(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
51
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
54
55 See expr.h for documentation of these optabs. */
56
57 #if GCC_VERSION >= 4000
58 __extension__ struct optab_d optab_table[OTI_MAX]
59 = { [0 ... OTI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1].insn_code
60 = CODE_FOR_nothing };
61 #else
62 /* init_insn_codes will do runtime initialization otherwise. */
63 struct optab_d optab_table[OTI_MAX];
64 #endif
65
66 rtx libfunc_table[LTI_MAX];
67
68 /* Tables of patterns for converting one mode to another. */
69 #if GCC_VERSION >= 4000
70 __extension__ struct convert_optab_d convert_optab_table[COI_MAX]
71 = { [0 ... COI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1]
72 [0 ... NUM_MACHINE_MODES - 1].insn_code
73 = CODE_FOR_nothing };
74 #else
75 /* init_convert_optab will do runtime initialization otherwise. */
76 struct convert_optab_d convert_optab_table[COI_MAX];
77 #endif
78
79 /* Contains the optab used for each rtx code. */
80 optab code_to_optab[NUM_RTX_CODE + 1];
81
82 #ifdef HAVE_conditional_move
83 /* Indexed by the machine mode, gives the insn code to make a conditional
84 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
85 setcc_gen_code to cut down on the number of named patterns. Consider a day
86 when a lot more rtx codes are conditional (eg: for the ARM). */
87
88 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
89 #endif
90
91 /* Indexed by the machine mode, gives the insn code for vector conditional
92 operation. */
93
94 enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
95 enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
96
97 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
98 enum machine_mode *);
99 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
100
101 /* Debug facility for use in GDB. */
102 void debug_optab_libfuncs (void);
103
104 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
105 #if ENABLE_DECIMAL_BID_FORMAT
106 #define DECIMAL_PREFIX "bid_"
107 #else
108 #define DECIMAL_PREFIX "dpd_"
109 #endif
110 \f
111
112 /* Info about libfunc. We use same hashtable for normal optabs and conversion
113 optab. In the first case mode2 is unused. */
114 struct GTY(()) libfunc_entry {
115 size_t optab;
116 enum machine_mode mode1, mode2;
117 rtx libfunc;
118 };
119
120 /* Hash table used to convert declarations into nodes. */
121 static GTY((param_is (struct libfunc_entry))) htab_t libfunc_hash;
122
123 /* Used for attribute_hash. */
124
125 static hashval_t
126 hash_libfunc (const void *p)
127 {
128 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
129
130 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
131 ^ e->optab);
132 }
133
134 /* Used for optab_hash. */
135
136 static int
137 eq_libfunc (const void *p, const void *q)
138 {
139 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
140 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
141
142 return (e1->optab == e2->optab
143 && e1->mode1 == e2->mode1
144 && e1->mode2 == e2->mode2);
145 }
146
147 /* Return libfunc corresponding operation defined by OPTAB converting
148 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
149 if no libfunc is available. */
150 rtx
151 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
152 enum machine_mode mode2)
153 {
154 struct libfunc_entry e;
155 struct libfunc_entry **slot;
156
157 e.optab = (size_t) (optab - &convert_optab_table[0]);
158 e.mode1 = mode1;
159 e.mode2 = mode2;
160 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
161 if (!slot)
162 {
163 if (optab->libcall_gen)
164 {
165 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
166 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
167 if (slot)
168 return (*slot)->libfunc;
169 else
170 return NULL;
171 }
172 return NULL;
173 }
174 return (*slot)->libfunc;
175 }
176
177 /* Return libfunc corresponding operation defined by OPTAB in MODE.
178 Trigger lazy initialization if needed, return NULL if no libfunc is
179 available. */
180 rtx
181 optab_libfunc (optab optab, enum machine_mode mode)
182 {
183 struct libfunc_entry e;
184 struct libfunc_entry **slot;
185
186 e.optab = (size_t) (optab - &optab_table[0]);
187 e.mode1 = mode;
188 e.mode2 = VOIDmode;
189 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
190 if (!slot)
191 {
192 if (optab->libcall_gen)
193 {
194 optab->libcall_gen (optab, optab->libcall_basename,
195 optab->libcall_suffix, mode);
196 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
197 &e, NO_INSERT);
198 if (slot)
199 return (*slot)->libfunc;
200 else
201 return NULL;
202 }
203 return NULL;
204 }
205 return (*slot)->libfunc;
206 }
207
208 \f
209 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
210 the result of operation CODE applied to OP0 (and OP1 if it is a binary
211 operation).
212
213 If the last insn does not set TARGET, don't do anything, but return 1.
214
215 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
216 don't add the REG_EQUAL note but return 0. Our caller can then try
217 again, ensuring that TARGET is not one of the operands. */
218
219 static int
220 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
221 {
222 rtx last_insn, insn, set;
223 rtx note;
224
225 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
226
227 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
228 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
229 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
230 && GET_RTX_CLASS (code) != RTX_COMPARE
231 && GET_RTX_CLASS (code) != RTX_UNARY)
232 return 1;
233
234 if (GET_CODE (target) == ZERO_EXTRACT)
235 return 1;
236
237 for (last_insn = insns;
238 NEXT_INSN (last_insn) != NULL_RTX;
239 last_insn = NEXT_INSN (last_insn))
240 ;
241
242 set = single_set (last_insn);
243 if (set == NULL_RTX)
244 return 1;
245
246 if (! rtx_equal_p (SET_DEST (set), target)
247 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
248 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
249 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
250 return 1;
251
252 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
253 besides the last insn. */
254 if (reg_overlap_mentioned_p (target, op0)
255 || (op1 && reg_overlap_mentioned_p (target, op1)))
256 {
257 insn = PREV_INSN (last_insn);
258 while (insn != NULL_RTX)
259 {
260 if (reg_set_p (target, insn))
261 return 0;
262
263 insn = PREV_INSN (insn);
264 }
265 }
266
267 if (GET_RTX_CLASS (code) == RTX_UNARY)
268 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
269 else
270 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
271
272 set_unique_reg_note (last_insn, REG_EQUAL, note);
273
274 return 1;
275 }
276 \f
277 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
278 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
279 not actually do a sign-extend or zero-extend, but can leave the
280 higher-order bits of the result rtx undefined, for example, in the case
281 of logical operations, but not right shifts. */
282
283 static rtx
284 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
285 int unsignedp, int no_extend)
286 {
287 rtx result;
288
289 /* If we don't have to extend and this is a constant, return it. */
290 if (no_extend && GET_MODE (op) == VOIDmode)
291 return op;
292
293 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
294 extend since it will be more efficient to do so unless the signedness of
295 a promoted object differs from our extension. */
296 if (! no_extend
297 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
298 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
299 return convert_modes (mode, oldmode, op, unsignedp);
300
301 /* If MODE is no wider than a single word, we return a paradoxical
302 SUBREG. */
303 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
304 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
305
306 /* Otherwise, get an object of MODE, clobber it, and set the low-order
307 part to OP. */
308
309 result = gen_reg_rtx (mode);
310 emit_clobber (result);
311 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
312 return result;
313 }
314 \f
315 /* Return the optab used for computing the operation given by the tree code,
316 CODE and the tree EXP. This function is not always usable (for example, it
317 cannot give complete results for multiplication or division) but probably
318 ought to be relied on more widely throughout the expander. */
319 optab
320 optab_for_tree_code (enum tree_code code, const_tree type,
321 enum optab_subtype subtype)
322 {
323 bool trapv;
324 switch (code)
325 {
326 case BIT_AND_EXPR:
327 return and_optab;
328
329 case BIT_IOR_EXPR:
330 return ior_optab;
331
332 case BIT_NOT_EXPR:
333 return one_cmpl_optab;
334
335 case BIT_XOR_EXPR:
336 return xor_optab;
337
338 case TRUNC_MOD_EXPR:
339 case CEIL_MOD_EXPR:
340 case FLOOR_MOD_EXPR:
341 case ROUND_MOD_EXPR:
342 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
343
344 case RDIV_EXPR:
345 case TRUNC_DIV_EXPR:
346 case CEIL_DIV_EXPR:
347 case FLOOR_DIV_EXPR:
348 case ROUND_DIV_EXPR:
349 case EXACT_DIV_EXPR:
350 if (TYPE_SATURATING(type))
351 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
352 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
353
354 case LSHIFT_EXPR:
355 if (VECTOR_MODE_P (TYPE_MODE (type)))
356 {
357 if (subtype == optab_vector)
358 return TYPE_SATURATING (type) ? NULL : vashl_optab;
359
360 gcc_assert (subtype == optab_scalar);
361 }
362 if (TYPE_SATURATING(type))
363 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
364 return ashl_optab;
365
366 case RSHIFT_EXPR:
367 if (VECTOR_MODE_P (TYPE_MODE (type)))
368 {
369 if (subtype == optab_vector)
370 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
371
372 gcc_assert (subtype == optab_scalar);
373 }
374 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
375
376 case LROTATE_EXPR:
377 if (VECTOR_MODE_P (TYPE_MODE (type)))
378 {
379 if (subtype == optab_vector)
380 return vrotl_optab;
381
382 gcc_assert (subtype == optab_scalar);
383 }
384 return rotl_optab;
385
386 case RROTATE_EXPR:
387 if (VECTOR_MODE_P (TYPE_MODE (type)))
388 {
389 if (subtype == optab_vector)
390 return vrotr_optab;
391
392 gcc_assert (subtype == optab_scalar);
393 }
394 return rotr_optab;
395
396 case MAX_EXPR:
397 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
398
399 case MIN_EXPR:
400 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
401
402 case REALIGN_LOAD_EXPR:
403 return vec_realign_load_optab;
404
405 case WIDEN_SUM_EXPR:
406 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
407
408 case DOT_PROD_EXPR:
409 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
410
411 case REDUC_MAX_EXPR:
412 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
413
414 case REDUC_MIN_EXPR:
415 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
416
417 case REDUC_PLUS_EXPR:
418 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
419
420 case VEC_LSHIFT_EXPR:
421 return vec_shl_optab;
422
423 case VEC_RSHIFT_EXPR:
424 return vec_shr_optab;
425
426 case VEC_WIDEN_MULT_HI_EXPR:
427 return TYPE_UNSIGNED (type) ?
428 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
429
430 case VEC_WIDEN_MULT_LO_EXPR:
431 return TYPE_UNSIGNED (type) ?
432 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
433
434 case VEC_UNPACK_HI_EXPR:
435 return TYPE_UNSIGNED (type) ?
436 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
437
438 case VEC_UNPACK_LO_EXPR:
439 return TYPE_UNSIGNED (type) ?
440 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
441
442 case VEC_UNPACK_FLOAT_HI_EXPR:
443 /* The signedness is determined from input operand. */
444 return TYPE_UNSIGNED (type) ?
445 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
446
447 case VEC_UNPACK_FLOAT_LO_EXPR:
448 /* The signedness is determined from input operand. */
449 return TYPE_UNSIGNED (type) ?
450 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
451
452 case VEC_PACK_TRUNC_EXPR:
453 return vec_pack_trunc_optab;
454
455 case VEC_PACK_SAT_EXPR:
456 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
457
458 case VEC_PACK_FIX_TRUNC_EXPR:
459 /* The signedness is determined from output operand. */
460 return TYPE_UNSIGNED (type) ?
461 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
462
463 default:
464 break;
465 }
466
467 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
468 switch (code)
469 {
470 case POINTER_PLUS_EXPR:
471 case PLUS_EXPR:
472 if (TYPE_SATURATING(type))
473 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
474 return trapv ? addv_optab : add_optab;
475
476 case MINUS_EXPR:
477 if (TYPE_SATURATING(type))
478 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
479 return trapv ? subv_optab : sub_optab;
480
481 case MULT_EXPR:
482 if (TYPE_SATURATING(type))
483 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
484 return trapv ? smulv_optab : smul_optab;
485
486 case NEGATE_EXPR:
487 if (TYPE_SATURATING(type))
488 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
489 return trapv ? negv_optab : neg_optab;
490
491 case ABS_EXPR:
492 return trapv ? absv_optab : abs_optab;
493
494 case VEC_EXTRACT_EVEN_EXPR:
495 return vec_extract_even_optab;
496
497 case VEC_EXTRACT_ODD_EXPR:
498 return vec_extract_odd_optab;
499
500 case VEC_INTERLEAVE_HIGH_EXPR:
501 return vec_interleave_high_optab;
502
503 case VEC_INTERLEAVE_LOW_EXPR:
504 return vec_interleave_low_optab;
505
506 default:
507 return NULL;
508 }
509 }
510 \f
511
512 /* Expand vector widening operations.
513
514 There are two different classes of operations handled here:
515 1) Operations whose result is wider than all the arguments to the operation.
516 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
517 In this case OP0 and optionally OP1 would be initialized,
518 but WIDE_OP wouldn't (not relevant for this case).
519 2) Operations whose result is of the same size as the last argument to the
520 operation, but wider than all the other arguments to the operation.
521 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
522 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
523
524 E.g, when called to expand the following operations, this is how
525 the arguments will be initialized:
526 nops OP0 OP1 WIDE_OP
527 widening-sum 2 oprnd0 - oprnd1
528 widening-dot-product 3 oprnd0 oprnd1 oprnd2
529 widening-mult 2 oprnd0 oprnd1 -
530 type-promotion (vec-unpack) 1 oprnd0 - - */
531
532 rtx
533 expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target,
534 int unsignedp)
535 {
536 tree oprnd0, oprnd1, oprnd2;
537 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
538 optab widen_pattern_optab;
539 int icode;
540 enum machine_mode xmode0, xmode1 = VOIDmode, wxmode = VOIDmode;
541 rtx temp;
542 rtx pat;
543 rtx xop0, xop1, wxop;
544 int nops = TREE_OPERAND_LENGTH (exp);
545
546 oprnd0 = TREE_OPERAND (exp, 0);
547 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
548 widen_pattern_optab =
549 optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0), optab_default);
550 icode = (int) optab_handler (widen_pattern_optab, tmode0)->insn_code;
551 gcc_assert (icode != CODE_FOR_nothing);
552 xmode0 = insn_data[icode].operand[1].mode;
553
554 if (nops >= 2)
555 {
556 oprnd1 = TREE_OPERAND (exp, 1);
557 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
558 xmode1 = insn_data[icode].operand[2].mode;
559 }
560
561 /* The last operand is of a wider mode than the rest of the operands. */
562 if (nops == 2)
563 {
564 wmode = tmode1;
565 wxmode = xmode1;
566 }
567 else if (nops == 3)
568 {
569 gcc_assert (tmode1 == tmode0);
570 gcc_assert (op1);
571 oprnd2 = TREE_OPERAND (exp, 2);
572 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
573 wxmode = insn_data[icode].operand[3].mode;
574 }
575
576 if (!wide_op)
577 wmode = wxmode = insn_data[icode].operand[0].mode;
578
579 if (!target
580 || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
581 temp = gen_reg_rtx (wmode);
582 else
583 temp = target;
584
585 xop0 = op0;
586 xop1 = op1;
587 wxop = wide_op;
588
589 /* In case the insn wants input operands in modes different from
590 those of the actual operands, convert the operands. It would
591 seem that we don't need to convert CONST_INTs, but we do, so
592 that they're properly zero-extended, sign-extended or truncated
593 for their mode. */
594
595 if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
596 xop0 = convert_modes (xmode0,
597 GET_MODE (op0) != VOIDmode
598 ? GET_MODE (op0)
599 : tmode0,
600 xop0, unsignedp);
601
602 if (op1)
603 if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
604 xop1 = convert_modes (xmode1,
605 GET_MODE (op1) != VOIDmode
606 ? GET_MODE (op1)
607 : tmode1,
608 xop1, unsignedp);
609
610 if (wide_op)
611 if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
612 wxop = convert_modes (wxmode,
613 GET_MODE (wide_op) != VOIDmode
614 ? GET_MODE (wide_op)
615 : wmode,
616 wxop, unsignedp);
617
618 /* Now, if insn's predicates don't allow our operands, put them into
619 pseudo regs. */
620
621 if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
622 && xmode0 != VOIDmode)
623 xop0 = copy_to_mode_reg (xmode0, xop0);
624
625 if (op1)
626 {
627 if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
628 && xmode1 != VOIDmode)
629 xop1 = copy_to_mode_reg (xmode1, xop1);
630
631 if (wide_op)
632 {
633 if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
634 && wxmode != VOIDmode)
635 wxop = copy_to_mode_reg (wxmode, wxop);
636
637 pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
638 }
639 else
640 pat = GEN_FCN (icode) (temp, xop0, xop1);
641 }
642 else
643 {
644 if (wide_op)
645 {
646 if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
647 && wxmode != VOIDmode)
648 wxop = copy_to_mode_reg (wxmode, wxop);
649
650 pat = GEN_FCN (icode) (temp, xop0, wxop);
651 }
652 else
653 pat = GEN_FCN (icode) (temp, xop0);
654 }
655
656 emit_insn (pat);
657 return temp;
658 }
659
660 /* Generate code to perform an operation specified by TERNARY_OPTAB
661 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
662
663 UNSIGNEDP is for the case where we have to widen the operands
664 to perform the operation. It says to use zero-extension.
665
666 If TARGET is nonzero, the value
667 is generated there, if it is convenient to do so.
668 In all cases an rtx is returned for the locus of the value;
669 this may or may not be TARGET. */
670
671 rtx
672 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
673 rtx op1, rtx op2, rtx target, int unsignedp)
674 {
675 int icode = (int) optab_handler (ternary_optab, mode)->insn_code;
676 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
677 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
678 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
679 rtx temp;
680 rtx pat;
681 rtx xop0 = op0, xop1 = op1, xop2 = op2;
682
683 gcc_assert (optab_handler (ternary_optab, mode)->insn_code
684 != CODE_FOR_nothing);
685
686 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
687 temp = gen_reg_rtx (mode);
688 else
689 temp = target;
690
691 /* In case the insn wants input operands in modes different from
692 those of the actual operands, convert the operands. It would
693 seem that we don't need to convert CONST_INTs, but we do, so
694 that they're properly zero-extended, sign-extended or truncated
695 for their mode. */
696
697 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
698 xop0 = convert_modes (mode0,
699 GET_MODE (op0) != VOIDmode
700 ? GET_MODE (op0)
701 : mode,
702 xop0, unsignedp);
703
704 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
705 xop1 = convert_modes (mode1,
706 GET_MODE (op1) != VOIDmode
707 ? GET_MODE (op1)
708 : mode,
709 xop1, unsignedp);
710
711 if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
712 xop2 = convert_modes (mode2,
713 GET_MODE (op2) != VOIDmode
714 ? GET_MODE (op2)
715 : mode,
716 xop2, unsignedp);
717
718 /* Now, if insn's predicates don't allow our operands, put them into
719 pseudo regs. */
720
721 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
722 && mode0 != VOIDmode)
723 xop0 = copy_to_mode_reg (mode0, xop0);
724
725 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
726 && mode1 != VOIDmode)
727 xop1 = copy_to_mode_reg (mode1, xop1);
728
729 if (!insn_data[icode].operand[3].predicate (xop2, mode2)
730 && mode2 != VOIDmode)
731 xop2 = copy_to_mode_reg (mode2, xop2);
732
733 pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
734
735 emit_insn (pat);
736 return temp;
737 }
738
739
740 /* Like expand_binop, but return a constant rtx if the result can be
741 calculated at compile time. The arguments and return value are
742 otherwise the same as for expand_binop. */
743
744 static rtx
745 simplify_expand_binop (enum machine_mode mode, optab binoptab,
746 rtx op0, rtx op1, rtx target, int unsignedp,
747 enum optab_methods methods)
748 {
749 if (CONSTANT_P (op0) && CONSTANT_P (op1))
750 {
751 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
752
753 if (x)
754 return x;
755 }
756
757 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
758 }
759
760 /* Like simplify_expand_binop, but always put the result in TARGET.
761 Return true if the expansion succeeded. */
762
763 bool
764 force_expand_binop (enum machine_mode mode, optab binoptab,
765 rtx op0, rtx op1, rtx target, int unsignedp,
766 enum optab_methods methods)
767 {
768 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
769 target, unsignedp, methods);
770 if (x == 0)
771 return false;
772 if (x != target)
773 emit_move_insn (target, x);
774 return true;
775 }
776
777 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
778
779 rtx
780 expand_vec_shift_expr (tree vec_shift_expr, rtx target)
781 {
782 enum insn_code icode;
783 rtx rtx_op1, rtx_op2;
784 enum machine_mode mode1;
785 enum machine_mode mode2;
786 enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr));
787 tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0);
788 tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1);
789 optab shift_optab;
790 rtx pat;
791
792 switch (TREE_CODE (vec_shift_expr))
793 {
794 case VEC_RSHIFT_EXPR:
795 shift_optab = vec_shr_optab;
796 break;
797 case VEC_LSHIFT_EXPR:
798 shift_optab = vec_shl_optab;
799 break;
800 default:
801 gcc_unreachable ();
802 }
803
804 icode = optab_handler (shift_optab, mode)->insn_code;
805 gcc_assert (icode != CODE_FOR_nothing);
806
807 mode1 = insn_data[icode].operand[1].mode;
808 mode2 = insn_data[icode].operand[2].mode;
809
810 rtx_op1 = expand_normal (vec_oprnd);
811 if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
812 && mode1 != VOIDmode)
813 rtx_op1 = force_reg (mode1, rtx_op1);
814
815 rtx_op2 = expand_normal (shift_oprnd);
816 if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
817 && mode2 != VOIDmode)
818 rtx_op2 = force_reg (mode2, rtx_op2);
819
820 if (!target
821 || ! (*insn_data[icode].operand[0].predicate) (target, mode))
822 target = gen_reg_rtx (mode);
823
824 /* Emit instruction */
825 pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
826 gcc_assert (pat);
827 emit_insn (pat);
828
829 return target;
830 }
831
832 /* This subroutine of expand_doubleword_shift handles the cases in which
833 the effective shift value is >= BITS_PER_WORD. The arguments and return
834 value are the same as for the parent routine, except that SUPERWORD_OP1
835 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
836 INTO_TARGET may be null if the caller has decided to calculate it. */
837
838 static bool
839 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
840 rtx outof_target, rtx into_target,
841 int unsignedp, enum optab_methods methods)
842 {
843 if (into_target != 0)
844 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
845 into_target, unsignedp, methods))
846 return false;
847
848 if (outof_target != 0)
849 {
850 /* For a signed right shift, we must fill OUTOF_TARGET with copies
851 of the sign bit, otherwise we must fill it with zeros. */
852 if (binoptab != ashr_optab)
853 emit_move_insn (outof_target, CONST0_RTX (word_mode));
854 else
855 if (!force_expand_binop (word_mode, binoptab,
856 outof_input, GEN_INT (BITS_PER_WORD - 1),
857 outof_target, unsignedp, methods))
858 return false;
859 }
860 return true;
861 }
862
863 /* This subroutine of expand_doubleword_shift handles the cases in which
864 the effective shift value is < BITS_PER_WORD. The arguments and return
865 value are the same as for the parent routine. */
866
867 static bool
868 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
869 rtx outof_input, rtx into_input, rtx op1,
870 rtx outof_target, rtx into_target,
871 int unsignedp, enum optab_methods methods,
872 unsigned HOST_WIDE_INT shift_mask)
873 {
874 optab reverse_unsigned_shift, unsigned_shift;
875 rtx tmp, carries;
876
877 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
878 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
879
880 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
881 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
882 the opposite direction to BINOPTAB. */
883 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
884 {
885 carries = outof_input;
886 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
887 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
888 0, true, methods);
889 }
890 else
891 {
892 /* We must avoid shifting by BITS_PER_WORD bits since that is either
893 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
894 has unknown behavior. Do a single shift first, then shift by the
895 remainder. It's OK to use ~OP1 as the remainder if shift counts
896 are truncated to the mode size. */
897 carries = expand_binop (word_mode, reverse_unsigned_shift,
898 outof_input, const1_rtx, 0, unsignedp, methods);
899 if (shift_mask == BITS_PER_WORD - 1)
900 {
901 tmp = immed_double_const (-1, -1, op1_mode);
902 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
903 0, true, methods);
904 }
905 else
906 {
907 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
908 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
909 0, true, methods);
910 }
911 }
912 if (tmp == 0 || carries == 0)
913 return false;
914 carries = expand_binop (word_mode, reverse_unsigned_shift,
915 carries, tmp, 0, unsignedp, methods);
916 if (carries == 0)
917 return false;
918
919 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
920 so the result can go directly into INTO_TARGET if convenient. */
921 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
922 into_target, unsignedp, methods);
923 if (tmp == 0)
924 return false;
925
926 /* Now OR in the bits carried over from OUTOF_INPUT. */
927 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
928 into_target, unsignedp, methods))
929 return false;
930
931 /* Use a standard word_mode shift for the out-of half. */
932 if (outof_target != 0)
933 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
934 outof_target, unsignedp, methods))
935 return false;
936
937 return true;
938 }
939
940
941 #ifdef HAVE_conditional_move
942 /* Try implementing expand_doubleword_shift using conditional moves.
943 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
944 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
945 are the shift counts to use in the former and latter case. All other
946 arguments are the same as the parent routine. */
947
948 static bool
949 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
950 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
951 rtx outof_input, rtx into_input,
952 rtx subword_op1, rtx superword_op1,
953 rtx outof_target, rtx into_target,
954 int unsignedp, enum optab_methods methods,
955 unsigned HOST_WIDE_INT shift_mask)
956 {
957 rtx outof_superword, into_superword;
958
959 /* Put the superword version of the output into OUTOF_SUPERWORD and
960 INTO_SUPERWORD. */
961 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
962 if (outof_target != 0 && subword_op1 == superword_op1)
963 {
964 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
965 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
966 into_superword = outof_target;
967 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
968 outof_superword, 0, unsignedp, methods))
969 return false;
970 }
971 else
972 {
973 into_superword = gen_reg_rtx (word_mode);
974 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
975 outof_superword, into_superword,
976 unsignedp, methods))
977 return false;
978 }
979
980 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
981 if (!expand_subword_shift (op1_mode, binoptab,
982 outof_input, into_input, subword_op1,
983 outof_target, into_target,
984 unsignedp, methods, shift_mask))
985 return false;
986
987 /* Select between them. Do the INTO half first because INTO_SUPERWORD
988 might be the current value of OUTOF_TARGET. */
989 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
990 into_target, into_superword, word_mode, false))
991 return false;
992
993 if (outof_target != 0)
994 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
995 outof_target, outof_superword,
996 word_mode, false))
997 return false;
998
999 return true;
1000 }
1001 #endif
1002
1003 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1004 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1005 input operand; the shift moves bits in the direction OUTOF_INPUT->
1006 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1007 of the target. OP1 is the shift count and OP1_MODE is its mode.
1008 If OP1 is constant, it will have been truncated as appropriate
1009 and is known to be nonzero.
1010
1011 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1012 shift count is outside the range [0, BITS_PER_WORD). This routine must
1013 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1014
1015 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1016 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1017 fill with zeros or sign bits as appropriate.
1018
1019 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1020 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1021 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1022 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1023 are undefined.
1024
1025 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1026 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1027 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1028 function wants to calculate it itself.
