openmp: Implement OpenMP 5.0 base-pointer attachement and clause ordering
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "predict.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
37
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
41 #include "except.h"
42 #include "dojump.h"
43 #include "explow.h"
44 #include "expr.h"
45 #include "optabs-tree.h"
46 #include "libfuncs.h"
47
48 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
49 machine_mode *);
50 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
51 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
52
53 /* Debug facility for use in GDB. */
54 void debug_optab_libfuncs (void);
55 \f
56 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
57 the result of operation CODE applied to OP0 (and OP1 if it is a binary
58 operation). OP0_MODE is OP0's mode.
59
60 If the last insn does not set TARGET, don't do anything, but return 1.
61
62 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
63 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
64 try again, ensuring that TARGET is not one of the operands. */
65
66 static int
67 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0,
68 rtx op1, machine_mode op0_mode)
69 {
70 rtx_insn *last_insn;
71 rtx set;
72 rtx note;
73
74 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
75
76 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
77 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
78 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
79 && GET_RTX_CLASS (code) != RTX_COMPARE
80 && GET_RTX_CLASS (code) != RTX_UNARY)
81 return 1;
82
83 if (GET_CODE (target) == ZERO_EXTRACT)
84 return 1;
85
86 for (last_insn = insns;
87 NEXT_INSN (last_insn) != NULL_RTX;
88 last_insn = NEXT_INSN (last_insn))
89 ;
90
91 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
92 a value changing in the insn, so the note would be invalid for CSE. */
93 if (reg_overlap_mentioned_p (target, op0)
94 || (op1 && reg_overlap_mentioned_p (target, op1)))
95 {
96 if (MEM_P (target)
97 && (rtx_equal_p (target, op0)
98 || (op1 && rtx_equal_p (target, op1))))
99 {
100 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
101 over expanding it as temp = MEM op X, MEM = temp. If the target
102 supports MEM = MEM op X instructions, it is sometimes too hard
103 to reconstruct that form later, especially if X is also a memory,
104 and due to multiple occurrences of addresses the address might
105 be forced into register unnecessarily.
106 Note that not emitting the REG_EQUIV note might inhibit
107 CSE in some cases. */
108 set = single_set (last_insn);
109 if (set
110 && GET_CODE (SET_SRC (set)) == code
111 && MEM_P (SET_DEST (set))
112 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
113 || (op1 && rtx_equal_p (SET_DEST (set),
114 XEXP (SET_SRC (set), 1)))))
115 return 1;
116 }
117 return 0;
118 }
119
120 set = set_for_reg_notes (last_insn);
121 if (set == NULL_RTX)
122 return 1;
123
124 if (! rtx_equal_p (SET_DEST (set), target)
125 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
126 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
127 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
128 return 1;
129
130 if (GET_RTX_CLASS (code) == RTX_UNARY)
131 switch (code)
132 {
133 case FFS:
134 case CLZ:
135 case CTZ:
136 case CLRSB:
137 case POPCOUNT:
138 case PARITY:
139 case BSWAP:
140 if (op0_mode != VOIDmode && GET_MODE (target) != op0_mode)
141 {
142 note = gen_rtx_fmt_e (code, op0_mode, copy_rtx (op0));
143 if (GET_MODE_UNIT_SIZE (op0_mode)
144 > GET_MODE_UNIT_SIZE (GET_MODE (target)))
145 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
146 note, op0_mode);
147 else
148 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
149 note, op0_mode);
150 break;
151 }
152 /* FALLTHRU */
153 default:
154 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
155 break;
156 }
157 else
158 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
159
160 set_unique_reg_note (last_insn, REG_EQUAL, note);
161
162 return 1;
163 }
164 \f
165 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
166 for a widening operation would be. In most cases this would be OP0, but if
167 that's a constant it'll be VOIDmode, which isn't useful. */
168
169 static machine_mode
170 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
171 {
172 machine_mode m0 = GET_MODE (op0);
173 machine_mode m1 = GET_MODE (op1);
174 machine_mode result;
175
176 if (m0 == VOIDmode && m1 == VOIDmode)
177 return to_mode;
178 else if (m0 == VOIDmode || GET_MODE_UNIT_SIZE (m0) < GET_MODE_UNIT_SIZE (m1))
179 result = m1;
180 else
181 result = m0;
182
183 if (GET_MODE_UNIT_SIZE (result) > GET_MODE_UNIT_SIZE (to_mode))
184 return to_mode;
185
186 return result;
187 }
188 \f
189 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
190 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
191 not actually do a sign-extend or zero-extend, but can leave the
192 higher-order bits of the result rtx undefined, for example, in the case
193 of logical operations, but not right shifts. */
194
195 static rtx
196 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
197 int unsignedp, int no_extend)
198 {
199 rtx result;
200 scalar_int_mode int_mode;
201
202 /* If we don't have to extend and this is a constant, return it. */
203 if (no_extend && GET_MODE (op) == VOIDmode)
204 return op;
205
206 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
207 extend since it will be more efficient to do so unless the signedness of
208 a promoted object differs from our extension. */
209 if (! no_extend
210 || !is_a <scalar_int_mode> (mode, &int_mode)
211 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
212 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
213 return convert_modes (mode, oldmode, op, unsignedp);
214
215 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
216 SUBREG. */
217 if (GET_MODE_SIZE (int_mode) <= UNITS_PER_WORD)
218 return gen_lowpart (int_mode, force_reg (GET_MODE (op), op));
219
220 /* Otherwise, get an object of MODE, clobber it, and set the low-order
221 part to OP. */
222
223 result = gen_reg_rtx (int_mode);
224 emit_clobber (result);
225 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
226 return result;
227 }
228 \f
229 /* Expand vector widening operations.
230
231 There are two different classes of operations handled here:
232 1) Operations whose result is wider than all the arguments to the operation.
233 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
234 In this case OP0 and optionally OP1 would be initialized,
235 but WIDE_OP wouldn't (not relevant for this case).
236 2) Operations whose result is of the same size as the last argument to the
237 operation, but wider than all the other arguments to the operation.
238 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
239 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
240
241 E.g, when called to expand the following operations, this is how
242 the arguments will be initialized:
243 nops OP0 OP1 WIDE_OP
244 widening-sum 2 oprnd0 - oprnd1
245 widening-dot-product 3 oprnd0 oprnd1 oprnd2
246 widening-mult 2 oprnd0 oprnd1 -
247 type-promotion (vec-unpack) 1 oprnd0 - - */
248
249 rtx
250 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
251 rtx target, int unsignedp)
252 {
253 class expand_operand eops[4];
254 tree oprnd0, oprnd1, oprnd2;
255 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
256 optab widen_pattern_optab;
257 enum insn_code icode;
258 int nops = TREE_CODE_LENGTH (ops->code);
259 int op;
260 bool sbool = false;
261
262 oprnd0 = ops->op0;
263 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
264 if (ops->code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
265 || ops->code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
266 /* The sign is from the result type rather than operand's type
267 for these ops. */
268 widen_pattern_optab
269 = optab_for_tree_code (ops->code, ops->type, optab_default);
270 else if ((ops->code == VEC_UNPACK_HI_EXPR
271 || ops->code == VEC_UNPACK_LO_EXPR)
272 && VECTOR_BOOLEAN_TYPE_P (ops->type)
273 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (oprnd0))
274 && TYPE_MODE (ops->type) == TYPE_MODE (TREE_TYPE (oprnd0))
275 && SCALAR_INT_MODE_P (TYPE_MODE (ops->type)))
276 {
277 /* For VEC_UNPACK_{LO,HI}_EXPR if the mode of op0 and result is
278 the same scalar mode for VECTOR_BOOLEAN_TYPE_P vectors, use
279 vec_unpacks_sbool_{lo,hi}_optab, so that we can pass in
280 the pattern number of elements in the wider vector. */
281 widen_pattern_optab
282 = (ops->code == VEC_UNPACK_HI_EXPR
283 ? vec_unpacks_sbool_hi_optab : vec_unpacks_sbool_lo_optab);
284 sbool = true;
285 }
286 else
287 widen_pattern_optab
288 = optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
289 if (ops->code == WIDEN_MULT_PLUS_EXPR
290 || ops->code == WIDEN_MULT_MINUS_EXPR)
291 icode = find_widening_optab_handler (widen_pattern_optab,
292 TYPE_MODE (TREE_TYPE (ops->op2)),
293 tmode0);
294 else
295 icode = optab_handler (widen_pattern_optab, tmode0);
296 gcc_assert (icode != CODE_FOR_nothing);
297
298 if (nops >= 2)
299 {
300 oprnd1 = ops->op1;
301 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
302 }
303 else if (sbool)
304 {
305 nops = 2;
306 op1 = GEN_INT (TYPE_VECTOR_SUBPARTS (TREE_TYPE (oprnd0)).to_constant ());
307 tmode1 = tmode0;
308 }
309
310 /* The last operand is of a wider mode than the rest of the operands. */
311 if (nops == 2)
312 wmode = tmode1;
313 else if (nops == 3)
314 {
315 gcc_assert (tmode1 == tmode0);
316 gcc_assert (op1);
317 oprnd2 = ops->op2;
318 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
319 }
320
321 op = 0;
322 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
323 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
324 if (op1)
325 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
326 if (wide_op)
327 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
328 expand_insn (icode, op, eops);
329 return eops[0].value;
330 }
331
332 /* Generate code to perform an operation specified by TERNARY_OPTAB
333 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
334
335 UNSIGNEDP is for the case where we have to widen the operands
336 to perform the operation. It says to use zero-extension.
337
338 If TARGET is nonzero, the value
339 is generated there, if it is convenient to do so.
340 In all cases an rtx is returned for the locus of the value;
341 this may or may not be TARGET. */
342
343 rtx
344 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
345 rtx op1, rtx op2, rtx target, int unsignedp)
346 {
347 class expand_operand ops[4];
348 enum insn_code icode = optab_handler (ternary_optab, mode);
349
350 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
351
352 create_output_operand (&ops[0], target, mode);
353 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
354 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
355 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
356 expand_insn (icode, 4, ops);
357 return ops[0].value;
358 }
359
360
361 /* Like expand_binop, but return a constant rtx if the result can be
362 calculated at compile time. The arguments and return value are
363 otherwise the same as for expand_binop. */
364
365 rtx
366 simplify_expand_binop (machine_mode mode, optab binoptab,
367 rtx op0, rtx op1, rtx target, int unsignedp,
368 enum optab_methods methods)
369 {
370 if (CONSTANT_P (op0) && CONSTANT_P (op1))
371 {
372 rtx x = simplify_binary_operation (optab_to_code (binoptab),
373 mode, op0, op1);
374 if (x)
375 return x;
376 }
377
378 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
379 }
380
381 /* Like simplify_expand_binop, but always put the result in TARGET.
382 Return true if the expansion succeeded. */
383
384 bool
385 force_expand_binop (machine_mode mode, optab binoptab,
386 rtx op0, rtx op1, rtx target, int unsignedp,
387 enum optab_methods methods)
388 {
389 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
390 target, unsignedp, methods);
391 if (x == 0)
392 return false;
393 if (x != target)
394 emit_move_insn (target, x);
395 return true;
396 }
397
398 /* Create a new vector value in VMODE with all elements set to OP. The
399 mode of OP must be the element mode of VMODE. If OP is a constant,
400 then the return value will be a constant. */
401
402 rtx
403 expand_vector_broadcast (machine_mode vmode, rtx op)
404 {
405 int n;
406 rtvec vec;
407
408 gcc_checking_assert (VECTOR_MODE_P (vmode));
409
410 if (valid_for_const_vector_p (vmode, op))
411 return gen_const_vec_duplicate (vmode, op);
412
413 insn_code icode = optab_handler (vec_duplicate_optab, vmode);
414 if (icode != CODE_FOR_nothing)
415 {
416 class expand_operand ops[2];
417 create_output_operand (&ops[0], NULL_RTX, vmode);
418 create_input_operand (&ops[1], op, GET_MODE (op));
419 expand_insn (icode, 2, ops);
420 return ops[0].value;
421 }
422
423 if (!GET_MODE_NUNITS (vmode).is_constant (&n))
424 return NULL;
425
426 /* ??? If the target doesn't have a vec_init, then we have no easy way
427 of performing this operation. Most of this sort of generic support
428 is hidden away in the vector lowering support in gimple. */
429 icode = convert_optab_handler (vec_init_optab, vmode,
430 GET_MODE_INNER (vmode));
431 if (icode == CODE_FOR_nothing)
432 return NULL;
433
434 vec = rtvec_alloc (n);
435 for (int i = 0; i < n; ++i)
436 RTVEC_ELT (vec, i) = op;
437 rtx ret = gen_reg_rtx (vmode);
438 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
439
440 return ret;
441 }
442
443 /* This subroutine of expand_doubleword_shift handles the cases in which
444 the effective shift value is >= BITS_PER_WORD. The arguments and return
445 value are the same as for the parent routine, except that SUPERWORD_OP1
446 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
447 INTO_TARGET may be null if the caller has decided to calculate it. */
448
449 static bool
450 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
451 rtx outof_target, rtx into_target,
452 int unsignedp, enum optab_methods methods)
453 {
454 if (into_target != 0)
455 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
456 into_target, unsignedp, methods))
457 return false;
458
459 if (outof_target != 0)
460 {
461 /* For a signed right shift, we must fill OUTOF_TARGET with copies
462 of the sign bit, otherwise we must fill it with zeros. */
463 if (binoptab != ashr_optab)
464 emit_move_insn (outof_target, CONST0_RTX (word_mode));
465 else
466 if (!force_expand_binop (word_mode, binoptab, outof_input,
467 gen_int_shift_amount (word_mode,
468 BITS_PER_WORD - 1),
469 outof_target, unsignedp, methods))
470 return false;
471 }
472 return true;
473 }
474
475 /* This subroutine of expand_doubleword_shift handles the cases in which
476 the effective shift value is < BITS_PER_WORD. The arguments and return
477 value are the same as for the parent routine. */
478
479 static bool
480 expand_subword_shift (scalar_int_mode op1_mode, optab binoptab,
481 rtx outof_input, rtx into_input, rtx op1,
482 rtx outof_target, rtx into_target,
483 int unsignedp, enum optab_methods methods,
484 unsigned HOST_WIDE_INT shift_mask)
485 {
486 optab reverse_unsigned_shift, unsigned_shift;
487 rtx tmp, carries;
488
489 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
490 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
491
492 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
493 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
494 the opposite direction to BINOPTAB. */
495 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
496 {
497 carries = outof_input;
498 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
499 op1_mode), op1_mode);
500 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
501 0, true, methods);
502 }
503 else
504 {
505 /* We must avoid shifting by BITS_PER_WORD bits since that is either
506 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
507 has unknown behavior. Do a single shift first, then shift by the
508 remainder. It's OK to use ~OP1 as the remainder if shift counts
509 are truncated to the mode size. */
510 carries = expand_binop (word_mode, reverse_unsigned_shift,
511 outof_input, const1_rtx, 0, unsignedp, methods);
512 if (shift_mask == BITS_PER_WORD - 1)
513 {
514 tmp = immed_wide_int_const
515 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
516 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
517 0, true, methods);
518 }
519 else
520 {
521 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
522 op1_mode), op1_mode);
523 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
524 0, true, methods);
525 }
526 }
527 if (tmp == 0 || carries == 0)
528 return false;
529 carries = expand_binop (word_mode, reverse_unsigned_shift,
530 carries, tmp, 0, unsignedp, methods);
531 if (carries == 0)
532 return false;
533
534 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
535 so the result can go directly into INTO_TARGET if convenient. */
536 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
537 into_target, unsignedp, methods);
538 if (tmp == 0)
539 return false;
540
541 /* Now OR in the bits carried over from OUTOF_INPUT. */
542 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
543 into_target, unsignedp, methods))
544 return false;
545
546 /* Use a standard word_mode shift for the out-of half. */
547 if (outof_target != 0)
548 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
549 outof_target, unsignedp, methods))
550 return false;
551
552 return true;
553 }
554
555
556 /* Try implementing expand_doubleword_shift using conditional moves.
557 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
558 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
559 are the shift counts to use in the former and latter case. All other
560 arguments are the same as the parent routine. */
561
562 static bool
563 expand_doubleword_shift_condmove (scalar_int_mode op1_mode, optab binoptab,
564 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
565 rtx outof_input, rtx into_input,
566 rtx subword_op1, rtx superword_op1,
567 rtx outof_target, rtx into_target,
568 int unsignedp, enum optab_methods methods,
569 unsigned HOST_WIDE_INT shift_mask)
570 {
571 rtx outof_superword, into_superword;
572
573 /* Put the superword version of the output into OUTOF_SUPERWORD and
574 INTO_SUPERWORD. */
575 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
576 if (outof_target != 0 && subword_op1 == superword_op1)
577 {
578 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
579 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
580 into_superword = outof_target;
581 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
582 outof_superword, 0, unsignedp, methods))
583 return false;
584 }
585 else
586 {
587 into_superword = gen_reg_rtx (word_mode);
588 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
589 outof_superword, into_superword,
590 unsignedp, methods))
591 return false;
592 }
593
594 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
595 if (!expand_subword_shift (op1_mode, binoptab,
596 outof_input, into_input, subword_op1,
597 outof_target, into_target,
598 unsignedp, methods, shift_mask))
599 return false;
600
601 /* Select between them. Do the INTO half first because INTO_SUPERWORD
602 might be the current value of OUTOF_TARGET. */
603 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
604 into_target, into_superword, word_mode, false))
605 return false;
606
607 if (outof_target != 0)
608 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
609 outof_target, outof_superword,
610 word_mode, false))
611 return false;
612
613 return true;
614 }
615
616 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
617 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
618 input operand; the shift moves bits in the direction OUTOF_INPUT->
619 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
620 of the target. OP1 is the shift count and OP1_MODE is its mode.
621 If OP1 is constant, it will have been truncated as appropriate
622 and is known to be nonzero.
623
624 If SHIFT_MASK is zero, the result of word shifts is undefined when the
625 shift count is outside the range [0, BITS_PER_WORD). This routine must
626 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
627
628 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
629 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
630 fill with zeros or sign bits as appropriate.
631
632 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
633 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
634 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
635 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
636 are undefined.
637
638 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
639 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
640 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
641 function wants to calculate it itself.
642
643 Return true if the shift could be successfully synthesized. */
644
645 static bool
646 expand_doubleword_shift (scalar_int_mode op1_mode, optab binoptab,
647 rtx outof_input, rtx into_input, rtx op1,
648 rtx outof_target, rtx into_target,
649 int unsignedp, enum optab_methods methods,
650 unsigned HOST_WIDE_INT shift_mask)
651 {
652 rtx superword_op1, tmp, cmp1, cmp2;
653 enum rtx_code cmp_code;
654
655 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
656 fill the result with sign or zero bits as appropriate. If so, the value
657 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
658 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
659 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
660
661 This isn't worthwhile for constant shifts since the optimizers will
662 cope better with in-range shift counts. */
663 if (shift_mask >= BITS_PER_WORD
664 && outof_target != 0
665 && !CONSTANT_P (op1))
666 {
667 if (!expand_doubleword_shift (op1_mode, binoptab,
668 outof_input, into_input, op1,
669 0, into_target,
670 unsignedp, methods, shift_mask))
671 return false;
672 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
673 outof_target, unsignedp, methods))
674 return false;
675 return true;
676 }
677
678 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
679 is true when the effective shift value is less than BITS_PER_WORD.
680 Set SUPERWORD_OP1 to the shift count that should be used to shift
681 OUTOF_INPUT into INTO_TARGET when the condition is false. */
682 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
683 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
684 {
685 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
686 is a subword shift count. */
687 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
688 0, true, methods);
689 cmp2 = CONST0_RTX (op1_mode);
690 cmp_code = EQ;
691 superword_op1 = op1;
692 }
693 else
694 {
695 /* Set CMP1 to OP1 - BITS_PER_WORD. */
696 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
697 0, true, methods);
698 cmp2 = CONST0_RTX (op1_mode);
699 cmp_code = LT;
700 superword_op1 = cmp1;
701 }
702 if (cmp1 == 0)
703 return false;
704
705 /* If we can compute the condition at compile time, pick the
706 appropriate subroutine. */
707 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
708 if (tmp != 0 && CONST_INT_P (tmp))
709 {
710 if (tmp == const0_rtx)
711 return expand_superword_shift (binoptab, outof_input, superword_op1,
712 outof_target, into_target,
713 unsignedp, methods);
714 else
715 return expand_subword_shift (op1_mode, binoptab,
716 outof_input, into_input, op1,
717 outof_target, into_target,
718 unsignedp, methods, shift_mask);
719 }
720
721 /* Try using conditional moves to generate straight-line code. */
722 if (HAVE_conditional_move)
723 {
724 rtx_insn *start = get_last_insn ();
725 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
726 cmp_code, cmp1, cmp2,
727 outof_input, into_input,
728 op1, superword_op1,
729 outof_target, into_target,
730 unsignedp, methods, shift_mask))
731 return true;
732 delete_insns_since (start);
733 }
734
735 /* As a last resort, use branches to select the correct alternative. */
736 rtx_code_label *subword_label = gen_label_rtx ();
737 rtx_code_label *done_label = gen_label_rtx ();
738
739 NO_DEFER_POP;
740 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
741 0, 0, subword_label,
742 profile_probability::uninitialized ());
743 OK_DEFER_POP;
744
745 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
746 outof_target, into_target,
747 unsignedp, methods))
748 return false;
749
750 emit_jump_insn (targetm.gen_jump (done_label));
751 emit_barrier ();
752 emit_label (subword_label);
753
754 if (!expand_subword_shift (op1_mode, binoptab,
755 outof_input, into_input, op1,
756 outof_target, into_target,
757 unsignedp, methods, shift_mask))
758 return false;
759
760 emit_label (done_label);
761 return true;
762 }
763 \f
764 /* Subroutine of expand_binop. Perform a double word multiplication of
765 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
766 as the target's word_mode. This function return NULL_RTX if anything
767 goes wrong, in which case it may have already emitted instructions
768 which need to be deleted.
769
770 If we want to multiply two two-word values and have normal and widening
771 multiplies of single-word values, we can do this with three smaller
772 multiplications.
773
774 The multiplication proceeds as follows:
775 _______________________
776 [__op0_high_|__op0_low__]
777 _______________________
778 * [__op1_high_|__op1_low__]
779 _______________________________________________
780 _______________________
781 (1) [__op0_low__*__op1_low__]
782 _______________________
783 (2a) [__op0_low__*__op1_high_]
784 _______________________
785 (2b) [__op0_high_*__op1_low__]
786 _______________________
787 (3) [__op0_high_*__op1_high_]
788
789
790 This gives a 4-word result. Since we are only interested in the
791 lower 2 words, partial result (3) and the upper words of (2a) and
792 (2b) don't need to be calculated. Hence (2a) and (2b) can be
793 calculated using non-widening multiplication.
794
795 (1), however, needs to be calculated with an unsigned widening
796 multiplication. If this operation is not directly supported we
797 try using a signed widening multiplication and adjust the result.
798 This adjustment works as follows:
799
800 If both operands are positive then no adjustment is needed.
801
802 If the operands have different signs, for example op0_low < 0 and
803 op1_low >= 0, the instruction treats the most significant bit of
804 op0_low as a sign bit instead of a bit with significance
805 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
806 with 2**BITS_PER_WORD - op0_low, and two's complements the
807 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
808 the result.
809
810 Similarly, if both operands are negative, we need to add
811 (op0_low + op1_low) * 2**BITS_PER_WORD.
812
813 We use a trick to adjust quickly. We logically shift op0_low right
814 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
815 op0_high (op1_high) before it is used to calculate 2b (2a). If no
816 logical shift exists, we do an arithmetic right shift and subtract
817 the 0 or -1. */
818
819 static rtx
820 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
821 bool umulp, enum optab_methods methods)
822 {
823 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
824 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
825 rtx wordm1 = (umulp ? NULL_RTX
826 : gen_int_shift_amount (word_mode, BITS_PER_WORD - 1));
827 rtx product, adjust, product_high, temp;
828
829 rtx op0_high = operand_subword_force (op0, high, mode);
830 rtx op0_low = operand_subword_force (op0, low, mode);
831 rtx op1_high = operand_subword_force (op1, high, mode);
832 rtx op1_low = operand_subword_force (op1, low, mode);
833
834 /* If we're using an unsigned multiply to directly compute the product
835 of the low-order words of the operands and perform any required
836 adjustments of the operands, we begin by trying two more multiplications
837 and then computing the appropriate sum.
838
839 We have checked above that the required addition is provided.
840 Full-word addition will normally always succeed, especially if
841 it is provided at all, so we don't worry about its failure. The
842 multiplication may well fail, however, so we do handle that. */
843
844 if (!umulp)
845 {
846 /* ??? This could be done with emit_store_flag where available. */
847 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
848 NULL_RTX, 1, methods);
849 if (temp)
850 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
851 NULL_RTX, 0, OPTAB_DIRECT);
852 else
853 {
854 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
855 NULL_RTX, 0, methods);
856 if (!temp)
857 return NULL_RTX;
858 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
859 NULL_RTX, 0, OPTAB_DIRECT);
860 }
861
862 if (!op0_high)
863 return NULL_RTX;
864 }
865
866 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
867 NULL_RTX, 0, OPTAB_DIRECT);
868 if (!adjust)
869 return NULL_RTX;
870
871 /* OP0_HIGH should now be dead. */
872
873 if (!umulp)
874 {
875 /* ??? This could be done with emit_store_flag where available. */
876 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
877 NULL_RTX, 1, methods);
878 if (temp)
879 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
880 NULL_RTX, 0, OPTAB_DIRECT);
881 else
882 {
883 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
884 NULL_RTX, 0, methods);
885 if (!temp)
886 return NULL_RTX;
887 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
888 NULL_RTX, 0, OPTAB_DIRECT);
889 }
890
891 if (!op1_high)
892 return NULL_RTX;
893 }
894
895 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
896 NULL_RTX, 0, OPTAB_DIRECT);
897 if (!temp)
898 return NULL_RTX;
899
900 /* OP1_HIGH should now be dead. */
901
902 adjust = expand_binop (word_mode, add_optab, adjust, temp,
903 NULL_RTX, 0, OPTAB_DIRECT);
904
905 if (target && !REG_P (target))
906 target = NULL_RTX;
907
908 /* *_widen_optab needs to determine operand mode, make sure at least
909 one operand has non-VOID mode. */
910 if (GET_MODE (op0_low) == VOIDmode && GET_MODE (op1_low) == VOIDmode)
911 op0_low = force_reg (word_mode, op0_low);
912
913 if (umulp)
914 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
915 target, 1, OPTAB_DIRECT);
916 else
917 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
918 target, 1, OPTAB_DIRECT);
919
920 if (!product)
921 return NULL_RTX;
922
923 product_high = operand_subword (product, high, 1, mode);
924 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
925 NULL_RTX, 0, OPTAB_DIRECT);
926 emit_move_insn (product_high, adjust);
927 return product;
928 }
929 \f
930 /* Wrapper around expand_binop which takes an rtx code to specify
931 the operation to perform, not an optab pointer. All other
932 arguments are the same. */
933 rtx
934 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
935 rtx op1, rtx target, int unsignedp,
936 enum optab_methods methods)
937 {
938 optab binop = code_to_optab (code);
939 gcc_assert (binop);
940
941 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
942 }
943
944 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
945 binop. Order them according to commutative_operand_precedence and, if
946 possible, try to put TARGET or a pseudo first. */
947 static bool
948 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
949 {
950 int op0_prec = commutative_operand_precedence (op0);
951 int op1_prec = commutative_operand_precedence (op1);
952
953 if (op0_prec < op1_prec)
954 return true;
955
956 if (op0_prec > op1_prec)
957 return false;
958
959 /* With equal precedence, both orders are ok, but it is better if the
960 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
961 if (target == 0 || REG_P (target))
962 return (REG_P (op1) && !REG_P (op0)) || target == op1;
963 else
964 return rtx_equal_p (op1, target);
965 }
966
967 /* Return true if BINOPTAB implements a shift operation. */
968
969 static bool
970 shift_optab_p (optab binoptab)
971 {
972 switch (optab_to_code (binoptab))
973 {
974 case ASHIFT:
975 case SS_ASHIFT:
976 case US_ASHIFT:
977 case ASHIFTRT:
978 case LSHIFTRT:
979 case ROTATE:
980 case ROTATERT:
981 return true;
982
983 default:
984 return false;
985 }
986 }
987
988 /* Return true if BINOPTAB implements a commutative binary operation. */
989
990 static bool
991 commutative_optab_p (optab binoptab)
992 {
993 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
994 || binoptab == smul_widen_optab
995 || binoptab == umul_widen_optab
996 || binoptab == smul_highpart_optab
997 || binoptab == umul_highpart_optab);
998 }
999
1000 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1001 optimizing, and if the operand is a constant that costs more than
1002 1 instruction, force the constant into a register and return that
1003 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1004
1005 static rtx
1006 avoid_expensive_constant (machine_mode mode, optab binoptab,
1007 int opn, rtx x, bool unsignedp)
1008 {
1009 bool speed = optimize_insn_for_speed_p ();
1010
1011 if (mode != VOIDmode
1012 && optimize
1013 && CONSTANT_P (x)
1014 && (rtx_cost (x, mode, optab_to_code (binoptab), opn, speed)
1015 > set_src_cost (x, mode, speed)))
1016 {
1017 if (CONST_INT_P (x))
1018 {
1019 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1020 if (intval != INTVAL (x))
1021 x = GEN_INT (intval);
1022 }
1023 else
1024 x = convert_modes (mode, VOIDmode, x, unsignedp);
1025 x = force_reg (mode, x);
1026 }
1027 return x;
1028 }
1029
1030 /* Helper function for expand_binop: handle the case where there
1031 is an insn ICODE that directly implements the indicated operation.
