inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
51
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
54
55 See expr.h for documentation of these optabs. */
56
57 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
58 __extension__ struct optab_d optab_table[OTI_MAX]
59 = { [0 ... OTI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1].insn_code
60 = CODE_FOR_nothing };
61 #else
62 /* init_insn_codes will do runtime initialization otherwise. */
63 struct optab_d optab_table[OTI_MAX];
64 #endif
65
66 rtx libfunc_table[LTI_MAX];
67
68 /* Tables of patterns for converting one mode to another. */
69 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
70 __extension__ struct convert_optab_d convert_optab_table[COI_MAX]
71 = { [0 ... COI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1]
72 [0 ... NUM_MACHINE_MODES - 1].insn_code
73 = CODE_FOR_nothing };
74 #else
75 /* init_convert_optab will do runtime initialization otherwise. */
76 struct convert_optab_d convert_optab_table[COI_MAX];
77 #endif
78
79 /* Contains the optab used for each rtx code. */
80 optab code_to_optab[NUM_RTX_CODE + 1];
81
82 #ifdef HAVE_conditional_move
83 /* Indexed by the machine mode, gives the insn code to make a conditional
84 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
85 setcc_gen_code to cut down on the number of named patterns. Consider a day
86 when a lot more rtx codes are conditional (eg: for the ARM). */
87
88 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
89 #endif
90
91 /* Indexed by the machine mode, gives the insn code for vector conditional
92 operation. */
93
94 enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
95 enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
96
97 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
98 enum machine_mode *);
99 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
100
101 /* Debug facility for use in GDB. */
102 void debug_optab_libfuncs (void);
103
104 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
105 #if ENABLE_DECIMAL_BID_FORMAT
106 #define DECIMAL_PREFIX "bid_"
107 #else
108 #define DECIMAL_PREFIX "dpd_"
109 #endif
110 \f
111
112 /* Info about libfunc. We use same hashtable for normal optabs and conversion
113 optab. In the first case mode2 is unused. */
114 struct GTY(()) libfunc_entry {
115 size_t optab;
116 enum machine_mode mode1, mode2;
117 rtx libfunc;
118 };
119
120 /* Hash table used to convert declarations into nodes. */
121 static GTY((param_is (struct libfunc_entry))) htab_t libfunc_hash;
122
123 /* Used for attribute_hash. */
124
125 static hashval_t
126 hash_libfunc (const void *p)
127 {
128 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
129
130 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
131 ^ e->optab);
132 }
133
134 /* Used for optab_hash. */
135
136 static int
137 eq_libfunc (const void *p, const void *q)
138 {
139 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
140 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
141
142 return (e1->optab == e2->optab
143 && e1->mode1 == e2->mode1
144 && e1->mode2 == e2->mode2);
145 }
146
147 /* Return libfunc corresponding operation defined by OPTAB converting
148 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
149 if no libfunc is available. */
150 rtx
151 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
152 enum machine_mode mode2)
153 {
154 struct libfunc_entry e;
155 struct libfunc_entry **slot;
156
157 e.optab = (size_t) (optab - &convert_optab_table[0]);
158 e.mode1 = mode1;
159 e.mode2 = mode2;
160 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
161 if (!slot)
162 {
163 if (optab->libcall_gen)
164 {
165 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
166 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
167 if (slot)
168 return (*slot)->libfunc;
169 else
170 return NULL;
171 }
172 return NULL;
173 }
174 return (*slot)->libfunc;
175 }
176
177 /* Return libfunc corresponding operation defined by OPTAB in MODE.
178 Trigger lazy initialization if needed, return NULL if no libfunc is
179 available. */
180 rtx
181 optab_libfunc (optab optab, enum machine_mode mode)
182 {
183 struct libfunc_entry e;
184 struct libfunc_entry **slot;
185
186 e.optab = (size_t) (optab - &optab_table[0]);
187 e.mode1 = mode;
188 e.mode2 = VOIDmode;
189 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
190 if (!slot)
191 {
192 if (optab->libcall_gen)
193 {
194 optab->libcall_gen (optab, optab->libcall_basename,
195 optab->libcall_suffix, mode);
196 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
197 &e, NO_INSERT);
198 if (slot)
199 return (*slot)->libfunc;
200 else
201 return NULL;
202 }
203 return NULL;
204 }
205 return (*slot)->libfunc;
206 }
207
208 \f
209 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
210 the result of operation CODE applied to OP0 (and OP1 if it is a binary
211 operation).
212
213 If the last insn does not set TARGET, don't do anything, but return 1.
214
215 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
216 don't add the REG_EQUAL note but return 0. Our caller can then try
217 again, ensuring that TARGET is not one of the operands. */
218
219 static int
220 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
221 {
222 rtx last_insn, insn, set;
223 rtx note;
224
225 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
226
227 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
228 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
229 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
230 && GET_RTX_CLASS (code) != RTX_COMPARE
231 && GET_RTX_CLASS (code) != RTX_UNARY)
232 return 1;
233
234 if (GET_CODE (target) == ZERO_EXTRACT)
235 return 1;
236
237 for (last_insn = insns;
238 NEXT_INSN (last_insn) != NULL_RTX;
239 last_insn = NEXT_INSN (last_insn))
240 ;
241
242 set = single_set (last_insn);
243 if (set == NULL_RTX)
244 return 1;
245
246 if (! rtx_equal_p (SET_DEST (set), target)
247 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
248 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
249 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
250 return 1;
251
252 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
253 besides the last insn. */
254 if (reg_overlap_mentioned_p (target, op0)
255 || (op1 && reg_overlap_mentioned_p (target, op1)))
256 {
257 insn = PREV_INSN (last_insn);
258 while (insn != NULL_RTX)
259 {
260 if (reg_set_p (target, insn))
261 return 0;
262
263 insn = PREV_INSN (insn);
264 }
265 }
266
267 if (GET_RTX_CLASS (code) == RTX_UNARY)
268 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
269 else
270 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
271
272 set_unique_reg_note (last_insn, REG_EQUAL, note);
273
274 return 1;
275 }
276 \f
277 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
278 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
279 not actually do a sign-extend or zero-extend, but can leave the
280 higher-order bits of the result rtx undefined, for example, in the case
281 of logical operations, but not right shifts. */
282
283 static rtx
284 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
285 int unsignedp, int no_extend)
286 {
287 rtx result;
288
289 /* If we don't have to extend and this is a constant, return it. */
290 if (no_extend && GET_MODE (op) == VOIDmode)
291 return op;
292
293 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
294 extend since it will be more efficient to do so unless the signedness of
295 a promoted object differs from our extension. */
296 if (! no_extend
297 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
298 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
299 return convert_modes (mode, oldmode, op, unsignedp);
300
301 /* If MODE is no wider than a single word, we return a paradoxical
302 SUBREG. */
303 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
304 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
305
306 /* Otherwise, get an object of MODE, clobber it, and set the low-order
307 part to OP. */
308
309 result = gen_reg_rtx (mode);
310 emit_clobber (result);
311 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
312 return result;
313 }
314 \f
315 /* Return the optab used for computing the operation given by the tree code,
316 CODE and the tree EXP. This function is not always usable (for example, it
317 cannot give complete results for multiplication or division) but probably
318 ought to be relied on more widely throughout the expander. */
319 optab
320 optab_for_tree_code (enum tree_code code, const_tree type,
321 enum optab_subtype subtype)
322 {
323 bool trapv;
324 switch (code)
325 {
326 case BIT_AND_EXPR:
327 return and_optab;
328
329 case BIT_IOR_EXPR:
330 return ior_optab;
331
332 case BIT_NOT_EXPR:
333 return one_cmpl_optab;
334
335 case BIT_XOR_EXPR:
336 return xor_optab;
337
338 case TRUNC_MOD_EXPR:
339 case CEIL_MOD_EXPR:
340 case FLOOR_MOD_EXPR:
341 case ROUND_MOD_EXPR:
342 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
343
344 case RDIV_EXPR:
345 case TRUNC_DIV_EXPR:
346 case CEIL_DIV_EXPR:
347 case FLOOR_DIV_EXPR:
348 case ROUND_DIV_EXPR:
349 case EXACT_DIV_EXPR:
350 if (TYPE_SATURATING(type))
351 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
352 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
353
354 case LSHIFT_EXPR:
355 if (VECTOR_MODE_P (TYPE_MODE (type)))
356 {
357 if (subtype == optab_vector)
358 return TYPE_SATURATING (type) ? NULL : vashl_optab;
359
360 gcc_assert (subtype == optab_scalar);
361 }
362 if (TYPE_SATURATING(type))
363 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
364 return ashl_optab;
365
366 case RSHIFT_EXPR:
367 if (VECTOR_MODE_P (TYPE_MODE (type)))
368 {
369 if (subtype == optab_vector)
370 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
371
372 gcc_assert (subtype == optab_scalar);
373 }
374 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
375
376 case LROTATE_EXPR:
377 if (VECTOR_MODE_P (TYPE_MODE (type)))
378 {
379 if (subtype == optab_vector)
380 return vrotl_optab;
381
382 gcc_assert (subtype == optab_scalar);
383 }
384 return rotl_optab;
385
386 case RROTATE_EXPR:
387 if (VECTOR_MODE_P (TYPE_MODE (type)))
388 {
389 if (subtype == optab_vector)
390 return vrotr_optab;
391
392 gcc_assert (subtype == optab_scalar);
393 }
394 return rotr_optab;
395
396 case MAX_EXPR:
397 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
398
399 case MIN_EXPR:
400 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
401
402 case REALIGN_LOAD_EXPR:
403 return vec_realign_load_optab;
404
405 case WIDEN_SUM_EXPR:
406 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
407
408 case DOT_PROD_EXPR:
409 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
410
411 case REDUC_MAX_EXPR:
412 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
413
414 case REDUC_MIN_EXPR:
415 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
416
417 case REDUC_PLUS_EXPR:
418 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
419
420 case VEC_LSHIFT_EXPR:
421 return vec_shl_optab;
422
423 case VEC_RSHIFT_EXPR:
424 return vec_shr_optab;
425
426 case VEC_WIDEN_MULT_HI_EXPR:
427 return TYPE_UNSIGNED (type) ?
428 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
429
430 case VEC_WIDEN_MULT_LO_EXPR:
431 return TYPE_UNSIGNED (type) ?
432 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
433
434 case VEC_UNPACK_HI_EXPR:
435 return TYPE_UNSIGNED (type) ?
436 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
437
438 case VEC_UNPACK_LO_EXPR:
439 return TYPE_UNSIGNED (type) ?
440 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
441
442 case VEC_UNPACK_FLOAT_HI_EXPR:
443 /* The signedness is determined from input operand. */
444 return TYPE_UNSIGNED (type) ?
445 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
446
447 case VEC_UNPACK_FLOAT_LO_EXPR:
448 /* The signedness is determined from input operand. */
449 return TYPE_UNSIGNED (type) ?
450 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
451
452 case VEC_PACK_TRUNC_EXPR:
453 return vec_pack_trunc_optab;
454
455 case VEC_PACK_SAT_EXPR:
456 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
457
458 case VEC_PACK_FIX_TRUNC_EXPR:
459 /* The signedness is determined from output operand. */
460 return TYPE_UNSIGNED (type) ?
461 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
462
463 default:
464 break;
465 }
466
467 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
468 switch (code)
469 {
470 case POINTER_PLUS_EXPR:
471 case PLUS_EXPR:
472 if (TYPE_SATURATING(type))
473 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
474 return trapv ? addv_optab : add_optab;
475
476 case MINUS_EXPR:
477 if (TYPE_SATURATING(type))
478 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
479 return trapv ? subv_optab : sub_optab;
480
481 case MULT_EXPR:
482 if (TYPE_SATURATING(type))
483 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
484 return trapv ? smulv_optab : smul_optab;
485
486 case NEGATE_EXPR:
487 if (TYPE_SATURATING(type))
488 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
489 return trapv ? negv_optab : neg_optab;
490
491 case ABS_EXPR:
492 return trapv ? absv_optab : abs_optab;
493
494 case VEC_EXTRACT_EVEN_EXPR:
495 return vec_extract_even_optab;
496
497 case VEC_EXTRACT_ODD_EXPR:
498 return vec_extract_odd_optab;
499
500 case VEC_INTERLEAVE_HIGH_EXPR:
501 return vec_interleave_high_optab;
502
503 case VEC_INTERLEAVE_LOW_EXPR:
504 return vec_interleave_low_optab;
505
506 default:
507 return NULL;
508 }
509 }
510 \f
511
512 /* Expand vector widening operations.
513
514 There are two different classes of operations handled here:
515 1) Operations whose result is wider than all the arguments to the operation.
516 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
517 In this case OP0 and optionally OP1 would be initialized,
518 but WIDE_OP wouldn't (not relevant for this case).
519 2) Operations whose result is of the same size as the last argument to the
520 operation, but wider than all the other arguments to the operation.
521 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
522 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
523
524 E.g, when called to expand the following operations, this is how
525 the arguments will be initialized:
526 nops OP0 OP1 WIDE_OP
527 widening-sum 2 oprnd0 - oprnd1
528 widening-dot-product 3 oprnd0 oprnd1 oprnd2
529 widening-mult 2 oprnd0 oprnd1 -
530 type-promotion (vec-unpack) 1 oprnd0 - - */
531
532 rtx
533 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
534 rtx target, int unsignedp)
535 {
536 tree oprnd0, oprnd1, oprnd2;
537 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
538 optab widen_pattern_optab;
539 int icode;
540 enum machine_mode xmode0, xmode1 = VOIDmode, wxmode = VOIDmode;
541 rtx temp;
542 rtx pat;
543 rtx xop0, xop1, wxop;
544 int nops = TREE_CODE_LENGTH (ops->code);
545
546 oprnd0 = ops->op0;
547 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
548 widen_pattern_optab =
549 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
550 icode = (int) optab_handler (widen_pattern_optab, tmode0)->insn_code;
551 gcc_assert (icode != CODE_FOR_nothing);
552 xmode0 = insn_data[icode].operand[1].mode;
553
554 if (nops >= 2)
555 {
556 oprnd1 = ops->op1;
557 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
558 xmode1 = insn_data[icode].operand[2].mode;
559 }
560
561 /* The last operand is of a wider mode than the rest of the operands. */
562 if (nops == 2)
563 {
564 wmode = tmode1;
565 wxmode = xmode1;
566 }
567 else if (nops == 3)
568 {
569 gcc_assert (tmode1 == tmode0);
570 gcc_assert (op1);
571 oprnd2 = ops->op2;
572 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
573 wxmode = insn_data[icode].operand[3].mode;
574 }
575
576 if (!wide_op)
577 wmode = wxmode = insn_data[icode].operand[0].mode;
578
579 if (!target
580 || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
581 temp = gen_reg_rtx (wmode);
582 else
583 temp = target;
584
585 xop0 = op0;
586 xop1 = op1;
587 wxop = wide_op;
588
589 /* In case the insn wants input operands in modes different from
590 those of the actual operands, convert the operands. It would
591 seem that we don't need to convert CONST_INTs, but we do, so
592 that they're properly zero-extended, sign-extended or truncated
593 for their mode. */
594
595 if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
596 xop0 = convert_modes (xmode0,
597 GET_MODE (op0) != VOIDmode
598 ? GET_MODE (op0)
599 : tmode0,
600 xop0, unsignedp);
601
602 if (op1)
603 if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
604 xop1 = convert_modes (xmode1,
605 GET_MODE (op1) != VOIDmode
606 ? GET_MODE (op1)
607 : tmode1,
608 xop1, unsignedp);
609
610 if (wide_op)
611 if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
612 wxop = convert_modes (wxmode,
613 GET_MODE (wide_op) != VOIDmode
614 ? GET_MODE (wide_op)
615 : wmode,
616 wxop, unsignedp);
617
618 /* Now, if insn's predicates don't allow our operands, put them into
619 pseudo regs. */
620
621 if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
622 && xmode0 != VOIDmode)
623 xop0 = copy_to_mode_reg (xmode0, xop0);
624
625 if (op1)
626 {
627 if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
628 && xmode1 != VOIDmode)
629 xop1 = copy_to_mode_reg (xmode1, xop1);
630
631 if (wide_op)
632 {
633 if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
634 && wxmode != VOIDmode)
635 wxop = copy_to_mode_reg (wxmode, wxop);
636
637 pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
638 }
639 else
640 pat = GEN_FCN (icode) (temp, xop0, xop1);
641 }
642 else
643 {
644 if (wide_op)
645 {
646 if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
647 && wxmode != VOIDmode)
648 wxop = copy_to_mode_reg (wxmode, wxop);
649
650 pat = GEN_FCN (icode) (temp, xop0, wxop);
651 }
652 else
653 pat = GEN_FCN (icode) (temp, xop0);
654 }
655
656 emit_insn (pat);
657 return temp;
658 }
659
660 /* Generate code to perform an operation specified by TERNARY_OPTAB
661 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
662
663 UNSIGNEDP is for the case where we have to widen the operands
664 to perform the operation. It says to use zero-extension.
665
666 If TARGET is nonzero, the value
667 is generated there, if it is convenient to do so.
668 In all cases an rtx is returned for the locus of the value;
669 this may or may not be TARGET. */
670
671 rtx
672 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
673 rtx op1, rtx op2, rtx target, int unsignedp)
674 {
675 int icode = (int) optab_handler (ternary_optab, mode)->insn_code;
676 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
677 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
678 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
679 rtx temp;
680 rtx pat;
681 rtx xop0 = op0, xop1 = op1, xop2 = op2;
682
683 gcc_assert (optab_handler (ternary_optab, mode)->insn_code
684 != CODE_FOR_nothing);
685
686 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
687 temp = gen_reg_rtx (mode);
688 else
689 temp = target;
690
691 /* In case the insn wants input operands in modes different from
692 those of the actual operands, convert the operands. It would
693 seem that we don't need to convert CONST_INTs, but we do, so
694 that they're properly zero-extended, sign-extended or truncated
695 for their mode. */
696
697 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
698 xop0 = convert_modes (mode0,
699 GET_MODE (op0) != VOIDmode
700 ? GET_MODE (op0)
701 : mode,
702 xop0, unsignedp);
703
704 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
705 xop1 = convert_modes (mode1,
706 GET_MODE (op1) != VOIDmode
707 ? GET_MODE (op1)
708 : mode,
709 xop1, unsignedp);
710
711 if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
712 xop2 = convert_modes (mode2,
713 GET_MODE (op2) != VOIDmode
714 ? GET_MODE (op2)
715 : mode,
716 xop2, unsignedp);
717
718 /* Now, if insn's predicates don't allow our operands, put them into
719 pseudo regs. */
720
721 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
722 && mode0 != VOIDmode)
723 xop0 = copy_to_mode_reg (mode0, xop0);
724
725 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
726 && mode1 != VOIDmode)
727 xop1 = copy_to_mode_reg (mode1, xop1);
728
729 if (!insn_data[icode].operand[3].predicate (xop2, mode2)
730 && mode2 != VOIDmode)
731 xop2 = copy_to_mode_reg (mode2, xop2);
732
733 pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
734
735 emit_insn (pat);
736 return temp;
737 }
738
739
740 /* Like expand_binop, but return a constant rtx if the result can be
741 calculated at compile time. The arguments and return value are
742 otherwise the same as for expand_binop. */
743
744 static rtx
745 simplify_expand_binop (enum machine_mode mode, optab binoptab,
746 rtx op0, rtx op1, rtx target, int unsignedp,
747 enum optab_methods methods)
748 {
749 if (CONSTANT_P (op0) && CONSTANT_P (op1))
750 {
751 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
752
753 if (x)
754 return x;
755 }
756
757 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
758 }
759
760 /* Like simplify_expand_binop, but always put the result in TARGET.
761 Return true if the expansion succeeded. */
762
763 bool
764 force_expand_binop (enum machine_mode mode, optab binoptab,
765 rtx op0, rtx op1, rtx target, int unsignedp,
766 enum optab_methods methods)
767 {
768 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
769 target, unsignedp, methods);
770 if (x == 0)
771 return false;
772 if (x != target)
773 emit_move_insn (target, x);
774 return true;
775 }
776
777 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
778
779 rtx
780 expand_vec_shift_expr (sepops ops, rtx target)
781 {
782 enum insn_code icode;
783 rtx rtx_op1, rtx_op2;
784 enum machine_mode mode1;
785 enum machine_mode mode2;
786 enum machine_mode mode = TYPE_MODE (ops->type);
787 tree vec_oprnd = ops->op0;
788 tree shift_oprnd = ops->op1;
789 optab shift_optab;
790 rtx pat;
791
792 switch (ops->code)
793 {
794 case VEC_RSHIFT_EXPR:
795 shift_optab = vec_shr_optab;
796 break;
797 case VEC_LSHIFT_EXPR:
798 shift_optab = vec_shl_optab;
799 break;
800 default:
801 gcc_unreachable ();
802 }
803
804 icode = optab_handler (shift_optab, mode)->insn_code;
805 gcc_assert (icode != CODE_FOR_nothing);
806
807 mode1 = insn_data[icode].operand[1].mode;
808 mode2 = insn_data[icode].operand[2].mode;
809
810 rtx_op1 = expand_normal (vec_oprnd);
811 if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
812 && mode1 != VOIDmode)
813 rtx_op1 = force_reg (mode1, rtx_op1);
814
815 rtx_op2 = expand_normal (shift_oprnd);
816 if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
817 && mode2 != VOIDmode)
818 rtx_op2 = force_reg (mode2, rtx_op2);
819
820 if (!target
821 || ! (*insn_data[icode].operand[0].predicate) (target, mode))
822 target = gen_reg_rtx (mode);
823
824 /* Emit instruction */
825 pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
826 gcc_assert (pat);
827 emit_insn (pat);
828
829 return target;
830 }
831
832 /* This subroutine of expand_doubleword_shift handles the cases in which
833 the effective shift value is >= BITS_PER_WORD. The arguments and return
834 value are the same as for the parent routine, except that SUPERWORD_OP1
835 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
836 INTO_TARGET may be null if the caller has decided to calculate it. */
837
838 static bool
839 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
840 rtx outof_target, rtx into_target,
841 int unsignedp, enum optab_methods methods)
842 {
843 if (into_target != 0)
844 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
845 into_target, unsignedp, methods))
846 return false;
847
848 if (outof_target != 0)
849 {
850 /* For a signed right shift, we must fill OUTOF_TARGET with copies
851 of the sign bit, otherwise we must fill it with zeros. */
852 if (binoptab != ashr_optab)
853 emit_move_insn (outof_target, CONST0_RTX (word_mode));
854 else
855 if (!force_expand_binop (word_mode, binoptab,
856 outof_input, GEN_INT (BITS_PER_WORD - 1),
857 outof_target, unsignedp, methods))
858 return false;
859 }
860 return true;
861 }
862
863 /* This subroutine of expand_doubleword_shift handles the cases in which
864 the effective shift value is < BITS_PER_WORD. The arguments and return
865 value are the same as for the parent routine. */
866
867 static bool
868 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
869 rtx outof_input, rtx into_input, rtx op1,
870 rtx outof_target, rtx into_target,
871 int unsignedp, enum optab_methods methods,
872 unsigned HOST_WIDE_INT shift_mask)
873 {
874 optab reverse_unsigned_shift, unsigned_shift;
875 rtx tmp, carries;
876
877 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
878 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
879
880 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
881 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
882 the opposite direction to BINOPTAB. */
883 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
884 {
885 carries = outof_input;
886 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
887 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
888 0, true, methods);
889 }
890 else
891 {
892 /* We must avoid shifting by BITS_PER_WORD bits since that is either
893 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
894 has unknown behavior. Do a single shift first, then shift by the
895 remainder. It's OK to use ~OP1 as the remainder if shift counts
896 are truncated to the mode size. */
897 carries = expand_binop (word_mode, reverse_unsigned_shift,
898 outof_input, const1_rtx, 0, unsignedp, methods);
899 if (shift_mask == BITS_PER_WORD - 1)
900 {
901 tmp = immed_double_const (-1, -1, op1_mode);
902 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
903 0, true, methods);
904 }
905 else
906 {
907 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
908 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
909 0, true, methods);
910 }
911 }
912 if (tmp == 0 || carries == 0)
913 return false;
914 carries = expand_binop (word_mode, reverse_unsigned_shift,
915 carries, tmp, 0, unsignedp, methods);
916 if (carries == 0)
917 return false;
918
919 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
920 so the result can go directly into INTO_TARGET if convenient. */
921 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
922 into_target, unsignedp, methods);
923 if (tmp == 0)
924 return false;
925
926 /* Now OR in the bits carried over from OUTOF_INPUT. */
927 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
928 into_target, unsignedp, methods))
929 return false;
930
931 /* Use a standard word_mode shift for the out-of half. */
932 if (outof_target != 0)
933 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
934 outof_target, unsignedp, methods))
935 return false;
936
937 return true;
938 }
939
940
941 #ifdef HAVE_conditional_move
942 /* Try implementing expand_doubleword_shift using conditional moves.
943 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
944 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
945 are the shift counts to use in the former and latter case. All other
946 arguments are the same as the parent routine. */
947
948 static bool
949 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
950 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
951 rtx outof_input, rtx into_input,
952 rtx subword_op1, rtx superword_op1,
953 rtx outof_target, rtx into_target,
954 int unsignedp, enum optab_methods methods,
955 unsigned HOST_WIDE_INT shift_mask)
956 {
957 rtx outof_superword, into_superword;
958
959 /* Put the superword version of the output into OUTOF_SUPERWORD and
960 INTO_SUPERWORD. */
961 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
962 if (outof_target != 0 && subword_op1 == superword_op1)
963 {
964 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
965 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
966 into_superword = outof_target;
967 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
968 outof_superword, 0, unsignedp, methods))
969 return false;
970 }
971 else
972 {
973 into_superword = gen_reg_rtx (word_mode);
974 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
975 outof_superword, into_superword,
976 unsignedp, methods))
977 return false;
978 }
979
980 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
981 if (!expand_subword_shift (op1_mode, binoptab,
982 outof_input, into_input, subword_op1,
983 outof_target, into_target,
984 unsignedp, methods, shift_mask))
985 return false;
986
987 /* Select between them. Do the INTO half first because INTO_SUPERWORD
988 might be the current value of OUTOF_TARGET. */
989 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
990 into_target, into_superword, word_mode, false))
991 return false;
992
993 if (outof_target != 0)
994 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
995 outof_target, outof_superword,
996 word_mode, false))
997 return false;
998
999 return true;
1000 }
1001 #endif
1002
1003 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1004 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1005 input operand; the shift moves bits in the direction OUTOF_INPUT->
1006 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1007 of the target. OP1 is the shift count and OP1_MODE is its mode.
1008 If OP1 is constant, it will have been truncated as appropriate
1009 and is known to be nonzero.
1010
1011 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1012 shift count is outside the range [0, BITS_PER_WORD). This routine must
1013 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1014
1015 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1016 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1017 fill with zeros or sign bits as appropriate.
1018
1019 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1020 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1021 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1022 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1023 are undefined.
1024
1025 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1026 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1027 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1028 function wants to calculate it itself.
