nodes_ordered);
2844 bitmap_and (workset, successors, scc);
2845 }
2846 }
2847 sbitmap_free (tmp);
2848 sbitmap_free (workset);
2849 sbitmap_free (zero_bitmap);
2850 sbitmap_free (predecessors);
2851 sbitmap_free (successors);
2852 return pos;
2853 }
2854
2855 \f
2856 /* This page contains functions for manipulating partial-schedules during
2857 modulo scheduling. */
2858
2859 /* Create a partial schedule and allocate a memory to hold II rows. */
2860
2861 static partial_schedule_ptr
2862 create_partial_schedule (int ii, ddg_ptr g, int history)
2863 {
2864 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2865 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2866 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2867 ps->reg_moves.create (0);
2868 ps->ii = ii;
2869 ps->history = history;
2870 ps->min_cycle = INT_MAX;
2871 ps->max_cycle = INT_MIN;
2872 ps->g = g;
2873
2874 return ps;
2875 }
2876
2877 /* Free the PS_INSNs in rows array of the given partial schedule.
2878 ??? Consider caching the PS_INSN's. */
2879 static void
2880 free_ps_insns (partial_schedule_ptr ps)
2881 {
2882 int i;
2883
2884 for (i = 0; i < ps->ii; i++)
2885 {
2886 while (ps->rows[i])
2887 {
2888 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2889
2890 free (ps->rows[i]);
2891 ps->rows[i] = ps_insn;
2892 }
2893 ps->rows[i] = NULL;
2894 }
2895 }
2896
2897 /* Free all the memory allocated to the partial schedule. */
2898
2899 static void
2900 free_partial_schedule (partial_schedule_ptr ps)
2901 {
2902 ps_reg_move_info *move;
2903 unsigned int i;
2904
2905 if (!ps)
2906 return;
2907
2908 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2909 sbitmap_free (move->uses);
2910 ps->reg_moves.release ();
2911
2912 free_ps_insns (ps);
2913 free (ps->rows);
2914 free (ps->rows_length);
2915 free (ps);
2916 }
2917
2918 /* Clear the rows array with its PS_INSNs, and create a new one with
2919 NEW_II rows. */
2920
2921 static void
2922 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2923 {
2924 if (!ps)
2925 return;
2926 free_ps_insns (ps);
2927 if (new_ii == ps->ii)
2928 return;
2929 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2930 * sizeof (ps_insn_ptr));
2931 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2932 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2933 memset (ps->rows_length, 0, new_ii * sizeof (int));
2934 ps->ii = new_ii;
2935 ps->min_cycle = INT_MAX;
2936 ps->max_cycle = INT_MIN;
2937 }
2938
2939 /* Prints the partial schedule as an ii rows array, for each rows
2940 print the ids of the insns in it. */
2941 void
2942 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2943 {
2944 int i;
2945
2946 for (i = 0; i < ps->ii; i++)
2947 {
2948 ps_insn_ptr ps_i = ps->rows[i];
2949
2950 fprintf (dump, "\n[ROW %d ]: ", i);
2951 while (ps_i)
2952 {
2953 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2954
2955 if (JUMP_P (insn))
2956 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2957 else
2958 fprintf (dump, "%d, ", INSN_UID (insn));
2959
2960 ps_i = ps_i->next_in_row;
2961 }
2962 }
2963 }
2964
2965 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2966 static ps_insn_ptr
2967 create_ps_insn (int id, int cycle)
2968 {
2969 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2970
2971 ps_i->id = id;
2972 ps_i->next_in_row = NULL;
2973 ps_i->prev_in_row = NULL;
2974 ps_i->cycle = cycle;
2975
2976 return ps_i;
2977 }
2978
2979
2980 /* Removes the given PS_INSN from the partial schedule. */
2981 static void
2982 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2983 {
2984 int row;
2985
2986 gcc_assert (ps && ps_i);
2987
2988 row = SMODULO (ps_i->cycle, ps->ii);
2989 if (! ps_i->prev_in_row)
2990 {
2991 gcc_assert (ps_i == ps->rows[row]);
2992 ps->rows[row] = ps_i->next_in_row;
2993 if (ps->rows[row])
2994 ps->rows[row]->prev_in_row = NULL;
2995 }
2996 else
2997 {
2998 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2999 if (ps_i->next_in_row)
3000 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
3001 }