1029
1030 Return true if the shift could be successfully synthesized. */
1031
1032 static bool
1033 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1034 rtx outof_input, rtx into_input, rtx op1,
1035 rtx outof_target, rtx into_target,
1036 int unsignedp, enum optab_methods methods,
1037 unsigned HOST_WIDE_INT shift_mask)
1038 {
1039 rtx superword_op1, tmp, cmp1, cmp2;
1040 rtx subword_label, done_label;
1041 enum rtx_code cmp_code;
1042
1043 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1044 fill the result with sign or zero bits as appropriate. If so, the value
1045 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1046 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1047 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1048
1049 This isn't worthwhile for constant shifts since the optimizers will
1050 cope better with in-range shift counts. */
1051 if (shift_mask >= BITS_PER_WORD
1052 && outof_target != 0
1053 && !CONSTANT_P (op1))
1054 {
1055 if (!expand_doubleword_shift (op1_mode, binoptab,
1056 outof_input, into_input, op1,
1057 0, into_target,
1058 unsignedp, methods, shift_mask))
1059 return false;
1060 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1061 outof_target, unsignedp, methods))
1062 return false;
1063 return true;
1064 }
1065
1066 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1067 is true when the effective shift value is less than BITS_PER_WORD.
1068 Set SUPERWORD_OP1 to the shift count that should be used to shift
1069 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1070 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1071 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1072 {
1073 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1074 is a subword shift count. */
1075 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1076 0, true, methods);
1077 cmp2 = CONST0_RTX (op1_mode);
1078 cmp_code = EQ;
1079 superword_op1 = op1;
1080 }
1081 else
1082 {
1083 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1084 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1085 0, true, methods);
1086 cmp2 = CONST0_RTX (op1_mode);
1087 cmp_code = LT;
1088 superword_op1 = cmp1;
1089 }
1090 if (cmp1 == 0)
1091 return false;
1092
1093 /* If we can compute the condition at compile time, pick the
1094 appropriate subroutine. */
1095 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1096 if (tmp != 0 && GET_CODE (tmp) == CONST_INT)
1097 {
1098 if (tmp == const0_rtx)
1099 return expand_superword_shift (binoptab, outof_input, superword_op1,
1100 outof_target, into_target,
1101 unsignedp, methods);
1102 else
1103 return expand_subword_shift (op1_mode, binoptab,
1104 outof_input, into_input, op1,
1105 outof_target, into_target,
1106 unsignedp, methods, shift_mask);
1107 }
1108
1109 #ifdef HAVE_conditional_move
1110 /* Try using conditional moves to generate straight-line code. */
1111 {
1112 rtx start = get_last_insn ();
1113 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1114 cmp_code, cmp1, cmp2,
1115 outof_input, into_input,
1116 op1, superword_op1,
1117 outof_target, into_target,
1118 unsignedp, methods, shift_mask))
1119 return true;
1120 delete_insns_since (start);
1121 }
1122 #endif
1123
1124 /* As a last resort, use branches to select the correct alternative. */
1125 subword_label = gen_label_rtx ();
1126 done_label = gen_label_rtx ();
1127
1128 NO_DEFER_POP;
1129 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1130 0, 0, subword_label);
1131 OK_DEFER_POP;
1132
1133 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1134 outof_target, into_target,
1135 unsignedp, methods))
1136 return false;
1137
1138 emit_jump_insn (gen_jump (done_label));
1139 emit_barrier ();
1140 emit_label (subword_label);
1141
1142 if (!expand_subword_shift (op1_mode, binoptab,
1143 outof_input, into_input, op1,
1144 outof_target, into_target,
1145 unsignedp, methods, shift_mask))
1146 return false;
1147
1148 emit_label (done_label);
1149 return true;
1150 }
1151 \f
1152 /* Subroutine of expand_binop. Perform a double word multiplication of
1153 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1154 as the target's word_mode. This function return NULL_RTX if anything
1155 goes wrong, in which case it may have already emitted instructions
1156 which need to be deleted.
1157
1158 If we want to multiply two two-word values and have normal and widening
1159 multiplies of single-word values, we can do this with three smaller
1160 multiplications.
1161
1162 The multiplication proceeds as follows:
1163 _______________________
1164 [__op0_high_|__op0_low__]
1165 _______________________
1166 * [__op1_high_|__op1_low__]
1167 _______________________________________________
1168 _______________________
1169 (1) [__op0_low__*__op1_low__]
1170 _______________________
1171 (2a) [__op0_low__*__op1_high_]
1172 _______________________
1173 (2b) [__op0_high_*__op1_low__]
1174 _______________________
1175 (3) [__op0_high_*__op1_high_]
1176
1177
1178 This gives a 4-word result. Since we are only interested in the
1179 lower 2 words, partial result (3) and the upper words of (2a) and
1180 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1181 calculated using non-widening multiplication.
1182
1183 (1), however, needs to be calculated with an unsigned widening
1184 multiplication. If this operation is not directly supported we
1185 try using a signed widening multiplication and adjust the result.
1186 This adjustment works as follows:
1187
1188 If both operands are positive then no adjustment is needed.
1189
1190 If the operands have different signs, for example op0_low < 0 and
1191 op1_low >= 0, the instruction treats the most significant bit of
1192 op0_low as a sign bit instead of a bit with significance
1193 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1194 with 2**BITS_PER_WORD - op0_low, and two's complements the
1195 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1196 the result.
1197
1198 Similarly, if both operands are negative, we need to add
1199 (op0_low + op1_low) * 2**BITS_PER_WORD.
1200
1201 We use a trick to adjust quickly. We logically shift op0_low right
1202 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1203 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1204 logical shift exists, we do an arithmetic right shift and subtract
1205 the 0 or -1. */
1206
1207 static rtx
1208 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1209 bool umulp, enum optab_methods methods)
1210 {
1211 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1212 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1213 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1214 rtx product, adjust, product_high, temp;
1215
1216 rtx op0_high = operand_subword_force (op0, high, mode);
1217 rtx op0_low = operand_subword_force (op0, low, mode);
1218 rtx op1_high = operand_subword_force (op1, high, mode);
1219 rtx op1_low = operand_subword_force (op1, low, mode);
1220
1221 /* If we're using an unsigned multiply to directly compute the product
1222 of the low-order words of the operands and perform any required
1223 adjustments of the operands, we begin by trying two more multiplications
1224 and then computing the appropriate sum.
1225
1226 We have checked above that the required addition is provided.
1227 Full-word addition will normally always succeed, especially if
1228 it is provided at all, so we don't worry about its failure. The
1229 multiplication may well fail, however, so we do handle that. */
1230
1231 if (!umulp)
1232 {
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1240 {
1241 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1247 }
1248
1249 if (!op0_high)
1250 return NULL_RTX;
1251 }
1252
1253 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!adjust)
1256 return NULL_RTX;
1257
1258 /* OP0_HIGH should now be dead. */
1259
1260 if (!umulp)
1261 {
1262 /* ??? This could be done with emit_store_flag where available. */
1263 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1264 NULL_RTX, 1, methods);
1265 if (temp)
1266 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1267 NULL_RTX, 0, OPTAB_DIRECT);
1268 else
1269 {
1270 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1271 NULL_RTX, 0, methods);
1272 if (!temp)
1273 return NULL_RTX;
1274 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1275 NULL_RTX, 0, OPTAB_DIRECT);
1276 }
1277
1278 if (!op1_high)
1279 return NULL_RTX;
1280 }
1281
1282 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1283 NULL_RTX, 0, OPTAB_DIRECT);
1284 if (!temp)
1285 return NULL_RTX;
1286
1287 /* OP1_HIGH should now be dead. */
1288
1289 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1290 adjust, 0, OPTAB_DIRECT);
1291
1292 if (target && !REG_P (target))
1293 target = NULL_RTX;
1294
1295 if (umulp)
1296 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1297 target, 1, OPTAB_DIRECT);
1298 else
1299 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1300 target, 1, OPTAB_DIRECT);
1301
1302 if (!product)
1303 return NULL_RTX;
1304
1305 product_high = operand_subword (product, high, 1, mode);
1306 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1307 REG_P (product_high) ? product_high : adjust,
1308 0, OPTAB_DIRECT);
1309 emit_move_insn (product_high, adjust);
1310 return product;
1311 }
1312 \f
1313 /* Wrapper around expand_binop which takes an rtx code to specify
1314 the operation to perform, not an optab pointer. All other
1315 arguments are the same. */
1316 rtx
1317 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1318 rtx op1, rtx target, int unsignedp,
1319 enum optab_methods methods)
1320 {
1321 optab binop = code_to_optab[(int) code];
1322 gcc_assert (binop);
1323
1324 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1325 }
1326
1327 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1328 binop. Order them according to commutative_operand_precedence and, if
1329 possible, try to put TARGET or a pseudo first. */
1330 static bool
1331 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1332 {
1333 int op0_prec = commutative_operand_precedence (op0);
1334 int op1_prec = commutative_operand_precedence (op1);
1335
1336 if (op0_prec < op1_prec)
1337 return true;
1338
1339 if (op0_prec > op1_prec)
1340 return false;
1341
1342 /* With equal precedence, both orders are ok, but it is better if the
1343 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1344 if (target == 0 || REG_P (target))
1345 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1346 else
1347 return rtx_equal_p (op1, target);
1348 }
1349
1350 /* Return true if BINOPTAB implements a shift operation. */
1351
1352 static bool
1353 shift_optab_p (optab binoptab)
1354 {
1355 switch (binoptab->code)
1356 {
1357 case ASHIFT:
1358 case SS_ASHIFT:
1359 case US_ASHIFT:
1360 case ASHIFTRT:
1361 case LSHIFTRT:
1362 case ROTATE:
1363 case ROTATERT:
1364 return true;
1365
1366 default:
1367 return false;
1368 }
1369 }
1370
1371 /* Return true if BINOPTAB implements a commutative binary operation. */
1372
1373 static bool
1374 commutative_optab_p (optab binoptab)
1375 {
1376 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1377 || binoptab == smul_widen_optab
1378 || binoptab == umul_widen_optab
1379 || binoptab == smul_highpart_optab
1380 || binoptab == umul_highpart_optab);
1381 }
1382
1383 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1384 optimizing, and if the operand is a constant that costs more than
1385 1 instruction, force the constant into a register and return that
1386 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1387
1388 static rtx
1389 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1390 rtx x, bool unsignedp)
1391 {
1392 if (mode != VOIDmode
1393 && optimize
1394 && CONSTANT_P (x)
1395 && rtx_cost (x, binoptab->code, optimize_insn_for_speed_p ())
1396 > COSTS_N_INSNS (1))
1397 {
1398 if (GET_CODE (x) == CONST_INT)
1399 {
1400 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1401 if (intval != INTVAL (x))
1402 x = GEN_INT (intval);
1403 }
1404 else
1405 x = convert_modes (mode, VOIDmode, x, unsignedp);
1406 x = force_reg (mode, x);
1407 }
1408 return x;
1409 }
1410
1411 /* Helper function for expand_binop: handle the case where there
1412 is an insn that directly implements the indicated operation.
1413 Returns null if this is not possible. */
1414 static rtx
1415 expand_binop_directly (enum machine_mode mode, optab binoptab,
1416 rtx op0, rtx op1,
1417 rtx target, int unsignedp, enum optab_methods methods,
1418 rtx last)
1419 {
1420 int icode = (int) optab_handler (binoptab, mode)->insn_code;
1421 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1422 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1423 enum machine_mode tmp_mode;
1424 bool commutative_p;
1425 rtx pat;
1426 rtx xop0 = op0, xop1 = op1;
1427 rtx temp;
1428 rtx swap;
1429
1430 if (target)
1431 temp = target;
1432 else
1433 temp = gen_reg_rtx (mode);
1434
1435 /* If it is a commutative operator and the modes would match
1436 if we would swap the operands, we can save the conversions. */
1437 commutative_p = commutative_optab_p (binoptab);
1438 if (commutative_p
1439 && GET_MODE (xop0) != mode0 && GET_MODE (xop1) != mode1
1440 && GET_MODE (xop0) == mode1 && GET_MODE (xop1) == mode1)
1441 {
1442 swap = xop0;
1443 xop0 = xop1;
1444 xop1 = swap;
1445 }
1446
1447 /* If we are optimizing, force expensive constants into a register. */
1448 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
1449 if (!shift_optab_p (binoptab))
1450 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
1451
1452 /* In case the insn wants input operands in modes different from
1453 those of the actual operands, convert the operands. It would
1454 seem that we don't need to convert CONST_INTs, but we do, so
1455 that they're properly zero-extended, sign-extended or truncated
1456 for their mode. */
1457
1458 if (GET_MODE (xop0) != mode0 && mode0 != VOIDmode)
1459 xop0 = convert_modes (mode0,
1460 GET_MODE (xop0) != VOIDmode
1461 ? GET_MODE (xop0)
1462 : mode,
1463 xop0, unsignedp);
1464
1465 if (GET_MODE (xop1) != mode1 && mode1 != VOIDmode)
1466 xop1 = convert_modes (mode1,
1467 GET_MODE (xop1) != VOIDmode
1468 ? GET_MODE (xop1)
1469 : mode,
1470 xop1, unsignedp);
1471
1472 /* If operation is commutative,
1473 try to make the first operand a register.
1474 Even better, try to make it the same as the target.
1475 Also try to make the last operand a constant. */
1476 if (commutative_p
1477 && swap_commutative_operands_with_target (target, xop0, xop1))
1478 {
1479 swap = xop1;
1480 xop1 = xop0;
1481 xop0 = swap;
1482 }
1483
1484 /* Now, if insn's predicates don't allow our operands, put them into
1485 pseudo regs. */
1486
1487 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
1488 && mode0 != VOIDmode)
1489 xop0 = copy_to_mode_reg (mode0, xop0);
1490
1491 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
1492 && mode1 != VOIDmode)
1493 xop1 = copy_to_mode_reg (mode1, xop1);
1494
1495 if (binoptab == vec_pack_trunc_optab
1496 || binoptab == vec_pack_usat_optab
1497 || binoptab == vec_pack_ssat_optab
1498 || binoptab == vec_pack_ufix_trunc_optab
1499 || binoptab == vec_pack_sfix_trunc_optab)
1500 {
1501 /* The mode of the result is different then the mode of the
1502 arguments. */
1503 tmp_mode = insn_data[icode].operand[0].mode;
1504 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1505 return 0;
1506 }
1507 else
1508 tmp_mode = mode;
1509
1510 if (!insn_data[icode].operand[0].predicate (temp, tmp_mode))
1511 temp = gen_reg_rtx (tmp_mode);
1512
1513 pat = GEN_FCN (icode) (temp, xop0, xop1);
1514 if (pat)
1515 {
1516 /* If PAT is composed of more than one insn, try to add an appropriate
1517 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1518 operand, call expand_binop again, this time without a target. */
1519 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1520 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
1521 {
1522 delete_insns_since (last);
1523 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1524 unsignedp, methods);
1525 }
1526
1527 emit_insn (pat);
1528 return temp;
1529 }
1530
1531 delete_insns_since (last);
1532 return NULL_RTX;
1533 }
1534
1535 /* Generate code to perform an operation specified by BINOPTAB
1536 on operands OP0 and OP1, with result having machine-mode MODE.
1537
1538 UNSIGNEDP is for the case where we have to widen the operands
1539 to perform the operation. It says to use zero-extension.
1540
1541 If TARGET is nonzero, the value
1542 is generated there, if it is convenient to do so.
1543 In all cases an rtx is returned for the locus of the value;
1544 this may or may not be TARGET. */
1545
1546 rtx
1547 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1548 rtx target, int unsignedp, enum optab_methods methods)
1549 {
1550 enum optab_methods next_methods
1551 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1552 ? OPTAB_WIDEN : methods);
1553 enum mode_class mclass;
1554 enum machine_mode wider_mode;
1555 rtx libfunc;
1556 rtx temp;
1557 rtx entry_last = get_last_insn ();
1558 rtx last;
1559
1560 mclass = GET_MODE_CLASS (mode);
1561
1562 /* If subtracting an integer constant, convert this into an addition of
1563 the negated constant. */
1564
1565 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
1566 {
1567 op1 = negate_rtx (mode, op1);
1568 binoptab = add_optab;
1569 }
1570
1571 /* Record where to delete back to if we backtrack. */
1572 last = get_last_insn ();
1573
1574 /* If we can do it with a three-operand insn, do so. */
1575
1576 if (methods != OPTAB_MUST_WIDEN
1577 && optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
1578 {
1579 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1580 unsignedp, methods, last);
1581 if (temp)
1582 return temp;
1583 }
1584
1585 /* If we were trying to rotate, and that didn't work, try rotating
1586 the other direction before falling back to shifts and bitwise-or. */
1587 if (((binoptab == rotl_optab
1588 && optab_handler (rotr_optab, mode)->insn_code != CODE_FOR_nothing)
1589 || (binoptab == rotr_optab
1590 && optab_handler (rotl_optab, mode)->insn_code != CODE_FOR_nothing))
1591 && mclass == MODE_INT)
1592 {
1593 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1594 rtx newop1;
1595 unsigned int bits = GET_MODE_BITSIZE (mode);
1596
1597 if (GET_CODE (op1) == CONST_INT)
1598 newop1 = GEN_INT (bits - INTVAL (op1));
1599 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1600 newop1 = negate_rtx (mode, op1);
1601 else
1602 newop1 = expand_binop (mode, sub_optab,
1603 GEN_INT (bits), op1,
1604 NULL_RTX, unsignedp, OPTAB_DIRECT);
1605
1606 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1607 target, unsignedp, methods, last);
1608 if (temp)
1609 return temp;
1610 }
1611
1612 /* If this is a multiply, see if we can do a widening operation that
1613 takes operands of this mode and makes a wider mode. */
1614
1615 if (binoptab == smul_optab
1616 && GET_MODE_WIDER_MODE (mode) != VOIDmode
1617 && ((optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab),
1618 GET_MODE_WIDER_MODE (mode))->insn_code)
1619 != CODE_FOR_nothing))
1620 {
1621 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
1622 unsignedp ? umul_widen_optab : smul_widen_optab,
1623 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1624
1625 if (temp != 0)
1626 {
1627 if (GET_MODE_CLASS (mode) == MODE_INT
1628 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1629 GET_MODE_BITSIZE (GET_MODE (temp))))
1630 return gen_lowpart (mode, temp);
1631 else
1632 return convert_to_mode (mode, temp, unsignedp);
1633 }
1634 }
1635
1636 /* Look for a wider mode of the same class for which we think we
1637 can open-code the operation. Check for a widening multiply at the
1638 wider mode as well. */
1639
1640 if (CLASS_HAS_WIDER_MODES_P (mclass)
1641 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1642 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1643 wider_mode != VOIDmode;
1644 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1645 {
1646 if (optab_handler (binoptab, wider_mode)->insn_code != CODE_FOR_nothing
1647 || (binoptab == smul_optab
1648 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1649 && ((optab_handler ((unsignedp ? umul_widen_optab
1650 : smul_widen_optab),
1651 GET_MODE_WIDER_MODE (wider_mode))->insn_code)
1652 != CODE_FOR_nothing)))
1653 {
1654 rtx xop0 = op0, xop1 = op1;
1655 int no_extend = 0;
1656
1657 /* For certain integer operations, we need not actually extend
1658 the narrow operands, as long as we will truncate
1659 the results to the same narrowness. */
1660
1661 if ((binoptab == ior_optab || binoptab == and_optab
1662 || binoptab == xor_optab
1663 || binoptab == add_optab || binoptab == sub_optab
1664 || binoptab == smul_optab || binoptab == ashl_optab)
1665 && mclass == MODE_INT)
1666 {
1667 no_extend = 1;
1668 xop0 = avoid_expensive_constant (mode, binoptab,
1669 xop0, unsignedp);
1670 if (binoptab != ashl_optab)
1671 xop1 = avoid_expensive_constant (mode, binoptab,
1672 xop1, unsignedp);
1673 }
1674
1675 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1676
1677 /* The second operand of a shift must always be extended. */
1678 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1679 no_extend && binoptab != ashl_optab);
1680
1681 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1682 unsignedp, OPTAB_DIRECT);
1683 if (temp)
1684 {
1685 if (mclass != MODE_INT
1686 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1687 GET_MODE_BITSIZE (wider_mode)))
1688 {
1689 if (target == 0)
1690 target = gen_reg_rtx (mode);
1691 convert_move (target, temp, 0);
1692 return target;
1693 }
1694 else
1695 return gen_lowpart (mode, temp);
1696 }
1697 else
1698 delete_insns_since (last);
1699 }
1700 }
1701
1702 /* If operation is commutative,
1703 try to make the first operand a register.
1704 Even better, try to make it the same as the target.
1705 Also try to make the last operand a constant. */
1706 if (commutative_optab_p (binoptab)
1707 && swap_commutative_operands_with_target (target, op0, op1))
1708 {
1709 temp = op1;
1710 op1 = op0;
1711 op0 = temp;
1712 }
1713
1714 /* These can be done a word at a time. */
1715 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1716 && mclass == MODE_INT
1717 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1718 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1719 {
1720 int i;
1721 rtx insns;
1722 rtx equiv_value;
1723
1724 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1725 won't be accurate, so use a new target. */
1726 if (target == 0 || target == op0 || target == op1)
1727 target = gen_reg_rtx (mode);
1728
1729 start_sequence ();
1730
1731 /* Do the actual arithmetic. */
1732 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1733 {
1734 rtx target_piece = operand_subword (target, i, 1, mode);
1735 rtx x = expand_binop (word_mode, binoptab,
1736 operand_subword_force (op0, i, mode),
1737 operand_subword_force (op1, i, mode),
1738 target_piece, unsignedp, next_methods);
1739
1740 if (x == 0)
1741 break;
1742
1743 if (target_piece != x)
1744 emit_move_insn (target_piece, x);
1745 }
1746
1747 insns = get_insns ();
1748 end_sequence ();
1749
1750 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1751 {
1752 if (binoptab->code != UNKNOWN)
1753 equiv_value
1754 = gen_rtx_fmt_ee (binoptab->code, mode,
1755 copy_rtx (op0), copy_rtx (op1));
1756 else
1757 equiv_value = 0;
1758
1759 emit_insn (insns);
1760 return target;
1761 }
1762 }
1763
1764 /* Synthesize double word shifts from single word shifts. */
1765 if ((binoptab == lshr_optab || binoptab == ashl_optab
1766 || binoptab == ashr_optab)
1767 && mclass == MODE_INT
1768 && (GET_CODE (op1) == CONST_INT || optimize_insn_for_speed_p ())
1769 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1770 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing
1771 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1772 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1773 {
1774 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1775 enum machine_mode op1_mode;
1776
1777 double_shift_mask = targetm.shift_truncation_mask (mode);
1778 shift_mask = targetm.shift_truncation_mask (word_mode);
1779 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1780
1781 /* Apply the truncation to constant shifts. */
1782 if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT)
1783 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1784
1785 if (op1 == CONST0_RTX (op1_mode))
1786 return op0;
1787
1788 /* Make sure that this is a combination that expand_doubleword_shift
1789 can handle. See the comments there for details. */
1790 if (double_shift_mask == 0
1791 || (shift_mask == BITS_PER_WORD - 1
1792 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1793 {
1794 rtx insns;
1795 rtx into_target, outof_target;
1796 rtx into_input, outof_input;
1797 int left_shift, outof_word;
1798
1799 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1800 won't be accurate, so use a new target. */
1801 if (target == 0 || target == op0 || target == op1)
1802 target = gen_reg_rtx (mode);
1803
1804 start_sequence ();
1805
1806 /* OUTOF_* is the word we are shifting bits away from, and
1807 INTO_* is the word that we are shifting bits towards, thus
1808 they differ depending on the direction of the shift and
1809 WORDS_BIG_ENDIAN. */
1810
1811 left_shift = binoptab == ashl_optab;
1812 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1813
1814 outof_target = operand_subword (target, outof_word, 1, mode);
1815 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1816
1817 outof_input = operand_subword_force (op0, outof_word, mode);
1818 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1819
1820 if (expand_doubleword_shift (op1_mode, binoptab,
1821 outof_input, into_input, op1,
1822 outof_target, into_target,
1823 unsignedp, next_methods, shift_mask))
1824 {
1825 insns = get_insns ();
1826 end_sequence ();
1827
1828 emit_insn (insns);
1829 return target;
1830 }
1831 end_sequence ();
1832 }
1833 }
1834
1835 /* Synthesize double word rotates from single word shifts. */
1836 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1837 && mclass == MODE_INT
1838 && GET_CODE (op1) == CONST_INT
1839 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1840 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1841 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1842 {
1843 rtx insns;
1844 rtx into_target, outof_target;
1845 rtx into_input, outof_input;
1846 rtx inter;
1847 int shift_count, left_shift, outof_word;
1848
1849 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1850 won't be accurate, so use a new target. Do this also if target is not
1851 a REG, first because having a register instead may open optimization
1852 opportunities, and second because if target and op0 happen to be MEMs
1853 designating the same location, we would risk clobbering it too early
1854 in the code sequence we generate below. */
1855 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1856 target = gen_reg_rtx (mode);
1857
1858 start_sequence ();
1859
1860 shift_count = INTVAL (op1);
1861
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1866
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1869
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1872
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1875
1876 if (shift_count == BITS_PER_WORD)
1877 {
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1882 }
1883 else
1884 {
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1888
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1891
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1894
1895 if (shift_count > BITS_PER_WORD)
1896 {
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1899 }
1900 else
1901 {
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1904 }
1905
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1912
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1918
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1921
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1928
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1933
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1936 }
1937
1938 insns = get_insns ();
1939 end_sequence ();
1940
1941 if (inter != 0)
1942 {
1943 emit_insn (insns);
1944 return target;
1945 }
1946 }
1947
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1953 {
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1959
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1968
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1972
1973 xtarget = gen_reg_rtx (mode);
1974
1975 if (target == 0 || !REG_P (target))
1976 target = xtarget;
1977
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1981
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1984 {
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1990
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1997
1998 if (i + 1 < nwords)
1999 {
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2007 }
2008
2009 if (i > 0)
2010 {
2011 rtx newx;
2012
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2018
2019 if (i + 1 < nwords)
2020 {
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2028
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2035 }
2036 emit_move_insn (target_piece, newx);
2037 }
2038 else
2039 {
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2042 }
2043
2044 carry_in = carry_out;
2045 }
2046
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2048 {
2049 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2051 {
2052 rtx temp = emit_move_insn (target, xtarget);
2053
2054 set_unique_reg_note (temp,
2055 REG_EQUAL,
2056 gen_rtx_fmt_ee (binoptab->code, mode,
2057 copy_rtx (xop0),
2058 copy_rtx (xop1)));
2059 }
2060 else
2061 target = xtarget;
2062
2063 return target;
2064 }
2065
2066 else
2067 delete_insns_since (last);
2068 }
2069
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2074
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode)->insn_code != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode)->insn_code != CODE_FOR_nothing)
2080 {
2081 rtx product = NULL_RTX;
2082
2083 if (optab_handler (umul_widen_optab, mode)->insn_code
2084 != CODE_FOR_nothing)
2085 {
2086 product = expand_doubleword_mult (mode, op0, op1, target,
2087 true, methods);
2088 if (!product)
2089 delete_insns_since (last);
2090 }
2091
2092 if (product == NULL_RTX
2093 && optab_handler (smul_widen_optab, mode)->insn_code
2094 != CODE_FOR_nothing)
2095 {
2096 product = expand_doubleword_mult (mode, op0, op1, target,
2097 false, methods);
2098 if (!product)
2099 delete_insns_since (last);
2100 }
2101
2102 if (product != NULL_RTX)
2103 {
2104 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing)
2105 {
2106 temp = emit_move_insn (target ? target : product, product);
2107 set_unique_reg_note (temp,
2108 REG_EQUAL,
2109 gen_rtx_fmt_ee (MULT, mode,
2110 copy_rtx (op0),
2111 copy_rtx (op1)));
2112 }
2113 return product;
2114 }
2115 }
2116
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2119
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2123 {
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2128
2129 start_sequence ();
2130
2131 if (shift_optab_p (binoptab))
2132 {
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2137 }
2138
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2142
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2148
2149 insns = get_insns ();
2150 end_sequence ();
2151
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block (insns, target, value,
2154 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
2155
2156 return target;
2157 }
2158
2159 delete_insns_since (last);
2160
2161 /* It can't be done in this mode. Can we do it in a wider mode? */
2162
2163 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2164 || methods == OPTAB_MUST_WIDEN))
2165 {
2166 /* Caller says, don't even try. */
2167 delete_insns_since (entry_last);
2168 return 0;
2169 }
2170
2171 /* Compute the value of METHODS to pass to recursive calls.