1029
1030 Return true if the shift could be successfully synthesized. */
1031
1032 static bool
1033 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1034 rtx outof_input, rtx into_input, rtx op1,
1035 rtx outof_target, rtx into_target,
1036 int unsignedp, enum optab_methods methods,
1037 unsigned HOST_WIDE_INT shift_mask)
1038 {
1039 rtx superword_op1, tmp, cmp1, cmp2;
1040 rtx subword_label, done_label;
1041 enum rtx_code cmp_code;
1042
1043 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1044 fill the result with sign or zero bits as appropriate. If so, the value
1045 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1046 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1047 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1048
1049 This isn't worthwhile for constant shifts since the optimizers will
1050 cope better with in-range shift counts. */
1051 if (shift_mask >= BITS_PER_WORD
1052 && outof_target != 0
1053 && !CONSTANT_P (op1))
1054 {
1055 if (!expand_doubleword_shift (op1_mode, binoptab,
1056 outof_input, into_input, op1,
1057 0, into_target,
1058 unsignedp, methods, shift_mask))
1059 return false;
1060 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1061 outof_target, unsignedp, methods))
1062 return false;
1063 return true;
1064 }
1065
1066 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1067 is true when the effective shift value is less than BITS_PER_WORD.
1068 Set SUPERWORD_OP1 to the shift count that should be used to shift
1069 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1070 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1071 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1072 {
1073 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1074 is a subword shift count. */
1075 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1076 0, true, methods);
1077 cmp2 = CONST0_RTX (op1_mode);
1078 cmp_code = EQ;
1079 superword_op1 = op1;
1080 }
1081 else
1082 {
1083 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1084 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1085 0, true, methods);
1086 cmp2 = CONST0_RTX (op1_mode);
1087 cmp_code = LT;
1088 superword_op1 = cmp1;
1089 }
1090 if (cmp1 == 0)
1091 return false;
1092
1093 /* If we can compute the condition at compile time, pick the
1094 appropriate subroutine. */
1095 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1096 if (tmp != 0 && CONST_INT_P (tmp))
1097 {
1098 if (tmp == const0_rtx)
1099 return expand_superword_shift (binoptab, outof_input, superword_op1,
1100 outof_target, into_target,
1101 unsignedp, methods);
1102 else
1103 return expand_subword_shift (op1_mode, binoptab,
1104 outof_input, into_input, op1,
1105 outof_target, into_target,
1106 unsignedp, methods, shift_mask);
1107 }
1108
1109 #ifdef HAVE_conditional_move
1110 /* Try using conditional moves to generate straight-line code. */
1111 {
1112 rtx start = get_last_insn ();
1113 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1114 cmp_code, cmp1, cmp2,
1115 outof_input, into_input,
1116 op1, superword_op1,
1117 outof_target, into_target,
1118 unsignedp, methods, shift_mask))
1119 return true;
1120 delete_insns_since (start);
1121 }
1122 #endif
1123
1124 /* As a last resort, use branches to select the correct alternative. */
1125 subword_label = gen_label_rtx ();
1126 done_label = gen_label_rtx ();
1127
1128 NO_DEFER_POP;
1129 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1130 0, 0, subword_label);
1131 OK_DEFER_POP;
1132
1133 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1134 outof_target, into_target,
1135 unsignedp, methods))
1136 return false;
1137
1138 emit_jump_insn (gen_jump (done_label));
1139 emit_barrier ();
1140 emit_label (subword_label);
1141
1142 if (!expand_subword_shift (op1_mode, binoptab,
1143 outof_input, into_input, op1,
1144 outof_target, into_target,
1145 unsignedp, methods, shift_mask))
1146 return false;
1147
1148 emit_label (done_label);
1149 return true;
1150 }
1151 \f
1152 /* Subroutine of expand_binop. Perform a double word multiplication of
1153 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1154 as the target's word_mode. This function return NULL_RTX if anything
1155 goes wrong, in which case it may have already emitted instructions
1156 which need to be deleted.
1157
1158 If we want to multiply two two-word values and have normal and widening
1159 multiplies of single-word values, we can do this with three smaller
1160 multiplications.
1161
1162 The multiplication proceeds as follows:
1163 _______________________
1164 [__op0_high_|__op0_low__]
1165 _______________________
1166 * [__op1_high_|__op1_low__]
1167 _______________________________________________
1168 _______________________
1169 (1) [__op0_low__*__op1_low__]
1170 _______________________
1171 (2a) [__op0_low__*__op1_high_]
1172 _______________________
1173 (2b) [__op0_high_*__op1_low__]
1174 _______________________
1175 (3) [__op0_high_*__op1_high_]
1176
1177
1178 This gives a 4-word result. Since we are only interested in the
1179 lower 2 words, partial result (3) and the upper words of (2a) and
1180 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1181 calculated using non-widening multiplication.
1182
1183 (1), however, needs to be calculated with an unsigned widening
1184 multiplication. If this operation is not directly supported we
1185 try using a signed widening multiplication and adjust the result.
1186 This adjustment works as follows:
1187
1188 If both operands are positive then no adjustment is needed.
1189
1190 If the operands have different signs, for example op0_low < 0 and
1191 op1_low >= 0, the instruction treats the most significant bit of
1192 op0_low as a sign bit instead of a bit with significance
1193 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1194 with 2**BITS_PER_WORD - op0_low, and two's complements the
1195 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1196 the result.
1197
1198 Similarly, if both operands are negative, we need to add
1199 (op0_low + op1_low) * 2**BITS_PER_WORD.
1200
1201 We use a trick to adjust quickly. We logically shift op0_low right
1202 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1203 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1204 logical shift exists, we do an arithmetic right shift and subtract
1205 the 0 or -1. */
1206
1207 static rtx
1208 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1209 bool umulp, enum optab_methods methods)
1210 {
1211 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1212 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1213 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1214 rtx product, adjust, product_high, temp;
1215
1216 rtx op0_high = operand_subword_force (op0, high, mode);
1217 rtx op0_low = operand_subword_force (op0, low, mode);
1218 rtx op1_high = operand_subword_force (op1, high, mode);
1219 rtx op1_low = operand_subword_force (op1, low, mode);
1220
1221 /* If we're using an unsigned multiply to directly compute the product
1222 of the low-order words of the operands and perform any required
1223 adjustments of the operands, we begin by trying two more multiplications
1224 and then computing the appropriate sum.
1225
1226 We have checked above that the required addition is provided.
1227 Full-word addition will normally always succeed, especially if
1228 it is provided at all, so we don't worry about its failure. The
1229 multiplication may well fail, however, so we do handle that. */
1230
1231 if (!umulp)
1232 {
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1240 {
1241 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1247 }
1248
1249 if (!op0_high)
1250 return NULL_RTX;
1251 }
1252
1253 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!adjust)
1256 return NULL_RTX;
1257
1258 /* OP0_HIGH should now be dead. */
1259
1260 if (!umulp)
1261 {
1262 /* ??? This could be done with emit_store_flag where available. */
1263 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1264 NULL_RTX, 1, methods);
1265 if (temp)
1266 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1267 NULL_RTX, 0, OPTAB_DIRECT);
1268 else
1269 {
1270 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1271 NULL_RTX, 0, methods);
1272 if (!temp)
1273 return NULL_RTX;
1274 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1275 NULL_RTX, 0, OPTAB_DIRECT);
1276 }
1277
1278 if (!op1_high)
1279 return NULL_RTX;
1280 }
1281
1282 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1283 NULL_RTX, 0, OPTAB_DIRECT);
1284 if (!temp)
1285 return NULL_RTX;
1286
1287 /* OP1_HIGH should now be dead. */
1288
1289 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1290 adjust, 0, OPTAB_DIRECT);
1291
1292 if (target && !REG_P (target))
1293 target = NULL_RTX;
1294
1295 if (umulp)
1296 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1297 target, 1, OPTAB_DIRECT);
1298 else
1299 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1300 target, 1, OPTAB_DIRECT);
1301
1302 if (!product)
1303 return NULL_RTX;
1304
1305 product_high = operand_subword (product, high, 1, mode);
1306 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1307 REG_P (product_high) ? product_high : adjust,
1308 0, OPTAB_DIRECT);
1309 emit_move_insn (product_high, adjust);
1310 return product;
1311 }
1312 \f
1313 /* Wrapper around expand_binop which takes an rtx code to specify
1314 the operation to perform, not an optab pointer. All other
1315 arguments are the same. */
1316 rtx
1317 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1318 rtx op1, rtx target, int unsignedp,
1319 enum optab_methods methods)
1320 {
1321 optab binop = code_to_optab[(int) code];
1322 gcc_assert (binop);
1323
1324 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1325 }
1326
1327 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1328 binop. Order them according to commutative_operand_precedence and, if
1329 possible, try to put TARGET or a pseudo first. */
1330 static bool
1331 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1332 {
1333 int op0_prec = commutative_operand_precedence (op0);
1334 int op1_prec = commutative_operand_precedence (op1);
1335
1336 if (op0_prec < op1_prec)
1337 return true;
1338
1339 if (op0_prec > op1_prec)
1340 return false;
1341
1342 /* With equal precedence, both orders are ok, but it is better if the
1343 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1344 if (target == 0 || REG_P (target))
1345 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1346 else
1347 return rtx_equal_p (op1, target);
1348 }
1349
1350 /* Return true if BINOPTAB implements a shift operation. */
1351
1352 static bool
1353 shift_optab_p (optab binoptab)
1354 {
1355 switch (binoptab->code)
1356 {
1357 case ASHIFT:
1358 case SS_ASHIFT:
1359 case US_ASHIFT:
1360 case ASHIFTRT:
1361 case LSHIFTRT:
1362 case ROTATE:
1363 case ROTATERT:
1364 return true;
1365
1366 default:
1367 return false;
1368 }
1369 }
1370
1371 /* Return true if BINOPTAB implements a commutative binary operation. */
1372
1373 static bool
1374 commutative_optab_p (optab binoptab)
1375 {
1376 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1377 || binoptab == smul_widen_optab
1378 || binoptab == umul_widen_optab
1379 || binoptab == smul_highpart_optab
1380 || binoptab == umul_highpart_optab);
1381 }
1382
1383 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1384 optimizing, and if the operand is a constant that costs more than
1385 1 instruction, force the constant into a register and return that
1386 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1387
1388 static rtx
1389 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1390 rtx x, bool unsignedp)
1391 {
1392 if (mode != VOIDmode
1393 && optimize
1394 && CONSTANT_P (x)
1395 && rtx_cost (x, binoptab->code, optimize_insn_for_speed_p ())
1396 > COSTS_N_INSNS (1))
1397 {
1398 if (CONST_INT_P (x))
1399 {
1400 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1401 if (intval != INTVAL (x))
1402 x = GEN_INT (intval);
1403 }
1404 else
1405 x = convert_modes (mode, VOIDmode, x, unsignedp);
1406 x = force_reg (mode, x);
1407 }
1408 return x;
1409 }
1410
1411 /* Helper function for expand_binop: handle the case where there
1412 is an insn that directly implements the indicated operation.
1413 Returns null if this is not possible. */
1414 static rtx
1415 expand_binop_directly (enum machine_mode mode, optab binoptab,
1416 rtx op0, rtx op1,
1417 rtx target, int unsignedp, enum optab_methods methods,
1418 rtx last)
1419 {
1420 int icode = (int) optab_handler (binoptab, mode)->insn_code;
1421 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1422 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1423 enum machine_mode tmp_mode;
1424 bool commutative_p;
1425 rtx pat;
1426 rtx xop0 = op0, xop1 = op1;
1427 rtx temp;
1428 rtx swap;
1429
1430 if (target)
1431 temp = target;
1432 else
1433 temp = gen_reg_rtx (mode);
1434
1435 /* If it is a commutative operator and the modes would match
1436 if we would swap the operands, we can save the conversions. */
1437 commutative_p = commutative_optab_p (binoptab);
1438 if (commutative_p
1439 && GET_MODE (xop0) != mode0 && GET_MODE (xop1) != mode1
1440 && GET_MODE (xop0) == mode1 && GET_MODE (xop1) == mode1)
1441 {
1442 swap = xop0;
1443 xop0 = xop1;
1444 xop1 = swap;
1445 }
1446
1447 /* If we are optimizing, force expensive constants into a register. */
1448 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
1449 if (!shift_optab_p (binoptab))
1450 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
1451
1452 /* In case the insn wants input operands in modes different from
1453 those of the actual operands, convert the operands. It would
1454 seem that we don't need to convert CONST_INTs, but we do, so
1455 that they're properly zero-extended, sign-extended or truncated
1456 for their mode. */
1457
1458 if (GET_MODE (xop0) != mode0 && mode0 != VOIDmode)
1459 xop0 = convert_modes (mode0,
1460 GET_MODE (xop0) != VOIDmode
1461 ? GET_MODE (xop0)
1462 : mode,
1463 xop0, unsignedp);
1464
1465 if (GET_MODE (xop1) != mode1 && mode1 != VOIDmode)
1466 xop1 = convert_modes (mode1,
1467 GET_MODE (xop1) != VOIDmode
1468 ? GET_MODE (xop1)
1469 : mode,
1470 xop1, unsignedp);
1471
1472 /* If operation is commutative,
1473 try to make the first operand a register.
1474 Even better, try to make it the same as the target.
1475 Also try to make the last operand a constant. */
1476 if (commutative_p
1477 && swap_commutative_operands_with_target (target, xop0, xop1))
1478 {
1479 swap = xop1;
1480 xop1 = xop0;
1481 xop0 = swap;
1482 }
1483
1484 /* Now, if insn's predicates don't allow our operands, put them into
1485 pseudo regs. */
1486
1487 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
1488 && mode0 != VOIDmode)
1489 xop0 = copy_to_mode_reg (mode0, xop0);
1490
1491 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
1492 && mode1 != VOIDmode)
1493 xop1 = copy_to_mode_reg (mode1, xop1);
1494
1495 if (binoptab == vec_pack_trunc_optab
1496 || binoptab == vec_pack_usat_optab
1497 || binoptab == vec_pack_ssat_optab
1498 || binoptab == vec_pack_ufix_trunc_optab
1499 || binoptab == vec_pack_sfix_trunc_optab)
1500 {
1501 /* The mode of the result is different then the mode of the
1502 arguments. */
1503 tmp_mode = insn_data[icode].operand[0].mode;
1504 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1505 return 0;
1506 }
1507 else
1508 tmp_mode = mode;
1509
1510 if (!insn_data[icode].operand[0].predicate (temp, tmp_mode))
1511 temp = gen_reg_rtx (tmp_mode);
1512
1513 pat = GEN_FCN (icode) (temp, xop0, xop1);
1514 if (pat)
1515 {
1516 /* If PAT is composed of more than one insn, try to add an appropriate
1517 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1518 operand, call expand_binop again, this time without a target. */
1519 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1520 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
1521 {
1522 delete_insns_since (last);
1523 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1524 unsignedp, methods);
1525 }
1526
1527 emit_insn (pat);
1528 return temp;
1529 }
1530
1531 delete_insns_since (last);
1532 return NULL_RTX;
1533 }
1534
1535 /* Generate code to perform an operation specified by BINOPTAB
1536 on operands OP0 and OP1, with result having machine-mode MODE.
1537
1538 UNSIGNEDP is for the case where we have to widen the operands
1539 to perform the operation. It says to use zero-extension.
1540
1541 If TARGET is nonzero, the value
1542 is generated there, if it is convenient to do so.
1543 In all cases an rtx is returned for the locus of the value;
1544 this may or may not be TARGET. */
1545
1546 rtx
1547 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1548 rtx target, int unsignedp, enum optab_methods methods)
1549 {
1550 enum optab_methods next_methods
1551 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1552 ? OPTAB_WIDEN : methods);
1553 enum mode_class mclass;
1554 enum machine_mode wider_mode;
1555 rtx libfunc;
1556 rtx temp;
1557 rtx entry_last = get_last_insn ();
1558 rtx last;
1559
1560 mclass = GET_MODE_CLASS (mode);
1561
1562 /* If subtracting an integer constant, convert this into an addition of
1563 the negated constant. */
1564
1565 if (binoptab == sub_optab && CONST_INT_P (op1))
1566 {
1567 op1 = negate_rtx (mode, op1);
1568 binoptab = add_optab;
1569 }
1570
1571 /* Record where to delete back to if we backtrack. */
1572 last = get_last_insn ();
1573
1574 /* If we can do it with a three-operand insn, do so. */
1575
1576 if (methods != OPTAB_MUST_WIDEN
1577 && optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
1578 {
1579 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1580 unsignedp, methods, last);
1581 if (temp)
1582 return temp;
1583 }
1584
1585 /* If we were trying to rotate, and that didn't work, try rotating
1586 the other direction before falling back to shifts and bitwise-or. */
1587 if (((binoptab == rotl_optab
1588 && optab_handler (rotr_optab, mode)->insn_code != CODE_FOR_nothing)
1589 || (binoptab == rotr_optab
1590 && optab_handler (rotl_optab, mode)->insn_code != CODE_FOR_nothing))
1591 && mclass == MODE_INT)
1592 {
1593 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1594 rtx newop1;
1595 unsigned int bits = GET_MODE_BITSIZE (mode);
1596
1597 if (CONST_INT_P (op1))
1598 newop1 = GEN_INT (bits - INTVAL (op1));
1599 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1600 newop1 = negate_rtx (mode, op1);
1601 else
1602 newop1 = expand_binop (mode, sub_optab,
1603 GEN_INT (bits), op1,
1604 NULL_RTX, unsignedp, OPTAB_DIRECT);
1605
1606 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1607 target, unsignedp, methods, last);
1608 if (temp)
1609 return temp;
1610 }
1611
1612 /* If this is a multiply, see if we can do a widening operation that
1613 takes operands of this mode and makes a wider mode. */
1614
1615 if (binoptab == smul_optab
1616 && GET_MODE_WIDER_MODE (mode) != VOIDmode
1617 && ((optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab),
1618 GET_MODE_WIDER_MODE (mode))->insn_code)
1619 != CODE_FOR_nothing))
1620 {
1621 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
1622 unsignedp ? umul_widen_optab : smul_widen_optab,
1623 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1624
1625 if (temp != 0)
1626 {
1627 if (GET_MODE_CLASS (mode) == MODE_INT
1628 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1629 GET_MODE_BITSIZE (GET_MODE (temp))))
1630 return gen_lowpart (mode, temp);
1631 else
1632 return convert_to_mode (mode, temp, unsignedp);
1633 }
1634 }
1635
1636 /* Look for a wider mode of the same class for which we think we
1637 can open-code the operation. Check for a widening multiply at the
1638 wider mode as well. */
1639
1640 if (CLASS_HAS_WIDER_MODES_P (mclass)
1641 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1642 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1643 wider_mode != VOIDmode;
1644 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1645 {
1646 if (optab_handler (binoptab, wider_mode)->insn_code != CODE_FOR_nothing
1647 || (binoptab == smul_optab
1648 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1649 && ((optab_handler ((unsignedp ? umul_widen_optab
1650 : smul_widen_optab),
1651 GET_MODE_WIDER_MODE (wider_mode))->insn_code)
1652 != CODE_FOR_nothing)))
1653 {
1654 rtx xop0 = op0, xop1 = op1;
1655 int no_extend = 0;
1656
1657 /* For certain integer operations, we need not actually extend
1658 the narrow operands, as long as we will truncate
1659 the results to the same narrowness. */
1660
1661 if ((binoptab == ior_optab || binoptab == and_optab
1662 || binoptab == xor_optab
1663 || binoptab == add_optab || binoptab == sub_optab
1664 || binoptab == smul_optab || binoptab == ashl_optab)
1665 && mclass == MODE_INT)
1666 {
1667 no_extend = 1;
1668 xop0 = avoid_expensive_constant (mode, binoptab,
1669 xop0, unsignedp);
1670 if (binoptab != ashl_optab)
1671 xop1 = avoid_expensive_constant (mode, binoptab,
1672 xop1, unsignedp);
1673 }
1674
1675 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1676
1677 /* The second operand of a shift must always be extended. */
1678 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1679 no_extend && binoptab != ashl_optab);
1680
1681 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1682 unsignedp, OPTAB_DIRECT);
1683 if (temp)
1684 {
1685 if (mclass != MODE_INT
1686 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1687 GET_MODE_BITSIZE (wider_mode)))
1688 {
1689 if (target == 0)
1690 target = gen_reg_rtx (mode);
1691 convert_move (target, temp, 0);
1692 return target;
1693 }
1694 else
1695 return gen_lowpart (mode, temp);
1696 }
1697 else
1698 delete_insns_since (last);
1699 }
1700 }
1701
1702 /* If operation is commutative,
1703 try to make the first operand a register.
1704 Even better, try to make it the same as the target.
1705 Also try to make the last operand a constant. */
1706 if (commutative_optab_p (binoptab)
1707 && swap_commutative_operands_with_target (target, op0, op1))
1708 {
1709 temp = op1;
1710 op1 = op0;
1711 op0 = temp;
1712 }
1713
1714 /* These can be done a word at a time. */
1715 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1716 && mclass == MODE_INT
1717 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1718 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1719 {
1720 int i;
1721 rtx insns;
1722 rtx equiv_value;
1723
1724 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1725 won't be accurate, so use a new target. */
1726 if (target == 0 || target == op0 || target == op1)
1727 target = gen_reg_rtx (mode);
1728
1729 start_sequence ();
1730
1731 /* Do the actual arithmetic. */
1732 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1733 {
1734 rtx target_piece = operand_subword (target, i, 1, mode);
1735 rtx x = expand_binop (word_mode, binoptab,
1736 operand_subword_force (op0, i, mode),
1737 operand_subword_force (op1, i, mode),
1738 target_piece, unsignedp, next_methods);
1739
1740 if (x == 0)
1741 break;
1742
1743 if (target_piece != x)
1744 emit_move_insn (target_piece, x);
1745 }
1746
1747 insns = get_insns ();
1748 end_sequence ();
1749
1750 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1751 {
1752 if (binoptab->code != UNKNOWN)
1753 equiv_value
1754 = gen_rtx_fmt_ee (binoptab->code, mode,
1755 copy_rtx (op0), copy_rtx (op1));
1756 else
1757 equiv_value = 0;
1758
1759 emit_insn (insns);
1760 return target;
1761 }
1762 }
1763
1764 /* Synthesize double word shifts from single word shifts. */
1765 if ((binoptab == lshr_optab || binoptab == ashl_optab
1766 || binoptab == ashr_optab)
1767 && mclass == MODE_INT
1768 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1769 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1770 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing
1771 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1772 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1773 {
1774 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1775 enum machine_mode op1_mode;
1776
1777 double_shift_mask = targetm.shift_truncation_mask (mode);
1778 shift_mask = targetm.shift_truncation_mask (word_mode);
1779 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1780
1781 /* Apply the truncation to constant shifts. */
1782 if (double_shift_mask > 0 && CONST_INT_P (op1))
1783 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1784
1785 if (op1 == CONST0_RTX (op1_mode))
1786 return op0;
1787
1788 /* Make sure that this is a combination that expand_doubleword_shift
1789 can handle. See the comments there for details. */
1790 if (double_shift_mask == 0
1791 || (shift_mask == BITS_PER_WORD - 1
1792 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1793 {
1794 rtx insns;
1795 rtx into_target, outof_target;
1796 rtx into_input, outof_input;
1797 int left_shift, outof_word;
1798
1799 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1800 won't be accurate, so use a new target. */
1801 if (target == 0 || target == op0 || target == op1)
1802 target = gen_reg_rtx (mode);
1803
1804 start_sequence ();
1805
1806 /* OUTOF_* is the word we are shifting bits away from, and
1807 INTO_* is the word that we are shifting bits towards, thus
1808 they differ depending on the direction of the shift and
1809 WORDS_BIG_ENDIAN. */
1810
1811 left_shift = binoptab == ashl_optab;
1812 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1813
1814 outof_target = operand_subword (target, outof_word, 1, mode);
1815 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1816
1817 outof_input = operand_subword_force (op0, outof_word, mode);
1818 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1819
1820 if (expand_doubleword_shift (op1_mode, binoptab,
1821 outof_input, into_input, op1,
1822 outof_target, into_target,
1823 unsignedp, next_methods, shift_mask))
1824 {
1825 insns = get_insns ();
1826 end_sequence ();
1827
1828 emit_insn (insns);
1829 return target;
1830 }
1831 end_sequence ();
1832 }
1833 }
1834
1835 /* Synthesize double word rotates from single word shifts. */
1836 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1837 && mclass == MODE_INT
1838 && CONST_INT_P (op1)
1839 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1840 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1841 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1842 {
1843 rtx insns;
1844 rtx into_target, outof_target;
1845 rtx into_input, outof_input;
1846 rtx inter;
1847 int shift_count, left_shift, outof_word;
1848
1849 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1850 won't be accurate, so use a new target. Do this also if target is not
1851 a REG, first because having a register instead may open optimization
1852 opportunities, and second because if target and op0 happen to be MEMs
1853 designating the same location, we would risk clobbering it too early
1854 in the code sequence we generate below. */
1855 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1856 target = gen_reg_rtx (mode);
1857
1858 start_sequence ();
1859
1860 shift_count = INTVAL (op1);
1861
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1866
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1869
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1872
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1875
1876 if (shift_count == BITS_PER_WORD)
1877 {
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1882 }
1883 else
1884 {
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1888
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1891
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1894
1895 if (shift_count > BITS_PER_WORD)
1896 {
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1899 }
1900 else
1901 {
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1904 }
1905
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1912
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1918
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1921
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1928
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1933
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1936 }
1937
1938 insns = get_insns ();
1939 end_sequence ();
1940
1941 if (inter != 0)
1942 {
1943 emit_insn (insns);
1944 return target;
1945 }
1946 }
1947
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1953 {
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1959
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1968
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1972
1973 xtarget = gen_reg_rtx (mode);
1974
1975 if (target == 0 || !REG_P (target))
1976 target = xtarget;
1977
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1981
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1984 {
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1990
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1997
1998 if (i + 1 < nwords)
1999 {
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2007 }
2008
2009 if (i > 0)
2010 {
2011 rtx newx;
2012
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2018
2019 if (i + 1 < nwords)
2020 {
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2028
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2035 }
2036 emit_move_insn (target_piece, newx);
2037 }
2038 else
2039 {
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2042 }
2043
2044 carry_in = carry_out;
2045 }
2046
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2048 {
2049 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2051 {
2052 rtx temp = emit_move_insn (target, xtarget);
2053
2054 set_unique_reg_note (temp,
2055 REG_EQUAL,
2056 gen_rtx_fmt_ee (binoptab->code, mode,
2057 copy_rtx (xop0),
2058 copy_rtx (xop1)));
2059 }
2060 else
2061 target = xtarget;
2062
2063 return target;
2064 }
2065
2066 else
2067 delete_insns_since (last);
2068 }
2069
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2074
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode)->insn_code != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode)->insn_code != CODE_FOR_nothing)
2080 {
2081 rtx product = NULL_RTX;
2082
2083 if (optab_handler (umul_widen_optab, mode)->insn_code
2084 != CODE_FOR_nothing)
2085 {
2086 product = expand_doubleword_mult (mode, op0, op1, target,
2087 true, methods);
2088 if (!product)
2089 delete_insns_since (last);
2090 }
2091
2092 if (product == NULL_RTX
2093 && optab_handler (smul_widen_optab, mode)->insn_code
2094 != CODE_FOR_nothing)
2095 {
2096 product = expand_doubleword_mult (mode, op0, op1, target,
2097 false, methods);
2098 if (!product)
2099 delete_insns_since (last);
2100 }
2101
2102 if (product != NULL_RTX)
2103 {
2104 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing)
2105 {
2106 temp = emit_move_insn (target ? target : product, product);
2107 set_unique_reg_note (temp,
2108 REG_EQUAL,
2109 gen_rtx_fmt_ee (MULT, mode,
2110 copy_rtx (op0),
2111 copy_rtx (op1)));
2112 }
2113 return product;
2114 }
2115 }
2116
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2119
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2123 {
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2128
2129 start_sequence ();
2130
2131 if (shift_optab_p (binoptab))
2132 {
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2137 }
2138
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2142
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2148
2149 insns = get_insns ();
2150 end_sequence ();
2151
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block (insns, target, value,
2154 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
2155
2156 return target;
2157 }
2158
2159 delete_insns_since (last);
2160
2161 /* It can't be done in this mode. Can we do it in a wider mode? */
2162
2163 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2164 || methods == OPTAB_MUST_WIDEN))
2165 {
2166 /* Caller says, don't even try. */
2167 delete_insns_since (entry_last);
2168 return 0;
2169 }
2170
2171 /* Compute the value of METHODS to pass to recursive calls.