1032 Returns null if this is not possible. */
1033 static rtx
1034 expand_binop_directly (enum insn_code icode, machine_mode mode, optab binoptab,
1035 rtx op0, rtx op1,
1036 rtx target, int unsignedp, enum optab_methods methods,
1037 rtx_insn *last)
1038 {
1039 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1040 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1041 machine_mode mode0, mode1, tmp_mode;
1042 class expand_operand ops[3];
1043 bool commutative_p;
1044 rtx_insn *pat;
1045 rtx xop0 = op0, xop1 = op1;
1046 bool canonicalize_op1 = false;
1047
1048 /* If it is a commutative operator and the modes would match
1049 if we would swap the operands, we can save the conversions. */
1050 commutative_p = commutative_optab_p (binoptab);
1051 if (commutative_p
1052 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1053 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode0)
1054 std::swap (xop0, xop1);
1055
1056 /* If we are optimizing, force expensive constants into a register. */
1057 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1058 if (!shift_optab_p (binoptab))
1059 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1060 else
1061 /* Shifts and rotates often use a different mode for op1 from op0;
1062 for VOIDmode constants we don't know the mode, so force it
1063 to be canonicalized using convert_modes. */
1064 canonicalize_op1 = true;
1065
1066 /* In case the insn wants input operands in modes different from
1067 those of the actual operands, convert the operands. It would
1068 seem that we don't need to convert CONST_INTs, but we do, so
1069 that they're properly zero-extended, sign-extended or truncated
1070 for their mode. */
1071
1072 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1073 if (xmode0 != VOIDmode && xmode0 != mode0)
1074 {
1075 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1076 mode0 = xmode0;
1077 }
1078
1079 mode1 = ((GET_MODE (xop1) != VOIDmode || canonicalize_op1)
1080 ? GET_MODE (xop1) : mode);
1081 if (xmode1 != VOIDmode && xmode1 != mode1)
1082 {
1083 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1084 mode1 = xmode1;
1085 }
1086
1087 /* If operation is commutative,
1088 try to make the first operand a register.
1089 Even better, try to make it the same as the target.
1090 Also try to make the last operand a constant. */
1091 if (commutative_p
1092 && swap_commutative_operands_with_target (target, xop0, xop1))
1093 std::swap (xop0, xop1);
1094
1095 /* Now, if insn's predicates don't allow our operands, put them into
1096 pseudo regs. */
1097
1098 if (binoptab == vec_pack_trunc_optab
1099 || binoptab == vec_pack_usat_optab
1100 || binoptab == vec_pack_ssat_optab
1101 || binoptab == vec_pack_ufix_trunc_optab
1102 || binoptab == vec_pack_sfix_trunc_optab
1103 || binoptab == vec_packu_float_optab
1104 || binoptab == vec_packs_float_optab)
1105 {
1106 /* The mode of the result is different then the mode of the
1107 arguments. */
1108 tmp_mode = insn_data[(int) icode].operand[0].mode;
1109 if (VECTOR_MODE_P (mode)
1110 && maybe_ne (GET_MODE_NUNITS (tmp_mode), 2 * GET_MODE_NUNITS (mode)))
1111 {
1112 delete_insns_since (last);
1113 return NULL_RTX;
1114 }
1115 }
1116 else
1117 tmp_mode = mode;
1118
1119 create_output_operand (&ops[0], target, tmp_mode);
1120 create_input_operand (&ops[1], xop0, mode0);
1121 create_input_operand (&ops[2], xop1, mode1);
1122 pat = maybe_gen_insn (icode, 3, ops);
1123 if (pat)
1124 {
1125 /* If PAT is composed of more than one insn, try to add an appropriate
1126 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1127 operand, call expand_binop again, this time without a target. */
1128 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1129 && ! add_equal_note (pat, ops[0].value,
1130 optab_to_code (binoptab),
1131 ops[1].value, ops[2].value, mode0))
1132 {
1133 delete_insns_since (last);
1134 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1135 unsignedp, methods);
1136 }
1137
1138 emit_insn (pat);
1139 return ops[0].value;
1140 }
1141 delete_insns_since (last);
1142 return NULL_RTX;
1143 }
1144
1145 /* Generate code to perform an operation specified by BINOPTAB
1146 on operands OP0 and OP1, with result having machine-mode MODE.
1147
1148 UNSIGNEDP is for the case where we have to widen the operands
1149 to perform the operation. It says to use zero-extension.
1150
1151 If TARGET is nonzero, the value
1152 is generated there, if it is convenient to do so.
1153 In all cases an rtx is returned for the locus of the value;
1154 this may or may not be TARGET. */
1155
1156 rtx
1157 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1158 rtx target, int unsignedp, enum optab_methods methods)
1159 {
1160 enum optab_methods next_methods
1161 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1162 ? OPTAB_WIDEN : methods);
1163 enum mode_class mclass;
1164 enum insn_code icode;
1165 machine_mode wider_mode;
1166 scalar_int_mode int_mode;
1167 rtx libfunc;
1168 rtx temp;
1169 rtx_insn *entry_last = get_last_insn ();
1170 rtx_insn *last;
1171
1172 mclass = GET_MODE_CLASS (mode);
1173
1174 /* If subtracting an integer constant, convert this into an addition of
1175 the negated constant. */
1176
1177 if (binoptab == sub_optab && CONST_INT_P (op1))
1178 {
1179 op1 = negate_rtx (mode, op1);
1180 binoptab = add_optab;
1181 }
1182 /* For shifts, constant invalid op1 might be expanded from different
1183 mode than MODE. As those are invalid, force them to a register
1184 to avoid further problems during expansion. */
1185 else if (CONST_INT_P (op1)
1186 && shift_optab_p (binoptab)
1187 && UINTVAL (op1) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode)))
1188 {
1189 op1 = gen_int_mode (INTVAL (op1), GET_MODE_INNER (mode));
1190 op1 = force_reg (GET_MODE_INNER (mode), op1);
1191 }
1192
1193 /* Record where to delete back to if we backtrack. */
1194 last = get_last_insn ();
1195
1196 /* If we can do it with a three-operand insn, do so. */
1197
1198 if (methods != OPTAB_MUST_WIDEN)
1199 {
1200 if (convert_optab_p (binoptab))
1201 {
1202 machine_mode from_mode = widened_mode (mode, op0, op1);
1203 icode = find_widening_optab_handler (binoptab, mode, from_mode);
1204 }
1205 else
1206 icode = optab_handler (binoptab, mode);
1207 if (icode != CODE_FOR_nothing)
1208 {
1209 temp = expand_binop_directly (icode, mode, binoptab, op0, op1,
1210 target, unsignedp, methods, last);
1211 if (temp)
1212 return temp;
1213 }
1214 }
1215
1216 /* If we were trying to rotate, and that didn't work, try rotating
1217 the other direction before falling back to shifts and bitwise-or. */
1218 if (((binoptab == rotl_optab
1219 && (icode = optab_handler (rotr_optab, mode)) != CODE_FOR_nothing)
1220 || (binoptab == rotr_optab
1221 && (icode = optab_handler (rotl_optab, mode)) != CODE_FOR_nothing))
1222 && is_int_mode (mode, &int_mode))
1223 {
1224 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1225 rtx newop1;
1226 unsigned int bits = GET_MODE_PRECISION (int_mode);
1227
1228 if (CONST_INT_P (op1))
1229 newop1 = gen_int_shift_amount (int_mode, bits - INTVAL (op1));
1230 else if (targetm.shift_truncation_mask (int_mode) == bits - 1)
1231 newop1 = negate_rtx (GET_MODE (op1), op1);
1232 else
1233 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1234 gen_int_mode (bits, GET_MODE (op1)), op1,
1235 NULL_RTX, unsignedp, OPTAB_DIRECT);
1236
1237 temp = expand_binop_directly (icode, int_mode, otheroptab, op0, newop1,
1238 target, unsignedp, methods, last);
1239 if (temp)
1240 return temp;
1241 }
1242
1243 /* If this is a multiply, see if we can do a widening operation that
1244 takes operands of this mode and makes a wider mode. */
1245
1246 if (binoptab == smul_optab
1247 && GET_MODE_2XWIDER_MODE (mode).exists (&wider_mode)
1248 && (convert_optab_handler ((unsignedp
1249 ? umul_widen_optab
1250 : smul_widen_optab),
1251 wider_mode, mode) != CODE_FOR_nothing))
1252 {
1253 /* *_widen_optab needs to determine operand mode, make sure at least
1254 one operand has non-VOID mode. */
1255 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
1256 op0 = force_reg (mode, op0);
1257 temp = expand_binop (wider_mode,
1258 unsignedp ? umul_widen_optab : smul_widen_optab,
1259 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1260
1261 if (temp != 0)
1262 {
1263 if (GET_MODE_CLASS (mode) == MODE_INT
1264 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1265 return gen_lowpart (mode, temp);
1266 else
1267 return convert_to_mode (mode, temp, unsignedp);
1268 }
1269 }
1270
1271 /* If this is a vector shift by a scalar, see if we can do a vector
1272 shift by a vector. If so, broadcast the scalar into a vector. */
1273 if (mclass == MODE_VECTOR_INT)
1274 {
1275 optab otheroptab = unknown_optab;
1276
1277 if (binoptab == ashl_optab)
1278 otheroptab = vashl_optab;
1279 else if (binoptab == ashr_optab)
1280 otheroptab = vashr_optab;
1281 else if (binoptab == lshr_optab)
1282 otheroptab = vlshr_optab;
1283 else if (binoptab == rotl_optab)
1284 otheroptab = vrotl_optab;
1285 else if (binoptab == rotr_optab)
1286 otheroptab = vrotr_optab;
1287
1288 if (otheroptab
1289 && (icode = optab_handler (otheroptab, mode)) != CODE_FOR_nothing)
1290 {
1291 /* The scalar may have been extended to be too wide. Truncate
1292 it back to the proper size to fit in the broadcast vector. */
1293 scalar_mode inner_mode = GET_MODE_INNER (mode);
1294 if (!CONST_INT_P (op1)
1295 && (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (op1)))
1296 > GET_MODE_BITSIZE (inner_mode)))
1297 op1 = force_reg (inner_mode,
1298 simplify_gen_unary (TRUNCATE, inner_mode, op1,
1299 GET_MODE (op1)));
1300 rtx vop1 = expand_vector_broadcast (mode, op1);
1301 if (vop1)
1302 {
1303 temp = expand_binop_directly (icode, mode, otheroptab, op0, vop1,
1304 target, unsignedp, methods, last);
1305 if (temp)
1306 return temp;
1307 }
1308 }
1309 }
1310
1311 /* Look for a wider mode of the same class for which we think we
1312 can open-code the operation. Check for a widening multiply at the
1313 wider mode as well. */
1314
1315 if (CLASS_HAS_WIDER_MODES_P (mclass)
1316 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1317 FOR_EACH_WIDER_MODE (wider_mode, mode)
1318 {
1319 machine_mode next_mode;
1320 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1321 || (binoptab == smul_optab
1322 && GET_MODE_WIDER_MODE (wider_mode).exists (&next_mode)
1323 && (find_widening_optab_handler ((unsignedp
1324 ? umul_widen_optab
1325 : smul_widen_optab),
1326 next_mode, mode)
1327 != CODE_FOR_nothing)))
1328 {
1329 rtx xop0 = op0, xop1 = op1;
1330 int no_extend = 0;
1331
1332 /* For certain integer operations, we need not actually extend
1333 the narrow operands, as long as we will truncate
1334 the results to the same narrowness. */
1335
1336 if ((binoptab == ior_optab || binoptab == and_optab
1337 || binoptab == xor_optab
1338 || binoptab == add_optab || binoptab == sub_optab
1339 || binoptab == smul_optab || binoptab == ashl_optab)
1340 && mclass == MODE_INT)
1341 {
1342 no_extend = 1;
1343 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1344 xop0, unsignedp);
1345 if (binoptab != ashl_optab)
1346 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1347 xop1, unsignedp);
1348 }
1349
1350 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1351
1352 /* The second operand of a shift must always be extended. */
1353 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1354 no_extend && binoptab != ashl_optab);
1355
1356 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1357 unsignedp, OPTAB_DIRECT);
1358 if (temp)
1359 {
1360 if (mclass != MODE_INT
1361 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1362 {
1363 if (target == 0)
1364 target = gen_reg_rtx (mode);
1365 convert_move (target, temp, 0);
1366 return target;
1367 }
1368 else
1369 return gen_lowpart (mode, temp);
1370 }
1371 else
1372 delete_insns_since (last);
1373 }
1374 }
1375
1376 /* If operation is commutative,
1377 try to make the first operand a register.
1378 Even better, try to make it the same as the target.
1379 Also try to make the last operand a constant. */
1380 if (commutative_optab_p (binoptab)
1381 && swap_commutative_operands_with_target (target, op0, op1))
1382 std::swap (op0, op1);
1383
1384 /* These can be done a word at a time. */
1385 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1386 && is_int_mode (mode, &int_mode)
1387 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
1388 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1389 {
1390 int i;
1391 rtx_insn *insns;
1392
1393 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1394 won't be accurate, so use a new target. */
1395 if (target == 0
1396 || target == op0
1397 || target == op1
1398 || reg_overlap_mentioned_p (target, op0)
1399 || reg_overlap_mentioned_p (target, op1)
1400 || !valid_multiword_target_p (target))
1401 target = gen_reg_rtx (int_mode);
1402
1403 start_sequence ();
1404
1405 /* Do the actual arithmetic. */
1406 machine_mode op0_mode = GET_MODE (op0);
1407 machine_mode op1_mode = GET_MODE (op1);
1408 if (op0_mode == VOIDmode)
1409 op0_mode = int_mode;
1410 if (op1_mode == VOIDmode)
1411 op1_mode = int_mode;
1412 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
1413 {
1414 rtx target_piece = operand_subword (target, i, 1, int_mode);
1415 rtx x = expand_binop (word_mode, binoptab,
1416 operand_subword_force (op0, i, op0_mode),
1417 operand_subword_force (op1, i, op1_mode),
1418 target_piece, unsignedp, next_methods);
1419
1420 if (x == 0)
1421 break;
1422
1423 if (target_piece != x)
1424 emit_move_insn (target_piece, x);
1425 }
1426
1427 insns = get_insns ();
1428 end_sequence ();
1429
1430 if (i == GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD)
1431 {
1432 emit_insn (insns);
1433 return target;
1434 }
1435 }
1436
1437 /* Synthesize double word shifts from single word shifts. */
1438 if ((binoptab == lshr_optab || binoptab == ashl_optab
1439 || binoptab == ashr_optab)
1440 && is_int_mode (mode, &int_mode)
1441 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1442 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1443 && GET_MODE_PRECISION (int_mode) == GET_MODE_BITSIZE (int_mode)
1444 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1445 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1446 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1447 {
1448 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1449 scalar_int_mode op1_mode;
1450
1451 double_shift_mask = targetm.shift_truncation_mask (int_mode);
1452 shift_mask = targetm.shift_truncation_mask (word_mode);
1453 op1_mode = (GET_MODE (op1) != VOIDmode
1454 ? as_a <scalar_int_mode> (GET_MODE (op1))
1455 : word_mode);
1456
1457 /* Apply the truncation to constant shifts. */
1458 if (double_shift_mask > 0 && CONST_INT_P (op1))
1459 op1 = gen_int_mode (INTVAL (op1) & double_shift_mask, op1_mode);
1460
1461 if (op1 == CONST0_RTX (op1_mode))
1462 return op0;
1463
1464 /* Make sure that this is a combination that expand_doubleword_shift
1465 can handle. See the comments there for details. */
1466 if (double_shift_mask == 0
1467 || (shift_mask == BITS_PER_WORD - 1
1468 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1469 {
1470 rtx_insn *insns;
1471 rtx into_target, outof_target;
1472 rtx into_input, outof_input;
1473 int left_shift, outof_word;
1474
1475 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1476 won't be accurate, so use a new target. */
1477 if (target == 0
1478 || target == op0
1479 || target == op1
1480 || reg_overlap_mentioned_p (target, op0)
1481 || reg_overlap_mentioned_p (target, op1)
1482 || !valid_multiword_target_p (target))
1483 target = gen_reg_rtx (int_mode);
1484
1485 start_sequence ();
1486
1487 /* OUTOF_* is the word we are shifting bits away from, and
1488 INTO_* is the word that we are shifting bits towards, thus
1489 they differ depending on the direction of the shift and
1490 WORDS_BIG_ENDIAN. */
1491
1492 left_shift = binoptab == ashl_optab;
1493 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1494
1495 outof_target = operand_subword (target, outof_word, 1, int_mode);
1496 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1497
1498 outof_input = operand_subword_force (op0, outof_word, int_mode);
1499 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1500
1501 if (expand_doubleword_shift (op1_mode, binoptab,
1502 outof_input, into_input, op1,
1503 outof_target, into_target,
1504 unsignedp, next_methods, shift_mask))
1505 {
1506 insns = get_insns ();
1507 end_sequence ();
1508
1509 emit_insn (insns);
1510 return target;
1511 }
1512 end_sequence ();
1513 }
1514 }
1515
1516 /* Synthesize double word rotates from single word shifts. */
1517 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1518 && is_int_mode (mode, &int_mode)
1519 && CONST_INT_P (op1)
1520 && GET_MODE_PRECISION (int_mode) == 2 * BITS_PER_WORD
1521 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1522 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1523 {
1524 rtx_insn *insns;
1525 rtx into_target, outof_target;
1526 rtx into_input, outof_input;
1527 rtx inter;
1528 int shift_count, left_shift, outof_word;
1529
1530 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1531 won't be accurate, so use a new target. Do this also if target is not
1532 a REG, first because having a register instead may open optimization
1533 opportunities, and second because if target and op0 happen to be MEMs
1534 designating the same location, we would risk clobbering it too early
1535 in the code sequence we generate below. */
1536 if (target == 0
1537 || target == op0
1538 || target == op1
1539 || !REG_P (target)
1540 || reg_overlap_mentioned_p (target, op0)
1541 || reg_overlap_mentioned_p (target, op1)
1542 || !valid_multiword_target_p (target))
1543 target = gen_reg_rtx (int_mode);
1544
1545 start_sequence ();
1546
1547 shift_count = INTVAL (op1);
1548
1549 /* OUTOF_* is the word we are shifting bits away from, and
1550 INTO_* is the word that we are shifting bits towards, thus
1551 they differ depending on the direction of the shift and
1552 WORDS_BIG_ENDIAN. */
1553
1554 left_shift = (binoptab == rotl_optab);
1555 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1556
1557 outof_target = operand_subword (target, outof_word, 1, int_mode);
1558 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1559
1560 outof_input = operand_subword_force (op0, outof_word, int_mode);
1561 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1562
1563 if (shift_count == BITS_PER_WORD)
1564 {
1565 /* This is just a word swap. */
1566 emit_move_insn (outof_target, into_input);
1567 emit_move_insn (into_target, outof_input);
1568 inter = const0_rtx;
1569 }
1570 else
1571 {
1572 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1573 HOST_WIDE_INT first_shift_count, second_shift_count;
1574 optab reverse_unsigned_shift, unsigned_shift;
1575
1576 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1577 ? lshr_optab : ashl_optab);
1578
1579 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1580 ? ashl_optab : lshr_optab);
1581
1582 if (shift_count > BITS_PER_WORD)
1583 {
1584 first_shift_count = shift_count - BITS_PER_WORD;
1585 second_shift_count = 2 * BITS_PER_WORD - shift_count;
1586 }
1587 else
1588 {
1589 first_shift_count = BITS_PER_WORD - shift_count;
1590 second_shift_count = shift_count;
1591 }
1592 rtx first_shift_count_rtx
1593 = gen_int_shift_amount (word_mode, first_shift_count);
1594 rtx second_shift_count_rtx
1595 = gen_int_shift_amount (word_mode, second_shift_count);
1596
1597 into_temp1 = expand_binop (word_mode, unsigned_shift,
1598 outof_input, first_shift_count_rtx,
1599 NULL_RTX, unsignedp, next_methods);
1600 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1601 into_input, second_shift_count_rtx,
1602 NULL_RTX, unsignedp, next_methods);
1603
1604 if (into_temp1 != 0 && into_temp2 != 0)
1605 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1606 into_target, unsignedp, next_methods);
1607 else
1608 inter = 0;
1609
1610 if (inter != 0 && inter != into_target)
1611 emit_move_insn (into_target, inter);
1612
1613 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1614 into_input, first_shift_count_rtx,
1615 NULL_RTX, unsignedp, next_methods);
1616 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1617 outof_input, second_shift_count_rtx,
1618 NULL_RTX, unsignedp, next_methods);
1619
1620 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1621 inter = expand_binop (word_mode, ior_optab,
1622 outof_temp1, outof_temp2,
1623 outof_target, unsignedp, next_methods);
1624
1625 if (inter != 0 && inter != outof_target)
1626 emit_move_insn (outof_target, inter);
1627 }
1628
1629 insns = get_insns ();
1630 end_sequence ();
1631
1632 if (inter != 0)
1633 {
1634 emit_insn (insns);
1635 return target;
1636 }
1637 }
1638
1639 /* These can be done a word at a time by propagating carries. */
1640 if ((binoptab == add_optab || binoptab == sub_optab)
1641 && is_int_mode (mode, &int_mode)
1642 && GET_MODE_SIZE (int_mode) >= 2 * UNITS_PER_WORD
1643 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1644 {
1645 unsigned int i;
1646 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1647 const unsigned int nwords = GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD;
1648 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1649 rtx xop0, xop1, xtarget;
1650
1651 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1652 value is one of those, use it. Otherwise, use 1 since it is the
1653 one easiest to get. */
1654 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1655 int normalizep = STORE_FLAG_VALUE;
1656 #else
1657 int normalizep = 1;
1658 #endif
1659
1660 /* Prepare the operands. */
1661 xop0 = force_reg (int_mode, op0);
1662 xop1 = force_reg (int_mode, op1);
1663
1664 xtarget = gen_reg_rtx (int_mode);
1665
1666 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1667 target = xtarget;
1668
1669 /* Indicate for flow that the entire target reg is being set. */
1670 if (REG_P (target))
1671 emit_clobber (xtarget);
1672
1673 /* Do the actual arithmetic. */
1674 for (i = 0; i < nwords; i++)
1675 {
1676 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1677 rtx target_piece = operand_subword (xtarget, index, 1, int_mode);
1678 rtx op0_piece = operand_subword_force (xop0, index, int_mode);
1679 rtx op1_piece = operand_subword_force (xop1, index, int_mode);
1680 rtx x;
1681
1682 /* Main add/subtract of the input operands. */
1683 x = expand_binop (word_mode, binoptab,
1684 op0_piece, op1_piece,
1685 target_piece, unsignedp, next_methods);
1686 if (x == 0)
1687 break;
1688
1689 if (i + 1 < nwords)
1690 {
1691 /* Store carry from main add/subtract. */
1692 carry_out = gen_reg_rtx (word_mode);
1693 carry_out = emit_store_flag_force (carry_out,
1694 (binoptab == add_optab
1695 ? LT : GT),
1696 x, op0_piece,
1697 word_mode, 1, normalizep);
1698 }
1699
1700 if (i > 0)
1701 {
1702 rtx newx;
1703
1704 /* Add/subtract previous carry to main result. */
1705 newx = expand_binop (word_mode,
1706 normalizep == 1 ? binoptab : otheroptab,
1707 x, carry_in,
1708 NULL_RTX, 1, next_methods);
1709
1710 if (i + 1 < nwords)
1711 {
1712 /* Get out carry from adding/subtracting carry in. */
1713 rtx carry_tmp = gen_reg_rtx (word_mode);
1714 carry_tmp = emit_store_flag_force (carry_tmp,
1715 (binoptab == add_optab
1716 ? LT : GT),
1717 newx, x,
1718 word_mode, 1, normalizep);
1719
1720 /* Logical-ior the two poss. carry together. */
1721 carry_out = expand_binop (word_mode, ior_optab,
1722 carry_out, carry_tmp,
1723 carry_out, 0, next_methods);
1724 if (carry_out == 0)
1725 break;
1726 }
1727 emit_move_insn (target_piece, newx);
1728 }
1729 else
1730 {
1731 if (x != target_piece)
1732 emit_move_insn (target_piece, x);
1733 }
1734
1735 carry_in = carry_out;
1736 }
1737
1738 if (i == GET_MODE_BITSIZE (int_mode) / (unsigned) BITS_PER_WORD)
1739 {
1740 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing
1741 || ! rtx_equal_p (target, xtarget))
1742 {
1743 rtx_insn *temp = emit_move_insn (target, xtarget);
1744
1745 set_dst_reg_note (temp, REG_EQUAL,
1746 gen_rtx_fmt_ee (optab_to_code (binoptab),
1747 int_mode, copy_rtx (xop0),
1748 copy_rtx (xop1)),
1749 target);
1750 }
1751 else
1752 target = xtarget;
1753
1754 return target;
1755 }
1756
1757 else
1758 delete_insns_since (last);
1759 }
1760
1761 /* Attempt to synthesize double word multiplies using a sequence of word
1762 mode multiplications. We first attempt to generate a sequence using a
1763 more efficient unsigned widening multiply, and if that fails we then
1764 try using a signed widening multiply. */
1765
1766 if (binoptab == smul_optab
1767 && is_int_mode (mode, &int_mode)
1768 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1769 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
1770 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
1771 {
1772 rtx product = NULL_RTX;
1773 if (convert_optab_handler (umul_widen_optab, int_mode, word_mode)
1774 != CODE_FOR_nothing)
1775 {
1776 product = expand_doubleword_mult (int_mode, op0, op1, target,
1777 true, methods);
1778 if (!product)
1779 delete_insns_since (last);
1780 }
1781
1782 if (product == NULL_RTX
1783 && (convert_optab_handler (smul_widen_optab, int_mode, word_mode)
1784 != CODE_FOR_nothing))
1785 {
1786 product = expand_doubleword_mult (int_mode, op0, op1, target,
1787 false, methods);
1788 if (!product)
1789 delete_insns_since (last);
1790 }
1791
1792 if (product != NULL_RTX)
1793 {
1794 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing)
1795 {
1796 rtx_insn *move = emit_move_insn (target ? target : product,
1797 product);
1798 set_dst_reg_note (move,
1799 REG_EQUAL,
1800 gen_rtx_fmt_ee (MULT, int_mode,
1801 copy_rtx (op0),
1802 copy_rtx (op1)),
1803 target ? target : product);
1804 }
1805 return product;
1806 }
1807 }
1808
1809 /* It can't be open-coded in this mode.
1810 Use a library call if one is available and caller says that's ok. */
1811
1812 libfunc = optab_libfunc (binoptab, mode);
1813 if (libfunc
1814 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1815 {
1816 rtx_insn *insns;
1817 rtx op1x = op1;
1818 machine_mode op1_mode = mode;
1819 rtx value;
1820
1821 start_sequence ();
1822
1823 if (shift_optab_p (binoptab))
1824 {
1825 op1_mode = targetm.libgcc_shift_count_mode ();
1826 /* Specify unsigned here,
1827 since negative shift counts are meaningless. */
1828 op1x = convert_to_mode (op1_mode, op1, 1);
1829 }
1830
1831 if (GET_MODE (op0) != VOIDmode
1832 && GET_MODE (op0) != mode)
1833 op0 = convert_to_mode (mode, op0, unsignedp);
1834
1835 /* Pass 1 for NO_QUEUE so we don't lose any increments
1836 if the libcall is cse'd or moved. */
1837 value = emit_library_call_value (libfunc,
1838 NULL_RTX, LCT_CONST, mode,
1839 op0, mode, op1x, op1_mode);
1840
1841 insns = get_insns ();
1842 end_sequence ();
1843
1844 bool trapv = trapv_binoptab_p (binoptab);
1845 target = gen_reg_rtx (mode);
1846 emit_libcall_block_1 (insns, target, value,
1847 trapv ? NULL_RTX
1848 : gen_rtx_fmt_ee (optab_to_code (binoptab),
1849 mode, op0, op1), trapv);
1850
1851 return target;
1852 }
1853
1854 delete_insns_since (last);
1855
1856 /* It can't be done in this mode. Can we do it in a wider mode? */
1857
1858 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1859 || methods == OPTAB_MUST_WIDEN))
1860 {
1861 /* Caller says, don't even try. */
1862 delete_insns_since (entry_last);
1863 return 0;
1864 }
1865
1866 /* Compute the value of METHODS to pass to recursive calls.
