* ChangeLog: Fix whitespace.
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "stringpool.h"
34 #include "varasm.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "function.h"
38 #include "except.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "ggc.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 struct target_optabs default_target_optabs;
49 struct target_libfuncs default_target_libfuncs;
50 struct target_optabs *this_fn_optabs = &default_target_optabs;
51 #if SWITCHABLE_TARGET
52 struct target_optabs *this_target_optabs = &default_target_optabs;
53 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
54 #endif
55
56 #define libfunc_hash \
57 (this_target_libfuncs->x_libfunc_hash)
58
59 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
60 enum machine_mode *);
61 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
62 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
63
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
66
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
70 #else
71 #define DECIMAL_PREFIX "dpd_"
72 #endif
73 \f
74 /* Used for libfunc_hash. */
75
76 static hashval_t
77 hash_libfunc (const void *p)
78 {
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
80 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
81 }
82
83 /* Used for libfunc_hash. */
84
85 static int
86 eq_libfunc (const void *p, const void *q)
87 {
88 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
89 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
90 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
91 }
92
93 /* Return libfunc corresponding operation defined by OPTAB converting
94 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
95 if no libfunc is available. */
96 rtx
97 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
98 enum machine_mode mode2)
99 {
100 struct libfunc_entry e;
101 struct libfunc_entry **slot;
102
103 /* ??? This ought to be an assert, but not all of the places
104 that we expand optabs know about the optabs that got moved
105 to being direct. */
106 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
107 return NULL_RTX;
108
109 e.op = optab;
110 e.mode1 = mode1;
111 e.mode2 = mode2;
112 slot = (struct libfunc_entry **)
113 htab_find_slot (libfunc_hash, &e, NO_INSERT);
114 if (!slot)
115 {
116 const struct convert_optab_libcall_d *d
117 = &convlib_def[optab - FIRST_CONV_OPTAB];
118
119 if (d->libcall_gen == NULL)
120 return NULL;
121
122 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
123 slot = (struct libfunc_entry **)
124 htab_find_slot (libfunc_hash, &e, NO_INSERT);
125 if (!slot)
126 return NULL;
127 }
128 return (*slot)->libfunc;
129 }
130
131 /* Return libfunc corresponding operation defined by OPTAB in MODE.
132 Trigger lazy initialization if needed, return NULL if no libfunc is
133 available. */
134 rtx
135 optab_libfunc (optab optab, enum machine_mode mode)
136 {
137 struct libfunc_entry e;
138 struct libfunc_entry **slot;
139
140 /* ??? This ought to be an assert, but not all of the places
141 that we expand optabs know about the optabs that got moved
142 to being direct. */
143 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
144 return NULL_RTX;
145
146 e.op = optab;
147 e.mode1 = mode;
148 e.mode2 = VOIDmode;
149 slot = (struct libfunc_entry **)
150 htab_find_slot (libfunc_hash, &e, NO_INSERT);
151 if (!slot)
152 {
153 const struct optab_libcall_d *d
154 = &normlib_def[optab - FIRST_NORM_OPTAB];
155
156 if (d->libcall_gen == NULL)
157 return NULL;
158
159 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
160 slot = (struct libfunc_entry **)
161 htab_find_slot (libfunc_hash, &e, NO_INSERT);
162 if (!slot)
163 return NULL;
164 }
165 return (*slot)->libfunc;
166 }
167
168 \f
169 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
171 operation).
172
173 If the last insn does not set TARGET, don't do anything, but return 1.
174
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
178
179 static int
180 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
181 {
182 rtx last_insn, set;
183 rtx note;
184
185 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
186
187 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
188 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
189 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
190 && GET_RTX_CLASS (code) != RTX_COMPARE
191 && GET_RTX_CLASS (code) != RTX_UNARY)
192 return 1;
193
194 if (GET_CODE (target) == ZERO_EXTRACT)
195 return 1;
196
197 for (last_insn = insns;
198 NEXT_INSN (last_insn) != NULL_RTX;
199 last_insn = NEXT_INSN (last_insn))
200 ;
201
202 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
203 a value changing in the insn, so the note would be invalid for CSE. */
204 if (reg_overlap_mentioned_p (target, op0)
205 || (op1 && reg_overlap_mentioned_p (target, op1)))
206 {
207 if (MEM_P (target)
208 && (rtx_equal_p (target, op0)
209 || (op1 && rtx_equal_p (target, op1))))
210 {
211 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
212 over expanding it as temp = MEM op X, MEM = temp. If the target
213 supports MEM = MEM op X instructions, it is sometimes too hard
214 to reconstruct that form later, especially if X is also a memory,
215 and due to multiple occurrences of addresses the address might
216 be forced into register unnecessarily.