2172 Don't allow widening to be tried recursively. */
2173
2174 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2175
2176 /* Look for a wider mode of the same class for which it appears we can do
2177 the operation. */
2178
2179 if (CLASS_HAS_WIDER_MODES_P (mclass))
2180 {
2181 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2182 wider_mode != VOIDmode;
2183 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2184 {
2185 if ((optab_handler (binoptab, wider_mode)->insn_code
2186 != CODE_FOR_nothing)
2187 || (methods == OPTAB_LIB
2188 && optab_libfunc (binoptab, wider_mode)))
2189 {
2190 rtx xop0 = op0, xop1 = op1;
2191 int no_extend = 0;
2192
2193 /* For certain integer operations, we need not actually extend
2194 the narrow operands, as long as we will truncate
2195 the results to the same narrowness. */
2196
2197 if ((binoptab == ior_optab || binoptab == and_optab
2198 || binoptab == xor_optab
2199 || binoptab == add_optab || binoptab == sub_optab
2200 || binoptab == smul_optab || binoptab == ashl_optab)
2201 && mclass == MODE_INT)
2202 no_extend = 1;
2203
2204 xop0 = widen_operand (xop0, wider_mode, mode,
2205 unsignedp, no_extend);
2206
2207 /* The second operand of a shift must always be extended. */
2208 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2209 no_extend && binoptab != ashl_optab);
2210
2211 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2212 unsignedp, methods);
2213 if (temp)
2214 {
2215 if (mclass != MODE_INT
2216 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2217 GET_MODE_BITSIZE (wider_mode)))
2218 {
2219 if (target == 0)
2220 target = gen_reg_rtx (mode);
2221 convert_move (target, temp, 0);
2222 return target;
2223 }
2224 else
2225 return gen_lowpart (mode, temp);
2226 }
2227 else
2228 delete_insns_since (last);
2229 }
2230 }
2231 }
2232
2233 delete_insns_since (entry_last);
2234 return 0;
2235 }
2236 \f
2237 /* Expand a binary operator which has both signed and unsigned forms.
2238 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2239 signed operations.
2240
2241 If we widen unsigned operands, we may use a signed wider operation instead
2242 of an unsigned wider operation, since the result would be the same. */
2243
2244 rtx
2245 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2246 rtx op0, rtx op1, rtx target, int unsignedp,
2247 enum optab_methods methods)
2248 {
2249 rtx temp;
2250 optab direct_optab = unsignedp ? uoptab : soptab;
2251 struct optab_d wide_soptab;
2252
2253 /* Do it without widening, if possible. */
2254 temp = expand_binop (mode, direct_optab, op0, op1, target,
2255 unsignedp, OPTAB_DIRECT);
2256 if (temp || methods == OPTAB_DIRECT)
2257 return temp;
2258
2259 /* Try widening to a signed int. Make a fake signed optab that
2260 hides any signed insn for direct use. */
2261 wide_soptab = *soptab;
2262 optab_handler (&wide_soptab, mode)->insn_code = CODE_FOR_nothing;
2263 /* We don't want to generate new hash table entries from this fake
2264 optab. */
2265 wide_soptab.libcall_gen = NULL;
2266
2267 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2268 unsignedp, OPTAB_WIDEN);
2269
2270 /* For unsigned operands, try widening to an unsigned int. */
2271 if (temp == 0 && unsignedp)
2272 temp = expand_binop (mode, uoptab, op0, op1, target,
2273 unsignedp, OPTAB_WIDEN);
2274 if (temp || methods == OPTAB_WIDEN)
2275 return temp;
2276
2277 /* Use the right width libcall if that exists. */
2278 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2279 if (temp || methods == OPTAB_LIB)
2280 return temp;
2281
2282 /* Must widen and use a libcall, use either signed or unsigned. */
2283 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2284 unsignedp, methods);
2285 if (temp != 0)
2286 return temp;
2287 if (unsignedp)
2288 return expand_binop (mode, uoptab, op0, op1, target,
2289 unsignedp, methods);
2290 return 0;
2291 }
2292 \f
2293 /* Generate code to perform an operation specified by UNOPPTAB
2294 on operand OP0, with two results to TARG0 and TARG1.
2295 We assume that the order of the operands for the instruction
2296 is TARG0, TARG1, OP0.
2297
2298 Either TARG0 or TARG1 may be zero, but what that means is that
2299 the result is not actually wanted. We will generate it into
2300 a dummy pseudo-reg and discard it. They may not both be zero.
2301
2302 Returns 1 if this operation can be performed; 0 if not. */
2303
2304 int
2305 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2306 int unsignedp)
2307 {
2308 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2309 enum mode_class mclass;
2310 enum machine_mode wider_mode;
2311 rtx entry_last = get_last_insn ();
2312 rtx last;
2313
2314 mclass = GET_MODE_CLASS (mode);
2315
2316 if (!targ0)
2317 targ0 = gen_reg_rtx (mode);
2318 if (!targ1)
2319 targ1 = gen_reg_rtx (mode);
2320
2321 /* Record where to go back to if we fail. */
2322 last = get_last_insn ();
2323
2324 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
2325 {
2326 int icode = (int) optab_handler (unoptab, mode)->insn_code;
2327 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2328 rtx pat;
2329 rtx xop0 = op0;
2330
2331 if (GET_MODE (xop0) != VOIDmode
2332 && GET_MODE (xop0) != mode0)
2333 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2334
2335 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2336 if (!insn_data[icode].operand[2].predicate (xop0, mode0))
2337 xop0 = copy_to_mode_reg (mode0, xop0);
2338
2339 /* We could handle this, but we should always be called with a pseudo
2340 for our targets and all insns should take them as outputs. */
2341 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2342 gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
2343
2344 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2345 if (pat)
2346 {
2347 emit_insn (pat);
2348 return 1;
2349 }
2350 else
2351 delete_insns_since (last);
2352 }
2353
2354 /* It can't be done in this mode. Can we do it in a wider mode? */
2355
2356 if (CLASS_HAS_WIDER_MODES_P (mclass))
2357 {
2358 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2359 wider_mode != VOIDmode;
2360 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2361 {
2362 if (optab_handler (unoptab, wider_mode)->insn_code
2363 != CODE_FOR_nothing)
2364 {
2365 rtx t0 = gen_reg_rtx (wider_mode);
2366 rtx t1 = gen_reg_rtx (wider_mode);
2367 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2368
2369 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2370 {
2371 convert_move (targ0, t0, unsignedp);
2372 convert_move (targ1, t1, unsignedp);
2373 return 1;
2374 }
2375 else
2376 delete_insns_since (last);
2377 }
2378 }
2379 }
2380
2381 delete_insns_since (entry_last);
2382 return 0;
2383 }
2384 \f
2385 /* Generate code to perform an operation specified by BINOPTAB
2386 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2387 We assume that the order of the operands for the instruction
2388 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2389 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2390
2391 Either TARG0 or TARG1 may be zero, but what that means is that
2392 the result is not actually wanted. We will generate it into
2393 a dummy pseudo-reg and discard it. They may not both be zero.
2394
2395 Returns 1 if this operation can be performed; 0 if not. */
2396
2397 int
2398 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2399 int unsignedp)
2400 {
2401 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2402 enum mode_class mclass;
2403 enum machine_mode wider_mode;
2404 rtx entry_last = get_last_insn ();
2405 rtx last;
2406
2407 mclass = GET_MODE_CLASS (mode);
2408
2409 if (!targ0)
2410 targ0 = gen_reg_rtx (mode);
2411 if (!targ1)
2412 targ1 = gen_reg_rtx (mode);
2413
2414 /* Record where to go back to if we fail. */
2415 last = get_last_insn ();
2416
2417 if (optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
2418 {
2419 int icode = (int) optab_handler (binoptab, mode)->insn_code;
2420 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2421 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2422 rtx pat;
2423 rtx xop0 = op0, xop1 = op1;
2424
2425 /* If we are optimizing, force expensive constants into a register. */
2426 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
2427 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
2428
2429 /* In case the insn wants input operands in modes different from
2430 those of the actual operands, convert the operands. It would
2431 seem that we don't need to convert CONST_INTs, but we do, so
2432 that they're properly zero-extended, sign-extended or truncated
2433 for their mode. */
2434
2435 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2436 xop0 = convert_modes (mode0,
2437 GET_MODE (op0) != VOIDmode
2438 ? GET_MODE (op0)
2439 : mode,
2440 xop0, unsignedp);
2441
2442 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2443 xop1 = convert_modes (mode1,
2444 GET_MODE (op1) != VOIDmode
2445 ? GET_MODE (op1)
2446 : mode,
2447 xop1, unsignedp);
2448
2449 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2450 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
2451 xop0 = copy_to_mode_reg (mode0, xop0);
2452
2453 if (!insn_data[icode].operand[2].predicate (xop1, mode1))
2454 xop1 = copy_to_mode_reg (mode1, xop1);
2455
2456 /* We could handle this, but we should always be called with a pseudo
2457 for our targets and all insns should take them as outputs. */
2458 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2459 gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
2460
2461 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2462 if (pat)
2463 {
2464 emit_insn (pat);
2465 return 1;
2466 }
2467 else
2468 delete_insns_since (last);
2469 }
2470
2471 /* It can't be done in this mode. Can we do it in a wider mode? */
2472
2473 if (CLASS_HAS_WIDER_MODES_P (mclass))
2474 {
2475 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2476 wider_mode != VOIDmode;
2477 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2478 {
2479 if (optab_handler (binoptab, wider_mode)->insn_code
2480 != CODE_FOR_nothing)
2481 {
2482 rtx t0 = gen_reg_rtx (wider_mode);
2483 rtx t1 = gen_reg_rtx (wider_mode);
2484 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2485 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2486
2487 if (expand_twoval_binop (binoptab, cop0, cop1,
2488 t0, t1, unsignedp))
2489 {
2490 convert_move (targ0, t0, unsignedp);
2491 convert_move (targ1, t1, unsignedp);
2492 return 1;
2493 }
2494 else
2495 delete_insns_since (last);
2496 }
2497 }
2498 }
2499
2500 delete_insns_since (entry_last);
2501 return 0;
2502 }
2503
2504 /* Expand the two-valued library call indicated by BINOPTAB, but
2505 preserve only one of the values. If TARG0 is non-NULL, the first
2506 value is placed into TARG0; otherwise the second value is placed
2507 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2508 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2509 This routine assumes that the value returned by the library call is
2510 as if the return value was of an integral mode twice as wide as the
2511 mode of OP0. Returns 1 if the call was successful. */
2512
2513 bool
2514 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2515 rtx targ0, rtx targ1, enum rtx_code code)
2516 {
2517 enum machine_mode mode;
2518 enum machine_mode libval_mode;
2519 rtx libval;
2520 rtx insns;
2521 rtx libfunc;
2522
2523 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2524 gcc_assert (!targ0 != !targ1);
2525
2526 mode = GET_MODE (op0);
2527 libfunc = optab_libfunc (binoptab, mode);
2528 if (!libfunc)
2529 return false;
2530
2531 /* The value returned by the library function will have twice as
2532 many bits as the nominal MODE. */
2533 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2534 MODE_INT);
2535 start_sequence ();
2536 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2537 libval_mode, 2,
2538 op0, mode,
2539 op1, mode);
2540 /* Get the part of VAL containing the value that we want. */
2541 libval = simplify_gen_subreg (mode, libval, libval_mode,
2542 targ0 ? 0 : GET_MODE_SIZE (mode));
2543 insns = get_insns ();
2544 end_sequence ();
2545 /* Move the into the desired location. */
2546 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2547 gen_rtx_fmt_ee (code, mode, op0, op1));
2548
2549 return true;
2550 }
2551
2552 \f
2553 /* Wrapper around expand_unop which takes an rtx code to specify
2554 the operation to perform, not an optab pointer. All other
2555 arguments are the same. */
2556 rtx
2557 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2558 rtx target, int unsignedp)
2559 {
2560 optab unop = code_to_optab[(int) code];
2561 gcc_assert (unop);
2562
2563 return expand_unop (mode, unop, op0, target, unsignedp);
2564 }
2565
2566 /* Try calculating
2567 (clz:narrow x)
2568 as
2569 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2570 static rtx
2571 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2572 {
2573 enum mode_class mclass = GET_MODE_CLASS (mode);
2574 if (CLASS_HAS_WIDER_MODES_P (mclass))
2575 {
2576 enum machine_mode wider_mode;
2577 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2578 wider_mode != VOIDmode;
2579 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2580 {
2581 if (optab_handler (clz_optab, wider_mode)->insn_code
2582 != CODE_FOR_nothing)
2583 {
2584 rtx xop0, temp, last;
2585
2586 last = get_last_insn ();
2587
2588 if (target == 0)
2589 target = gen_reg_rtx (mode);
2590 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2591 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2592 if (temp != 0)
2593 temp = expand_binop (wider_mode, sub_optab, temp,
2594 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2595 - GET_MODE_BITSIZE (mode)),
2596 target, true, OPTAB_DIRECT);
2597 if (temp == 0)
2598 delete_insns_since (last);
2599
2600 return temp;
2601 }
2602 }
2603 }
2604 return 0;
2605 }
2606
2607 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2608 quantities, choosing which based on whether the high word is nonzero. */
2609 static rtx
2610 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2611 {
2612 rtx xop0 = force_reg (mode, op0);
2613 rtx subhi = gen_highpart (word_mode, xop0);
2614 rtx sublo = gen_lowpart (word_mode, xop0);
2615 rtx hi0_label = gen_label_rtx ();
2616 rtx after_label = gen_label_rtx ();
2617 rtx seq, temp, result;
2618
2619 /* If we were not given a target, use a word_mode register, not a
2620 'mode' register. The result will fit, and nobody is expecting
2621 anything bigger (the return type of __builtin_clz* is int). */
2622 if (!target)
2623 target = gen_reg_rtx (word_mode);
2624
2625 /* In any case, write to a word_mode scratch in both branches of the
2626 conditional, so we can ensure there is a single move insn setting
2627 'target' to tag a REG_EQUAL note on. */
2628 result = gen_reg_rtx (word_mode);
2629
2630 start_sequence ();
2631
2632 /* If the high word is not equal to zero,
2633 then clz of the full value is clz of the high word. */
2634 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2635 word_mode, true, hi0_label);
2636
2637 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2638 if (!temp)
2639 goto fail;
2640
2641 if (temp != result)
2642 convert_move (result, temp, true);
2643
2644 emit_jump_insn (gen_jump (after_label));
2645 emit_barrier ();
2646
2647 /* Else clz of the full value is clz of the low word plus the number
2648 of bits in the high word. */
2649 emit_label (hi0_label);
2650
2651 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2652 if (!temp)
2653 goto fail;
2654 temp = expand_binop (word_mode, add_optab, temp,
2655 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2656 result, true, OPTAB_DIRECT);
2657 if (!temp)
2658 goto fail;
2659 if (temp != result)
2660 convert_move (result, temp, true);
2661
2662 emit_label (after_label);
2663 convert_move (target, result, true);
2664
2665 seq = get_insns ();
2666 end_sequence ();
2667
2668 add_equal_note (seq, target, CLZ, xop0, 0);
2669 emit_insn (seq);
2670 return target;
2671
2672 fail:
2673 end_sequence ();
2674 return 0;
2675 }
2676
2677 /* Try calculating
2678 (bswap:narrow x)
2679 as
2680 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2681 static rtx
2682 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2683 {
2684 enum mode_class mclass = GET_MODE_CLASS (mode);
2685 enum machine_mode wider_mode;
2686 rtx x, last;
2687
2688 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2689 return NULL_RTX;
2690
2691 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2692 wider_mode != VOIDmode;
2693 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2694 if (optab_handler (bswap_optab, wider_mode)->insn_code != CODE_FOR_nothing)
2695 goto found;
2696 return NULL_RTX;
2697
2698 found:
2699 last = get_last_insn ();
2700
2701 x = widen_operand (op0, wider_mode, mode, true, true);
2702 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2703
2704 if (x != 0)
2705 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2706 size_int (GET_MODE_BITSIZE (wider_mode)
2707 - GET_MODE_BITSIZE (mode)),
2708 NULL_RTX, true);
2709
2710 if (x != 0)
2711 {
2712 if (target == 0)
2713 target = gen_reg_rtx (mode);
2714 emit_move_insn (target, gen_lowpart (mode, x));
2715 }
2716 else
2717 delete_insns_since (last);
2718
2719 return target;
2720 }
2721
2722 /* Try calculating bswap as two bswaps of two word-sized operands. */
2723
2724 static rtx
2725 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2726 {
2727 rtx t0, t1;
2728
2729 t1 = expand_unop (word_mode, bswap_optab,
2730 operand_subword_force (op, 0, mode), NULL_RTX, true);
2731 t0 = expand_unop (word_mode, bswap_optab,
2732 operand_subword_force (op, 1, mode), NULL_RTX, true);
2733
2734 if (target == 0)
2735 target = gen_reg_rtx (mode);
2736 if (REG_P (target))
2737 emit_clobber (target);
2738 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2739 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2740
2741 return target;
2742 }
2743
2744 /* Try calculating (parity x) as (and (popcount x) 1), where
2745 popcount can also be done in a wider mode. */
2746 static rtx
2747 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2748 {
2749 enum mode_class mclass = GET_MODE_CLASS (mode);
2750 if (CLASS_HAS_WIDER_MODES_P (mclass))
2751 {
2752 enum machine_mode wider_mode;
2753 for (wider_mode = mode; wider_mode != VOIDmode;
2754 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2755 {
2756 if (optab_handler (popcount_optab, wider_mode)->insn_code
2757 != CODE_FOR_nothing)
2758 {
2759 rtx xop0, temp, last;
2760
2761 last = get_last_insn ();
2762
2763 if (target == 0)
2764 target = gen_reg_rtx (mode);
2765 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2766 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2767 true);
2768 if (temp != 0)
2769 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2770 target, true, OPTAB_DIRECT);
2771 if (temp == 0)
2772 delete_insns_since (last);
2773
2774 return temp;
2775 }
2776 }
2777 }
2778 return 0;
2779 }
2780
2781 /* Try calculating ctz(x) as K - clz(x & -x) ,
2782 where K is GET_MODE_BITSIZE(mode) - 1.
2783
2784 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2785 don't have to worry about what the hardware does in that case. (If
2786 the clz instruction produces the usual value at 0, which is K, the
2787 result of this code sequence will be -1; expand_ffs, below, relies
2788 on this. It might be nice to have it be K instead, for consistency
2789 with the (very few) processors that provide a ctz with a defined
2790 value, but that would take one more instruction, and it would be
2791 less convenient for expand_ffs anyway. */
2792
2793 static rtx
2794 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2795 {
2796 rtx seq, temp;
2797
2798 if (optab_handler (clz_optab, mode)->insn_code == CODE_FOR_nothing)
2799 return 0;
2800
2801 start_sequence ();
2802
2803 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2804 if (temp)
2805 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2806 true, OPTAB_DIRECT);
2807 if (temp)
2808 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2809 if (temp)
2810 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode) - 1),
2811 temp, target,
2812 true, OPTAB_DIRECT);
2813 if (temp == 0)
2814 {
2815 end_sequence ();
2816 return 0;
2817 }
2818
2819 seq = get_insns ();
2820 end_sequence ();
2821
2822 add_equal_note (seq, temp, CTZ, op0, 0);
2823 emit_insn (seq);
2824 return temp;
2825 }
2826
2827
2828 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2829 else with the sequence used by expand_clz.
2830
2831 The ffs builtin promises to return zero for a zero value and ctz/clz
2832 may have an undefined value in that case. If they do not give us a
2833 convenient value, we have to generate a test and branch. */
2834 static rtx
2835 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2836 {
2837 HOST_WIDE_INT val = 0;
2838 bool defined_at_zero = false;
2839 rtx temp, seq;
2840
2841 if (optab_handler (ctz_optab, mode)->insn_code != CODE_FOR_nothing)
2842 {
2843 start_sequence ();
2844
2845 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2846 if (!temp)
2847 goto fail;
2848
2849 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2850 }
2851 else if (optab_handler (clz_optab, mode)->insn_code != CODE_FOR_nothing)
2852 {
2853 start_sequence ();
2854 temp = expand_ctz (mode, op0, 0);
2855 if (!temp)
2856 goto fail;
2857
2858 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2859 {
2860 defined_at_zero = true;
2861 val = (GET_MODE_BITSIZE (mode) - 1) - val;
2862 }
2863 }
2864 else
2865 return 0;
2866
2867 if (defined_at_zero && val == -1)
2868 /* No correction needed at zero. */;
2869 else
2870 {
2871 /* We don't try to do anything clever with the situation found
2872 on some processors (eg Alpha) where ctz(0:mode) ==
2873 bitsize(mode). If someone can think of a way to send N to -1
2874 and leave alone all values in the range 0..N-1 (where N is a
2875 power of two), cheaper than this test-and-branch, please add it.
2876
2877 The test-and-branch is done after the operation itself, in case
2878 the operation sets condition codes that can be recycled for this.
2879 (This is true on i386, for instance.) */
2880
2881 rtx nonzero_label = gen_label_rtx ();
2882 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2883 mode, true, nonzero_label);
2884
2885 convert_move (temp, GEN_INT (-1), false);
2886 emit_label (nonzero_label);
2887 }
2888
2889 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2890 to produce a value in the range 0..bitsize. */
2891 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2892 target, false, OPTAB_DIRECT);
2893 if (!temp)
2894 goto fail;
2895
2896 seq = get_insns ();
2897 end_sequence ();
2898
2899 add_equal_note (seq, temp, FFS, op0, 0);
2900 emit_insn (seq);
2901 return temp;
2902
2903 fail:
2904 end_sequence ();
2905 return 0;
2906 }
2907
2908 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2909 conditions, VAL may already be a SUBREG against which we cannot generate
2910 a further SUBREG. In this case, we expect forcing the value into a
2911 register will work around the situation. */
2912
2913 static rtx
2914 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2915 enum machine_mode imode)
2916 {
2917 rtx ret;
2918 ret = lowpart_subreg (omode, val, imode);
2919 if (ret == NULL)
2920 {
2921 val = force_reg (imode, val);
2922 ret = lowpart_subreg (omode, val, imode);
2923 gcc_assert (ret != NULL);
2924 }
2925 return ret;
2926 }
2927
2928 /* Expand a floating point absolute value or negation operation via a
2929 logical operation on the sign bit. */
2930
2931 static rtx
2932 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2933 rtx op0, rtx target)
2934 {
2935 const struct real_format *fmt;
2936 int bitpos, word, nwords, i;
2937 enum machine_mode imode;
2938 HOST_WIDE_INT hi, lo;
2939 rtx temp, insns;
2940
2941 /* The format has to have a simple sign bit. */
2942 fmt = REAL_MODE_FORMAT (mode);
2943 if (fmt == NULL)
2944 return NULL_RTX;
2945
2946 bitpos = fmt->signbit_rw;
2947 if (bitpos < 0)
2948 return NULL_RTX;
2949
2950 /* Don't create negative zeros if the format doesn't support them. */
2951 if (code == NEG && !fmt->has_signed_zero)
2952 return NULL_RTX;
2953
2954 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2955 {
2956 imode = int_mode_for_mode (mode);
2957 if (imode == BLKmode)
2958 return NULL_RTX;
2959 word = 0;
2960 nwords = 1;
2961 }
2962 else
2963 {
2964 imode = word_mode;
2965
2966 if (FLOAT_WORDS_BIG_ENDIAN)
2967 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2968 else
2969 word = bitpos / BITS_PER_WORD;
2970 bitpos = bitpos % BITS_PER_WORD;
2971 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2972 }
2973
2974 if (bitpos < HOST_BITS_PER_WIDE_INT)
2975 {
2976 hi = 0;
2977 lo = (HOST_WIDE_INT) 1 << bitpos;
2978 }
2979 else
2980 {
2981 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2982 lo = 0;
2983 }
2984 if (code == ABS)
2985 lo = ~lo, hi = ~hi;
2986
2987 if (target == 0 || target == op0)
2988 target = gen_reg_rtx (mode);
2989
2990 if (nwords > 1)
2991 {
2992 start_sequence ();
2993
2994 for (i = 0; i < nwords; ++i)
2995 {
2996 rtx targ_piece = operand_subword (target, i, 1, mode);
2997 rtx op0_piece = operand_subword_force (op0, i, mode);
2998
2999 if (i == word)
3000 {
3001 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3002 op0_piece,
3003 immed_double_const (lo, hi, imode),
3004 targ_piece, 1, OPTAB_LIB_WIDEN);
3005 if (temp != targ_piece)
3006 emit_move_insn (targ_piece, temp);
3007 }
3008 else
3009 emit_move_insn (targ_piece, op0_piece);
3010 }
3011
3012 insns = get_insns ();
3013 end_sequence ();
3014
3015 emit_insn (insns);
3016 }
3017 else
3018 {
3019 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3020 gen_lowpart (imode, op0),
3021 immed_double_const (lo, hi, imode),
3022 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3023 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3024
3025 set_unique_reg_note (get_last_insn (), REG_EQUAL,
3026 gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
3027 }
3028
3029 return target;
3030 }
3031
3032 /* As expand_unop, but will fail rather than attempt the operation in a
3033 different mode or with a libcall. */
3034 static rtx
3035 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3036 int unsignedp)
3037 {
3038 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
3039 {
3040 int icode = (int) optab_handler (unoptab, mode)->insn_code;
3041 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3042 rtx xop0 = op0;
3043 rtx last = get_last_insn ();
3044 rtx pat, temp;
3045
3046 if (target)
3047 temp = target;
3048 else
3049 temp = gen_reg_rtx (mode);
3050
3051 if (GET_MODE (xop0) != VOIDmode
3052 && GET_MODE (xop0) != mode0)
3053 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3054
3055 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3056
3057 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
3058 xop0 = copy_to_mode_reg (mode0, xop0);
3059
3060 if (!insn_data[icode].operand[0].predicate (temp, mode))
3061 temp = gen_reg_rtx (mode);
3062
3063 pat = GEN_FCN (icode) (temp, xop0);
3064 if (pat)
3065 {
3066 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3067 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
3068 {
3069 delete_insns_since (last);
3070 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3071 }
3072
3073 emit_insn (pat);
3074
3075 return temp;
3076 }
3077 else
3078 delete_insns_since (last);
3079 }
3080 return 0;
3081 }
3082
3083 /* Generate code to perform an operation specified by UNOPTAB
3084 on operand OP0, with result having machine-mode MODE.