2172 Don't allow widening to be tried recursively. */
2173
2174 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2175
2176 /* Look for a wider mode of the same class for which it appears we can do
2177 the operation. */
2178
2179 if (CLASS_HAS_WIDER_MODES_P (mclass))
2180 {
2181 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2182 wider_mode != VOIDmode;
2183 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2184 {
2185 if ((optab_handler (binoptab, wider_mode)->insn_code
2186 != CODE_FOR_nothing)
2187 || (methods == OPTAB_LIB
2188 && optab_libfunc (binoptab, wider_mode)))
2189 {
2190 rtx xop0 = op0, xop1 = op1;
2191 int no_extend = 0;
2192
2193 /* For certain integer operations, we need not actually extend
2194 the narrow operands, as long as we will truncate
2195 the results to the same narrowness. */
2196
2197 if ((binoptab == ior_optab || binoptab == and_optab
2198 || binoptab == xor_optab
2199 || binoptab == add_optab || binoptab == sub_optab
2200 || binoptab == smul_optab || binoptab == ashl_optab)
2201 && mclass == MODE_INT)
2202 no_extend = 1;
2203
2204 xop0 = widen_operand (xop0, wider_mode, mode,
2205 unsignedp, no_extend);
2206
2207 /* The second operand of a shift must always be extended. */
2208 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2209 no_extend && binoptab != ashl_optab);
2210
2211 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2212 unsignedp, methods);
2213 if (temp)
2214 {
2215 if (mclass != MODE_INT
2216 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2217 GET_MODE_BITSIZE (wider_mode)))
2218 {
2219 if (target == 0)
2220 target = gen_reg_rtx (mode);
2221 convert_move (target, temp, 0);
2222 return target;
2223 }
2224 else
2225 return gen_lowpart (mode, temp);
2226 }
2227 else
2228 delete_insns_since (last);
2229 }
2230 }
2231 }
2232
2233 delete_insns_since (entry_last);
2234 return 0;
2235 }
2236 \f
2237 /* Expand a binary operator which has both signed and unsigned forms.
2238 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2239 signed operations.
2240
2241 If we widen unsigned operands, we may use a signed wider operation instead
2242 of an unsigned wider operation, since the result would be the same. */
2243
2244 rtx
2245 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2246 rtx op0, rtx op1, rtx target, int unsignedp,
2247 enum optab_methods methods)
2248 {
2249 rtx temp;
2250 optab direct_optab = unsignedp ? uoptab : soptab;
2251 struct optab_d wide_soptab;
2252
2253 /* Do it without widening, if possible. */
2254 temp = expand_binop (mode, direct_optab, op0, op1, target,
2255 unsignedp, OPTAB_DIRECT);
2256 if (temp || methods == OPTAB_DIRECT)
2257 return temp;
2258
2259 /* Try widening to a signed int. Make a fake signed optab that
2260 hides any signed insn for direct use. */
2261 wide_soptab = *soptab;
2262 optab_handler (&wide_soptab, mode)->insn_code = CODE_FOR_nothing;
2263 /* We don't want to generate new hash table entries from this fake
2264 optab. */
2265 wide_soptab.libcall_gen = NULL;
2266
2267 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2268 unsignedp, OPTAB_WIDEN);
2269
2270 /* For unsigned operands, try widening to an unsigned int. */
2271 if (temp == 0 && unsignedp)
2272 temp = expand_binop (mode, uoptab, op0, op1, target,
2273 unsignedp, OPTAB_WIDEN);
2274 if (temp || methods == OPTAB_WIDEN)
2275 return temp;
2276
2277 /* Use the right width libcall if that exists. */
2278 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2279 if (temp || methods == OPTAB_LIB)
2280 return temp;
2281
2282 /* Must widen and use a libcall, use either signed or unsigned. */
2283 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2284 unsignedp, methods);
2285 if (temp != 0)
2286 return temp;
2287 if (unsignedp)
2288 return expand_binop (mode, uoptab, op0, op1, target,
2289 unsignedp, methods);
2290 return 0;
2291 }
2292 \f
2293 /* Generate code to perform an operation specified by UNOPPTAB
2294 on operand OP0, with two results to TARG0 and TARG1.
2295 We assume that the order of the operands for the instruction
2296 is TARG0, TARG1, OP0.
2297
2298 Either TARG0 or TARG1 may be zero, but what that means is that
2299 the result is not actually wanted. We will generate it into
2300 a dummy pseudo-reg and discard it. They may not both be zero.
2301
2302 Returns 1 if this operation can be performed; 0 if not. */
2303
2304 int
2305 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2306 int unsignedp)
2307 {
2308 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2309 enum mode_class mclass;
2310 enum machine_mode wider_mode;
2311 rtx entry_last = get_last_insn ();
2312 rtx last;
2313
2314 mclass = GET_MODE_CLASS (mode);
2315
2316 if (!targ0)
2317 targ0 = gen_reg_rtx (mode);
2318 if (!targ1)
2319 targ1 = gen_reg_rtx (mode);
2320
2321 /* Record where to go back to if we fail. */
2322 last = get_last_insn ();
2323
2324 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
2325 {
2326 int icode = (int) optab_handler (unoptab, mode)->insn_code;
2327 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2328 rtx pat;
2329 rtx xop0 = op0;
2330
2331 if (GET_MODE (xop0) != VOIDmode
2332 && GET_MODE (xop0) != mode0)
2333 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2334
2335 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2336 if (!insn_data[icode].operand[2].predicate (xop0, mode0))
2337 xop0 = copy_to_mode_reg (mode0, xop0);
2338
2339 /* We could handle this, but we should always be called with a pseudo
2340 for our targets and all insns should take them as outputs. */
2341 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2342 gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
2343
2344 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2345 if (pat)
2346 {
2347 emit_insn (pat);
2348 return 1;
2349 }
2350 else
2351 delete_insns_since (last);
2352 }
2353
2354 /* It can't be done in this mode. Can we do it in a wider mode? */
2355
2356 if (CLASS_HAS_WIDER_MODES_P (mclass))
2357 {
2358 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2359 wider_mode != VOIDmode;
2360 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2361 {
2362 if (optab_handler (unoptab, wider_mode)->insn_code
2363 != CODE_FOR_nothing)
2364 {
2365 rtx t0 = gen_reg_rtx (wider_mode);
2366 rtx t1 = gen_reg_rtx (wider_mode);
2367 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2368
2369 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2370 {
2371 convert_move (targ0, t0, unsignedp);
2372 convert_move (targ1, t1, unsignedp);
2373 return 1;
2374 }
2375 else
2376 delete_insns_since (last);
2377 }
2378 }
2379 }
2380
2381 delete_insns_since (entry_last);
2382 return 0;
2383 }
2384 \f
2385 /* Generate code to perform an operation specified by BINOPTAB
2386 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2387 We assume that the order of the operands for the instruction
2388 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2389 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2390
2391 Either TARG0 or TARG1 may be zero, but what that means is that
2392 the result is not actually wanted. We will generate it into
2393 a dummy pseudo-reg and discard it. They may not both be zero.
2394
2395 Returns 1 if this operation can be performed; 0 if not. */
2396
2397 int
2398 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2399 int unsignedp)
2400 {
2401 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2402 enum mode_class mclass;
2403 enum machine_mode wider_mode;
2404 rtx entry_last = get_last_insn ();
2405 rtx last;
2406
2407 mclass = GET_MODE_CLASS (mode);
2408
2409 if (!targ0)
2410 targ0 = gen_reg_rtx (mode);
2411 if (!targ1)
2412 targ1 = gen_reg_rtx (mode);
2413
2414 /* Record where to go back to if we fail. */
2415 last = get_last_insn ();
2416
2417 if (optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
2418 {
2419 int icode = (int) optab_handler (binoptab, mode)->insn_code;
2420 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2421 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2422 rtx pat;
2423 rtx xop0 = op0, xop1 = op1;
2424
2425 /* If we are optimizing, force expensive constants into a register. */
2426 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
2427 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
2428
2429 /* In case the insn wants input operands in modes different from
2430 those of the actual operands, convert the operands. It would
2431 seem that we don't need to convert CONST_INTs, but we do, so
2432 that they're properly zero-extended, sign-extended or truncated
2433 for their mode. */
2434
2435 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2436 xop0 = convert_modes (mode0,
2437 GET_MODE (op0) != VOIDmode
2438 ? GET_MODE (op0)
2439 : mode,
2440 xop0, unsignedp);
2441
2442 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2443 xop1 = convert_modes (mode1,
2444 GET_MODE (op1) != VOIDmode
2445 ? GET_MODE (op1)
2446 : mode,
2447 xop1, unsignedp);
2448
2449 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2450 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
2451 xop0 = copy_to_mode_reg (mode0, xop0);
2452
2453 if (!insn_data[icode].operand[2].predicate (xop1, mode1))
2454 xop1 = copy_to_mode_reg (mode1, xop1);
2455
2456 /* We could handle this, but we should always be called with a pseudo
2457 for our targets and all insns should take them as outputs. */
2458 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2459 gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
2460
2461 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2462 if (pat)
2463 {
2464 emit_insn (pat);
2465 return 1;
2466 }
2467 else
2468 delete_insns_since (last);
2469 }
2470
2471 /* It can't be done in this mode. Can we do it in a wider mode? */
2472
2473 if (CLASS_HAS_WIDER_MODES_P (mclass))
2474 {
2475 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2476 wider_mode != VOIDmode;
2477 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2478 {
2479 if (optab_handler (binoptab, wider_mode)->insn_code
2480 != CODE_FOR_nothing)
2481 {
2482 rtx t0 = gen_reg_rtx (wider_mode);
2483 rtx t1 = gen_reg_rtx (wider_mode);
2484 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2485 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2486
2487 if (expand_twoval_binop (binoptab, cop0, cop1,
2488 t0, t1, unsignedp))
2489 {
2490 convert_move (targ0, t0, unsignedp);
2491 convert_move (targ1, t1, unsignedp);
2492 return 1;
2493 }
2494 else
2495 delete_insns_since (last);
2496 }
2497 }
2498 }
2499
2500 delete_insns_since (entry_last);
2501 return 0;
2502 }
2503
2504 /* Expand the two-valued library call indicated by BINOPTAB, but
2505 preserve only one of the values. If TARG0 is non-NULL, the first
2506 value is placed into TARG0; otherwise the second value is placed
2507 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2508 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2509 This routine assumes that the value returned by the library call is
2510 as if the return value was of an integral mode twice as wide as the
2511 mode of OP0. Returns 1 if the call was successful. */
2512
2513 bool
2514 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2515 rtx targ0, rtx targ1, enum rtx_code code)
2516 {
2517 enum machine_mode mode;
2518 enum machine_mode libval_mode;
2519 rtx libval;
2520 rtx insns;
2521 rtx libfunc;
2522
2523 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2524 gcc_assert (!targ0 != !targ1);
2525
2526 mode = GET_MODE (op0);
2527 libfunc = optab_libfunc (binoptab, mode);
2528 if (!libfunc)
2529 return false;
2530
2531 /* The value returned by the library function will have twice as
2532 many bits as the nominal MODE. */
2533 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2534 MODE_INT);
2535 start_sequence ();
2536 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2537 libval_mode, 2,
2538 op0, mode,
2539 op1, mode);
2540 /* Get the part of VAL containing the value that we want. */
2541 libval = simplify_gen_subreg (mode, libval, libval_mode,
2542 targ0 ? 0 : GET_MODE_SIZE (mode));
2543 insns = get_insns ();
2544 end_sequence ();
2545 /* Move the into the desired location. */
2546 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2547 gen_rtx_fmt_ee (code, mode, op0, op1));
2548
2549 return true;
2550 }
2551
2552 \f
2553 /* Wrapper around expand_unop which takes an rtx code to specify
2554 the operation to perform, not an optab pointer. All other
2555 arguments are the same. */
2556 rtx
2557 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2558 rtx target, int unsignedp)
2559 {
2560 optab unop = code_to_optab[(int) code];
2561 gcc_assert (unop);
2562
2563 return expand_unop (mode, unop, op0, target, unsignedp);
2564 }
2565
2566 /* Try calculating
2567 (clz:narrow x)
2568 as
2569 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2570 static rtx
2571 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2572 {
2573 enum mode_class mclass = GET_MODE_CLASS (mode);
2574 if (CLASS_HAS_WIDER_MODES_P (mclass))
2575 {
2576 enum machine_mode wider_mode;
2577 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2578 wider_mode != VOIDmode;
2579 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2580 {
2581 if (optab_handler (clz_optab, wider_mode)->insn_code
2582 != CODE_FOR_nothing)
2583 {
2584 rtx xop0, temp, last;
2585
2586 last = get_last_insn ();
2587
2588 if (target == 0)
2589 target = gen_reg_rtx (mode);
2590 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2591 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2592 if (temp != 0)
2593 temp = expand_binop (wider_mode, sub_optab, temp,
2594 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2595 - GET_MODE_BITSIZE (mode)),
2596 target, true, OPTAB_DIRECT);
2597 if (temp == 0)
2598 delete_insns_since (last);
2599
2600 return temp;
2601 }
2602 }
2603 }
2604 return 0;
2605 }
2606
2607 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2608 quantities, choosing which based on whether the high word is nonzero. */
2609 static rtx
2610 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2611 {
2612 rtx xop0 = force_reg (mode, op0);
2613 rtx subhi = gen_highpart (word_mode, xop0);
2614 rtx sublo = gen_lowpart (word_mode, xop0);
2615 rtx hi0_label = gen_label_rtx ();
2616 rtx after_label = gen_label_rtx ();
2617 rtx seq, temp, result;
2618
2619 /* If we were not given a target, use a word_mode register, not a
2620 'mode' register. The result will fit, and nobody is expecting
2621 anything bigger (the return type of __builtin_clz* is int). */
2622 if (!target)
2623 target = gen_reg_rtx (word_mode);
2624
2625 /* In any case, write to a word_mode scratch in both branches of the
2626 conditional, so we can ensure there is a single move insn setting
2627 'target' to tag a REG_EQUAL note on. */
2628 result = gen_reg_rtx (word_mode);
2629
2630 start_sequence ();
2631
2632 /* If the high word is not equal to zero,
2633 then clz of the full value is clz of the high word. */
2634 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2635 word_mode, true, hi0_label);
2636
2637 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2638 if (!temp)
2639 goto fail;
2640
2641 if (temp != result)
2642 convert_move (result, temp, true);
2643
2644 emit_jump_insn (gen_jump (after_label));
2645 emit_barrier ();
2646
2647 /* Else clz of the full value is clz of the low word plus the number
2648 of bits in the high word. */
2649 emit_label (hi0_label);
2650
2651 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2652 if (!temp)
2653 goto fail;
2654 temp = expand_binop (word_mode, add_optab, temp,
2655 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2656 result, true, OPTAB_DIRECT);
2657 if (!temp)
2658 goto fail;
2659 if (temp != result)
2660 convert_move (result, temp, true);
2661
2662 emit_label (after_label);
2663 convert_move (target, result, true);
2664
2665 seq = get_insns ();
2666 end_sequence ();
2667
2668 add_equal_note (seq, target, CLZ, xop0, 0);
2669 emit_insn (seq);
2670 return target;
2671
2672 fail:
2673 end_sequence ();
2674 return 0;
2675 }
2676
2677 /* Try calculating
2678 (bswap:narrow x)
2679 as
2680 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2681 static rtx
2682 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2683 {
2684 enum mode_class mclass = GET_MODE_CLASS (mode);
2685 enum machine_mode wider_mode;
2686 rtx x, last;
2687
2688 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2689 return NULL_RTX;
2690
2691 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2692 wider_mode != VOIDmode;
2693 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2694 if (optab_handler (bswap_optab, wider_mode)->insn_code != CODE_FOR_nothing)
2695 goto found;
2696 return NULL_RTX;
2697
2698 found:
2699 last = get_last_insn ();
2700
2701 x = widen_operand (op0, wider_mode, mode, true, true);
2702 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2703
2704 if (x != 0)
2705 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2706 size_int (GET_MODE_BITSIZE (wider_mode)
2707 - GET_MODE_BITSIZE (mode)),
2708 NULL_RTX, true);
2709
2710 if (x != 0)
2711 {
2712 if (target == 0)
2713 target = gen_reg_rtx (mode);
2714 emit_move_insn (target, gen_lowpart (mode, x));
2715 }
2716 else
2717 delete_insns_since (last);
2718
2719 return target;
2720 }
2721
2722 /* Try calculating bswap as two bswaps of two word-sized operands. */
2723
2724 static rtx
2725 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2726 {
2727 rtx t0, t1;
2728
2729 t1 = expand_unop (word_mode, bswap_optab,
2730 operand_subword_force (op, 0, mode), NULL_RTX, true);
2731 t0 = expand_unop (word_mode, bswap_optab,
2732 operand_subword_force (op, 1, mode), NULL_RTX, true);
2733
2734 if (target == 0)
2735 target = gen_reg_rtx (mode);
2736 if (REG_P (target))
2737 emit_clobber (target);
2738 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2739 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2740
2741 return target;
2742 }
2743
2744 /* Try calculating (parity x) as (and (popcount x) 1), where
2745 popcount can also be done in a wider mode. */
2746 static rtx
2747 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2748 {
2749 enum mode_class mclass = GET_MODE_CLASS (mode);
2750 if (CLASS_HAS_WIDER_MODES_P (mclass))
2751 {
2752 enum machine_mode wider_mode;
2753 for (wider_mode = mode; wider_mode != VOIDmode;
2754 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2755 {
2756 if (optab_handler (popcount_optab, wider_mode)->insn_code
2757 != CODE_FOR_nothing)
2758 {
2759 rtx xop0, temp, last;
2760
2761 last = get_last_insn ();
2762
2763 if (target == 0)
2764 target = gen_reg_rtx (mode);
2765 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2766 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2767 true);
2768 if (temp != 0)
2769 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2770 target, true, OPTAB_DIRECT);
2771 if (temp == 0)
2772 delete_insns_since (last);
2773
2774 return temp;
2775 }
2776 }
2777 }
2778 return 0;
2779 }
2780
2781 /* Try calculating ctz(x) as K - clz(x & -x) ,
2782 where K is GET_MODE_BITSIZE(mode) - 1.
2783
2784 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2785 don't have to worry about what the hardware does in that case. (If
2786 the clz instruction produces the usual value at 0, which is K, the
2787 result of this code sequence will be -1; expand_ffs, below, relies
2788 on this. It might be nice to have it be K instead, for consistency
2789 with the (very few) processors that provide a ctz with a defined
2790 value, but that would take one more instruction, and it would be
2791 less convenient for expand_ffs anyway. */
2792
2793 static rtx
2794 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2795 {
2796 rtx seq, temp;
2797
2798 if (optab_handler (clz_optab, mode)->insn_code == CODE_FOR_nothing)
2799 return 0;
2800
2801 start_sequence ();
2802
2803 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2804 if (temp)
2805 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2806 true, OPTAB_DIRECT);
2807 if (temp)
2808 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2809 if (temp)
2810 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode) - 1),
2811 temp, target,
2812 true, OPTAB_DIRECT);
2813 if (temp == 0)
2814 {
2815 end_sequence ();
2816 return 0;
2817 }
2818
2819 seq = get_insns ();
2820 end_sequence ();
2821
2822 add_equal_note (seq, temp, CTZ, op0, 0);
2823 emit_insn (seq);
2824 return temp;
2825 }
2826
2827
2828 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2829 else with the sequence used by expand_clz.
2830
2831 The ffs builtin promises to return zero for a zero value and ctz/clz
2832 may have an undefined value in that case. If they do not give us a
2833 convenient value, we have to generate a test and branch. */
2834 static rtx
2835 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2836 {
2837 HOST_WIDE_INT val = 0;
2838 bool defined_at_zero = false;
2839 rtx temp, seq;
2840
2841 if (optab_handler (ctz_optab, mode)->insn_code != CODE_FOR_nothing)
2842 {
2843 start_sequence ();
2844
2845 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2846 if (!temp)
2847 goto fail;
2848
2849 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2850 }
2851 else if (optab_handler (clz_optab, mode)->insn_code != CODE_FOR_nothing)
2852 {
2853 start_sequence ();
2854 temp = expand_ctz (mode, op0, 0);
2855 if (!temp)
2856 goto fail;
2857
2858 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2859 {
2860 defined_at_zero = true;
2861 val = (GET_MODE_BITSIZE (mode) - 1) - val;
2862 }
2863 }
2864 else
2865 return 0;
2866
2867 if (defined_at_zero && val == -1)
2868 /* No correction needed at zero. */;
2869 else
2870 {
2871 /* We don't try to do anything clever with the situation found
2872 on some processors (eg Alpha) where ctz(0:mode) ==
2873 bitsize(mode). If someone can think of a way to send N to -1
2874 and leave alone all values in the range 0..N-1 (where N is a
2875 power of two), cheaper than this test-and-branch, please add it.
2876
2877 The test-and-branch is done after the operation itself, in case
2878 the operation sets condition codes that can be recycled for this.
2879 (This is true on i386, for instance.) */
2880
2881 rtx nonzero_label = gen_label_rtx ();
2882 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2883 mode, true, nonzero_label);
2884
2885 convert_move (temp, GEN_INT (-1), false);
2886 emit_label (nonzero_label);
2887 }
2888
2889 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2890 to produce a value in the range 0..bitsize. */
2891 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2892 target, false, OPTAB_DIRECT);
2893 if (!temp)
2894 goto fail;
2895
2896 seq = get_insns ();
2897 end_sequence ();
2898
2899 add_equal_note (seq, temp, FFS, op0, 0);
2900 emit_insn (seq);
2901 return temp;
2902
2903 fail:
2904 end_sequence ();
2905 return 0;
2906 }
2907
2908 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2909 conditions, VAL may already be a SUBREG against which we cannot generate
2910 a further SUBREG. In this case, we expect forcing the value into a
2911 register will work around the situation. */
2912
2913 static rtx
2914 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2915 enum machine_mode imode)
2916 {
2917 rtx ret;
2918 ret = lowpart_subreg (omode, val, imode);
2919 if (ret == NULL)
2920 {
2921 val = force_reg (imode, val);
2922 ret = lowpart_subreg (omode, val, imode);
2923 gcc_assert (ret != NULL);
2924 }
2925 return ret;
2926 }
2927
2928 /* Expand a floating point absolute value or negation operation via a
2929 logical operation on the sign bit. */
2930
2931 static rtx
2932 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2933 rtx op0, rtx target)
2934 {
2935 const struct real_format *fmt;
2936 int bitpos, word, nwords, i;
2937 enum machine_mode imode;
2938 HOST_WIDE_INT hi, lo;
2939 rtx temp, insns;
2940
2941 /* The format has to have a simple sign bit. */
2942 fmt = REAL_MODE_FORMAT (mode);
2943 if (fmt == NULL)
2944 return NULL_RTX;
2945
2946 bitpos = fmt->signbit_rw;
2947 if (bitpos < 0)
2948 return NULL_RTX;
2949
2950 /* Don't create negative zeros if the format doesn't support them. */
2951 if (code == NEG && !fmt->has_signed_zero)
2952 return NULL_RTX;
2953
2954 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2955 {
2956 imode = int_mode_for_mode (mode);
2957 if (imode == BLKmode)
2958 return NULL_RTX;
2959 word = 0;
2960 nwords = 1;
2961 }
2962 else
2963 {
2964 imode = word_mode;
2965
2966 if (FLOAT_WORDS_BIG_ENDIAN)
2967 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2968 else
2969 word = bitpos / BITS_PER_WORD;
2970 bitpos = bitpos % BITS_PER_WORD;
2971 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2972 }
2973
2974 if (bitpos < HOST_BITS_PER_WIDE_INT)
2975 {
2976 hi = 0;
2977 lo = (HOST_WIDE_INT) 1 << bitpos;
2978 }
2979 else
2980 {
2981 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2982 lo = 0;
2983 }
2984 if (code == ABS)
2985 lo = ~lo, hi = ~hi;
2986
2987 if (target == 0 || target == op0)
2988 target = gen_reg_rtx (mode);
2989
2990 if (nwords > 1)
2991 {
2992 start_sequence ();
2993
2994 for (i = 0; i < nwords; ++i)
2995 {
2996 rtx targ_piece = operand_subword (target, i, 1, mode);
2997 rtx op0_piece = operand_subword_force (op0, i, mode);
2998
2999 if (i == word)
3000 {
3001 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3002 op0_piece,
3003 immed_double_const (lo, hi, imode),
3004 targ_piece, 1, OPTAB_LIB_WIDEN);
3005 if (temp != targ_piece)
3006 emit_move_insn (targ_piece, temp);
3007 }
3008 else
3009 emit_move_insn (targ_piece, op0_piece);
3010 }
3011
3012 insns = get_insns ();
3013 end_sequence ();
3014
3015 emit_insn (insns);
3016 }
3017 else
3018 {
3019 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3020 gen_lowpart (imode, op0),
3021 immed_double_const (lo, hi, imode),
3022 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3023 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3024
3025 set_unique_reg_note (get_last_insn (), REG_EQUAL,
3026 gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
3027 }
3028
3029 return target;
3030 }
3031
3032 /* As expand_unop, but will fail rather than attempt the operation in a
3033 different mode or with a libcall. */
3034 static rtx
3035 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3036 int unsignedp)
3037 {
3038 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
3039 {
3040 int icode = (int) optab_handler (unoptab, mode)->insn_code;
3041 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3042 rtx xop0 = op0;
3043 rtx last = get_last_insn ();
3044 rtx pat, temp;
3045
3046 if (target)
3047 temp = target;
3048 else
3049 temp = gen_reg_rtx (mode);
3050
3051 if (GET_MODE (xop0) != VOIDmode
3052 && GET_MODE (xop0) != mode0)
3053 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3054
3055 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3056
3057 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
3058 xop0 = copy_to_mode_reg (mode0, xop0);
3059
3060 if (!insn_data[icode].operand[0].predicate (temp, mode))
3061 temp = gen_reg_rtx (mode);
3062
3063 pat = GEN_FCN (icode) (temp, xop0);
3064 if (pat)
3065 {
3066 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3067 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
3068 {
3069 delete_insns_since (last);
3070 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3071 }
3072
3073 emit_insn (pat);
3074
3075 return temp;
3076 }
3077 else
3078 delete_insns_since (last);
3079 }
3080 return 0;
3081 }
3082
3083 /* Generate code to perform an operation specified by UNOPTAB
3084 on operand OP0, with result having machine-mode MODE.