217 Note that not emitting the REG_EQUIV note might inhibit
218 CSE in some cases. */
219 set = single_set (last_insn);
220 if (set
221 && GET_CODE (SET_SRC (set)) == code
222 && MEM_P (SET_DEST (set))
223 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
224 || (op1 && rtx_equal_p (SET_DEST (set),
225 XEXP (SET_SRC (set), 1)))))
226 return 1;
227 }
228 return 0;
229 }
230
231 set = set_for_reg_notes (last_insn);
232 if (set == NULL_RTX)
233 return 1;
234
235 if (! rtx_equal_p (SET_DEST (set), target)
236 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
237 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
238 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
239 return 1;
240
241 if (GET_RTX_CLASS (code) == RTX_UNARY)
242 switch (code)
243 {
244 case FFS:
245 case CLZ:
246 case CTZ:
247 case CLRSB:
248 case POPCOUNT:
249 case PARITY:
250 case BSWAP:
251 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
252 {
253 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
254 if (GET_MODE_SIZE (GET_MODE (op0))
255 > GET_MODE_SIZE (GET_MODE (target)))
256 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
257 note, GET_MODE (op0));
258 else
259 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
260 note, GET_MODE (op0));
261 break;
262 }
263 /* FALLTHRU */
264 default:
265 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
266 break;
267 }
268 else
269 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
270
271 set_unique_reg_note (last_insn, REG_EQUAL, note);
272
273 return 1;
274 }
275 \f
276 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
277 for a widening operation would be. In most cases this would be OP0, but if
278 that's a constant it'll be VOIDmode, which isn't useful. */
279
280 static enum machine_mode
281 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
282 {
283 enum machine_mode m0 = GET_MODE (op0);
284 enum machine_mode m1 = GET_MODE (op1);
285 enum machine_mode result;
286
287 if (m0 == VOIDmode && m1 == VOIDmode)
288 return to_mode;
289 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
290 result = m1;
291 else
292 result = m0;
293
294 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
295 return to_mode;
296
297 return result;
298 }
299 \f
300 /* Like optab_handler, but for widening_operations that have a
301 TO_MODE and a FROM_MODE. */
302
303 enum insn_code
304 widening_optab_handler (optab op, enum machine_mode to_mode,
305 enum machine_mode from_mode)
306 {
307 unsigned scode = (op << 16) | to_mode;
308 if (to_mode != from_mode && from_mode != VOIDmode)
309 {
310 /* ??? Why does find_widening_optab_handler_and_mode attempt to
311 widen things that can't be widened? E.g. add_optab... */
312 if (op > LAST_CONV_OPTAB)
313 return CODE_FOR_nothing;
314 scode |= from_mode << 8;
315 }
316 return raw_optab_handler (scode);
317 }
318
319 /* Find a widening optab even if it doesn't widen as much as we want.
320 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
321 direct HI->SI insn, then return SI->DI, if that exists.
322 If PERMIT_NON_WIDENING is non-zero then this can be used with
323 non-widening optabs also. */
324
325 enum insn_code
326 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
327 enum machine_mode from_mode,
328 int permit_non_widening,
329 enum machine_mode *found_mode)
330 {
331 for (; (permit_non_widening || from_mode != to_mode)
332 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
333 && from_mode != VOIDmode;
334 from_mode = GET_MODE_WIDER_MODE (from_mode))
335 {
336 enum insn_code handler = widening_optab_handler (op, to_mode,
337 from_mode);
338
339 if (handler != CODE_FOR_nothing)
340 {
341 if (found_mode)
342 *found_mode = from_mode;
343 return handler;
344 }
345 }
346
347 return CODE_FOR_nothing;
348 }
349 \f
350 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
351 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
352 not actually do a sign-extend or zero-extend, but can leave the
353 higher-order bits of the result rtx undefined, for example, in the case
354 of logical operations, but not right shifts. */
355
356 static rtx
357 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
358 int unsignedp, int no_extend)
359 {
360 rtx result;
361
362 /* If we don't have to extend and this is a constant, return it. */
363 if (no_extend && GET_MODE (op) == VOIDmode)
364 return op;
365
366 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
367 extend since it will be more efficient to do so unless the signedness of
368 a promoted object differs from our extension. */
369 if (! no_extend
370 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
371 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
372 return convert_modes (mode, oldmode, op, unsignedp);
373
374 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
375 SUBREG. */
376 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
377 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
378
379 /* Otherwise, get an object of MODE, clobber it, and set the low-order
380 part to OP. */
381
382 result = gen_reg_rtx (mode);
383 emit_clobber (result);
384 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
385 return result;
386 }
387 \f
388 /* Return the optab used for computing the operation given by the tree code,
389 CODE and the tree EXP. This function is not always usable (for example, it
390 cannot give complete results for multiplication or division) but probably
391 ought to be relied on more widely throughout the expander. */
392 optab
393 optab_for_tree_code (enum tree_code code, const_tree type,
394 enum optab_subtype subtype)
395 {
396 bool trapv;
397 switch (code)
398 {
399 case BIT_AND_EXPR:
400 return and_optab;
401
402 case BIT_IOR_EXPR:
403 return ior_optab;
404
405 case BIT_NOT_EXPR:
406 return one_cmpl_optab;
407
408 case BIT_XOR_EXPR:
409 return xor_optab;
410
411 case MULT_HIGHPART_EXPR:
412 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
413
414 case TRUNC_MOD_EXPR:
415 case CEIL_MOD_EXPR:
416 case FLOOR_MOD_EXPR:
417 case ROUND_MOD_EXPR:
418 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
419
420 case RDIV_EXPR:
421 case TRUNC_DIV_EXPR:
422 case CEIL_DIV_EXPR:
423 case FLOOR_DIV_EXPR:
424 case ROUND_DIV_EXPR:
425 case EXACT_DIV_EXPR:
426 if (TYPE_SATURATING (type))
427 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
428 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
429
430 case LSHIFT_EXPR:
431 if (TREE_CODE (type) == VECTOR_TYPE)
432 {
433 if (subtype == optab_vector)
434 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
435
436 gcc_assert (subtype == optab_scalar);
437 }
438 if (TYPE_SATURATING (type))
439 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
440 return ashl_optab;
441
442 case RSHIFT_EXPR:
443 if (TREE_CODE (type) == VECTOR_TYPE)
444 {
445 if (subtype == optab_vector)
446 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
447
448 gcc_assert (subtype == optab_scalar);
449 }
450 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
451
452 case LROTATE_EXPR:
453 if (TREE_CODE (type) == VECTOR_TYPE)
454 {
455 if (subtype == optab_vector)
456 return vrotl_optab;
457
458 gcc_assert (subtype == optab_scalar);
459 }
460 return rotl_optab;
461
462 case RROTATE_EXPR:
463 if (TREE_CODE (type) == VECTOR_TYPE)
464 {
465 if (subtype == optab_vector)
466 return vrotr_optab;
467
468 gcc_assert (subtype == optab_scalar);
469 }
470 return rotr_optab;
471
472 case MAX_EXPR:
473 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
474
475 case MIN_EXPR:
476 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
477
478 case REALIGN_LOAD_EXPR:
479 return vec_realign_load_optab;
480
481 case WIDEN_SUM_EXPR:
482 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
483
484 case DOT_PROD_EXPR:
485 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
486
487 case SAD_EXPR:
488 return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
489
490 case WIDEN_MULT_PLUS_EXPR:
491 return (TYPE_UNSIGNED (type)
492 ? (TYPE_SATURATING (type)
493 ? usmadd_widen_optab : umadd_widen_optab)
494 : (TYPE_SATURATING (type)
495 ? ssmadd_widen_optab : smadd_widen_optab));
496
497 case WIDEN_MULT_MINUS_EXPR:
498 return (TYPE_UNSIGNED (type)
499 ? (TYPE_SATURATING (type)
500 ? usmsub_widen_optab : umsub_widen_optab)
501 : (TYPE_SATURATING (type)
502 ? ssmsub_widen_optab : smsub_widen_optab));
503
504 case FMA_EXPR:
505 return fma_optab;
506
507 case REDUC_MAX_EXPR:
508 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
509
510 case REDUC_MIN_EXPR:
511 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
512
513 case REDUC_PLUS_EXPR:
514 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
515
516 case VEC_LSHIFT_EXPR:
517 return vec_shl_optab;
518
519 case VEC_RSHIFT_EXPR:
520 return vec_shr_optab;
521
522 case VEC_WIDEN_MULT_HI_EXPR:
523 return TYPE_UNSIGNED (type) ?