3085
3086 UNSIGNEDP is for the case where we have to widen the operands
3087 to perform the operation. It says to use zero-extension.
3088
3089 If TARGET is nonzero, the value
3090 is generated there, if it is convenient to do so.
3091 In all cases an rtx is returned for the locus of the value;
3092 this may or may not be TARGET. */
3093
3094 rtx
3095 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3096 int unsignedp)
3097 {
3098 enum mode_class mclass = GET_MODE_CLASS (mode);
3099 enum machine_mode wider_mode;
3100 rtx temp;
3101 rtx libfunc;
3102
3103 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3104 if (temp)
3105 return temp;
3106
3107 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3108
3109 /* Widening (or narrowing) clz needs special treatment. */
3110 if (unoptab == clz_optab)
3111 {
3112 temp = widen_clz (mode, op0, target);
3113 if (temp)
3114 return temp;
3115
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3118 {
3119 temp = expand_doubleword_clz (mode, op0, target);
3120 if (temp)
3121 return temp;
3122 }
3123
3124 goto try_libcall;
3125 }
3126
3127 /* Widening (or narrowing) bswap needs special treatment. */
3128 if (unoptab == bswap_optab)
3129 {
3130 temp = widen_bswap (mode, op0, target);
3131 if (temp)
3132 return temp;
3133
3134 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3135 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3136 {
3137 temp = expand_doubleword_bswap (mode, op0, target);
3138 if (temp)
3139 return temp;
3140 }
3141
3142 goto try_libcall;
3143 }
3144
3145 if (CLASS_HAS_WIDER_MODES_P (mclass))
3146 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3147 wider_mode != VOIDmode;
3148 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3149 {
3150 if (optab_handler (unoptab, wider_mode)->insn_code != CODE_FOR_nothing)
3151 {
3152 rtx xop0 = op0;
3153 rtx last = get_last_insn ();
3154
3155 /* For certain operations, we need not actually extend
3156 the narrow operand, as long as we will truncate the
3157 results to the same narrowness. */
3158
3159 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3160 (unoptab == neg_optab
3161 || unoptab == one_cmpl_optab)
3162 && mclass == MODE_INT);
3163
3164 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3165 unsignedp);
3166
3167 if (temp)
3168 {
3169 if (mclass != MODE_INT
3170 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3171 GET_MODE_BITSIZE (wider_mode)))
3172 {
3173 if (target == 0)
3174 target = gen_reg_rtx (mode);
3175 convert_move (target, temp, 0);
3176 return target;
3177 }
3178 else
3179 return gen_lowpart (mode, temp);
3180 }
3181 else
3182 delete_insns_since (last);
3183 }
3184 }
3185
3186 /* These can be done a word at a time. */
3187 if (unoptab == one_cmpl_optab
3188 && mclass == MODE_INT
3189 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3190 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3191 {
3192 int i;
3193 rtx insns;
3194
3195 if (target == 0 || target == op0)
3196 target = gen_reg_rtx (mode);
3197
3198 start_sequence ();
3199
3200 /* Do the actual arithmetic. */
3201 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3202 {
3203 rtx target_piece = operand_subword (target, i, 1, mode);
3204 rtx x = expand_unop (word_mode, unoptab,
3205 operand_subword_force (op0, i, mode),
3206 target_piece, unsignedp);
3207
3208 if (target_piece != x)
3209 emit_move_insn (target_piece, x);
3210 }
3211
3212 insns = get_insns ();
3213 end_sequence ();
3214
3215 emit_insn (insns);
3216 return target;
3217 }
3218
3219 if (unoptab->code == NEG)
3220 {
3221 /* Try negating floating point values by flipping the sign bit. */
3222 if (SCALAR_FLOAT_MODE_P (mode))
3223 {
3224 temp = expand_absneg_bit (NEG, mode, op0, target);
3225 if (temp)
3226 return temp;
3227 }
3228
3229 /* If there is no negation pattern, and we have no negative zero,
3230 try subtracting from zero. */
3231 if (!HONOR_SIGNED_ZEROS (mode))
3232 {
3233 temp = expand_binop (mode, (unoptab == negv_optab
3234 ? subv_optab : sub_optab),
3235 CONST0_RTX (mode), op0, target,
3236 unsignedp, OPTAB_DIRECT);
3237 if (temp)
3238 return temp;
3239 }
3240 }
3241
3242 /* Try calculating parity (x) as popcount (x) % 2. */
3243 if (unoptab == parity_optab)
3244 {
3245 temp = expand_parity (mode, op0, target);
3246 if (temp)
3247 return temp;
3248 }
3249
3250 /* Try implementing ffs (x) in terms of clz (x). */
3251 if (unoptab == ffs_optab)
3252 {
3253 temp = expand_ffs (mode, op0, target);
3254 if (temp)
3255 return temp;
3256 }
3257
3258 /* Try implementing ctz (x) in terms of clz (x). */
3259 if (unoptab == ctz_optab)
3260 {
3261 temp = expand_ctz (mode, op0, target);
3262 if (temp)
3263 return temp;
3264 }
3265
3266 try_libcall:
3267 /* Now try a library call in this mode. */
3268 libfunc = optab_libfunc (unoptab, mode);
3269 if (libfunc)
3270 {
3271 rtx insns;
3272 rtx value;
3273 rtx eq_value;
3274 enum machine_mode outmode = mode;
3275
3276 /* All of these functions return small values. Thus we choose to
3277 have them return something that isn't a double-word. */
3278 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3279 || unoptab == popcount_optab || unoptab == parity_optab)
3280 outmode
3281 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3282 optab_libfunc (unoptab, mode)));
3283
3284 start_sequence ();
3285
3286 /* Pass 1 for NO_QUEUE so we don't lose any increments
3287 if the libcall is cse'd or moved. */
3288 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3289 1, op0, mode);
3290 insns = get_insns ();
3291 end_sequence ();
3292
3293 target = gen_reg_rtx (outmode);
3294 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3295 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3296 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3297 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3298 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3299 emit_libcall_block (insns, target, value, eq_value);
3300
3301 return target;
3302 }
3303
3304 /* It can't be done in this mode. Can we do it in a wider mode? */
3305
3306 if (CLASS_HAS_WIDER_MODES_P (mclass))
3307 {
3308 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3309 wider_mode != VOIDmode;
3310 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3311 {
3312 if ((optab_handler (unoptab, wider_mode)->insn_code
3313 != CODE_FOR_nothing)
3314 || optab_libfunc (unoptab, wider_mode))
3315 {
3316 rtx xop0 = op0;
3317 rtx last = get_last_insn ();
3318
3319 /* For certain operations, we need not actually extend
3320 the narrow operand, as long as we will truncate the
3321 results to the same narrowness. */
3322
3323 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3324 (unoptab == neg_optab
3325 || unoptab == one_cmpl_optab)
3326 && mclass == MODE_INT);
3327
3328 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3329 unsignedp);
3330
3331 /* If we are generating clz using wider mode, adjust the
3332 result. */
3333 if (unoptab == clz_optab && temp != 0)
3334 temp = expand_binop (wider_mode, sub_optab, temp,
3335 GEN_INT (GET_MODE_BITSIZE (wider_mode)
3336 - GET_MODE_BITSIZE (mode)),
3337 target, true, OPTAB_DIRECT);
3338
3339 if (temp)
3340 {
3341 if (mclass != MODE_INT)
3342 {
3343 if (target == 0)
3344 target = gen_reg_rtx (mode);
3345 convert_move (target, temp, 0);
3346 return target;
3347 }
3348 else
3349 return gen_lowpart (mode, temp);
3350 }
3351 else
3352 delete_insns_since (last);
3353 }
3354 }
3355 }
3356
3357 /* One final attempt at implementing negation via subtraction,
3358 this time allowing widening of the operand. */
3359 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3360 {
3361 rtx temp;
3362 temp = expand_binop (mode,
3363 unoptab == negv_optab ? subv_optab : sub_optab,
3364 CONST0_RTX (mode), op0,
3365 target, unsignedp, OPTAB_LIB_WIDEN);
3366 if (temp)
3367 return temp;
3368 }
3369
3370 return 0;
3371 }
3372 \f
3373 /* Emit code to compute the absolute value of OP0, with result to
3374 TARGET if convenient. (TARGET may be 0.) The return value says
3375 where the result actually is to be found.
3376
3377 MODE is the mode of the operand; the mode of the result is
3378 different but can be deduced from MODE.
3379
3380 */
3381
3382 rtx
3383 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3384 int result_unsignedp)
3385 {
3386 rtx temp;
3387
3388 if (! flag_trapv)
3389 result_unsignedp = 1;
3390
3391 /* First try to do it with a special abs instruction. */
3392 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3393 op0, target, 0);
3394 if (temp != 0)
3395 return temp;
3396
3397 /* For floating point modes, try clearing the sign bit. */
3398 if (SCALAR_FLOAT_MODE_P (mode))
3399 {
3400 temp = expand_absneg_bit (ABS, mode, op0, target);
3401 if (temp)
3402 return temp;
3403 }
3404
3405 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3406 if (optab_handler (smax_optab, mode)->insn_code != CODE_FOR_nothing
3407 && !HONOR_SIGNED_ZEROS (mode))
3408 {
3409 rtx last = get_last_insn ();
3410
3411 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3412 if (temp != 0)
3413 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3414 OPTAB_WIDEN);
3415
3416 if (temp != 0)
3417 return temp;
3418
3419 delete_insns_since (last);
3420 }
3421
3422 /* If this machine has expensive jumps, we can do integer absolute
3423 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3424 where W is the width of MODE. */
3425
3426 if (GET_MODE_CLASS (mode) == MODE_INT
3427 && BRANCH_COST (optimize_insn_for_speed_p (),
3428 false) >= 2)
3429 {
3430 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3431 size_int (GET_MODE_BITSIZE (mode) - 1),
3432 NULL_RTX, 0);
3433
3434 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3435 OPTAB_LIB_WIDEN);
3436 if (temp != 0)
3437 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3438 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3439
3440 if (temp != 0)
3441 return temp;
3442 }
3443
3444 return NULL_RTX;
3445 }
3446
3447 rtx
3448 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3449 int result_unsignedp, int safe)
3450 {
3451 rtx temp, op1;
3452
3453 if (! flag_trapv)
3454 result_unsignedp = 1;
3455
3456 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3457 if (temp != 0)
3458 return temp;
3459
3460 /* If that does not win, use conditional jump and negate. */
3461
3462 /* It is safe to use the target if it is the same
3463 as the source if this is also a pseudo register */
3464 if (op0 == target && REG_P (op0)
3465 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3466 safe = 1;
3467
3468 op1 = gen_label_rtx ();
3469 if (target == 0 || ! safe
3470 || GET_MODE (target) != mode
3471 || (MEM_P (target) && MEM_VOLATILE_P (target))
3472 || (REG_P (target)
3473 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3474 target = gen_reg_rtx (mode);
3475
3476 emit_move_insn (target, op0);
3477 NO_DEFER_POP;
3478
3479 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3480 NULL_RTX, NULL_RTX, op1);
3481
3482 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3483 target, target, 0);
3484 if (op0 != target)
3485 emit_move_insn (target, op0);
3486 emit_label (op1);
3487 OK_DEFER_POP;
3488 return target;
3489 }
3490
3491 /* A subroutine of expand_copysign, perform the copysign operation using the
3492 abs and neg primitives advertised to exist on the target. The assumption
3493 is that we have a split register file, and leaving op0 in fp registers,
3494 and not playing with subregs so much, will help the register allocator. */
3495
3496 static rtx
3497 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3498 int bitpos, bool op0_is_abs)
3499 {
3500 enum machine_mode imode;
3501 int icode;
3502 rtx sign, label;
3503
3504 if (target == op1)
3505 target = NULL_RTX;
3506
3507 /* Check if the back end provides an insn that handles signbit for the
3508 argument's mode. */
3509 icode = (int) signbit_optab->handlers [(int) mode].insn_code;
3510 if (icode != CODE_FOR_nothing)
3511 {
3512 imode = insn_data[icode].operand[0].mode;
3513 sign = gen_reg_rtx (imode);
3514 emit_unop_insn (icode, sign, op1, UNKNOWN);
3515 }
3516 else
3517 {
3518 HOST_WIDE_INT hi, lo;
3519
3520 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3521 {
3522 imode = int_mode_for_mode (mode);
3523 if (imode == BLKmode)
3524 return NULL_RTX;
3525 op1 = gen_lowpart (imode, op1);
3526 }
3527 else
3528 {
3529 int word;
3530
3531 imode = word_mode;
3532 if (FLOAT_WORDS_BIG_ENDIAN)
3533 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3534 else
3535 word = bitpos / BITS_PER_WORD;
3536 bitpos = bitpos % BITS_PER_WORD;
3537 op1 = operand_subword_force (op1, word, mode);
3538 }
3539
3540 if (bitpos < HOST_BITS_PER_WIDE_INT)
3541 {
3542 hi = 0;
3543 lo = (HOST_WIDE_INT) 1 << bitpos;
3544 }
3545 else
3546 {
3547 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3548 lo = 0;
3549 }
3550
3551 sign = gen_reg_rtx (imode);
3552 sign = expand_binop (imode, and_optab, op1,
3553 immed_double_const (lo, hi, imode),
3554 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3555 }
3556
3557 if (!op0_is_abs)
3558 {
3559 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3560 if (op0 == NULL)
3561 return NULL_RTX;
3562 target = op0;
3563 }
3564 else
3565 {
3566 if (target == NULL_RTX)
3567 target = copy_to_reg (op0);
3568 else
3569 emit_move_insn (target, op0);
3570 }
3571
3572 label = gen_label_rtx ();
3573 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3574
3575 if (GET_CODE (op0) == CONST_DOUBLE)
3576 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3577 else
3578 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3579 if (op0 != target)
3580 emit_move_insn (target, op0);
3581
3582 emit_label (label);
3583
3584 return target;
3585 }
3586
3587
3588 /* A subroutine of expand_copysign, perform the entire copysign operation
3589 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3590 is true if op0 is known to have its sign bit clear. */
3591
3592 static rtx
3593 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3594 int bitpos, bool op0_is_abs)
3595 {
3596 enum machine_mode imode;
3597 HOST_WIDE_INT hi, lo;
3598 int word, nwords, i;
3599 rtx temp, insns;
3600
3601 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3602 {
3603 imode = int_mode_for_mode (mode);
3604 if (imode == BLKmode)
3605 return NULL_RTX;
3606 word = 0;
3607 nwords = 1;
3608 }
3609 else
3610 {
3611 imode = word_mode;
3612
3613 if (FLOAT_WORDS_BIG_ENDIAN)
3614 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3615 else
3616 word = bitpos / BITS_PER_WORD;
3617 bitpos = bitpos % BITS_PER_WORD;
3618 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3619 }
3620
3621 if (bitpos < HOST_BITS_PER_WIDE_INT)
3622 {
3623 hi = 0;
3624 lo = (HOST_WIDE_INT) 1 << bitpos;
3625 }
3626 else
3627 {
3628 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3629 lo = 0;
3630 }
3631
3632 if (target == 0 || target == op0 || target == op1)
3633 target = gen_reg_rtx (mode);
3634
3635 if (nwords > 1)
3636 {
3637 start_sequence ();
3638
3639 for (i = 0; i < nwords; ++i)
3640 {
3641 rtx targ_piece = operand_subword (target, i, 1, mode);
3642 rtx op0_piece = operand_subword_force (op0, i, mode);
3643
3644 if (i == word)
3645 {
3646 if (!op0_is_abs)
3647 op0_piece = expand_binop (imode, and_optab, op0_piece,
3648 immed_double_const (~lo, ~hi, imode),
3649 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3650
3651 op1 = expand_binop (imode, and_optab,
3652 operand_subword_force (op1, i, mode),
3653 immed_double_const (lo, hi, imode),
3654 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3655
3656 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3657 targ_piece, 1, OPTAB_LIB_WIDEN);
3658 if (temp != targ_piece)
3659 emit_move_insn (targ_piece, temp);
3660 }
3661 else
3662 emit_move_insn (targ_piece, op0_piece);
3663 }
3664
3665 insns = get_insns ();
3666 end_sequence ();
3667
3668 emit_insn (insns);
3669 }
3670 else
3671 {
3672 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3673 immed_double_const (lo, hi, imode),
3674 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3675
3676 op0 = gen_lowpart (imode, op0);
3677 if (!op0_is_abs)
3678 op0 = expand_binop (imode, and_optab, op0,
3679 immed_double_const (~lo, ~hi, imode),
3680 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3681
3682 temp = expand_binop (imode, ior_optab, op0, op1,
3683 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3684 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3685 }
3686
3687 return target;
3688 }
3689
3690 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3691 scalar floating point mode. Return NULL if we do not know how to
3692 expand the operation inline. */
3693
3694 rtx
3695 expand_copysign (rtx op0, rtx op1, rtx target)
3696 {
3697 enum machine_mode mode = GET_MODE (op0);
3698 const struct real_format *fmt;
3699 bool op0_is_abs;
3700 rtx temp;
3701
3702 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3703 gcc_assert (GET_MODE (op1) == mode);
3704
3705 /* First try to do it with a special instruction. */
3706 temp = expand_binop (mode, copysign_optab, op0, op1,
3707 target, 0, OPTAB_DIRECT);
3708 if (temp)
3709 return temp;
3710
3711 fmt = REAL_MODE_FORMAT (mode);
3712 if (fmt == NULL || !fmt->has_signed_zero)
3713 return NULL_RTX;
3714
3715 op0_is_abs = false;
3716 if (GET_CODE (op0) == CONST_DOUBLE)
3717 {
3718 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3719 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3720 op0_is_abs = true;
3721 }
3722
3723 if (fmt->signbit_ro >= 0
3724 && (GET_CODE (op0) == CONST_DOUBLE
3725 || (optab_handler (neg_optab, mode)->insn_code != CODE_FOR_nothing
3726 && optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)))
3727 {
3728 temp = expand_copysign_absneg (mode, op0, op1, target,
3729 fmt->signbit_ro, op0_is_abs);
3730 if (temp)
3731 return temp;
3732 }
3733
3734 if (fmt->signbit_rw < 0)
3735 return NULL_RTX;
3736 return expand_copysign_bit (mode, op0, op1, target,
3737 fmt->signbit_rw, op0_is_abs);
3738 }
3739 \f
3740 /* Generate an instruction whose insn-code is INSN_CODE,
3741 with two operands: an output TARGET and an input OP0.
3742 TARGET *must* be nonzero, and the output is always stored there.
3743 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3744 the value that is stored into TARGET.
3745
3746 Return false if expansion failed. */
3747
3748 bool
3749 maybe_emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3750 {
3751 rtx temp;
3752 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3753 rtx pat;
3754 rtx last = get_last_insn ();
3755
3756 temp = target;
3757
3758 /* Now, if insn does not accept our operands, put them into pseudos. */
3759
3760 if (!insn_data[icode].operand[1].predicate (op0, mode0))
3761 op0 = copy_to_mode_reg (mode0, op0);
3762
3763 if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
3764 temp = gen_reg_rtx (GET_MODE (temp));
3765
3766 pat = GEN_FCN (icode) (temp, op0);
3767 if (!pat)
3768 {
3769 delete_insns_since (last);
3770 return false;
3771 }
3772
3773 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3774 add_equal_note (pat, temp, code, op0, NULL_RTX);
3775
3776 emit_insn (pat);
3777
3778 if (temp != target)
3779 emit_move_insn (target, temp);
3780 return true;
3781 }
3782 /* Generate an instruction whose insn-code is INSN_CODE,
3783 with two operands: an output TARGET and an input OP0.
3784 TARGET *must* be nonzero, and the output is always stored there.
3785 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3786 the value that is stored into TARGET. */
3787
3788 void
3789 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3790 {
3791 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3792 gcc_assert (ok);
3793 }
3794 \f
3795 struct no_conflict_data
3796 {
3797 rtx target, first, insn;
3798 bool must_stay;
3799 };
3800
3801 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3802 the currently examined clobber / store has to stay in the list of
3803 insns that constitute the actual libcall block. */
3804 static void
3805 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3806 {
3807 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3808
3809 /* If this inns directly contributes to setting the target, it must stay. */
3810 if (reg_overlap_mentioned_p (p->target, dest))
3811 p->must_stay = true;
3812 /* If we haven't committed to keeping any other insns in the list yet,
3813 there is nothing more to check. */
3814 else if (p->insn == p->first)
3815 return;
3816 /* If this insn sets / clobbers a register that feeds one of the insns
3817 already in the list, this insn has to stay too. */
3818 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3819 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3820 || reg_used_between_p (dest, p->first, p->insn)
3821 /* Likewise if this insn depends on a register set by a previous
3822 insn in the list, or if it sets a result (presumably a hard
3823 register) that is set or clobbered by a previous insn.
3824 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3825 SET_DEST perform the former check on the address, and the latter
3826 check on the MEM. */
3827 || (GET_CODE (set) == SET
3828 && (modified_in_p (SET_SRC (set), p->first)
3829 || modified_in_p (SET_DEST (set), p->first)
3830 || modified_between_p (SET_SRC (set), p->first, p->insn)
3831 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3832 p->must_stay = true;
3833 }
3834
3835 \f
3836 /* Emit code to make a call to a constant function or a library call.
3837
3838 INSNS is a list containing all insns emitted in the call.
3839 These insns leave the result in RESULT. Our block is to copy RESULT
3840 to TARGET, which is logically equivalent to EQUIV.
3841
3842 We first emit any insns that set a pseudo on the assumption that these are
3843 loading constants into registers; doing so allows them to be safely cse'ed
3844 between blocks. Then we emit all the other insns in the block, followed by
3845 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3846 note with an operand of EQUIV. */
3847
3848 void
3849 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3850 {
3851 rtx final_dest = target;
3852 rtx prev, next, last, insn;
3853
3854 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3855 into a MEM later. Protect the libcall block from this change. */
3856 if (! REG_P (target) || REG_USERVAR_P (target))
3857 target = gen_reg_rtx (GET_MODE (target));
3858
3859 /* If we're using non-call exceptions, a libcall corresponding to an
3860 operation that may trap may also trap. */
3861 if (flag_non_call_exceptions && may_trap_p (equiv))
3862 {
3863 for (insn = insns; insn; insn = NEXT_INSN (insn))
3864 if (CALL_P (insn))
3865 {
3866 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3867
3868 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3869 remove_note (insn, note);
3870 }
3871 }
3872 else
3873 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3874 reg note to indicate that this call cannot throw or execute a nonlocal
3875 goto (unless there is already a REG_EH_REGION note, in which case
3876 we update it). */
3877 for (insn = insns; insn; insn = NEXT_INSN (insn))
3878 if (CALL_P (insn))
3879 {
3880 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3881
3882 if (note != 0)
3883 XEXP (note, 0) = constm1_rtx;
3884 else
3885 add_reg_note (insn, REG_EH_REGION, constm1_rtx);
3886 }
3887
3888 /* First emit all insns that set pseudos. Remove them from the list as
3889 we go. Avoid insns that set pseudos which were referenced in previous
3890 insns. These can be generated by move_by_pieces, for example,
3891 to update an address. Similarly, avoid insns that reference things
3892 set in previous insns. */
3893
3894 for (insn = insns; insn; insn = next)
3895 {
3896 rtx set = single_set (insn);
3897
3898 next = NEXT_INSN (insn);
3899
3900 if (set != 0 && REG_P (SET_DEST (set))
3901 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3902 {
3903 struct no_conflict_data data;
3904
3905 data.target = const0_rtx;
3906 data.first = insns;
3907 data.insn = insn;
3908 data.must_stay = 0;
3909 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3910 if (! data.must_stay)
3911 {
3912 if (PREV_INSN (insn))
3913 NEXT_INSN (PREV_INSN (insn)) = next;
3914 else
3915 insns = next;
3916
3917 if (next)
3918 PREV_INSN (next) = PREV_INSN (insn);
3919
3920 add_insn (insn);
3921 }
3922 }
3923
3924 /* Some ports use a loop to copy large arguments onto the stack.
3925 Don't move anything outside such a loop. */
3926 if (LABEL_P (insn))
3927 break;
3928 }
3929
3930 prev = get_last_insn ();
3931
3932 /* Write the remaining insns followed by the final copy. */
3933
3934 for (insn = insns; insn; insn = next)
3935 {
3936 next = NEXT_INSN (insn);
3937
3938 add_insn (insn);
3939 }
3940
3941 last = emit_move_insn (target, result);
3942 if (optab_handler (mov_optab, GET_MODE (target))->insn_code
3943 != CODE_FOR_nothing)
3944 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3945
3946 if (final_dest != target)
3947 emit_move_insn (final_dest, target);
3948 }
3949 \f
3950 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3951 PURPOSE describes how this comparison will be used. CODE is the rtx
3952 comparison code we will be using.
3953
3954 ??? Actually, CODE is slightly weaker than that. A target is still
3955 required to implement all of the normal bcc operations, but not
3956 required to implement all (or any) of the unordered bcc operations. */
3957
3958 int
3959 can_compare_p (enum rtx_code code, enum machine_mode mode,
3960 enum can_compare_purpose purpose)
3961 {
3962 rtx test;
3963 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3964 do
3965 {
3966 int icode;
3967
3968 if (purpose == ccp_jump
3969 && (icode = optab_handler (cbranch_optab, mode)->insn_code) != CODE_FOR_nothing
3970 && insn_data[icode].operand[0].predicate (test, mode))
3971 return 1;
3972 if (purpose == ccp_store_flag
3973 && (icode = optab_handler (cstore_optab, mode)->insn_code) != CODE_FOR_nothing
3974 && insn_data[icode].operand[1].predicate (test, mode))
3975 return 1;
3976 if (purpose == ccp_cmov
3977 && optab_handler (cmov_optab, mode)->insn_code != CODE_FOR_nothing)
3978 return 1;
3979
3980 mode = GET_MODE_WIDER_MODE (mode);
3981 PUT_MODE (test, mode);
3982 }
3983 while (mode != VOIDmode);
3984
3985 return 0;
3986 }
3987
3988 /* This function is called when we are going to emit a compare instruction that
3989 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3990
3991 *PMODE is the mode of the inputs (in case they are const_int).
3992 *PUNSIGNEDP nonzero says that the operands are unsigned;
3993 this matters if they need to be widened (as given by METHODS).