3085
3086 UNSIGNEDP is for the case where we have to widen the operands
3087 to perform the operation. It says to use zero-extension.
3088
3089 If TARGET is nonzero, the value
3090 is generated there, if it is convenient to do so.
3091 In all cases an rtx is returned for the locus of the value;
3092 this may or may not be TARGET. */
3093
3094 rtx
3095 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3096 int unsignedp)
3097 {
3098 enum mode_class mclass = GET_MODE_CLASS (mode);
3099 enum machine_mode wider_mode;
3100 rtx temp;
3101 rtx libfunc;
3102
3103 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3104 if (temp)
3105 return temp;
3106
3107 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3108
3109 /* Widening (or narrowing) clz needs special treatment. */
3110 if (unoptab == clz_optab)
3111 {
3112 temp = widen_clz (mode, op0, target);
3113 if (temp)
3114 return temp;
3115
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3118 {
3119 temp = expand_doubleword_clz (mode, op0, target);
3120 if (temp)
3121 return temp;
3122 }
3123
3124 goto try_libcall;
3125 }
3126
3127 /* Widening (or narrowing) bswap needs special treatment. */
3128 if (unoptab == bswap_optab)
3129 {
3130 temp = widen_bswap (mode, op0, target);
3131 if (temp)
3132 return temp;
3133
3134 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3135 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3136 {
3137 temp = expand_doubleword_bswap (mode, op0, target);
3138 if (temp)
3139 return temp;
3140 }
3141
3142 goto try_libcall;
3143 }
3144
3145 if (CLASS_HAS_WIDER_MODES_P (mclass))
3146 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3147 wider_mode != VOIDmode;
3148 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3149 {
3150 if (optab_handler (unoptab, wider_mode)->insn_code != CODE_FOR_nothing)
3151 {
3152 rtx xop0 = op0;
3153 rtx last = get_last_insn ();
3154
3155 /* For certain operations, we need not actually extend
3156 the narrow operand, as long as we will truncate the
3157 results to the same narrowness. */
3158
3159 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3160 (unoptab == neg_optab
3161 || unoptab == one_cmpl_optab)
3162 && mclass == MODE_INT);
3163
3164 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3165 unsignedp);
3166
3167 if (temp)
3168 {
3169 if (mclass != MODE_INT
3170 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3171 GET_MODE_BITSIZE (wider_mode)))
3172 {
3173 if (target == 0)
3174 target = gen_reg_rtx (mode);
3175 convert_move (target, temp, 0);
3176 return target;
3177 }
3178 else
3179 return gen_lowpart (mode, temp);
3180 }
3181 else
3182 delete_insns_since (last);
3183 }
3184 }
3185
3186 /* These can be done a word at a time. */
3187 if (unoptab == one_cmpl_optab
3188 && mclass == MODE_INT
3189 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3190 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3191 {
3192 int i;
3193 rtx insns;
3194
3195 if (target == 0 || target == op0)
3196 target = gen_reg_rtx (mode);
3197
3198 start_sequence ();
3199
3200 /* Do the actual arithmetic. */
3201 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3202 {
3203 rtx target_piece = operand_subword (target, i, 1, mode);
3204 rtx x = expand_unop (word_mode, unoptab,
3205 operand_subword_force (op0, i, mode),
3206 target_piece, unsignedp);
3207
3208 if (target_piece != x)
3209 emit_move_insn (target_piece, x);
3210 }
3211
3212 insns = get_insns ();
3213 end_sequence ();
3214
3215 emit_insn (insns);
3216 return target;
3217 }
3218
3219 if (unoptab->code == NEG)
3220 {
3221 /* Try negating floating point values by flipping the sign bit. */
3222 if (SCALAR_FLOAT_MODE_P (mode))
3223 {
3224 temp = expand_absneg_bit (NEG, mode, op0, target);
3225 if (temp)
3226 return temp;
3227 }
3228
3229 /* If there is no negation pattern, and we have no negative zero,
3230 try subtracting from zero. */
3231 if (!HONOR_SIGNED_ZEROS (mode))
3232 {
3233 temp = expand_binop (mode, (unoptab == negv_optab
3234 ? subv_optab : sub_optab),
3235 CONST0_RTX (mode), op0, target,
3236 unsignedp, OPTAB_DIRECT);
3237 if (temp)
3238 return temp;
3239 }
3240 }
3241
3242 /* Try calculating parity (x) as popcount (x) % 2. */
3243 if (unoptab == parity_optab)
3244 {
3245 temp = expand_parity (mode, op0, target);
3246 if (temp)
3247 return temp;
3248 }
3249
3250 /* Try implementing ffs (x) in terms of clz (x). */
3251 if (unoptab == ffs_optab)
3252 {
3253 temp = expand_ffs (mode, op0, target);
3254 if (temp)
3255 return temp;
3256 }
3257
3258 /* Try implementing ctz (x) in terms of clz (x). */
3259 if (unoptab == ctz_optab)
3260 {
3261 temp = expand_ctz (mode, op0, target);
3262 if (temp)
3263 return temp;
3264 }
3265
3266 try_libcall:
3267 /* Now try a library call in this mode. */
3268 libfunc = optab_libfunc (unoptab, mode);
3269 if (libfunc)
3270 {
3271 rtx insns;
3272 rtx value;
3273 rtx eq_value;
3274 enum machine_mode outmode = mode;
3275
3276 /* All of these functions return small values. Thus we choose to
3277 have them return something that isn't a double-word. */
3278 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3279 || unoptab == popcount_optab || unoptab == parity_optab)
3280 outmode
3281 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
3282
3283 start_sequence ();
3284
3285 /* Pass 1 for NO_QUEUE so we don't lose any increments
3286 if the libcall is cse'd or moved. */
3287 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3288 1, op0, mode);
3289 insns = get_insns ();
3290 end_sequence ();
3291
3292 target = gen_reg_rtx (outmode);
3293 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3294 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3295 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3296 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3297 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3298 emit_libcall_block (insns, target, value, eq_value);
3299
3300 return target;
3301 }
3302
3303 /* It can't be done in this mode. Can we do it in a wider mode? */
3304
3305 if (CLASS_HAS_WIDER_MODES_P (mclass))
3306 {
3307 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3308 wider_mode != VOIDmode;
3309 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3310 {
3311 if ((optab_handler (unoptab, wider_mode)->insn_code
3312 != CODE_FOR_nothing)
3313 || optab_libfunc (unoptab, wider_mode))
3314 {
3315 rtx xop0 = op0;
3316 rtx last = get_last_insn ();
3317
3318 /* For certain operations, we need not actually extend
3319 the narrow operand, as long as we will truncate the
3320 results to the same narrowness. */
3321
3322 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3323 (unoptab == neg_optab
3324 || unoptab == one_cmpl_optab)
3325 && mclass == MODE_INT);
3326
3327 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3328 unsignedp);
3329
3330 /* If we are generating clz using wider mode, adjust the
3331 result. */
3332 if (unoptab == clz_optab && temp != 0)
3333 temp = expand_binop (wider_mode, sub_optab, temp,
3334 GEN_INT (GET_MODE_BITSIZE (wider_mode)
3335 - GET_MODE_BITSIZE (mode)),
3336 target, true, OPTAB_DIRECT);
3337
3338 if (temp)
3339 {
3340 if (mclass != MODE_INT)
3341 {
3342 if (target == 0)
3343 target = gen_reg_rtx (mode);
3344 convert_move (target, temp, 0);
3345 return target;
3346 }
3347 else
3348 return gen_lowpart (mode, temp);
3349 }
3350 else
3351 delete_insns_since (last);
3352 }
3353 }
3354 }
3355
3356 /* One final attempt at implementing negation via subtraction,
3357 this time allowing widening of the operand. */
3358 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3359 {
3360 rtx temp;
3361 temp = expand_binop (mode,
3362 unoptab == negv_optab ? subv_optab : sub_optab,
3363 CONST0_RTX (mode), op0,
3364 target, unsignedp, OPTAB_LIB_WIDEN);
3365 if (temp)
3366 return temp;
3367 }
3368
3369 return 0;
3370 }
3371 \f
3372 /* Emit code to compute the absolute value of OP0, with result to
3373 TARGET if convenient. (TARGET may be 0.) The return value says
3374 where the result actually is to be found.
3375
3376 MODE is the mode of the operand; the mode of the result is
3377 different but can be deduced from MODE.
3378
3379 */
3380
3381 rtx
3382 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3383 int result_unsignedp)
3384 {
3385 rtx temp;
3386
3387 if (! flag_trapv)
3388 result_unsignedp = 1;
3389
3390 /* First try to do it with a special abs instruction. */
3391 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3392 op0, target, 0);
3393 if (temp != 0)
3394 return temp;
3395
3396 /* For floating point modes, try clearing the sign bit. */
3397 if (SCALAR_FLOAT_MODE_P (mode))
3398 {
3399 temp = expand_absneg_bit (ABS, mode, op0, target);
3400 if (temp)
3401 return temp;
3402 }
3403
3404 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3405 if (optab_handler (smax_optab, mode)->insn_code != CODE_FOR_nothing
3406 && !HONOR_SIGNED_ZEROS (mode))
3407 {
3408 rtx last = get_last_insn ();
3409
3410 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3411 if (temp != 0)
3412 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3413 OPTAB_WIDEN);
3414
3415 if (temp != 0)
3416 return temp;
3417
3418 delete_insns_since (last);
3419 }
3420
3421 /* If this machine has expensive jumps, we can do integer absolute
3422 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3423 where W is the width of MODE. */
3424
3425 if (GET_MODE_CLASS (mode) == MODE_INT
3426 && BRANCH_COST (optimize_insn_for_speed_p (),
3427 false) >= 2)
3428 {
3429 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3430 size_int (GET_MODE_BITSIZE (mode) - 1),
3431 NULL_RTX, 0);
3432
3433 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3434 OPTAB_LIB_WIDEN);
3435 if (temp != 0)
3436 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3437 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3438
3439 if (temp != 0)
3440 return temp;
3441 }
3442
3443 return NULL_RTX;
3444 }
3445
3446 rtx
3447 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3448 int result_unsignedp, int safe)
3449 {
3450 rtx temp, op1;
3451
3452 if (! flag_trapv)
3453 result_unsignedp = 1;
3454
3455 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3456 if (temp != 0)
3457 return temp;
3458
3459 /* If that does not win, use conditional jump and negate. */
3460
3461 /* It is safe to use the target if it is the same
3462 as the source if this is also a pseudo register */
3463 if (op0 == target && REG_P (op0)
3464 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3465 safe = 1;
3466
3467 op1 = gen_label_rtx ();
3468 if (target == 0 || ! safe
3469 || GET_MODE (target) != mode
3470 || (MEM_P (target) && MEM_VOLATILE_P (target))
3471 || (REG_P (target)
3472 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3473 target = gen_reg_rtx (mode);
3474
3475 emit_move_insn (target, op0);
3476 NO_DEFER_POP;
3477
3478 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3479 NULL_RTX, NULL_RTX, op1);
3480
3481 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3482 target, target, 0);
3483 if (op0 != target)
3484 emit_move_insn (target, op0);
3485 emit_label (op1);
3486 OK_DEFER_POP;
3487 return target;
3488 }
3489
3490 /* A subroutine of expand_copysign, perform the copysign operation using the
3491 abs and neg primitives advertised to exist on the target. The assumption
3492 is that we have a split register file, and leaving op0 in fp registers,
3493 and not playing with subregs so much, will help the register allocator. */
3494
3495 static rtx
3496 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3497 int bitpos, bool op0_is_abs)
3498 {
3499 enum machine_mode imode;
3500 int icode;
3501 rtx sign, label;
3502
3503 if (target == op1)
3504 target = NULL_RTX;
3505
3506 /* Check if the back end provides an insn that handles signbit for the
3507 argument's mode. */
3508 icode = (int) signbit_optab->handlers [(int) mode].insn_code;
3509 if (icode != CODE_FOR_nothing)
3510 {
3511 imode = insn_data[icode].operand[0].mode;
3512 sign = gen_reg_rtx (imode);
3513 emit_unop_insn (icode, sign, op1, UNKNOWN);
3514 }
3515 else
3516 {
3517 HOST_WIDE_INT hi, lo;
3518
3519 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3520 {
3521 imode = int_mode_for_mode (mode);
3522 if (imode == BLKmode)
3523 return NULL_RTX;
3524 op1 = gen_lowpart (imode, op1);
3525 }
3526 else
3527 {
3528 int word;
3529
3530 imode = word_mode;
3531 if (FLOAT_WORDS_BIG_ENDIAN)
3532 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3533 else
3534 word = bitpos / BITS_PER_WORD;
3535 bitpos = bitpos % BITS_PER_WORD;
3536 op1 = operand_subword_force (op1, word, mode);
3537 }
3538
3539 if (bitpos < HOST_BITS_PER_WIDE_INT)
3540 {
3541 hi = 0;
3542 lo = (HOST_WIDE_INT) 1 << bitpos;
3543 }
3544 else
3545 {
3546 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3547 lo = 0;
3548 }
3549
3550 sign = gen_reg_rtx (imode);
3551 sign = expand_binop (imode, and_optab, op1,
3552 immed_double_const (lo, hi, imode),
3553 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3554 }
3555
3556 if (!op0_is_abs)
3557 {
3558 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3559 if (op0 == NULL)
3560 return NULL_RTX;
3561 target = op0;
3562 }
3563 else
3564 {
3565 if (target == NULL_RTX)
3566 target = copy_to_reg (op0);
3567 else
3568 emit_move_insn (target, op0);
3569 }
3570
3571 label = gen_label_rtx ();
3572 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3573
3574 if (GET_CODE (op0) == CONST_DOUBLE)
3575 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3576 else
3577 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3578 if (op0 != target)
3579 emit_move_insn (target, op0);
3580
3581 emit_label (label);
3582
3583 return target;
3584 }
3585
3586
3587 /* A subroutine of expand_copysign, perform the entire copysign operation
3588 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3589 is true if op0 is known to have its sign bit clear. */
3590
3591 static rtx
3592 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3593 int bitpos, bool op0_is_abs)
3594 {
3595 enum machine_mode imode;
3596 HOST_WIDE_INT hi, lo;
3597 int word, nwords, i;
3598 rtx temp, insns;
3599
3600 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3601 {
3602 imode = int_mode_for_mode (mode);
3603 if (imode == BLKmode)
3604 return NULL_RTX;
3605 word = 0;
3606 nwords = 1;
3607 }
3608 else
3609 {
3610 imode = word_mode;
3611
3612 if (FLOAT_WORDS_BIG_ENDIAN)
3613 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3614 else
3615 word = bitpos / BITS_PER_WORD;
3616 bitpos = bitpos % BITS_PER_WORD;
3617 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3618 }
3619
3620 if (bitpos < HOST_BITS_PER_WIDE_INT)
3621 {
3622 hi = 0;
3623 lo = (HOST_WIDE_INT) 1 << bitpos;
3624 }
3625 else
3626 {
3627 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3628 lo = 0;
3629 }
3630
3631 if (target == 0 || target == op0 || target == op1)
3632 target = gen_reg_rtx (mode);
3633
3634 if (nwords > 1)
3635 {
3636 start_sequence ();
3637
3638 for (i = 0; i < nwords; ++i)
3639 {
3640 rtx targ_piece = operand_subword (target, i, 1, mode);
3641 rtx op0_piece = operand_subword_force (op0, i, mode);
3642
3643 if (i == word)
3644 {
3645 if (!op0_is_abs)
3646 op0_piece = expand_binop (imode, and_optab, op0_piece,
3647 immed_double_const (~lo, ~hi, imode),
3648 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3649
3650 op1 = expand_binop (imode, and_optab,
3651 operand_subword_force (op1, i, mode),
3652 immed_double_const (lo, hi, imode),
3653 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3654
3655 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3656 targ_piece, 1, OPTAB_LIB_WIDEN);
3657 if (temp != targ_piece)
3658 emit_move_insn (targ_piece, temp);
3659 }
3660 else
3661 emit_move_insn (targ_piece, op0_piece);
3662 }
3663
3664 insns = get_insns ();
3665 end_sequence ();
3666
3667 emit_insn (insns);
3668 }
3669 else
3670 {
3671 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3672 immed_double_const (lo, hi, imode),
3673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3674
3675 op0 = gen_lowpart (imode, op0);
3676 if (!op0_is_abs)
3677 op0 = expand_binop (imode, and_optab, op0,
3678 immed_double_const (~lo, ~hi, imode),
3679 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3680
3681 temp = expand_binop (imode, ior_optab, op0, op1,
3682 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3683 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3684 }
3685
3686 return target;
3687 }
3688
3689 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3690 scalar floating point mode. Return NULL if we do not know how to
3691 expand the operation inline. */
3692
3693 rtx
3694 expand_copysign (rtx op0, rtx op1, rtx target)
3695 {
3696 enum machine_mode mode = GET_MODE (op0);
3697 const struct real_format *fmt;
3698 bool op0_is_abs;
3699 rtx temp;
3700
3701 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3702 gcc_assert (GET_MODE (op1) == mode);
3703
3704 /* First try to do it with a special instruction. */
3705 temp = expand_binop (mode, copysign_optab, op0, op1,
3706 target, 0, OPTAB_DIRECT);
3707 if (temp)
3708 return temp;
3709
3710 fmt = REAL_MODE_FORMAT (mode);
3711 if (fmt == NULL || !fmt->has_signed_zero)
3712 return NULL_RTX;
3713
3714 op0_is_abs = false;
3715 if (GET_CODE (op0) == CONST_DOUBLE)
3716 {
3717 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3718 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3719 op0_is_abs = true;
3720 }
3721
3722 if (fmt->signbit_ro >= 0
3723 && (GET_CODE (op0) == CONST_DOUBLE
3724 || (optab_handler (neg_optab, mode)->insn_code != CODE_FOR_nothing
3725 && optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)))
3726 {
3727 temp = expand_copysign_absneg (mode, op0, op1, target,
3728 fmt->signbit_ro, op0_is_abs);
3729 if (temp)
3730 return temp;
3731 }
3732
3733 if (fmt->signbit_rw < 0)
3734 return NULL_RTX;
3735 return expand_copysign_bit (mode, op0, op1, target,
3736 fmt->signbit_rw, op0_is_abs);
3737 }
3738 \f
3739 /* Generate an instruction whose insn-code is INSN_CODE,
3740 with two operands: an output TARGET and an input OP0.
3741 TARGET *must* be nonzero, and the output is always stored there.
3742 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3743 the value that is stored into TARGET.
3744
3745 Return false if expansion failed. */
3746
3747 bool
3748 maybe_emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3749 {
3750 rtx temp;
3751 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3752 rtx pat;
3753 rtx last = get_last_insn ();
3754
3755 temp = target;
3756
3757 /* Now, if insn does not accept our operands, put them into pseudos. */
3758
3759 if (!insn_data[icode].operand[1].predicate (op0, mode0))
3760 op0 = copy_to_mode_reg (mode0, op0);
3761
3762 if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
3763 temp = gen_reg_rtx (GET_MODE (temp));
3764
3765 pat = GEN_FCN (icode) (temp, op0);
3766 if (!pat)
3767 {
3768 delete_insns_since (last);
3769 return false;
3770 }
3771
3772 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3773 add_equal_note (pat, temp, code, op0, NULL_RTX);
3774
3775 emit_insn (pat);
3776
3777 if (temp != target)
3778 emit_move_insn (target, temp);
3779 return true;
3780 }
3781 /* Generate an instruction whose insn-code is INSN_CODE,
3782 with two operands: an output TARGET and an input OP0.
3783 TARGET *must* be nonzero, and the output is always stored there.
3784 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3785 the value that is stored into TARGET. */
3786
3787 void
3788 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3789 {
3790 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3791 gcc_assert (ok);
3792 }
3793 \f
3794 struct no_conflict_data
3795 {
3796 rtx target, first, insn;
3797 bool must_stay;
3798 };
3799
3800 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3801 the currently examined clobber / store has to stay in the list of
3802 insns that constitute the actual libcall block. */
3803 static void
3804 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3805 {
3806 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3807
3808 /* If this inns directly contributes to setting the target, it must stay. */
3809 if (reg_overlap_mentioned_p (p->target, dest))
3810 p->must_stay = true;
3811 /* If we haven't committed to keeping any other insns in the list yet,
3812 there is nothing more to check. */
3813 else if (p->insn == p->first)
3814 return;
3815 /* If this insn sets / clobbers a register that feeds one of the insns
3816 already in the list, this insn has to stay too. */
3817 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3818 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3819 || reg_used_between_p (dest, p->first, p->insn)
3820 /* Likewise if this insn depends on a register set by a previous
3821 insn in the list, or if it sets a result (presumably a hard
3822 register) that is set or clobbered by a previous insn.
3823 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3824 SET_DEST perform the former check on the address, and the latter
3825 check on the MEM. */
3826 || (GET_CODE (set) == SET
3827 && (modified_in_p (SET_SRC (set), p->first)
3828 || modified_in_p (SET_DEST (set), p->first)
3829 || modified_between_p (SET_SRC (set), p->first, p->insn)
3830 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3831 p->must_stay = true;
3832 }
3833
3834 \f
3835 /* Emit code to make a call to a constant function or a library call.
3836
3837 INSNS is a list containing all insns emitted in the call.
3838 These insns leave the result in RESULT. Our block is to copy RESULT
3839 to TARGET, which is logically equivalent to EQUIV.
3840
3841 We first emit any insns that set a pseudo on the assumption that these are
3842 loading constants into registers; doing so allows them to be safely cse'ed
3843 between blocks. Then we emit all the other insns in the block, followed by
3844 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3845 note with an operand of EQUIV. */
3846
3847 void
3848 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3849 {
3850 rtx final_dest = target;
3851 rtx prev, next, last, insn;
3852
3853 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3854 into a MEM later. Protect the libcall block from this change. */
3855 if (! REG_P (target) || REG_USERVAR_P (target))
3856 target = gen_reg_rtx (GET_MODE (target));
3857
3858 /* If we're using non-call exceptions, a libcall corresponding to an
3859 operation that may trap may also trap. */
3860 if (flag_non_call_exceptions && may_trap_p (equiv))
3861 {
3862 for (insn = insns; insn; insn = NEXT_INSN (insn))
3863 if (CALL_P (insn))
3864 {
3865 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3866
3867 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3868 remove_note (insn, note);
3869 }
3870 }
3871 else
3872 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3873 reg note to indicate that this call cannot throw or execute a nonlocal
3874 goto (unless there is already a REG_EH_REGION note, in which case
3875 we update it). */
3876 for (insn = insns; insn; insn = NEXT_INSN (insn))
3877 if (CALL_P (insn))
3878 {
3879 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3880
3881 if (note != 0)
3882 XEXP (note, 0) = constm1_rtx;
3883 else
3884 add_reg_note (insn, REG_EH_REGION, constm1_rtx);
3885 }
3886
3887 /* First emit all insns that set pseudos. Remove them from the list as
3888 we go. Avoid insns that set pseudos which were referenced in previous
3889 insns. These can be generated by move_by_pieces, for example,
3890 to update an address. Similarly, avoid insns that reference things
3891 set in previous insns. */
3892
3893 for (insn = insns; insn; insn = next)
3894 {
3895 rtx set = single_set (insn);
3896
3897 next = NEXT_INSN (insn);
3898
3899 if (set != 0 && REG_P (SET_DEST (set))
3900 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3901 {
3902 struct no_conflict_data data;
3903
3904 data.target = const0_rtx;
3905 data.first = insns;
3906 data.insn = insn;
3907 data.must_stay = 0;
3908 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3909 if (! data.must_stay)
3910 {
3911 if (PREV_INSN (insn))
3912 NEXT_INSN (PREV_INSN (insn)) = next;
3913 else
3914 insns = next;
3915
3916 if (next)
3917 PREV_INSN (next) = PREV_INSN (insn);
3918
3919 add_insn (insn);
3920 }
3921 }
3922
3923 /* Some ports use a loop to copy large arguments onto the stack.
3924 Don't move anything outside such a loop. */
3925 if (LABEL_P (insn))
3926 break;
3927 }
3928
3929 prev = get_last_insn ();
3930
3931 /* Write the remaining insns followed by the final copy. */
3932
3933 for (insn = insns; insn; insn = next)
3934 {
3935 next = NEXT_INSN (insn);
3936
3937 add_insn (insn);
3938 }
3939
3940 last = emit_move_insn (target, result);
3941 if (optab_handler (mov_optab, GET_MODE (target))->insn_code
3942 != CODE_FOR_nothing)
3943 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3944
3945 if (final_dest != target)
3946 emit_move_insn (final_dest, target);
3947 }
3948 \f
3949 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3950 PURPOSE describes how this comparison will be used. CODE is the rtx
3951 comparison code we will be using.
3952
3953 ??? Actually, CODE is slightly weaker than that. A target is still
3954 required to implement all of the normal bcc operations, but not
3955 required to implement all (or any) of the unordered bcc operations. */
3956
3957 int
3958 can_compare_p (enum rtx_code code, enum machine_mode mode,
3959 enum can_compare_purpose purpose)
3960 {
3961 rtx test;
3962 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3963 do
3964 {
3965 int icode;
3966
3967 if (purpose == ccp_jump
3968 && (icode = optab_handler (cbranch_optab, mode)->insn_code) != CODE_FOR_nothing
3969 && insn_data[icode].operand[0].predicate (test, mode))
3970 return 1;
3971 if (purpose == ccp_store_flag
3972 && (icode = optab_handler (cstore_optab, mode)->insn_code) != CODE_FOR_nothing
3973 && insn_data[icode].operand[1].predicate (test, mode))
3974 return 1;
3975 if (purpose == ccp_cmov
3976 && optab_handler (cmov_optab, mode)->insn_code != CODE_FOR_nothing)
3977 return 1;
3978
3979 mode = GET_MODE_WIDER_MODE (mode);
3980 PUT_MODE (test, mode);
3981 }
3982 while (mode != VOIDmode);
3983
3984 return 0;
3985 }
3986
3987 /* This function is called when we are going to emit a compare instruction that
3988 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3989
3990 *PMODE is the mode of the inputs (in case they are const_int).
3991 *PUNSIGNEDP nonzero says that the operands are unsigned;
3992 this matters if they need to be widened (as given by METHODS).