524 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
525
526 case VEC_WIDEN_MULT_LO_EXPR:
527 return TYPE_UNSIGNED (type) ?
528 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
529
530 case VEC_WIDEN_MULT_EVEN_EXPR:
531 return TYPE_UNSIGNED (type) ?
532 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
533
534 case VEC_WIDEN_MULT_ODD_EXPR:
535 return TYPE_UNSIGNED (type) ?
536 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
537
538 case VEC_WIDEN_LSHIFT_HI_EXPR:
539 return TYPE_UNSIGNED (type) ?
540 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
541
542 case VEC_WIDEN_LSHIFT_LO_EXPR:
543 return TYPE_UNSIGNED (type) ?
544 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
545
546 case VEC_UNPACK_HI_EXPR:
547 return TYPE_UNSIGNED (type) ?
548 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
549
550 case VEC_UNPACK_LO_EXPR:
551 return TYPE_UNSIGNED (type) ?
552 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
553
554 case VEC_UNPACK_FLOAT_HI_EXPR:
555 /* The signedness is determined from input operand. */
556 return TYPE_UNSIGNED (type) ?
557 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
558
559 case VEC_UNPACK_FLOAT_LO_EXPR:
560 /* The signedness is determined from input operand. */
561 return TYPE_UNSIGNED (type) ?
562 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
563
564 case VEC_PACK_TRUNC_EXPR:
565 return vec_pack_trunc_optab;
566
567 case VEC_PACK_SAT_EXPR:
568 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
569
570 case VEC_PACK_FIX_TRUNC_EXPR:
571 /* The signedness is determined from output operand. */
572 return TYPE_UNSIGNED (type) ?
573 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
574
575 default:
576 break;
577 }
578
579 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
580 switch (code)
581 {
582 case POINTER_PLUS_EXPR:
583 case PLUS_EXPR:
584 if (TYPE_SATURATING (type))
585 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
586 return trapv ? addv_optab : add_optab;
587
588 case MINUS_EXPR:
589 if (TYPE_SATURATING (type))
590 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
591 return trapv ? subv_optab : sub_optab;
592
593 case MULT_EXPR:
594 if (TYPE_SATURATING (type))
595 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
596 return trapv ? smulv_optab : smul_optab;
597
598 case NEGATE_EXPR:
599 if (TYPE_SATURATING (type))
600 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
601 return trapv ? negv_optab : neg_optab;
602
603 case ABS_EXPR:
604 return trapv ? absv_optab : abs_optab;
605
606 default:
607 return unknown_optab;
608 }
609 }
610 \f
611
612 /* Expand vector widening operations.
613
614 There are two different classes of operations handled here:
615 1) Operations whose result is wider than all the arguments to the operation.
616 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
617 In this case OP0 and optionally OP1 would be initialized,
618 but WIDE_OP wouldn't (not relevant for this case).
619 2) Operations whose result is of the same size as the last argument to the
620 operation, but wider than all the other arguments to the operation.
621 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
622 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
623
624 E.g, when called to expand the following operations, this is how
625 the arguments will be initialized:
626 nops OP0 OP1 WIDE_OP
627 widening-sum 2 oprnd0 - oprnd1
628 widening-dot-product 3 oprnd0 oprnd1 oprnd2
629 widening-mult 2 oprnd0 oprnd1 -
630 type-promotion (vec-unpack) 1 oprnd0 - - */
631
632 rtx
633 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
634 rtx target, int unsignedp)
635 {
636 struct expand_operand eops[4];
637 tree oprnd0, oprnd1, oprnd2;
638 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
639 optab widen_pattern_optab;
640 enum insn_code icode;
641 int nops = TREE_CODE_LENGTH (ops->code);
642 int op;
643
644 oprnd0 = ops->op0;
645 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
646 widen_pattern_optab =
647 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
648 if (ops->code == WIDEN_MULT_PLUS_EXPR
649 || ops->code == WIDEN_MULT_MINUS_EXPR)
650 icode = find_widening_optab_handler (widen_pattern_optab,
651 TYPE_MODE (TREE_TYPE (ops->op2)),
652 tmode0, 0);
653 else
654 icode = optab_handler (widen_pattern_optab, tmode0);
655 gcc_assert (icode != CODE_FOR_nothing);
656
657 if (nops >= 2)
658 {
659 oprnd1 = ops->op1;
660 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
661 }
662
663 /* The last operand is of a wider mode than the rest of the operands. */
664 if (nops == 2)
665 wmode = tmode1;
666 else if (nops == 3)
667 {
668 gcc_assert (tmode1 == tmode0);
669 gcc_assert (op1);
670 oprnd2 = ops->op2;
671 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
672 }
673
674 op = 0;
675 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
676 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
677 if (op1)
678 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
679 if (wide_op)
680 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
681 expand_insn (icode, op, eops);
682 return eops[0].value;
683 }
684
685 /* Generate code to perform an operation specified by TERNARY_OPTAB
686 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
687
688 UNSIGNEDP is for the case where we have to widen the operands
689 to perform the operation. It says to use zero-extension.