3002
3003 ps->rows_length[row] -= 1;
3004 free (ps_i);
3005 return;
3006 }
3007
3008 /* Unlike what literature describes for modulo scheduling (which focuses
3009 on VLIW machines) the order of the instructions inside a cycle is
3010 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
3011 where the current instruction should go relative to the already
3012 scheduled instructions in the given cycle. Go over these
3013 instructions and find the first possible column to put it in. */
3014 static bool
3015 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3016 sbitmap must_precede, sbitmap must_follow)
3017 {
3018 ps_insn_ptr next_ps_i;
3019 ps_insn_ptr first_must_follow = NULL;
3020 ps_insn_ptr last_must_precede = NULL;
3021 ps_insn_ptr last_in_row = NULL;
3022 int row;
3023
3024 if (! ps_i)
3025 return false;
3026
3027 row = SMODULO (ps_i->cycle, ps->ii);
3028
3029 /* Find the first must follow and the last must precede
3030 and insert the node immediately after the must precede
3031 but make sure that it there is no must follow after it. */
3032 for (next_ps_i = ps->rows[row];
3033 next_ps_i;
3034 next_ps_i = next_ps_i->next_in_row)
3035 {
3036 if (must_follow
3037 && bitmap_bit_p (must_follow, next_ps_i->id)
3038 && ! first_must_follow)
3039 first_must_follow = next_ps_i;
3040 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3041 {
3042 /* If we have already met a node that must follow, then
3043 there is no possible column. */
3044 if (first_must_follow)
3045 return false;
3046 else
3047 last_must_precede = next_ps_i;
3048 }
3049 /* The closing branch must be the last in the row. */
3050 if (must_precede
3051 && bitmap_bit_p (must_precede, next_ps_i->id)
3052 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3053 return false;
3054
3055 last_in_row = next_ps_i;
3056 }
3057
3058 /* The closing branch is scheduled as well. Make sure there is no
3059 dependent instruction after it as the branch should be the last
3060 instruction in the row. */
3061 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3062 {
3063 if (first_must_follow)
3064 return false;
3065 if (last_in_row)
3066 {
3067 /* Make the branch the last in the row. New instructions
3068 will be inserted at the beginning of the row or after the
3069 last must_precede instruction thus the branch is guaranteed
3070 to remain the last instruction in the row. */
3071 last_in_row->next_in_row = ps_i;
3072 ps_i->prev_in_row = last_in_row;
3073 ps_i->next_in_row = NULL;
3074 }
3075 else
3076 ps->rows[row] = ps_i;
3077 return true;
3078 }
3079
3080 /* Now insert the node after INSERT_AFTER_PSI. */
3081
3082 if (! last_must_precede)
3083 {
3084 ps_i->next_in_row = ps->rows[row];
3085 ps_i->prev_in_row = NULL;
3086 if (ps_i->next_in_row)
3087 ps_i->next_in_row->prev_in_row = ps_i;
3088 ps->rows[row] = ps_i;
3089 }
3090 else
3091 {
3092 ps_i->next_in_row = last_must_precede->next_in_row;
3093 last_must_precede->next_in_row = ps_i;
3094 ps_i->prev_in_row = last_must_precede;
3095 if (ps_i->next_in_row)
3096 ps_i->next_in_row->prev_in_row = ps_i;
3097 }
3098
3099 return true;
3100 }
3101
3102 /* Advances the PS_INSN one column in its current row; returns false
3103 in failure and true in success. Bit N is set in MUST_FOLLOW if
3104 the node with cuid N must be come after the node pointed to by
3105 PS_I when scheduled in the same cycle. */
3106 static int
3107 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3108 sbitmap must_follow)
3109 {
3110 ps_insn_ptr prev, next;
3111 int row;
3112
3113 if (!ps || !ps_i)
3114 return false;
3115
3116 row = SMODULO (ps_i->cycle, ps->ii);
3117
3118 if (! ps_i->next_in_row)
3119 return false;
3120
3121 /* Check if next_in_row is dependent on ps_i, both having same sched
3122 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3123 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3124 return false;
3125
3126 /* Advance PS_I over its next_in_row in the doubly linked list. */
3127 prev = ps_i->prev_in_row;
3128 next = ps_i->next_in_row;