3993
3994 If they have mode BLKmode, then SIZE specifies the size of both operands.
3995
3996 This function performs all the setup necessary so that the caller only has
3997 to emit a single comparison insn. This setup can involve doing a BLKmode
3998 comparison or emitting a library call to perform the comparison if no insn
3999 is available to handle it.
4000 The values which are passed in through pointers can be modified; the caller
4001 should perform the comparison on the modified values. Constant
4002 comparisons must have already been folded. */
4003
4004 static void
4005 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4006 int unsignedp, enum optab_methods methods,
4007 rtx *ptest, enum machine_mode *pmode)
4008 {
4009 enum machine_mode mode = *pmode;
4010 rtx libfunc, test;
4011 enum machine_mode cmp_mode;
4012 enum mode_class mclass;
4013
4014 /* The other methods are not needed. */
4015 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4016 || methods == OPTAB_LIB_WIDEN);
4017
4018 /* If we are optimizing, force expensive constants into a register. */
4019 if (CONSTANT_P (x) && optimize
4020 && (rtx_cost (x, COMPARE, optimize_insn_for_speed_p ())
4021 > COSTS_N_INSNS (1)))
4022 x = force_reg (mode, x);
4023
4024 if (CONSTANT_P (y) && optimize
4025 && (rtx_cost (y, COMPARE, optimize_insn_for_speed_p ())
4026 > COSTS_N_INSNS (1)))
4027 y = force_reg (mode, y);
4028
4029 #ifdef HAVE_cc0
4030 /* Make sure if we have a canonical comparison. The RTL
4031 documentation states that canonical comparisons are required only
4032 for targets which have cc0. */
4033 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4034 #endif
4035
4036 /* Don't let both operands fail to indicate the mode. */
4037 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4038 x = force_reg (mode, x);
4039 if (mode == VOIDmode)
4040 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4041
4042 /* Handle all BLKmode compares. */
4043
4044 if (mode == BLKmode)
4045 {
4046 enum machine_mode result_mode;
4047 enum insn_code cmp_code;
4048 tree length_type;
4049 rtx libfunc;
4050 rtx result;
4051 rtx opalign
4052 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4053
4054 gcc_assert (size);
4055
4056 /* Try to use a memory block compare insn - either cmpstr
4057 or cmpmem will do. */
4058 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4059 cmp_mode != VOIDmode;
4060 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4061 {
4062 cmp_code = cmpmem_optab[cmp_mode];
4063 if (cmp_code == CODE_FOR_nothing)
4064 cmp_code = cmpstr_optab[cmp_mode];
4065 if (cmp_code == CODE_FOR_nothing)
4066 cmp_code = cmpstrn_optab[cmp_mode];
4067 if (cmp_code == CODE_FOR_nothing)
4068 continue;
4069
4070 /* Must make sure the size fits the insn's mode. */
4071 if ((GET_CODE (size) == CONST_INT
4072 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4073 || (GET_MODE_BITSIZE (GET_MODE (size))
4074 > GET_MODE_BITSIZE (cmp_mode)))
4075 continue;
4076
4077 result_mode = insn_data[cmp_code].operand[0].mode;
4078 result = gen_reg_rtx (result_mode);
4079 size = convert_to_mode (cmp_mode, size, 1);
4080 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4081
4082 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4083 *pmode = result_mode;
4084 return;
4085 }
4086
4087 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4088 goto fail;
4089
4090 /* Otherwise call a library function, memcmp. */
4091 libfunc = memcmp_libfunc;
4092 length_type = sizetype;
4093 result_mode = TYPE_MODE (integer_type_node);
4094 cmp_mode = TYPE_MODE (length_type);
4095 size = convert_to_mode (TYPE_MODE (length_type), size,
4096 TYPE_UNSIGNED (length_type));
4097
4098 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4099 result_mode, 3,
4100 XEXP (x, 0), Pmode,
4101 XEXP (y, 0), Pmode,
4102 size, cmp_mode);
4103
4104 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4105 *pmode = result_mode;
4106 return;
4107 }
4108
4109 /* Don't allow operands to the compare to trap, as that can put the
4110 compare and branch in different basic blocks. */
4111 if (flag_non_call_exceptions)
4112 {
4113 if (may_trap_p (x))
4114 x = force_reg (mode, x);
4115 if (may_trap_p (y))
4116 y = force_reg (mode, y);
4117 }
4118
4119 if (GET_MODE_CLASS (mode) == MODE_CC)
4120 {
4121 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4122 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4123 return;
4124 }
4125
4126 mclass = GET_MODE_CLASS (mode);
4127 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4128 cmp_mode = mode;
4129 do
4130 {
4131 enum insn_code icode;
4132 icode = optab_handler (cbranch_optab, cmp_mode)->insn_code;
4133 if (icode != CODE_FOR_nothing
4134 && insn_data[icode].operand[0].predicate (test, VOIDmode))
4135 {
4136 rtx last = get_last_insn ();
4137 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4138 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4139 if (op0 && op1
4140 && insn_data[icode].operand[1].predicate
4141 (op0, insn_data[icode].operand[1].mode)
4142 && insn_data[icode].operand[2].predicate
4143 (op1, insn_data[icode].operand[2].mode))
4144 {
4145 XEXP (test, 0) = op0;
4146 XEXP (test, 1) = op1;
4147 *ptest = test;
4148 *pmode = cmp_mode;
4149 return;
4150 }
4151 delete_insns_since (last);
4152 }
4153
4154 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4155 break;
4156 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4157 }
4158 while (cmp_mode != VOIDmode);
4159
4160 if (methods != OPTAB_LIB_WIDEN)
4161 goto fail;
4162
4163 if (!SCALAR_FLOAT_MODE_P (mode))
4164 {
4165 rtx result;
4166
4167 /* Handle a libcall just for the mode we are using. */
4168 libfunc = optab_libfunc (cmp_optab, mode);
4169 gcc_assert (libfunc);
4170
4171 /* If we want unsigned, and this mode has a distinct unsigned
4172 comparison routine, use that. */
4173 if (unsignedp)
4174 {
4175 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4176 if (ulibfunc)
4177 libfunc = ulibfunc;
4178 }
4179
4180 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4181 targetm.libgcc_cmp_return_mode (),
4182 2, x, mode, y, mode);
4183
4184 /* There are two kinds of comparison routines. Biased routines
4185 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4186 of gcc expect that the comparison operation is equivalent
4187 to the modified comparison. For signed comparisons compare the
4188 result against 1 in the biased case, and zero in the unbiased
4189 case. For unsigned comparisons always compare against 1 after
4190 biasing the unbiased result by adding 1. This gives us a way to
4191 represent LTU. */
4192 x = result;
4193 y = const1_rtx;
4194
4195 if (!TARGET_LIB_INT_CMP_BIASED)
4196 {
4197 if (unsignedp)
4198 x = plus_constant (result, 1);
4199 else
4200 y = const0_rtx;
4201 }
4202
4203 *pmode = word_mode;
4204 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4205 ptest, pmode);
4206 }
4207 else
4208 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4209
4210 return;
4211
4212 fail:
4213 *ptest = NULL_RTX;
4214 }
4215
4216 /* Before emitting an insn with code ICODE, make sure that X, which is going
4217 to be used for operand OPNUM of the insn, is converted from mode MODE to
4218 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4219 that it is accepted by the operand predicate. Return the new value. */
4220
4221 rtx
4222 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
4223 enum machine_mode wider_mode, int unsignedp)
4224 {
4225 if (mode != wider_mode)
4226 x = convert_modes (wider_mode, mode, x, unsignedp);
4227
4228 if (!insn_data[icode].operand[opnum].predicate
4229 (x, insn_data[icode].operand[opnum].mode))
4230 {
4231 if (reload_completed)
4232 return NULL_RTX;
4233 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
4234 }
4235
4236 return x;
4237 }
4238
4239 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4240 we can do the branch. */
4241
4242 static void
4243 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
4244 {
4245 enum machine_mode optab_mode;
4246 enum mode_class mclass;
4247 enum insn_code icode;
4248
4249 mclass = GET_MODE_CLASS (mode);
4250 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4251 icode = optab_handler (cbranch_optab, optab_mode)->insn_code;
4252
4253 gcc_assert (icode != CODE_FOR_nothing);
4254 gcc_assert (insn_data[icode].operand[0].predicate (test, VOIDmode));
4255 emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
4256 }
4257
4258 /* Generate code to compare X with Y so that the condition codes are
4259 set and to jump to LABEL if the condition is true. If X is a
4260 constant and Y is not a constant, then the comparison is swapped to
4261 ensure that the comparison RTL has the canonical form.
4262
4263 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4264 need to be widened. UNSIGNEDP is also used to select the proper
4265 branch condition code.
4266
4267 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4268
4269 MODE is the mode of the inputs (in case they are const_int).
4270
4271 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4272 It will be potentially converted into an unsigned variant based on
4273 UNSIGNEDP to select a proper jump instruction. */
4274
4275 void
4276 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4277 enum machine_mode mode, int unsignedp, rtx label)
4278 {
4279 rtx op0 = x, op1 = y;
4280 rtx test;
4281
4282 /* Swap operands and condition to ensure canonical RTL. */
4283 if (swap_commutative_operands_p (x, y))
4284 {
4285 op0 = y, op1 = x;
4286 comparison = swap_condition (comparison);
4287 }
4288
4289 #ifdef HAVE_cc0
4290 /* If OP0 is still a constant, then both X and Y must be constants.
4291 Force X into a register to create canonical RTL. */
4292 if (CONSTANT_P (op0))
4293 op0 = force_reg (mode, op0);
4294 #endif
4295
4296 if (unsignedp)
4297 comparison = unsigned_condition (comparison);
4298
4299 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4300 &test, &mode);
4301 emit_cmp_and_jump_insn_1 (test, mode, label);
4302 }
4303
4304 \f
4305 /* Emit a library call comparison between floating point X and Y.
4306 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4307
4308 static void
4309 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4310 rtx *ptest, enum machine_mode *pmode)
4311 {
4312 enum rtx_code swapped = swap_condition (comparison);
4313 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4314 enum machine_mode orig_mode = GET_MODE (x);
4315 enum machine_mode mode, cmp_mode;
4316 rtx value, target, insns, equiv;
4317 rtx libfunc = 0;
4318 bool reversed_p = false;
4319 cmp_mode = targetm.libgcc_cmp_return_mode ();
4320
4321 for (mode = orig_mode;
4322 mode != VOIDmode;
4323 mode = GET_MODE_WIDER_MODE (mode))
4324 {
4325 if (code_to_optab[comparison]
4326 && (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4327 break;
4328
4329 if (code_to_optab[swapped]
4330 && (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
4331 {
4332 rtx tmp;
4333 tmp = x; x = y; y = tmp;
4334 comparison = swapped;
4335 break;
4336 }
4337
4338 if (code_to_optab[reversed]
4339 && (libfunc = optab_libfunc (code_to_optab[reversed], mode))
4340 && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
4341 {
4342 comparison = reversed;
4343 reversed_p = true;
4344 break;
4345 }
4346 }
4347
4348 gcc_assert (mode != VOIDmode);
4349
4350 if (mode != orig_mode)
4351 {
4352 x = convert_to_mode (mode, x, 0);
4353 y = convert_to_mode (mode, y, 0);
4354 }
4355
4356 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4357 the RTL. The allows the RTL optimizers to delete the libcall if the
4358 condition can be determined at compile-time. */
4359 if (comparison == UNORDERED)
4360 {
4361 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4362 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4363 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4364 temp, const_true_rtx, equiv);
4365 }
4366 else
4367 {
4368 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4369 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4370 {
4371 rtx true_rtx, false_rtx;
4372
4373 switch (comparison)
4374 {
4375 case EQ:
4376 true_rtx = const0_rtx;
4377 false_rtx = const_true_rtx;
4378 break;
4379
4380 case NE:
4381 true_rtx = const_true_rtx;
4382 false_rtx = const0_rtx;
4383 break;
4384
4385 case GT:
4386 true_rtx = const1_rtx;
4387 false_rtx = const0_rtx;
4388 break;
4389
4390 case GE:
4391 true_rtx = const0_rtx;
4392 false_rtx = constm1_rtx;
4393 break;
4394
4395 case LT:
4396 true_rtx = constm1_rtx;
4397 false_rtx = const0_rtx;
4398 break;
4399
4400 case LE:
4401 true_rtx = const0_rtx;
4402 false_rtx = const1_rtx;
4403 break;
4404
4405 default:
4406 gcc_unreachable ();
4407 }
4408 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4409 equiv, true_rtx, false_rtx);
4410 }
4411 }
4412
4413 start_sequence ();
4414 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4415 cmp_mode, 2, x, mode, y, mode);
4416 insns = get_insns ();
4417 end_sequence ();
4418
4419 target = gen_reg_rtx (cmp_mode);
4420 emit_libcall_block (insns, target, value, equiv);
4421
4422 if (comparison == UNORDERED
4423 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4424 comparison = reversed_p ? EQ : NE;
4425
4426 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4427 *pmode = cmp_mode;
4428 }
4429 \f
4430 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4431
4432 void
4433 emit_indirect_jump (rtx loc)
4434 {
4435 if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
4436 (loc, Pmode))
4437 loc = copy_to_mode_reg (Pmode, loc);
4438
4439 emit_jump_insn (gen_indirect_jump (loc));
4440 emit_barrier ();
4441 }
4442 \f
4443 #ifdef HAVE_conditional_move
4444
4445 /* Emit a conditional move instruction if the machine supports one for that
4446 condition and machine mode.
4447
4448 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4449 the mode to use should they be constants. If it is VOIDmode, they cannot
4450 both be constants.
4451
4452 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4453 should be stored there. MODE is the mode to use should they be constants.
4454 If it is VOIDmode, they cannot both be constants.
4455
4456 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4457 is not supported. */
4458
4459 rtx
4460 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4461 enum machine_mode cmode, rtx op2, rtx op3,
4462 enum machine_mode mode, int unsignedp)
4463 {
4464 rtx tem, subtarget, comparison, insn;
4465 enum insn_code icode;
4466 enum rtx_code reversed;
4467
4468 /* If one operand is constant, make it the second one. Only do this
4469 if the other operand is not constant as well. */
4470
4471 if (swap_commutative_operands_p (op0, op1))
4472 {
4473 tem = op0;
4474 op0 = op1;
4475 op1 = tem;
4476 code = swap_condition (code);
4477 }
4478
4479 /* get_condition will prefer to generate LT and GT even if the old
4480 comparison was against zero, so undo that canonicalization here since
4481 comparisons against zero are cheaper. */
4482 if (code == LT && op1 == const1_rtx)
4483 code = LE, op1 = const0_rtx;
4484 else if (code == GT && op1 == constm1_rtx)
4485 code = GE, op1 = const0_rtx;
4486
4487 if (cmode == VOIDmode)
4488 cmode = GET_MODE (op0);
4489
4490 if (swap_commutative_operands_p (op2, op3)
4491 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4492 != UNKNOWN))
4493 {
4494 tem = op2;
4495 op2 = op3;
4496 op3 = tem;
4497 code = reversed;
4498 }
4499
4500 if (mode == VOIDmode)
4501 mode = GET_MODE (op2);
4502
4503 icode = movcc_gen_code[mode];
4504
4505 if (icode == CODE_FOR_nothing)
4506 return 0;
4507
4508 if (!target)
4509 target = gen_reg_rtx (mode);
4510
4511 subtarget = target;
4512
4513 /* If the insn doesn't accept these operands, put them in pseudos. */
4514
4515 if (!insn_data[icode].operand[0].predicate
4516 (subtarget, insn_data[icode].operand[0].mode))
4517 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4518
4519 if (!insn_data[icode].operand[2].predicate
4520 (op2, insn_data[icode].operand[2].mode))
4521 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4522
4523 if (!insn_data[icode].operand[3].predicate
4524 (op3, insn_data[icode].operand[3].mode))
4525 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4526
4527 /* Everything should now be in the suitable form. */
4528
4529 code = unsignedp ? unsigned_condition (code) : code;
4530 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4531
4532 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4533 return NULL and let the caller figure out how best to deal with this
4534 situation. */
4535 if (!COMPARISON_P (comparison))
4536 return NULL_RTX;
4537
4538 do_pending_stack_adjust ();
4539 start_sequence ();
4540 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4541 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4542 &comparison, &cmode);
4543 if (!comparison)
4544 insn = NULL_RTX;
4545 else
4546 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4547
4548 /* If that failed, then give up. */
4549 if (insn == 0)
4550 {
4551 end_sequence ();
4552 return 0;
4553 }
4554
4555 emit_insn (insn);
4556 insn = get_insns ();
4557 end_sequence ();
4558 emit_insn (insn);
4559 if (subtarget != target)
4560 convert_move (target, subtarget, 0);
4561
4562 return target;
4563 }
4564
4565 /* Return nonzero if a conditional move of mode MODE is supported.
4566
4567 This function is for combine so it can tell whether an insn that looks
4568 like a conditional move is actually supported by the hardware. If we
4569 guess wrong we lose a bit on optimization, but that's it. */
4570 /* ??? sparc64 supports conditionally moving integers values based on fp
4571 comparisons, and vice versa. How do we handle them? */
4572
4573 int
4574 can_conditionally_move_p (enum machine_mode mode)
4575 {
4576 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4577 return 1;
4578
4579 return 0;
4580 }
4581
4582 #endif /* HAVE_conditional_move */
4583
4584 /* Emit a conditional addition instruction if the machine supports one for that
4585 condition and machine mode.
4586
4587 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4588 the mode to use should they be constants. If it is VOIDmode, they cannot
4589 both be constants.
4590
4591 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4592 should be stored there. MODE is the mode to use should they be constants.
4593 If it is VOIDmode, they cannot both be constants.
4594
4595 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4596 is not supported. */
4597
4598 rtx
4599 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4600 enum machine_mode cmode, rtx op2, rtx op3,
4601 enum machine_mode mode, int unsignedp)
4602 {
4603 rtx tem, subtarget, comparison, insn;
4604 enum insn_code icode;
4605 enum rtx_code reversed;
4606
4607 /* If one operand is constant, make it the second one. Only do this
4608 if the other operand is not constant as well. */
4609
4610 if (swap_commutative_operands_p (op0, op1))
4611 {
4612 tem = op0;
4613 op0 = op1;
4614 op1 = tem;
4615 code = swap_condition (code);
4616 }
4617
4618 /* get_condition will prefer to generate LT and GT even if the old
4619 comparison was against zero, so undo that canonicalization here since
4620 comparisons against zero are cheaper. */
4621 if (code == LT && op1 == const1_rtx)
4622 code = LE, op1 = const0_rtx;
4623 else if (code == GT && op1 == constm1_rtx)
4624 code = GE, op1 = const0_rtx;
4625
4626 if (cmode == VOIDmode)
4627 cmode = GET_MODE (op0);
4628
4629 if (swap_commutative_operands_p (op2, op3)
4630 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4631 != UNKNOWN))
4632 {
4633 tem = op2;
4634 op2 = op3;
4635 op3 = tem;
4636 code = reversed;
4637 }
4638
4639 if (mode == VOIDmode)
4640 mode = GET_MODE (op2);
4641
4642 icode = optab_handler (addcc_optab, mode)->insn_code;
4643
4644 if (icode == CODE_FOR_nothing)
4645 return 0;
4646
4647 if (!target)
4648 target = gen_reg_rtx (mode);
4649
4650 /* If the insn doesn't accept these operands, put them in pseudos. */
4651
4652 if (!insn_data[icode].operand[0].predicate
4653 (target, insn_data[icode].operand[0].mode))
4654 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4655 else
4656 subtarget = target;
4657
4658 if (!insn_data[icode].operand[2].predicate
4659 (op2, insn_data[icode].operand[2].mode))
4660 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4661
4662 if (!insn_data[icode].operand[3].predicate
4663 (op3, insn_data[icode].operand[3].mode))
4664 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4665
4666 /* Everything should now be in the suitable form. */
4667
4668 code = unsignedp ? unsigned_condition (code) : code;
4669 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4670
4671 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4672 return NULL and let the caller figure out how best to deal with this
4673 situation. */
4674 if (!COMPARISON_P (comparison))
4675 return NULL_RTX;
4676
4677 do_pending_stack_adjust ();
4678 start_sequence ();
4679 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4680 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4681 &comparison, &cmode);
4682 if (!comparison)
4683 insn = NULL_RTX;
4684 else
4685 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4686
4687 /* If that failed, then give up. */
4688 if (insn == 0)
4689 {
4690 end_sequence ();
4691 return 0;
4692 }
4693
4694 emit_insn (insn);
4695 insn = get_insns ();
4696 end_sequence ();
4697 emit_insn (insn);
4698 if (subtarget != target)
4699 convert_move (target, subtarget, 0);
4700
4701 return target;
4702 }
4703 \f
4704 /* These functions attempt to generate an insn body, rather than
4705 emitting the insn, but if the gen function already emits them, we
4706 make no attempt to turn them back into naked patterns. */
4707
4708 /* Generate and return an insn body to add Y to X. */
4709
4710 rtx
4711 gen_add2_insn (rtx x, rtx y)
4712 {
4713 int icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4714
4715 gcc_assert (insn_data[icode].operand[0].predicate
4716 (x, insn_data[icode].operand[0].mode));
4717 gcc_assert (insn_data[icode].operand[1].predicate
4718 (x, insn_data[icode].operand[1].mode));
4719 gcc_assert (insn_data[icode].operand[2].predicate
4720 (y, insn_data[icode].operand[2].mode));
4721
4722 return GEN_FCN (icode) (x, x, y);
4723 }
4724
4725 /* Generate and return an insn body to add r1 and c,
4726 storing the result in r0. */
4727
4728 rtx
4729 gen_add3_insn (rtx r0, rtx r1, rtx c)
4730 {
4731 int icode = (int) optab_handler (add_optab, GET_MODE (r0))->insn_code;
4732
4733 if (icode == CODE_FOR_nothing
4734 || !(insn_data[icode].operand[0].predicate
4735 (r0, insn_data[icode].operand[0].mode))
4736 || !(insn_data[icode].operand[1].predicate
4737 (r1, insn_data[icode].operand[1].mode))
4738 || !(insn_data[icode].operand[2].predicate
4739 (c, insn_data[icode].operand[2].mode)))
4740 return NULL_RTX;
4741
4742 return GEN_FCN (icode) (r0, r1, c);
4743 }
4744
4745 int
4746 have_add2_insn (rtx x, rtx y)
4747 {
4748 int icode;
4749
4750 gcc_assert (GET_MODE (x) != VOIDmode);
4751
4752 icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4753
4754 if (icode == CODE_FOR_nothing)
4755 return 0;
4756
4757 if (!(insn_data[icode].operand[0].predicate
4758 (x, insn_data[icode].operand[0].mode))
4759 || !(insn_data[icode].operand[1].predicate
4760 (x, insn_data[icode].operand[1].mode))
4761 || !(insn_data[icode].operand[2].predicate
4762 (y, insn_data[icode].operand[2].mode)))
4763 return 0;
4764
4765 return 1;
4766 }
4767
4768 /* Generate and return an insn body to subtract Y from X. */
4769
4770 rtx
4771 gen_sub2_insn (rtx x, rtx y)
4772 {
4773 int icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4774
4775 gcc_assert (insn_data[icode].operand[0].predicate
4776 (x, insn_data[icode].operand[0].mode));
4777 gcc_assert (insn_data[icode].operand[1].predicate
4778 (x, insn_data[icode].operand[1].mode));
4779 gcc_assert (insn_data[icode].operand[2].predicate
4780 (y, insn_data[icode].operand[2].mode));
4781
4782 return GEN_FCN (icode) (x, x, y);
4783 }
4784
4785 /* Generate and return an insn body to subtract r1 and c,
4786 storing the result in r0. */
4787
4788 rtx
4789 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4790 {
4791 int icode = (int) optab_handler (sub_optab, GET_MODE (r0))->insn_code;
4792
4793 if (icode == CODE_FOR_nothing
4794 || !(insn_data[icode].operand[0].predicate
4795 (r0, insn_data[icode].operand[0].mode))
4796 || !(insn_data[icode].operand[1].predicate
4797 (r1, insn_data[icode].operand[1].mode))
4798 || !(insn_data[icode].operand[2].predicate
4799 (c, insn_data[icode].operand[2].mode)))
4800 return NULL_RTX;
4801
4802 return GEN_FCN (icode) (r0, r1, c);
4803 }
4804
4805 int
4806 have_sub2_insn (rtx x, rtx y)
4807 {
4808 int icode;
4809
4810 gcc_assert (GET_MODE (x) != VOIDmode);
4811
4812 icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4813
4814 if (icode == CODE_FOR_nothing)
4815 return 0;
4816
4817 if (!(insn_data[icode].operand[0].predicate
4818 (x, insn_data[icode].operand[0].mode))
4819 || !(insn_data[icode].operand[1].predicate
4820 (x, insn_data[icode].operand[1].mode))
4821 || !(insn_data[icode].operand[2].predicate
4822 (y, insn_data[icode].operand[2].mode)))
4823 return 0;
4824
4825 return 1;
4826 }
4827
4828 /* Generate the body of an instruction to copy Y into X.
4829 It may be a list of insns, if one insn isn't enough. */
4830
4831 rtx
4832 gen_move_insn (rtx x, rtx y)
4833 {
4834 rtx seq;
4835
4836 start_sequence ();
4837 emit_move_insn_1 (x, y);
4838 seq = get_insns ();
4839 end_sequence ();
4840 return seq;
4841 }
4842 \f
4843 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4844 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4845 no such operation exists, CODE_FOR_nothing will be returned. */
4846
4847 enum insn_code
4848 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4849 int unsignedp)
4850 {
4851 convert_optab tab;
4852 #ifdef HAVE_ptr_extend
4853 if (unsignedp < 0)
4854 return CODE_FOR_ptr_extend;
4855 #endif
4856
4857 tab = unsignedp ? zext_optab : sext_optab;
4858 return convert_optab_handler (tab, to_mode, from_mode)->insn_code;
4859 }
4860
4861 /* Generate the body of an insn to extend Y (with mode MFROM)
4862 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4863
4864 rtx
4865 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4866 enum machine_mode mfrom, int unsignedp)
4867 {
4868 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4869 return GEN_FCN (icode) (x, y);
4870 }
4871 \f
4872 /* can_fix_p and can_float_p say whether the target machine
4873 can directly convert a given fixed point type to
4874 a given floating point type, or vice versa.
4875 The returned value is the CODE_FOR_... value to use,
4876 or CODE_FOR_nothing if these modes cannot be directly converted.