690
691 If TARGET is nonzero, the value
692 is generated there, if it is convenient to do so.
693 In all cases an rtx is returned for the locus of the value;
694 this may or may not be TARGET. */
695
696 rtx
697 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
698 rtx op1, rtx op2, rtx target, int unsignedp)
699 {
700 struct expand_operand ops[4];
701 enum insn_code icode = optab_handler (ternary_optab, mode);
702
703 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
704
705 create_output_operand (&ops[0], target, mode);
706 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
707 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
708 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
709 expand_insn (icode, 4, ops);
710 return ops[0].value;
711 }
712
713
714 /* Like expand_binop, but return a constant rtx if the result can be
715 calculated at compile time. The arguments and return value are
716 otherwise the same as for expand_binop. */
717
718 rtx
719 simplify_expand_binop (enum machine_mode mode, optab binoptab,
720 rtx op0, rtx op1, rtx target, int unsignedp,
721 enum optab_methods methods)
722 {
723 if (CONSTANT_P (op0) && CONSTANT_P (op1))
724 {
725 rtx x = simplify_binary_operation (optab_to_code (binoptab),
726 mode, op0, op1);
727 if (x)
728 return x;
729 }
730
731 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
732 }
733
734 /* Like simplify_expand_binop, but always put the result in TARGET.
735 Return true if the expansion succeeded. */
736
737 bool
738 force_expand_binop (enum machine_mode mode, optab binoptab,
739 rtx op0, rtx op1, rtx target, int unsignedp,
740 enum optab_methods methods)
741 {
742 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
743 target, unsignedp, methods);
744 if (x == 0)
745 return false;
746 if (x != target)
747 emit_move_insn (target, x);
748 return true;
749 }
750
751 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
752
753 rtx
754 expand_vec_shift_expr (sepops ops, rtx target)
755 {
756 struct expand_operand eops[3];
757 enum insn_code icode;
758 rtx rtx_op1, rtx_op2;
759 enum machine_mode mode = TYPE_MODE (ops->type);
760 tree vec_oprnd = ops->op0;
761 tree shift_oprnd = ops->op1;
762 optab shift_optab;
763
764 switch (ops->code)
765 {
766 case VEC_RSHIFT_EXPR:
767 shift_optab = vec_shr_optab;
768 break;
769 case VEC_LSHIFT_EXPR:
770 shift_optab = vec_shl_optab;
771 break;
772 default:
773 gcc_unreachable ();
774 }
775
776 icode = optab_handler (shift_optab, mode);
777 gcc_assert (icode != CODE_FOR_nothing);
778
779 rtx_op1 = expand_normal (vec_oprnd);
780 rtx_op2 = expand_normal (shift_oprnd);
781
782 create_output_operand (&eops[0], target, mode);
783 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
784 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
785 expand_insn (icode, 3, eops);
786
787 return eops[0].value;
788 }
789
790 /* Create a new vector value in VMODE with all elements set to OP. The
791 mode of OP must be the element mode of VMODE. If OP is a constant,
792 then the return value will be a constant. */
793
794 static rtx
795 expand_vector_broadcast (enum machine_mode vmode, rtx op)
796 {
797 enum insn_code icode;
798 rtvec vec;
799 rtx ret;
800 int i, n;
801
802 gcc_checking_assert (VECTOR_MODE_P (vmode));
803
804 n = GET_MODE_NUNITS (vmode);
805 vec = rtvec_alloc (n);
806 for (i = 0; i < n; ++i)
807 RTVEC_ELT (vec, i) = op;
808
809 if (CONSTANT_P (op))
810 return gen_rtx_CONST_VECTOR (vmode, vec);
811
812 /* ??? If the target doesn't have a vec_init, then we have no easy way
813 of performing this operation. Most of this sort of generic support
814 is hidden away in the vector lowering support in gimple. */
815 icode = optab_handler (vec_init_optab, vmode);
816 if (icode == CODE_FOR_nothing)
817 return NULL;
818
819 ret = gen_reg_rtx (vmode);
820 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
821
822 return ret;
823 }
824
825 /* This subroutine of expand_doubleword_shift handles the cases in which
826 the effective shift value is >= BITS_PER_WORD. The arguments and return
827 value are the same as for the parent routine, except that SUPERWORD_OP1
828 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
829 INTO_TARGET may be null if the caller has decided to calculate it. */
830
831 static bool
832 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
833 rtx outof_target, rtx into_target,
834 int unsignedp, enum optab_methods methods)
835 {
836 if (into_target != 0)
837 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
838 into_target, unsignedp, methods))
839 return false;
840
841 if (outof_target != 0)
842 {
843 /* For a signed right shift, we must fill OUTOF_TARGET with copies
844 of the sign bit, otherwise we must fill it with zeros. */
845 if (binoptab != ashr_optab)
846 emit_move_insn (outof_target, CONST0_RTX (word_mode));
847 else
848 if (!force_expand_binop (word_mode, binoptab,
849 outof_input, GEN_INT (BITS_PER_WORD - 1),
850 outof_target, unsignedp, methods))
851 return false;
852 }
853 return true;
854 }
855
856 /* This subroutine of expand_doubleword_shift handles the cases in which
857 the effective shift value is < BITS_PER_WORD. The arguments and return
858 value are the same as for the parent routine. */
859
860 static bool
861 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
862 rtx outof_input, rtx into_input, rtx op1,
863 rtx outof_target, rtx into_target,
864 int unsignedp, enum optab_methods methods,
865 unsigned HOST_WIDE_INT shift_mask)
866 {
867 optab reverse_unsigned_shift, unsigned_shift;
868 rtx tmp, carries;
869
870 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
871 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
872
873 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
874 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
875 the opposite direction to BINOPTAB. */
876 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
877 {
878 carries = outof_input;
879 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
880 op1_mode), op1_mode);
881 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
882 0, true, methods);
883 }
884 else
885 {
886 /* We must avoid shifting by BITS_PER_WORD bits since that is either
887 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
888 has unknown behavior. Do a single shift first, then shift by the