1867 Don't allow widening to be tried recursively. */
1868
1869 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1870
1871 /* Look for a wider mode of the same class for which it appears we can do
1872 the operation. */
1873
1874 if (CLASS_HAS_WIDER_MODES_P (mclass))
1875 {
1876 /* This code doesn't make sense for conversion optabs, since we
1877 wouldn't then want to extend the operands to be the same size
1878 as the result. */
1879 gcc_assert (!convert_optab_p (binoptab));
1880 FOR_EACH_WIDER_MODE (wider_mode, mode)
1881 {
1882 if (optab_handler (binoptab, wider_mode)
1883 || (methods == OPTAB_LIB
1884 && optab_libfunc (binoptab, wider_mode)))
1885 {
1886 rtx xop0 = op0, xop1 = op1;
1887 int no_extend = 0;
1888
1889 /* For certain integer operations, we need not actually extend
1890 the narrow operands, as long as we will truncate
1891 the results to the same narrowness. */
1892
1893 if ((binoptab == ior_optab || binoptab == and_optab
1894 || binoptab == xor_optab
1895 || binoptab == add_optab || binoptab == sub_optab
1896 || binoptab == smul_optab || binoptab == ashl_optab)
1897 && mclass == MODE_INT)
1898 no_extend = 1;
1899
1900 xop0 = widen_operand (xop0, wider_mode, mode,
1901 unsignedp, no_extend);
1902
1903 /* The second operand of a shift must always be extended. */
1904 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1905 no_extend && binoptab != ashl_optab);
1906
1907 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1908 unsignedp, methods);
1909 if (temp)
1910 {
1911 if (mclass != MODE_INT
1912 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1913 {
1914 if (target == 0)
1915 target = gen_reg_rtx (mode);
1916 convert_move (target, temp, 0);
1917 return target;
1918 }
1919 else
1920 return gen_lowpart (mode, temp);
1921 }
1922 else
1923 delete_insns_since (last);
1924 }
1925 }
1926 }
1927
1928 delete_insns_since (entry_last);
1929 return 0;
1930 }
1931 \f
1932 /* Expand a binary operator which has both signed and unsigned forms.
1933 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1934 signed operations.
1935
1936 If we widen unsigned operands, we may use a signed wider operation instead
1937 of an unsigned wider operation, since the result would be the same. */
1938
1939 rtx
1940 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
1941 rtx op0, rtx op1, rtx target, int unsignedp,
1942 enum optab_methods methods)
1943 {
1944 rtx temp;
1945 optab direct_optab = unsignedp ? uoptab : soptab;
1946 bool save_enable;
1947
1948 /* Do it without widening, if possible. */
1949 temp = expand_binop (mode, direct_optab, op0, op1, target,
1950 unsignedp, OPTAB_DIRECT);
1951 if (temp || methods == OPTAB_DIRECT)
1952 return temp;
1953
1954 /* Try widening to a signed int. Disable any direct use of any
1955 signed insn in the current mode. */
1956 save_enable = swap_optab_enable (soptab, mode, false);
1957
1958 temp = expand_binop (mode, soptab, op0, op1, target,
1959 unsignedp, OPTAB_WIDEN);
1960
1961 /* For unsigned operands, try widening to an unsigned int. */
1962 if (!temp && unsignedp)
1963 temp = expand_binop (mode, uoptab, op0, op1, target,
1964 unsignedp, OPTAB_WIDEN);
1965 if (temp || methods == OPTAB_WIDEN)
1966 goto egress;
1967
1968 /* Use the right width libcall if that exists. */
1969 temp = expand_binop (mode, direct_optab, op0, op1, target,
1970 unsignedp, OPTAB_LIB);
1971 if (temp || methods == OPTAB_LIB)
1972 goto egress;
1973
1974 /* Must widen and use a libcall, use either signed or unsigned. */
1975 temp = expand_binop (mode, soptab, op0, op1, target,
1976 unsignedp, methods);
1977 if (!temp && unsignedp)
1978 temp = expand_binop (mode, uoptab, op0, op1, target,
1979 unsignedp, methods);
1980
1981 egress:
1982 /* Undo the fiddling above. */
1983 if (save_enable)
1984 swap_optab_enable (soptab, mode, true);
1985 return temp;
1986 }
1987 \f
1988 /* Generate code to perform an operation specified by UNOPPTAB
1989 on operand OP0, with two results to TARG0 and TARG1.
1990 We assume that the order of the operands for the instruction
1991 is TARG0, TARG1, OP0.
1992
1993 Either TARG0 or TARG1 may be zero, but what that means is that
1994 the result is not actually wanted. We will generate it into
1995 a dummy pseudo-reg and discard it. They may not both be zero.
1996
1997 Returns 1 if this operation can be performed; 0 if not. */
1998
1999 int
2000 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2001 int unsignedp)
2002 {
2003 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2004 enum mode_class mclass;
2005 machine_mode wider_mode;
2006 rtx_insn *entry_last = get_last_insn ();
2007 rtx_insn *last;
2008
2009 mclass = GET_MODE_CLASS (mode);
2010
2011 if (!targ0)
2012 targ0 = gen_reg_rtx (mode);
2013 if (!targ1)
2014 targ1 = gen_reg_rtx (mode);
2015
2016 /* Record where to go back to if we fail. */
2017 last = get_last_insn ();
2018
2019 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2020 {
2021 class expand_operand ops[3];
2022 enum insn_code icode = optab_handler (unoptab, mode);
2023
2024 create_fixed_operand (&ops[0], targ0);
2025 create_fixed_operand (&ops[1], targ1);
2026 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2027 if (maybe_expand_insn (icode, 3, ops))
2028 return 1;
2029 }
2030
2031 /* It can't be done in this mode. Can we do it in a wider mode? */
2032
2033 if (CLASS_HAS_WIDER_MODES_P (mclass))
2034 {
2035 FOR_EACH_WIDER_MODE (wider_mode, mode)
2036 {
2037 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2038 {
2039 rtx t0 = gen_reg_rtx (wider_mode);
2040 rtx t1 = gen_reg_rtx (wider_mode);
2041 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2042
2043 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2044 {
2045 convert_move (targ0, t0, unsignedp);
2046 convert_move (targ1, t1, unsignedp);
2047 return 1;
2048 }
2049 else
2050 delete_insns_since (last);
2051 }
2052 }
2053 }
2054
2055 delete_insns_since (entry_last);
2056 return 0;
2057 }
2058 \f
2059 /* Generate code to perform an operation specified by BINOPTAB
2060 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2061 We assume that the order of the operands for the instruction
2062 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2063 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2064
2065 Either TARG0 or TARG1 may be zero, but what that means is that
2066 the result is not actually wanted. We will generate it into
2067 a dummy pseudo-reg and discard it. They may not both be zero.
2068
2069 Returns 1 if this operation can be performed; 0 if not. */
2070
2071 int
2072 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2073 int unsignedp)
2074 {
2075 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2076 enum mode_class mclass;
2077 machine_mode wider_mode;
2078 rtx_insn *entry_last = get_last_insn ();
2079 rtx_insn *last;
2080
2081 mclass = GET_MODE_CLASS (mode);
2082
2083 if (!targ0)
2084 targ0 = gen_reg_rtx (mode);
2085 if (!targ1)
2086 targ1 = gen_reg_rtx (mode);
2087
2088 /* Record where to go back to if we fail. */
2089 last = get_last_insn ();
2090
2091 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2092 {
2093 class expand_operand ops[4];
2094 enum insn_code icode = optab_handler (binoptab, mode);
2095 machine_mode mode0 = insn_data[icode].operand[1].mode;
2096 machine_mode mode1 = insn_data[icode].operand[2].mode;
2097 rtx xop0 = op0, xop1 = op1;
2098
2099 /* If we are optimizing, force expensive constants into a register. */
2100 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2101 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2102
2103 create_fixed_operand (&ops[0], targ0);
2104 create_convert_operand_from (&ops[1], xop0, mode, unsignedp);
2105 create_convert_operand_from (&ops[2], xop1, mode, unsignedp);
2106 create_fixed_operand (&ops[3], targ1);
2107 if (maybe_expand_insn (icode, 4, ops))
2108 return 1;
2109 delete_insns_since (last);
2110 }
2111
2112 /* It can't be done in this mode. Can we do it in a wider mode? */
2113
2114 if (CLASS_HAS_WIDER_MODES_P (mclass))
2115 {
2116 FOR_EACH_WIDER_MODE (wider_mode, mode)
2117 {
2118 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2119 {
2120 rtx t0 = gen_reg_rtx (wider_mode);
2121 rtx t1 = gen_reg_rtx (wider_mode);
2122 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2123 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2124
2125 if (expand_twoval_binop (binoptab, cop0, cop1,
2126 t0, t1, unsignedp))
2127 {
2128 convert_move (targ0, t0, unsignedp);
2129 convert_move (targ1, t1, unsignedp);
2130 return 1;
2131 }
2132 else
2133 delete_insns_since (last);
2134 }
2135 }
2136 }
2137
2138 delete_insns_since (entry_last);
2139 return 0;
2140 }
2141
2142 /* Expand the two-valued library call indicated by BINOPTAB, but
2143 preserve only one of the values. If TARG0 is non-NULL, the first
2144 value is placed into TARG0; otherwise the second value is placed
2145 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2146 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2147 This routine assumes that the value returned by the library call is
2148 as if the return value was of an integral mode twice as wide as the
2149 mode of OP0. Returns 1 if the call was successful. */
2150
2151 bool
2152 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2153 rtx targ0, rtx targ1, enum rtx_code code)
2154 {
2155 machine_mode mode;
2156 machine_mode libval_mode;
2157 rtx libval;
2158 rtx_insn *insns;
2159 rtx libfunc;
2160
2161 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2162 gcc_assert (!targ0 != !targ1);
2163
2164 mode = GET_MODE (op0);
2165 libfunc = optab_libfunc (binoptab, mode);
2166 if (!libfunc)
2167 return false;
2168
2169 /* The value returned by the library function will have twice as
2170 many bits as the nominal MODE. */
2171 libval_mode = smallest_int_mode_for_size (2 * GET_MODE_BITSIZE (mode));
2172 start_sequence ();
2173 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2174 libval_mode,
2175 op0, mode,
2176 op1, mode);
2177 /* Get the part of VAL containing the value that we want. */
2178 libval = simplify_gen_subreg (mode, libval, libval_mode,
2179 targ0 ? 0 : GET_MODE_SIZE (mode));
2180 insns = get_insns ();
2181 end_sequence ();
2182 /* Move the into the desired location. */
2183 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2184 gen_rtx_fmt_ee (code, mode, op0, op1));
2185
2186 return true;
2187 }
2188
2189 \f
2190 /* Wrapper around expand_unop which takes an rtx code to specify
2191 the operation to perform, not an optab pointer. All other
2192 arguments are the same. */
2193 rtx
2194 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2195 rtx target, int unsignedp)
2196 {
2197 optab unop = code_to_optab (code);
2198 gcc_assert (unop);
2199
2200 return expand_unop (mode, unop, op0, target, unsignedp);
2201 }
2202
2203 /* Try calculating
2204 (clz:narrow x)
2205 as
2206 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2207
2208 A similar operation can be used for clrsb. UNOPTAB says which operation
2209 we are trying to expand. */
2210 static rtx
2211 widen_leading (scalar_int_mode mode, rtx op0, rtx target, optab unoptab)
2212 {
2213 opt_scalar_int_mode wider_mode_iter;
2214 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2215 {
2216 scalar_int_mode wider_mode = wider_mode_iter.require ();
2217 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2218 {
2219 rtx xop0, temp;
2220 rtx_insn *last;
2221
2222 last = get_last_insn ();
2223
2224 if (target == 0)
2225 target = gen_reg_rtx (mode);
2226 xop0 = widen_operand (op0, wider_mode, mode,
2227 unoptab != clrsb_optab, false);
2228 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2229 unoptab != clrsb_optab);
2230 if (temp != 0)
2231 temp = expand_binop
2232 (wider_mode, sub_optab, temp,
2233 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2234 - GET_MODE_PRECISION (mode),
2235 wider_mode),
2236 target, true, OPTAB_DIRECT);
2237 if (temp == 0)
2238 delete_insns_since (last);
2239
2240 return temp;
2241 }
2242 }
2243 return 0;
2244 }
2245
2246 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2247 quantities, choosing which based on whether the high word is nonzero. */
2248 static rtx
2249 expand_doubleword_clz (scalar_int_mode mode, rtx op0, rtx target)
2250 {
2251 rtx xop0 = force_reg (mode, op0);
2252 rtx subhi = gen_highpart (word_mode, xop0);
2253 rtx sublo = gen_lowpart (word_mode, xop0);
2254 rtx_code_label *hi0_label = gen_label_rtx ();
2255 rtx_code_label *after_label = gen_label_rtx ();
2256 rtx_insn *seq;
2257 rtx temp, result;
2258
2259 /* If we were not given a target, use a word_mode register, not a
2260 'mode' register. The result will fit, and nobody is expecting
2261 anything bigger (the return type of __builtin_clz* is int). */
2262 if (!target)
2263 target = gen_reg_rtx (word_mode);
2264
2265 /* In any case, write to a word_mode scratch in both branches of the
2266 conditional, so we can ensure there is a single move insn setting
2267 'target' to tag a REG_EQUAL note on. */
2268 result = gen_reg_rtx (word_mode);
2269
2270 start_sequence ();
2271
2272 /* If the high word is not equal to zero,
2273 then clz of the full value is clz of the high word. */
2274 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2275 word_mode, true, hi0_label);
2276
2277 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2278 if (!temp)
2279 goto fail;
2280
2281 if (temp != result)
2282 convert_move (result, temp, true);
2283
2284 emit_jump_insn (targetm.gen_jump (after_label));
2285 emit_barrier ();
2286
2287 /* Else clz of the full value is clz of the low word plus the number
2288 of bits in the high word. */
2289 emit_label (hi0_label);
2290
2291 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2292 if (!temp)
2293 goto fail;
2294 temp = expand_binop (word_mode, add_optab, temp,
2295 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2296 result, true, OPTAB_DIRECT);
2297 if (!temp)
2298 goto fail;
2299 if (temp != result)
2300 convert_move (result, temp, true);
2301
2302 emit_label (after_label);
2303 convert_move (target, result, true);
2304
2305 seq = get_insns ();
2306 end_sequence ();
2307
2308 add_equal_note (seq, target, CLZ, xop0, NULL_RTX, mode);
2309 emit_insn (seq);
2310 return target;
2311
2312 fail:
2313 end_sequence ();
2314 return 0;
2315 }
2316
2317 /* Try calculating popcount of a double-word quantity as two popcount's of
2318 word-sized quantities and summing up the results. */
2319 static rtx
2320 expand_doubleword_popcount (scalar_int_mode mode, rtx op0, rtx target)
2321 {
2322 rtx t0, t1, t;
2323 rtx_insn *seq;
2324
2325 start_sequence ();
2326
2327 t0 = expand_unop_direct (word_mode, popcount_optab,
2328 operand_subword_force (op0, 0, mode), NULL_RTX,
2329 true);
2330 t1 = expand_unop_direct (word_mode, popcount_optab,
2331 operand_subword_force (op0, 1, mode), NULL_RTX,
2332 true);
2333 if (!t0 || !t1)
2334 {
2335 end_sequence ();
2336 return NULL_RTX;
2337 }
2338
2339 /* If we were not given a target, use a word_mode register, not a
2340 'mode' register. The result will fit, and nobody is expecting
2341 anything bigger (the return type of __builtin_popcount* is int). */
2342 if (!target)
2343 target = gen_reg_rtx (word_mode);
2344
2345 t = expand_binop (word_mode, add_optab, t0, t1, target, 0, OPTAB_DIRECT);
2346
2347 seq = get_insns ();
2348 end_sequence ();
2349
2350 add_equal_note (seq, t, POPCOUNT, op0, NULL_RTX, mode);
2351 emit_insn (seq);
2352 return t;
2353 }
2354
2355 /* Try calculating
2356 (parity:wide x)
2357 as
2358 (parity:narrow (low (x) ^ high (x))) */
2359 static rtx
2360 expand_doubleword_parity (scalar_int_mode mode, rtx op0, rtx target)
2361 {
2362 rtx t = expand_binop (word_mode, xor_optab,
2363 operand_subword_force (op0, 0, mode),
2364 operand_subword_force (op0, 1, mode),
2365 NULL_RTX, 0, OPTAB_DIRECT);
2366 return expand_unop (word_mode, parity_optab, t, target, true);
2367 }
2368
2369 /* Try calculating
2370 (bswap:narrow x)
2371 as
2372 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2373 static rtx
2374 widen_bswap (scalar_int_mode mode, rtx op0, rtx target)
2375 {
2376 rtx x;
2377 rtx_insn *last;
2378 opt_scalar_int_mode wider_mode_iter;
2379
2380 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2381 if (optab_handler (bswap_optab, wider_mode_iter.require ())
2382 != CODE_FOR_nothing)
2383 break;
2384
2385 if (!wider_mode_iter.exists ())
2386 return NULL_RTX;
2387
2388 scalar_int_mode wider_mode = wider_mode_iter.require ();
2389 last = get_last_insn ();
2390
2391 x = widen_operand (op0, wider_mode, mode, true, true);
2392 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2393
2394 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2395 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2396 if (x != 0)
2397 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2398 GET_MODE_BITSIZE (wider_mode)
2399 - GET_MODE_BITSIZE (mode),
2400 NULL_RTX, true);
2401
2402 if (x != 0)
2403 {
2404 if (target == 0)
2405 target = gen_reg_rtx (mode);
2406 emit_move_insn (target, gen_lowpart (mode, x));
2407 }
2408 else
2409 delete_insns_since (last);
2410
2411 return target;
2412 }
2413
2414 /* Try calculating bswap as two bswaps of two word-sized operands. */
2415
2416 static rtx
2417 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2418 {
2419 rtx t0, t1;
2420
2421 t1 = expand_unop (word_mode, bswap_optab,
2422 operand_subword_force (op, 0, mode), NULL_RTX, true);
2423 t0 = expand_unop (word_mode, bswap_optab,
2424 operand_subword_force (op, 1, mode), NULL_RTX, true);
2425
2426 if (target == 0 || !valid_multiword_target_p (target))
2427 target = gen_reg_rtx (mode);
2428 if (REG_P (target))
2429 emit_clobber (target);
2430 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2431 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2432
2433 return target;
2434 }
2435
2436 /* Try calculating (parity x) as (and (popcount x) 1), where
2437 popcount can also be done in a wider mode. */
2438 static rtx
2439 expand_parity (scalar_int_mode mode, rtx op0, rtx target)
2440 {
2441 enum mode_class mclass = GET_MODE_CLASS (mode);
2442 opt_scalar_int_mode wider_mode_iter;
2443 FOR_EACH_MODE_FROM (wider_mode_iter, mode)
2444 {
2445 scalar_int_mode wider_mode = wider_mode_iter.require ();
2446 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2447 {
2448 rtx xop0, temp;
2449 rtx_insn *last;
2450
2451 last = get_last_insn ();
2452
2453 if (target == 0 || GET_MODE (target) != wider_mode)
2454 target = gen_reg_rtx (wider_mode);
2455
2456 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2457 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2458 true);
2459 if (temp != 0)
2460 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2461 target, true, OPTAB_DIRECT);
2462
2463 if (temp)
2464 {
2465 if (mclass != MODE_INT
2466 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2467 return convert_to_mode (mode, temp, 0);
2468 else
2469 return gen_lowpart (mode, temp);
2470 }
2471 else
2472 delete_insns_since (last);
2473 }
2474 }
2475 return 0;
2476 }
2477
2478 /* Try calculating ctz(x) as K - clz(x & -x) ,
2479 where K is GET_MODE_PRECISION(mode) - 1.
2480
2481 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2482 don't have to worry about what the hardware does in that case. (If
2483 the clz instruction produces the usual value at 0, which is K, the
2484 result of this code sequence will be -1; expand_ffs, below, relies
2485 on this. It might be nice to have it be K instead, for consistency
2486 with the (very few) processors that provide a ctz with a defined
2487 value, but that would take one more instruction, and it would be
2488 less convenient for expand_ffs anyway. */
2489
2490 static rtx
2491 expand_ctz (scalar_int_mode mode, rtx op0, rtx target)
2492 {
2493 rtx_insn *seq;
2494 rtx temp;
2495
2496 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2497 return 0;
2498
2499 start_sequence ();
2500
2501 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2502 if (temp)
2503 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2504 true, OPTAB_DIRECT);
2505 if (temp)
2506 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2507 if (temp)
2508 temp = expand_binop (mode, sub_optab,
2509 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2510 temp, target,
2511 true, OPTAB_DIRECT);
2512 if (temp == 0)
2513 {
2514 end_sequence ();
2515 return 0;
2516 }
2517
2518 seq = get_insns ();
2519 end_sequence ();
2520
2521 add_equal_note (seq, temp, CTZ, op0, NULL_RTX, mode);
2522 emit_insn (seq);
2523 return temp;
2524 }
2525
2526
2527 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2528 else with the sequence used by expand_clz.
2529
2530 The ffs builtin promises to return zero for a zero value and ctz/clz
2531 may have an undefined value in that case. If they do not give us a
2532 convenient value, we have to generate a test and branch. */
2533 static rtx
2534 expand_ffs (scalar_int_mode mode, rtx op0, rtx target)
2535 {
2536 HOST_WIDE_INT val = 0;
2537 bool defined_at_zero = false;
2538 rtx temp;
2539 rtx_insn *seq;
2540
2541 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2542 {
2543 start_sequence ();
2544
2545 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2546 if (!temp)
2547 goto fail;
2548
2549 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2550 }
2551 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2552 {
2553 start_sequence ();
2554 temp = expand_ctz (mode, op0, 0);
2555 if (!temp)
2556 goto fail;
2557
2558 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2559 {
2560 defined_at_zero = true;
2561 val = (GET_MODE_PRECISION (mode) - 1) - val;
2562 }
2563 }
2564 else
2565 return 0;
2566
2567 if (defined_at_zero && val == -1)
2568 /* No correction needed at zero. */;
2569 else
2570 {
2571 /* We don't try to do anything clever with the situation found
2572 on some processors (eg Alpha) where ctz(0:mode) ==
2573 bitsize(mode). If someone can think of a way to send N to -1
2574 and leave alone all values in the range 0..N-1 (where N is a
2575 power of two), cheaper than this test-and-branch, please add it.
2576
2577 The test-and-branch is done after the operation itself, in case
2578 the operation sets condition codes that can be recycled for this.
2579 (This is true on i386, for instance.) */
2580
2581 rtx_code_label *nonzero_label = gen_label_rtx ();
2582 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2583 mode, true, nonzero_label);
2584
2585 convert_move (temp, GEN_INT (-1), false);
2586 emit_label (nonzero_label);
2587 }
2588
2589 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2590 to produce a value in the range 0..bitsize. */
2591 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2592 target, false, OPTAB_DIRECT);
2593 if (!temp)
2594 goto fail;
2595
2596 seq = get_insns ();
2597 end_sequence ();
2598
2599 add_equal_note (seq, temp, FFS, op0, NULL_RTX, mode);
2600 emit_insn (seq);
2601 return temp;
2602
2603 fail:
2604 end_sequence ();
2605 return 0;
2606 }
2607
2608 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2609 conditions, VAL may already be a SUBREG against which we cannot generate
2610 a further SUBREG. In this case, we expect forcing the value into a
2611 register will work around the situation. */
2612
2613 static rtx
2614 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2615 machine_mode imode)
2616 {
2617 rtx ret;
2618 ret = lowpart_subreg (omode, val, imode);
2619 if (ret == NULL)
2620 {
2621 val = force_reg (imode, val);
2622 ret = lowpart_subreg (omode, val, imode);
2623 gcc_assert (ret != NULL);
2624 }
2625 return ret;
2626 }
2627
2628 /* Expand a floating point absolute value or negation operation via a
2629 logical operation on the sign bit. */
2630
2631 static rtx
2632 expand_absneg_bit (enum rtx_code code, scalar_float_mode mode,
2633 rtx op0, rtx target)
2634 {
2635 const struct real_format *fmt;
2636 int bitpos, word, nwords, i;
2637 scalar_int_mode imode;
2638 rtx temp;
2639 rtx_insn *insns;
2640
2641 /* The format has to have a simple sign bit. */
2642 fmt = REAL_MODE_FORMAT (mode);
2643 if (fmt == NULL)
2644 return NULL_RTX;
2645
2646 bitpos = fmt->signbit_rw;
2647 if (bitpos < 0)
2648 return NULL_RTX;
2649
2650 /* Don't create negative zeros if the format doesn't support them. */
2651 if (code == NEG && !fmt->has_signed_zero)
2652 return NULL_RTX;
2653
2654 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2655 {
2656 if (!int_mode_for_mode (mode).exists (&imode))
2657 return NULL_RTX;
2658 word = 0;
2659 nwords = 1;
2660 }
2661 else
2662 {
2663 imode = word_mode;
2664
2665 if (FLOAT_WORDS_BIG_ENDIAN)
2666 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2667 else
2668 word = bitpos / BITS_PER_WORD;
2669 bitpos = bitpos % BITS_PER_WORD;
2670 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2671 }
2672
2673 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2674 if (code == ABS)
2675 mask = ~mask;
2676
2677 if (target == 0
2678 || target == op0
2679 || reg_overlap_mentioned_p (target, op0)
2680 || (nwords > 1 && !valid_multiword_target_p (target)))
2681 target = gen_reg_rtx (mode);
2682
2683 if (nwords > 1)
2684 {
2685 start_sequence ();
2686
2687 for (i = 0; i < nwords; ++i)
2688 {
2689 rtx targ_piece = operand_subword (target, i, 1, mode);
2690 rtx op0_piece = operand_subword_force (op0, i, mode);
2691
2692 if (i == word)
2693 {
2694 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2695 op0_piece,
2696 immed_wide_int_const (mask, imode),
2697 targ_piece, 1, OPTAB_LIB_WIDEN);
2698 if (temp != targ_piece)
2699 emit_move_insn (targ_piece, temp);
2700 }
2701 else
2702 emit_move_insn (targ_piece, op0_piece);
2703 }
2704
2705 insns = get_insns ();
2706 end_sequence ();
2707
2708 emit_insn (insns);
2709 }
2710 else
2711 {
2712 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2713 gen_lowpart (imode, op0),
2714 immed_wide_int_const (mask, imode),
2715 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2716 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2717
2718 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2719 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2720 target);
2721 }
2722
2723 return target;
2724 }
2725
2726 /* As expand_unop, but will fail rather than attempt the operation in a
2727 different mode or with a libcall. */
2728 static rtx
2729 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2730 int unsignedp)
2731 {
2732 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2733 {
2734 class expand_operand ops[2];
2735 enum insn_code icode = optab_handler (unoptab, mode);
2736 rtx_insn *last = get_last_insn ();
2737 rtx_insn *pat;
2738
2739 create_output_operand (&ops[0], target, mode);
2740 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2741 pat = maybe_gen_insn (icode, 2, ops);
2742 if (pat)
2743 {
2744 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2745 && ! add_equal_note (pat, ops[0].value,
2746 optab_to_code (unoptab),
2747 ops[1].value, NULL_RTX, mode))
2748 {
2749 delete_insns_since (last);
2750 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2751 }
2752
2753 emit_insn (pat);
2754
2755 return ops[0].value;
2756 }
2757 }
2758 return 0;
2759 }
2760
2761 /* Generate code to perform an operation specified by UNOPTAB
2762 on operand OP0, with result having machine-mode MODE.
2763
2764 UNSIGNEDP is for the case where we have to widen the operands
2765 to perform the operation. It says to use zero-extension.
2766
2767 If TARGET is nonzero, the value
2768 is generated there, if it is convenient to do so.