3129
3130 if (ps_i == ps->rows[row])
3131 ps->rows[row] = next;
3132
3133 ps_i->next_in_row = next->next_in_row;
3134
3135 if (next->next_in_row)
3136 next->next_in_row->prev_in_row = ps_i;
3137
3138 next->next_in_row = ps_i;
3139 ps_i->prev_in_row = next;
3140
3141 next->prev_in_row = prev;
3142 if (prev)
3143 prev->next_in_row = next;
3144
3145 return true;
3146 }
3147
3148 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3149 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3150 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3151 before/after (respectively) the node pointed to by PS_I when scheduled
3152 in the same cycle. */
3153 static ps_insn_ptr
3154 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3155 sbitmap must_precede, sbitmap must_follow)
3156 {
3157 ps_insn_ptr ps_i;
3158 int row = SMODULO (cycle, ps->ii);
3159
3160 if (ps->rows_length[row] >= issue_rate)
3161 return NULL;
3162
3163 ps_i = create_ps_insn (id, cycle);
3164
3165 /* Finds and inserts PS_I according to MUST_FOLLOW and
3166 MUST_PRECEDE. */
3167 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3168 {
3169 free (ps_i);
3170 return NULL;
3171 }
3172
3173 ps->rows_length[row] += 1;
3174 return ps_i;
3175 }
3176
3177 /* Advance time one cycle. Assumes DFA is being used. */
3178 static void
3179 advance_one_cycle (void)
3180 {
3181 if (targetm.sched.dfa_pre_cycle_insn)
3182 state_transition (curr_state,
3183 targetm.sched.dfa_pre_cycle_insn ());
3184
3185 state_transition (curr_state, NULL);
3186
3187 if (targetm.sched.dfa_post_cycle_insn)
3188 state_transition (curr_state,
3189 targetm.sched.dfa_post_cycle_insn ());
3190 }
3191
3192
3193
3194 /* Checks if PS has resource conflicts according to DFA, starting from
3195 FROM cycle to TO cycle; returns true if there are conflicts and false
3196 if there are no conflicts. Assumes DFA is being used. */
3197 static int
3198 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3199 {
3200 int cycle;
3201
3202 state_reset (curr_state);
3203
3204 for (cycle = from; cycle <= to; cycle++)
3205 {
3206 ps_insn_ptr crr_insn;
3207 /* Holds the remaining issue slots in the current row. */
3208 int can_issue_more = issue_rate;
3209
3210 /* Walk through the DFA for the current row. */
3211 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3212 crr_insn;
3213 crr_insn = crr_insn->next_in_row)
3214 {
3215 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3216
3217 if (!NONDEBUG_INSN_P (insn))
3218 continue;
3219
3220 /* Check if there is room for the current insn. */
3221 if (!can_issue_more || state_dead_lock_p (curr_state))
3222 return true;
3223
3224 /* Update the DFA state and return with failure if the DFA found
3225 resource conflicts. */
3226 if (state_transition (curr_state, insn) >= 0)
3227 return true;
3228
3229 if (targetm.sched.variable_issue)
3230 can_issue_more =
3231 targetm.sched.variable_issue (sched_dump, sched_verbose,
3232 insn, can_issue_more);
3233 /* A naked CLOBBER or USE generates no instruction, so don't
3234 let them consume issue slots. */
3235 else if (GET_CODE (PATTERN (insn)) != USE
3236 && GET_CODE (PATTERN (insn)) != CLOBBER)
3237 can_issue_more--;
3238 }
3239
3240 /* Advance the DFA to the next cycle. */
3241 advance_one_cycle ();
3242 }
3243 return false;
3244 }
3245
3246 /* Checks if the given node causes resource conflicts when added to PS at
3247 cycle C. If not the node is added to PS and returned; otherwise zero
3248 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3249 cuid N must be come before/after (respectively) the node pointed to by
3250 PS_I when scheduled in the same cycle. */
3251 ps_insn_ptr
3252 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3253 int c, sbitmap must_precede,
3254 sbitmap must_follow)
3255 {
3256 int has_conflicts = 0;
3257 ps_insn_ptr ps_i;
3258
3259 /* First add the node to the PS, if this succeeds check for
3260 conflicts, trying different issue slots in the same row. */