889 remainder. It's OK to use ~OP1 as the remainder if shift counts
890 are truncated to the mode size. */
891 carries = expand_binop (word_mode, reverse_unsigned_shift,
892 outof_input, const1_rtx, 0, unsignedp, methods);
893 if (shift_mask == BITS_PER_WORD - 1)
894 {
895 tmp = immed_wide_int_const
896 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
897 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
898 0, true, methods);
899 }
900 else
901 {
902 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
903 op1_mode), op1_mode);
904 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
905 0, true, methods);
906 }
907 }
908 if (tmp == 0 || carries == 0)
909 return false;
910 carries = expand_binop (word_mode, reverse_unsigned_shift,
911 carries, tmp, 0, unsignedp, methods);
912 if (carries == 0)
913 return false;
914
915 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
916 so the result can go directly into INTO_TARGET if convenient. */
917 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
918 into_target, unsignedp, methods);
919 if (tmp == 0)
920 return false;
921
922 /* Now OR in the bits carried over from OUTOF_INPUT. */
923 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
924 into_target, unsignedp, methods))
925 return false;
926
927 /* Use a standard word_mode shift for the out-of half. */
928 if (outof_target != 0)
929 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
930 outof_target, unsignedp, methods))
931 return false;
932
933 return true;
934 }
935
936
937 #ifdef HAVE_conditional_move
938 /* Try implementing expand_doubleword_shift using conditional moves.
939 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
940 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
941 are the shift counts to use in the former and latter case. All other
942 arguments are the same as the parent routine. */
943
944 static bool
945 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
946 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
947 rtx outof_input, rtx into_input,
948 rtx subword_op1, rtx superword_op1,
949 rtx outof_target, rtx into_target,
950 int unsignedp, enum optab_methods methods,
951 unsigned HOST_WIDE_INT shift_mask)
952 {
953 rtx outof_superword, into_superword;
954
955 /* Put the superword version of the output into OUTOF_SUPERWORD and
956 INTO_SUPERWORD. */
957 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
958 if (outof_target != 0 && subword_op1 == superword_op1)
959 {
960 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
961 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
962 into_superword = outof_target;
963 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
964 outof_superword, 0, unsignedp, methods))
965 return false;
966 }
967 else
968 {
969 into_superword = gen_reg_rtx (word_mode);
970 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
971 outof_superword, into_superword,
972 unsignedp, methods))
973 return false;
974 }
975
976 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
977 if (!expand_subword_shift (op1_mode, binoptab,
978 outof_input, into_input, subword_op1,
979 outof_target, into_target,
980 unsignedp, methods, shift_mask))
981 return false;
982
983 /* Select between them. Do the INTO half first because INTO_SUPERWORD
984 might be the current value of OUTOF_TARGET. */
985 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
986 into_target, into_superword, word_mode, false))
987 return false;
988
989 if (outof_target != 0)
990 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
991 outof_target, outof_superword,
992 word_mode, false))
993 return false;
994
995 return true;
996 }
997 #endif
998
999 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1000 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1001 input operand; the shift moves bits in the direction OUTOF_INPUT->
1002 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1003 of the target. OP1 is the shift count and OP1_MODE is its mode.
1004 If OP1 is constant, it will have been truncated as appropriate
1005 and is known to be nonzero.
1006
1007 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1008 shift count is outside the range [0, BITS_PER_WORD). This routine must
1009 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1010
1011 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1012 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1013 fill with zeros or sign bits as appropriate.
1014
1015 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1016 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1017 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1018 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1019 are undefined.
1020
1021 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1022 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1023 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1024 function wants to calculate it itself.
1025
1026 Return true if the shift could be successfully synthesized. */
1027
1028 static bool
1029 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1030 rtx outof_input, rtx into_input, rtx op1,
1031 rtx outof_target, rtx into_target,
1032 int unsignedp, enum optab_methods methods,
1033 unsigned HOST_WIDE_INT shift_mask)
1034 {
1035 rtx superword_op1, tmp, cmp1, cmp2;
1036 rtx subword_label, done_label;
1037 enum rtx_code cmp_code;
1038
1039 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1040 fill the result with sign or zero bits as appropriate. If so, the value
1041 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1042 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1043 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1044
1045 This isn't worthwhile for constant shifts since the optimizers will
1046 cope better with in-range shift counts. */
1047 if (shift_mask >= BITS_PER_WORD
1048 && outof_target != 0
1049 && !CONSTANT_P (op1))
1050 {
1051 if (!expand_doubleword_shift (op1_mode, binoptab,
1052 outof_input, into_input, op1,
1053 0, into_target,
1054 unsignedp, methods, shift_mask))
1055 return false;
1056 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1057 outof_target, unsignedp, methods))
1058 return false;
1059 return true;
1060 }
1061
1062 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1063 is true when the effective shift value is less than BITS_PER_WORD.