2769 In all cases an rtx is returned for the locus of the value;
2770 this may or may not be TARGET. */
2771
2772 rtx
2773 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
2774 int unsignedp)
2775 {
2776 enum mode_class mclass = GET_MODE_CLASS (mode);
2777 machine_mode wider_mode;
2778 scalar_int_mode int_mode;
2779 scalar_float_mode float_mode;
2780 rtx temp;
2781 rtx libfunc;
2782
2783 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2784 if (temp)
2785 return temp;
2786
2787 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2788
2789 /* Widening (or narrowing) clz needs special treatment. */
2790 if (unoptab == clz_optab)
2791 {
2792 if (is_a <scalar_int_mode> (mode, &int_mode))
2793 {
2794 temp = widen_leading (int_mode, op0, target, unoptab);
2795 if (temp)
2796 return temp;
2797
2798 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2799 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2800 {
2801 temp = expand_doubleword_clz (int_mode, op0, target);
2802 if (temp)
2803 return temp;
2804 }
2805 }
2806
2807 goto try_libcall;
2808 }
2809
2810 if (unoptab == clrsb_optab)
2811 {
2812 if (is_a <scalar_int_mode> (mode, &int_mode))
2813 {
2814 temp = widen_leading (int_mode, op0, target, unoptab);
2815 if (temp)
2816 return temp;
2817 }
2818 goto try_libcall;
2819 }
2820
2821 if (unoptab == popcount_optab
2822 && is_a <scalar_int_mode> (mode, &int_mode)
2823 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2824 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2825 && optimize_insn_for_speed_p ())
2826 {
2827 temp = expand_doubleword_popcount (int_mode, op0, target);
2828 if (temp)
2829 return temp;
2830 }
2831
2832 if (unoptab == parity_optab
2833 && is_a <scalar_int_mode> (mode, &int_mode)
2834 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2835 && (optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2836 || optab_handler (popcount_optab, word_mode) != CODE_FOR_nothing)
2837 && optimize_insn_for_speed_p ())
2838 {
2839 temp = expand_doubleword_parity (int_mode, op0, target);
2840 if (temp)
2841 return temp;
2842 }
2843
2844 /* Widening (or narrowing) bswap needs special treatment. */
2845 if (unoptab == bswap_optab)
2846 {
2847 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2848 or ROTATERT. First try these directly; if this fails, then try the
2849 obvious pair of shifts with allowed widening, as this will probably
2850 be always more efficient than the other fallback methods. */
2851 if (mode == HImode)
2852 {
2853 rtx_insn *last;
2854 rtx temp1, temp2;
2855
2856 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
2857 {
2858 temp = expand_binop (mode, rotl_optab, op0,
2859 gen_int_shift_amount (mode, 8),
2860 target, unsignedp, OPTAB_DIRECT);
2861 if (temp)
2862 return temp;
2863 }
2864
2865 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
2866 {
2867 temp = expand_binop (mode, rotr_optab, op0,
2868 gen_int_shift_amount (mode, 8),
2869 target, unsignedp, OPTAB_DIRECT);
2870 if (temp)
2871 return temp;
2872 }
2873
2874 last = get_last_insn ();
2875
2876 temp1 = expand_binop (mode, ashl_optab, op0,
2877 gen_int_shift_amount (mode, 8), NULL_RTX,
2878 unsignedp, OPTAB_WIDEN);
2879 temp2 = expand_binop (mode, lshr_optab, op0,
2880 gen_int_shift_amount (mode, 8), NULL_RTX,
2881 unsignedp, OPTAB_WIDEN);
2882 if (temp1 && temp2)
2883 {
2884 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
2885 unsignedp, OPTAB_WIDEN);
2886 if (temp)
2887 return temp;
2888 }
2889
2890 delete_insns_since (last);
2891 }
2892
2893 if (is_a <scalar_int_mode> (mode, &int_mode))
2894 {
2895 temp = widen_bswap (int_mode, op0, target);
2896 if (temp)
2897 return temp;
2898
2899 /* We do not provide a 128-bit bswap in libgcc so force the use of
2900 a double bswap for 64-bit targets. */
2901 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2902 && (UNITS_PER_WORD == 8
2903 || optab_handler (unoptab, word_mode) != CODE_FOR_nothing))
2904 {
2905 temp = expand_doubleword_bswap (mode, op0, target);
2906 if (temp)
2907 return temp;
2908 }
2909 }
2910
2911 goto try_libcall;
2912 }
2913
2914 if (CLASS_HAS_WIDER_MODES_P (mclass))
2915 FOR_EACH_WIDER_MODE (wider_mode, mode)
2916 {
2917 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2918 {
2919 rtx xop0 = op0;
2920 rtx_insn *last = get_last_insn ();
2921
2922 /* For certain operations, we need not actually extend
2923 the narrow operand, as long as we will truncate the
2924 results to the same narrowness. */
2925
2926 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2927 (unoptab == neg_optab
2928 || unoptab == one_cmpl_optab)
2929 && mclass == MODE_INT);
2930
2931 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2932 unsignedp);
2933
2934 if (temp)
2935 {
2936 if (mclass != MODE_INT
2937 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2938 {
2939 if (target == 0)
2940 target = gen_reg_rtx (mode);
2941 convert_move (target, temp, 0);
2942 return target;
2943 }
2944 else
2945 return gen_lowpart (mode, temp);
2946 }
2947 else
2948 delete_insns_since (last);
2949 }
2950 }
2951
2952 /* These can be done a word at a time. */
2953 if (unoptab == one_cmpl_optab
2954 && is_int_mode (mode, &int_mode)
2955 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
2956 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2957 {
2958 int i;
2959 rtx_insn *insns;
2960
2961 if (target == 0
2962 || target == op0
2963 || reg_overlap_mentioned_p (target, op0)
2964 || !valid_multiword_target_p (target))
2965 target = gen_reg_rtx (int_mode);
2966
2967 start_sequence ();
2968
2969 /* Do the actual arithmetic. */
2970 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
2971 {
2972 rtx target_piece = operand_subword (target, i, 1, int_mode);
2973 rtx x = expand_unop (word_mode, unoptab,
2974 operand_subword_force (op0, i, int_mode),
2975 target_piece, unsignedp);
2976
2977 if (target_piece != x)
2978 emit_move_insn (target_piece, x);
2979 }
2980
2981 insns = get_insns ();
2982 end_sequence ();
2983
2984 emit_insn (insns);
2985 return target;
2986 }
2987
2988 /* Emit ~op0 as op0 ^ -1. */
2989 if (unoptab == one_cmpl_optab
2990 && (SCALAR_INT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
2991 && optab_handler (xor_optab, mode) != CODE_FOR_nothing)
2992 {
2993 temp = expand_binop (mode, xor_optab, op0, CONSTM1_RTX (mode),
2994 target, unsignedp, OPTAB_DIRECT);
2995 if (temp)
2996 return temp;
2997 }
2998
2999 if (optab_to_code (unoptab) == NEG)
3000 {
3001 /* Try negating floating point values by flipping the sign bit. */
3002 if (is_a <scalar_float_mode> (mode, &float_mode))
3003 {
3004 temp = expand_absneg_bit (NEG, float_mode, op0, target);
3005 if (temp)
3006 return temp;
3007 }
3008
3009 /* If there is no negation pattern, and we have no negative zero,
3010 try subtracting from zero. */
3011 if (!HONOR_SIGNED_ZEROS (mode))
3012 {
3013 temp = expand_binop (mode, (unoptab == negv_optab
3014 ? subv_optab : sub_optab),
3015 CONST0_RTX (mode), op0, target,
3016 unsignedp, OPTAB_DIRECT);
3017 if (temp)
3018 return temp;
3019 }
3020 }
3021
3022 /* Try calculating parity (x) as popcount (x) % 2. */
3023 if (unoptab == parity_optab && is_a <scalar_int_mode> (mode, &int_mode))
3024 {
3025 temp = expand_parity (int_mode, op0, target);
3026 if (temp)
3027 return temp;
3028 }
3029
3030 /* Try implementing ffs (x) in terms of clz (x). */
3031 if (unoptab == ffs_optab && is_a <scalar_int_mode> (mode, &int_mode))
3032 {
3033 temp = expand_ffs (int_mode, op0, target);
3034 if (temp)
3035 return temp;
3036 }
3037
3038 /* Try implementing ctz (x) in terms of clz (x). */
3039 if (unoptab == ctz_optab && is_a <scalar_int_mode> (mode, &int_mode))
3040 {
3041 temp = expand_ctz (int_mode, op0, target);
3042 if (temp)
3043 return temp;
3044 }
3045
3046 try_libcall:
3047 /* Now try a library call in this mode. */
3048 libfunc = optab_libfunc (unoptab, mode);
3049 if (libfunc)
3050 {
3051 rtx_insn *insns;
3052 rtx value;
3053 rtx eq_value;
3054 machine_mode outmode = mode;
3055
3056 /* All of these functions return small values. Thus we choose to
3057 have them return something that isn't a double-word. */
3058 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3059 || unoptab == clrsb_optab || unoptab == popcount_optab
3060 || unoptab == parity_optab)
3061 outmode
3062 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3063 optab_libfunc (unoptab, mode)));
3064
3065 start_sequence ();
3066
3067 /* Pass 1 for NO_QUEUE so we don't lose any increments
3068 if the libcall is cse'd or moved. */
3069 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3070 op0, mode);
3071 insns = get_insns ();
3072 end_sequence ();
3073
3074 target = gen_reg_rtx (outmode);
3075 bool trapv = trapv_unoptab_p (unoptab);
3076 if (trapv)
3077 eq_value = NULL_RTX;
3078 else
3079 {
3080 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3081 if (GET_MODE_UNIT_SIZE (outmode) < GET_MODE_UNIT_SIZE (mode))
3082 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3083 else if (GET_MODE_UNIT_SIZE (outmode) > GET_MODE_UNIT_SIZE (mode))
3084 eq_value = simplify_gen_unary (ZERO_EXTEND,
3085 outmode, eq_value, mode);
3086 }
3087 emit_libcall_block_1 (insns, target, value, eq_value, trapv);
3088
3089 return target;
3090 }
3091
3092 /* It can't be done in this mode. Can we do it in a wider mode? */
3093
3094 if (CLASS_HAS_WIDER_MODES_P (mclass))
3095 {
3096 FOR_EACH_WIDER_MODE (wider_mode, mode)
3097 {
3098 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3099 || optab_libfunc (unoptab, wider_mode))
3100 {
3101 rtx xop0 = op0;
3102 rtx_insn *last = get_last_insn ();
3103
3104 /* For certain operations, we need not actually extend
3105 the narrow operand, as long as we will truncate the
3106 results to the same narrowness. */
3107 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3108 (unoptab == neg_optab
3109 || unoptab == one_cmpl_optab
3110 || unoptab == bswap_optab)
3111 && mclass == MODE_INT);
3112
3113 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3114 unsignedp);
3115
3116 /* If we are generating clz using wider mode, adjust the
3117 result. Similarly for clrsb. */
3118 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3119 && temp != 0)
3120 {
3121 scalar_int_mode wider_int_mode
3122 = as_a <scalar_int_mode> (wider_mode);
3123 int_mode = as_a <scalar_int_mode> (mode);
3124 temp = expand_binop
3125 (wider_mode, sub_optab, temp,
3126 gen_int_mode (GET_MODE_PRECISION (wider_int_mode)
3127 - GET_MODE_PRECISION (int_mode),
3128 wider_int_mode),
3129 target, true, OPTAB_DIRECT);
3130 }
3131
3132 /* Likewise for bswap. */
3133 if (unoptab == bswap_optab && temp != 0)
3134 {
3135 scalar_int_mode wider_int_mode
3136 = as_a <scalar_int_mode> (wider_mode);
3137 int_mode = as_a <scalar_int_mode> (mode);
3138 gcc_assert (GET_MODE_PRECISION (wider_int_mode)
3139 == GET_MODE_BITSIZE (wider_int_mode)
3140 && GET_MODE_PRECISION (int_mode)
3141 == GET_MODE_BITSIZE (int_mode));
3142
3143 temp = expand_shift (RSHIFT_EXPR, wider_int_mode, temp,
3144 GET_MODE_BITSIZE (wider_int_mode)
3145 - GET_MODE_BITSIZE (int_mode),
3146 NULL_RTX, true);
3147 }
3148
3149 if (temp)
3150 {
3151 if (mclass != MODE_INT)
3152 {
3153 if (target == 0)
3154 target = gen_reg_rtx (mode);
3155 convert_move (target, temp, 0);
3156 return target;
3157 }
3158 else
3159 return gen_lowpart (mode, temp);
3160 }
3161 else
3162 delete_insns_since (last);
3163 }
3164 }
3165 }
3166
3167 /* One final attempt at implementing negation via subtraction,
3168 this time allowing widening of the operand. */
3169 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3170 {
3171 rtx temp;
3172 temp = expand_binop (mode,
3173 unoptab == negv_optab ? subv_optab : sub_optab,
3174 CONST0_RTX (mode), op0,
3175 target, unsignedp, OPTAB_LIB_WIDEN);
3176 if (temp)
3177 return temp;
3178 }
3179
3180 return 0;
3181 }
3182 \f
3183 /* Emit code to compute the absolute value of OP0, with result to
3184 TARGET if convenient. (TARGET may be 0.) The return value says
3185 where the result actually is to be found.
3186
3187 MODE is the mode of the operand; the mode of the result is
3188 different but can be deduced from MODE.
3189
3190 */
3191
3192 rtx
3193 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3194 int result_unsignedp)
3195 {
3196 rtx temp;
3197
3198 if (GET_MODE_CLASS (mode) != MODE_INT
3199 || ! flag_trapv)
3200 result_unsignedp = 1;
3201
3202 /* First try to do it with a special abs instruction. */
3203 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3204 op0, target, 0);
3205 if (temp != 0)
3206 return temp;
3207
3208 /* For floating point modes, try clearing the sign bit. */
3209 scalar_float_mode float_mode;
3210 if (is_a <scalar_float_mode> (mode, &float_mode))
3211 {
3212 temp = expand_absneg_bit (ABS, float_mode, op0, target);
3213 if (temp)
3214 return temp;
3215 }
3216
3217 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3218 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3219 && !HONOR_SIGNED_ZEROS (mode))
3220 {
3221 rtx_insn *last = get_last_insn ();
3222
3223 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3224 op0, NULL_RTX, 0);
3225 if (temp != 0)
3226 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3227 OPTAB_WIDEN);
3228
3229 if (temp != 0)
3230 return temp;
3231
3232 delete_insns_since (last);
3233 }
3234
3235 /* If this machine has expensive jumps, we can do integer absolute
3236 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3237 where W is the width of MODE. */
3238
3239 scalar_int_mode int_mode;
3240 if (is_int_mode (mode, &int_mode)
3241 && BRANCH_COST (optimize_insn_for_speed_p (),
3242 false) >= 2)
3243 {
3244 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3245 GET_MODE_PRECISION (int_mode) - 1,
3246 NULL_RTX, 0);
3247
3248 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3249 OPTAB_LIB_WIDEN);
3250 if (temp != 0)
3251 temp = expand_binop (int_mode,
3252 result_unsignedp ? sub_optab : subv_optab,
3253 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3254
3255 if (temp != 0)
3256 return temp;
3257 }
3258
3259 return NULL_RTX;
3260 }
3261
3262 rtx
3263 expand_abs (machine_mode mode, rtx op0, rtx target,
3264 int result_unsignedp, int safe)
3265 {
3266 rtx temp;
3267 rtx_code_label *op1;
3268
3269 if (GET_MODE_CLASS (mode) != MODE_INT
3270 || ! flag_trapv)
3271 result_unsignedp = 1;
3272
3273 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3274 if (temp != 0)
3275 return temp;
3276
3277 /* If that does not win, use conditional jump and negate. */
3278
3279 /* It is safe to use the target if it is the same
3280 as the source if this is also a pseudo register */
3281 if (op0 == target && REG_P (op0)
3282 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3283 safe = 1;
3284
3285 op1 = gen_label_rtx ();
3286 if (target == 0 || ! safe
3287 || GET_MODE (target) != mode
3288 || (MEM_P (target) && MEM_VOLATILE_P (target))
3289 || (REG_P (target)
3290 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3291 target = gen_reg_rtx (mode);
3292
3293 emit_move_insn (target, op0);
3294 NO_DEFER_POP;
3295
3296 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3297 NULL_RTX, NULL, op1,
3298 profile_probability::uninitialized ());
3299
3300 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3301 target, target, 0);
3302 if (op0 != target)
3303 emit_move_insn (target, op0);
3304 emit_label (op1);
3305 OK_DEFER_POP;
3306 return target;
3307 }
3308
3309 /* Emit code to compute the one's complement absolute value of OP0
3310 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3311 (TARGET may be NULL_RTX.) The return value says where the result
3312 actually is to be found.
3313
3314 MODE is the mode of the operand; the mode of the result is
3315 different but can be deduced from MODE. */
3316
3317 rtx
3318 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3319 {
3320 rtx temp;
3321
3322 /* Not applicable for floating point modes. */
3323 if (FLOAT_MODE_P (mode))
3324 return NULL_RTX;
3325
3326 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3327 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3328 {
3329 rtx_insn *last = get_last_insn ();
3330
3331 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3332 if (temp != 0)
3333 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3334 OPTAB_WIDEN);
3335
3336 if (temp != 0)
3337 return temp;
3338
3339 delete_insns_since (last);
3340 }
3341
3342 /* If this machine has expensive jumps, we can do one's complement
3343 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3344
3345 scalar_int_mode int_mode;
3346 if (is_int_mode (mode, &int_mode)
3347 && BRANCH_COST (optimize_insn_for_speed_p (),
3348 false) >= 2)
3349 {
3350 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3351 GET_MODE_PRECISION (int_mode) - 1,
3352 NULL_RTX, 0);
3353
3354 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3355 OPTAB_LIB_WIDEN);
3356
3357 if (temp != 0)
3358 return temp;
3359 }
3360
3361 return NULL_RTX;
3362 }
3363
3364 /* A subroutine of expand_copysign, perform the copysign operation using the
3365 abs and neg primitives advertised to exist on the target. The assumption
3366 is that we have a split register file, and leaving op0 in fp registers,
3367 and not playing with subregs so much, will help the register allocator. */
3368
3369 static rtx
3370 expand_copysign_absneg (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3371 int bitpos, bool op0_is_abs)
3372 {
3373 scalar_int_mode imode;
3374 enum insn_code icode;
3375 rtx sign;
3376 rtx_code_label *label;
3377
3378 if (target == op1)
3379 target = NULL_RTX;
3380
3381 /* Check if the back end provides an insn that handles signbit for the
3382 argument's mode. */
3383 icode = optab_handler (signbit_optab, mode);
3384 if (icode != CODE_FOR_nothing)
3385 {
3386 imode = as_a <scalar_int_mode> (insn_data[(int) icode].operand[0].mode);
3387 sign = gen_reg_rtx (imode);
3388 emit_unop_insn (icode, sign, op1, UNKNOWN);
3389 }
3390 else
3391 {
3392 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3393 {
3394 if (!int_mode_for_mode (mode).exists (&imode))
3395 return NULL_RTX;
3396 op1 = gen_lowpart (imode, op1);
3397 }
3398 else
3399 {
3400 int word;
3401
3402 imode = word_mode;
3403 if (FLOAT_WORDS_BIG_ENDIAN)
3404 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3405 else
3406 word = bitpos / BITS_PER_WORD;
3407 bitpos = bitpos % BITS_PER_WORD;
3408 op1 = operand_subword_force (op1, word, mode);
3409 }
3410
3411 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3412 sign = expand_binop (imode, and_optab, op1,
3413 immed_wide_int_const (mask, imode),
3414 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3415 }
3416
3417 if (!op0_is_abs)
3418 {
3419 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3420 if (op0 == NULL)
3421 return NULL_RTX;
3422 target = op0;
3423 }
3424 else
3425 {
3426 if (target == NULL_RTX)
3427 target = copy_to_reg (op0);
3428 else
3429 emit_move_insn (target, op0);
3430 }
3431
3432 label = gen_label_rtx ();
3433 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3434
3435 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3436 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3437 else
3438 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3439 if (op0 != target)
3440 emit_move_insn (target, op0);
3441
3442 emit_label (label);
3443
3444 return target;
3445 }
3446
3447
3448 /* A subroutine of expand_copysign, perform the entire copysign operation
3449 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3450 is true if op0 is known to have its sign bit clear. */
3451
3452 static rtx
3453 expand_copysign_bit (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3454 int bitpos, bool op0_is_abs)
3455 {
3456 scalar_int_mode imode;
3457 int word, nwords, i;
3458 rtx temp;
3459 rtx_insn *insns;
3460
3461 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3462 {
3463 if (!int_mode_for_mode (mode).exists (&imode))
3464 return NULL_RTX;
3465 word = 0;
3466 nwords = 1;
3467 }
3468 else
3469 {
3470 imode = word_mode;
3471
3472 if (FLOAT_WORDS_BIG_ENDIAN)
3473 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3474 else
3475 word = bitpos / BITS_PER_WORD;
3476 bitpos = bitpos % BITS_PER_WORD;
3477 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3478 }
3479
3480 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3481
3482 if (target == 0
3483 || target == op0
3484 || target == op1
3485 || reg_overlap_mentioned_p (target, op0)
3486 || reg_overlap_mentioned_p (target, op1)
3487 || (nwords > 1 && !valid_multiword_target_p (target)))
3488 target = gen_reg_rtx (mode);
3489
3490 if (nwords > 1)
3491 {
3492 start_sequence ();
3493
3494 for (i = 0; i < nwords; ++i)
3495 {
3496 rtx targ_piece = operand_subword (target, i, 1, mode);
3497 rtx op0_piece = operand_subword_force (op0, i, mode);
3498
3499 if (i == word)
3500 {
3501 if (!op0_is_abs)
3502 op0_piece
3503 = expand_binop (imode, and_optab, op0_piece,
3504 immed_wide_int_const (~mask, imode),
3505 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3506 op1 = expand_binop (imode, and_optab,
3507 operand_subword_force (op1, i, mode),
3508 immed_wide_int_const (mask, imode),
3509 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3510
3511 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3512 targ_piece, 1, OPTAB_LIB_WIDEN);
3513 if (temp != targ_piece)
3514 emit_move_insn (targ_piece, temp);
3515 }
3516 else
3517 emit_move_insn (targ_piece, op0_piece);
3518 }
3519
3520 insns = get_insns ();
3521 end_sequence ();
3522
3523 emit_insn (insns);
3524 }
3525 else
3526 {
3527 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3528 immed_wide_int_const (mask, imode),
3529 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3530
3531 op0 = gen_lowpart (imode, op0);
3532 if (!op0_is_abs)
3533 op0 = expand_binop (imode, and_optab, op0,
3534 immed_wide_int_const (~mask, imode),
3535 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3536
3537 temp = expand_binop (imode, ior_optab, op0, op1,
3538 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3539 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3540 }
3541
3542 return target;
3543 }
3544
3545 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3546 scalar floating point mode. Return NULL if we do not know how to
3547 expand the operation inline. */
3548
3549 rtx
3550 expand_copysign (rtx op0, rtx op1, rtx target)
3551 {
3552 scalar_float_mode mode;
3553 const struct real_format *fmt;
3554 bool op0_is_abs;
3555 rtx temp;
3556
3557 mode = as_a <scalar_float_mode> (GET_MODE (op0));
3558 gcc_assert (GET_MODE (op1) == mode);
3559
3560 /* First try to do it with a special instruction. */
3561 temp = expand_binop (mode, copysign_optab, op0, op1,
3562 target, 0, OPTAB_DIRECT);
3563 if (temp)
3564 return temp;
3565
3566 fmt = REAL_MODE_FORMAT (mode);
3567 if (fmt == NULL || !fmt->has_signed_zero)
3568 return NULL_RTX;
3569
3570 op0_is_abs = false;
3571 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3572 {
3573 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3574 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3575 op0_is_abs = true;
3576 }
3577
3578 if (fmt->signbit_ro >= 0
3579 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3580 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3581 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3582 {
3583 temp = expand_copysign_absneg (mode, op0, op1, target,
3584 fmt->signbit_ro, op0_is_abs);
3585 if (temp)
3586 return temp;
3587 }
3588
3589 if (fmt->signbit_rw < 0)
3590 return NULL_RTX;
3591 return expand_copysign_bit (mode, op0, op1, target,
3592 fmt->signbit_rw, op0_is_abs);
3593 }
3594 \f
3595 /* Generate an instruction whose insn-code is INSN_CODE,
3596 with two operands: an output TARGET and an input OP0.
3597 TARGET *must* be nonzero, and the output is always stored there.
3598 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3599 the value that is stored into TARGET.
3600
3601 Return false if expansion failed. */
3602
3603 bool
3604 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3605 enum rtx_code code)
3606 {
3607 class expand_operand ops[2];
3608 rtx_insn *pat;
3609
3610 create_output_operand (&ops[0], target, GET_MODE (target));
3611 create_input_operand (&ops[1], op0, GET_MODE (op0));
3612 pat = maybe_gen_insn (icode, 2, ops);
3613 if (!pat)
3614 return false;
3615
3616 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3617 && code != UNKNOWN)
3618 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX,
3619 GET_MODE (op0));
3620
3621 emit_insn (pat);
3622
3623 if (ops[0].value != target)
3624 emit_move_insn (target, ops[0].value);
3625 return true;
3626 }
3627 /* Generate an instruction whose insn-code is INSN_CODE,
3628 with two operands: an output TARGET and an input OP0.
3629 TARGET *must* be nonzero, and the output is always stored there.
3630 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3631 the value that is stored into TARGET. */
3632
3633 void
3634 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3635 {
3636 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3637 gcc_assert (ok);
3638 }
3639 \f
3640 struct no_conflict_data
3641 {
3642 rtx target;
3643 rtx_insn *first, *insn;
3644 bool must_stay;
3645 };
3646
3647 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3648 the currently examined clobber / store has to stay in the list of
3649 insns that constitute the actual libcall block. */
3650 static void
3651 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3652 {
3653 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3654
3655 /* If this inns directly contributes to setting the target, it must stay. */
3656 if (reg_overlap_mentioned_p (p->target, dest))
3657 p->must_stay = true;
3658 /* If we haven't committed to keeping any other insns in the list yet,
3659 there is nothing more to check. */
3660 else if (p->insn == p->first)
3661 return;
3662 /* If this insn sets / clobbers a register that feeds one of the insns
3663 already in the list, this insn has to stay too. */
3664 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3665 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3666 || reg_used_between_p (dest, p->first, p->insn)
3667 /* Likewise if this insn depends on a register set by a previous
3668 insn in the list, or if it sets a result (presumably a hard
3669 register) that is set or clobbered by a previous insn.
3670 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3671 SET_DEST perform the former check on the address, and the latter
3672 check on the MEM. */
3673 || (GET_CODE (set) == SET
3674 && (modified_in_p (SET_SRC (set), p->first)
3675 || modified_in_p (SET_DEST (set), p->first)
3676 || modified_between_p (SET_SRC (set), p->first, p->insn)
3677 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3678 p->must_stay = true;
3679 }
3680
3681 \f
3682 /* Emit code to make a call to a constant function or a library call.
3683
3684 INSNS is a list containing all insns emitted in the call.
3685 These insns leave the result in RESULT. Our block is to copy RESULT
3686 to TARGET, which is logically equivalent to EQUIV.
3687
3688 We first emit any insns that set a pseudo on the assumption that these are
3689 loading constants into registers; doing so allows them to be safely cse'ed
3690 between blocks. Then we emit all the other insns in the block, followed by
3691 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3692 note with an operand of EQUIV. */
3693
3694 static void
3695 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3696 bool equiv_may_trap)
3697 {
3698 rtx final_dest = target;
3699 rtx_insn *next, *last, *insn;
3700
3701 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3702 into a MEM later. Protect the libcall block from this change. */
3703 if (! REG_P (target) || REG_USERVAR_P (target))
3704 target = gen_reg_rtx (GET_MODE (target));
3705
3706 /* If we're using non-call exceptions, a libcall corresponding to an
3707 operation that may trap may also trap. */
3708 /* ??? See the comment in front of make_reg_eh_region_note. */
3709 if (cfun->can_throw_non_call_exceptions
3710 && (equiv_may_trap || may_trap_p (equiv)))
3711 {
3712 for (insn = insns; insn; insn = NEXT_INSN (insn))
3713 if (CALL_P (insn))
3714 {
3715 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3716 if (note)
3717 {
3718 int lp_nr = INTVAL (XEXP (note, 0));
3719 if (lp_nr == 0 || lp_nr == INT_MIN)
3720 remove_note (insn, note);
3721 }
3722 }
3723 }
3724 else
3725 {
3726 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3727 reg note to indicate that this call cannot throw or execute a nonlocal
3728 goto (unless there is already a REG_EH_REGION note, in which case
3729 we update it). */
3730 for (insn = insns; insn; insn = NEXT_INSN (insn))
3731 if (CALL_P (insn))
3732 make_reg_eh_region_note_nothrow_nononlocal (insn);
3733 }
3734
3735 /* First emit all insns that set pseudos. Remove them from the list as
3736 we go. Avoid insns that set pseudos which were referenced in previous
3737 insns. These can be generated by move_by_pieces, for example,
3738 to update an address. Similarly, avoid insns that reference things
3739 set in previous insns. */
3740
3741 for (insn = insns; insn; insn = next)
3742 {
3743 rtx set = single_set (insn);
3744
3745 next = NEXT_INSN (insn);
3746
3747 if (set != 0 && REG_P (SET_DEST (set))
3748 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3749 {
3750 struct no_conflict_data data;
3751
3752 data.target = const0_rtx;
3753 data.first = insns;
3754 data.insn = insn;
3755 data.must_stay = 0;
3756 note_stores (insn, no_conflict_move_test, &data);
3757 if (! data.must_stay)
3758 {
3759 if (PREV_INSN (insn))
3760 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3761 else
3762 insns = next;
3763
3764 if (next)
3765 SET_PREV_INSN (next) = PREV_INSN (insn);
3766
3767 add_insn (insn);
3768 }
3769 }
3770
3771 /* Some ports use a loop to copy large arguments onto the stack.
3772 Don't move anything outside such a loop. */
3773 if (LABEL_P (insn))
3774 break;
3775 }
3776
3777 /* Write the remaining insns followed by the final copy. */
3778 for (insn = insns; insn; insn = next)
3779 {
3780 next = NEXT_INSN (insn);
3781
3782 add_insn (insn);
3783 }
3784
3785 last = emit_move_insn (target, result);
3786 if (equiv)
3787 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3788
3789 if (final_dest != target)
3790 emit_move_insn (final_dest, target);
3791 }
3792
3793 void
3794 emit_libcall_block (rtx_insn *insns, rtx target, rtx result, rtx equiv)
3795 {
3796 emit_libcall_block_1 (insns, target, result, equiv, false);
3797 }
3798 \f
3799 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3800 PURPOSE describes how this comparison will be used. CODE is the rtx
3801 comparison code we will be using.