3261 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3262 return NULL; /* Failed to insert the node at the given cycle. */
3263
3264 has_conflicts = ps_has_conflicts (ps, c, c)
3265 || (ps->history > 0
3266 && ps_has_conflicts (ps,
3267 c - ps->history,
3268 c + ps->history));
3269
3270 /* Try different issue slots to find one that the given node can be
3271 scheduled in without conflicts. */
3272 while (has_conflicts)
3273 {
3274 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3275 break;
3276 has_conflicts = ps_has_conflicts (ps, c, c)
3277 || (ps->history > 0
3278 && ps_has_conflicts (ps,
3279 c - ps->history,
3280 c + ps->history));
3281 }
3282
3283 if (has_conflicts)
3284 {
3285 remove_node_from_ps (ps, ps_i);
3286 return NULL;
3287 }
3288
3289 ps->min_cycle = MIN (ps->min_cycle, c);
3290 ps->max_cycle = MAX (ps->max_cycle, c);
3291 return ps_i;
3292 }
3293
3294 /* Calculate the stage count of the partial schedule PS. The calculation
3295 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3296 int
3297 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3298 {
3299 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3300 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3301 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3302
3303 /* The calculation of stage count is done adding the number of stages
3304 before cycle zero and after cycle zero. */
3305 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3306
3307 return stage_count;
3308 }
3309
3310 /* Rotate the rows of PS such that insns scheduled at time
3311 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3312 void
3313 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3314 {
3315 int i, row, backward_rotates;
3316 int last_row = ps->ii - 1;
3317
3318 if (start_cycle == 0)
3319 return;
3320
3321 backward_rotates = SMODULO (start_cycle, ps->ii);
3322
3323 /* Revisit later and optimize this into a single loop. */
3324 for (i = 0; i < backward_rotates; i++)
3325 {
3326 ps_insn_ptr first_row = ps->rows[0];
3327 int first_row_length = ps->rows_length[0];
3328
3329 for (row = 0; row < last_row; row++)
3330 {
3331 ps->rows[row] = ps->rows[row + 1];
3332 ps->rows_length[row] = ps->rows_length[row + 1];
3333 }
3334
3335 ps->rows[last_row] = first_row;
3336 ps->rows_length[last_row] = first_row_length;
3337 }
3338
3339 ps->max_cycle -= start_cycle;
3340 ps->min_cycle -= start_cycle;
3341 }
3342
3343 #endif /* INSN_SCHEDULING */
3344 \f
3345 /* Run instruction scheduler. */
3346 /* Perform SMS module scheduling. */
3347
3348 namespace {
3349
3350 const pass_data pass_data_sms =
3351 {
3352 RTL_PASS, /* type */
3353 "sms", /* name */
3354 OPTGROUP_NONE, /* optinfo_flags */
3355 TV_SMS, /* tv_id */
3356 0, /* properties_required */
3357 0, /* properties_provided */
3358 0, /* properties_destroyed */
3359 0, /* todo_flags_start */
3360 TODO_df_finish, /* todo_flags_finish */
3361 };
3362
3363 class pass_sms : public rtl_opt_pass
3364 {
3365 public:
3366 pass_sms (gcc::context *ctxt)
3367 : rtl_opt_pass (pass_data_sms, ctxt)
3368 {}
3369
3370 /* opt_pass methods: */
3371 virtual bool gate (function *)
3372 {
3373 return (optimize > 0 && flag_modulo_sched);
3374 }
3375
3376 virtual unsigned int execute (function *);
3377
3378 }; // class pass_sms
3379
3380 unsigned int
3381 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3382 {
3383 #ifdef INSN_SCHEDULING
3384 basic_block bb;
3385
3386 /* Collect loop information to be used in SMS. */
3387 cfg_layout_initialize (0);
3388 sms_schedule ();
3389
3390 /* Update the life information, because we add pseudos. */
3391 max_regno = max_reg_num ();
3392
3393 /* Finalize layout changes. */
3394 FOR_EACH_BB_FN (bb, fun)
3395 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3396 bb->aux = bb->next_bb;
3397 free_dominance_info (CDI_DOMINATORS);
3398 cfg_layout_finalize ();
3399 #endif /* INSN_SCHEDULING */
3400 return 0;
3401 }
3402
3403 } // anon namespace
3404
3405 rtl_opt_pass *
3406 make_pass_sms (gcc::context *ctxt)
3407 {
3408 return new pass_sms (ctxt);
3409 }