3994
3995 If they have mode BLKmode, then SIZE specifies the size of both operands.
3996
3997 This function performs all the setup necessary so that the caller only has
3998 to emit a single comparison insn. This setup can involve doing a BLKmode
3999 comparison or emitting a library call to perform the comparison if no insn
4000 is available to handle it.
4001 The values which are passed in through pointers can be modified; the caller
4002 should perform the comparison on the modified values. Constant
4003 comparisons must have already been folded. */
4004
4005 static void
4006 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4007 int unsignedp, enum optab_methods methods,
4008 rtx *ptest, enum machine_mode *pmode)
4009 {
4010 enum machine_mode mode = *pmode;
4011 rtx libfunc, test;
4012 enum machine_mode cmp_mode;
4013 enum mode_class mclass;
4014
4015 /* The other methods are not needed. */
4016 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4017 || methods == OPTAB_LIB_WIDEN);
4018
4019 /* If we are optimizing, force expensive constants into a register. */
4020 if (CONSTANT_P (x) && optimize
4021 && (rtx_cost (x, COMPARE, optimize_insn_for_speed_p ())
4022 > COSTS_N_INSNS (1)))
4023 x = force_reg (mode, x);
4024
4025 if (CONSTANT_P (y) && optimize
4026 && (rtx_cost (y, COMPARE, optimize_insn_for_speed_p ())
4027 > COSTS_N_INSNS (1)))
4028 y = force_reg (mode, y);
4029
4030 #ifdef HAVE_cc0
4031 /* Make sure if we have a canonical comparison. The RTL
4032 documentation states that canonical comparisons are required only
4033 for targets which have cc0. */
4034 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4035 #endif
4036
4037 /* Don't let both operands fail to indicate the mode. */
4038 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4039 x = force_reg (mode, x);
4040 if (mode == VOIDmode)
4041 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4042
4043 /* Handle all BLKmode compares. */
4044
4045 if (mode == BLKmode)
4046 {
4047 enum machine_mode result_mode;
4048 enum insn_code cmp_code;
4049 tree length_type;
4050 rtx libfunc;
4051 rtx result;
4052 rtx opalign
4053 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4054
4055 gcc_assert (size);
4056
4057 /* Try to use a memory block compare insn - either cmpstr
4058 or cmpmem will do. */
4059 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4060 cmp_mode != VOIDmode;
4061 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4062 {
4063 cmp_code = cmpmem_optab[cmp_mode];
4064 if (cmp_code == CODE_FOR_nothing)
4065 cmp_code = cmpstr_optab[cmp_mode];
4066 if (cmp_code == CODE_FOR_nothing)
4067 cmp_code = cmpstrn_optab[cmp_mode];
4068 if (cmp_code == CODE_FOR_nothing)
4069 continue;
4070
4071 /* Must make sure the size fits the insn's mode. */
4072 if ((CONST_INT_P (size)
4073 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4074 || (GET_MODE_BITSIZE (GET_MODE (size))
4075 > GET_MODE_BITSIZE (cmp_mode)))
4076 continue;
4077
4078 result_mode = insn_data[cmp_code].operand[0].mode;
4079 result = gen_reg_rtx (result_mode);
4080 size = convert_to_mode (cmp_mode, size, 1);
4081 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4082
4083 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4084 *pmode = result_mode;
4085 return;
4086 }
4087
4088 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4089 goto fail;
4090
4091 /* Otherwise call a library function, memcmp. */
4092 libfunc = memcmp_libfunc;
4093 length_type = sizetype;
4094 result_mode = TYPE_MODE (integer_type_node);
4095 cmp_mode = TYPE_MODE (length_type);
4096 size = convert_to_mode (TYPE_MODE (length_type), size,
4097 TYPE_UNSIGNED (length_type));
4098
4099 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4100 result_mode, 3,
4101 XEXP (x, 0), Pmode,
4102 XEXP (y, 0), Pmode,
4103 size, cmp_mode);
4104
4105 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4106 *pmode = result_mode;
4107 return;
4108 }
4109
4110 /* Don't allow operands to the compare to trap, as that can put the
4111 compare and branch in different basic blocks. */
4112 if (flag_non_call_exceptions)
4113 {
4114 if (may_trap_p (x))
4115 x = force_reg (mode, x);
4116 if (may_trap_p (y))
4117 y = force_reg (mode, y);
4118 }
4119
4120 if (GET_MODE_CLASS (mode) == MODE_CC)
4121 {
4122 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4123 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4124 return;
4125 }
4126
4127 mclass = GET_MODE_CLASS (mode);
4128 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4129 cmp_mode = mode;
4130 do
4131 {
4132 enum insn_code icode;
4133 icode = optab_handler (cbranch_optab, cmp_mode)->insn_code;
4134 if (icode != CODE_FOR_nothing
4135 && insn_data[icode].operand[0].predicate (test, VOIDmode))
4136 {
4137 rtx last = get_last_insn ();
4138 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4139 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4140 if (op0 && op1
4141 && insn_data[icode].operand[1].predicate
4142 (op0, insn_data[icode].operand[1].mode)
4143 && insn_data[icode].operand[2].predicate
4144 (op1, insn_data[icode].operand[2].mode))
4145 {
4146 XEXP (test, 0) = op0;
4147 XEXP (test, 1) = op1;
4148 *ptest = test;
4149 *pmode = cmp_mode;
4150 return;
4151 }
4152 delete_insns_since (last);
4153 }
4154
4155 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4156 break;
4157 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4158 }
4159 while (cmp_mode != VOIDmode);
4160
4161 if (methods != OPTAB_LIB_WIDEN)
4162 goto fail;
4163
4164 if (!SCALAR_FLOAT_MODE_P (mode))
4165 {
4166 rtx result;
4167
4168 /* Handle a libcall just for the mode we are using. */
4169 libfunc = optab_libfunc (cmp_optab, mode);
4170 gcc_assert (libfunc);
4171
4172 /* If we want unsigned, and this mode has a distinct unsigned
4173 comparison routine, use that. */
4174 if (unsignedp)
4175 {
4176 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4177 if (ulibfunc)
4178 libfunc = ulibfunc;
4179 }
4180
4181 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4182 targetm.libgcc_cmp_return_mode (),
4183 2, x, mode, y, mode);
4184
4185 /* There are two kinds of comparison routines. Biased routines
4186 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4187 of gcc expect that the comparison operation is equivalent
4188 to the modified comparison. For signed comparisons compare the
4189 result against 1 in the biased case, and zero in the unbiased
4190 case. For unsigned comparisons always compare against 1 after
4191 biasing the unbiased result by adding 1. This gives us a way to
4192 represent LTU. */
4193 x = result;
4194 y = const1_rtx;
4195
4196 if (!TARGET_LIB_INT_CMP_BIASED)
4197 {
4198 if (unsignedp)
4199 x = plus_constant (result, 1);
4200 else
4201 y = const0_rtx;
4202 }
4203
4204 *pmode = word_mode;
4205 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4206 ptest, pmode);
4207 }
4208 else
4209 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4210
4211 return;
4212
4213 fail:
4214 *ptest = NULL_RTX;
4215 }
4216
4217 /* Before emitting an insn with code ICODE, make sure that X, which is going
4218 to be used for operand OPNUM of the insn, is converted from mode MODE to
4219 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4220 that it is accepted by the operand predicate. Return the new value. */
4221
4222 rtx
4223 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
4224 enum machine_mode wider_mode, int unsignedp)
4225 {
4226 if (mode != wider_mode)
4227 x = convert_modes (wider_mode, mode, x, unsignedp);
4228
4229 if (!insn_data[icode].operand[opnum].predicate
4230 (x, insn_data[icode].operand[opnum].mode))
4231 {
4232 if (reload_completed)
4233 return NULL_RTX;
4234 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
4235 }
4236
4237 return x;
4238 }
4239
4240 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4241 we can do the branch. */
4242
4243 static void
4244 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
4245 {
4246 enum machine_mode optab_mode;
4247 enum mode_class mclass;
4248 enum insn_code icode;
4249
4250 mclass = GET_MODE_CLASS (mode);
4251 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4252 icode = optab_handler (cbranch_optab, optab_mode)->insn_code;
4253
4254 gcc_assert (icode != CODE_FOR_nothing);
4255 gcc_assert (insn_data[icode].operand[0].predicate (test, VOIDmode));
4256 emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
4257 }
4258
4259 /* Generate code to compare X with Y so that the condition codes are
4260 set and to jump to LABEL if the condition is true. If X is a
4261 constant and Y is not a constant, then the comparison is swapped to
4262 ensure that the comparison RTL has the canonical form.
4263
4264 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4265 need to be widened. UNSIGNEDP is also used to select the proper
4266 branch condition code.
4267
4268 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4269
4270 MODE is the mode of the inputs (in case they are const_int).
4271
4272 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4273 It will be potentially converted into an unsigned variant based on
4274 UNSIGNEDP to select a proper jump instruction. */
4275
4276 void
4277 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4278 enum machine_mode mode, int unsignedp, rtx label)
4279 {
4280 rtx op0 = x, op1 = y;
4281 rtx test;
4282
4283 /* Swap operands and condition to ensure canonical RTL. */
4284 if (swap_commutative_operands_p (x, y)
4285 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4286 {
4287 op0 = y, op1 = x;
4288 comparison = swap_condition (comparison);
4289 }
4290
4291 /* If OP0 is still a constant, then both X and Y must be constants
4292 or the opposite comparison is not supported. Force X into a register
4293 to create canonical RTL. */
4294 if (CONSTANT_P (op0))
4295 op0 = force_reg (mode, op0);
4296
4297 if (unsignedp)
4298 comparison = unsigned_condition (comparison);
4299
4300 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4301 &test, &mode);
4302 emit_cmp_and_jump_insn_1 (test, mode, label);
4303 }
4304
4305 \f
4306 /* Emit a library call comparison between floating point X and Y.
4307 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4308
4309 static void
4310 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4311 rtx *ptest, enum machine_mode *pmode)
4312 {
4313 enum rtx_code swapped = swap_condition (comparison);
4314 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4315 enum machine_mode orig_mode = GET_MODE (x);
4316 enum machine_mode mode, cmp_mode;
4317 rtx value, target, insns, equiv;
4318 rtx libfunc = 0;
4319 bool reversed_p = false;
4320 cmp_mode = targetm.libgcc_cmp_return_mode ();
4321
4322 for (mode = orig_mode;
4323 mode != VOIDmode;
4324 mode = GET_MODE_WIDER_MODE (mode))
4325 {
4326 if (code_to_optab[comparison]
4327 && (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4328 break;
4329
4330 if (code_to_optab[swapped]
4331 && (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
4332 {
4333 rtx tmp;
4334 tmp = x; x = y; y = tmp;
4335 comparison = swapped;
4336 break;
4337 }
4338
4339 if (code_to_optab[reversed]
4340 && (libfunc = optab_libfunc (code_to_optab[reversed], mode))
4341 && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
4342 {
4343 comparison = reversed;
4344 reversed_p = true;
4345 break;
4346 }
4347 }
4348
4349 gcc_assert (mode != VOIDmode);
4350
4351 if (mode != orig_mode)
4352 {
4353 x = convert_to_mode (mode, x, 0);
4354 y = convert_to_mode (mode, y, 0);
4355 }
4356
4357 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4358 the RTL. The allows the RTL optimizers to delete the libcall if the
4359 condition can be determined at compile-time. */
4360 if (comparison == UNORDERED)
4361 {
4362 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4363 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4364 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4365 temp, const_true_rtx, equiv);
4366 }
4367 else
4368 {
4369 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4370 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4371 {
4372 rtx true_rtx, false_rtx;
4373
4374 switch (comparison)
4375 {
4376 case EQ:
4377 true_rtx = const0_rtx;
4378 false_rtx = const_true_rtx;
4379 break;
4380
4381 case NE:
4382 true_rtx = const_true_rtx;
4383 false_rtx = const0_rtx;
4384 break;
4385
4386 case GT:
4387 true_rtx = const1_rtx;
4388 false_rtx = const0_rtx;
4389 break;
4390
4391 case GE:
4392 true_rtx = const0_rtx;
4393 false_rtx = constm1_rtx;
4394 break;
4395
4396 case LT:
4397 true_rtx = constm1_rtx;
4398 false_rtx = const0_rtx;
4399 break;
4400
4401 case LE:
4402 true_rtx = const0_rtx;
4403 false_rtx = const1_rtx;
4404 break;
4405
4406 default:
4407 gcc_unreachable ();
4408 }
4409 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4410 equiv, true_rtx, false_rtx);
4411 }
4412 }
4413
4414 start_sequence ();
4415 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4416 cmp_mode, 2, x, mode, y, mode);
4417 insns = get_insns ();
4418 end_sequence ();
4419
4420 target = gen_reg_rtx (cmp_mode);
4421 emit_libcall_block (insns, target, value, equiv);
4422
4423 if (comparison == UNORDERED
4424 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4425 comparison = reversed_p ? EQ : NE;
4426
4427 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4428 *pmode = cmp_mode;
4429 }
4430 \f
4431 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4432
4433 void
4434 emit_indirect_jump (rtx loc)
4435 {
4436 if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
4437 (loc, Pmode))
4438 loc = copy_to_mode_reg (Pmode, loc);
4439
4440 emit_jump_insn (gen_indirect_jump (loc));
4441 emit_barrier ();
4442 }
4443 \f
4444 #ifdef HAVE_conditional_move
4445
4446 /* Emit a conditional move instruction if the machine supports one for that
4447 condition and machine mode.
4448
4449 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4450 the mode to use should they be constants. If it is VOIDmode, they cannot
4451 both be constants.
4452
4453 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4454 should be stored there. MODE is the mode to use should they be constants.
4455 If it is VOIDmode, they cannot both be constants.
4456
4457 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4458 is not supported. */
4459
4460 rtx
4461 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4462 enum machine_mode cmode, rtx op2, rtx op3,
4463 enum machine_mode mode, int unsignedp)
4464 {
4465 rtx tem, subtarget, comparison, insn;
4466 enum insn_code icode;
4467 enum rtx_code reversed;
4468
4469 /* If one operand is constant, make it the second one. Only do this
4470 if the other operand is not constant as well. */
4471
4472 if (swap_commutative_operands_p (op0, op1))
4473 {
4474 tem = op0;
4475 op0 = op1;
4476 op1 = tem;
4477 code = swap_condition (code);
4478 }
4479
4480 /* get_condition will prefer to generate LT and GT even if the old
4481 comparison was against zero, so undo that canonicalization here since
4482 comparisons against zero are cheaper. */
4483 if (code == LT && op1 == const1_rtx)
4484 code = LE, op1 = const0_rtx;
4485 else if (code == GT && op1 == constm1_rtx)
4486 code = GE, op1 = const0_rtx;
4487
4488 if (cmode == VOIDmode)
4489 cmode = GET_MODE (op0);
4490
4491 if (swap_commutative_operands_p (op2, op3)
4492 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4493 != UNKNOWN))
4494 {
4495 tem = op2;
4496 op2 = op3;
4497 op3 = tem;
4498 code = reversed;
4499 }
4500
4501 if (mode == VOIDmode)
4502 mode = GET_MODE (op2);
4503
4504 icode = movcc_gen_code[mode];
4505
4506 if (icode == CODE_FOR_nothing)
4507 return 0;
4508
4509 if (!target)
4510 target = gen_reg_rtx (mode);
4511
4512 subtarget = target;
4513
4514 /* If the insn doesn't accept these operands, put them in pseudos. */
4515
4516 if (!insn_data[icode].operand[0].predicate
4517 (subtarget, insn_data[icode].operand[0].mode))
4518 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4519
4520 if (!insn_data[icode].operand[2].predicate
4521 (op2, insn_data[icode].operand[2].mode))
4522 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4523
4524 if (!insn_data[icode].operand[3].predicate
4525 (op3, insn_data[icode].operand[3].mode))
4526 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4527
4528 /* Everything should now be in the suitable form. */
4529
4530 code = unsignedp ? unsigned_condition (code) : code;
4531 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4532
4533 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4534 return NULL and let the caller figure out how best to deal with this
4535 situation. */
4536 if (!COMPARISON_P (comparison))
4537 return NULL_RTX;
4538
4539 do_pending_stack_adjust ();
4540 start_sequence ();
4541 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4542 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4543 &comparison, &cmode);
4544 if (!comparison)
4545 insn = NULL_RTX;
4546 else
4547 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4548
4549 /* If that failed, then give up. */
4550 if (insn == 0)
4551 {
4552 end_sequence ();
4553 return 0;
4554 }
4555
4556 emit_insn (insn);
4557 insn = get_insns ();
4558 end_sequence ();
4559 emit_insn (insn);
4560 if (subtarget != target)
4561 convert_move (target, subtarget, 0);
4562
4563 return target;
4564 }
4565
4566 /* Return nonzero if a conditional move of mode MODE is supported.
4567
4568 This function is for combine so it can tell whether an insn that looks
4569 like a conditional move is actually supported by the hardware. If we
4570 guess wrong we lose a bit on optimization, but that's it. */
4571 /* ??? sparc64 supports conditionally moving integers values based on fp
4572 comparisons, and vice versa. How do we handle them? */
4573
4574 int
4575 can_conditionally_move_p (enum machine_mode mode)
4576 {
4577 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4578 return 1;
4579
4580 return 0;
4581 }
4582
4583 #endif /* HAVE_conditional_move */
4584
4585 /* Emit a conditional addition instruction if the machine supports one for that
4586 condition and machine mode.
4587
4588 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4589 the mode to use should they be constants. If it is VOIDmode, they cannot
4590 both be constants.
4591
4592 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4593 should be stored there. MODE is the mode to use should they be constants.
4594 If it is VOIDmode, they cannot both be constants.
4595
4596 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4597 is not supported. */
4598
4599 rtx
4600 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4601 enum machine_mode cmode, rtx op2, rtx op3,
4602 enum machine_mode mode, int unsignedp)
4603 {
4604 rtx tem, subtarget, comparison, insn;
4605 enum insn_code icode;
4606 enum rtx_code reversed;
4607
4608 /* If one operand is constant, make it the second one. Only do this
4609 if the other operand is not constant as well. */
4610
4611 if (swap_commutative_operands_p (op0, op1))
4612 {
4613 tem = op0;
4614 op0 = op1;
4615 op1 = tem;
4616 code = swap_condition (code);
4617 }
4618
4619 /* get_condition will prefer to generate LT and GT even if the old
4620 comparison was against zero, so undo that canonicalization here since
4621 comparisons against zero are cheaper. */
4622 if (code == LT && op1 == const1_rtx)
4623 code = LE, op1 = const0_rtx;
4624 else if (code == GT && op1 == constm1_rtx)
4625 code = GE, op1 = const0_rtx;
4626
4627 if (cmode == VOIDmode)
4628 cmode = GET_MODE (op0);
4629
4630 if (swap_commutative_operands_p (op2, op3)
4631 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4632 != UNKNOWN))
4633 {
4634 tem = op2;
4635 op2 = op3;
4636 op3 = tem;
4637 code = reversed;
4638 }
4639
4640 if (mode == VOIDmode)
4641 mode = GET_MODE (op2);
4642
4643 icode = optab_handler (addcc_optab, mode)->insn_code;
4644
4645 if (icode == CODE_FOR_nothing)
4646 return 0;
4647
4648 if (!target)
4649 target = gen_reg_rtx (mode);
4650
4651 /* If the insn doesn't accept these operands, put them in pseudos. */
4652
4653 if (!insn_data[icode].operand[0].predicate
4654 (target, insn_data[icode].operand[0].mode))
4655 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4656 else
4657 subtarget = target;
4658
4659 if (!insn_data[icode].operand[2].predicate
4660 (op2, insn_data[icode].operand[2].mode))
4661 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4662
4663 if (!insn_data[icode].operand[3].predicate
4664 (op3, insn_data[icode].operand[3].mode))
4665 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4666
4667 /* Everything should now be in the suitable form. */
4668
4669 code = unsignedp ? unsigned_condition (code) : code;
4670 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4671
4672 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4673 return NULL and let the caller figure out how best to deal with this
4674 situation. */
4675 if (!COMPARISON_P (comparison))
4676 return NULL_RTX;
4677
4678 do_pending_stack_adjust ();
4679 start_sequence ();
4680 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4681 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4682 &comparison, &cmode);
4683 if (!comparison)
4684 insn = NULL_RTX;
4685 else
4686 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4687
4688 /* If that failed, then give up. */
4689 if (insn == 0)
4690 {
4691 end_sequence ();
4692 return 0;
4693 }
4694
4695 emit_insn (insn);
4696 insn = get_insns ();
4697 end_sequence ();
4698 emit_insn (insn);
4699 if (subtarget != target)
4700 convert_move (target, subtarget, 0);
4701
4702 return target;
4703 }
4704 \f
4705 /* These functions attempt to generate an insn body, rather than
4706 emitting the insn, but if the gen function already emits them, we
4707 make no attempt to turn them back into naked patterns. */
4708
4709 /* Generate and return an insn body to add Y to X. */
4710
4711 rtx
4712 gen_add2_insn (rtx x, rtx y)
4713 {
4714 int icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4715
4716 gcc_assert (insn_data[icode].operand[0].predicate
4717 (x, insn_data[icode].operand[0].mode));
4718 gcc_assert (insn_data[icode].operand[1].predicate
4719 (x, insn_data[icode].operand[1].mode));
4720 gcc_assert (insn_data[icode].operand[2].predicate
4721 (y, insn_data[icode].operand[2].mode));
4722
4723 return GEN_FCN (icode) (x, x, y);
4724 }
4725
4726 /* Generate and return an insn body to add r1 and c,
4727 storing the result in r0. */
4728
4729 rtx
4730 gen_add3_insn (rtx r0, rtx r1, rtx c)
4731 {
4732 int icode = (int) optab_handler (add_optab, GET_MODE (r0))->insn_code;
4733
4734 if (icode == CODE_FOR_nothing
4735 || !(insn_data[icode].operand[0].predicate
4736 (r0, insn_data[icode].operand[0].mode))
4737 || !(insn_data[icode].operand[1].predicate
4738 (r1, insn_data[icode].operand[1].mode))
4739 || !(insn_data[icode].operand[2].predicate
4740 (c, insn_data[icode].operand[2].mode)))
4741 return NULL_RTX;
4742
4743 return GEN_FCN (icode) (r0, r1, c);
4744 }
4745
4746 int
4747 have_add2_insn (rtx x, rtx y)
4748 {
4749 int icode;
4750
4751 gcc_assert (GET_MODE (x) != VOIDmode);
4752
4753 icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4754
4755 if (icode == CODE_FOR_nothing)
4756 return 0;
4757
4758 if (!(insn_data[icode].operand[0].predicate
4759 (x, insn_data[icode].operand[0].mode))
4760 || !(insn_data[icode].operand[1].predicate
4761 (x, insn_data[icode].operand[1].mode))
4762 || !(insn_data[icode].operand[2].predicate
4763 (y, insn_data[icode].operand[2].mode)))
4764 return 0;
4765
4766 return 1;
4767 }
4768
4769 /* Generate and return an insn body to subtract Y from X. */
4770
4771 rtx
4772 gen_sub2_insn (rtx x, rtx y)
4773 {
4774 int icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4775
4776 gcc_assert (insn_data[icode].operand[0].predicate
4777 (x, insn_data[icode].operand[0].mode));
4778 gcc_assert (insn_data[icode].operand[1].predicate
4779 (x, insn_data[icode].operand[1].mode));
4780 gcc_assert (insn_data[icode].operand[2].predicate
4781 (y, insn_data[icode].operand[2].mode));
4782
4783 return GEN_FCN (icode) (x, x, y);
4784 }
4785
4786 /* Generate and return an insn body to subtract r1 and c,
4787 storing the result in r0. */
4788
4789 rtx
4790 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4791 {
4792 int icode = (int) optab_handler (sub_optab, GET_MODE (r0))->insn_code;
4793
4794 if (icode == CODE_FOR_nothing
4795 || !(insn_data[icode].operand[0].predicate
4796 (r0, insn_data[icode].operand[0].mode))
4797 || !(insn_data[icode].operand[1].predicate
4798 (r1, insn_data[icode].operand[1].mode))
4799 || !(insn_data[icode].operand[2].predicate
4800 (c, insn_data[icode].operand[2].mode)))
4801 return NULL_RTX;
4802
4803 return GEN_FCN (icode) (r0, r1, c);
4804 }
4805
4806 int
4807 have_sub2_insn (rtx x, rtx y)
4808 {
4809 int icode;
4810
4811 gcc_assert (GET_MODE (x) != VOIDmode);
4812
4813 icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4814
4815 if (icode == CODE_FOR_nothing)
4816 return 0;
4817
4818 if (!(insn_data[icode].operand[0].predicate
4819 (x, insn_data[icode].operand[0].mode))
4820 || !(insn_data[icode].operand[1].predicate
4821 (x, insn_data[icode].operand[1].mode))
4822 || !(insn_data[icode].operand[2].predicate
4823 (y, insn_data[icode].operand[2].mode)))
4824 return 0;
4825
4826 return 1;
4827 }
4828
4829 /* Generate the body of an instruction to copy Y into X.
4830 It may be a list of insns, if one insn isn't enough. */
4831
4832 rtx
4833 gen_move_insn (rtx x, rtx y)
4834 {
4835 rtx seq;
4836
4837 start_sequence ();
4838 emit_move_insn_1 (x, y);
4839 seq = get_insns ();
4840 end_sequence ();
4841 return seq;
4842 }
4843 \f
4844 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4845 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4846 no such operation exists, CODE_FOR_nothing will be returned. */
4847
4848 enum insn_code
4849 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4850 int unsignedp)
4851 {
4852 convert_optab tab;
4853 #ifdef HAVE_ptr_extend
4854 if (unsignedp < 0)
4855 return CODE_FOR_ptr_extend;
4856 #endif
4857
4858 tab = unsignedp ? zext_optab : sext_optab;
4859 return convert_optab_handler (tab, to_mode, from_mode)->insn_code;
4860 }
4861
4862 /* Generate the body of an insn to extend Y (with mode MFROM)
4863 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4864
4865 rtx
4866 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4867 enum machine_mode mfrom, int unsignedp)
4868 {
4869 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4870 return GEN_FCN (icode) (x, y);
4871 }
4872 \f
4873 /* can_fix_p and can_float_p say whether the target machine
4874 can directly convert a given fixed point type to
4875 a given floating point type, or vice versa.
4876 The returned value is the CODE_FOR_... value to use,
4877 or CODE_FOR_nothing if these modes cannot be directly converted.