3802
3803 ??? Actually, CODE is slightly weaker than that. A target is still
3804 required to implement all of the normal bcc operations, but not
3805 required to implement all (or any) of the unordered bcc operations. */
3806
3807 int
3808 can_compare_p (enum rtx_code code, machine_mode mode,
3809 enum can_compare_purpose purpose)
3810 {
3811 rtx test;
3812 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3813 do
3814 {
3815 enum insn_code icode;
3816
3817 if (purpose == ccp_jump
3818 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3819 && insn_operand_matches (icode, 0, test))
3820 return 1;
3821 if (purpose == ccp_store_flag
3822 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3823 && insn_operand_matches (icode, 1, test))
3824 return 1;
3825 if (purpose == ccp_cmov
3826 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3827 return 1;
3828
3829 mode = GET_MODE_WIDER_MODE (mode).else_void ();
3830 PUT_MODE (test, mode);
3831 }
3832 while (mode != VOIDmode);
3833
3834 return 0;
3835 }
3836
3837 /* Return whether the backend can emit a vector comparison for code CODE,
3838 comparing operands of mode CMP_OP_MODE and producing a result with
3839 VALUE_MODE. */
3840
3841 bool
3842 can_vcond_compare_p (enum rtx_code code, machine_mode value_mode,
3843 machine_mode cmp_op_mode)
3844 {
3845 enum insn_code icode;
3846 bool unsigned_p = (code == LTU || code == LEU || code == GTU || code == GEU);
3847 rtx reg1 = alloca_raw_REG (cmp_op_mode, LAST_VIRTUAL_REGISTER + 1);
3848 rtx reg2 = alloca_raw_REG (cmp_op_mode, LAST_VIRTUAL_REGISTER + 2);
3849 rtx test = alloca_rtx_fmt_ee (code, value_mode, reg1, reg2);
3850
3851 return (icode = get_vcond_icode (value_mode, cmp_op_mode, unsigned_p))
3852 != CODE_FOR_nothing
3853 && insn_operand_matches (icode, 3, test);
3854 }
3855
3856 /* Return whether the backend can emit vector set instructions for inserting
3857 element into vector at variable index position. */
3858
3859 bool
3860 can_vec_set_var_idx_p (machine_mode vec_mode)
3861 {
3862 if (!VECTOR_MODE_P (vec_mode))
3863 return false;
3864
3865 machine_mode inner_mode = GET_MODE_INNER (vec_mode);
3866 rtx reg1 = alloca_raw_REG (vec_mode, LAST_VIRTUAL_REGISTER + 1);
3867 rtx reg2 = alloca_raw_REG (inner_mode, LAST_VIRTUAL_REGISTER + 2);
3868 rtx reg3 = alloca_raw_REG (VOIDmode, LAST_VIRTUAL_REGISTER + 3);
3869
3870 enum insn_code icode = optab_handler (vec_set_optab, vec_mode);
3871
3872 return icode != CODE_FOR_nothing && insn_operand_matches (icode, 0, reg1)
3873 && insn_operand_matches (icode, 1, reg2)
3874 && insn_operand_matches (icode, 2, reg3);
3875 }
3876
3877 /* This function is called when we are going to emit a compare instruction that
3878 compares the values found in X and Y, using the rtl operator COMPARISON.
3879
3880 If they have mode BLKmode, then SIZE specifies the size of both operands.
3881
3882 UNSIGNEDP nonzero says that the operands are unsigned;
3883 this matters if they need to be widened (as given by METHODS).
3884
3885 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3886 if we failed to produce one.
3887
3888 *PMODE is the mode of the inputs (in case they are const_int).
3889
3890 This function performs all the setup necessary so that the caller only has
3891 to emit a single comparison insn. This setup can involve doing a BLKmode
3892 comparison or emitting a library call to perform the comparison if no insn
3893 is available to handle it.
3894 The values which are passed in through pointers can be modified; the caller
3895 should perform the comparison on the modified values. Constant
3896 comparisons must have already been folded. */
3897
3898 static void
3899 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3900 int unsignedp, enum optab_methods methods,
3901 rtx *ptest, machine_mode *pmode)
3902 {
3903 machine_mode mode = *pmode;
3904 rtx libfunc, test;
3905 machine_mode cmp_mode;
3906 enum mode_class mclass;
3907
3908 /* The other methods are not needed. */
3909 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3910 || methods == OPTAB_LIB_WIDEN);
3911
3912 if (CONST_SCALAR_INT_P (y))
3913 canonicalize_comparison (mode, &comparison, &y);
3914
3915 /* If we are optimizing, force expensive constants into a register. */
3916 if (CONSTANT_P (x) && optimize
3917 && (rtx_cost (x, mode, COMPARE, 0, optimize_insn_for_speed_p ())
3918 > COSTS_N_INSNS (1)))
3919 x = force_reg (mode, x);
3920
3921 if (CONSTANT_P (y) && optimize
3922 && (rtx_cost (y, mode, COMPARE, 1, optimize_insn_for_speed_p ())
3923 > COSTS_N_INSNS (1)))
3924 y = force_reg (mode, y);
3925
3926 #if HAVE_cc0
3927 /* Make sure if we have a canonical comparison. The RTL
3928 documentation states that canonical comparisons are required only
3929 for targets which have cc0. */
3930 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3931 #endif
3932
3933 /* Don't let both operands fail to indicate the mode. */
3934 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3935 x = force_reg (mode, x);
3936 if (mode == VOIDmode)
3937 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3938
3939 /* Handle all BLKmode compares. */
3940
3941 if (mode == BLKmode)
3942 {
3943 machine_mode result_mode;
3944 enum insn_code cmp_code;
3945 rtx result;
3946 rtx opalign
3947 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3948
3949 gcc_assert (size);
3950
3951 /* Try to use a memory block compare insn - either cmpstr
3952 or cmpmem will do. */
3953 opt_scalar_int_mode cmp_mode_iter;
3954 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
3955 {
3956 scalar_int_mode cmp_mode = cmp_mode_iter.require ();
3957 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3958 if (cmp_code == CODE_FOR_nothing)
3959 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3960 if (cmp_code == CODE_FOR_nothing)
3961 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3962 if (cmp_code == CODE_FOR_nothing)
3963 continue;
3964
3965 /* Must make sure the size fits the insn's mode. */
3966 if (CONST_INT_P (size)
3967 ? UINTVAL (size) > GET_MODE_MASK (cmp_mode)
3968 : (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (size)))
3969 > GET_MODE_BITSIZE (cmp_mode)))
3970 continue;
3971
3972 result_mode = insn_data[cmp_code].operand[0].mode;
3973 result = gen_reg_rtx (result_mode);
3974 size = convert_to_mode (cmp_mode, size, 1);
3975 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3976
3977 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3978 *pmode = result_mode;
3979 return;
3980 }
3981
3982 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
3983 goto fail;
3984
3985 /* Otherwise call a library function. */
3986 result = emit_block_comp_via_libcall (x, y, size);
3987
3988 x = result;
3989 y = const0_rtx;
3990 mode = TYPE_MODE (integer_type_node);
3991 methods = OPTAB_LIB_WIDEN;
3992 unsignedp = false;
3993 }
3994
3995 /* Don't allow operands to the compare to trap, as that can put the
3996 compare and branch in different basic blocks. */
3997 if (cfun->can_throw_non_call_exceptions)
3998 {
3999 if (may_trap_p (x))
4000 x = copy_to_reg (x);
4001 if (may_trap_p (y))
4002 y = copy_to_reg (y);
4003 }
4004
4005 if (GET_MODE_CLASS (mode) == MODE_CC)
4006 {
4007 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
4008 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4009 gcc_assert (icode != CODE_FOR_nothing
4010 && insn_operand_matches (icode, 0, test));
4011 *ptest = test;
4012 return;
4013 }
4014
4015 mclass = GET_MODE_CLASS (mode);
4016 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4017 FOR_EACH_MODE_FROM (cmp_mode, mode)
4018 {
4019 enum insn_code icode;
4020 icode = optab_handler (cbranch_optab, cmp_mode);
4021 if (icode != CODE_FOR_nothing
4022 && insn_operand_matches (icode, 0, test))
4023 {
4024 rtx_insn *last = get_last_insn ();
4025 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4026 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4027 if (op0 && op1
4028 && insn_operand_matches (icode, 1, op0)
4029 && insn_operand_matches (icode, 2, op1))
4030 {
4031 XEXP (test, 0) = op0;
4032 XEXP (test, 1) = op1;
4033 *ptest = test;
4034 *pmode = cmp_mode;
4035 return;
4036 }
4037 delete_insns_since (last);
4038 }
4039
4040 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4041 break;
4042 }
4043
4044 if (methods != OPTAB_LIB_WIDEN)
4045 goto fail;
4046
4047 if (SCALAR_FLOAT_MODE_P (mode))
4048 {
4049 /* Small trick if UNORDERED isn't implemented by the hardware. */
4050 if (comparison == UNORDERED && rtx_equal_p (x, y))
4051 {
4052 prepare_cmp_insn (x, y, UNLT, NULL_RTX, unsignedp, OPTAB_WIDEN,
4053 ptest, pmode);
4054 if (*ptest)
4055 return;
4056 }
4057
4058 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4059 }
4060 else
4061 {
4062 rtx result;
4063 machine_mode ret_mode;
4064
4065 /* Handle a libcall just for the mode we are using. */
4066 libfunc = optab_libfunc (cmp_optab, mode);
4067 gcc_assert (libfunc);
4068
4069 /* If we want unsigned, and this mode has a distinct unsigned
4070 comparison routine, use that. */
4071 if (unsignedp)
4072 {
4073 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4074 if (ulibfunc)
4075 libfunc = ulibfunc;
4076 }
4077
4078 ret_mode = targetm.libgcc_cmp_return_mode ();
4079 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4080 ret_mode, x, mode, y, mode);
4081
4082 /* There are two kinds of comparison routines. Biased routines
4083 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4084 of gcc expect that the comparison operation is equivalent
4085 to the modified comparison. For signed comparisons compare the
4086 result against 1 in the biased case, and zero in the unbiased
4087 case. For unsigned comparisons always compare against 1 after
4088 biasing the unbiased result by adding 1. This gives us a way to
4089 represent LTU.
4090 The comparisons in the fixed-point helper library are always
4091 biased. */
4092 x = result;
4093 y = const1_rtx;
4094
4095 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4096 {
4097 if (unsignedp)
4098 x = plus_constant (ret_mode, result, 1);
4099 else
4100 y = const0_rtx;
4101 }
4102
4103 *pmode = ret_mode;
4104 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4105 ptest, pmode);
4106 }
4107
4108 return;
4109
4110 fail:
4111 *ptest = NULL_RTX;
4112 }
4113
4114 /* Before emitting an insn with code ICODE, make sure that X, which is going
4115 to be used for operand OPNUM of the insn, is converted from mode MODE to
4116 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4117 that it is accepted by the operand predicate. Return the new value. */
4118
4119 rtx
4120 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
4121 machine_mode wider_mode, int unsignedp)
4122 {
4123 if (mode != wider_mode)
4124 x = convert_modes (wider_mode, mode, x, unsignedp);
4125
4126 if (!insn_operand_matches (icode, opnum, x))
4127 {
4128 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
4129 if (reload_completed)
4130 return NULL_RTX;
4131 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
4132 return NULL_RTX;
4133 x = copy_to_mode_reg (op_mode, x);
4134 }
4135
4136 return x;
4137 }
4138
4139 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4140 we can do the branch. */
4141
4142 static void
4143 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label,
4144 profile_probability prob)
4145 {
4146 machine_mode optab_mode;
4147 enum mode_class mclass;
4148 enum insn_code icode;
4149 rtx_insn *insn;
4150
4151 mclass = GET_MODE_CLASS (mode);
4152 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4153 icode = optab_handler (cbranch_optab, optab_mode);
4154
4155 gcc_assert (icode != CODE_FOR_nothing);
4156 gcc_assert (insn_operand_matches (icode, 0, test));
4157 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4158 XEXP (test, 1), label));
4159 if (prob.initialized_p ()
4160 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4161 && insn
4162 && JUMP_P (insn)
4163 && any_condjump_p (insn)
4164 && !find_reg_note (insn, REG_BR_PROB, 0))
4165 add_reg_br_prob_note (insn, prob);
4166 }
4167
4168 /* Generate code to compare X with Y so that the condition codes are
4169 set and to jump to LABEL if the condition is true. If X is a
4170 constant and Y is not a constant, then the comparison is swapped to
4171 ensure that the comparison RTL has the canonical form.
4172
4173 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4174 need to be widened. UNSIGNEDP is also used to select the proper
4175 branch condition code.
4176
4177 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4178
4179 MODE is the mode of the inputs (in case they are const_int).
4180
4181 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4182 It will be potentially converted into an unsigned variant based on
4183 UNSIGNEDP to select a proper jump instruction.
4184
4185 PROB is the probability of jumping to LABEL. */
4186
4187 void
4188 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4189 machine_mode mode, int unsignedp, rtx label,
4190 profile_probability prob)
4191 {
4192 rtx op0 = x, op1 = y;
4193 rtx test;
4194
4195 /* Swap operands and condition to ensure canonical RTL. */
4196 if (swap_commutative_operands_p (x, y)
4197 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4198 {
4199 op0 = y, op1 = x;
4200 comparison = swap_condition (comparison);
4201 }
4202
4203 /* If OP0 is still a constant, then both X and Y must be constants
4204 or the opposite comparison is not supported. Force X into a register
4205 to create canonical RTL. */
4206 if (CONSTANT_P (op0))
4207 op0 = force_reg (mode, op0);
4208
4209 if (unsignedp)
4210 comparison = unsigned_condition (comparison);
4211
4212 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4213 &test, &mode);
4214 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4215 }
4216
4217 \f
4218 /* Emit a library call comparison between floating point X and Y.
4219 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4220
4221 static void
4222 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4223 rtx *ptest, machine_mode *pmode)
4224 {
4225 enum rtx_code swapped = swap_condition (comparison);
4226 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4227 machine_mode orig_mode = GET_MODE (x);
4228 machine_mode mode;
4229 rtx true_rtx, false_rtx;
4230 rtx value, target, equiv;
4231 rtx_insn *insns;
4232 rtx libfunc = 0;
4233 bool reversed_p = false;
4234 scalar_int_mode cmp_mode = targetm.libgcc_cmp_return_mode ();
4235
4236 FOR_EACH_MODE_FROM (mode, orig_mode)
4237 {
4238 if (code_to_optab (comparison)
4239 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4240 break;
4241
4242 if (code_to_optab (swapped)
4243 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4244 {
4245 std::swap (x, y);
4246 comparison = swapped;
4247 break;
4248 }
4249
4250 if (code_to_optab (reversed)
4251 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4252 {
4253 comparison = reversed;
4254 reversed_p = true;
4255 break;
4256 }
4257 }
4258
4259 gcc_assert (mode != VOIDmode);
4260
4261 if (mode != orig_mode)
4262 {
4263 x = convert_to_mode (mode, x, 0);
4264 y = convert_to_mode (mode, y, 0);
4265 }
4266
4267 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4268 the RTL. The allows the RTL optimizers to delete the libcall if the
4269 condition can be determined at compile-time. */
4270 if (comparison == UNORDERED
4271 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4272 {
4273 true_rtx = const_true_rtx;
4274 false_rtx = const0_rtx;
4275 }
4276 else
4277 {
4278 switch (comparison)
4279 {
4280 case EQ:
4281 true_rtx = const0_rtx;
4282 false_rtx = const_true_rtx;
4283 break;
4284
4285 case NE:
4286 true_rtx = const_true_rtx;
4287 false_rtx = const0_rtx;
4288 break;
4289
4290 case GT:
4291 true_rtx = const1_rtx;
4292 false_rtx = const0_rtx;
4293 break;
4294
4295 case GE:
4296 true_rtx = const0_rtx;
4297 false_rtx = constm1_rtx;
4298 break;
4299
4300 case LT:
4301 true_rtx = constm1_rtx;
4302 false_rtx = const0_rtx;
4303 break;
4304
4305 case LE:
4306 true_rtx = const0_rtx;
4307 false_rtx = const1_rtx;
4308 break;
4309
4310 default:
4311 gcc_unreachable ();
4312 }
4313 }
4314
4315 if (comparison == UNORDERED)
4316 {
4317 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4318 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4319 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4320 temp, const_true_rtx, equiv);
4321 }
4322 else
4323 {
4324 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4325 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4326 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4327 equiv, true_rtx, false_rtx);
4328 }
4329
4330 start_sequence ();
4331 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4332 cmp_mode, x, mode, y, mode);
4333 insns = get_insns ();
4334 end_sequence ();
4335
4336 target = gen_reg_rtx (cmp_mode);
4337 emit_libcall_block (insns, target, value, equiv);
4338
4339 if (comparison == UNORDERED
4340 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4341 || reversed_p)
4342 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4343 else
4344 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4345
4346 *pmode = cmp_mode;
4347 }
4348 \f
4349 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4350
4351 void
4352 emit_indirect_jump (rtx loc)
4353 {
4354 if (!targetm.have_indirect_jump ())
4355 sorry ("indirect jumps are not available on this target");
4356 else
4357 {
4358 class expand_operand ops[1];
4359 create_address_operand (&ops[0], loc);
4360 expand_jump_insn (targetm.code_for_indirect_jump, 1, ops);
4361 emit_barrier ();
4362 }
4363 }
4364 \f
4365
4366 /* Emit a conditional move instruction if the machine supports one for that
4367 condition and machine mode.
4368
4369 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4370 the mode to use should they be constants. If it is VOIDmode, they cannot
4371 both be constants.
4372
4373 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4374 should be stored there. MODE is the mode to use should they be constants.
4375 If it is VOIDmode, they cannot both be constants.
4376
4377 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4378 is not supported. */
4379
4380 rtx
4381 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4382 machine_mode cmode, rtx op2, rtx op3,
4383 machine_mode mode, int unsignedp)
4384 {
4385 rtx comparison;
4386 rtx_insn *last;
4387 enum insn_code icode;
4388 enum rtx_code reversed;
4389
4390 /* If the two source operands are identical, that's just a move. */
4391
4392 if (rtx_equal_p (op2, op3))
4393 {
4394 if (!target)
4395 target = gen_reg_rtx (mode);
4396
4397 emit_move_insn (target, op3);
4398 return target;
4399 }
4400
4401 /* If one operand is constant, make it the second one. Only do this
4402 if the other operand is not constant as well. */
4403
4404 if (swap_commutative_operands_p (op0, op1))
4405 {
4406 std::swap (op0, op1);
4407 code = swap_condition (code);
4408 }
4409
4410 /* get_condition will prefer to generate LT and GT even if the old
4411 comparison was against zero, so undo that canonicalization here since
4412 comparisons against zero are cheaper. */
4413 if (code == LT && op1 == const1_rtx)
4414 code = LE, op1 = const0_rtx;
4415 else if (code == GT && op1 == constm1_rtx)
4416 code = GE, op1 = const0_rtx;
4417
4418 if (cmode == VOIDmode)
4419 cmode = GET_MODE (op0);
4420
4421 enum rtx_code orig_code = code;
4422 bool swapped = false;
4423 if (swap_commutative_operands_p (op2, op3)
4424 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4425 != UNKNOWN))
4426 {
4427 std::swap (op2, op3);
4428 code = reversed;
4429 swapped = true;
4430 }
4431
4432 if (mode == VOIDmode)
4433 mode = GET_MODE (op2);
4434
4435 icode = direct_optab_handler (movcc_optab, mode);
4436
4437 if (icode == CODE_FOR_nothing)
4438 return NULL_RTX;
4439
4440 if (!target)
4441 target = gen_reg_rtx (mode);
4442
4443 for (int pass = 0; ; pass++)
4444 {
4445 code = unsignedp ? unsigned_condition (code) : code;
4446 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4447
4448 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4449 punt and let the caller figure out how best to deal with this
4450 situation. */
4451 if (COMPARISON_P (comparison))
4452 {
4453 saved_pending_stack_adjust save;
4454 save_pending_stack_adjust (&save);
4455 last = get_last_insn ();
4456 do_pending_stack_adjust ();
4457 machine_mode cmpmode = cmode;
4458 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4459 GET_CODE (comparison), NULL_RTX, unsignedp,
4460 OPTAB_WIDEN, &comparison, &cmpmode);
4461 if (comparison)
4462 {
4463 class expand_operand ops[4];
4464
4465 create_output_operand (&ops[0], target, mode);
4466 create_fixed_operand (&ops[1], comparison);
4467 create_input_operand (&ops[2], op2, mode);
4468 create_input_operand (&ops[3], op3, mode);
4469 if (maybe_expand_insn (icode, 4, ops))
4470 {
4471 if (ops[0].value != target)
4472 convert_move (target, ops[0].value, false);
4473 return target;
4474 }
4475 }
4476 delete_insns_since (last);
4477 restore_pending_stack_adjust (&save);
4478 }
4479
4480 if (pass == 1)
4481 return NULL_RTX;
4482
4483 /* If the preferred op2/op3 order is not usable, retry with other
4484 operand order, perhaps it will expand successfully. */
4485 if (swapped)
4486 code = orig_code;
4487 else if ((reversed = reversed_comparison_code_parts (orig_code, op0, op1,
4488 NULL))
4489 != UNKNOWN)
4490 code = reversed;
4491 else
4492 return NULL_RTX;
4493 std::swap (op2, op3);
4494 }
4495 }
4496
4497
4498 /* Emit a conditional negate or bitwise complement using the
4499 negcc or notcc optabs if available. Return NULL_RTX if such operations
4500 are not available. Otherwise return the RTX holding the result.
4501 TARGET is the desired destination of the result. COMP is the comparison
4502 on which to negate. If COND is true move into TARGET the negation
4503 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4504 CODE is either NEG or NOT. MODE is the machine mode in which the
4505 operation is performed. */
4506
4507 rtx
4508 emit_conditional_neg_or_complement (rtx target, rtx_code code,
4509 machine_mode mode, rtx cond, rtx op1,
4510 rtx op2)
4511 {
4512 optab op = unknown_optab;
4513 if (code == NEG)
4514 op = negcc_optab;
4515 else if (code == NOT)
4516 op = notcc_optab;
4517 else
4518 gcc_unreachable ();
4519
4520 insn_code icode = direct_optab_handler (op, mode);
4521
4522 if (icode == CODE_FOR_nothing)
4523 return NULL_RTX;
4524
4525 if (!target)
4526 target = gen_reg_rtx (mode);
4527
4528 rtx_insn *last = get_last_insn ();
4529 class expand_operand ops[4];
4530
4531 create_output_operand (&ops[0], target, mode);
4532 create_fixed_operand (&ops[1], cond);
4533 create_input_operand (&ops[2], op1, mode);
4534 create_input_operand (&ops[3], op2, mode);
4535
4536 if (maybe_expand_insn (icode, 4, ops))
4537 {
4538 if (ops[0].value != target)
4539 convert_move (target, ops[0].value, false);
4540
4541 return target;
4542 }
4543 delete_insns_since (last);
4544 return NULL_RTX;
4545 }
4546
4547 /* Emit a conditional addition instruction if the machine supports one for that
4548 condition and machine mode.
4549
4550 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4551 the mode to use should they be constants. If it is VOIDmode, they cannot
4552 both be constants.
4553
4554 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4555 should be stored there. MODE is the mode to use should they be constants.
4556 If it is VOIDmode, they cannot both be constants.
4557
4558 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4559 is not supported. */
4560
4561 rtx
4562 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4563 machine_mode cmode, rtx op2, rtx op3,
4564 machine_mode mode, int unsignedp)
4565 {
4566 rtx comparison;
4567 rtx_insn *last;
4568 enum insn_code icode;
4569
4570 /* If one operand is constant, make it the second one. Only do this
4571 if the other operand is not constant as well. */
4572
4573 if (swap_commutative_operands_p (op0, op1))
4574 {
4575 std::swap (op0, op1);
4576 code = swap_condition (code);
4577 }
4578
4579 /* get_condition will prefer to generate LT and GT even if the old
4580 comparison was against zero, so undo that canonicalization here since
4581 comparisons against zero are cheaper. */
4582 if (code == LT && op1 == const1_rtx)
4583 code = LE, op1 = const0_rtx;
4584 else if (code == GT && op1 == constm1_rtx)
4585 code = GE, op1 = const0_rtx;
4586
4587 if (cmode == VOIDmode)
4588 cmode = GET_MODE (op0);
4589
4590 if (mode == VOIDmode)
4591 mode = GET_MODE (op2);
4592
4593 icode = optab_handler (addcc_optab, mode);
4594
4595 if (icode == CODE_FOR_nothing)
4596 return 0;
4597
4598 if (!target)
4599 target = gen_reg_rtx (mode);
4600
4601 code = unsignedp ? unsigned_condition (code) : code;
4602 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4603
4604 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4605 return NULL and let the caller figure out how best to deal with this
4606 situation. */
4607 if (!COMPARISON_P (comparison))
4608 return NULL_RTX;
4609
4610 do_pending_stack_adjust ();
4611 last = get_last_insn ();
4612 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4613 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4614 &comparison, &cmode);
4615 if (comparison)
4616 {
4617 class expand_operand ops[4];
4618
4619 create_output_operand (&ops[0], target, mode);
4620 create_fixed_operand (&ops[1], comparison);
4621 create_input_operand (&ops[2], op2, mode);
4622 create_input_operand (&ops[3], op3, mode);
4623 if (maybe_expand_insn (icode, 4, ops))
4624 {
4625 if (ops[0].value != target)
4626 convert_move (target, ops[0].value, false);
4627 return target;
4628 }
4629 }
4630 delete_insns_since (last);
4631 return NULL_RTX;
4632 }
4633 \f
4634 /* These functions attempt to generate an insn body, rather than
4635 emitting the insn, but if the gen function already emits them, we
4636 make no attempt to turn them back into naked patterns. */
4637
4638 /* Generate and return an insn body to add Y to X. */
4639
4640 rtx_insn *
4641 gen_add2_insn (rtx x, rtx y)
4642 {
4643 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4644
4645 gcc_assert (insn_operand_matches (icode, 0, x));
4646 gcc_assert (insn_operand_matches (icode, 1, x));
4647 gcc_assert (insn_operand_matches (icode, 2, y));
4648
4649 return GEN_FCN (icode) (x, x, y);
4650 }
4651
4652 /* Generate and return an insn body to add r1 and c,
4653 storing the result in r0. */
4654
4655 rtx_insn *
4656 gen_add3_insn (rtx r0, rtx r1, rtx c)
4657 {
4658 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4659
4660 if (icode == CODE_FOR_nothing
4661 || !insn_operand_matches (icode, 0, r0)
4662 || !insn_operand_matches (icode, 1, r1)
4663 || !insn_operand_matches (icode, 2, c))
4664 return NULL;
4665
4666 return GEN_FCN (icode) (r0, r1, c);
4667 }
4668
4669 int
4670 have_add2_insn (rtx x, rtx y)
4671 {
4672 enum insn_code icode;
4673
4674 gcc_assert (GET_MODE (x) != VOIDmode);
4675
4676 icode = optab_handler (add_optab, GET_MODE (x));
4677
4678 if (icode == CODE_FOR_nothing)
4679 return 0;
4680
4681 if (!insn_operand_matches (icode, 0, x)
4682 || !insn_operand_matches (icode, 1, x)
4683 || !insn_operand_matches (icode, 2, y))
4684 return 0;
4685
4686 return 1;
4687 }
4688
4689 /* Generate and return an insn body to add Y to X. */
4690
4691 rtx_insn *
4692 gen_addptr3_insn (rtx x, rtx y, rtx z)
4693 {
4694 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4695
4696 gcc_assert (insn_operand_matches (icode, 0, x));
4697 gcc_assert (insn_operand_matches (icode, 1, y));
4698 gcc_assert (insn_operand_matches (icode, 2, z));
4699
4700 return GEN_FCN (icode) (x, y, z);
4701 }
4702
4703 /* Return true if the target implements an addptr pattern and X, Y,
4704 and Z are valid for the pattern predicates. */
4705
4706 int
4707 have_addptr3_insn (rtx x, rtx y, rtx z)
4708 {
4709 enum insn_code icode;
4710
4711 gcc_assert (GET_MODE (x) != VOIDmode);
4712
4713 icode = optab_handler (addptr3_optab, GET_MODE (x));
4714
4715 if (icode == CODE_FOR_nothing)
4716 return 0;
4717
4718 if (!insn_operand_matches (icode, 0, x)
4719 || !insn_operand_matches (icode, 1, y)
4720 || !insn_operand_matches (icode, 2, z))
4721 return 0;
4722
4723 return 1;
4724 }
4725
4726 /* Generate and return an insn body to subtract Y from X. */
4727
4728 rtx_insn *
4729 gen_sub2_insn (rtx x, rtx y)
4730 {
4731 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4732
4733 gcc_assert (insn_operand_matches (icode, 0, x));
4734 gcc_assert (insn_operand_matches (icode, 1, x));
4735 gcc_assert (insn_operand_matches (icode, 2, y));
4736
4737 return GEN_FCN (icode) (x, x, y);
4738 }
4739
4740 /* Generate and return an insn body to subtract r1 and c,
4741 storing the result in r0. */
4742
4743 rtx_insn *
4744 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4745 {
4746 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4747
4748 if (icode == CODE_FOR_nothing
4749 || !insn_operand_matches (icode, 0, r0)
4750 || !insn_operand_matches (icode, 1, r1)
4751 || !insn_operand_matches (icode, 2, c))
4752 return NULL;
4753
4754 return GEN_FCN (icode) (r0, r1, c);
4755 }
4756
4757 int
4758 have_sub2_insn (rtx x, rtx y)
4759 {
4760 enum insn_code icode;
4761
4762 gcc_assert (GET_MODE (x) != VOIDmode);
4763
4764 icode = optab_handler (sub_optab, GET_MODE (x));
4765
4766 if (icode == CODE_FOR_nothing)
4767 return 0;
4768
4769 if (!insn_operand_matches (icode, 0, x)
4770 || !insn_operand_matches (icode, 1, x)
4771 || !insn_operand_matches (icode, 2, y))
4772 return 0;
4773
4774 return 1;
4775 }
4776 \f
4777 /* Generate the body of an insn to extend Y (with mode MFROM)
4778 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4779
4780 rtx_insn *
4781 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4782 machine_mode mfrom, int unsignedp)
4783 {
4784 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4785 return GEN_FCN (icode) (x, y);
4786 }
4787 \f
4788 /* Generate code to convert FROM to floating point
4789 and store in TO. FROM must be fixed point and not VOIDmode.