1064 Set SUPERWORD_OP1 to the shift count that should be used to shift
1065 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1066 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
1067 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1068 {
1069 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1070 is a subword shift count. */
1071 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1072 0, true, methods);
1073 cmp2 = CONST0_RTX (op1_mode);
1074 cmp_code = EQ;
1075 superword_op1 = op1;
1076 }
1077 else
1078 {
1079 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1080 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1081 0, true, methods);
1082 cmp2 = CONST0_RTX (op1_mode);
1083 cmp_code = LT;
1084 superword_op1 = cmp1;
1085 }
1086 if (cmp1 == 0)
1087 return false;
1088
1089 /* If we can compute the condition at compile time, pick the
1090 appropriate subroutine. */
1091 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1092 if (tmp != 0 && CONST_INT_P (tmp))
1093 {
1094 if (tmp == const0_rtx)
1095 return expand_superword_shift (binoptab, outof_input, superword_op1,
1096 outof_target, into_target,
1097 unsignedp, methods);
1098 else
1099 return expand_subword_shift (op1_mode, binoptab,
1100 outof_input, into_input, op1,
1101 outof_target, into_target,
1102 unsignedp, methods, shift_mask);
1103 }
1104
1105 #ifdef HAVE_conditional_move
1106 /* Try using conditional moves to generate straight-line code. */
1107 {
1108 rtx start = get_last_insn ();
1109 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1110 cmp_code, cmp1, cmp2,
1111 outof_input, into_input,
1112 op1, superword_op1,
1113 outof_target, into_target,
1114 unsignedp, methods, shift_mask))
1115 return true;
1116 delete_insns_since (start);
1117 }
1118 #endif
1119
1120 /* As a last resort, use branches to select the correct alternative. */
1121 subword_label = gen_label_rtx ();
1122 done_label = gen_label_rtx ();
1123
1124 NO_DEFER_POP;
1125 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1126 0, 0, subword_label, -1);
1127 OK_DEFER_POP;
1128
1129 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1130 outof_target, into_target,
1131 unsignedp, methods))
1132 return false;
1133
1134 emit_jump_insn (gen_jump (done_label));
1135 emit_barrier ();
1136 emit_label (subword_label);
1137
1138 if (!expand_subword_shift (op1_mode, binoptab,
1139 outof_input, into_input, op1,
1140 outof_target, into_target,
1141 unsignedp, methods, shift_mask))
1142 return false;
1143
1144 emit_label (done_label);
1145 return true;
1146 }
1147 \f
1148 /* Subroutine of expand_binop. Perform a double word multiplication of
1149 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1150 as the target's word_mode. This function return NULL_RTX if anything
1151 goes wrong, in which case it may have already emitted instructions
1152 which need to be deleted.
1153
1154 If we want to multiply two two-word values and have normal and widening
1155 multiplies of single-word values, we can do this with three smaller
1156 multiplications.
1157
1158 The multiplication proceeds as follows:
1159 _______________________
1160 [__op0_high_|__op0_low__]
1161 _______________________
1162 * [__op1_high_|__op1_low__]
1163 _______________________________________________
1164 _______________________
1165 (1) [__op0_low__*__op1_low__]
1166 _______________________
1167 (2a) [__op0_low__*__op1_high_]
1168 _______________________
1169 (2b) [__op0_high_*__op1_low__]
1170 _______________________
1171 (3) [__op0_high_*__op1_high_]
1172
1173
1174 This gives a 4-word result. Since we are only interested in the
1175 lower 2 words, partial result (3) and the upper words of (2a) and
1176 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1177 calculated using non-widening multiplication.
1178
1179 (1), however, needs to be calculated with an unsigned widening
1180 multiplication. If this operation is not directly supported we
1181 try using a signed widening multiplication and adjust the result.
1182 This adjustment works as follows:
1183
1184 If both operands are positive then no adjustment is needed.
1185
1186 If the operands have different signs, for example op0_low < 0 and
1187 op1_low >= 0, the instruction treats the most significant bit of
1188 op0_low as a sign bit instead of a bit with significance
1189 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1190 with 2**BITS_PER_WORD - op0_low, and two's complements the
1191 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1192 the result.
1193
1194 Similarly, if both operands are negative, we need to add
1195 (op0_low + op1_low) * 2**BITS_PER_WORD.
1196
1197 We use a trick to adjust quickly. We logically shift op0_low right
1198 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1199 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1200 logical shift exists, we do an arithmetic right shift and subtract
1201 the 0 or -1. */
1202
1203 static rtx
1204 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1205 bool umulp, enum optab_methods methods)
1206 {
1207 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1208 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1209 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1210 rtx product, adjust, product_high, temp;
1211
1212 rtx op0_high = operand_subword_force (op0, high, mode);
1213 rtx op0_low = operand_subword_force (op0, low, mode);
1214 rtx op1_high = operand_subword_force (op1, high, mode);
1215 rtx op1_low = operand_subword_force (op1, low, mode);
1216
1217 /* If we're using an unsigned multiply to directly compute the product
1218 of the low-order words of the operands and perform any required
1219 adjustments of the operands, we begin by trying two more multiplications
1220 and then computing the appropriate sum.