4878
4879 *TRUNCP_PTR is set to 1 if it is necessary to output
4880 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4881
4882 static enum insn_code
4883 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4884 int unsignedp, int *truncp_ptr)
4885 {
4886 convert_optab tab;
4887 enum insn_code icode;
4888
4889 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4890 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4891 if (icode != CODE_FOR_nothing)
4892 {
4893 *truncp_ptr = 0;
4894 return icode;
4895 }
4896
4897 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4898 for this to work. We need to rework the fix* and ftrunc* patterns
4899 and documentation. */
4900 tab = unsignedp ? ufix_optab : sfix_optab;
4901 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4902 if (icode != CODE_FOR_nothing
4903 && optab_handler (ftrunc_optab, fltmode)->insn_code != CODE_FOR_nothing)
4904 {
4905 *truncp_ptr = 1;
4906 return icode;
4907 }
4908
4909 *truncp_ptr = 0;
4910 return CODE_FOR_nothing;
4911 }
4912
4913 static enum insn_code
4914 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4915 int unsignedp)
4916 {
4917 convert_optab tab;
4918
4919 tab = unsignedp ? ufloat_optab : sfloat_optab;
4920 return convert_optab_handler (tab, fltmode, fixmode)->insn_code;
4921 }
4922 \f
4923 /* Generate code to convert FROM to floating point
4924 and store in TO. FROM must be fixed point and not VOIDmode.
4925 UNSIGNEDP nonzero means regard FROM as unsigned.
4926 Normally this is done by correcting the final value
4927 if it is negative. */
4928
4929 void
4930 expand_float (rtx to, rtx from, int unsignedp)
4931 {
4932 enum insn_code icode;
4933 rtx target = to;
4934 enum machine_mode fmode, imode;
4935 bool can_do_signed = false;
4936
4937 /* Crash now, because we won't be able to decide which mode to use. */
4938 gcc_assert (GET_MODE (from) != VOIDmode);
4939
4940 /* Look for an insn to do the conversion. Do it in the specified
4941 modes if possible; otherwise convert either input, output or both to
4942 wider mode. If the integer mode is wider than the mode of FROM,
4943 we can do the conversion signed even if the input is unsigned. */
4944
4945 for (fmode = GET_MODE (to); fmode != VOIDmode;
4946 fmode = GET_MODE_WIDER_MODE (fmode))
4947 for (imode = GET_MODE (from); imode != VOIDmode;
4948 imode = GET_MODE_WIDER_MODE (imode))
4949 {
4950 int doing_unsigned = unsignedp;
4951
4952 if (fmode != GET_MODE (to)
4953 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4954 continue;
4955
4956 icode = can_float_p (fmode, imode, unsignedp);
4957 if (icode == CODE_FOR_nothing && unsignedp)
4958 {
4959 enum insn_code scode = can_float_p (fmode, imode, 0);
4960 if (scode != CODE_FOR_nothing)
4961 can_do_signed = true;
4962 if (imode != GET_MODE (from))
4963 icode = scode, doing_unsigned = 0;
4964 }
4965
4966 if (icode != CODE_FOR_nothing)
4967 {
4968 if (imode != GET_MODE (from))
4969 from = convert_to_mode (imode, from, unsignedp);
4970
4971 if (fmode != GET_MODE (to))
4972 target = gen_reg_rtx (fmode);
4973
4974 emit_unop_insn (icode, target, from,
4975 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4976
4977 if (target != to)
4978 convert_move (to, target, 0);
4979 return;
4980 }
4981 }
4982
4983 /* Unsigned integer, and no way to convert directly. Convert as signed,
4984 then unconditionally adjust the result. */
4985 if (unsignedp && can_do_signed)
4986 {
4987 rtx label = gen_label_rtx ();
4988 rtx temp;
4989 REAL_VALUE_TYPE offset;
4990
4991 /* Look for a usable floating mode FMODE wider than the source and at
4992 least as wide as the target. Using FMODE will avoid rounding woes
4993 with unsigned values greater than the signed maximum value. */
4994
4995 for (fmode = GET_MODE (to); fmode != VOIDmode;
4996 fmode = GET_MODE_WIDER_MODE (fmode))
4997 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4998 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4999 break;
5000
5001 if (fmode == VOIDmode)
5002 {
5003 /* There is no such mode. Pretend the target is wide enough. */
5004 fmode = GET_MODE (to);
5005
5006 /* Avoid double-rounding when TO is narrower than FROM. */
5007 if ((significand_size (fmode) + 1)
5008 < GET_MODE_BITSIZE (GET_MODE (from)))
5009 {
5010 rtx temp1;
5011 rtx neglabel = gen_label_rtx ();
5012
5013 /* Don't use TARGET if it isn't a register, is a hard register,
5014 or is the wrong mode. */
5015 if (!REG_P (target)
5016 || REGNO (target) < FIRST_PSEUDO_REGISTER
5017 || GET_MODE (target) != fmode)
5018 target = gen_reg_rtx (fmode);
5019
5020 imode = GET_MODE (from);
5021 do_pending_stack_adjust ();
5022
5023 /* Test whether the sign bit is set. */
5024 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5025 0, neglabel);
5026
5027 /* The sign bit is not set. Convert as signed. */
5028 expand_float (target, from, 0);
5029 emit_jump_insn (gen_jump (label));
5030 emit_barrier ();
5031
5032 /* The sign bit is set.
5033 Convert to a usable (positive signed) value by shifting right
5034 one bit, while remembering if a nonzero bit was shifted
5035 out; i.e., compute (from & 1) | (from >> 1). */
5036
5037 emit_label (neglabel);
5038 temp = expand_binop (imode, and_optab, from, const1_rtx,
5039 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5040 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
5041 NULL_RTX, 1);
5042 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5043 OPTAB_LIB_WIDEN);
5044 expand_float (target, temp, 0);
5045
5046 /* Multiply by 2 to undo the shift above. */
5047 temp = expand_binop (fmode, add_optab, target, target,
5048 target, 0, OPTAB_LIB_WIDEN);
5049 if (temp != target)
5050 emit_move_insn (target, temp);
5051
5052 do_pending_stack_adjust ();
5053 emit_label (label);
5054 goto done;
5055 }
5056 }
5057
5058 /* If we are about to do some arithmetic to correct for an
5059 unsigned operand, do it in a pseudo-register. */
5060
5061 if (GET_MODE (to) != fmode
5062 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5063 target = gen_reg_rtx (fmode);
5064
5065 /* Convert as signed integer to floating. */
5066 expand_float (target, from, 0);
5067
5068 /* If FROM is negative (and therefore TO is negative),
5069 correct its value by 2**bitwidth. */
5070
5071 do_pending_stack_adjust ();
5072 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5073 0, label);
5074
5075
5076 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)), fmode);
5077 temp = expand_binop (fmode, add_optab, target,
5078 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5079 target, 0, OPTAB_LIB_WIDEN);
5080 if (temp != target)
5081 emit_move_insn (target, temp);
5082
5083 do_pending_stack_adjust ();
5084 emit_label (label);
5085 goto done;
5086 }
5087
5088 /* No hardware instruction available; call a library routine. */
5089 {
5090 rtx libfunc;
5091 rtx insns;
5092 rtx value;
5093 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5094
5095 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5096 from = convert_to_mode (SImode, from, unsignedp);
5097
5098 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5099 gcc_assert (libfunc);
5100
5101 start_sequence ();
5102
5103 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5104 GET_MODE (to), 1, from,
5105 GET_MODE (from));
5106 insns = get_insns ();
5107 end_sequence ();
5108
5109 emit_libcall_block (insns, target, value,
5110 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5111 GET_MODE (to), from));
5112 }
5113
5114 done:
5115
5116 /* Copy result to requested destination
5117 if we have been computing in a temp location. */
5118
5119 if (target != to)
5120 {
5121 if (GET_MODE (target) == GET_MODE (to))
5122 emit_move_insn (to, target);
5123 else
5124 convert_move (to, target, 0);
5125 }
5126 }
5127 \f
5128 /* Generate code to convert FROM to fixed point and store in TO. FROM
5129 must be floating point. */
5130
5131 void
5132 expand_fix (rtx to, rtx from, int unsignedp)
5133 {
5134 enum insn_code icode;
5135 rtx target = to;
5136 enum machine_mode fmode, imode;
5137 int must_trunc = 0;
5138
5139 /* We first try to find a pair of modes, one real and one integer, at
5140 least as wide as FROM and TO, respectively, in which we can open-code
5141 this conversion. If the integer mode is wider than the mode of TO,
5142 we can do the conversion either signed or unsigned. */
5143
5144 for (fmode = GET_MODE (from); fmode != VOIDmode;
5145 fmode = GET_MODE_WIDER_MODE (fmode))
5146 for (imode = GET_MODE (to); imode != VOIDmode;
5147 imode = GET_MODE_WIDER_MODE (imode))
5148 {
5149 int doing_unsigned = unsignedp;
5150
5151 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5152 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5153 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5154
5155 if (icode != CODE_FOR_nothing)
5156 {
5157 rtx last = get_last_insn ();
5158 if (fmode != GET_MODE (from))
5159 from = convert_to_mode (fmode, from, 0);
5160
5161 if (must_trunc)
5162 {
5163 rtx temp = gen_reg_rtx (GET_MODE (from));
5164 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5165 temp, 0);
5166 }
5167
5168 if (imode != GET_MODE (to))
5169 target = gen_reg_rtx (imode);
5170
5171 if (maybe_emit_unop_insn (icode, target, from,
5172 doing_unsigned ? UNSIGNED_FIX : FIX))
5173 {
5174 if (target != to)
5175 convert_move (to, target, unsignedp);
5176 return;
5177 }
5178 delete_insns_since (last);
5179 }
5180 }
5181
5182 /* For an unsigned conversion, there is one more way to do it.
5183 If we have a signed conversion, we generate code that compares
5184 the real value to the largest representable positive number. If if
5185 is smaller, the conversion is done normally. Otherwise, subtract
5186 one plus the highest signed number, convert, and add it back.
5187
5188 We only need to check all real modes, since we know we didn't find
5189 anything with a wider integer mode.
5190
5191 This code used to extend FP value into mode wider than the destination.
5192 This is needed for decimal float modes which cannot accurately
5193 represent one plus the highest signed number of the same size, but
5194 not for binary modes. Consider, for instance conversion from SFmode
5195 into DImode.
5196
5197 The hot path through the code is dealing with inputs smaller than 2^63
5198 and doing just the conversion, so there is no bits to lose.
5199
5200 In the other path we know the value is positive in the range 2^63..2^64-1
5201 inclusive. (as for other input overflow happens and result is undefined)
5202 So we know that the most important bit set in mantissa corresponds to
5203 2^63. The subtraction of 2^63 should not generate any rounding as it
5204 simply clears out that bit. The rest is trivial. */
5205
5206 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5207 for (fmode = GET_MODE (from); fmode != VOIDmode;
5208 fmode = GET_MODE_WIDER_MODE (fmode))
5209 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5210 && (!DECIMAL_FLOAT_MODE_P (fmode)
5211 || GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))))
5212 {
5213 int bitsize;
5214 REAL_VALUE_TYPE offset;
5215 rtx limit, lab1, lab2, insn;
5216
5217 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
5218 real_2expN (&offset, bitsize - 1, fmode);
5219 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5220 lab1 = gen_label_rtx ();
5221 lab2 = gen_label_rtx ();
5222
5223 if (fmode != GET_MODE (from))
5224 from = convert_to_mode (fmode, from, 0);
5225
5226 /* See if we need to do the subtraction. */
5227 do_pending_stack_adjust ();
5228 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5229 0, lab1);
5230
5231 /* If not, do the signed "fix" and branch around fixup code. */
5232 expand_fix (to, from, 0);
5233 emit_jump_insn (gen_jump (lab2));
5234 emit_barrier ();
5235
5236 /* Otherwise, subtract 2**(N-1), convert to signed number,
5237 then add 2**(N-1). Do the addition using XOR since this
5238 will often generate better code. */
5239 emit_label (lab1);
5240 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5241 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5242 expand_fix (to, target, 0);
5243 target = expand_binop (GET_MODE (to), xor_optab, to,
5244 gen_int_mode
5245 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5246 GET_MODE (to)),
5247 to, 1, OPTAB_LIB_WIDEN);
5248
5249 if (target != to)
5250 emit_move_insn (to, target);
5251
5252 emit_label (lab2);
5253
5254 if (optab_handler (mov_optab, GET_MODE (to))->insn_code
5255 != CODE_FOR_nothing)
5256 {
5257 /* Make a place for a REG_NOTE and add it. */
5258 insn = emit_move_insn (to, to);
5259 set_unique_reg_note (insn,
5260 REG_EQUAL,
5261 gen_rtx_fmt_e (UNSIGNED_FIX,
5262 GET_MODE (to),
5263 copy_rtx (from)));
5264 }
5265
5266 return;
5267 }
5268
5269 /* We can't do it with an insn, so use a library call. But first ensure
5270 that the mode of TO is at least as wide as SImode, since those are the
5271 only library calls we know about. */
5272
5273 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5274 {
5275 target = gen_reg_rtx (SImode);
5276
5277 expand_fix (target, from, unsignedp);
5278 }
5279 else
5280 {
5281 rtx insns;
5282 rtx value;
5283 rtx libfunc;
5284
5285 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5286 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5287 gcc_assert (libfunc);
5288
5289 start_sequence ();
5290
5291 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5292 GET_MODE (to), 1, from,
5293 GET_MODE (from));
5294 insns = get_insns ();
5295 end_sequence ();
5296
5297 emit_libcall_block (insns, target, value,
5298 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5299 GET_MODE (to), from));
5300 }
5301
5302 if (target != to)
5303 {
5304 if (GET_MODE (to) == GET_MODE (target))
5305 emit_move_insn (to, target);
5306 else
5307 convert_move (to, target, 0);
5308 }
5309 }
5310
5311 /* Generate code to convert FROM or TO a fixed-point.
5312 If UINTP is true, either TO or FROM is an unsigned integer.
5313 If SATP is true, we need to saturate the result. */
5314
5315 void
5316 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5317 {
5318 enum machine_mode to_mode = GET_MODE (to);
5319 enum machine_mode from_mode = GET_MODE (from);
5320 convert_optab tab;
5321 enum rtx_code this_code;
5322 enum insn_code code;
5323 rtx insns, value;
5324 rtx libfunc;
5325
5326 if (to_mode == from_mode)
5327 {
5328 emit_move_insn (to, from);
5329 return;
5330 }
5331
5332 if (uintp)
5333 {
5334 tab = satp ? satfractuns_optab : fractuns_optab;
5335 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5336 }
5337 else
5338 {
5339 tab = satp ? satfract_optab : fract_optab;
5340 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5341 }
5342 code = tab->handlers[to_mode][from_mode].insn_code;
5343 if (code != CODE_FOR_nothing)
5344 {
5345 emit_unop_insn (code, to, from, this_code);
5346 return;
5347 }
5348
5349 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5350 gcc_assert (libfunc);
5351
5352 start_sequence ();
5353 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5354 1, from, from_mode);
5355 insns = get_insns ();
5356 end_sequence ();
5357
5358 emit_libcall_block (insns, to, value,
5359 gen_rtx_fmt_e (tab->code, to_mode, from));
5360 }
5361
5362 /* Generate code to convert FROM to fixed point and store in TO. FROM
5363 must be floating point, TO must be signed. Use the conversion optab
5364 TAB to do the conversion. */
5365
5366 bool
5367 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5368 {
5369 enum insn_code icode;
5370 rtx target = to;
5371 enum machine_mode fmode, imode;
5372
5373 /* We first try to find a pair of modes, one real and one integer, at
5374 least as wide as FROM and TO, respectively, in which we can open-code
5375 this conversion. If the integer mode is wider than the mode of TO,
5376 we can do the conversion either signed or unsigned. */
5377
5378 for (fmode = GET_MODE (from); fmode != VOIDmode;
5379 fmode = GET_MODE_WIDER_MODE (fmode))
5380 for (imode = GET_MODE (to); imode != VOIDmode;
5381 imode = GET_MODE_WIDER_MODE (imode))
5382 {
5383 icode = convert_optab_handler (tab, imode, fmode)->insn_code;
5384 if (icode != CODE_FOR_nothing)
5385 {
5386 rtx last = get_last_insn ();
5387 if (fmode != GET_MODE (from))
5388 from = convert_to_mode (fmode, from, 0);
5389
5390 if (imode != GET_MODE (to))
5391 target = gen_reg_rtx (imode);
5392
5393 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5394 {
5395 delete_insns_since (last);
5396 continue;
5397 }
5398 if (target != to)
5399 convert_move (to, target, 0);
5400 return true;
5401 }
5402 }
5403
5404 return false;
5405 }
5406 \f
5407 /* Report whether we have an instruction to perform the operation
5408 specified by CODE on operands of mode MODE. */
5409 int
5410 have_insn_for (enum rtx_code code, enum machine_mode mode)
5411 {
5412 return (code_to_optab[(int) code] != 0
5413 && (optab_handler (code_to_optab[(int) code], mode)->insn_code
5414 != CODE_FOR_nothing));
5415 }
5416
5417 /* Set all insn_code fields to CODE_FOR_nothing. */
5418
5419 static void
5420 init_insn_codes (void)
5421 {
5422 unsigned int i;
5423
5424 for (i = 0; i < (unsigned int) OTI_MAX; i++)
5425 {
5426 unsigned int j;
5427 optab op;
5428
5429 op = &optab_table[i];
5430 for (j = 0; j < NUM_MACHINE_MODES; j++)
5431 optab_handler (op, j)->insn_code = CODE_FOR_nothing;
5432 }
5433 for (i = 0; i < (unsigned int) COI_MAX; i++)
5434 {
5435 unsigned int j, k;
5436 convert_optab op;
5437
5438 op = &convert_optab_table[i];
5439 for (j = 0; j < NUM_MACHINE_MODES; j++)
5440 for (k = 0; k < NUM_MACHINE_MODES; k++)
5441 convert_optab_handler (op, j, k)->insn_code = CODE_FOR_nothing;
5442 }
5443 }
5444
5445 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5446 static inline void
5447 init_optab (optab op, enum rtx_code code)
5448 {
5449 op->code = code;
5450 code_to_optab[(int) code] = op;
5451 }
5452
5453 /* Same, but fill in its code as CODE, and do _not_ write it into
5454 the code_to_optab table. */
5455 static inline void
5456 init_optabv (optab op, enum rtx_code code)
5457 {
5458 op->code = code;
5459 }
5460
5461 /* Conversion optabs never go in the code_to_optab table. */
5462 static void
5463 init_convert_optab (convert_optab op, enum rtx_code code)
5464 {
5465 op->code = code;
5466 }
5467
5468 /* Initialize the libfunc fields of an entire group of entries in some
5469 optab. Each entry is set equal to a string consisting of a leading
5470 pair of underscores followed by a generic operation name followed by
5471 a mode name (downshifted to lowercase) followed by a single character
5472 representing the number of operands for the given operation (which is
5473 usually one of the characters '2', '3', or '4').
5474
5475 OPTABLE is the table in which libfunc fields are to be initialized.
5476 OPNAME is the generic (string) name of the operation.
5477 SUFFIX is the character which specifies the number of operands for
5478 the given generic operation.
5479 MODE is the mode to generate for.
5480 */
5481
5482 static void
5483 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5484 {
5485 unsigned opname_len = strlen (opname);
5486 const char *mname = GET_MODE_NAME (mode);
5487 unsigned mname_len = strlen (mname);
5488 char *libfunc_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5489 char *p;
5490 const char *q;
5491
5492 p = libfunc_name;
5493 *p++ = '_';
5494 *p++ = '_';
5495 for (q = opname; *q; )
5496 *p++ = *q++;
5497 for (q = mname; *q; q++)
5498 *p++ = TOLOWER (*q);
5499 *p++ = suffix;
5500 *p = '\0';
5501
5502 set_optab_libfunc (optable, mode,
5503 ggc_alloc_string (libfunc_name, p - libfunc_name));
5504 }
5505
5506 /* Like gen_libfunc, but verify that integer operation is involved. */
5507
5508 static void
5509 gen_int_libfunc (optab optable, const char *opname, char suffix,
5510 enum machine_mode mode)
5511 {
5512 int maxsize = 2 * BITS_PER_WORD;
5513
5514 if (GET_MODE_CLASS (mode) != MODE_INT)
5515 return;
5516 if (maxsize < LONG_LONG_TYPE_SIZE)
5517 maxsize = LONG_LONG_TYPE_SIZE;
5518 if (GET_MODE_CLASS (mode) != MODE_INT
5519 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5520 return;
5521 gen_libfunc (optable, opname, suffix, mode);
5522 }
5523
5524 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5525
5526 static void
5527 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5528 enum machine_mode mode)
5529 {
5530 char *dec_opname;
5531
5532 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5533 gen_libfunc (optable, opname, suffix, mode);
5534 if (DECIMAL_FLOAT_MODE_P (mode))
5535 {
5536 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5537 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5538 depending on the low level floating format used. */
5539 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5540 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5541 gen_libfunc (optable, dec_opname, suffix, mode);
5542 }
5543 }
5544
5545 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5546
5547 static void
5548 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5549 enum machine_mode mode)
5550 {
5551 if (!ALL_FIXED_POINT_MODE_P (mode))
5552 return;
5553 gen_libfunc (optable, opname, suffix, mode);
5554 }
5555
5556 /* Like gen_libfunc, but verify that signed fixed-point operation is
5557 involved. */
5558
5559 static void
5560 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5561 enum machine_mode mode)
5562 {
5563 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5564 return;
5565 gen_libfunc (optable, opname, suffix, mode);
5566 }
5567
5568 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5569 involved. */
5570
5571 static void
5572 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5573 enum machine_mode mode)
5574 {
5575 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5576 return;
5577 gen_libfunc (optable, opname, suffix, mode);
5578 }
5579
5580 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5581
5582 static void
5583 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5584 enum machine_mode mode)
5585 {
5586 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5587 gen_fp_libfunc (optable, name, suffix, mode);
5588 if (INTEGRAL_MODE_P (mode))
5589 gen_int_libfunc (optable, name, suffix, mode);
5590 }
5591
5592 /* Like gen_libfunc, but verify that FP or INT operation is involved
5593 and add 'v' suffix for integer operation. */
5594
5595 static void
5596 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5597 enum machine_mode mode)
5598 {
5599 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5600 gen_fp_libfunc (optable, name, suffix, mode);
5601 if (GET_MODE_CLASS (mode) == MODE_INT)
5602 {
5603 int len = strlen (name);
5604 char *v_name = XALLOCAVEC (char, len + 2);
5605 strcpy (v_name, name);
5606 v_name[len] = 'v';
5607 v_name[len + 1] = 0;
5608 gen_int_libfunc (optable, v_name, suffix, mode);
5609 }
5610 }
5611
5612 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5613 involved. */
5614
5615 static void
5616 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5617 enum machine_mode mode)
5618 {
5619 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5620 gen_fp_libfunc (optable, name, suffix, mode);
5621 if (INTEGRAL_MODE_P (mode))
5622 gen_int_libfunc (optable, name, suffix, mode);
5623 if (ALL_FIXED_POINT_MODE_P (mode))
5624 gen_fixed_libfunc (optable, name, suffix, mode);
5625 }
5626
5627 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5628 involved. */
5629
5630 static void
5631 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5632 enum machine_mode mode)
5633 {
5634 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5635 gen_fp_libfunc (optable, name, suffix, mode);
5636 if (INTEGRAL_MODE_P (mode))
5637 gen_int_libfunc (optable, name, suffix, mode);
5638 if (SIGNED_FIXED_POINT_MODE_P (mode))
5639 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5640 }
5641
5642 /* Like gen_libfunc, but verify that INT or FIXED operation is
5643 involved. */
5644
5645 static void
5646 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5647 enum machine_mode mode)
5648 {
5649 if (INTEGRAL_MODE_P (mode))
5650 gen_int_libfunc (optable, name, suffix, mode);
5651 if (ALL_FIXED_POINT_MODE_P (mode))
5652 gen_fixed_libfunc (optable, name, suffix, mode);
5653 }
5654
5655 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5656 involved. */
5657
5658 static void
5659 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5660 enum machine_mode mode)
5661 {
5662 if (INTEGRAL_MODE_P (mode))
5663 gen_int_libfunc (optable, name, suffix, mode);
5664 if (SIGNED_FIXED_POINT_MODE_P (mode))
5665 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5666 }
5667
5668 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5669 involved. */
5670
5671 static void
5672 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5673 enum machine_mode mode)
5674 {
5675 if (INTEGRAL_MODE_P (mode))
5676 gen_int_libfunc (optable, name, suffix, mode);
5677 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5678 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5679 }
5680
5681 /* Initialize the libfunc fields of an entire group of entries of an
5682 inter-mode-class conversion optab. The string formation rules are
5683 similar to the ones for init_libfuncs, above, but instead of having
5684 a mode name and an operand count these functions have two mode names
5685 and no operand count. */
5686
5687 static void
5688 gen_interclass_conv_libfunc (convert_optab tab,
5689 const char *opname,
5690 enum machine_mode tmode,
5691 enum machine_mode fmode)
5692 {
5693 size_t opname_len = strlen (opname);
5694 size_t mname_len = 0;
5695
5696 const char *fname, *tname;
5697 const char *q;
5698 char *libfunc_name, *suffix;
5699 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5700 char *p;
5701
5702 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5703 depends on which underlying decimal floating point format is used. */
5704 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5705
5706 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5707
5708 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5709 nondec_name[0] = '_';
5710 nondec_name[1] = '_';
5711 memcpy (&nondec_name[2], opname, opname_len);
5712 nondec_suffix = nondec_name + opname_len + 2;
5713
5714 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5715 dec_name[0] = '_';
5716 dec_name[1] = '_';
5717 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5718 memcpy (&dec_name[2+dec_len], opname, opname_len);
5719 dec_suffix = dec_name + dec_len + opname_len + 2;
5720
5721 fname = GET_MODE_NAME (fmode);
5722 tname = GET_MODE_NAME (tmode);
5723
5724 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5725 {
5726 libfunc_name = dec_name;
5727 suffix = dec_suffix;
5728 }
5729 else
5730 {
5731 libfunc_name = nondec_name;
5732 suffix = nondec_suffix;
5733 }
5734
5735 p = suffix;
5736 for (q = fname; *q; p++, q++)
5737 *p = TOLOWER (*q);
5738 for (q = tname; *q; p++, q++)
5739 *p = TOLOWER (*q);
5740
5741 *p = '\0';
5742
5743 set_conv_libfunc (tab, tmode, fmode,
5744 ggc_alloc_string (libfunc_name, p - libfunc_name));
5745 }
5746
5747 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5748 int->fp conversion. */
5749
5750 static void
5751 gen_int_to_fp_conv_libfunc (convert_optab tab,
5752 const char *opname,
5753 enum machine_mode tmode,
5754 enum machine_mode fmode)
5755 {
5756 if (GET_MODE_CLASS (fmode) != MODE_INT)
5757 return;
5758 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5759 return;
5760 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5761 }
5762
5763 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5764 naming scheme. */
5765
5766 static void
5767 gen_ufloat_conv_libfunc (convert_optab tab,
5768 const char *opname ATTRIBUTE_UNUSED,
5769 enum machine_mode tmode,
5770 enum machine_mode fmode)
5771 {
5772 if (DECIMAL_FLOAT_MODE_P (tmode))
5773 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5774 else
5775 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5776 }
5777
5778 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5779 fp->int conversion. */
5780
5781 static void
5782 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5783 const char *opname,
5784 enum machine_mode tmode,
5785 enum machine_mode fmode)
5786 {
5787 if (GET_MODE_CLASS (fmode) != MODE_INT)
5788 return;
5789 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5790 return;
5791 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5792 }
5793
5794 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5795 fp->int conversion with no decimal floating point involved. */
5796
5797 static void
5798 gen_fp_to_int_conv_libfunc (convert_optab tab,
5799 const char *opname,
5800 enum machine_mode tmode,
5801 enum machine_mode fmode)
5802 {
5803 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5804 return;
5805 if (GET_MODE_CLASS (tmode) != MODE_INT)
5806 return;
5807 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5808 }
5809
5810 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5811 The string formation rules are
5812 similar to the ones for init_libfunc, above. */
5813
5814 static void
5815 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5816 enum machine_mode tmode, enum machine_mode fmode)
5817 {
5818 size_t opname_len = strlen (opname);