4790 UNSIGNEDP nonzero means regard FROM as unsigned.
4791 Normally this is done by correcting the final value
4792 if it is negative. */
4793
4794 void
4795 expand_float (rtx to, rtx from, int unsignedp)
4796 {
4797 enum insn_code icode;
4798 rtx target = to;
4799 scalar_mode from_mode, to_mode;
4800 machine_mode fmode, imode;
4801 bool can_do_signed = false;
4802
4803 /* Crash now, because we won't be able to decide which mode to use. */
4804 gcc_assert (GET_MODE (from) != VOIDmode);
4805
4806 /* Look for an insn to do the conversion. Do it in the specified
4807 modes if possible; otherwise convert either input, output or both to
4808 wider mode. If the integer mode is wider than the mode of FROM,
4809 we can do the conversion signed even if the input is unsigned. */
4810
4811 FOR_EACH_MODE_FROM (fmode, GET_MODE (to))
4812 FOR_EACH_MODE_FROM (imode, GET_MODE (from))
4813 {
4814 int doing_unsigned = unsignedp;
4815
4816 if (fmode != GET_MODE (to)
4817 && (significand_size (fmode)
4818 < GET_MODE_UNIT_PRECISION (GET_MODE (from))))
4819 continue;
4820
4821 icode = can_float_p (fmode, imode, unsignedp);
4822 if (icode == CODE_FOR_nothing && unsignedp)
4823 {
4824 enum insn_code scode = can_float_p (fmode, imode, 0);
4825 if (scode != CODE_FOR_nothing)
4826 can_do_signed = true;
4827 if (imode != GET_MODE (from))
4828 icode = scode, doing_unsigned = 0;
4829 }
4830
4831 if (icode != CODE_FOR_nothing)
4832 {
4833 if (imode != GET_MODE (from))
4834 from = convert_to_mode (imode, from, unsignedp);
4835
4836 if (fmode != GET_MODE (to))
4837 target = gen_reg_rtx (fmode);
4838
4839 emit_unop_insn (icode, target, from,
4840 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4841
4842 if (target != to)
4843 convert_move (to, target, 0);
4844 return;
4845 }
4846 }
4847
4848 /* Unsigned integer, and no way to convert directly. Convert as signed,
4849 then unconditionally adjust the result. */
4850 if (unsignedp
4851 && can_do_signed
4852 && is_a <scalar_mode> (GET_MODE (to), &to_mode)
4853 && is_a <scalar_mode> (GET_MODE (from), &from_mode))
4854 {
4855 opt_scalar_mode fmode_iter;
4856 rtx_code_label *label = gen_label_rtx ();
4857 rtx temp;
4858 REAL_VALUE_TYPE offset;
4859
4860 /* Look for a usable floating mode FMODE wider than the source and at
4861 least as wide as the target. Using FMODE will avoid rounding woes
4862 with unsigned values greater than the signed maximum value. */
4863
4864 FOR_EACH_MODE_FROM (fmode_iter, to_mode)
4865 {
4866 scalar_mode fmode = fmode_iter.require ();
4867 if (GET_MODE_PRECISION (from_mode) < GET_MODE_BITSIZE (fmode)
4868 && can_float_p (fmode, from_mode, 0) != CODE_FOR_nothing)
4869 break;
4870 }
4871
4872 if (!fmode_iter.exists (&fmode))
4873 {
4874 /* There is no such mode. Pretend the target is wide enough. */
4875 fmode = to_mode;
4876
4877 /* Avoid double-rounding when TO is narrower than FROM. */
4878 if ((significand_size (fmode) + 1)
4879 < GET_MODE_PRECISION (from_mode))
4880 {
4881 rtx temp1;
4882 rtx_code_label *neglabel = gen_label_rtx ();
4883
4884 /* Don't use TARGET if it isn't a register, is a hard register,
4885 or is the wrong mode. */
4886 if (!REG_P (target)
4887 || REGNO (target) < FIRST_PSEUDO_REGISTER
4888 || GET_MODE (target) != fmode)
4889 target = gen_reg_rtx (fmode);
4890
4891 imode = from_mode;
4892 do_pending_stack_adjust ();
4893
4894 /* Test whether the sign bit is set. */
4895 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4896 0, neglabel);
4897
4898 /* The sign bit is not set. Convert as signed. */
4899 expand_float (target, from, 0);
4900 emit_jump_insn (targetm.gen_jump (label));
4901 emit_barrier ();
4902
4903 /* The sign bit is set.
4904 Convert to a usable (positive signed) value by shifting right
4905 one bit, while remembering if a nonzero bit was shifted
4906 out; i.e., compute (from & 1) | (from >> 1). */
4907
4908 emit_label (neglabel);
4909 temp = expand_binop (imode, and_optab, from, const1_rtx,
4910 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4911 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
4912 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4913 OPTAB_LIB_WIDEN);
4914 expand_float (target, temp, 0);
4915
4916 /* Multiply by 2 to undo the shift above. */
4917 temp = expand_binop (fmode, add_optab, target, target,
4918 target, 0, OPTAB_LIB_WIDEN);
4919 if (temp != target)
4920 emit_move_insn (target, temp);
4921
4922 do_pending_stack_adjust ();
4923 emit_label (label);
4924 goto done;
4925 }
4926 }
4927
4928 /* If we are about to do some arithmetic to correct for an
4929 unsigned operand, do it in a pseudo-register. */
4930
4931 if (to_mode != fmode
4932 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4933 target = gen_reg_rtx (fmode);
4934
4935 /* Convert as signed integer to floating. */
4936 expand_float (target, from, 0);
4937
4938 /* If FROM is negative (and therefore TO is negative),
4939 correct its value by 2**bitwidth. */
4940
4941 do_pending_stack_adjust ();
4942 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, from_mode,
4943 0, label);
4944
4945
4946 real_2expN (&offset, GET_MODE_PRECISION (from_mode), fmode);
4947 temp = expand_binop (fmode, add_optab, target,
4948 const_double_from_real_value (offset, fmode),
4949 target, 0, OPTAB_LIB_WIDEN);
4950 if (temp != target)
4951 emit_move_insn (target, temp);
4952
4953 do_pending_stack_adjust ();
4954 emit_label (label);
4955 goto done;
4956 }
4957
4958 /* No hardware instruction available; call a library routine. */
4959 {
4960 rtx libfunc;
4961 rtx_insn *insns;
4962 rtx value;
4963 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4964
4965 if (is_narrower_int_mode (GET_MODE (from), SImode))
4966 from = convert_to_mode (SImode, from, unsignedp);
4967
4968 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4969 gcc_assert (libfunc);
4970
4971 start_sequence ();
4972
4973 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4974 GET_MODE (to), from, GET_MODE (from));
4975 insns = get_insns ();
4976 end_sequence ();
4977
4978 emit_libcall_block (insns, target, value,
4979 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
4980 GET_MODE (to), from));
4981 }
4982
4983 done:
4984
4985 /* Copy result to requested destination
4986 if we have been computing in a temp location. */
4987
4988 if (target != to)
4989 {
4990 if (GET_MODE (target) == GET_MODE (to))
4991 emit_move_insn (to, target);
4992 else
4993 convert_move (to, target, 0);
4994 }
4995 }
4996 \f
4997 /* Generate code to convert FROM to fixed point and store in TO. FROM
4998 must be floating point. */
4999
5000 void
5001 expand_fix (rtx to, rtx from, int unsignedp)
5002 {
5003 enum insn_code icode;
5004 rtx target = to;
5005 machine_mode fmode, imode;
5006 opt_scalar_mode fmode_iter;
5007 bool must_trunc = false;
5008
5009 /* We first try to find a pair of modes, one real and one integer, at
5010 least as wide as FROM and TO, respectively, in which we can open-code
5011 this conversion. If the integer mode is wider than the mode of TO,
5012 we can do the conversion either signed or unsigned. */
5013
5014 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
5015 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
5016 {
5017 int doing_unsigned = unsignedp;
5018
5019 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5020 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5021 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5022
5023 if (icode != CODE_FOR_nothing)
5024 {
5025 rtx_insn *last = get_last_insn ();
5026 if (fmode != GET_MODE (from))
5027 from = convert_to_mode (fmode, from, 0);
5028
5029 if (must_trunc)
5030 {
5031 rtx temp = gen_reg_rtx (GET_MODE (from));
5032 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5033 temp, 0);
5034 }
5035
5036 if (imode != GET_MODE (to))
5037 target = gen_reg_rtx (imode);
5038
5039 if (maybe_emit_unop_insn (icode, target, from,
5040 doing_unsigned ? UNSIGNED_FIX : FIX))
5041 {
5042 if (target != to)
5043 convert_move (to, target, unsignedp);
5044 return;
5045 }
5046 delete_insns_since (last);
5047 }
5048 }
5049
5050 /* For an unsigned conversion, there is one more way to do it.
5051 If we have a signed conversion, we generate code that compares
5052 the real value to the largest representable positive number. If if
5053 is smaller, the conversion is done normally. Otherwise, subtract
5054 one plus the highest signed number, convert, and add it back.
5055
5056 We only need to check all real modes, since we know we didn't find
5057 anything with a wider integer mode.
5058
5059 This code used to extend FP value into mode wider than the destination.
5060 This is needed for decimal float modes which cannot accurately
5061 represent one plus the highest signed number of the same size, but
5062 not for binary modes. Consider, for instance conversion from SFmode
5063 into DImode.
5064
5065 The hot path through the code is dealing with inputs smaller than 2^63
5066 and doing just the conversion, so there is no bits to lose.
5067
5068 In the other path we know the value is positive in the range 2^63..2^64-1
5069 inclusive. (as for other input overflow happens and result is undefined)
5070 So we know that the most important bit set in mantissa corresponds to
5071 2^63. The subtraction of 2^63 should not generate any rounding as it
5072 simply clears out that bit. The rest is trivial. */
5073
5074 scalar_int_mode to_mode;
5075 if (unsignedp
5076 && is_a <scalar_int_mode> (GET_MODE (to), &to_mode)
5077 && HWI_COMPUTABLE_MODE_P (to_mode))
5078 FOR_EACH_MODE_FROM (fmode_iter, as_a <scalar_mode> (GET_MODE (from)))
5079 {
5080 scalar_mode fmode = fmode_iter.require ();
5081 if (CODE_FOR_nothing != can_fix_p (to_mode, fmode,
5082 0, &must_trunc)
5083 && (!DECIMAL_FLOAT_MODE_P (fmode)
5084 || (GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (to_mode))))
5085 {
5086 int bitsize;
5087 REAL_VALUE_TYPE offset;
5088 rtx limit;
5089 rtx_code_label *lab1, *lab2;
5090 rtx_insn *insn;
5091
5092 bitsize = GET_MODE_PRECISION (to_mode);
5093 real_2expN (&offset, bitsize - 1, fmode);
5094 limit = const_double_from_real_value (offset, fmode);
5095 lab1 = gen_label_rtx ();
5096 lab2 = gen_label_rtx ();
5097
5098 if (fmode != GET_MODE (from))
5099 from = convert_to_mode (fmode, from, 0);
5100
5101 /* See if we need to do the subtraction. */
5102 do_pending_stack_adjust ();
5103 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX,
5104 GET_MODE (from), 0, lab1);
5105
5106 /* If not, do the signed "fix" and branch around fixup code. */
5107 expand_fix (to, from, 0);
5108 emit_jump_insn (targetm.gen_jump (lab2));
5109 emit_barrier ();
5110
5111 /* Otherwise, subtract 2**(N-1), convert to signed number,
5112 then add 2**(N-1). Do the addition using XOR since this
5113 will often generate better code. */
5114 emit_label (lab1);
5115 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5116 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5117 expand_fix (to, target, 0);
5118 target = expand_binop (to_mode, xor_optab, to,
5119 gen_int_mode
5120 (HOST_WIDE_INT_1 << (bitsize - 1),
5121 to_mode),
5122 to, 1, OPTAB_LIB_WIDEN);
5123
5124 if (target != to)
5125 emit_move_insn (to, target);
5126
5127 emit_label (lab2);
5128
5129 if (optab_handler (mov_optab, to_mode) != CODE_FOR_nothing)
5130 {
5131 /* Make a place for a REG_NOTE and add it. */
5132 insn = emit_move_insn (to, to);
5133 set_dst_reg_note (insn, REG_EQUAL,
5134 gen_rtx_fmt_e (UNSIGNED_FIX, to_mode,
5135 copy_rtx (from)),
5136 to);
5137 }
5138
5139 return;
5140 }
5141 }
5142
5143 /* We can't do it with an insn, so use a library call. But first ensure
5144 that the mode of TO is at least as wide as SImode, since those are the
5145 only library calls we know about. */
5146
5147 if (is_narrower_int_mode (GET_MODE (to), SImode))
5148 {
5149 target = gen_reg_rtx (SImode);
5150
5151 expand_fix (target, from, unsignedp);
5152 }
5153 else
5154 {
5155 rtx_insn *insns;
5156 rtx value;
5157 rtx libfunc;
5158
5159 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5160 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5161 gcc_assert (libfunc);
5162
5163 start_sequence ();
5164
5165 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5166 GET_MODE (to), from, GET_MODE (from));
5167 insns = get_insns ();
5168 end_sequence ();
5169
5170 emit_libcall_block (insns, target, value,
5171 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5172 GET_MODE (to), from));
5173 }
5174
5175 if (target != to)
5176 {
5177 if (GET_MODE (to) == GET_MODE (target))
5178 emit_move_insn (to, target);
5179 else
5180 convert_move (to, target, 0);
5181 }
5182 }
5183
5184
5185 /* Promote integer arguments for a libcall if necessary.
5186 emit_library_call_value cannot do the promotion because it does not
5187 know if it should do a signed or unsigned promotion. This is because
5188 there are no tree types defined for libcalls. */
5189
5190 static rtx
5191 prepare_libcall_arg (rtx arg, int uintp)
5192 {
5193 scalar_int_mode mode;
5194 machine_mode arg_mode;
5195 if (is_a <scalar_int_mode> (GET_MODE (arg), &mode))
5196 {
5197 /* If we need to promote the integer function argument we need to do
5198 it here instead of inside emit_library_call_value because in
5199 emit_library_call_value we don't know if we should do a signed or
5200 unsigned promotion. */
5201
5202 int unsigned_p = 0;
5203 arg_mode = promote_function_mode (NULL_TREE, mode,
5204 &unsigned_p, NULL_TREE, 0);
5205 if (arg_mode != mode)
5206 return convert_to_mode (arg_mode, arg, uintp);
5207 }
5208 return arg;
5209 }
5210
5211 /* Generate code to convert FROM or TO a fixed-point.
5212 If UINTP is true, either TO or FROM is an unsigned integer.
5213 If SATP is true, we need to saturate the result. */
5214
5215 void
5216 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5217 {
5218 machine_mode to_mode = GET_MODE (to);
5219 machine_mode from_mode = GET_MODE (from);
5220 convert_optab tab;
5221 enum rtx_code this_code;
5222 enum insn_code code;
5223 rtx_insn *insns;
5224 rtx value;
5225 rtx libfunc;
5226
5227 if (to_mode == from_mode)
5228 {
5229 emit_move_insn (to, from);
5230 return;
5231 }
5232
5233 if (uintp)
5234 {
5235 tab = satp ? satfractuns_optab : fractuns_optab;
5236 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5237 }
5238 else
5239 {
5240 tab = satp ? satfract_optab : fract_optab;
5241 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5242 }
5243 code = convert_optab_handler (tab, to_mode, from_mode);
5244 if (code != CODE_FOR_nothing)
5245 {
5246 emit_unop_insn (code, to, from, this_code);
5247 return;
5248 }
5249
5250 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5251 gcc_assert (libfunc);
5252
5253 from = prepare_libcall_arg (from, uintp);
5254 from_mode = GET_MODE (from);
5255
5256 start_sequence ();
5257 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5258 from, from_mode);
5259 insns = get_insns ();
5260 end_sequence ();
5261
5262 emit_libcall_block (insns, to, value,
5263 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5264 }
5265
5266 /* Generate code to convert FROM to fixed point and store in TO. FROM
5267 must be floating point, TO must be signed. Use the conversion optab
5268 TAB to do the conversion. */
5269
5270 bool
5271 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5272 {
5273 enum insn_code icode;
5274 rtx target = to;
5275 machine_mode fmode, imode;
5276
5277 /* We first try to find a pair of modes, one real and one integer, at
5278 least as wide as FROM and TO, respectively, in which we can open-code
5279 this conversion. If the integer mode is wider than the mode of TO,
5280 we can do the conversion either signed or unsigned. */
5281
5282 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
5283 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
5284 {
5285 icode = convert_optab_handler (tab, imode, fmode);
5286 if (icode != CODE_FOR_nothing)
5287 {
5288 rtx_insn *last = get_last_insn ();
5289 if (fmode != GET_MODE (from))
5290 from = convert_to_mode (fmode, from, 0);
5291
5292 if (imode != GET_MODE (to))
5293 target = gen_reg_rtx (imode);
5294
5295 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5296 {
5297 delete_insns_since (last);
5298 continue;
5299 }
5300 if (target != to)
5301 convert_move (to, target, 0);
5302 return true;
5303 }
5304 }
5305
5306 return false;
5307 }
5308 \f
5309 /* Report whether we have an instruction to perform the operation
5310 specified by CODE on operands of mode MODE. */
5311 int
5312 have_insn_for (enum rtx_code code, machine_mode mode)
5313 {
5314 return (code_to_optab (code)
5315 && (optab_handler (code_to_optab (code), mode)
5316 != CODE_FOR_nothing));
5317 }
5318
5319 /* Print information about the current contents of the optabs on
5320 STDERR. */
5321
5322 DEBUG_FUNCTION void
5323 debug_optab_libfuncs (void)
5324 {
5325 int i, j, k;
5326
5327 /* Dump the arithmetic optabs. */
5328 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
5329 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5330 {
5331 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
5332 if (l)
5333 {
5334 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5335 fprintf (stderr, "%s\t%s:\t%s\n",
5336 GET_RTX_NAME (optab_to_code ((optab) i)),
5337 GET_MODE_NAME (j),
5338 XSTR (l, 0));
5339 }
5340 }
5341
5342 /* Dump the conversion optabs. */
5343 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
5344 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5345 for (k = 0; k < NUM_MACHINE_MODES; ++k)
5346 {
5347 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
5348 (machine_mode) k);
5349 if (l)
5350 {
5351 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5352 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
5353 GET_RTX_NAME (optab_to_code ((optab) i)),
5354 GET_MODE_NAME (j),
5355 GET_MODE_NAME (k),
5356 XSTR (l, 0));
5357 }
5358 }
5359 }
5360
5361 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5362 CODE. Return 0 on failure. */
5363
5364 rtx_insn *
5365 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
5366 {
5367 machine_mode mode = GET_MODE (op1);
5368 enum insn_code icode;
5369 rtx_insn *insn;
5370 rtx trap_rtx;
5371
5372 if (mode == VOIDmode)
5373 return 0;
5374
5375 icode = optab_handler (ctrap_optab, mode);
5376 if (icode == CODE_FOR_nothing)
5377 return 0;
5378
5379 /* Some targets only accept a zero trap code. */
5380 if (!insn_operand_matches (icode, 3, tcode))
5381 return 0;
5382
5383 do_pending_stack_adjust ();
5384 start_sequence ();
5385 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
5386 &trap_rtx, &mode);
5387 if (!trap_rtx)
5388 insn = NULL;
5389 else
5390 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
5391 tcode);
5392
5393 /* If that failed, then give up. */
5394 if (insn == 0)
5395 {
5396 end_sequence ();
5397 return 0;
5398 }
5399
5400 emit_insn (insn);
5401 insn = get_insns ();
5402 end_sequence ();
5403 return insn;
5404 }
5405
5406 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5407 or unsigned operation code. */
5408
5409 enum rtx_code
5410 get_rtx_code (enum tree_code tcode, bool unsignedp)
5411 {
5412 enum rtx_code code;
5413 switch (tcode)
5414 {
5415 case EQ_EXPR:
5416 code = EQ;
5417 break;
5418 case NE_EXPR:
5419 code = NE;
5420 break;
5421 case LT_EXPR:
5422 code = unsignedp ? LTU : LT;
5423 break;
5424 case LE_EXPR:
5425 code = unsignedp ? LEU : LE;
5426 break;
5427 case GT_EXPR:
5428 code = unsignedp ? GTU : GT;
5429 break;
5430 case GE_EXPR:
5431 code = unsignedp ? GEU : GE;
5432 break;
5433
5434 case UNORDERED_EXPR:
5435 code = UNORDERED;
5436 break;
5437 case ORDERED_EXPR:
5438 code = ORDERED;
5439 break;
5440 case UNLT_EXPR:
5441 code = UNLT;
5442 break;
5443 case UNLE_EXPR:
5444 code = UNLE;
5445 break;
5446 case UNGT_EXPR:
5447 code = UNGT;
5448 break;
5449 case UNGE_EXPR:
5450 code = UNGE;
5451 break;
5452 case UNEQ_EXPR:
5453 code = UNEQ;
5454 break;
5455 case LTGT_EXPR:
5456 code = LTGT;
5457 break;
5458
5459 case BIT_AND_EXPR:
5460 code = AND;
5461 break;
5462
5463 case BIT_IOR_EXPR:
5464 code = IOR;
5465 break;
5466
5467 default:
5468 gcc_unreachable ();
5469 }
5470 return code;
5471 }
5472
5473 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
5474 select signed or unsigned operators. OPNO holds the index of the
5475 first comparison operand for insn ICODE. Do not generate the
5476 compare instruction itself. */
5477
5478 rtx
5479 vector_compare_rtx (machine_mode cmp_mode, enum tree_code tcode,
5480 tree t_op0, tree t_op1, bool unsignedp,
5481 enum insn_code icode, unsigned int opno)
5482 {
5483 class expand_operand ops[2];
5484 rtx rtx_op0, rtx_op1;
5485 machine_mode m0, m1;
5486 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
5487
5488 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
5489
5490 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5491 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5492 cases, use the original mode. */
5493 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
5494 EXPAND_STACK_PARM);
5495 m0 = GET_MODE (rtx_op0);
5496 if (m0 == VOIDmode)
5497 m0 = TYPE_MODE (TREE_TYPE (t_op0));
5498
5499 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
5500 EXPAND_STACK_PARM);
5501 m1 = GET_MODE (rtx_op1);
5502 if (m1 == VOIDmode)
5503 m1 = TYPE_MODE (TREE_TYPE (t_op1));
5504
5505 create_input_operand (&ops[0], rtx_op0, m0);
5506 create_input_operand (&ops[1], rtx_op1, m1);
5507 if (!maybe_legitimize_operands (icode, opno, 2, ops))
5508 gcc_unreachable ();
5509 return gen_rtx_fmt_ee (rcode, cmp_mode, ops[0].value, ops[1].value);
5510 }
5511
5512 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
5513 the first vec_perm operand, assuming the second operand (for left shift
5514 first operand) is a constant vector of zeros. Return the shift distance
5515 in bits if so, or NULL_RTX if the vec_perm is not a shift. MODE is the
5516 mode of the value being shifted. SHIFT_OPTAB is vec_shr_optab for right
5517 shift or vec_shl_optab for left shift. */
5518 static rtx
5519 shift_amt_for_vec_perm_mask (machine_mode mode, const vec_perm_indices &sel,
5520 optab shift_optab)
5521 {
5522 unsigned int bitsize = GET_MODE_UNIT_BITSIZE (mode);
5523 poly_int64 first = sel[0];
5524 if (maybe_ge (sel[0], GET_MODE_NUNITS (mode)))
5525 return NULL_RTX;
5526
5527 if (shift_optab == vec_shl_optab)
5528 {
5529 unsigned int nelt;
5530 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5531 return NULL_RTX;
5532 unsigned firstidx = 0;
5533 for (unsigned int i = 0; i < nelt; i++)
5534 {
5535 if (known_eq (sel[i], nelt))
5536 {
5537 if (i == 0 || firstidx)
5538 return NULL_RTX;
5539 firstidx = i;
5540 }
5541 else if (firstidx
5542 ? maybe_ne (sel[i], nelt + i - firstidx)
5543 : maybe_ge (sel[i], nelt))
5544 return NULL_RTX;
5545 }
5546
5547 if (firstidx == 0)
5548 return NULL_RTX;
5549 first = firstidx;
5550 }
5551 else if (!sel.series_p (0, 1, first, 1))
5552 {
5553 unsigned int nelt;
5554 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5555 return NULL_RTX;
5556 for (unsigned int i = 1; i < nelt; i++)
5557 {
5558 poly_int64 expected = i + first;
5559 /* Indices into the second vector are all equivalent. */
5560 if (maybe_lt (sel[i], nelt)
5561 ? maybe_ne (sel[i], expected)
5562 : maybe_lt (expected, nelt))
5563 return NULL_RTX;
5564 }
5565 }
5566
5567 return gen_int_shift_amount (mode, first * bitsize);
5568 }
5569
5570 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
5571
5572 static rtx
5573 expand_vec_perm_1 (enum insn_code icode, rtx target,
5574 rtx v0, rtx v1, rtx sel)
5575 {
5576 machine_mode tmode = GET_MODE (target);
5577 machine_mode smode = GET_MODE (sel);
5578 class expand_operand ops[4];
5579
5580 gcc_assert (GET_MODE_CLASS (smode) == MODE_VECTOR_INT
5581 || related_int_vector_mode (tmode).require () == smode);
5582 create_output_operand (&ops[0], target, tmode);
5583 create_input_operand (&ops[3], sel, smode);
5584
5585 /* Make an effort to preserve v0 == v1. The target expander is able to
5586 rely on this to determine if we're permuting a single input operand. */
5587 if (rtx_equal_p (v0, v1))
5588 {
5589 if (!insn_operand_matches (icode, 1, v0))
5590 v0 = force_reg (tmode, v0);
5591 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
5592 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
5593
5594 create_fixed_operand (&ops[1], v0);
5595 create_fixed_operand (&ops[2], v0);
5596 }
5597 else
5598 {
5599 create_input_operand (&ops[1], v0, tmode);
5600 create_input_operand (&ops[2], v1, tmode);
5601 }
5602
5603 if (maybe_expand_insn (icode, 4, ops))
5604 return ops[0].value;
5605 return NULL_RTX;
5606 }
5607
5608 /* Implement a permutation of vectors v0 and v1 using the permutation
5609 vector in SEL and return the result. Use TARGET to hold the result
5610 if nonnull and convenient.
5611
5612 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
5613 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
5614 to have a particular mode. */
5615
5616 rtx
5617 expand_vec_perm_const (machine_mode mode, rtx v0, rtx v1,
5618 const vec_perm_builder &sel, machine_mode sel_mode,
5619 rtx target)
5620 {
5621 if (!target || !register_operand (target, mode))
5622 target = gen_reg_rtx (mode);
5623
5624 /* Set QIMODE to a different vector mode with byte elements.