1221
1222 We have checked above that the required addition is provided.
1223 Full-word addition will normally always succeed, especially if
1224 it is provided at all, so we don't worry about its failure. The
1225 multiplication may well fail, however, so we do handle that. */
1226
1227 if (!umulp)
1228 {
1229 /* ??? This could be done with emit_store_flag where available. */
1230 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1231 NULL_RTX, 1, methods);
1232 if (temp)
1233 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1234 NULL_RTX, 0, OPTAB_DIRECT);
1235 else
1236 {
1237 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1238 NULL_RTX, 0, methods);
1239 if (!temp)
1240 return NULL_RTX;
1241 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1242 NULL_RTX, 0, OPTAB_DIRECT);
1243 }
1244
1245 if (!op0_high)
1246 return NULL_RTX;
1247 }
1248
1249 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1250 NULL_RTX, 0, OPTAB_DIRECT);
1251 if (!adjust)
1252 return NULL_RTX;
1253
1254 /* OP0_HIGH should now be dead. */
1255
1256 if (!umulp)
1257 {
1258 /* ??? This could be done with emit_store_flag where available. */
1259 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1260 NULL_RTX, 1, methods);
1261 if (temp)
1262 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1263 NULL_RTX, 0, OPTAB_DIRECT);
1264 else
1265 {
1266 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1267 NULL_RTX, 0, methods);
1268 if (!temp)
1269 return NULL_RTX;
1270 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1271 NULL_RTX, 0, OPTAB_DIRECT);
1272 }
1273
1274 if (!op1_high)
1275 return NULL_RTX;
1276 }
1277
1278 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1279 NULL_RTX, 0, OPTAB_DIRECT);
1280 if (!temp)
1281 return NULL_RTX;
1282
1283 /* OP1_HIGH should now be dead. */
1284
1285 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1286 NULL_RTX, 0, OPTAB_DIRECT);
1287
1288 if (target && !REG_P (target))
1289 target = NULL_RTX;
1290
1291 if (umulp)
1292 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1293 target, 1, OPTAB_DIRECT);
1294 else
1295 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1296 target, 1, OPTAB_DIRECT);
1297
1298 if (!product)
1299 return NULL_RTX;
1300
1301 product_high = operand_subword (product, high, 1, mode);
1302 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1303 NULL_RTX, 0, OPTAB_DIRECT);
1304 emit_move_insn (product_high, adjust);
1305 return product;
1306 }
1307 \f
1308 /* Wrapper around expand_binop which takes an rtx code to specify
1309 the operation to perform, not an optab pointer. All other
1310 arguments are the same. */
1311 rtx
1312 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1313 rtx op1, rtx target, int unsignedp,
1314 enum optab_methods methods)
1315 {
1316 optab binop = code_to_optab (code);
1317 gcc_assert (binop);
1318
1319 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1320 }
1321
1322 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1323 binop. Order them according to commutative_operand_precedence and, if
1324 possible, try to put TARGET or a pseudo first. */
1325 static bool
1326 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1327 {
1328 int op0_prec = commutative_operand_precedence (op0);
1329 int op1_prec = commutative_operand_precedence (op1);
1330
1331 if (op0_prec < op1_prec)
1332 return true;
1333
1334 if (op0_prec > op1_prec)
1335 return false;
1336
1337 /* With equal precedence, both orders are ok, but it is better if the
1338 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1339 if (target == 0 || REG_P (target))
1340 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1341 else
1342 return rtx_equal_p (op1, target);
1343 }
1344
1345 /* Return true if BINOPTAB implements a shift operation. */
1346
1347 static bool
1348 shift_optab_p (optab binoptab)
1349 {
1350 switch (optab_to_code (binoptab))
1351 {
1352 case ASHIFT:
1353 case SS_ASHIFT:
1354 case US_ASHIFT:
1355 case ASHIFTRT:
1356 case LSHIFTRT:
1357 case ROTATE:
1358 case ROTATERT:
1359 return true;
1360
1361 default:
1362 return false;
1363 }
1364 }
1365
1366 /* Return true if BINOPTAB implements a commutative binary operation. */
1367
1368 static bool
1369 commutative_optab_p (optab binoptab)
1370 {
1371 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1372 || binoptab == smul_widen_optab
1373 || binoptab == umul_widen_optab
1374 || binoptab == smul_highpart_optab
1375 || binoptab == umul_highpart_optab);
1376 }
1377
1378 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1379 optimizing, and if the operand is a constant that costs more than
1380 1 instruction, force the constant into a register and return that
1381 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1382
1383 static rtx
1384 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1385 int opn, rtx x, bool unsignedp)
1386 {
1387 bool speed = optimize_insn_for_speed_p ();
1388
1389 if (mode != VOIDmode
1390 && optimize
1391 && CONSTANT_P (x)
1392 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1393 > set_src_cost (x, speed)))
1394 {
1395 if (CONST_INT_P (x))
1396 {
1397 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1398 if (intval != INTVAL (x))
1399 x = GEN_INT (intval);
1400 }
1401 else
1402 x = convert_modes (mode, VOIDmode, x, unsignedp);
1403 x = force_reg (mode, x);
1404 }
1405 return x;
1406 }
1407
1408 /* Helper function for expand_binop: handle the case where there
1409 is an insn that directly implements the indicated operation.
1410 Returns null if this is not possible. */
1411 static rtx
1412 expand_binop_directly (enum machine_mode mode, optab binoptab,
1413 rtx op0, rtx op1,
1414 rtx target, int unsignedp, enum optab_methods methods,
1415 rtx last)
1416 {
1417 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1418 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1419 from_mode, 1);
1420 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1421 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1422 enum machine_mode mode0, mode1, tmp_mode;
1423 struct expand_operand ops[3];
1424 bool commutative_p;
1425 rtx pat;
1426 rtx xop0 = op0, xop1 = op1;
1427 rtx swap;
1428
1429 /* If it is a commutative operator and the modes would match
1430 if we would swap the operands, we can save the conversions. */
1431 commutative_p = commutative_optab_p (binoptab);
1432 if (commutative_p
1433 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1434 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1435 {
1436 swap = xop0;
1437 xop0 = xop1;
1438 xop1 = swap;
1439 }
1440
1441 /* If we are optimizing, force expensive constants into a register. */
1442 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1443 if (!shift_optab_p (binoptab))
1444 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1445
1446 /* In case the insn wants input operands in modes different from
1447 those of the actual operands, convert the operands. It would
1448 seem that we don't need to convert CONST_INTs, but we do, so
1449 that they're properly zero-extended, sign-extended or truncated
1450 for their mode. */
1451
1452 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1453 if (xmode0 != VOIDmode && xmode0 != mode0)
1454 {
1455 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1456 mode0 = xmode0;
1457 }
1458
1459 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1460 if (xmode1 != VOIDmode && xmode1 != mode1)
1461 {
1462 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1463 mode1 = xmode1;
1464 }
1465
1466 /* If operation is commutative,
1467 try to make the first operand a register.