4877
4878 *TRUNCP_PTR is set to 1 if it is necessary to output
4879 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4880
4881 static enum insn_code
4882 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4883 int unsignedp, int *truncp_ptr)
4884 {
4885 convert_optab tab;
4886 enum insn_code icode;
4887
4888 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4889 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4890 if (icode != CODE_FOR_nothing)
4891 {
4892 *truncp_ptr = 0;
4893 return icode;
4894 }
4895
4896 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4897 for this to work. We need to rework the fix* and ftrunc* patterns
4898 and documentation. */
4899 tab = unsignedp ? ufix_optab : sfix_optab;
4900 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4901 if (icode != CODE_FOR_nothing
4902 && optab_handler (ftrunc_optab, fltmode)->insn_code != CODE_FOR_nothing)
4903 {
4904 *truncp_ptr = 1;
4905 return icode;
4906 }
4907
4908 *truncp_ptr = 0;
4909 return CODE_FOR_nothing;
4910 }
4911
4912 static enum insn_code
4913 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4914 int unsignedp)
4915 {
4916 convert_optab tab;
4917
4918 tab = unsignedp ? ufloat_optab : sfloat_optab;
4919 return convert_optab_handler (tab, fltmode, fixmode)->insn_code;
4920 }
4921 \f
4922 /* Generate code to convert FROM to floating point
4923 and store in TO. FROM must be fixed point and not VOIDmode.
4924 UNSIGNEDP nonzero means regard FROM as unsigned.
4925 Normally this is done by correcting the final value
4926 if it is negative. */
4927
4928 void
4929 expand_float (rtx to, rtx from, int unsignedp)
4930 {
4931 enum insn_code icode;
4932 rtx target = to;
4933 enum machine_mode fmode, imode;
4934 bool can_do_signed = false;
4935
4936 /* Crash now, because we won't be able to decide which mode to use. */
4937 gcc_assert (GET_MODE (from) != VOIDmode);
4938
4939 /* Look for an insn to do the conversion. Do it in the specified
4940 modes if possible; otherwise convert either input, output or both to
4941 wider mode. If the integer mode is wider than the mode of FROM,
4942 we can do the conversion signed even if the input is unsigned. */
4943
4944 for (fmode = GET_MODE (to); fmode != VOIDmode;
4945 fmode = GET_MODE_WIDER_MODE (fmode))
4946 for (imode = GET_MODE (from); imode != VOIDmode;
4947 imode = GET_MODE_WIDER_MODE (imode))
4948 {
4949 int doing_unsigned = unsignedp;
4950
4951 if (fmode != GET_MODE (to)
4952 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4953 continue;
4954
4955 icode = can_float_p (fmode, imode, unsignedp);
4956 if (icode == CODE_FOR_nothing && unsignedp)
4957 {
4958 enum insn_code scode = can_float_p (fmode, imode, 0);
4959 if (scode != CODE_FOR_nothing)
4960 can_do_signed = true;
4961 if (imode != GET_MODE (from))
4962 icode = scode, doing_unsigned = 0;
4963 }
4964
4965 if (icode != CODE_FOR_nothing)
4966 {
4967 if (imode != GET_MODE (from))
4968 from = convert_to_mode (imode, from, unsignedp);
4969
4970 if (fmode != GET_MODE (to))
4971 target = gen_reg_rtx (fmode);
4972
4973 emit_unop_insn (icode, target, from,
4974 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4975
4976 if (target != to)
4977 convert_move (to, target, 0);
4978 return;
4979 }
4980 }
4981
4982 /* Unsigned integer, and no way to convert directly. Convert as signed,
4983 then unconditionally adjust the result. */
4984 if (unsignedp && can_do_signed)
4985 {
4986 rtx label = gen_label_rtx ();
4987 rtx temp;
4988 REAL_VALUE_TYPE offset;
4989
4990 /* Look for a usable floating mode FMODE wider than the source and at
4991 least as wide as the target. Using FMODE will avoid rounding woes
4992 with unsigned values greater than the signed maximum value. */
4993
4994 for (fmode = GET_MODE (to); fmode != VOIDmode;
4995 fmode = GET_MODE_WIDER_MODE (fmode))
4996 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4997 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4998 break;
4999
5000 if (fmode == VOIDmode)
5001 {
5002 /* There is no such mode. Pretend the target is wide enough. */
5003 fmode = GET_MODE (to);
5004
5005 /* Avoid double-rounding when TO is narrower than FROM. */
5006 if ((significand_size (fmode) + 1)
5007 < GET_MODE_BITSIZE (GET_MODE (from)))
5008 {
5009 rtx temp1;
5010 rtx neglabel = gen_label_rtx ();
5011
5012 /* Don't use TARGET if it isn't a register, is a hard register,
5013 or is the wrong mode. */
5014 if (!REG_P (target)
5015 || REGNO (target) < FIRST_PSEUDO_REGISTER
5016 || GET_MODE (target) != fmode)
5017 target = gen_reg_rtx (fmode);
5018
5019 imode = GET_MODE (from);
5020 do_pending_stack_adjust ();
5021
5022 /* Test whether the sign bit is set. */
5023 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5024 0, neglabel);
5025
5026 /* The sign bit is not set. Convert as signed. */
5027 expand_float (target, from, 0);
5028 emit_jump_insn (gen_jump (label));
5029 emit_barrier ();
5030
5031 /* The sign bit is set.
5032 Convert to a usable (positive signed) value by shifting right
5033 one bit, while remembering if a nonzero bit was shifted
5034 out; i.e., compute (from & 1) | (from >> 1). */
5035
5036 emit_label (neglabel);
5037 temp = expand_binop (imode, and_optab, from, const1_rtx,
5038 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5039 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
5040 NULL_RTX, 1);
5041 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5042 OPTAB_LIB_WIDEN);
5043 expand_float (target, temp, 0);
5044
5045 /* Multiply by 2 to undo the shift above. */
5046 temp = expand_binop (fmode, add_optab, target, target,
5047 target, 0, OPTAB_LIB_WIDEN);
5048 if (temp != target)
5049 emit_move_insn (target, temp);
5050
5051 do_pending_stack_adjust ();
5052 emit_label (label);
5053 goto done;
5054 }
5055 }
5056
5057 /* If we are about to do some arithmetic to correct for an
5058 unsigned operand, do it in a pseudo-register. */
5059
5060 if (GET_MODE (to) != fmode
5061 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5062 target = gen_reg_rtx (fmode);
5063
5064 /* Convert as signed integer to floating. */
5065 expand_float (target, from, 0);
5066
5067 /* If FROM is negative (and therefore TO is negative),
5068 correct its value by 2**bitwidth. */
5069
5070 do_pending_stack_adjust ();
5071 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5072 0, label);
5073
5074
5075 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)), fmode);
5076 temp = expand_binop (fmode, add_optab, target,
5077 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5078 target, 0, OPTAB_LIB_WIDEN);
5079 if (temp != target)
5080 emit_move_insn (target, temp);
5081
5082 do_pending_stack_adjust ();
5083 emit_label (label);
5084 goto done;
5085 }
5086
5087 /* No hardware instruction available; call a library routine. */
5088 {
5089 rtx libfunc;
5090 rtx insns;
5091 rtx value;
5092 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5093
5094 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5095 from = convert_to_mode (SImode, from, unsignedp);
5096
5097 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5098 gcc_assert (libfunc);
5099
5100 start_sequence ();
5101
5102 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5103 GET_MODE (to), 1, from,
5104 GET_MODE (from));
5105 insns = get_insns ();
5106 end_sequence ();
5107
5108 emit_libcall_block (insns, target, value,
5109 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5110 GET_MODE (to), from));
5111 }
5112
5113 done:
5114
5115 /* Copy result to requested destination
5116 if we have been computing in a temp location. */
5117
5118 if (target != to)
5119 {
5120 if (GET_MODE (target) == GET_MODE (to))
5121 emit_move_insn (to, target);
5122 else
5123 convert_move (to, target, 0);
5124 }
5125 }
5126 \f
5127 /* Generate code to convert FROM to fixed point and store in TO. FROM
5128 must be floating point. */
5129
5130 void
5131 expand_fix (rtx to, rtx from, int unsignedp)
5132 {
5133 enum insn_code icode;
5134 rtx target = to;
5135 enum machine_mode fmode, imode;
5136 int must_trunc = 0;
5137
5138 /* We first try to find a pair of modes, one real and one integer, at
5139 least as wide as FROM and TO, respectively, in which we can open-code
5140 this conversion. If the integer mode is wider than the mode of TO,
5141 we can do the conversion either signed or unsigned. */
5142
5143 for (fmode = GET_MODE (from); fmode != VOIDmode;
5144 fmode = GET_MODE_WIDER_MODE (fmode))
5145 for (imode = GET_MODE (to); imode != VOIDmode;
5146 imode = GET_MODE_WIDER_MODE (imode))
5147 {
5148 int doing_unsigned = unsignedp;
5149
5150 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5151 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5152 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5153
5154 if (icode != CODE_FOR_nothing)
5155 {
5156 rtx last = get_last_insn ();
5157 if (fmode != GET_MODE (from))
5158 from = convert_to_mode (fmode, from, 0);
5159
5160 if (must_trunc)
5161 {
5162 rtx temp = gen_reg_rtx (GET_MODE (from));
5163 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5164 temp, 0);
5165 }
5166
5167 if (imode != GET_MODE (to))
5168 target = gen_reg_rtx (imode);
5169
5170 if (maybe_emit_unop_insn (icode, target, from,
5171 doing_unsigned ? UNSIGNED_FIX : FIX))
5172 {
5173 if (target != to)
5174 convert_move (to, target, unsignedp);
5175 return;
5176 }
5177 delete_insns_since (last);
5178 }
5179 }
5180
5181 /* For an unsigned conversion, there is one more way to do it.
5182 If we have a signed conversion, we generate code that compares
5183 the real value to the largest representable positive number. If if
5184 is smaller, the conversion is done normally. Otherwise, subtract
5185 one plus the highest signed number, convert, and add it back.
5186
5187 We only need to check all real modes, since we know we didn't find
5188 anything with a wider integer mode.
5189
5190 This code used to extend FP value into mode wider than the destination.
5191 This is needed for decimal float modes which cannot accurately
5192 represent one plus the highest signed number of the same size, but
5193 not for binary modes. Consider, for instance conversion from SFmode
5194 into DImode.
5195
5196 The hot path through the code is dealing with inputs smaller than 2^63
5197 and doing just the conversion, so there is no bits to lose.
5198
5199 In the other path we know the value is positive in the range 2^63..2^64-1
5200 inclusive. (as for other input overflow happens and result is undefined)
5201 So we know that the most important bit set in mantissa corresponds to
5202 2^63. The subtraction of 2^63 should not generate any rounding as it
5203 simply clears out that bit. The rest is trivial. */
5204
5205 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5206 for (fmode = GET_MODE (from); fmode != VOIDmode;
5207 fmode = GET_MODE_WIDER_MODE (fmode))
5208 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5209 && (!DECIMAL_FLOAT_MODE_P (fmode)
5210 || GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))))
5211 {
5212 int bitsize;
5213 REAL_VALUE_TYPE offset;
5214 rtx limit, lab1, lab2, insn;
5215
5216 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
5217 real_2expN (&offset, bitsize - 1, fmode);
5218 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5219 lab1 = gen_label_rtx ();
5220 lab2 = gen_label_rtx ();
5221
5222 if (fmode != GET_MODE (from))
5223 from = convert_to_mode (fmode, from, 0);
5224
5225 /* See if we need to do the subtraction. */
5226 do_pending_stack_adjust ();
5227 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5228 0, lab1);
5229
5230 /* If not, do the signed "fix" and branch around fixup code. */
5231 expand_fix (to, from, 0);
5232 emit_jump_insn (gen_jump (lab2));
5233 emit_barrier ();
5234
5235 /* Otherwise, subtract 2**(N-1), convert to signed number,
5236 then add 2**(N-1). Do the addition using XOR since this
5237 will often generate better code. */
5238 emit_label (lab1);
5239 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5240 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5241 expand_fix (to, target, 0);
5242 target = expand_binop (GET_MODE (to), xor_optab, to,
5243 gen_int_mode
5244 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5245 GET_MODE (to)),
5246 to, 1, OPTAB_LIB_WIDEN);
5247
5248 if (target != to)
5249 emit_move_insn (to, target);
5250
5251 emit_label (lab2);
5252
5253 if (optab_handler (mov_optab, GET_MODE (to))->insn_code
5254 != CODE_FOR_nothing)
5255 {
5256 /* Make a place for a REG_NOTE and add it. */
5257 insn = emit_move_insn (to, to);
5258 set_unique_reg_note (insn,
5259 REG_EQUAL,
5260 gen_rtx_fmt_e (UNSIGNED_FIX,
5261 GET_MODE (to),
5262 copy_rtx (from)));
5263 }
5264
5265 return;
5266 }
5267
5268 /* We can't do it with an insn, so use a library call. But first ensure
5269 that the mode of TO is at least as wide as SImode, since those are the
5270 only library calls we know about. */
5271
5272 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5273 {
5274 target = gen_reg_rtx (SImode);
5275
5276 expand_fix (target, from, unsignedp);
5277 }
5278 else
5279 {
5280 rtx insns;
5281 rtx value;
5282 rtx libfunc;
5283
5284 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5285 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5286 gcc_assert (libfunc);
5287
5288 start_sequence ();
5289
5290 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5291 GET_MODE (to), 1, from,
5292 GET_MODE (from));
5293 insns = get_insns ();
5294 end_sequence ();
5295
5296 emit_libcall_block (insns, target, value,
5297 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5298 GET_MODE (to), from));
5299 }
5300
5301 if (target != to)
5302 {
5303 if (GET_MODE (to) == GET_MODE (target))
5304 emit_move_insn (to, target);
5305 else
5306 convert_move (to, target, 0);
5307 }
5308 }
5309
5310 /* Generate code to convert FROM or TO a fixed-point.
5311 If UINTP is true, either TO or FROM is an unsigned integer.
5312 If SATP is true, we need to saturate the result. */
5313
5314 void
5315 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5316 {
5317 enum machine_mode to_mode = GET_MODE (to);
5318 enum machine_mode from_mode = GET_MODE (from);
5319 convert_optab tab;
5320 enum rtx_code this_code;
5321 enum insn_code code;
5322 rtx insns, value;
5323 rtx libfunc;
5324
5325 if (to_mode == from_mode)
5326 {
5327 emit_move_insn (to, from);
5328 return;
5329 }
5330
5331 if (uintp)
5332 {
5333 tab = satp ? satfractuns_optab : fractuns_optab;
5334 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5335 }
5336 else
5337 {
5338 tab = satp ? satfract_optab : fract_optab;
5339 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5340 }
5341 code = tab->handlers[to_mode][from_mode].insn_code;
5342 if (code != CODE_FOR_nothing)
5343 {
5344 emit_unop_insn (code, to, from, this_code);
5345 return;
5346 }
5347
5348 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5349 gcc_assert (libfunc);
5350
5351 start_sequence ();
5352 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5353 1, from, from_mode);
5354 insns = get_insns ();
5355 end_sequence ();
5356
5357 emit_libcall_block (insns, to, value,
5358 gen_rtx_fmt_e (tab->code, to_mode, from));
5359 }
5360
5361 /* Generate code to convert FROM to fixed point and store in TO. FROM
5362 must be floating point, TO must be signed. Use the conversion optab
5363 TAB to do the conversion. */
5364
5365 bool
5366 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5367 {
5368 enum insn_code icode;
5369 rtx target = to;
5370 enum machine_mode fmode, imode;
5371
5372 /* We first try to find a pair of modes, one real and one integer, at
5373 least as wide as FROM and TO, respectively, in which we can open-code
5374 this conversion. If the integer mode is wider than the mode of TO,
5375 we can do the conversion either signed or unsigned. */
5376
5377 for (fmode = GET_MODE (from); fmode != VOIDmode;
5378 fmode = GET_MODE_WIDER_MODE (fmode))
5379 for (imode = GET_MODE (to); imode != VOIDmode;
5380 imode = GET_MODE_WIDER_MODE (imode))
5381 {
5382 icode = convert_optab_handler (tab, imode, fmode)->insn_code;
5383 if (icode != CODE_FOR_nothing)
5384 {
5385 rtx last = get_last_insn ();
5386 if (fmode != GET_MODE (from))
5387 from = convert_to_mode (fmode, from, 0);
5388
5389 if (imode != GET_MODE (to))
5390 target = gen_reg_rtx (imode);
5391
5392 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5393 {
5394 delete_insns_since (last);
5395 continue;
5396 }
5397 if (target != to)
5398 convert_move (to, target, 0);
5399 return true;
5400 }
5401 }
5402
5403 return false;
5404 }
5405 \f
5406 /* Report whether we have an instruction to perform the operation
5407 specified by CODE on operands of mode MODE. */
5408 int
5409 have_insn_for (enum rtx_code code, enum machine_mode mode)
5410 {
5411 return (code_to_optab[(int) code] != 0
5412 && (optab_handler (code_to_optab[(int) code], mode)->insn_code
5413 != CODE_FOR_nothing));
5414 }
5415
5416 /* Set all insn_code fields to CODE_FOR_nothing. */
5417
5418 static void
5419 init_insn_codes (void)
5420 {
5421 unsigned int i;
5422
5423 for (i = 0; i < (unsigned int) OTI_MAX; i++)
5424 {
5425 unsigned int j;
5426 optab op;
5427
5428 op = &optab_table[i];
5429 for (j = 0; j < NUM_MACHINE_MODES; j++)
5430 optab_handler (op, j)->insn_code = CODE_FOR_nothing;
5431 }
5432 for (i = 0; i < (unsigned int) COI_MAX; i++)
5433 {
5434 unsigned int j, k;
5435 convert_optab op;
5436
5437 op = &convert_optab_table[i];
5438 for (j = 0; j < NUM_MACHINE_MODES; j++)
5439 for (k = 0; k < NUM_MACHINE_MODES; k++)
5440 convert_optab_handler (op, j, k)->insn_code = CODE_FOR_nothing;
5441 }
5442 }
5443
5444 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5445 static inline void
5446 init_optab (optab op, enum rtx_code code)
5447 {
5448 op->code = code;
5449 code_to_optab[(int) code] = op;
5450 }
5451
5452 /* Same, but fill in its code as CODE, and do _not_ write it into
5453 the code_to_optab table. */
5454 static inline void
5455 init_optabv (optab op, enum rtx_code code)
5456 {
5457 op->code = code;
5458 }
5459
5460 /* Conversion optabs never go in the code_to_optab table. */
5461 static void
5462 init_convert_optab (convert_optab op, enum rtx_code code)
5463 {
5464 op->code = code;
5465 }
5466
5467 /* Initialize the libfunc fields of an entire group of entries in some
5468 optab. Each entry is set equal to a string consisting of a leading
5469 pair of underscores followed by a generic operation name followed by
5470 a mode name (downshifted to lowercase) followed by a single character
5471 representing the number of operands for the given operation (which is
5472 usually one of the characters '2', '3', or '4').
5473
5474 OPTABLE is the table in which libfunc fields are to be initialized.
5475 OPNAME is the generic (string) name of the operation.
5476 SUFFIX is the character which specifies the number of operands for
5477 the given generic operation.
5478 MODE is the mode to generate for.
5479 */
5480
5481 static void
5482 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5483 {
5484 unsigned opname_len = strlen (opname);
5485 const char *mname = GET_MODE_NAME (mode);
5486 unsigned mname_len = strlen (mname);
5487 char *libfunc_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5488 char *p;
5489 const char *q;
5490
5491 p = libfunc_name;
5492 *p++ = '_';
5493 *p++ = '_';
5494 for (q = opname; *q; )
5495 *p++ = *q++;
5496 for (q = mname; *q; q++)
5497 *p++ = TOLOWER (*q);
5498 *p++ = suffix;
5499 *p = '\0';
5500
5501 set_optab_libfunc (optable, mode,
5502 ggc_alloc_string (libfunc_name, p - libfunc_name));
5503 }
5504
5505 /* Like gen_libfunc, but verify that integer operation is involved. */
5506
5507 static void
5508 gen_int_libfunc (optab optable, const char *opname, char suffix,
5509 enum machine_mode mode)
5510 {
5511 int maxsize = 2 * BITS_PER_WORD;
5512
5513 if (GET_MODE_CLASS (mode) != MODE_INT)
5514 return;
5515 if (maxsize < LONG_LONG_TYPE_SIZE)
5516 maxsize = LONG_LONG_TYPE_SIZE;
5517 if (GET_MODE_CLASS (mode) != MODE_INT
5518 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5519 return;
5520 gen_libfunc (optable, opname, suffix, mode);
5521 }
5522
5523 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5524
5525 static void
5526 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5527 enum machine_mode mode)
5528 {
5529 char *dec_opname;
5530
5531 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5532 gen_libfunc (optable, opname, suffix, mode);
5533 if (DECIMAL_FLOAT_MODE_P (mode))
5534 {
5535 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5536 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5537 depending on the low level floating format used. */
5538 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5539 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5540 gen_libfunc (optable, dec_opname, suffix, mode);
5541 }
5542 }
5543
5544 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5545
5546 static void
5547 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5548 enum machine_mode mode)
5549 {
5550 if (!ALL_FIXED_POINT_MODE_P (mode))
5551 return;
5552 gen_libfunc (optable, opname, suffix, mode);
5553 }
5554
5555 /* Like gen_libfunc, but verify that signed fixed-point operation is
5556 involved. */
5557
5558 static void
5559 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5560 enum machine_mode mode)
5561 {
5562 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5563 return;
5564 gen_libfunc (optable, opname, suffix, mode);
5565 }
5566
5567 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5568 involved. */
5569
5570 static void
5571 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5572 enum machine_mode mode)
5573 {
5574 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5575 return;
5576 gen_libfunc (optable, opname, suffix, mode);
5577 }
5578
5579 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5580
5581 static void
5582 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5583 enum machine_mode mode)
5584 {
5585 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5586 gen_fp_libfunc (optable, name, suffix, mode);
5587 if (INTEGRAL_MODE_P (mode))
5588 gen_int_libfunc (optable, name, suffix, mode);
5589 }
5590
5591 /* Like gen_libfunc, but verify that FP or INT operation is involved
5592 and add 'v' suffix for integer operation. */
5593
5594 static void
5595 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5596 enum machine_mode mode)
5597 {
5598 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5599 gen_fp_libfunc (optable, name, suffix, mode);
5600 if (GET_MODE_CLASS (mode) == MODE_INT)
5601 {
5602 int len = strlen (name);
5603 char *v_name = XALLOCAVEC (char, len + 2);
5604 strcpy (v_name, name);
5605 v_name[len] = 'v';
5606 v_name[len + 1] = 0;
5607 gen_int_libfunc (optable, v_name, suffix, mode);
5608 }
5609 }
5610
5611 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5612 involved. */
5613
5614 static void
5615 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5616 enum machine_mode mode)
5617 {
5618 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5619 gen_fp_libfunc (optable, name, suffix, mode);
5620 if (INTEGRAL_MODE_P (mode))
5621 gen_int_libfunc (optable, name, suffix, mode);
5622 if (ALL_FIXED_POINT_MODE_P (mode))
5623 gen_fixed_libfunc (optable, name, suffix, mode);
5624 }
5625
5626 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5627 involved. */
5628
5629 static void
5630 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5631 enum machine_mode mode)
5632 {
5633 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5634 gen_fp_libfunc (optable, name, suffix, mode);
5635 if (INTEGRAL_MODE_P (mode))
5636 gen_int_libfunc (optable, name, suffix, mode);
5637 if (SIGNED_FIXED_POINT_MODE_P (mode))
5638 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5639 }
5640
5641 /* Like gen_libfunc, but verify that INT or FIXED operation is
5642 involved. */
5643
5644 static void
5645 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5646 enum machine_mode mode)
5647 {
5648 if (INTEGRAL_MODE_P (mode))
5649 gen_int_libfunc (optable, name, suffix, mode);
5650 if (ALL_FIXED_POINT_MODE_P (mode))
5651 gen_fixed_libfunc (optable, name, suffix, mode);
5652 }
5653
5654 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5655 involved. */
5656
5657 static void
5658 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5659 enum machine_mode mode)
5660 {
5661 if (INTEGRAL_MODE_P (mode))
5662 gen_int_libfunc (optable, name, suffix, mode);
5663 if (SIGNED_FIXED_POINT_MODE_P (mode))
5664 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5665 }
5666
5667 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5668 involved. */
5669
5670 static void
5671 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5672 enum machine_mode mode)
5673 {
5674 if (INTEGRAL_MODE_P (mode))
5675 gen_int_libfunc (optable, name, suffix, mode);
5676 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5677 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5678 }
5679
5680 /* Initialize the libfunc fields of an entire group of entries of an
5681 inter-mode-class conversion optab. The string formation rules are
5682 similar to the ones for init_libfuncs, above, but instead of having
5683 a mode name and an operand count these functions have two mode names
5684 and no operand count. */
5685
5686 static void
5687 gen_interclass_conv_libfunc (convert_optab tab,
5688 const char *opname,
5689 enum machine_mode tmode,
5690 enum machine_mode fmode)
5691 {
5692 size_t opname_len = strlen (opname);
5693 size_t mname_len = 0;
5694
5695 const char *fname, *tname;
5696 const char *q;
5697 char *libfunc_name, *suffix;
5698 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5699 char *p;
5700
5701 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5702 depends on which underlying decimal floating point format is used. */
5703 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5704
5705 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5706
5707 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5708 nondec_name[0] = '_';
5709 nondec_name[1] = '_';
5710 memcpy (&nondec_name[2], opname, opname_len);
5711 nondec_suffix = nondec_name + opname_len + 2;
5712
5713 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5714 dec_name[0] = '_';
5715 dec_name[1] = '_';
5716 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5717 memcpy (&dec_name[2+dec_len], opname, opname_len);
5718 dec_suffix = dec_name + dec_len + opname_len + 2;
5719
5720 fname = GET_MODE_NAME (fmode);
5721 tname = GET_MODE_NAME (tmode);
5722
5723 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5724 {
5725 libfunc_name = dec_name;
5726 suffix = dec_suffix;
5727 }
5728 else
5729 {
5730 libfunc_name = nondec_name;
5731 suffix = nondec_suffix;
5732 }
5733
5734 p = suffix;
5735 for (q = fname; *q; p++, q++)
5736 *p = TOLOWER (*q);
5737 for (q = tname; *q; p++, q++)
5738 *p = TOLOWER (*q);
5739
5740 *p = '\0';
5741
5742 set_conv_libfunc (tab, tmode, fmode,
5743 ggc_alloc_string (libfunc_name, p - libfunc_name));
5744 }
5745
5746 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5747 int->fp conversion. */
5748
5749 static void
5750 gen_int_to_fp_conv_libfunc (convert_optab tab,
5751 const char *opname,
5752 enum machine_mode tmode,
5753 enum machine_mode fmode)
5754 {
5755 if (GET_MODE_CLASS (fmode) != MODE_INT)
5756 return;
5757 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5758 return;
5759 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5760 }
5761
5762 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5763 naming scheme. */
5764
5765 static void
5766 gen_ufloat_conv_libfunc (convert_optab tab,
5767 const char *opname ATTRIBUTE_UNUSED,
5768 enum machine_mode tmode,
5769 enum machine_mode fmode)
5770 {
5771 if (DECIMAL_FLOAT_MODE_P (tmode))
5772 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5773 else
5774 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5775 }
5776
5777 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5778 fp->int conversion. */
5779
5780 static void
5781 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5782 const char *opname,
5783 enum machine_mode tmode,
5784 enum machine_mode fmode)
5785 {
5786 if (GET_MODE_CLASS (fmode) != MODE_INT)
5787 return;
5788 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5789 return;
5790 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5791 }
5792
5793 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5794 fp->int conversion with no decimal floating point involved. */
5795
5796 static void
5797 gen_fp_to_int_conv_libfunc (convert_optab tab,
5798 const char *opname,
5799 enum machine_mode tmode,
5800 enum machine_mode fmode)
5801 {
5802 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5803 return;
5804 if (GET_MODE_CLASS (tmode) != MODE_INT)
5805 return;
5806 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5807 }
5808
5809 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5810 The string formation rules are
5811 similar to the ones for init_libfunc, above. */
5812
5813 static void
5814 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5815 enum machine_mode tmode, enum machine_mode fmode)
5816 {