5625 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5626 machine_mode qimode;
5627 if (!qimode_for_vec_perm (mode).exists (&qimode))
5628 qimode = VOIDmode;
5629
5630 rtx_insn *last = get_last_insn ();
5631
5632 bool single_arg_p = rtx_equal_p (v0, v1);
5633 /* Always specify two input vectors here and leave the target to handle
5634 cases in which the inputs are equal. Not all backends can cope with
5635 the single-input representation when testing for a double-input
5636 target instruction. */
5637 vec_perm_indices indices (sel, 2, GET_MODE_NUNITS (mode));
5638
5639 /* See if this can be handled with a vec_shr or vec_shl. We only do this
5640 if the second (for vec_shr) or first (for vec_shl) vector is all
5641 zeroes. */
5642 insn_code shift_code = CODE_FOR_nothing;
5643 insn_code shift_code_qi = CODE_FOR_nothing;
5644 optab shift_optab = unknown_optab;
5645 rtx v2 = v0;
5646 if (v1 == CONST0_RTX (GET_MODE (v1)))
5647 shift_optab = vec_shr_optab;
5648 else if (v0 == CONST0_RTX (GET_MODE (v0)))
5649 {
5650 shift_optab = vec_shl_optab;
5651 v2 = v1;
5652 }
5653 if (shift_optab != unknown_optab)
5654 {
5655 shift_code = optab_handler (shift_optab, mode);
5656 shift_code_qi = ((qimode != VOIDmode && qimode != mode)
5657 ? optab_handler (shift_optab, qimode)
5658 : CODE_FOR_nothing);
5659 }
5660 if (shift_code != CODE_FOR_nothing || shift_code_qi != CODE_FOR_nothing)
5661 {
5662 rtx shift_amt = shift_amt_for_vec_perm_mask (mode, indices, shift_optab);
5663 if (shift_amt)
5664 {
5665 class expand_operand ops[3];
5666 if (shift_amt == const0_rtx)
5667 return v2;
5668 if (shift_code != CODE_FOR_nothing)
5669 {
5670 create_output_operand (&ops[0], target, mode);
5671 create_input_operand (&ops[1], v2, mode);
5672 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5673 if (maybe_expand_insn (shift_code, 3, ops))
5674 return ops[0].value;
5675 }
5676 if (shift_code_qi != CODE_FOR_nothing)
5677 {
5678 rtx tmp = gen_reg_rtx (qimode);
5679 create_output_operand (&ops[0], tmp, qimode);
5680 create_input_operand (&ops[1], gen_lowpart (qimode, v2), qimode);
5681 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5682 if (maybe_expand_insn (shift_code_qi, 3, ops))
5683 return gen_lowpart (mode, ops[0].value);
5684 }
5685 }
5686 }
5687
5688 if (targetm.vectorize.vec_perm_const != NULL)
5689 {
5690 v0 = force_reg (mode, v0);
5691 if (single_arg_p)
5692 v1 = v0;
5693 else
5694 v1 = force_reg (mode, v1);
5695
5696 if (targetm.vectorize.vec_perm_const (mode, target, v0, v1, indices))
5697 return target;
5698 }
5699
5700 /* Fall back to a constant byte-based permutation. */
5701 vec_perm_indices qimode_indices;
5702 rtx target_qi = NULL_RTX, v0_qi = NULL_RTX, v1_qi = NULL_RTX;
5703 if (qimode != VOIDmode)
5704 {
5705 qimode_indices.new_expanded_vector (indices, GET_MODE_UNIT_SIZE (mode));
5706 target_qi = gen_reg_rtx (qimode);
5707 v0_qi = gen_lowpart (qimode, v0);
5708 v1_qi = gen_lowpart (qimode, v1);
5709 if (targetm.vectorize.vec_perm_const != NULL
5710 && targetm.vectorize.vec_perm_const (qimode, target_qi, v0_qi,
5711 v1_qi, qimode_indices))
5712 return gen_lowpart (mode, target_qi);
5713 }
5714
5715 /* Otherwise expand as a fully variable permuation. */
5716
5717 /* The optabs are only defined for selectors with the same width
5718 as the values being permuted. */
5719 machine_mode required_sel_mode;
5720 if (!related_int_vector_mode (mode).exists (&required_sel_mode))
5721 {
5722 delete_insns_since (last);
5723 return NULL_RTX;
5724 }
5725
5726 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
5727 If that isn't the mode we want then we need to prove that using
5728 REQUIRED_SEL_MODE is OK. */
5729 if (sel_mode != required_sel_mode)
5730 {
5731 if (!selector_fits_mode_p (required_sel_mode, indices))
5732 {
5733 delete_insns_since (last);
5734 return NULL_RTX;
5735 }
5736 sel_mode = required_sel_mode;
5737 }
5738
5739 insn_code icode = direct_optab_handler (vec_perm_optab, mode);
5740 if (icode != CODE_FOR_nothing)
5741 {
5742 rtx sel_rtx = vec_perm_indices_to_rtx (sel_mode, indices);
5743 rtx tmp = expand_vec_perm_1 (icode, target, v0, v1, sel_rtx);
5744 if (tmp)
5745 return tmp;
5746 }
5747
5748 if (qimode != VOIDmode
5749 && selector_fits_mode_p (qimode, qimode_indices))
5750 {
5751 icode = direct_optab_handler (vec_perm_optab, qimode);
5752 if (icode != CODE_FOR_nothing)
5753 {
5754 rtx sel_qi = vec_perm_indices_to_rtx (qimode, qimode_indices);
5755 rtx tmp = expand_vec_perm_1 (icode, target_qi, v0_qi, v1_qi, sel_qi);
5756 if (tmp)
5757 return gen_lowpart (mode, tmp);
5758 }
5759 }
5760
5761 delete_insns_since (last);
5762 return NULL_RTX;
5763 }
5764
5765 /* Implement a permutation of vectors v0 and v1 using the permutation
5766 vector in SEL and return the result. Use TARGET to hold the result
5767 if nonnull and convenient.
5768
5769 MODE is the mode of the vectors being permuted (V0 and V1).
5770 SEL must have the integer equivalent of MODE and is known to be
5771 unsuitable for permutes with a constant permutation vector. */
5772
5773 rtx
5774 expand_vec_perm_var (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
5775 {
5776 enum insn_code icode;
5777 unsigned int i, u;
5778 rtx tmp, sel_qi;
5779
5780 u = GET_MODE_UNIT_SIZE (mode);
5781
5782 if (!target || GET_MODE (target) != mode)
5783 target = gen_reg_rtx (mode);
5784
5785 icode = direct_optab_handler (vec_perm_optab, mode);
5786 if (icode != CODE_FOR_nothing)
5787 {
5788 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5789 if (tmp)
5790 return tmp;
5791 }
5792
5793 /* As a special case to aid several targets, lower the element-based
5794 permutation to a byte-based permutation and try again. */
5795 machine_mode qimode;
5796 if (!qimode_for_vec_perm (mode).exists (&qimode)
5797 || maybe_gt (GET_MODE_NUNITS (qimode), GET_MODE_MASK (QImode) + 1))
5798 return NULL_RTX;
5799 icode = direct_optab_handler (vec_perm_optab, qimode);
5800 if (icode == CODE_FOR_nothing)
5801 return NULL_RTX;
5802
5803 /* Multiply each element by its byte size. */
5804 machine_mode selmode = GET_MODE (sel);
5805 if (u == 2)
5806 sel = expand_simple_binop (selmode, PLUS, sel, sel,
5807 NULL, 0, OPTAB_DIRECT);
5808 else
5809 sel = expand_simple_binop (selmode, ASHIFT, sel,
5810 gen_int_shift_amount (selmode, exact_log2 (u)),
5811 NULL, 0, OPTAB_DIRECT);
5812 gcc_assert (sel != NULL);
5813
5814 /* Broadcast the low byte each element into each of its bytes.
5815 The encoding has U interleaved stepped patterns, one for each
5816 byte of an element. */
5817 vec_perm_builder const_sel (GET_MODE_SIZE (mode), u, 3);
5818 unsigned int low_byte_in_u = BYTES_BIG_ENDIAN ? u - 1 : 0;
5819 for (i = 0; i < 3; ++i)
5820 for (unsigned int j = 0; j < u; ++j)
5821 const_sel.quick_push (i * u + low_byte_in_u);
5822 sel = gen_lowpart (qimode, sel);
5823 sel = expand_vec_perm_const (qimode, sel, sel, const_sel, qimode, NULL);
5824 gcc_assert (sel != NULL);
5825
5826 /* Add the byte offset to each byte element. */
5827 /* Note that the definition of the indicies here is memory ordering,
5828 so there should be no difference between big and little endian. */
5829 rtx_vector_builder byte_indices (qimode, u, 1);
5830 for (i = 0; i < u; ++i)
5831 byte_indices.quick_push (GEN_INT (i));
5832 tmp = byte_indices.build ();
5833 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
5834 sel, 0, OPTAB_DIRECT);
5835 gcc_assert (sel_qi != NULL);
5836
5837 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5838 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5839 gen_lowpart (qimode, v1), sel_qi);
5840 if (tmp)
5841 tmp = gen_lowpart (mode, tmp);
5842 return tmp;
5843 }
5844
5845 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
5846 Use TARGET for the result if nonnull and convenient. */
5847
5848 rtx
5849 expand_vec_series_expr (machine_mode vmode, rtx op0, rtx op1, rtx target)
5850 {
5851 class expand_operand ops[3];
5852 enum insn_code icode;
5853 machine_mode emode = GET_MODE_INNER (vmode);
5854
5855 icode = direct_optab_handler (vec_series_optab, vmode);
5856 gcc_assert (icode != CODE_FOR_nothing);
5857
5858 create_output_operand (&ops[0], target, vmode);
5859 create_input_operand (&ops[1], op0, emode);
5860 create_input_operand (&ops[2], op1, emode);
5861
5862 expand_insn (icode, 3, ops);
5863 return ops[0].value;
5864 }
5865
5866 /* Generate insns for a vector comparison into a mask. */
5867
5868 rtx
5869 expand_vec_cmp_expr (tree type, tree exp, rtx target)
5870 {
5871 class expand_operand ops[4];
5872 enum insn_code icode;
5873 rtx comparison;
5874 machine_mode mask_mode = TYPE_MODE (type);
5875 machine_mode vmode;
5876 bool unsignedp;
5877 tree op0a, op0b;
5878 enum tree_code tcode;
5879
5880 op0a = TREE_OPERAND (exp, 0);
5881 op0b = TREE_OPERAND (exp, 1);
5882 tcode = TREE_CODE (exp);
5883
5884 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5885 vmode = TYPE_MODE (TREE_TYPE (op0a));
5886
5887 icode = get_vec_cmp_icode (vmode, mask_mode, unsignedp);
5888 if (icode == CODE_FOR_nothing)
5889 {
5890 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5891 icode = get_vec_cmp_eq_icode (vmode, mask_mode);
5892 if (icode == CODE_FOR_nothing)
5893 return 0;
5894 }
5895
5896 comparison = vector_compare_rtx (mask_mode, tcode, op0a, op0b,
5897 unsignedp, icode, 2);
5898 create_output_operand (&ops[0], target, mask_mode);
5899 create_fixed_operand (&ops[1], comparison);
5900 create_fixed_operand (&ops[2], XEXP (comparison, 0));
5901 create_fixed_operand (&ops[3], XEXP (comparison, 1));
5902 expand_insn (icode, 4, ops);
5903 return ops[0].value;
5904 }
5905
5906 /* Expand a highpart multiply. */
5907
5908 rtx
5909 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
5910 rtx target, bool uns_p)
5911 {
5912 class expand_operand eops[3];
5913 enum insn_code icode;
5914 int method, i;
5915 machine_mode wmode;
5916 rtx m1, m2;
5917 optab tab1, tab2;
5918
5919 method = can_mult_highpart_p (mode, uns_p);
5920 switch (method)
5921 {
5922 case 0:
5923 return NULL_RTX;
5924 case 1:
5925 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
5926 return expand_binop (mode, tab1, op0, op1, target, uns_p,
5927 OPTAB_LIB_WIDEN);
5928 case 2:
5929 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
5930 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
5931 break;
5932 case 3:
5933 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
5934 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
5935 if (BYTES_BIG_ENDIAN)
5936 std::swap (tab1, tab2);
5937 break;
5938 default:
5939 gcc_unreachable ();
5940 }
5941
5942 icode = optab_handler (tab1, mode);
5943 wmode = insn_data[icode].operand[0].mode;
5944 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode),
5945 GET_MODE_NUNITS (mode)));
5946 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode), GET_MODE_SIZE (mode)));
5947
5948 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5949 create_input_operand (&eops[1], op0, mode);
5950 create_input_operand (&eops[2], op1, mode);
5951 expand_insn (icode, 3, eops);
5952 m1 = gen_lowpart (mode, eops[0].value);
5953
5954 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5955 create_input_operand (&eops[1], op0, mode);
5956 create_input_operand (&eops[2], op1, mode);
5957 expand_insn (optab_handler (tab2, mode), 3, eops);
5958 m2 = gen_lowpart (mode, eops[0].value);
5959
5960 vec_perm_builder sel;
5961 if (method == 2)
5962 {
5963 /* The encoding has 2 interleaved stepped patterns. */
5964 sel.new_vector (GET_MODE_NUNITS (mode), 2, 3);
5965 for (i = 0; i < 6; ++i)
5966 sel.quick_push (!BYTES_BIG_ENDIAN + (i & ~1)
5967 + ((i & 1) ? GET_MODE_NUNITS (mode) : 0));
5968 }
5969 else
5970 {
5971 /* The encoding has a single interleaved stepped pattern. */
5972 sel.new_vector (GET_MODE_NUNITS (mode), 1, 3);
5973 for (i = 0; i < 3; ++i)
5974 sel.quick_push (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
5975 }
5976
5977 return expand_vec_perm_const (mode, m1, m2, sel, BLKmode, target);
5978 }
5979 \f
5980 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5981 pattern. */
5982
5983 static void
5984 find_cc_set (rtx x, const_rtx pat, void *data)
5985 {
5986 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
5987 && GET_CODE (pat) == SET)
5988 {
5989 rtx *p_cc_reg = (rtx *) data;
5990 gcc_assert (!*p_cc_reg);
5991 *p_cc_reg = x;
5992 }
5993 }
5994
5995 /* This is a helper function for the other atomic operations. This function
5996 emits a loop that contains SEQ that iterates until a compare-and-swap
5997 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5998 a set of instructions that takes a value from OLD_REG as an input and
5999 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6000 set to the current contents of MEM. After SEQ, a compare-and-swap will
6001 attempt to update MEM with NEW_REG. The function returns true when the
6002 loop was generated successfully. */
6003
6004 static bool
6005 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6006 {
6007 machine_mode mode = GET_MODE (mem);
6008 rtx_code_label *label;
6009 rtx cmp_reg, success, oldval;
6010
6011 /* The loop we want to generate looks like
6012
6013 cmp_reg = mem;
6014 label:
6015 old_reg = cmp_reg;
6016 seq;
6017 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6018 if (success)
6019 goto label;
6020
6021 Note that we only do the plain load from memory once. Subsequent
6022 iterations use the value loaded by the compare-and-swap pattern. */
6023
6024 label = gen_label_rtx ();
6025 cmp_reg = gen_reg_rtx (mode);
6026
6027 emit_move_insn (cmp_reg, mem);
6028 emit_label (label);
6029 emit_move_insn (old_reg, cmp_reg);
6030 if (seq)
6031 emit_insn (seq);
6032
6033 success = NULL_RTX;
6034 oldval = cmp_reg;
6035 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
6036 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
6037 MEMMODEL_RELAXED))
6038 return false;
6039
6040 if (oldval != cmp_reg)
6041 emit_move_insn (cmp_reg, oldval);
6042
6043 /* Mark this jump predicted not taken. */
6044 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
6045 GET_MODE (success), 1, label,
6046 profile_probability::guessed_never ());
6047 return true;
6048 }
6049
6050
6051 /* This function tries to emit an atomic_exchange intruction. VAL is written
6052 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6053 using TARGET if possible. */
6054
6055 static rtx
6056 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6057 {
6058 machine_mode mode = GET_MODE (mem);
6059 enum insn_code icode;
6060
6061 /* If the target supports the exchange directly, great. */
6062 icode = direct_optab_handler (atomic_exchange_optab, mode);
6063 if (icode != CODE_FOR_nothing)
6064 {
6065 class expand_operand ops[4];
6066
6067 create_output_operand (&ops[0], target, mode);
6068 create_fixed_operand (&ops[1], mem);
6069 create_input_operand (&ops[2], val, mode);
6070 create_integer_operand (&ops[3], model);
6071 if (maybe_expand_insn (icode, 4, ops))
6072 return ops[0].value;
6073 }
6074
6075 return NULL_RTX;
6076 }
6077
6078 /* This function tries to implement an atomic exchange operation using
6079 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6080 The previous contents of *MEM are returned, using TARGET if possible.
6081 Since this instructionn is an acquire barrier only, stronger memory
6082 models may require additional barriers to be emitted. */
6083
6084 static rtx
6085 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
6086 enum memmodel model)
6087 {
6088 machine_mode mode = GET_MODE (mem);
6089 enum insn_code icode;
6090 rtx_insn *last_insn = get_last_insn ();
6091
6092 icode = optab_handler (sync_lock_test_and_set_optab, mode);
6093
6094 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6095 exists, and the memory model is stronger than acquire, add a release
6096 barrier before the instruction. */
6097
6098 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
6099 expand_mem_thread_fence (model);
6100
6101 if (icode != CODE_FOR_nothing)
6102 {
6103 class expand_operand ops[3];
6104 create_output_operand (&ops[0], target, mode);
6105 create_fixed_operand (&ops[1], mem);
6106 create_input_operand (&ops[2], val, mode);
6107 if (maybe_expand_insn (icode, 3, ops))
6108 return ops[0].value;
6109 }
6110
6111 /* If an external test-and-set libcall is provided, use that instead of
6112 any external compare-and-swap that we might get from the compare-and-
6113 swap-loop expansion later. */
6114 if (!can_compare_and_swap_p (mode, false))
6115 {
6116 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
6117 if (libfunc != NULL)
6118 {
6119 rtx addr;
6120
6121 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6122 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6123 mode, addr, ptr_mode,
6124 val, mode);
6125 }
6126 }
6127
6128 /* If the test_and_set can't be emitted, eliminate any barrier that might
6129 have been emitted. */
6130 delete_insns_since (last_insn);
6131 return NULL_RTX;
6132 }
6133
6134 /* This function tries to implement an atomic exchange operation using a
6135 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6136 *MEM are returned, using TARGET if possible. No memory model is required
6137 since a compare_and_swap loop is seq-cst. */
6138
6139 static rtx
6140 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
6141 {
6142 machine_mode mode = GET_MODE (mem);
6143
6144 if (can_compare_and_swap_p (mode, true))
6145 {
6146 if (!target || !register_operand (target, mode))
6147 target = gen_reg_rtx (mode);
6148 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
6149 return target;
6150 }
6151
6152 return NULL_RTX;
6153 }
6154
6155 /* This function tries to implement an atomic test-and-set operation
6156 using the atomic_test_and_set instruction pattern. A boolean value
6157 is returned from the operation, using TARGET if possible. */
6158
6159 static rtx
6160 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6161 {
6162 machine_mode pat_bool_mode;
6163 class expand_operand ops[3];
6164
6165 if (!targetm.have_atomic_test_and_set ())
6166 return NULL_RTX;
6167
6168 /* While we always get QImode from __atomic_test_and_set, we get
6169 other memory modes from __sync_lock_test_and_set. Note that we
6170 use no endian adjustment here. This matches the 4.6 behavior
6171 in the Sparc backend. */
6172 enum insn_code icode = targetm.code_for_atomic_test_and_set;
6173 gcc_checking_assert (insn_data[icode].operand[1].mode == QImode);
6174 if (GET_MODE (mem) != QImode)
6175 mem = adjust_address_nv (mem, QImode, 0);
6176
6177 pat_bool_mode = insn_data[icode].operand[0].mode;
6178 create_output_operand (&ops[0], target, pat_bool_mode);
6179 create_fixed_operand (&ops[1], mem);
6180 create_integer_operand (&ops[2], model);
6181
6182 if (maybe_expand_insn (icode, 3, ops))
6183 return ops[0].value;
6184 return NULL_RTX;
6185 }
6186
6187 /* This function expands the legacy _sync_lock test_and_set operation which is
6188 generally an atomic exchange. Some limited targets only allow the
6189 constant 1 to be stored. This is an ACQUIRE operation.
6190
6191 TARGET is an optional place to stick the return value.
6192 MEM is where VAL is stored. */
6193
6194 rtx
6195 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
6196 {
6197 rtx ret;
6198
6199 /* Try an atomic_exchange first. */
6200 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
6201 if (ret)
6202 return ret;
6203
6204 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
6205 MEMMODEL_SYNC_ACQUIRE);
6206 if (ret)
6207 return ret;
6208
6209 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6210 if (ret)
6211 return ret;
6212
6213 /* If there are no other options, try atomic_test_and_set if the value
6214 being stored is 1. */
6215 if (val == const1_rtx)
6216 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
6217
6218 return ret;
6219 }
6220
6221 /* This function expands the atomic test_and_set operation:
6222 atomically store a boolean TRUE into MEM and return the previous value.
6223
6224 MEMMODEL is the memory model variant to use.
6225 TARGET is an optional place to stick the return value. */
6226
6227 rtx
6228 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6229 {
6230 machine_mode mode = GET_MODE (mem);
6231 rtx ret, trueval, subtarget;
6232
6233 ret = maybe_emit_atomic_test_and_set (target, mem, model);
6234 if (ret)
6235 return ret;
6236
6237 /* Be binary compatible with non-default settings of trueval, and different
6238 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6239 another only has atomic-exchange. */
6240 if (targetm.atomic_test_and_set_trueval == 1)
6241 {
6242 trueval = const1_rtx;
6243 subtarget = target ? target : gen_reg_rtx (mode);
6244 }
6245 else
6246 {
6247 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
6248 subtarget = gen_reg_rtx (mode);
6249 }
6250
6251 /* Try the atomic-exchange optab... */
6252 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
6253
6254 /* ... then an atomic-compare-and-swap loop ... */
6255 if (!ret)
6256 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
6257
6258 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6259 if (!ret)
6260 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
6261
6262 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6263 things with the value 1. Thus we try again without trueval. */
6264 if (!ret && targetm.atomic_test_and_set_trueval != 1)
6265 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
6266
6267 /* Failing all else, assume a single threaded environment and simply
6268 perform the operation. */
6269 if (!ret)
6270 {
6271 /* If the result is ignored skip the move to target. */
6272 if (subtarget != const0_rtx)
6273 emit_move_insn (subtarget, mem);
6274
6275 emit_move_insn (mem, trueval);
6276 ret = subtarget;
6277 }
6278
6279 /* Recall that have to return a boolean value; rectify if trueval
6280 is not exactly one. */
6281 if (targetm.atomic_test_and_set_trueval != 1)
6282 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
6283
6284 return ret;
6285 }
6286
6287 /* This function expands the atomic exchange operation:
6288 atomically store VAL in MEM and return the previous value in MEM.
6289
6290 MEMMODEL is the memory model variant to use.
6291 TARGET is an optional place to stick the return value. */
6292
6293 rtx
6294 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6295 {
6296 machine_mode mode = GET_MODE (mem);
6297 rtx ret;
6298
6299 /* If loads are not atomic for the required size and we are not called to
6300 provide a __sync builtin, do not do anything so that we stay consistent
6301 with atomic loads of the same size. */
6302 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
6303 return NULL_RTX;
6304
6305 ret = maybe_emit_atomic_exchange (target, mem, val, model);
6306
6307 /* Next try a compare-and-swap loop for the exchange. */
6308 if (!ret)
6309 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6310
6311 return ret;
6312 }
6313
6314 /* This function expands the atomic compare exchange operation:
6315
6316 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6317 *PTARGET_OVAL is an optional place to store the old value from memory.
6318 Both target parameters may be NULL or const0_rtx to indicate that we do
6319 not care about that return value. Both target parameters are updated on
6320 success to the actual location of the corresponding result.
6321
6322 MEMMODEL is the memory model variant to use.
6323
6324 The return value of the function is true for success. */
6325
6326 bool
6327 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
6328 rtx mem, rtx expected, rtx desired,
6329 bool is_weak, enum memmodel succ_model,
6330 enum memmodel fail_model)
6331 {
6332 machine_mode mode = GET_MODE (mem);
6333 class expand_operand ops[8];
6334 enum insn_code icode;
6335 rtx target_oval, target_bool = NULL_RTX;
6336 rtx libfunc;
6337
6338 /* If loads are not atomic for the required size and we are not called to
6339 provide a __sync builtin, do not do anything so that we stay consistent
6340 with atomic loads of the same size. */
6341 if (!can_atomic_load_p (mode) && !is_mm_sync (succ_model))
6342 return false;
6343
6344 /* Load expected into a register for the compare and swap. */
6345 if (MEM_P (expected))
6346 expected = copy_to_reg (expected);
6347
6348 /* Make sure we always have some place to put the return oldval.
6349 Further, make sure that place is distinct from the input expected,
6350 just in case we need that path down below. */
6351 if (ptarget_oval && *ptarget_oval == const0_rtx)
6352 ptarget_oval = NULL;
6353
6354 if (ptarget_oval == NULL
6355 || (target_oval = *ptarget_oval) == NULL
6356 || reg_overlap_mentioned_p (expected, target_oval))
6357 target_oval = gen_reg_rtx (mode);
6358
6359 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6360 if (icode != CODE_FOR_nothing)
6361 {
6362 machine_mode bool_mode = insn_data[icode].operand[0].mode;
6363
6364 if (ptarget_bool && *ptarget_bool == const0_rtx)
6365 ptarget_bool = NULL;
6366
6367 /* Make sure we always have a place for the bool operand. */
6368 if (ptarget_bool == NULL
6369 || (target_bool = *ptarget_bool) == NULL
6370 || GET_MODE (target_bool) != bool_mode)
6371 target_bool = gen_reg_rtx (bool_mode);
6372
6373 /* Emit the compare_and_swap. */
6374 create_output_operand (&ops[0], target_bool, bool_mode);
6375 create_output_operand (&ops[1], target_oval, mode);
6376 create_fixed_operand (&ops[2], mem);
6377 create_input_operand (&ops[3], expected, mode);
6378 create_input_operand (&ops[4], desired, mode);
6379 create_integer_operand (&ops[5], is_weak);
6380 create_integer_operand (&ops[6], succ_model);
6381 create_integer_operand (&ops[7], fail_model);
6382 if (maybe_expand_insn (icode, 8, ops))
6383 {
6384 /* Return success/failure. */
6385 target_bool = ops[0].value;
6386 target_oval = ops[1].value;
6387 goto success;
6388 }
6389 }
6390
6391 /* Otherwise fall back to the original __sync_val_compare_and_swap
6392 which is always seq-cst. */
6393 icode = optab_handler (sync_compare_and_swap_optab, mode);
6394 if (icode != CODE_FOR_nothing)
6395 {
6396 rtx cc_reg;
6397
6398 create_output_operand (&ops[0], target_oval, mode);
6399 create_fixed_operand (&ops[1], mem);
6400 create_input_operand (&ops[2], expected, mode);
6401 create_input_operand (&ops[3], desired, mode);
6402 if (!maybe_expand_insn (icode, 4, ops))
6403 return false;
6404
6405 target_oval = ops[0].value;
6406
6407 /* If the caller isn't interested in the boolean return value,
6408 skip the computation of it. */
6409 if (ptarget_bool == NULL)
6410 goto success;
6411
6412 /* Otherwise, work out if the compare-and-swap succeeded. */
6413 cc_reg = NULL_RTX;
6414 if (have_insn_for (COMPARE, CCmode))
6415 note_stores (get_last_insn (), find_cc_set, &cc_reg);
6416 if (cc_reg)
6417 {
6418 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
6419 const0_rtx, VOIDmode, 0, 1);
6420 goto success;
6421 }
6422 goto success_bool_from_val;
6423 }
6424
6425 /* Also check for library support for __sync_val_compare_and_swap. */
6426 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
6427 if (libfunc != NULL)
6428 {
6429 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6430 rtx target = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6431 mode, addr, ptr_mode,
6432 expected, mode, desired, mode);
6433 emit_move_insn (target_oval, target);
6434
6435 /* Compute the boolean return value only if requested. */
6436 if (ptarget_bool)
6437 goto success_bool_from_val;
6438 else
6439 goto success;
6440 }
6441
6442 /* Failure. */
6443 return false;
6444
6445 success_bool_from_val:
6446 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
6447 expected, VOIDmode, 1, 1);
6448 success:
6449 /* Make sure that the oval output winds up where the caller asked. */
6450 if (ptarget_oval)
6451 *ptarget_oval = target_oval;
6452 if (ptarget_bool)
6453 *ptarget_bool = target_bool;
6454 return true;
6455 }
6456
6457 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
6458
6459 static void
6460 expand_asm_memory_blockage (void)
6461 {
6462 rtx asm_op, clob;
6463
6464 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, "", "", 0,
6465 rtvec_alloc (0), rtvec_alloc (0),
6466 rtvec_alloc (0), UNKNOWN_LOCATION);
6467 MEM_VOLATILE_P (asm_op) = 1;
6468
6469 clob = gen_rtx_SCRATCH (VOIDmode);
6470 clob = gen_rtx_MEM (BLKmode, clob);
6471 clob = gen_rtx_CLOBBER (VOIDmode, clob);
6472
6473 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
6474 }
6475
6476 /* Do not propagate memory accesses across this point. */
6477
6478 static void
6479 expand_memory_blockage (void)
6480 {
6481 if (targetm.have_memory_blockage ())
6482 emit_insn (targetm.gen_memory_blockage ());
6483 else
6484 expand_asm_memory_blockage ();
6485 }
6486
6487 /* Generate asm volatile("" : : : "memory") as a memory blockage, at the
6488 same time clobbering the register set specified by REGS. */
6489
6490 void
6491 expand_asm_reg_clobber_mem_blockage (HARD_REG_SET regs)
6492 {
6493 rtx asm_op, clob_mem;
6494
6495 unsigned int num_of_regs = 0;
6496 for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6497 if (TEST_HARD_REG_BIT (regs, i))
6498 num_of_regs++;
6499
6500 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, "", "", 0,
6501 rtvec_alloc (0), rtvec_alloc (0),
6502 rtvec_alloc (0), UNKNOWN_LOCATION);
6503 MEM_VOLATILE_P (asm_op) = 1;
6504
6505 rtvec v = rtvec_alloc (num_of_regs + 2);
6506
6507 clob_mem = gen_rtx_SCRATCH (VOIDmode);
6508 clob_mem = gen_rtx_MEM (BLKmode, clob_mem);
6509 clob_mem = gen_rtx_CLOBBER (VOIDmode, clob_mem);
6510
6511 RTVEC_ELT (v, 0) = asm_op;
6512 RTVEC_ELT (v, 1) = clob_mem;
6513
6514 if (num_of_regs > 0)
6515 {
6516 unsigned int j = 2;
6517 for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6518 if (TEST_HARD_REG_BIT (regs, i))
6519 {
6520 RTVEC_ELT (v, j) = gen_rtx_CLOBBER (VOIDmode, regno_reg_rtx[i]);
6521 j++;
6522 }
6523 gcc_assert (j == (num_of_regs + 2));
6524 }
6525
6526 emit_insn (gen_rtx_PARALLEL (VOIDmode, v));
6527 }
6528
6529 /* This routine will either emit the mem_thread_fence pattern or issue a
6530 sync_synchronize to generate a fence for memory model MEMMODEL. */
6531
6532 void
6533 expand_mem_thread_fence (enum memmodel model)
6534 {
6535 if (is_mm_relaxed (model))
6536 return;
6537 if (targetm.have_mem_thread_fence ())
6538 {
6539 emit_insn (targetm.gen_mem_thread_fence (GEN_INT (model)));
6540 expand_memory_blockage ();
6541 }
6542 else if (targetm.have_memory_barrier ())
6543 emit_insn (targetm.gen_memory_barrier ());
6544 else if (synchronize_libfunc != NULL_RTX)
6545 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode);
6546 else
6547 expand_memory_blockage ();
6548 }
6549
6550 /* Emit a signal fence with given memory model. */
6551
6552 void
6553 expand_mem_signal_fence (enum memmodel model)
6554 {
6555 /* No machine barrier is required to implement a signal fence, but
6556 a compiler memory barrier must be issued, except for relaxed MM. */
6557 if (!is_mm_relaxed (model))
6558 expand_memory_blockage ();
6559 }
6560
6561 /* This function expands the atomic load operation:
6562 return the atomically loaded value in MEM.