5819 size_t mname_len = 0;
5820
5821 const char *fname, *tname;
5822 const char *q;
5823 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5824 char *libfunc_name, *suffix;
5825 char *p;
5826
5827 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5828 depends on which underlying decimal floating point format is used. */
5829 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5830
5831 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5832
5833 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5834 nondec_name[0] = '_';
5835 nondec_name[1] = '_';
5836 memcpy (&nondec_name[2], opname, opname_len);
5837 nondec_suffix = nondec_name + opname_len + 2;
5838
5839 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5840 dec_name[0] = '_';
5841 dec_name[1] = '_';
5842 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5843 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5844 dec_suffix = dec_name + dec_len + opname_len + 2;
5845
5846 fname = GET_MODE_NAME (fmode);
5847 tname = GET_MODE_NAME (tmode);
5848
5849 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5850 {
5851 libfunc_name = dec_name;
5852 suffix = dec_suffix;
5853 }
5854 else
5855 {
5856 libfunc_name = nondec_name;
5857 suffix = nondec_suffix;
5858 }
5859
5860 p = suffix;
5861 for (q = fname; *q; p++, q++)
5862 *p = TOLOWER (*q);
5863 for (q = tname; *q; p++, q++)
5864 *p = TOLOWER (*q);
5865
5866 *p++ = '2';
5867 *p = '\0';
5868
5869 set_conv_libfunc (tab, tmode, fmode,
5870 ggc_alloc_string (libfunc_name, p - libfunc_name));
5871 }
5872
5873 /* Pick proper libcall for trunc_optab. We need to chose if we do
5874 truncation or extension and interclass or intraclass. */
5875
5876 static void
5877 gen_trunc_conv_libfunc (convert_optab tab,
5878 const char *opname,
5879 enum machine_mode tmode,
5880 enum machine_mode fmode)
5881 {
5882 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5883 return;
5884 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5885 return;
5886 if (tmode == fmode)
5887 return;
5888
5889 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5890 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5891 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5892
5893 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5894 return;
5895
5896 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5897 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5898 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5899 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5900 }
5901
5902 /* Pick proper libcall for extend_optab. We need to chose if we do
5903 truncation or extension and interclass or intraclass. */
5904
5905 static void
5906 gen_extend_conv_libfunc (convert_optab tab,
5907 const char *opname ATTRIBUTE_UNUSED,
5908 enum machine_mode tmode,
5909 enum machine_mode fmode)
5910 {
5911 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5912 return;
5913 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5914 return;
5915 if (tmode == fmode)
5916 return;
5917
5918 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5919 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5920 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5921
5922 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5923 return;
5924
5925 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5926 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5927 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5928 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5929 }
5930
5931 /* Pick proper libcall for fract_optab. We need to chose if we do
5932 interclass or intraclass. */
5933
5934 static void
5935 gen_fract_conv_libfunc (convert_optab tab,
5936 const char *opname,
5937 enum machine_mode tmode,
5938 enum machine_mode fmode)
5939 {
5940 if (tmode == fmode)
5941 return;
5942 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5943 return;
5944
5945 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5946 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5947 else
5948 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5949 }
5950
5951 /* Pick proper libcall for fractuns_optab. */
5952
5953 static void
5954 gen_fractuns_conv_libfunc (convert_optab tab,
5955 const char *opname,
5956 enum machine_mode tmode,
5957 enum machine_mode fmode)
5958 {
5959 if (tmode == fmode)
5960 return;
5961 /* One mode must be a fixed-point mode, and the other must be an integer
5962 mode. */
5963 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5964 || (ALL_FIXED_POINT_MODE_P (fmode)
5965 && GET_MODE_CLASS (tmode) == MODE_INT)))
5966 return;
5967
5968 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5969 }
5970
5971 /* Pick proper libcall for satfract_optab. We need to chose if we do
5972 interclass or intraclass. */
5973
5974 static void
5975 gen_satfract_conv_libfunc (convert_optab tab,
5976 const char *opname,
5977 enum machine_mode tmode,
5978 enum machine_mode fmode)
5979 {
5980 if (tmode == fmode)
5981 return;
5982 /* TMODE must be a fixed-point mode. */
5983 if (!ALL_FIXED_POINT_MODE_P (tmode))
5984 return;
5985
5986 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5987 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5988 else
5989 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5990 }
5991
5992 /* Pick proper libcall for satfractuns_optab. */
5993
5994 static void
5995 gen_satfractuns_conv_libfunc (convert_optab tab,
5996 const char *opname,
5997 enum machine_mode tmode,
5998 enum machine_mode fmode)
5999 {
6000 if (tmode == fmode)
6001 return;
6002 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6003 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6004 return;
6005
6006 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6007 }
6008
6009 /* A table of previously-created libfuncs, hashed by name. */
6010 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6011
6012 /* Hashtable callbacks for libfunc_decls. */
6013
6014 static hashval_t
6015 libfunc_decl_hash (const void *entry)
6016 {
6017 return htab_hash_string (IDENTIFIER_POINTER (DECL_NAME ((const_tree) entry)));
6018 }
6019
6020 static int
6021 libfunc_decl_eq (const void *entry1, const void *entry2)
6022 {
6023 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6024 }
6025
6026 rtx
6027 init_one_libfunc (const char *name)
6028 {
6029 tree id, decl;
6030 void **slot;
6031 hashval_t hash;
6032
6033 if (libfunc_decls == NULL)
6034 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6035 libfunc_decl_eq, NULL);
6036
6037 /* See if we have already created a libfunc decl for this function. */
6038 id = get_identifier (name);
6039 hash = htab_hash_string (name);
6040 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6041 decl = (tree) *slot;
6042 if (decl == NULL)
6043 {
6044 /* Create a new decl, so that it can be passed to
6045 targetm.encode_section_info. */
6046 /* ??? We don't have any type information except for this is
6047 a function. Pretend this is "int foo()". */
6048 decl = build_decl (UNKNOWN_LOCATION,
6049 FUNCTION_DECL, get_identifier (name),
6050 build_function_type (integer_type_node, NULL_TREE));
6051 DECL_ARTIFICIAL (decl) = 1;
6052 DECL_EXTERNAL (decl) = 1;
6053 TREE_PUBLIC (decl) = 1;
6054
6055 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6056 are the flags assigned by targetm.encode_section_info. */
6057 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6058
6059 *slot = decl;
6060 }
6061 return XEXP (DECL_RTL (decl), 0);
6062 }
6063
6064 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6065
6066 rtx
6067 set_user_assembler_libfunc (const char *name, const char *asmspec)
6068 {
6069 tree id, decl;
6070 void **slot;
6071 hashval_t hash;
6072
6073 id = get_identifier (name);
6074 hash = htab_hash_string (name);
6075 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6076 gcc_assert (slot);
6077 decl = (tree) *slot;
6078 set_user_assembler_name (decl, asmspec);
6079 return XEXP (DECL_RTL (decl), 0);
6080 }
6081
6082 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6083 MODE to NAME, which should be either 0 or a string constant. */
6084 void
6085 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
6086 {
6087 rtx val;
6088 struct libfunc_entry e;
6089 struct libfunc_entry **slot;
6090 e.optab = (size_t) (optable - &optab_table[0]);
6091 e.mode1 = mode;
6092 e.mode2 = VOIDmode;
6093
6094 if (name)
6095 val = init_one_libfunc (name);
6096 else
6097 val = 0;
6098 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6099 if (*slot == NULL)
6100 *slot = GGC_NEW (struct libfunc_entry);
6101 (*slot)->optab = (size_t) (optable - &optab_table[0]);
6102 (*slot)->mode1 = mode;
6103 (*slot)->mode2 = VOIDmode;
6104 (*slot)->libfunc = val;
6105 }
6106
6107 /* Call this to reset the function entry for one conversion optab
6108 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6109 either 0 or a string constant. */
6110 void
6111 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
6112 enum machine_mode fmode, const char *name)
6113 {
6114 rtx val;
6115 struct libfunc_entry e;
6116 struct libfunc_entry **slot;
6117 e.optab = (size_t) (optable - &convert_optab_table[0]);
6118 e.mode1 = tmode;
6119 e.mode2 = fmode;
6120
6121 if (name)
6122 val = init_one_libfunc (name);
6123 else
6124 val = 0;
6125 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6126 if (*slot == NULL)
6127 *slot = GGC_NEW (struct libfunc_entry);
6128 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
6129 (*slot)->mode1 = tmode;
6130 (*slot)->mode2 = fmode;
6131 (*slot)->libfunc = val;
6132 }
6133
6134 /* Call this to initialize the contents of the optabs
6135 appropriately for the current target machine. */
6136
6137 void
6138 init_optabs (void)
6139 {
6140 unsigned int i;
6141 enum machine_mode int_mode;
6142 static bool reinit;
6143
6144 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6145 /* Start by initializing all tables to contain CODE_FOR_nothing. */
6146
6147 #ifdef HAVE_conditional_move
6148 for (i = 0; i < NUM_MACHINE_MODES; i++)
6149 movcc_gen_code[i] = CODE_FOR_nothing;
6150 #endif
6151
6152 for (i = 0; i < NUM_MACHINE_MODES; i++)
6153 {
6154 vcond_gen_code[i] = CODE_FOR_nothing;
6155 vcondu_gen_code[i] = CODE_FOR_nothing;
6156 }
6157
6158 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
6159 /* We statically initialize the insn_codes with CODE_FOR_nothing. */
6160 if (reinit)
6161 init_insn_codes ();
6162 #else
6163 init_insn_codes ();
6164 #endif
6165
6166 init_optab (add_optab, PLUS);
6167 init_optabv (addv_optab, PLUS);
6168 init_optab (sub_optab, MINUS);
6169 init_optabv (subv_optab, MINUS);
6170 init_optab (ssadd_optab, SS_PLUS);
6171 init_optab (usadd_optab, US_PLUS);
6172 init_optab (sssub_optab, SS_MINUS);
6173 init_optab (ussub_optab, US_MINUS);
6174 init_optab (smul_optab, MULT);
6175 init_optab (ssmul_optab, SS_MULT);
6176 init_optab (usmul_optab, US_MULT);
6177 init_optabv (smulv_optab, MULT);
6178 init_optab (smul_highpart_optab, UNKNOWN);
6179 init_optab (umul_highpart_optab, UNKNOWN);
6180 init_optab (smul_widen_optab, UNKNOWN);
6181 init_optab (umul_widen_optab, UNKNOWN);
6182 init_optab (usmul_widen_optab, UNKNOWN);
6183 init_optab (smadd_widen_optab, UNKNOWN);
6184 init_optab (umadd_widen_optab, UNKNOWN);
6185 init_optab (ssmadd_widen_optab, UNKNOWN);
6186 init_optab (usmadd_widen_optab, UNKNOWN);
6187 init_optab (smsub_widen_optab, UNKNOWN);
6188 init_optab (umsub_widen_optab, UNKNOWN);
6189 init_optab (ssmsub_widen_optab, UNKNOWN);
6190 init_optab (usmsub_widen_optab, UNKNOWN);
6191 init_optab (sdiv_optab, DIV);
6192 init_optab (ssdiv_optab, SS_DIV);
6193 init_optab (usdiv_optab, US_DIV);
6194 init_optabv (sdivv_optab, DIV);
6195 init_optab (sdivmod_optab, UNKNOWN);
6196 init_optab (udiv_optab, UDIV);
6197 init_optab (udivmod_optab, UNKNOWN);
6198 init_optab (smod_optab, MOD);
6199 init_optab (umod_optab, UMOD);
6200 init_optab (fmod_optab, UNKNOWN);
6201 init_optab (remainder_optab, UNKNOWN);
6202 init_optab (ftrunc_optab, UNKNOWN);
6203 init_optab (and_optab, AND);
6204 init_optab (ior_optab, IOR);
6205 init_optab (xor_optab, XOR);
6206 init_optab (ashl_optab, ASHIFT);
6207 init_optab (ssashl_optab, SS_ASHIFT);
6208 init_optab (usashl_optab, US_ASHIFT);
6209 init_optab (ashr_optab, ASHIFTRT);
6210 init_optab (lshr_optab, LSHIFTRT);
6211 init_optab (rotl_optab, ROTATE);
6212 init_optab (rotr_optab, ROTATERT);
6213 init_optab (smin_optab, SMIN);
6214 init_optab (smax_optab, SMAX);
6215 init_optab (umin_optab, UMIN);
6216 init_optab (umax_optab, UMAX);
6217 init_optab (pow_optab, UNKNOWN);
6218 init_optab (atan2_optab, UNKNOWN);
6219
6220 /* These three have codes assigned exclusively for the sake of
6221 have_insn_for. */
6222 init_optab (mov_optab, SET);
6223 init_optab (movstrict_optab, STRICT_LOW_PART);
6224 init_optab (cbranch_optab, COMPARE);
6225
6226 init_optab (cmov_optab, UNKNOWN);
6227 init_optab (cstore_optab, UNKNOWN);
6228 init_optab (ctrap_optab, UNKNOWN);
6229
6230 init_optab (storent_optab, UNKNOWN);
6231
6232 init_optab (cmp_optab, UNKNOWN);
6233 init_optab (ucmp_optab, UNKNOWN);
6234
6235 init_optab (eq_optab, EQ);
6236 init_optab (ne_optab, NE);
6237 init_optab (gt_optab, GT);
6238 init_optab (ge_optab, GE);
6239 init_optab (lt_optab, LT);
6240 init_optab (le_optab, LE);
6241 init_optab (unord_optab, UNORDERED);
6242
6243 init_optab (neg_optab, NEG);
6244 init_optab (ssneg_optab, SS_NEG);
6245 init_optab (usneg_optab, US_NEG);
6246 init_optabv (negv_optab, NEG);
6247 init_optab (abs_optab, ABS);
6248 init_optabv (absv_optab, ABS);
6249 init_optab (addcc_optab, UNKNOWN);
6250 init_optab (one_cmpl_optab, NOT);
6251 init_optab (bswap_optab, BSWAP);
6252 init_optab (ffs_optab, FFS);
6253 init_optab (clz_optab, CLZ);
6254 init_optab (ctz_optab, CTZ);
6255 init_optab (popcount_optab, POPCOUNT);
6256 init_optab (parity_optab, PARITY);
6257 init_optab (sqrt_optab, SQRT);
6258 init_optab (floor_optab, UNKNOWN);
6259 init_optab (ceil_optab, UNKNOWN);
6260 init_optab (round_optab, UNKNOWN);
6261 init_optab (btrunc_optab, UNKNOWN);
6262 init_optab (nearbyint_optab, UNKNOWN);
6263 init_optab (rint_optab, UNKNOWN);
6264 init_optab (sincos_optab, UNKNOWN);
6265 init_optab (sin_optab, UNKNOWN);
6266 init_optab (asin_optab, UNKNOWN);
6267 init_optab (cos_optab, UNKNOWN);
6268 init_optab (acos_optab, UNKNOWN);
6269 init_optab (exp_optab, UNKNOWN);
6270 init_optab (exp10_optab, UNKNOWN);
6271 init_optab (exp2_optab, UNKNOWN);
6272 init_optab (expm1_optab, UNKNOWN);
6273 init_optab (ldexp_optab, UNKNOWN);
6274 init_optab (scalb_optab, UNKNOWN);
6275 init_optab (significand_optab, UNKNOWN);
6276 init_optab (logb_optab, UNKNOWN);
6277 init_optab (ilogb_optab, UNKNOWN);
6278 init_optab (log_optab, UNKNOWN);
6279 init_optab (log10_optab, UNKNOWN);
6280 init_optab (log2_optab, UNKNOWN);
6281 init_optab (log1p_optab, UNKNOWN);
6282 init_optab (tan_optab, UNKNOWN);
6283 init_optab (atan_optab, UNKNOWN);
6284 init_optab (copysign_optab, UNKNOWN);
6285 init_optab (signbit_optab, UNKNOWN);
6286
6287 init_optab (isinf_optab, UNKNOWN);
6288
6289 init_optab (strlen_optab, UNKNOWN);
6290 init_optab (push_optab, UNKNOWN);
6291
6292 init_optab (reduc_smax_optab, UNKNOWN);
6293 init_optab (reduc_umax_optab, UNKNOWN);
6294 init_optab (reduc_smin_optab, UNKNOWN);
6295 init_optab (reduc_umin_optab, UNKNOWN);
6296 init_optab (reduc_splus_optab, UNKNOWN);
6297 init_optab (reduc_uplus_optab, UNKNOWN);
6298
6299 init_optab (ssum_widen_optab, UNKNOWN);
6300 init_optab (usum_widen_optab, UNKNOWN);
6301 init_optab (sdot_prod_optab, UNKNOWN);
6302 init_optab (udot_prod_optab, UNKNOWN);
6303
6304 init_optab (vec_extract_optab, UNKNOWN);
6305 init_optab (vec_extract_even_optab, UNKNOWN);
6306 init_optab (vec_extract_odd_optab, UNKNOWN);
6307 init_optab (vec_interleave_high_optab, UNKNOWN);
6308 init_optab (vec_interleave_low_optab, UNKNOWN);
6309 init_optab (vec_set_optab, UNKNOWN);
6310 init_optab (vec_init_optab, UNKNOWN);
6311 init_optab (vec_shl_optab, UNKNOWN);
6312 init_optab (vec_shr_optab, UNKNOWN);
6313 init_optab (vec_realign_load_optab, UNKNOWN);
6314 init_optab (movmisalign_optab, UNKNOWN);
6315 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
6316 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
6317 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
6318 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
6319 init_optab (vec_unpacks_hi_optab, UNKNOWN);
6320 init_optab (vec_unpacks_lo_optab, UNKNOWN);
6321 init_optab (vec_unpacku_hi_optab, UNKNOWN);
6322 init_optab (vec_unpacku_lo_optab, UNKNOWN);
6323 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
6324 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
6325 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
6326 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
6327 init_optab (vec_pack_trunc_optab, UNKNOWN);
6328 init_optab (vec_pack_usat_optab, UNKNOWN);
6329 init_optab (vec_pack_ssat_optab, UNKNOWN);
6330 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
6331 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
6332
6333 init_optab (powi_optab, UNKNOWN);
6334
6335 /* Conversions. */
6336 init_convert_optab (sext_optab, SIGN_EXTEND);
6337 init_convert_optab (zext_optab, ZERO_EXTEND);
6338 init_convert_optab (trunc_optab, TRUNCATE);
6339 init_convert_optab (sfix_optab, FIX);
6340 init_convert_optab (ufix_optab, UNSIGNED_FIX);
6341 init_convert_optab (sfixtrunc_optab, UNKNOWN);
6342 init_convert_optab (ufixtrunc_optab, UNKNOWN);
6343 init_convert_optab (sfloat_optab, FLOAT);
6344 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
6345 init_convert_optab (lrint_optab, UNKNOWN);
6346 init_convert_optab (lround_optab, UNKNOWN);
6347 init_convert_optab (lfloor_optab, UNKNOWN);
6348 init_convert_optab (lceil_optab, UNKNOWN);
6349
6350 init_convert_optab (fract_optab, FRACT_CONVERT);
6351 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6352 init_convert_optab (satfract_optab, SAT_FRACT);
6353 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6354
6355 for (i = 0; i < NUM_MACHINE_MODES; i++)
6356 {
6357 movmem_optab[i] = CODE_FOR_nothing;
6358 cmpstr_optab[i] = CODE_FOR_nothing;
6359 cmpstrn_optab[i] = CODE_FOR_nothing;
6360 cmpmem_optab[i] = CODE_FOR_nothing;
6361 setmem_optab[i] = CODE_FOR_nothing;
6362
6363 sync_add_optab[i] = CODE_FOR_nothing;
6364 sync_sub_optab[i] = CODE_FOR_nothing;
6365 sync_ior_optab[i] = CODE_FOR_nothing;
6366 sync_and_optab[i] = CODE_FOR_nothing;
6367 sync_xor_optab[i] = CODE_FOR_nothing;
6368 sync_nand_optab[i] = CODE_FOR_nothing;
6369 sync_old_add_optab[i] = CODE_FOR_nothing;
6370 sync_old_sub_optab[i] = CODE_FOR_nothing;
6371 sync_old_ior_optab[i] = CODE_FOR_nothing;
6372 sync_old_and_optab[i] = CODE_FOR_nothing;
6373 sync_old_xor_optab[i] = CODE_FOR_nothing;
6374 sync_old_nand_optab[i] = CODE_FOR_nothing;
6375 sync_new_add_optab[i] = CODE_FOR_nothing;
6376 sync_new_sub_optab[i] = CODE_FOR_nothing;
6377 sync_new_ior_optab[i] = CODE_FOR_nothing;
6378 sync_new_and_optab[i] = CODE_FOR_nothing;
6379 sync_new_xor_optab[i] = CODE_FOR_nothing;
6380 sync_new_nand_optab[i] = CODE_FOR_nothing;
6381 sync_compare_and_swap[i] = CODE_FOR_nothing;
6382 sync_lock_test_and_set[i] = CODE_FOR_nothing;
6383 sync_lock_release[i] = CODE_FOR_nothing;
6384
6385 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
6386 }
6387
6388 /* Fill in the optabs with the insns we support. */
6389 init_all_optabs ();
6390
6391 /* Initialize the optabs with the names of the library functions. */
6392 add_optab->libcall_basename = "add";
6393 add_optab->libcall_suffix = '3';
6394 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6395 addv_optab->libcall_basename = "add";
6396 addv_optab->libcall_suffix = '3';
6397 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6398 ssadd_optab->libcall_basename = "ssadd";
6399 ssadd_optab->libcall_suffix = '3';
6400 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6401 usadd_optab->libcall_basename = "usadd";
6402 usadd_optab->libcall_suffix = '3';
6403 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6404 sub_optab->libcall_basename = "sub";
6405 sub_optab->libcall_suffix = '3';
6406 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6407 subv_optab->libcall_basename = "sub";
6408 subv_optab->libcall_suffix = '3';
6409 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6410 sssub_optab->libcall_basename = "sssub";
6411 sssub_optab->libcall_suffix = '3';
6412 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6413 ussub_optab->libcall_basename = "ussub";
6414 ussub_optab->libcall_suffix = '3';
6415 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6416 smul_optab->libcall_basename = "mul";
6417 smul_optab->libcall_suffix = '3';
6418 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6419 smulv_optab->libcall_basename = "mul";
6420 smulv_optab->libcall_suffix = '3';
6421 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6422 ssmul_optab->libcall_basename = "ssmul";
6423 ssmul_optab->libcall_suffix = '3';
6424 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6425 usmul_optab->libcall_basename = "usmul";
6426 usmul_optab->libcall_suffix = '3';
6427 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6428 sdiv_optab->libcall_basename = "div";
6429 sdiv_optab->libcall_suffix = '3';
6430 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6431 sdivv_optab->libcall_basename = "divv";
6432 sdivv_optab->libcall_suffix = '3';
6433 sdivv_optab->libcall_gen = gen_int_libfunc;
6434 ssdiv_optab->libcall_basename = "ssdiv";
6435 ssdiv_optab->libcall_suffix = '3';
6436 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6437 udiv_optab->libcall_basename = "udiv";
6438 udiv_optab->libcall_suffix = '3';
6439 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6440 usdiv_optab->libcall_basename = "usdiv";
6441 usdiv_optab->libcall_suffix = '3';
6442 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6443 sdivmod_optab->libcall_basename = "divmod";
6444 sdivmod_optab->libcall_suffix = '4';
6445 sdivmod_optab->libcall_gen = gen_int_libfunc;
6446 udivmod_optab->libcall_basename = "udivmod";
6447 udivmod_optab->libcall_suffix = '4';
6448 udivmod_optab->libcall_gen = gen_int_libfunc;
6449 smod_optab->libcall_basename = "mod";
6450 smod_optab->libcall_suffix = '3';
6451 smod_optab->libcall_gen = gen_int_libfunc;
6452 umod_optab->libcall_basename = "umod";
6453 umod_optab->libcall_suffix = '3';
6454 umod_optab->libcall_gen = gen_int_libfunc;
6455 ftrunc_optab->libcall_basename = "ftrunc";
6456 ftrunc_optab->libcall_suffix = '2';
6457 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6458 and_optab->libcall_basename = "and";
6459 and_optab->libcall_suffix = '3';
6460 and_optab->libcall_gen = gen_int_libfunc;
6461 ior_optab->libcall_basename = "ior";
6462 ior_optab->libcall_suffix = '3';
6463 ior_optab->libcall_gen = gen_int_libfunc;
6464 xor_optab->libcall_basename = "xor";
6465 xor_optab->libcall_suffix = '3';
6466 xor_optab->libcall_gen = gen_int_libfunc;
6467 ashl_optab->libcall_basename = "ashl";
6468 ashl_optab->libcall_suffix = '3';
6469 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6470 ssashl_optab->libcall_basename = "ssashl";
6471 ssashl_optab->libcall_suffix = '3';
6472 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6473 usashl_optab->libcall_basename = "usashl";
6474 usashl_optab->libcall_suffix = '3';
6475 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6476 ashr_optab->libcall_basename = "ashr";
6477 ashr_optab->libcall_suffix = '3';
6478 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6479 lshr_optab->libcall_basename = "lshr";
6480 lshr_optab->libcall_suffix = '3';
6481 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6482 smin_optab->libcall_basename = "min";
6483 smin_optab->libcall_suffix = '3';
6484 smin_optab->libcall_gen = gen_int_fp_libfunc;
6485 smax_optab->libcall_basename = "max";
6486 smax_optab->libcall_suffix = '3';
6487 smax_optab->libcall_gen = gen_int_fp_libfunc;
6488 umin_optab->libcall_basename = "umin";
6489 umin_optab->libcall_suffix = '3';
6490 umin_optab->libcall_gen = gen_int_libfunc;
6491 umax_optab->libcall_basename = "umax";
6492 umax_optab->libcall_suffix = '3';
6493 umax_optab->libcall_gen = gen_int_libfunc;
6494 neg_optab->libcall_basename = "neg";
6495 neg_optab->libcall_suffix = '2';
6496 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6497 ssneg_optab->libcall_basename = "ssneg";
6498 ssneg_optab->libcall_suffix = '2';
6499 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6500 usneg_optab->libcall_basename = "usneg";
6501 usneg_optab->libcall_suffix = '2';
6502 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6503 negv_optab->libcall_basename = "neg";
6504 negv_optab->libcall_suffix = '2';
6505 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6506 one_cmpl_optab->libcall_basename = "one_cmpl";
6507 one_cmpl_optab->libcall_suffix = '2';
6508 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6509 ffs_optab->libcall_basename = "ffs";
6510 ffs_optab->libcall_suffix = '2';
6511 ffs_optab->libcall_gen = gen_int_libfunc;
6512 clz_optab->libcall_basename = "clz";
6513 clz_optab->libcall_suffix = '2';
6514 clz_optab->libcall_gen = gen_int_libfunc;
6515 ctz_optab->libcall_basename = "ctz";
6516 ctz_optab->libcall_suffix = '2';
6517 ctz_optab->libcall_gen = gen_int_libfunc;
6518 popcount_optab->libcall_basename = "popcount";
6519 popcount_optab->libcall_suffix = '2';
6520 popcount_optab->libcall_gen = gen_int_libfunc;
6521 parity_optab->libcall_basename = "parity";
6522 parity_optab->libcall_suffix = '2';
6523 parity_optab->libcall_gen = gen_int_libfunc;
6524
6525 /* Comparison libcalls for integers MUST come in pairs,
6526 signed/unsigned. */
6527 cmp_optab->libcall_basename = "cmp";
6528 cmp_optab->libcall_suffix = '2';
6529 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6530 ucmp_optab->libcall_basename = "ucmp";
6531 ucmp_optab->libcall_suffix = '2';
6532 ucmp_optab->libcall_gen = gen_int_libfunc;
6533
6534 /* EQ etc are floating point only. */
6535 eq_optab->libcall_basename = "eq";
6536 eq_optab->libcall_suffix = '2';
6537 eq_optab->libcall_gen = gen_fp_libfunc;
6538 ne_optab->libcall_basename = "ne";
6539 ne_optab->libcall_suffix = '2';
6540 ne_optab->libcall_gen = gen_fp_libfunc;
6541 gt_optab->libcall_basename = "gt";
6542 gt_optab->libcall_suffix = '2';
6543 gt_optab->libcall_gen = gen_fp_libfunc;
6544 ge_optab->libcall_basename = "ge";
6545 ge_optab->libcall_suffix = '2';
6546 ge_optab->libcall_gen = gen_fp_libfunc;
6547 lt_optab->libcall_basename = "lt";
6548 lt_optab->libcall_suffix = '2';
6549 lt_optab->libcall_gen = gen_fp_libfunc;
6550 le_optab->libcall_basename = "le";
6551 le_optab->libcall_suffix = '2';
6552 le_optab->libcall_gen = gen_fp_libfunc;
6553 unord_optab->libcall_basename = "unord";
6554 unord_optab->libcall_suffix = '2';
6555 unord_optab->libcall_gen = gen_fp_libfunc;
6556
6557 powi_optab->libcall_basename = "powi";
6558 powi_optab->libcall_suffix = '2';
6559 powi_optab->libcall_gen = gen_fp_libfunc;
6560
6561 /* Conversions. */
6562 sfloat_optab->libcall_basename = "float";
6563 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6564 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6565 sfix_optab->libcall_basename = "fix";
6566 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6567 ufix_optab->libcall_basename = "fixuns";
6568 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6569 lrint_optab->libcall_basename = "lrint";
6570 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6571 lround_optab->libcall_basename = "lround";
6572 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6573 lfloor_optab->libcall_basename = "lfloor";
6574 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6575 lceil_optab->libcall_basename = "lceil";
6576 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6577
6578 /* trunc_optab is also used for FLOAT_EXTEND. */
6579 sext_optab->libcall_basename = "extend";
6580 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6581 trunc_optab->libcall_basename = "trunc";
6582 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6583
6584 /* Conversions for fixed-point modes and other modes. */
6585 fract_optab->libcall_basename = "fract";
6586 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6587 satfract_optab->libcall_basename = "satfract";
6588 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6589 fractuns_optab->libcall_basename = "fractuns";
6590 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6591 satfractuns_optab->libcall_basename = "satfractuns";
6592 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6593
6594 /* The ffs function operates on `int'. Fall back on it if we do not
6595 have a libgcc2 function for that width. */
6596 if (INT_TYPE_SIZE < BITS_PER_WORD)
6597 {
6598 int_mode = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
6599 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6600 "ffs");
6601 }
6602
6603 /* Explicitly initialize the bswap libfuncs since we need them to be
6604 valid for things other than word_mode. */
6605 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6606 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6607
6608 /* Use cabs for double complex abs, since systems generally have cabs.