5817 size_t opname_len = strlen (opname);
5818 size_t mname_len = 0;
5819
5820 const char *fname, *tname;
5821 const char *q;
5822 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5823 char *libfunc_name, *suffix;
5824 char *p;
5825
5826 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5827 depends on which underlying decimal floating point format is used. */
5828 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5829
5830 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5831
5832 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5833 nondec_name[0] = '_';
5834 nondec_name[1] = '_';
5835 memcpy (&nondec_name[2], opname, opname_len);
5836 nondec_suffix = nondec_name + opname_len + 2;
5837
5838 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5839 dec_name[0] = '_';
5840 dec_name[1] = '_';
5841 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5842 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5843 dec_suffix = dec_name + dec_len + opname_len + 2;
5844
5845 fname = GET_MODE_NAME (fmode);
5846 tname = GET_MODE_NAME (tmode);
5847
5848 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5849 {
5850 libfunc_name = dec_name;
5851 suffix = dec_suffix;
5852 }
5853 else
5854 {
5855 libfunc_name = nondec_name;
5856 suffix = nondec_suffix;
5857 }
5858
5859 p = suffix;
5860 for (q = fname; *q; p++, q++)
5861 *p = TOLOWER (*q);
5862 for (q = tname; *q; p++, q++)
5863 *p = TOLOWER (*q);
5864
5865 *p++ = '2';
5866 *p = '\0';
5867
5868 set_conv_libfunc (tab, tmode, fmode,
5869 ggc_alloc_string (libfunc_name, p - libfunc_name));
5870 }
5871
5872 /* Pick proper libcall for trunc_optab. We need to chose if we do
5873 truncation or extension and interclass or intraclass. */
5874
5875 static void
5876 gen_trunc_conv_libfunc (convert_optab tab,
5877 const char *opname,
5878 enum machine_mode tmode,
5879 enum machine_mode fmode)
5880 {
5881 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5882 return;
5883 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5884 return;
5885 if (tmode == fmode)
5886 return;
5887
5888 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5889 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5890 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5891
5892 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5893 return;
5894
5895 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5896 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5897 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5898 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5899 }
5900
5901 /* Pick proper libcall for extend_optab. We need to chose if we do
5902 truncation or extension and interclass or intraclass. */
5903
5904 static void
5905 gen_extend_conv_libfunc (convert_optab tab,
5906 const char *opname ATTRIBUTE_UNUSED,
5907 enum machine_mode tmode,
5908 enum machine_mode fmode)
5909 {
5910 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5911 return;
5912 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5913 return;
5914 if (tmode == fmode)
5915 return;
5916
5917 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5918 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5919 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5920
5921 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5922 return;
5923
5924 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5925 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5926 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5927 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5928 }
5929
5930 /* Pick proper libcall for fract_optab. We need to chose if we do
5931 interclass or intraclass. */
5932
5933 static void
5934 gen_fract_conv_libfunc (convert_optab tab,
5935 const char *opname,
5936 enum machine_mode tmode,
5937 enum machine_mode fmode)
5938 {
5939 if (tmode == fmode)
5940 return;
5941 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5942 return;
5943
5944 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5945 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5946 else
5947 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5948 }
5949
5950 /* Pick proper libcall for fractuns_optab. */
5951
5952 static void
5953 gen_fractuns_conv_libfunc (convert_optab tab,
5954 const char *opname,
5955 enum machine_mode tmode,
5956 enum machine_mode fmode)
5957 {
5958 if (tmode == fmode)
5959 return;
5960 /* One mode must be a fixed-point mode, and the other must be an integer
5961 mode. */
5962 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5963 || (ALL_FIXED_POINT_MODE_P (fmode)
5964 && GET_MODE_CLASS (tmode) == MODE_INT)))
5965 return;
5966
5967 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5968 }
5969
5970 /* Pick proper libcall for satfract_optab. We need to chose if we do
5971 interclass or intraclass. */
5972
5973 static void
5974 gen_satfract_conv_libfunc (convert_optab tab,
5975 const char *opname,
5976 enum machine_mode tmode,
5977 enum machine_mode fmode)
5978 {
5979 if (tmode == fmode)
5980 return;
5981 /* TMODE must be a fixed-point mode. */
5982 if (!ALL_FIXED_POINT_MODE_P (tmode))
5983 return;
5984
5985 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5986 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5987 else
5988 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5989 }
5990
5991 /* Pick proper libcall for satfractuns_optab. */
5992
5993 static void
5994 gen_satfractuns_conv_libfunc (convert_optab tab,
5995 const char *opname,
5996 enum machine_mode tmode,
5997 enum machine_mode fmode)
5998 {
5999 if (tmode == fmode)
6000 return;
6001 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6002 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6003 return;
6004
6005 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6006 }
6007
6008 /* A table of previously-created libfuncs, hashed by name. */
6009 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6010
6011 /* Hashtable callbacks for libfunc_decls. */
6012
6013 static hashval_t
6014 libfunc_decl_hash (const void *entry)
6015 {
6016 return htab_hash_string (IDENTIFIER_POINTER (DECL_NAME ((const_tree) entry)));
6017 }
6018
6019 static int
6020 libfunc_decl_eq (const void *entry1, const void *entry2)
6021 {
6022 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6023 }
6024
6025 rtx
6026 init_one_libfunc (const char *name)
6027 {
6028 tree id, decl;
6029 void **slot;
6030 hashval_t hash;
6031
6032 if (libfunc_decls == NULL)
6033 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6034 libfunc_decl_eq, NULL);
6035
6036 /* See if we have already created a libfunc decl for this function. */
6037 id = get_identifier (name);
6038 hash = htab_hash_string (name);
6039 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6040 decl = (tree) *slot;
6041 if (decl == NULL)
6042 {
6043 /* Create a new decl, so that it can be passed to
6044 targetm.encode_section_info. */
6045 /* ??? We don't have any type information except for this is
6046 a function. Pretend this is "int foo()". */
6047 decl = build_decl (FUNCTION_DECL, get_identifier (name),
6048 build_function_type (integer_type_node, NULL_TREE));
6049 DECL_ARTIFICIAL (decl) = 1;
6050 DECL_EXTERNAL (decl) = 1;
6051 TREE_PUBLIC (decl) = 1;
6052
6053 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6054 are the flags assigned by targetm.encode_section_info. */
6055 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6056
6057 *slot = decl;
6058 }
6059 return XEXP (DECL_RTL (decl), 0);
6060 }
6061
6062 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6063
6064 rtx
6065 set_user_assembler_libfunc (const char *name, const char *asmspec)
6066 {
6067 tree id, decl;
6068 void **slot;
6069 hashval_t hash;
6070
6071 id = get_identifier (name);
6072 hash = htab_hash_string (name);
6073 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6074 gcc_assert (slot);
6075 decl = (tree) *slot;
6076 set_user_assembler_name (decl, asmspec);
6077 return XEXP (DECL_RTL (decl), 0);
6078 }
6079
6080 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6081 MODE to NAME, which should be either 0 or a string constant. */
6082 void
6083 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
6084 {
6085 rtx val;
6086 struct libfunc_entry e;
6087 struct libfunc_entry **slot;
6088 e.optab = (size_t) (optable - &optab_table[0]);
6089 e.mode1 = mode;
6090 e.mode2 = VOIDmode;
6091
6092 if (name)
6093 val = init_one_libfunc (name);
6094 else
6095 val = 0;
6096 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6097 if (*slot == NULL)
6098 *slot = GGC_NEW (struct libfunc_entry);
6099 (*slot)->optab = (size_t) (optable - &optab_table[0]);
6100 (*slot)->mode1 = mode;
6101 (*slot)->mode2 = VOIDmode;
6102 (*slot)->libfunc = val;
6103 }
6104
6105 /* Call this to reset the function entry for one conversion optab
6106 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6107 either 0 or a string constant. */
6108 void
6109 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
6110 enum machine_mode fmode, const char *name)
6111 {
6112 rtx val;
6113 struct libfunc_entry e;
6114 struct libfunc_entry **slot;
6115 e.optab = (size_t) (optable - &convert_optab_table[0]);
6116 e.mode1 = tmode;
6117 e.mode2 = fmode;
6118
6119 if (name)
6120 val = init_one_libfunc (name);
6121 else
6122 val = 0;
6123 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6124 if (*slot == NULL)
6125 *slot = GGC_NEW (struct libfunc_entry);
6126 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
6127 (*slot)->mode1 = tmode;
6128 (*slot)->mode2 = fmode;
6129 (*slot)->libfunc = val;
6130 }
6131
6132 /* Call this to initialize the contents of the optabs
6133 appropriately for the current target machine. */
6134
6135 void
6136 init_optabs (void)
6137 {
6138 unsigned int i;
6139 enum machine_mode int_mode;
6140 static bool reinit;
6141
6142 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6143 /* Start by initializing all tables to contain CODE_FOR_nothing. */
6144
6145 #ifdef HAVE_conditional_move
6146 for (i = 0; i < NUM_MACHINE_MODES; i++)
6147 movcc_gen_code[i] = CODE_FOR_nothing;
6148 #endif
6149
6150 for (i = 0; i < NUM_MACHINE_MODES; i++)
6151 {
6152 vcond_gen_code[i] = CODE_FOR_nothing;
6153 vcondu_gen_code[i] = CODE_FOR_nothing;
6154 }
6155
6156 #if GCC_VERSION >= 4000
6157 /* We statically initialize the insn_codes with CODE_FOR_nothing. */
6158 if (reinit)
6159 init_insn_codes ();
6160 #else
6161 init_insn_codes ();
6162 #endif
6163
6164 init_optab (add_optab, PLUS);
6165 init_optabv (addv_optab, PLUS);
6166 init_optab (sub_optab, MINUS);
6167 init_optabv (subv_optab, MINUS);
6168 init_optab (ssadd_optab, SS_PLUS);
6169 init_optab (usadd_optab, US_PLUS);
6170 init_optab (sssub_optab, SS_MINUS);
6171 init_optab (ussub_optab, US_MINUS);
6172 init_optab (smul_optab, MULT);
6173 init_optab (ssmul_optab, SS_MULT);
6174 init_optab (usmul_optab, US_MULT);
6175 init_optabv (smulv_optab, MULT);
6176 init_optab (smul_highpart_optab, UNKNOWN);
6177 init_optab (umul_highpart_optab, UNKNOWN);
6178 init_optab (smul_widen_optab, UNKNOWN);
6179 init_optab (umul_widen_optab, UNKNOWN);
6180 init_optab (usmul_widen_optab, UNKNOWN);
6181 init_optab (smadd_widen_optab, UNKNOWN);
6182 init_optab (umadd_widen_optab, UNKNOWN);
6183 init_optab (ssmadd_widen_optab, UNKNOWN);
6184 init_optab (usmadd_widen_optab, UNKNOWN);
6185 init_optab (smsub_widen_optab, UNKNOWN);
6186 init_optab (umsub_widen_optab, UNKNOWN);
6187 init_optab (ssmsub_widen_optab, UNKNOWN);
6188 init_optab (usmsub_widen_optab, UNKNOWN);
6189 init_optab (sdiv_optab, DIV);
6190 init_optab (ssdiv_optab, SS_DIV);
6191 init_optab (usdiv_optab, US_DIV);
6192 init_optabv (sdivv_optab, DIV);
6193 init_optab (sdivmod_optab, UNKNOWN);
6194 init_optab (udiv_optab, UDIV);
6195 init_optab (udivmod_optab, UNKNOWN);
6196 init_optab (smod_optab, MOD);
6197 init_optab (umod_optab, UMOD);
6198 init_optab (fmod_optab, UNKNOWN);
6199 init_optab (remainder_optab, UNKNOWN);
6200 init_optab (ftrunc_optab, UNKNOWN);
6201 init_optab (and_optab, AND);
6202 init_optab (ior_optab, IOR);
6203 init_optab (xor_optab, XOR);
6204 init_optab (ashl_optab, ASHIFT);
6205 init_optab (ssashl_optab, SS_ASHIFT);
6206 init_optab (usashl_optab, US_ASHIFT);
6207 init_optab (ashr_optab, ASHIFTRT);
6208 init_optab (lshr_optab, LSHIFTRT);
6209 init_optab (rotl_optab, ROTATE);
6210 init_optab (rotr_optab, ROTATERT);
6211 init_optab (smin_optab, SMIN);
6212 init_optab (smax_optab, SMAX);
6213 init_optab (umin_optab, UMIN);
6214 init_optab (umax_optab, UMAX);
6215 init_optab (pow_optab, UNKNOWN);
6216 init_optab (atan2_optab, UNKNOWN);
6217
6218 /* These three have codes assigned exclusively for the sake of
6219 have_insn_for. */
6220 init_optab (mov_optab, SET);
6221 init_optab (movstrict_optab, STRICT_LOW_PART);
6222 init_optab (cbranch_optab, COMPARE);
6223
6224 init_optab (cmov_optab, UNKNOWN);
6225 init_optab (cstore_optab, UNKNOWN);
6226 init_optab (ctrap_optab, UNKNOWN);
6227
6228 init_optab (storent_optab, UNKNOWN);
6229
6230 init_optab (cmp_optab, UNKNOWN);
6231 init_optab (ucmp_optab, UNKNOWN);
6232
6233 init_optab (eq_optab, EQ);
6234 init_optab (ne_optab, NE);
6235 init_optab (gt_optab, GT);
6236 init_optab (ge_optab, GE);
6237 init_optab (lt_optab, LT);
6238 init_optab (le_optab, LE);
6239 init_optab (unord_optab, UNORDERED);
6240
6241 init_optab (neg_optab, NEG);
6242 init_optab (ssneg_optab, SS_NEG);
6243 init_optab (usneg_optab, US_NEG);
6244 init_optabv (negv_optab, NEG);
6245 init_optab (abs_optab, ABS);
6246 init_optabv (absv_optab, ABS);
6247 init_optab (addcc_optab, UNKNOWN);
6248 init_optab (one_cmpl_optab, NOT);
6249 init_optab (bswap_optab, BSWAP);
6250 init_optab (ffs_optab, FFS);
6251 init_optab (clz_optab, CLZ);
6252 init_optab (ctz_optab, CTZ);
6253 init_optab (popcount_optab, POPCOUNT);
6254 init_optab (parity_optab, PARITY);
6255 init_optab (sqrt_optab, SQRT);
6256 init_optab (floor_optab, UNKNOWN);
6257 init_optab (ceil_optab, UNKNOWN);
6258 init_optab (round_optab, UNKNOWN);
6259 init_optab (btrunc_optab, UNKNOWN);
6260 init_optab (nearbyint_optab, UNKNOWN);
6261 init_optab (rint_optab, UNKNOWN);
6262 init_optab (sincos_optab, UNKNOWN);
6263 init_optab (sin_optab, UNKNOWN);
6264 init_optab (asin_optab, UNKNOWN);
6265 init_optab (cos_optab, UNKNOWN);
6266 init_optab (acos_optab, UNKNOWN);
6267 init_optab (exp_optab, UNKNOWN);
6268 init_optab (exp10_optab, UNKNOWN);
6269 init_optab (exp2_optab, UNKNOWN);
6270 init_optab (expm1_optab, UNKNOWN);
6271 init_optab (ldexp_optab, UNKNOWN);
6272 init_optab (scalb_optab, UNKNOWN);
6273 init_optab (logb_optab, UNKNOWN);
6274 init_optab (ilogb_optab, UNKNOWN);
6275 init_optab (log_optab, UNKNOWN);
6276 init_optab (log10_optab, UNKNOWN);
6277 init_optab (log2_optab, UNKNOWN);
6278 init_optab (log1p_optab, UNKNOWN);
6279 init_optab (tan_optab, UNKNOWN);
6280 init_optab (atan_optab, UNKNOWN);
6281 init_optab (copysign_optab, UNKNOWN);
6282 init_optab (signbit_optab, UNKNOWN);
6283
6284 init_optab (isinf_optab, UNKNOWN);
6285
6286 init_optab (strlen_optab, UNKNOWN);
6287 init_optab (push_optab, UNKNOWN);
6288
6289 init_optab (reduc_smax_optab, UNKNOWN);
6290 init_optab (reduc_umax_optab, UNKNOWN);
6291 init_optab (reduc_smin_optab, UNKNOWN);
6292 init_optab (reduc_umin_optab, UNKNOWN);
6293 init_optab (reduc_splus_optab, UNKNOWN);
6294 init_optab (reduc_uplus_optab, UNKNOWN);
6295
6296 init_optab (ssum_widen_optab, UNKNOWN);
6297 init_optab (usum_widen_optab, UNKNOWN);
6298 init_optab (sdot_prod_optab, UNKNOWN);
6299 init_optab (udot_prod_optab, UNKNOWN);
6300
6301 init_optab (vec_extract_optab, UNKNOWN);
6302 init_optab (vec_extract_even_optab, UNKNOWN);
6303 init_optab (vec_extract_odd_optab, UNKNOWN);
6304 init_optab (vec_interleave_high_optab, UNKNOWN);
6305 init_optab (vec_interleave_low_optab, UNKNOWN);
6306 init_optab (vec_set_optab, UNKNOWN);
6307 init_optab (vec_init_optab, UNKNOWN);
6308 init_optab (vec_shl_optab, UNKNOWN);
6309 init_optab (vec_shr_optab, UNKNOWN);
6310 init_optab (vec_realign_load_optab, UNKNOWN);
6311 init_optab (movmisalign_optab, UNKNOWN);
6312 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
6313 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
6314 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
6315 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
6316 init_optab (vec_unpacks_hi_optab, UNKNOWN);
6317 init_optab (vec_unpacks_lo_optab, UNKNOWN);
6318 init_optab (vec_unpacku_hi_optab, UNKNOWN);
6319 init_optab (vec_unpacku_lo_optab, UNKNOWN);
6320 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
6321 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
6322 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
6323 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
6324 init_optab (vec_pack_trunc_optab, UNKNOWN);
6325 init_optab (vec_pack_usat_optab, UNKNOWN);
6326 init_optab (vec_pack_ssat_optab, UNKNOWN);
6327 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
6328 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
6329
6330 init_optab (powi_optab, UNKNOWN);
6331
6332 /* Conversions. */
6333 init_convert_optab (sext_optab, SIGN_EXTEND);
6334 init_convert_optab (zext_optab, ZERO_EXTEND);
6335 init_convert_optab (trunc_optab, TRUNCATE);
6336 init_convert_optab (sfix_optab, FIX);
6337 init_convert_optab (ufix_optab, UNSIGNED_FIX);
6338 init_convert_optab (sfixtrunc_optab, UNKNOWN);
6339 init_convert_optab (ufixtrunc_optab, UNKNOWN);
6340 init_convert_optab (sfloat_optab, FLOAT);
6341 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
6342 init_convert_optab (lrint_optab, UNKNOWN);
6343 init_convert_optab (lround_optab, UNKNOWN);
6344 init_convert_optab (lfloor_optab, UNKNOWN);
6345 init_convert_optab (lceil_optab, UNKNOWN);
6346
6347 init_convert_optab (fract_optab, FRACT_CONVERT);
6348 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6349 init_convert_optab (satfract_optab, SAT_FRACT);
6350 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6351
6352 for (i = 0; i < NUM_MACHINE_MODES; i++)
6353 {
6354 movmem_optab[i] = CODE_FOR_nothing;
6355 cmpstr_optab[i] = CODE_FOR_nothing;
6356 cmpstrn_optab[i] = CODE_FOR_nothing;
6357 cmpmem_optab[i] = CODE_FOR_nothing;
6358 setmem_optab[i] = CODE_FOR_nothing;
6359
6360 sync_add_optab[i] = CODE_FOR_nothing;
6361 sync_sub_optab[i] = CODE_FOR_nothing;
6362 sync_ior_optab[i] = CODE_FOR_nothing;
6363 sync_and_optab[i] = CODE_FOR_nothing;
6364 sync_xor_optab[i] = CODE_FOR_nothing;
6365 sync_nand_optab[i] = CODE_FOR_nothing;
6366 sync_old_add_optab[i] = CODE_FOR_nothing;
6367 sync_old_sub_optab[i] = CODE_FOR_nothing;
6368 sync_old_ior_optab[i] = CODE_FOR_nothing;
6369 sync_old_and_optab[i] = CODE_FOR_nothing;
6370 sync_old_xor_optab[i] = CODE_FOR_nothing;
6371 sync_old_nand_optab[i] = CODE_FOR_nothing;
6372 sync_new_add_optab[i] = CODE_FOR_nothing;
6373 sync_new_sub_optab[i] = CODE_FOR_nothing;
6374 sync_new_ior_optab[i] = CODE_FOR_nothing;
6375 sync_new_and_optab[i] = CODE_FOR_nothing;
6376 sync_new_xor_optab[i] = CODE_FOR_nothing;
6377 sync_new_nand_optab[i] = CODE_FOR_nothing;
6378 sync_compare_and_swap[i] = CODE_FOR_nothing;
6379 sync_lock_test_and_set[i] = CODE_FOR_nothing;
6380 sync_lock_release[i] = CODE_FOR_nothing;
6381
6382 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
6383 }
6384
6385 /* Fill in the optabs with the insns we support. */
6386 init_all_optabs ();
6387
6388 /* Initialize the optabs with the names of the library functions. */
6389 add_optab->libcall_basename = "add";
6390 add_optab->libcall_suffix = '3';
6391 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6392 addv_optab->libcall_basename = "add";
6393 addv_optab->libcall_suffix = '3';
6394 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6395 ssadd_optab->libcall_basename = "ssadd";
6396 ssadd_optab->libcall_suffix = '3';
6397 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6398 usadd_optab->libcall_basename = "usadd";
6399 usadd_optab->libcall_suffix = '3';
6400 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6401 sub_optab->libcall_basename = "sub";
6402 sub_optab->libcall_suffix = '3';
6403 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6404 subv_optab->libcall_basename = "sub";
6405 subv_optab->libcall_suffix = '3';
6406 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6407 sssub_optab->libcall_basename = "sssub";
6408 sssub_optab->libcall_suffix = '3';
6409 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6410 ussub_optab->libcall_basename = "ussub";
6411 ussub_optab->libcall_suffix = '3';
6412 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6413 smul_optab->libcall_basename = "mul";
6414 smul_optab->libcall_suffix = '3';
6415 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6416 smulv_optab->libcall_basename = "mul";
6417 smulv_optab->libcall_suffix = '3';
6418 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6419 ssmul_optab->libcall_basename = "ssmul";
6420 ssmul_optab->libcall_suffix = '3';
6421 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6422 usmul_optab->libcall_basename = "usmul";
6423 usmul_optab->libcall_suffix = '3';
6424 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6425 sdiv_optab->libcall_basename = "div";
6426 sdiv_optab->libcall_suffix = '3';
6427 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6428 sdivv_optab->libcall_basename = "divv";
6429 sdivv_optab->libcall_suffix = '3';
6430 sdivv_optab->libcall_gen = gen_int_libfunc;
6431 ssdiv_optab->libcall_basename = "ssdiv";
6432 ssdiv_optab->libcall_suffix = '3';
6433 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6434 udiv_optab->libcall_basename = "udiv";
6435 udiv_optab->libcall_suffix = '3';
6436 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6437 usdiv_optab->libcall_basename = "usdiv";
6438 usdiv_optab->libcall_suffix = '3';
6439 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6440 sdivmod_optab->libcall_basename = "divmod";
6441 sdivmod_optab->libcall_suffix = '4';
6442 sdivmod_optab->libcall_gen = gen_int_libfunc;
6443 udivmod_optab->libcall_basename = "udivmod";
6444 udivmod_optab->libcall_suffix = '4';
6445 udivmod_optab->libcall_gen = gen_int_libfunc;
6446 smod_optab->libcall_basename = "mod";
6447 smod_optab->libcall_suffix = '3';
6448 smod_optab->libcall_gen = gen_int_libfunc;
6449 umod_optab->libcall_basename = "umod";
6450 umod_optab->libcall_suffix = '3';
6451 umod_optab->libcall_gen = gen_int_libfunc;
6452 ftrunc_optab->libcall_basename = "ftrunc";
6453 ftrunc_optab->libcall_suffix = '2';
6454 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6455 and_optab->libcall_basename = "and";
6456 and_optab->libcall_suffix = '3';
6457 and_optab->libcall_gen = gen_int_libfunc;
6458 ior_optab->libcall_basename = "ior";
6459 ior_optab->libcall_suffix = '3';
6460 ior_optab->libcall_gen = gen_int_libfunc;
6461 xor_optab->libcall_basename = "xor";
6462 xor_optab->libcall_suffix = '3';
6463 xor_optab->libcall_gen = gen_int_libfunc;
6464 ashl_optab->libcall_basename = "ashl";
6465 ashl_optab->libcall_suffix = '3';
6466 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6467 ssashl_optab->libcall_basename = "ssashl";
6468 ssashl_optab->libcall_suffix = '3';
6469 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6470 usashl_optab->libcall_basename = "usashl";
6471 usashl_optab->libcall_suffix = '3';
6472 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6473 ashr_optab->libcall_basename = "ashr";
6474 ashr_optab->libcall_suffix = '3';
6475 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6476 lshr_optab->libcall_basename = "lshr";
6477 lshr_optab->libcall_suffix = '3';
6478 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6479 smin_optab->libcall_basename = "min";
6480 smin_optab->libcall_suffix = '3';
6481 smin_optab->libcall_gen = gen_int_fp_libfunc;
6482 smax_optab->libcall_basename = "max";
6483 smax_optab->libcall_suffix = '3';
6484 smax_optab->libcall_gen = gen_int_fp_libfunc;
6485 umin_optab->libcall_basename = "umin";
6486 umin_optab->libcall_suffix = '3';
6487 umin_optab->libcall_gen = gen_int_libfunc;
6488 umax_optab->libcall_basename = "umax";
6489 umax_optab->libcall_suffix = '3';
6490 umax_optab->libcall_gen = gen_int_libfunc;
6491 neg_optab->libcall_basename = "neg";
6492 neg_optab->libcall_suffix = '2';
6493 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6494 ssneg_optab->libcall_basename = "ssneg";
6495 ssneg_optab->libcall_suffix = '2';
6496 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6497 usneg_optab->libcall_basename = "usneg";
6498 usneg_optab->libcall_suffix = '2';
6499 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6500 negv_optab->libcall_basename = "neg";
6501 negv_optab->libcall_suffix = '2';
6502 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6503 one_cmpl_optab->libcall_basename = "one_cmpl";
6504 one_cmpl_optab->libcall_suffix = '2';
6505 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6506 ffs_optab->libcall_basename = "ffs";
6507 ffs_optab->libcall_suffix = '2';
6508 ffs_optab->libcall_gen = gen_int_libfunc;
6509 clz_optab->libcall_basename = "clz";
6510 clz_optab->libcall_suffix = '2';
6511 clz_optab->libcall_gen = gen_int_libfunc;
6512 ctz_optab->libcall_basename = "ctz";
6513 ctz_optab->libcall_suffix = '2';
6514 ctz_optab->libcall_gen = gen_int_libfunc;
6515 popcount_optab->libcall_basename = "popcount";
6516 popcount_optab->libcall_suffix = '2';
6517 popcount_optab->libcall_gen = gen_int_libfunc;
6518 parity_optab->libcall_basename = "parity";
6519 parity_optab->libcall_suffix = '2';
6520 parity_optab->libcall_gen = gen_int_libfunc;
6521
6522 /* Comparison libcalls for integers MUST come in pairs,
6523 signed/unsigned. */
6524 cmp_optab->libcall_basename = "cmp";
6525 cmp_optab->libcall_suffix = '2';
6526 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6527 ucmp_optab->libcall_basename = "ucmp";
6528 ucmp_optab->libcall_suffix = '2';
6529 ucmp_optab->libcall_gen = gen_int_libfunc;
6530
6531 /* EQ etc are floating point only. */
6532 eq_optab->libcall_basename = "eq";
6533 eq_optab->libcall_suffix = '2';
6534 eq_optab->libcall_gen = gen_fp_libfunc;
6535 ne_optab->libcall_basename = "ne";
6536 ne_optab->libcall_suffix = '2';
6537 ne_optab->libcall_gen = gen_fp_libfunc;
6538 gt_optab->libcall_basename = "gt";
6539 gt_optab->libcall_suffix = '2';
6540 gt_optab->libcall_gen = gen_fp_libfunc;
6541 ge_optab->libcall_basename = "ge";
6542 ge_optab->libcall_suffix = '2';
6543 ge_optab->libcall_gen = gen_fp_libfunc;
6544 lt_optab->libcall_basename = "lt";
6545 lt_optab->libcall_suffix = '2';
6546 lt_optab->libcall_gen = gen_fp_libfunc;
6547 le_optab->libcall_basename = "le";
6548 le_optab->libcall_suffix = '2';
6549 le_optab->libcall_gen = gen_fp_libfunc;
6550 unord_optab->libcall_basename = "unord";
6551 unord_optab->libcall_suffix = '2';
6552 unord_optab->libcall_gen = gen_fp_libfunc;
6553
6554 powi_optab->libcall_basename = "powi";
6555 powi_optab->libcall_suffix = '2';
6556 powi_optab->libcall_gen = gen_fp_libfunc;
6557
6558 /* Conversions. */
6559 sfloat_optab->libcall_basename = "float";
6560 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6561 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6562 sfix_optab->libcall_basename = "fix";
6563 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6564 ufix_optab->libcall_basename = "fixuns";
6565 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6566 lrint_optab->libcall_basename = "lrint";
6567 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6568 lround_optab->libcall_basename = "lround";
6569 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6570 lfloor_optab->libcall_basename = "lfloor";
6571 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6572 lceil_optab->libcall_basename = "lceil";
6573 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6574
6575 /* trunc_optab is also used for FLOAT_EXTEND. */
6576 sext_optab->libcall_basename = "extend";
6577 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6578 trunc_optab->libcall_basename = "trunc";
6579 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6580
6581 /* Conversions for fixed-point modes and other modes. */
6582 fract_optab->libcall_basename = "fract";
6583 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6584 satfract_optab->libcall_basename = "satfract";
6585 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6586 fractuns_optab->libcall_basename = "fractuns";
6587 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6588 satfractuns_optab->libcall_basename = "satfractuns";
6589 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6590
6591 /* The ffs function operates on `int'. Fall back on it if we do not
6592 have a libgcc2 function for that width. */
6593 if (INT_TYPE_SIZE < BITS_PER_WORD)
6594 {
6595 int_mode = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
6596 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6597 "ffs");
6598 }
6599
6600 /* Explicitly initialize the bswap libfuncs since we need them to be
6601 valid for things other than word_mode. */
6602 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6603 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6604
6605 /* Use cabs for double complex abs, since systems generally have cabs.