6563
6564 MEMMODEL is the memory model variant to use.
6565 TARGET is an option place to stick the return value. */
6566
6567 rtx
6568 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
6569 {
6570 machine_mode mode = GET_MODE (mem);
6571 enum insn_code icode;
6572
6573 /* If the target supports the load directly, great. */
6574 icode = direct_optab_handler (atomic_load_optab, mode);
6575 if (icode != CODE_FOR_nothing)
6576 {
6577 class expand_operand ops[3];
6578 rtx_insn *last = get_last_insn ();
6579 if (is_mm_seq_cst (model))
6580 expand_memory_blockage ();
6581
6582 create_output_operand (&ops[0], target, mode);
6583 create_fixed_operand (&ops[1], mem);
6584 create_integer_operand (&ops[2], model);
6585 if (maybe_expand_insn (icode, 3, ops))
6586 {
6587 if (!is_mm_relaxed (model))
6588 expand_memory_blockage ();
6589 return ops[0].value;
6590 }
6591 delete_insns_since (last);
6592 }
6593
6594 /* If the size of the object is greater than word size on this target,
6595 then we assume that a load will not be atomic. We could try to
6596 emulate a load with a compare-and-swap operation, but the store that
6597 doing this could result in would be incorrect if this is a volatile
6598 atomic load or targetting read-only-mapped memory. */
6599 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6600 /* If there is no atomic load, leave the library call. */
6601 return NULL_RTX;
6602
6603 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6604 if (!target || target == const0_rtx)
6605 target = gen_reg_rtx (mode);
6606
6607 /* For SEQ_CST, emit a barrier before the load. */
6608 if (is_mm_seq_cst (model))
6609 expand_mem_thread_fence (model);
6610
6611 emit_move_insn (target, mem);
6612
6613 /* Emit the appropriate barrier after the load. */
6614 expand_mem_thread_fence (model);
6615
6616 return target;
6617 }
6618
6619 /* This function expands the atomic store operation:
6620 Atomically store VAL in MEM.
6621 MEMMODEL is the memory model variant to use.
6622 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6623 function returns const0_rtx if a pattern was emitted. */
6624
6625 rtx
6626 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
6627 {
6628 machine_mode mode = GET_MODE (mem);
6629 enum insn_code icode;
6630 class expand_operand ops[3];
6631
6632 /* If the target supports the store directly, great. */
6633 icode = direct_optab_handler (atomic_store_optab, mode);
6634 if (icode != CODE_FOR_nothing)
6635 {
6636 rtx_insn *last = get_last_insn ();
6637 if (!is_mm_relaxed (model))
6638 expand_memory_blockage ();
6639 create_fixed_operand (&ops[0], mem);
6640 create_input_operand (&ops[1], val, mode);
6641 create_integer_operand (&ops[2], model);
6642 if (maybe_expand_insn (icode, 3, ops))
6643 {
6644 if (is_mm_seq_cst (model))
6645 expand_memory_blockage ();
6646 return const0_rtx;
6647 }
6648 delete_insns_since (last);
6649 }
6650
6651 /* If using __sync_lock_release is a viable alternative, try it.
6652 Note that this will not be set to true if we are expanding a generic
6653 __atomic_store_n. */
6654 if (use_release)
6655 {
6656 icode = direct_optab_handler (sync_lock_release_optab, mode);
6657 if (icode != CODE_FOR_nothing)
6658 {
6659 create_fixed_operand (&ops[0], mem);
6660 create_input_operand (&ops[1], const0_rtx, mode);
6661 if (maybe_expand_insn (icode, 2, ops))
6662 {
6663 /* lock_release is only a release barrier. */
6664 if (is_mm_seq_cst (model))
6665 expand_mem_thread_fence (model);
6666 return const0_rtx;
6667 }
6668 }
6669 }
6670
6671 /* If the size of the object is greater than word size on this target,
6672 a default store will not be atomic. */
6673 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6674 {
6675 /* If loads are atomic or we are called to provide a __sync builtin,
6676 we can try a atomic_exchange and throw away the result. Otherwise,
6677 don't do anything so that we do not create an inconsistency between
6678 loads and stores. */
6679 if (can_atomic_load_p (mode) || is_mm_sync (model))
6680 {
6681 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
6682 if (!target)
6683 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem,
6684 val);
6685 if (target)
6686 return const0_rtx;
6687 }
6688 return NULL_RTX;
6689 }
6690
6691 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6692 expand_mem_thread_fence (model);
6693
6694 emit_move_insn (mem, val);
6695
6696 /* For SEQ_CST, also emit a barrier after the store. */
6697 if (is_mm_seq_cst (model))
6698 expand_mem_thread_fence (model);
6699
6700 return const0_rtx;
6701 }
6702
6703
6704 /* Structure containing the pointers and values required to process the
6705 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6706
6707 struct atomic_op_functions
6708 {
6709 direct_optab mem_fetch_before;
6710 direct_optab mem_fetch_after;
6711 direct_optab mem_no_result;
6712 optab fetch_before;
6713 optab fetch_after;
6714 direct_optab no_result;
6715 enum rtx_code reverse_code;
6716 };
6717
6718
6719 /* Fill in structure pointed to by OP with the various optab entries for an
6720 operation of type CODE. */
6721
6722 static void
6723 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
6724 {
6725 gcc_assert (op!= NULL);
6726
6727 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6728 in the source code during compilation, and the optab entries are not
6729 computable until runtime. Fill in the values at runtime. */
6730 switch (code)
6731 {
6732 case PLUS:
6733 op->mem_fetch_before = atomic_fetch_add_optab;
6734 op->mem_fetch_after = atomic_add_fetch_optab;
6735 op->mem_no_result = atomic_add_optab;
6736 op->fetch_before = sync_old_add_optab;
6737 op->fetch_after = sync_new_add_optab;
6738 op->no_result = sync_add_optab;
6739 op->reverse_code = MINUS;
6740 break;
6741 case MINUS:
6742 op->mem_fetch_before = atomic_fetch_sub_optab;
6743 op->mem_fetch_after = atomic_sub_fetch_optab;
6744 op->mem_no_result = atomic_sub_optab;
6745 op->fetch_before = sync_old_sub_optab;
6746 op->fetch_after = sync_new_sub_optab;
6747 op->no_result = sync_sub_optab;
6748 op->reverse_code = PLUS;
6749 break;
6750 case XOR:
6751 op->mem_fetch_before = atomic_fetch_xor_optab;
6752 op->mem_fetch_after = atomic_xor_fetch_optab;
6753 op->mem_no_result = atomic_xor_optab;
6754 op->fetch_before = sync_old_xor_optab;
6755 op->fetch_after = sync_new_xor_optab;
6756 op->no_result = sync_xor_optab;
6757 op->reverse_code = XOR;
6758 break;
6759 case AND:
6760 op->mem_fetch_before = atomic_fetch_and_optab;
6761 op->mem_fetch_after = atomic_and_fetch_optab;
6762 op->mem_no_result = atomic_and_optab;
6763 op->fetch_before = sync_old_and_optab;
6764 op->fetch_after = sync_new_and_optab;
6765 op->no_result = sync_and_optab;
6766 op->reverse_code = UNKNOWN;
6767 break;
6768 case IOR:
6769 op->mem_fetch_before = atomic_fetch_or_optab;
6770 op->mem_fetch_after = atomic_or_fetch_optab;
6771 op->mem_no_result = atomic_or_optab;
6772 op->fetch_before = sync_old_ior_optab;
6773 op->fetch_after = sync_new_ior_optab;
6774 op->no_result = sync_ior_optab;
6775 op->reverse_code = UNKNOWN;
6776 break;
6777 case NOT:
6778 op->mem_fetch_before = atomic_fetch_nand_optab;
6779 op->mem_fetch_after = atomic_nand_fetch_optab;
6780 op->mem_no_result = atomic_nand_optab;
6781 op->fetch_before = sync_old_nand_optab;
6782 op->fetch_after = sync_new_nand_optab;
6783 op->no_result = sync_nand_optab;
6784 op->reverse_code = UNKNOWN;
6785 break;
6786 default:
6787 gcc_unreachable ();
6788 }
6789 }
6790
6791 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6792 using memory order MODEL. If AFTER is true the operation needs to return
6793 the value of *MEM after the operation, otherwise the previous value.
6794 TARGET is an optional place to place the result. The result is unused if
6795 it is const0_rtx.
6796 Return the result if there is a better sequence, otherwise NULL_RTX. */
6797
6798 static rtx
6799 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6800 enum memmodel model, bool after)
6801 {
6802 /* If the value is prefetched, or not used, it may be possible to replace
6803 the sequence with a native exchange operation. */
6804 if (!after || target == const0_rtx)
6805 {
6806 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6807 if (code == AND && val == const0_rtx)
6808 {
6809 if (target == const0_rtx)
6810 target = gen_reg_rtx (GET_MODE (mem));
6811 return maybe_emit_atomic_exchange (target, mem, val, model);
6812 }
6813
6814 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6815 if (code == IOR && val == constm1_rtx)
6816 {
6817 if (target == const0_rtx)
6818 target = gen_reg_rtx (GET_MODE (mem));
6819 return maybe_emit_atomic_exchange (target, mem, val, model);
6820 }
6821 }
6822
6823 return NULL_RTX;
6824 }
6825
6826 /* Try to emit an instruction for a specific operation varaition.
6827 OPTAB contains the OP functions.
6828 TARGET is an optional place to return the result. const0_rtx means unused.
6829 MEM is the memory location to operate on.
6830 VAL is the value to use in the operation.
6831 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6832 MODEL is the memory model, if used.
6833 AFTER is true if the returned result is the value after the operation. */
6834
6835 static rtx
6836 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
6837 rtx val, bool use_memmodel, enum memmodel model, bool after)
6838 {
6839 machine_mode mode = GET_MODE (mem);
6840 class expand_operand ops[4];
6841 enum insn_code icode;
6842 int op_counter = 0;
6843 int num_ops;
6844
6845 /* Check to see if there is a result returned. */
6846 if (target == const0_rtx)
6847 {
6848 if (use_memmodel)
6849 {
6850 icode = direct_optab_handler (optab->mem_no_result, mode);
6851 create_integer_operand (&ops[2], model);
6852 num_ops = 3;
6853 }
6854 else
6855 {
6856 icode = direct_optab_handler (optab->no_result, mode);
6857 num_ops = 2;
6858 }
6859 }
6860 /* Otherwise, we need to generate a result. */
6861 else
6862 {
6863 if (use_memmodel)
6864 {
6865 icode = direct_optab_handler (after ? optab->mem_fetch_after
6866 : optab->mem_fetch_before, mode);
6867 create_integer_operand (&ops[3], model);
6868 num_ops = 4;
6869 }
6870 else
6871 {
6872 icode = optab_handler (after ? optab->fetch_after
6873 : optab->fetch_before, mode);
6874 num_ops = 3;
6875 }
6876 create_output_operand (&ops[op_counter++], target, mode);
6877 }
6878 if (icode == CODE_FOR_nothing)
6879 return NULL_RTX;
6880
6881 create_fixed_operand (&ops[op_counter++], mem);
6882 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6883 create_convert_operand_to (&ops[op_counter++], val, mode, true);
6884
6885 if (maybe_expand_insn (icode, num_ops, ops))
6886 return (target == const0_rtx ? const0_rtx : ops[0].value);
6887
6888 return NULL_RTX;
6889 }
6890
6891
6892 /* This function expands an atomic fetch_OP or OP_fetch operation:
6893 TARGET is an option place to stick the return value. const0_rtx indicates
6894 the result is unused.
6895 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6896 CODE is the operation being performed (OP)
6897 MEMMODEL is the memory model variant to use.
6898 AFTER is true to return the result of the operation (OP_fetch).
6899 AFTER is false to return the value before the operation (fetch_OP).
6900
6901 This function will *only* generate instructions if there is a direct
6902 optab. No compare and swap loops or libcalls will be generated. */
6903
6904 static rtx
6905 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
6906 enum rtx_code code, enum memmodel model,
6907 bool after)
6908 {
6909 machine_mode mode = GET_MODE (mem);
6910 struct atomic_op_functions optab;
6911 rtx result;
6912 bool unused_result = (target == const0_rtx);
6913
6914 get_atomic_op_for_code (&optab, code);
6915
6916 /* Check to see if there are any better instructions. */
6917 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
6918 if (result)
6919 return result;
6920
6921 /* Check for the case where the result isn't used and try those patterns. */
6922 if (unused_result)
6923 {
6924 /* Try the memory model variant first. */
6925 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
6926 if (result)
6927 return result;
6928
6929 /* Next try the old style withuot a memory model. */
6930 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
6931 if (result)
6932 return result;
6933
6934 /* There is no no-result pattern, so try patterns with a result. */
6935 target = NULL_RTX;
6936 }
6937
6938 /* Try the __atomic version. */
6939 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
6940 if (result)
6941 return result;
6942
6943 /* Try the older __sync version. */
6944 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
6945 if (result)
6946 return result;
6947
6948 /* If the fetch value can be calculated from the other variation of fetch,
6949 try that operation. */
6950 if (after || unused_result || optab.reverse_code != UNKNOWN)
6951 {
6952 /* Try the __atomic version, then the older __sync version. */
6953 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
6954 if (!result)
6955 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
6956
6957 if (result)
6958 {
6959 /* If the result isn't used, no need to do compensation code. */
6960 if (unused_result)
6961 return result;
6962
6963 /* Issue compensation code. Fetch_after == fetch_before OP val.
6964 Fetch_before == after REVERSE_OP val. */
6965 if (!after)
6966 code = optab.reverse_code;
6967 if (code == NOT)
6968 {
6969 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
6970 true, OPTAB_LIB_WIDEN);
6971 result = expand_simple_unop (mode, NOT, result, target, true);
6972 }
6973 else
6974 result = expand_simple_binop (mode, code, result, val, target,
6975 true, OPTAB_LIB_WIDEN);
6976 return result;
6977 }
6978 }
6979
6980 /* No direct opcode can be generated. */
6981 return NULL_RTX;
6982 }
6983
6984
6985
6986 /* This function expands an atomic fetch_OP or OP_fetch operation:
6987 TARGET is an option place to stick the return value. const0_rtx indicates
6988 the result is unused.
6989 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6990 CODE is the operation being performed (OP)
6991 MEMMODEL is the memory model variant to use.
6992 AFTER is true to return the result of the operation (OP_fetch).
6993 AFTER is false to return the value before the operation (fetch_OP). */
6994 rtx
6995 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6996 enum memmodel model, bool after)
6997 {
6998 machine_mode mode = GET_MODE (mem);
6999 rtx result;
7000 bool unused_result = (target == const0_rtx);
7001
7002 /* If loads are not atomic for the required size and we are not called to
7003 provide a __sync builtin, do not do anything so that we stay consistent
7004 with atomic loads of the same size. */
7005 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
7006 return NULL_RTX;
7007
7008 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7009 after);
7010
7011 if (result)
7012 return result;
7013
7014 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7015 if (code == PLUS || code == MINUS)
7016 {
7017 rtx tmp;
7018 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7019
7020 start_sequence ();
7021 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7022 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7023 model, after);
7024 if (result)
7025 {
7026 /* PLUS worked so emit the insns and return. */
7027 tmp = get_insns ();
7028 end_sequence ();
7029 emit_insn (tmp);
7030 return result;
7031 }
7032
7033 /* PLUS did not work, so throw away the negation code and continue. */
7034 end_sequence ();
7035 }
7036
7037 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7038 if (!can_compare_and_swap_p (mode, false))
7039 {
7040 rtx libfunc;
7041 bool fixup = false;
7042 enum rtx_code orig_code = code;
7043 struct atomic_op_functions optab;
7044
7045 get_atomic_op_for_code (&optab, code);
7046 libfunc = optab_libfunc (after ? optab.fetch_after
7047 : optab.fetch_before, mode);
7048 if (libfunc == NULL
7049 && (after || unused_result || optab.reverse_code != UNKNOWN))
7050 {
7051 fixup = true;
7052 if (!after)
7053 code = optab.reverse_code;
7054 libfunc = optab_libfunc (after ? optab.fetch_before
7055 : optab.fetch_after, mode);
7056 }
7057 if (libfunc != NULL)
7058 {
7059 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7060 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7061 addr, ptr_mode, val, mode);
7062
7063 if (!unused_result && fixup)
7064 result = expand_simple_binop (mode, code, result, val, target,
7065 true, OPTAB_LIB_WIDEN);
7066 return result;
7067 }
7068
7069 /* We need the original code for any further attempts. */
7070 code = orig_code;
7071 }
7072
7073 /* If nothing else has succeeded, default to a compare and swap loop. */
7074 if (can_compare_and_swap_p (mode, true))
7075 {
7076 rtx_insn *insn;
7077 rtx t0 = gen_reg_rtx (mode), t1;
7078
7079 start_sequence ();
7080
7081 /* If the result is used, get a register for it. */
7082 if (!unused_result)
7083 {
7084 if (!target || !register_operand (target, mode))
7085 target = gen_reg_rtx (mode);
7086 /* If fetch_before, copy the value now. */
7087 if (!after)
7088 emit_move_insn (target, t0);
7089 }
7090 else
7091 target = const0_rtx;
7092
7093 t1 = t0;
7094 if (code == NOT)
7095 {
7096 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7097 true, OPTAB_LIB_WIDEN);
7098 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7099 }
7100 else
7101 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7102 OPTAB_LIB_WIDEN);
7103
7104 /* For after, copy the value now. */
7105 if (!unused_result && after)
7106 emit_move_insn (target, t1);
7107 insn = get_insns ();
7108 end_sequence ();
7109
7110 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7111 return target;
7112 }
7113
7114 return NULL_RTX;
7115 }
7116 \f
7117 /* Return true if OPERAND is suitable for operand number OPNO of
7118 instruction ICODE. */
7119
7120 bool
7121 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
7122 {
7123 return (!insn_data[(int) icode].operand[opno].predicate
7124 || (insn_data[(int) icode].operand[opno].predicate
7125 (operand, insn_data[(int) icode].operand[opno].mode)));
7126 }
7127 \f
7128 /* TARGET is a target of a multiword operation that we are going to
7129 implement as a series of word-mode operations. Return true if
7130 TARGET is suitable for this purpose. */
7131
7132 bool
7133 valid_multiword_target_p (rtx target)
7134 {
7135 machine_mode mode;
7136 int i, size;
7137
7138 mode = GET_MODE (target);
7139 if (!GET_MODE_SIZE (mode).is_constant (&size))
7140 return false;
7141 for (i = 0; i < size; i += UNITS_PER_WORD)
7142 if (!validate_subreg (word_mode, mode, target, i))
7143 return false;
7144 return true;
7145 }
7146
7147 /* Make OP describe an input operand that has value INTVAL and that has
7148 no inherent mode. This function should only be used for operands that
7149 are always expand-time constants. The backend may request that INTVAL
7150 be copied into a different kind of rtx, but it must specify the mode
7151 of that rtx if so. */
7152
7153 void
7154 create_integer_operand (class expand_operand *op, poly_int64 intval)
7155 {
7156 create_expand_operand (op, EXPAND_INTEGER,
7157 gen_int_mode (intval, MAX_MODE_INT),
7158 VOIDmode, false, intval);
7159 }
7160
7161 /* Like maybe_legitimize_operand, but do not change the code of the
7162 current rtx value. */
7163
7164 static bool
7165 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
7166 class expand_operand *op)
7167 {
7168 /* See if the operand matches in its current form. */
7169 if (insn_operand_matches (icode, opno, op->value))
7170 return true;
7171
7172 /* If the operand is a memory whose address has no side effects,
7173 try forcing the address into a non-virtual pseudo register.
7174 The check for side effects is important because copy_to_mode_reg
7175 cannot handle things like auto-modified addresses. */
7176 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
7177 {
7178 rtx addr, mem;
7179
7180 mem = op->value;
7181 addr = XEXP (mem, 0);
7182 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
7183 && !side_effects_p (addr))
7184 {
7185 rtx_insn *last;
7186 machine_mode mode;
7187
7188 last = get_last_insn ();
7189 mode = get_address_mode (mem);
7190 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
7191 if (insn_operand_matches (icode, opno, mem))
7192 {
7193 op->value = mem;
7194 return true;
7195 }
7196 delete_insns_since (last);
7197 }
7198 }
7199
7200 return false;
7201 }
7202
7203 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7204 on success, storing the new operand value back in OP. */
7205
7206 static bool
7207 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
7208 class expand_operand *op)
7209 {
7210 machine_mode mode, imode, tmode;
7211
7212 mode = op->mode;
7213 switch (op->type)
7214 {
7215 case EXPAND_FIXED:
7216 {
7217 temporary_volatile_ok v (true);
7218 return maybe_legitimize_operand_same_code (icode, opno, op);
7219 }
7220
7221 case EXPAND_OUTPUT:
7222 gcc_assert (mode != VOIDmode);
7223 if (op->value
7224 && op->value != const0_rtx
7225 && GET_MODE (op->value) == mode
7226 && maybe_legitimize_operand_same_code (icode, opno, op))
7227 return true;
7228
7229 op->value = gen_reg_rtx (mode);
7230 op->target = 0;
7231 break;
7232
7233 case EXPAND_INPUT:
7234 input:
7235 gcc_assert (mode != VOIDmode);
7236 gcc_assert (GET_MODE (op->value) == VOIDmode
7237 || GET_MODE (op->value) == mode);
7238 if (maybe_legitimize_operand_same_code (icode, opno, op))
7239 return true;
7240
7241 op->value = copy_to_mode_reg (mode, op->value);
7242 break;
7243
7244 case EXPAND_CONVERT_TO:
7245 gcc_assert (mode != VOIDmode);
7246 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
7247 goto input;
7248
7249 case EXPAND_CONVERT_FROM:
7250 if (GET_MODE (op->value) != VOIDmode)
7251 mode = GET_MODE (op->value);
7252 else
7253 /* The caller must tell us what mode this value has. */
7254 gcc_assert (mode != VOIDmode);
7255
7256 imode = insn_data[(int) icode].operand[opno].mode;
7257 tmode = (VECTOR_MODE_P (imode) && !VECTOR_MODE_P (mode)
7258 ? GET_MODE_INNER (imode) : imode);
7259 if (tmode != VOIDmode && tmode != mode)
7260 {
7261 op->value = convert_modes (tmode, mode, op->value, op->unsigned_p);
7262 mode = tmode;
7263 }
7264 if (imode != VOIDmode && imode != mode)
7265 {
7266 gcc_assert (VECTOR_MODE_P (imode) && !VECTOR_MODE_P (mode));
7267 op->value = expand_vector_broadcast (imode, op->value);
7268 mode = imode;
7269 }
7270 goto input;
7271
7272 case EXPAND_ADDRESS:
7273 op->value = convert_memory_address (as_a <scalar_int_mode> (mode),
7274 op->value);
7275 goto input;
7276
7277 case EXPAND_INTEGER:
7278 mode = insn_data[(int) icode].operand[opno].mode;
7279 if (mode != VOIDmode
7280 && known_eq (trunc_int_for_mode (op->int_value, mode),
7281 op->int_value))
7282 {
7283 op->value = gen_int_mode (op->int_value, mode);
7284 goto input;
7285 }
7286 break;
7287 }
7288 return insn_operand_matches (icode, opno, op->value);
7289 }
7290
7291 /* Make OP describe an input operand that should have the same value
7292 as VALUE, after any mode conversion that the target might request.
7293 TYPE is the type of VALUE. */
7294
7295 void
7296 create_convert_operand_from_type (class expand_operand *op,
7297 rtx value, tree type)
7298 {
7299 create_convert_operand_from (op, value, TYPE_MODE (type),
7300 TYPE_UNSIGNED (type));
7301 }
7302
7303 /* Return true if the requirements on operands OP1 and OP2 of instruction
7304 ICODE are similar enough for the result of legitimizing OP1 to be
7305 reusable for OP2. OPNO1 and OPNO2 are the operand numbers associated
7306 with OP1 and OP2 respectively. */
7307
7308 static inline bool
7309 can_reuse_operands_p (enum insn_code icode,
7310 unsigned int opno1, unsigned int opno2,
7311 const class expand_operand *op1,
7312 const class expand_operand *op2)
7313 {
7314 /* Check requirements that are common to all types. */
7315 if (op1->type != op2->type
7316 || op1->mode != op2->mode
7317 || (insn_data[(int) icode].operand[opno1].mode
7318 != insn_data[(int) icode].operand[opno2].mode))
7319 return false;
7320
7321 /* Check the requirements for specific types. */
7322 switch (op1->type)
7323 {
7324 case EXPAND_OUTPUT:
7325 /* Outputs must remain distinct. */
7326 return false;
7327
7328 case EXPAND_FIXED:
7329 case EXPAND_INPUT:
7330 case EXPAND_ADDRESS:
7331 case EXPAND_INTEGER:
7332 return true;
7333
7334 case EXPAND_CONVERT_TO:
7335 case EXPAND_CONVERT_FROM:
7336 return op1->unsigned_p == op2->unsigned_p;
7337 }
7338 gcc_unreachable ();
7339 }
7340
7341 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7342 of instruction ICODE. Return true on success, leaving the new operand
7343 values in the OPS themselves. Emit no code on failure. */
7344
7345 bool
7346 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
7347 unsigned int nops, class expand_operand *ops)
7348 {
7349 rtx_insn *last = get_last_insn ();
7350 rtx *orig_values = XALLOCAVEC (rtx, nops);
7351 for (unsigned int i = 0; i < nops; i++)
7352 {
7353 orig_values[i] = ops[i].value;
7354
7355 /* First try reusing the result of an earlier legitimization.
7356 This avoids duplicate rtl and ensures that tied operands
7357 remain tied.
7358
7359 This search is linear, but NOPS is bounded at compile time
7360 to a small number (current a single digit). */
7361 unsigned int j = 0;
7362 for (; j < i; ++j)
7363 if (can_reuse_operands_p (icode, opno + j, opno + i, &ops[j], &ops[i])
7364 && rtx_equal_p (orig_values[j], orig_values[i])
7365 && ops[j].value
7366 && insn_operand_matches (icode, opno + i, ops[j].value))
7367 {
7368 ops[i].value = copy_rtx (ops[j].value);
7369 break;
7370 }
7371
7372 /* Otherwise try legitimizing the operand on its own. */
7373 if (j == i && !maybe_legitimize_operand (icode, opno + i, &ops[i]))
7374 {
7375 delete_insns_since (last);
7376 return false;
7377 }
7378 }
7379 return true;
7380 }
7381
7382 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7383 as its operands. Return the instruction pattern on success,
7384 and emit any necessary set-up code. Return null and emit no
7385 code on failure. */
7386
7387 rtx_insn *
7388 maybe_gen_insn (enum insn_code icode, unsigned int nops,
7389 class expand_operand *ops)
7390 {
7391 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
7392 if (!maybe_legitimize_operands (icode, 0, nops, ops))
7393 return NULL;
7394
7395 switch (nops)
7396 {
7397 case 1:
7398 return GEN_FCN (icode) (ops[0].value);
7399 case 2:
7400 return GEN_FCN (icode) (ops[0].value, ops[1].value);
7401 case 3:
7402 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
7403 case 4:
7404 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7405 ops[3].value);
7406 case 5:
7407 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7408 ops[3].value, ops[4].value);
7409 case 6:
7410 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7411 ops[3].value, ops[4].value, ops[5].value);
7412 case 7:
7413 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7414 ops[3].value, ops[4].value, ops[5].value,
7415 ops[6].value);
7416 case 8:
7417 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7418 ops[3].value, ops[4].value, ops[5].value,
7419 ops[6].value, ops[7].value);
7420 case 9:
7421 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7422 ops[3].value, ops[4].value, ops[5].value,
7423 ops[6].value, ops[7].value, ops[8].value);
7424 }
7425 gcc_unreachable ();
7426 }
7427
7428 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7429 as its operands. Return true on success and emit no code on failure. */
7430
7431 bool
7432 maybe_expand_insn (enum insn_code icode, unsigned int nops,
7433 class expand_operand *ops)
7434 {
7435 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7436 if (pat)
7437 {
7438 emit_insn (pat);
7439 return true;
7440 }
7441 return false;
7442 }
7443
7444 /* Like maybe_expand_insn, but for jumps. */
7445
7446 bool
7447 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
7448 class expand_operand *ops)
7449 {
7450 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7451 if (pat)
7452 {
7453 emit_jump_insn (pat);
7454 return true;
7455 }
7456 return false;
7457 }
7458
7459 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7460 as its operands. */
7461
7462 void
7463 expand_insn (enum insn_code icode, unsigned int nops,
7464 class expand_operand *ops)
7465 {
7466 if (!maybe_expand_insn (icode, nops, ops))
7467 gcc_unreachable ();
7468 }
7469
7470 /* Like expand_insn, but for jumps. */
7471
7472 void
7473 expand_jump_insn (enum insn_code icode, unsigned int nops,
7474 class expand_operand *ops)
7475 {
7476 if (!maybe_expand_jump_insn (icode, nops, ops))
7477 gcc_unreachable ();
7478 }