6609 Don't define any libcall for float complex, so that cabs will be used. */
6610 if (complex_double_type_node)
6611 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6612
6613 abort_libfunc = init_one_libfunc ("abort");
6614 memcpy_libfunc = init_one_libfunc ("memcpy");
6615 memmove_libfunc = init_one_libfunc ("memmove");
6616 memcmp_libfunc = init_one_libfunc ("memcmp");
6617 memset_libfunc = init_one_libfunc ("memset");
6618 setbits_libfunc = init_one_libfunc ("__setbits");
6619
6620 #ifndef DONT_USE_BUILTIN_SETJMP
6621 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6622 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6623 #else
6624 setjmp_libfunc = init_one_libfunc ("setjmp");
6625 longjmp_libfunc = init_one_libfunc ("longjmp");
6626 #endif
6627 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6628 unwind_sjlj_unregister_libfunc
6629 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6630
6631 /* For function entry/exit instrumentation. */
6632 profile_function_entry_libfunc
6633 = init_one_libfunc ("__cyg_profile_func_enter");
6634 profile_function_exit_libfunc
6635 = init_one_libfunc ("__cyg_profile_func_exit");
6636
6637 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6638
6639 /* Allow the target to add more libcalls or rename some, etc. */
6640 targetm.init_libfuncs ();
6641
6642 reinit = true;
6643 }
6644
6645 /* Print information about the current contents of the optabs on
6646 STDERR. */
6647
6648 void
6649 debug_optab_libfuncs (void)
6650 {
6651 int i;
6652 int j;
6653 int k;
6654
6655 /* Dump the arithmetic optabs. */
6656 for (i = 0; i != (int) OTI_MAX; i++)
6657 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6658 {
6659 optab o;
6660 rtx l;
6661
6662 o = &optab_table[i];
6663 l = optab_libfunc (o, (enum machine_mode) j);
6664 if (l)
6665 {
6666 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6667 fprintf (stderr, "%s\t%s:\t%s\n",
6668 GET_RTX_NAME (o->code),
6669 GET_MODE_NAME (j),
6670 XSTR (l, 0));
6671 }
6672 }
6673
6674 /* Dump the conversion optabs. */
6675 for (i = 0; i < (int) COI_MAX; ++i)
6676 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6677 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6678 {
6679 convert_optab o;
6680 rtx l;
6681
6682 o = &convert_optab_table[i];
6683 l = convert_optab_libfunc (o, (enum machine_mode) j,
6684 (enum machine_mode) k);
6685 if (l)
6686 {
6687 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6688 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6689 GET_RTX_NAME (o->code),
6690 GET_MODE_NAME (j),
6691 GET_MODE_NAME (k),
6692 XSTR (l, 0));
6693 }
6694 }
6695 }
6696
6697 \f
6698 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6699 CODE. Return 0 on failure. */
6700
6701 rtx
6702 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6703 {
6704 enum machine_mode mode = GET_MODE (op1);
6705 enum insn_code icode;
6706 rtx insn;
6707 rtx trap_rtx;
6708
6709 if (mode == VOIDmode)
6710 return 0;
6711
6712 icode = optab_handler (ctrap_optab, mode)->insn_code;
6713 if (icode == CODE_FOR_nothing)
6714 return 0;
6715
6716 /* Some targets only accept a zero trap code. */
6717 if (insn_data[icode].operand[3].predicate
6718 && !insn_data[icode].operand[3].predicate (tcode, VOIDmode))
6719 return 0;
6720
6721 do_pending_stack_adjust ();
6722 start_sequence ();
6723 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6724 &trap_rtx, &mode);
6725 if (!trap_rtx)
6726 insn = NULL_RTX;
6727 else
6728 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6729 tcode);
6730
6731 /* If that failed, then give up. */
6732 if (insn == 0)
6733 {
6734 end_sequence ();
6735 return 0;
6736 }
6737
6738 emit_insn (insn);
6739 insn = get_insns ();
6740 end_sequence ();
6741 return insn;
6742 }
6743
6744 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6745 or unsigned operation code. */
6746
6747 static enum rtx_code
6748 get_rtx_code (enum tree_code tcode, bool unsignedp)
6749 {
6750 enum rtx_code code;
6751 switch (tcode)
6752 {
6753 case EQ_EXPR:
6754 code = EQ;
6755 break;
6756 case NE_EXPR:
6757 code = NE;
6758 break;
6759 case LT_EXPR:
6760 code = unsignedp ? LTU : LT;
6761 break;
6762 case LE_EXPR:
6763 code = unsignedp ? LEU : LE;
6764 break;
6765 case GT_EXPR:
6766 code = unsignedp ? GTU : GT;
6767 break;
6768 case GE_EXPR:
6769 code = unsignedp ? GEU : GE;
6770 break;
6771
6772 case UNORDERED_EXPR:
6773 code = UNORDERED;
6774 break;
6775 case ORDERED_EXPR:
6776 code = ORDERED;
6777 break;
6778 case UNLT_EXPR:
6779 code = UNLT;
6780 break;
6781 case UNLE_EXPR:
6782 code = UNLE;
6783 break;
6784 case UNGT_EXPR:
6785 code = UNGT;
6786 break;
6787 case UNGE_EXPR:
6788 code = UNGE;
6789 break;
6790 case UNEQ_EXPR:
6791 code = UNEQ;
6792 break;
6793 case LTGT_EXPR:
6794 code = LTGT;
6795 break;
6796
6797 default:
6798 gcc_unreachable ();
6799 }
6800 return code;
6801 }
6802
6803 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6804 unsigned operators. Do not generate compare instruction. */
6805
6806 static rtx
6807 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6808 {
6809 enum rtx_code rcode;
6810 tree t_op0, t_op1;
6811 rtx rtx_op0, rtx_op1;
6812
6813 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6814 ensures that condition is a relational operation. */
6815 gcc_assert (COMPARISON_CLASS_P (cond));
6816
6817 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6818 t_op0 = TREE_OPERAND (cond, 0);
6819 t_op1 = TREE_OPERAND (cond, 1);
6820
6821 /* Expand operands. */
6822 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6823 EXPAND_STACK_PARM);
6824 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6825 EXPAND_STACK_PARM);
6826
6827 if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
6828 && GET_MODE (rtx_op0) != VOIDmode)
6829 rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
6830
6831 if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
6832 && GET_MODE (rtx_op1) != VOIDmode)
6833 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
6834
6835 return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
6836 }
6837
6838 /* Return insn code for TYPE, the type of a VEC_COND_EXPR. */
6839
6840 static inline enum insn_code
6841 get_vcond_icode (tree type, enum machine_mode mode)
6842 {
6843 enum insn_code icode = CODE_FOR_nothing;
6844
6845 if (TYPE_UNSIGNED (type))
6846 icode = vcondu_gen_code[mode];
6847 else
6848 icode = vcond_gen_code[mode];
6849 return icode;
6850 }
6851
6852 /* Return TRUE iff, appropriate vector insns are available
6853 for vector cond expr with type TYPE in VMODE mode. */
6854
6855 bool
6856 expand_vec_cond_expr_p (tree type, enum machine_mode vmode)
6857 {
6858 if (get_vcond_icode (type, vmode) == CODE_FOR_nothing)
6859 return false;
6860 return true;
6861 }
6862
6863 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6864 three operands. */
6865
6866 rtx
6867 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6868 rtx target)
6869 {
6870 enum insn_code icode;
6871 rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
6872 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6873 bool unsignedp = TYPE_UNSIGNED (vec_cond_type);
6874
6875 icode = get_vcond_icode (vec_cond_type, mode);
6876 if (icode == CODE_FOR_nothing)
6877 return 0;
6878
6879 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6880 target = gen_reg_rtx (mode);
6881
6882 /* Get comparison rtx. First expand both cond expr operands. */
6883 comparison = vector_compare_rtx (op0,
6884 unsignedp, icode);
6885 cc_op0 = XEXP (comparison, 0);
6886 cc_op1 = XEXP (comparison, 1);
6887 /* Expand both operands and force them in reg, if required. */
6888 rtx_op1 = expand_normal (op1);
6889 if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
6890 && mode != VOIDmode)
6891 rtx_op1 = force_reg (mode, rtx_op1);
6892
6893 rtx_op2 = expand_normal (op2);
6894 if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
6895 && mode != VOIDmode)
6896 rtx_op2 = force_reg (mode, rtx_op2);
6897
6898 /* Emit instruction! */
6899 emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
6900 comparison, cc_op0, cc_op1));
6901
6902 return target;
6903 }
6904
6905 \f
6906 /* This is an internal subroutine of the other compare_and_swap expanders.
6907 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6908 operation. TARGET is an optional place to store the value result of
6909 the operation. ICODE is the particular instruction to expand. Return
6910 the result of the operation. */
6911
6912 static rtx
6913 expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
6914 rtx target, enum insn_code icode)
6915 {
6916 enum machine_mode mode = GET_MODE (mem);
6917 rtx insn;
6918
6919 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6920 target = gen_reg_rtx (mode);
6921
6922 if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
6923 old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
6924 if (!insn_data[icode].operand[2].predicate (old_val, mode))
6925 old_val = force_reg (mode, old_val);
6926
6927 if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
6928 new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
6929 if (!insn_data[icode].operand[3].predicate (new_val, mode))
6930 new_val = force_reg (mode, new_val);
6931
6932 insn = GEN_FCN (icode) (target, mem, old_val, new_val);
6933 if (insn == NULL_RTX)
6934 return NULL_RTX;
6935 emit_insn (insn);
6936
6937 return target;
6938 }
6939
6940 /* Expand a compare-and-swap operation and return its value. */
6941
6942 rtx
6943 expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6944 {
6945 enum machine_mode mode = GET_MODE (mem);
6946 enum insn_code icode = sync_compare_and_swap[mode];
6947
6948 if (icode == CODE_FOR_nothing)
6949 return NULL_RTX;
6950
6951 return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
6952 }
6953
6954 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6955 pattern. */
6956
6957 static void
6958 find_cc_set (rtx x, const_rtx pat, void *data)
6959 {
6960 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6961 && GET_CODE (pat) == SET)
6962 {
6963 rtx *p_cc_reg = (rtx *) data;
6964 gcc_assert (!*p_cc_reg);
6965 *p_cc_reg = x;
6966 }
6967 }
6968
6969 /* Expand a compare-and-swap operation and store true into the result if
6970 the operation was successful and false otherwise. Return the result.
6971 Unlike other routines, TARGET is not optional. */
6972
6973 rtx
6974 expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
6975 {
6976 enum machine_mode mode = GET_MODE (mem);
6977 enum insn_code icode;
6978 rtx subtarget, seq, cc_reg;
6979
6980 /* If the target supports a compare-and-swap pattern that simultaneously
6981 sets some flag for success, then use it. Otherwise use the regular
6982 compare-and-swap and follow that immediately with a compare insn. */
6983 icode = sync_compare_and_swap[mode];
6984 if (icode == CODE_FOR_nothing)
6985 return NULL_RTX;
6986
6987 do
6988 {
6989 start_sequence ();
6990 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
6991 NULL_RTX, icode);
6992 cc_reg = NULL_RTX;
6993 if (subtarget == NULL_RTX)
6994 {
6995 end_sequence ();
6996 return NULL_RTX;
6997 }
6998
6999 if (have_insn_for (COMPARE, CCmode))
7000 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7001 seq = get_insns ();
7002 end_sequence ();
7003
7004 /* We might be comparing against an old value. Try again. :-( */
7005 if (!cc_reg && MEM_P (old_val))
7006 {
7007 seq = NULL_RTX;
7008 old_val = force_reg (mode, old_val);
7009 }
7010 }
7011 while (!seq);
7012
7013 emit_insn (seq);
7014 if (cc_reg)
7015 return emit_store_flag_force (target, EQ, cc_reg, const0_rtx, VOIDmode, 0, 1);
7016 else
7017 return emit_store_flag_force (target, EQ, subtarget, old_val, VOIDmode, 1, 1);
7018 }
7019
7020 /* This is a helper function for the other atomic operations. This function
7021 emits a loop that contains SEQ that iterates until a compare-and-swap
7022 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7023 a set of instructions that takes a value from OLD_REG as an input and
7024 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7025 set to the current contents of MEM. After SEQ, a compare-and-swap will
7026 attempt to update MEM with NEW_REG. The function returns true when the
7027 loop was generated successfully. */
7028
7029 static bool
7030 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7031 {
7032 enum machine_mode mode = GET_MODE (mem);
7033 enum insn_code icode;
7034 rtx label, cmp_reg, subtarget, cc_reg;
7035
7036 /* The loop we want to generate looks like
7037
7038 cmp_reg = mem;
7039 label:
7040 old_reg = cmp_reg;
7041 seq;
7042 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
7043 if (cmp_reg != old_reg)
7044 goto label;
7045
7046 Note that we only do the plain load from memory once. Subsequent
7047 iterations use the value loaded by the compare-and-swap pattern. */
7048
7049 label = gen_label_rtx ();
7050 cmp_reg = gen_reg_rtx (mode);
7051
7052 emit_move_insn (cmp_reg, mem);
7053 emit_label (label);
7054 emit_move_insn (old_reg, cmp_reg);
7055 if (seq)
7056 emit_insn (seq);
7057
7058 /* If the target supports a compare-and-swap pattern that simultaneously
7059 sets some flag for success, then use it. Otherwise use the regular
7060 compare-and-swap and follow that immediately with a compare insn. */
7061 icode = sync_compare_and_swap[mode];
7062 if (icode == CODE_FOR_nothing)
7063 return false;
7064
7065 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7066 cmp_reg, icode);
7067 if (subtarget == NULL_RTX)
7068 return false;
7069
7070 cc_reg = NULL_RTX;
7071 if (have_insn_for (COMPARE, CCmode))
7072 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7073 if (cc_reg)
7074 {
7075 cmp_reg = cc_reg;
7076 old_reg = const0_rtx;
7077 }
7078 else
7079 {
7080 if (subtarget != cmp_reg)
7081 emit_move_insn (cmp_reg, subtarget);
7082 }
7083
7084 /* ??? Mark this jump predicted not taken? */
7085 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, const0_rtx, GET_MODE (cmp_reg), 1,
7086 label);
7087 return true;
7088 }
7089
7090 /* This function generates the atomic operation MEM CODE= VAL. In this
7091 case, we do not care about any resulting value. Returns NULL if we
7092 cannot generate the operation. */
7093
7094 rtx
7095 expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
7096 {
7097 enum machine_mode mode = GET_MODE (mem);
7098 enum insn_code icode;
7099 rtx insn;
7100
7101 /* Look to see if the target supports the operation directly. */
7102 switch (code)
7103 {
7104 case PLUS:
7105 icode = sync_add_optab[mode];
7106 break;
7107 case IOR:
7108 icode = sync_ior_optab[mode];
7109 break;
7110 case XOR:
7111 icode = sync_xor_optab[mode];
7112 break;
7113 case AND:
7114 icode = sync_and_optab[mode];
7115 break;
7116 case NOT:
7117 icode = sync_nand_optab[mode];
7118 break;
7119
7120 case MINUS:
7121 icode = sync_sub_optab[mode];
7122 if (icode == CODE_FOR_nothing || CONST_INT_P (val))
7123 {
7124 icode = sync_add_optab[mode];
7125 if (icode != CODE_FOR_nothing)
7126 {
7127 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7128 code = PLUS;
7129 }
7130 }
7131 break;
7132
7133 default:
7134 gcc_unreachable ();
7135 }
7136
7137 /* Generate the direct operation, if present. */
7138 if (icode != CODE_FOR_nothing)
7139 {
7140 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7141 val = convert_modes (mode, GET_MODE (val), val, 1);
7142 if (!insn_data[icode].operand[1].predicate (val, mode))
7143 val = force_reg (mode, val);
7144
7145 insn = GEN_FCN (icode) (mem, val);
7146 if (insn)
7147 {
7148 emit_insn (insn);
7149 return const0_rtx;
7150 }
7151 }
7152
7153 /* Failing that, generate a compare-and-swap loop in which we perform the
7154 operation with normal arithmetic instructions. */
7155 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7156 {
7157 rtx t0 = gen_reg_rtx (mode), t1;
7158
7159 start_sequence ();
7160
7161 t1 = t0;
7162 if (code == NOT)
7163 {
7164 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7165 true, OPTAB_LIB_WIDEN);
7166 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7167 }
7168 else
7169 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7170 true, OPTAB_LIB_WIDEN);
7171 insn = get_insns ();
7172 end_sequence ();
7173
7174 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7175 return const0_rtx;
7176 }
7177
7178 return NULL_RTX;
7179 }
7180
7181 /* This function generates the atomic operation MEM CODE= VAL. In this
7182 case, we do care about the resulting value: if AFTER is true then
7183 return the value MEM holds after the operation, if AFTER is false
7184 then return the value MEM holds before the operation. TARGET is an
7185 optional place for the result value to be stored. */
7186
7187 rtx
7188 expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
7189 bool after, rtx target)
7190 {
7191 enum machine_mode mode = GET_MODE (mem);
7192 enum insn_code old_code, new_code, icode;
7193 bool compensate;
7194 rtx insn;
7195
7196 /* Look to see if the target supports the operation directly. */
7197 switch (code)
7198 {
7199 case PLUS:
7200 old_code = sync_old_add_optab[mode];
7201 new_code = sync_new_add_optab[mode];
7202 break;
7203 case IOR:
7204 old_code = sync_old_ior_optab[mode];
7205 new_code = sync_new_ior_optab[mode];
7206 break;
7207 case XOR:
7208 old_code = sync_old_xor_optab[mode];
7209 new_code = sync_new_xor_optab[mode];
7210 break;
7211 case AND:
7212 old_code = sync_old_and_optab[mode];
7213 new_code = sync_new_and_optab[mode];
7214 break;
7215 case NOT:
7216 old_code = sync_old_nand_optab[mode];
7217 new_code = sync_new_nand_optab[mode];
7218 break;
7219
7220 case MINUS:
7221 old_code = sync_old_sub_optab[mode];
7222 new_code = sync_new_sub_optab[mode];
7223 if ((old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
7224 || CONST_INT_P (val))
7225 {
7226 old_code = sync_old_add_optab[mode];
7227 new_code = sync_new_add_optab[mode];
7228 if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
7229 {
7230 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7231 code = PLUS;
7232 }
7233 }
7234 break;
7235
7236 default:
7237 gcc_unreachable ();
7238 }
7239
7240 /* If the target does supports the proper new/old operation, great. But
7241 if we only support the opposite old/new operation, check to see if we
7242 can compensate. In the case in which the old value is supported, then
7243 we can always perform the operation again with normal arithmetic. In
7244 the case in which the new value is supported, then we can only handle
7245 this in the case the operation is reversible. */
7246 compensate = false;
7247 if (after)
7248 {
7249 icode = new_code;
7250 if (icode == CODE_FOR_nothing)
7251 {
7252 icode = old_code;
7253 if (icode != CODE_FOR_nothing)
7254 compensate = true;
7255 }
7256 }
7257 else
7258 {
7259 icode = old_code;
7260 if (icode == CODE_FOR_nothing
7261 && (code == PLUS || code == MINUS || code == XOR))
7262 {
7263 icode = new_code;
7264 if (icode != CODE_FOR_nothing)
7265 compensate = true;
7266 }
7267 }
7268
7269 /* If we found something supported, great. */
7270 if (icode != CODE_FOR_nothing)
7271 {
7272 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7273 target = gen_reg_rtx (mode);
7274
7275 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7276 val = convert_modes (mode, GET_MODE (val), val, 1);
7277 if (!insn_data[icode].operand[2].predicate (val, mode))
7278 val = force_reg (mode, val);
7279
7280 insn = GEN_FCN (icode) (target, mem, val);
7281 if (insn)
7282 {
7283 emit_insn (insn);
7284
7285 /* If we need to compensate for using an operation with the
7286 wrong return value, do so now. */
7287 if (compensate)
7288 {
7289 if (!after)
7290 {
7291 if (code == PLUS)
7292 code = MINUS;
7293 else if (code == MINUS)
7294 code = PLUS;
7295 }
7296
7297 if (code == NOT)
7298 {
7299 target = expand_simple_binop (mode, AND, target, val,
7300 NULL_RTX, true,
7301 OPTAB_LIB_WIDEN);
7302 target = expand_simple_unop (mode, code, target,
7303 NULL_RTX, true);
7304 }
7305 else
7306 target = expand_simple_binop (mode, code, target, val,
7307 NULL_RTX, true,
7308 OPTAB_LIB_WIDEN);
7309 }
7310
7311 return target;
7312 }
7313 }
7314
7315 /* Failing that, generate a compare-and-swap loop in which we perform the
7316 operation with normal arithmetic instructions. */
7317 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7318 {
7319 rtx t0 = gen_reg_rtx (mode), t1;
7320
7321 if (!target || !register_operand (target, mode))
7322 target = gen_reg_rtx (mode);
7323
7324 start_sequence ();
7325
7326 if (!after)
7327 emit_move_insn (target, t0);
7328 t1 = t0;
7329 if (code == NOT)
7330 {
7331 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7332 true, OPTAB_LIB_WIDEN);
7333 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7334 }
7335 else
7336 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7337 true, OPTAB_LIB_WIDEN);
7338 if (after)
7339 emit_move_insn (target, t1);
7340
7341 insn = get_insns ();
7342 end_sequence ();
7343
7344 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7345 return target;
7346 }
7347
7348 return NULL_RTX;
7349 }
7350
7351 /* This function expands a test-and-set operation. Ideally we atomically
7352 store VAL in MEM and return the previous value in MEM. Some targets
7353 may not support this operation and only support VAL with the constant 1;
7354 in this case while the return value will be 0/1, but the exact value
7355 stored in MEM is target defined. TARGET is an option place to stick
7356 the return value. */
7357
7358 rtx
7359 expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
7360 {
7361 enum machine_mode mode = GET_MODE (mem);
7362 enum insn_code icode;
7363 rtx insn;
7364
7365 /* If the target supports the test-and-set directly, great. */
7366 icode = sync_lock_test_and_set[mode];
7367 if (icode != CODE_FOR_nothing)
7368 {
7369 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7370 target = gen_reg_rtx (mode);
7371
7372 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7373 val = convert_modes (mode, GET_MODE (val), val, 1);
7374 if (!insn_data[icode].operand[2].predicate (val, mode))
7375 val = force_reg (mode, val);
7376
7377 insn = GEN_FCN (icode) (target, mem, val);
7378 if (insn)
7379 {
7380 emit_insn (insn);
7381 return target;
7382 }
7383 }
7384
7385 /* Otherwise, use a compare-and-swap loop for the exchange. */
7386 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7387 {
7388 if (!target || !register_operand (target, mode))
7389 target = gen_reg_rtx (mode);
7390 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7391 val = convert_modes (mode, GET_MODE (val), val, 1);
7392 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7393 return target;
7394 }
7395
7396 return NULL_RTX;
7397 }
7398
7399 #include "gt-optabs.h"