6606 Don't define any libcall for float complex, so that cabs will be used. */
6607 if (complex_double_type_node)
6608 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6609
6610 abort_libfunc = init_one_libfunc ("abort");
6611 memcpy_libfunc = init_one_libfunc ("memcpy");
6612 memmove_libfunc = init_one_libfunc ("memmove");
6613 memcmp_libfunc = init_one_libfunc ("memcmp");
6614 memset_libfunc = init_one_libfunc ("memset");
6615 setbits_libfunc = init_one_libfunc ("__setbits");
6616
6617 #ifndef DONT_USE_BUILTIN_SETJMP
6618 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6619 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6620 #else
6621 setjmp_libfunc = init_one_libfunc ("setjmp");
6622 longjmp_libfunc = init_one_libfunc ("longjmp");
6623 #endif
6624 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6625 unwind_sjlj_unregister_libfunc
6626 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6627
6628 /* For function entry/exit instrumentation. */
6629 profile_function_entry_libfunc
6630 = init_one_libfunc ("__cyg_profile_func_enter");
6631 profile_function_exit_libfunc
6632 = init_one_libfunc ("__cyg_profile_func_exit");
6633
6634 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6635
6636 /* Allow the target to add more libcalls or rename some, etc. */
6637 targetm.init_libfuncs ();
6638
6639 reinit = true;
6640 }
6641
6642 /* Print information about the current contents of the optabs on
6643 STDERR. */
6644
6645 void
6646 debug_optab_libfuncs (void)
6647 {
6648 int i;
6649 int j;
6650 int k;
6651
6652 /* Dump the arithmetic optabs. */
6653 for (i = 0; i != (int) OTI_MAX; i++)
6654 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6655 {
6656 optab o;
6657 rtx l;
6658
6659 o = &optab_table[i];
6660 l = optab_libfunc (o, (enum machine_mode) j);
6661 if (l)
6662 {
6663 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6664 fprintf (stderr, "%s\t%s:\t%s\n",
6665 GET_RTX_NAME (o->code),
6666 GET_MODE_NAME (j),
6667 XSTR (l, 0));
6668 }
6669 }
6670
6671 /* Dump the conversion optabs. */
6672 for (i = 0; i < (int) COI_MAX; ++i)
6673 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6674 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6675 {
6676 convert_optab o;
6677 rtx l;
6678
6679 o = &convert_optab_table[i];
6680 l = convert_optab_libfunc (o, (enum machine_mode) j,
6681 (enum machine_mode) k);
6682 if (l)
6683 {
6684 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6685 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6686 GET_RTX_NAME (o->code),
6687 GET_MODE_NAME (j),
6688 GET_MODE_NAME (k),
6689 XSTR (l, 0));
6690 }
6691 }
6692 }
6693
6694 \f
6695 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6696 CODE. Return 0 on failure. */
6697
6698 rtx
6699 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6700 {
6701 enum machine_mode mode = GET_MODE (op1);
6702 enum insn_code icode;
6703 rtx insn;
6704 rtx trap_rtx;
6705
6706 if (mode == VOIDmode)
6707 return 0;
6708
6709 icode = optab_handler (ctrap_optab, mode)->insn_code;
6710 if (icode == CODE_FOR_nothing)
6711 return 0;
6712
6713 /* Some targets only accept a zero trap code. */
6714 if (insn_data[icode].operand[3].predicate
6715 && !insn_data[icode].operand[3].predicate (tcode, VOIDmode))
6716 return 0;
6717
6718 do_pending_stack_adjust ();
6719 start_sequence ();
6720 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6721 &trap_rtx, &mode);
6722 if (!trap_rtx)
6723 insn = NULL_RTX;
6724 else
6725 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6726 tcode);
6727
6728 /* If that failed, then give up. */
6729 if (insn == 0)
6730 {
6731 end_sequence ();
6732 return 0;
6733 }
6734
6735 emit_insn (insn);
6736 insn = get_insns ();
6737 end_sequence ();
6738 return insn;
6739 }
6740
6741 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6742 or unsigned operation code. */
6743
6744 static enum rtx_code
6745 get_rtx_code (enum tree_code tcode, bool unsignedp)
6746 {
6747 enum rtx_code code;
6748 switch (tcode)
6749 {
6750 case EQ_EXPR:
6751 code = EQ;
6752 break;
6753 case NE_EXPR:
6754 code = NE;
6755 break;
6756 case LT_EXPR:
6757 code = unsignedp ? LTU : LT;
6758 break;
6759 case LE_EXPR:
6760 code = unsignedp ? LEU : LE;
6761 break;
6762 case GT_EXPR:
6763 code = unsignedp ? GTU : GT;
6764 break;
6765 case GE_EXPR:
6766 code = unsignedp ? GEU : GE;
6767 break;
6768
6769 case UNORDERED_EXPR:
6770 code = UNORDERED;
6771 break;
6772 case ORDERED_EXPR:
6773 code = ORDERED;
6774 break;
6775 case UNLT_EXPR:
6776 code = UNLT;
6777 break;
6778 case UNLE_EXPR:
6779 code = UNLE;
6780 break;
6781 case UNGT_EXPR:
6782 code = UNGT;
6783 break;
6784 case UNGE_EXPR:
6785 code = UNGE;
6786 break;
6787 case UNEQ_EXPR:
6788 code = UNEQ;
6789 break;
6790 case LTGT_EXPR:
6791 code = LTGT;
6792 break;
6793
6794 default:
6795 gcc_unreachable ();
6796 }
6797 return code;
6798 }
6799
6800 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6801 unsigned operators. Do not generate compare instruction. */
6802
6803 static rtx
6804 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6805 {
6806 enum rtx_code rcode;
6807 tree t_op0, t_op1;
6808 rtx rtx_op0, rtx_op1;
6809
6810 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6811 ensures that condition is a relational operation. */
6812 gcc_assert (COMPARISON_CLASS_P (cond));
6813
6814 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6815 t_op0 = TREE_OPERAND (cond, 0);
6816 t_op1 = TREE_OPERAND (cond, 1);
6817
6818 /* Expand operands. */
6819 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6820 EXPAND_STACK_PARM);
6821 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6822 EXPAND_STACK_PARM);
6823
6824 if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
6825 && GET_MODE (rtx_op0) != VOIDmode)
6826 rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
6827
6828 if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
6829 && GET_MODE (rtx_op1) != VOIDmode)
6830 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
6831
6832 return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
6833 }
6834
6835 /* Return insn code for VEC_COND_EXPR EXPR. */
6836
6837 static inline enum insn_code
6838 get_vcond_icode (tree expr, enum machine_mode mode)
6839 {
6840 enum insn_code icode = CODE_FOR_nothing;
6841
6842 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
6843 icode = vcondu_gen_code[mode];
6844 else
6845 icode = vcond_gen_code[mode];
6846 return icode;
6847 }
6848
6849 /* Return TRUE iff, appropriate vector insns are available
6850 for vector cond expr expr in VMODE mode. */
6851
6852 bool
6853 expand_vec_cond_expr_p (tree expr, enum machine_mode vmode)
6854 {
6855 if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing)
6856 return false;
6857 return true;
6858 }
6859
6860 /* Generate insns for VEC_COND_EXPR. */
6861
6862 rtx
6863 expand_vec_cond_expr (tree vec_cond_expr, rtx target)
6864 {
6865 enum insn_code icode;
6866 rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
6867 enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr));
6868 bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr));
6869
6870 icode = get_vcond_icode (vec_cond_expr, mode);
6871 if (icode == CODE_FOR_nothing)
6872 return 0;
6873
6874 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6875 target = gen_reg_rtx (mode);
6876
6877 /* Get comparison rtx. First expand both cond expr operands. */
6878 comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0),
6879 unsignedp, icode);
6880 cc_op0 = XEXP (comparison, 0);
6881 cc_op1 = XEXP (comparison, 1);
6882 /* Expand both operands and force them in reg, if required. */
6883 rtx_op1 = expand_normal (TREE_OPERAND (vec_cond_expr, 1));
6884 if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
6885 && mode != VOIDmode)
6886 rtx_op1 = force_reg (mode, rtx_op1);
6887
6888 rtx_op2 = expand_normal (TREE_OPERAND (vec_cond_expr, 2));
6889 if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
6890 && mode != VOIDmode)
6891 rtx_op2 = force_reg (mode, rtx_op2);
6892
6893 /* Emit instruction! */
6894 emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
6895 comparison, cc_op0, cc_op1));
6896
6897 return target;
6898 }
6899
6900 \f
6901 /* This is an internal subroutine of the other compare_and_swap expanders.
6902 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6903 operation. TARGET is an optional place to store the value result of
6904 the operation. ICODE is the particular instruction to expand. Return
6905 the result of the operation. */
6906
6907 static rtx
6908 expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
6909 rtx target, enum insn_code icode)
6910 {
6911 enum machine_mode mode = GET_MODE (mem);
6912 rtx insn;
6913
6914 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6915 target = gen_reg_rtx (mode);
6916
6917 if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
6918 old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
6919 if (!insn_data[icode].operand[2].predicate (old_val, mode))
6920 old_val = force_reg (mode, old_val);
6921
6922 if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
6923 new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
6924 if (!insn_data[icode].operand[3].predicate (new_val, mode))
6925 new_val = force_reg (mode, new_val);
6926
6927 insn = GEN_FCN (icode) (target, mem, old_val, new_val);
6928 if (insn == NULL_RTX)
6929 return NULL_RTX;
6930 emit_insn (insn);
6931
6932 return target;
6933 }
6934
6935 /* Expand a compare-and-swap operation and return its value. */
6936
6937 rtx
6938 expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6939 {
6940 enum machine_mode mode = GET_MODE (mem);
6941 enum insn_code icode = sync_compare_and_swap[mode];
6942
6943 if (icode == CODE_FOR_nothing)
6944 return NULL_RTX;
6945
6946 return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
6947 }
6948
6949 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6950 pattern. */
6951
6952 static void
6953 find_cc_set (rtx x, const_rtx pat, void *data)
6954 {
6955 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6956 && GET_CODE (pat) == SET)
6957 {
6958 rtx *p_cc_reg = (rtx *) data;
6959 gcc_assert (!*p_cc_reg);
6960 *p_cc_reg = x;
6961 }
6962 }
6963
6964 /* Expand a compare-and-swap operation and store true into the result if
6965 the operation was successful and false otherwise. Return the result.
6966 Unlike other routines, TARGET is not optional. */
6967
6968 rtx
6969 expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6970 {
6971 enum machine_mode mode = GET_MODE (mem);
6972 enum insn_code icode;
6973 rtx subtarget, seq, cc_reg;
6974
6975 /* If the target supports a compare-and-swap pattern that simultaneously
6976 sets some flag for success, then use it. Otherwise use the regular
6977 compare-and-swap and follow that immediately with a compare insn. */
6978 icode = sync_compare_and_swap[mode];
6979 if (icode == CODE_FOR_nothing)
6980 return NULL_RTX;
6981
6982 do
6983 {
6984 start_sequence ();
6985 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6986 NULL_RTX, icode);
6987 cc_reg = NULL_RTX;
6988 if (subtarget == NULL_RTX)
6989 {
6990 end_sequence ();
6991 return NULL_RTX;
6992 }
6993
6994 if (have_insn_for (COMPARE, CCmode))
6995 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
6996 seq = get_insns ();
6997 end_sequence ();
6998
6999 /* We might be comparing against an old value. Try again. :-( */
7000 if (!cc_reg && MEM_P (old_val))
7001 {
7002 seq = NULL_RTX;
7003 old_val = force_reg (mode, old_val);
7004 }
7005 }
7006 while (!seq);
7007
7008 emit_insn (seq);
7009 if (cc_reg)
7010 return emit_store_flag_force (target, EQ, cc_reg, const0_rtx, VOIDmode, 0, 1);
7011 else
7012 return emit_store_flag_force (target, EQ, subtarget, old_val, VOIDmode, 1, 1);
7013 }
7014
7015 /* This is a helper function for the other atomic operations. This function
7016 emits a loop that contains SEQ that iterates until a compare-and-swap
7017 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7018 a set of instructions that takes a value from OLD_REG as an input and
7019 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7020 set to the current contents of MEM. After SEQ, a compare-and-swap will
7021 attempt to update MEM with NEW_REG. The function returns true when the
7022 loop was generated successfully. */
7023
7024 static bool
7025 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7026 {
7027 enum machine_mode mode = GET_MODE (mem);
7028 enum insn_code icode;
7029 rtx label, cmp_reg, subtarget, cc_reg;
7030
7031 /* The loop we want to generate looks like
7032
7033 cmp_reg = mem;
7034 label:
7035 old_reg = cmp_reg;
7036 seq;
7037 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
7038 if (cmp_reg != old_reg)
7039 goto label;
7040
7041 Note that we only do the plain load from memory once. Subsequent
7042 iterations use the value loaded by the compare-and-swap pattern. */
7043
7044 label = gen_label_rtx ();
7045 cmp_reg = gen_reg_rtx (mode);
7046
7047 emit_move_insn (cmp_reg, mem);
7048 emit_label (label);
7049 emit_move_insn (old_reg, cmp_reg);
7050 if (seq)
7051 emit_insn (seq);
7052
7053 /* If the target supports a compare-and-swap pattern that simultaneously
7054 sets some flag for success, then use it. Otherwise use the regular
7055 compare-and-swap and follow that immediately with a compare insn. */
7056 icode = sync_compare_and_swap[mode];
7057 if (icode == CODE_FOR_nothing)
7058 return false;
7059
7060 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7061 cmp_reg, icode);
7062 if (subtarget == NULL_RTX)
7063 return false;
7064
7065 cc_reg = NULL_RTX;
7066 if (have_insn_for (COMPARE, CCmode))
7067 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7068 if (cc_reg)
7069 {
7070 cmp_reg = cc_reg;
7071 old_reg = const0_rtx;
7072 }
7073 else
7074 {
7075 if (subtarget != cmp_reg)
7076 emit_move_insn (cmp_reg, subtarget);
7077 }
7078
7079 /* ??? Mark this jump predicted not taken? */
7080 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, const0_rtx, GET_MODE (cmp_reg), 1,
7081 label);
7082 return true;
7083 }
7084
7085 /* This function generates the atomic operation MEM CODE= VAL. In this
7086 case, we do not care about any resulting value. Returns NULL if we
7087 cannot generate the operation. */
7088
7089 rtx
7090 expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
7091 {
7092 enum machine_mode mode = GET_MODE (mem);
7093 enum insn_code icode;
7094 rtx insn;
7095
7096 /* Look to see if the target supports the operation directly. */
7097 switch (code)
7098 {
7099 case PLUS:
7100 icode = sync_add_optab[mode];
7101 break;
7102 case IOR:
7103 icode = sync_ior_optab[mode];
7104 break;
7105 case XOR:
7106 icode = sync_xor_optab[mode];
7107 break;
7108 case AND:
7109 icode = sync_and_optab[mode];
7110 break;
7111 case NOT:
7112 icode = sync_nand_optab[mode];
7113 break;
7114
7115 case MINUS:
7116 icode = sync_sub_optab[mode];
7117 if (icode == CODE_FOR_nothing || CONST_INT_P (val))
7118 {
7119 icode = sync_add_optab[mode];
7120 if (icode != CODE_FOR_nothing)
7121 {
7122 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7123 code = PLUS;
7124 }
7125 }
7126 break;
7127
7128 default:
7129 gcc_unreachable ();
7130 }
7131
7132 /* Generate the direct operation, if present. */
7133 if (icode != CODE_FOR_nothing)
7134 {
7135 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7136 val = convert_modes (mode, GET_MODE (val), val, 1);
7137 if (!insn_data[icode].operand[1].predicate (val, mode))
7138 val = force_reg (mode, val);
7139
7140 insn = GEN_FCN (icode) (mem, val);
7141 if (insn)
7142 {
7143 emit_insn (insn);
7144 return const0_rtx;
7145 }
7146 }
7147
7148 /* Failing that, generate a compare-and-swap loop in which we perform the
7149 operation with normal arithmetic instructions. */
7150 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7151 {
7152 rtx t0 = gen_reg_rtx (mode), t1;
7153
7154 start_sequence ();
7155
7156 t1 = t0;
7157 if (code == NOT)
7158 {
7159 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7160 true, OPTAB_LIB_WIDEN);
7161 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7162 }
7163 else
7164 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7165 true, OPTAB_LIB_WIDEN);
7166 insn = get_insns ();
7167 end_sequence ();
7168
7169 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7170 return const0_rtx;
7171 }
7172
7173 return NULL_RTX;
7174 }
7175
7176 /* This function generates the atomic operation MEM CODE= VAL. In this
7177 case, we do care about the resulting value: if AFTER is true then
7178 return the value MEM holds after the operation, if AFTER is false
7179 then return the value MEM holds before the operation. TARGET is an
7180 optional place for the result value to be stored. */
7181
7182 rtx
7183 expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
7184 bool after, rtx target)
7185 {
7186 enum machine_mode mode = GET_MODE (mem);
7187 enum insn_code old_code, new_code, icode;
7188 bool compensate;
7189 rtx insn;
7190
7191 /* Look to see if the target supports the operation directly. */
7192 switch (code)
7193 {
7194 case PLUS:
7195 old_code = sync_old_add_optab[mode];
7196 new_code = sync_new_add_optab[mode];
7197 break;
7198 case IOR:
7199 old_code = sync_old_ior_optab[mode];
7200 new_code = sync_new_ior_optab[mode];
7201 break;
7202 case XOR:
7203 old_code = sync_old_xor_optab[mode];
7204 new_code = sync_new_xor_optab[mode];
7205 break;
7206 case AND:
7207 old_code = sync_old_and_optab[mode];
7208 new_code = sync_new_and_optab[mode];
7209 break;
7210 case NOT:
7211 old_code = sync_old_nand_optab[mode];
7212 new_code = sync_new_nand_optab[mode];
7213 break;
7214
7215 case MINUS:
7216 old_code = sync_old_sub_optab[mode];
7217 new_code = sync_new_sub_optab[mode];
7218 if ((old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
7219 || CONST_INT_P (val))
7220 {
7221 old_code = sync_old_add_optab[mode];
7222 new_code = sync_new_add_optab[mode];
7223 if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
7224 {
7225 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7226 code = PLUS;
7227 }
7228 }
7229 break;
7230
7231 default:
7232 gcc_unreachable ();
7233 }
7234
7235 /* If the target does supports the proper new/old operation, great. But
7236 if we only support the opposite old/new operation, check to see if we
7237 can compensate. In the case in which the old value is supported, then
7238 we can always perform the operation again with normal arithmetic. In
7239 the case in which the new value is supported, then we can only handle
7240 this in the case the operation is reversible. */
7241 compensate = false;
7242 if (after)
7243 {
7244 icode = new_code;
7245 if (icode == CODE_FOR_nothing)
7246 {
7247 icode = old_code;
7248 if (icode != CODE_FOR_nothing)
7249 compensate = true;
7250 }
7251 }
7252 else
7253 {
7254 icode = old_code;
7255 if (icode == CODE_FOR_nothing
7256 && (code == PLUS || code == MINUS || code == XOR))
7257 {
7258 icode = new_code;
7259 if (icode != CODE_FOR_nothing)
7260 compensate = true;
7261 }
7262 }
7263
7264 /* If we found something supported, great. */
7265 if (icode != CODE_FOR_nothing)
7266 {
7267 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7268 target = gen_reg_rtx (mode);
7269
7270 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7271 val = convert_modes (mode, GET_MODE (val), val, 1);
7272 if (!insn_data[icode].operand[2].predicate (val, mode))
7273 val = force_reg (mode, val);
7274
7275 insn = GEN_FCN (icode) (target, mem, val);
7276 if (insn)
7277 {
7278 emit_insn (insn);
7279
7280 /* If we need to compensate for using an operation with the
7281 wrong return value, do so now. */
7282 if (compensate)
7283 {
7284 if (!after)
7285 {
7286 if (code == PLUS)
7287 code = MINUS;
7288 else if (code == MINUS)
7289 code = PLUS;
7290 }
7291
7292 if (code == NOT)
7293 {
7294 target = expand_simple_binop (mode, AND, target, val,
7295 NULL_RTX, true,
7296 OPTAB_LIB_WIDEN);
7297 target = expand_simple_unop (mode, code, target,
7298 NULL_RTX, true);
7299 }
7300 else
7301 target = expand_simple_binop (mode, code, target, val,
7302 NULL_RTX, true,
7303 OPTAB_LIB_WIDEN);
7304 }
7305
7306 return target;
7307 }
7308 }
7309
7310 /* Failing that, generate a compare-and-swap loop in which we perform the
7311 operation with normal arithmetic instructions. */
7312 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7313 {
7314 rtx t0 = gen_reg_rtx (mode), t1;
7315
7316 if (!target || !register_operand (target, mode))
7317 target = gen_reg_rtx (mode);
7318
7319 start_sequence ();
7320
7321 if (!after)
7322 emit_move_insn (target, t0);
7323 t1 = t0;
7324 if (code == NOT)
7325 {
7326 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7327 true, OPTAB_LIB_WIDEN);
7328 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7329 }
7330 else
7331 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7332 true, OPTAB_LIB_WIDEN);
7333 if (after)
7334 emit_move_insn (target, t1);
7335
7336 insn = get_insns ();
7337 end_sequence ();
7338
7339 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7340 return target;
7341 }
7342
7343 return NULL_RTX;
7344 }
7345
7346 /* This function expands a test-and-set operation. Ideally we atomically
7347 store VAL in MEM and return the previous value in MEM. Some targets
7348 may not support this operation and only support VAL with the constant 1;
7349 in this case while the return value will be 0/1, but the exact value
7350 stored in MEM is target defined. TARGET is an option place to stick
7351 the return value. */
7352
7353 rtx
7354 expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
7355 {
7356 enum machine_mode mode = GET_MODE (mem);
7357 enum insn_code icode;
7358 rtx insn;
7359
7360 /* If the target supports the test-and-set directly, great. */
7361 icode = sync_lock_test_and_set[mode];
7362 if (icode != CODE_FOR_nothing)
7363 {
7364 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7365 target = gen_reg_rtx (mode);
7366
7367 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7368 val = convert_modes (mode, GET_MODE (val), val, 1);
7369 if (!insn_data[icode].operand[2].predicate (val, mode))
7370 val = force_reg (mode, val);
7371
7372 insn = GEN_FCN (icode) (target, mem, val);
7373 if (insn)
7374 {
7375 emit_insn (insn);
7376 return target;
7377 }
7378 }
7379
7380 /* Otherwise, use a compare-and-swap loop for the exchange. */
7381 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7382 {
7383 if (!target || !register_operand (target, mode))
7384 target = gen_reg_rtx (mode);
7385 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7386 val = convert_modes (mode, GET_MODE (val), val, 1);
7387 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7388 return target;
7389 }
7390
7391 return NULL_RTX;
7392 }
7393
7394 #include "gt-optabs.h"