1468 Even better, try to make it the same as the target.
1469 Also try to make the last operand a constant. */
1470 if (commutative_p
1471 && swap_commutative_operands_with_target (target, xop0, xop1))
1472 {
1473 swap = xop1;
1474 xop1 = xop0;
1475 xop0 = swap;
1476 }
1477
1478 /* Now, if insn's predicates don't allow our operands, put them into
1479 pseudo regs. */
1480
1481 if (binoptab == vec_pack_trunc_optab
1482 || binoptab == vec_pack_usat_optab
1483 || binoptab == vec_pack_ssat_optab
1484 || binoptab == vec_pack_ufix_trunc_optab
1485 || binoptab == vec_pack_sfix_trunc_optab)
1486 {
1487 /* The mode of the result is different then the mode of the
1488 arguments. */
1489 tmp_mode = insn_data[(int) icode].operand[0].mode;
1490 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1491 {
1492 delete_insns_since (last);
1493 return NULL_RTX;
1494 }
1495 }
1496 else
1497 tmp_mode = mode;
1498
1499 create_output_operand (&ops[0], target, tmp_mode);
1500 create_input_operand (&ops[1], xop0, mode0);
1501 create_input_operand (&ops[2], xop1, mode1);
1502 pat = maybe_gen_insn (icode, 3, ops);
1503 if (pat)
1504 {
1505 /* If PAT is composed of more than one insn, try to add an appropriate
1506 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1507 operand, call expand_binop again, this time without a target. */
1508 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1509 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1510 ops[1].value, ops[2].value))
1511 {
1512 delete_insns_since (last);
1513 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1514 unsignedp, methods);
1515 }
1516
1517 emit_insn (pat);
1518 return ops[0].value;
1519 }
1520 delete_insns_since (last);
1521 return NULL_RTX;
1522 }
1523
1524 /* Generate code to perform an operation specified by BINOPTAB
1525 on operands OP0 and OP1, with result having machine-mode MODE.
1526
1527 UNSIGNEDP is for the case where we have to widen the operands
1528 to perform the operation. It says to use zero-extension.
1529
1530 If TARGET is nonzero, the value
1531 is generated there, if it is convenient to do so.
1532 In all cases an rtx is returned for the locus of the value;
1533 this may or may not be TARGET. */
1534
1535 rtx
1536 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1537 rtx target, int unsignedp, enum optab_methods methods)
1538 {
1539 enum optab_methods next_methods
1540 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1541 ? OPTAB_WIDEN : methods);
1542 enum mode_class mclass;
1543 enum machine_mode wider_mode;
1544 rtx libfunc;
1545 rtx temp;
1546 rtx entry_last = get_last_insn ();
1547 rtx last;
1548
1549 mclass = GET_MODE_CLASS (mode);
1550
1551 /* If subtracting an integer constant, convert this into an addition of
1552 the negated constant. */
1553
1554 if (binoptab == sub_optab && CONST_INT_P (op1))
1555 {
1556 op1 = negate_rtx (mode, op1);
1557 binoptab = add_optab;
1558 }
1559
1560 /* Record where to delete back to if we backtrack. */
1561 last = get_last_insn ();
1562
1563 /* If we can do it with a three-operand insn, do so. */
1564
1565 if (methods != OPTAB_MUST_WIDEN
1566 && find_widening_optab_handler (binoptab, mode,
1567 widened_mode (mode, op0, op1), 1)
1568 != CODE_FOR_nothing)
1569 {
1570 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1571 unsignedp, methods, last);
1572 if (temp)
1573 return temp;
1574 }
1575
1576 /* If we were trying to rotate, and that didn't work, try rotating
1577 the other direction before falling back to shifts and bitwise-or. */
1578 if (((binoptab == rotl_optab
1579 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1580 || (binoptab == rotr_optab
1581 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1582 && mclass == MODE_INT)
1583 {
1584 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1585 rtx newop1;
1586 unsigned int bits = GET_MODE_PRECISION (mode);
1587
1588 if (CONST_INT_P (op1))
1589 newop1 = GEN_INT (bits - INTVAL (op1));
1590 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1591 newop1 = negate_rtx (GET_MODE (op1), op1);
1592 else
1593 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1594 gen_int_mode (bits, GET_MODE (op1)), op1,
1595 NULL_RTX, unsignedp, OPTAB_DIRECT);
1596
1597 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1598 target, unsignedp, methods, last);
1599 if (temp)
1600 return temp;
1601 }
1602
1603 /* If this is a multiply, see if we can do a widening operation that
1604 takes operands of this mode and makes a wider mode. */
1605
1606 if (binoptab == smul_optab
1607 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1608 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1609 : smul_widen_optab),
1610 GET_MODE_2XWIDER_MODE (mode), mode)
1611 != CODE_FOR_nothing))
1612 {
1613 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1614 unsignedp ? umul_widen_optab : smul_widen_optab,
1615 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1616
1617 if (temp != 0)
1618 {
1619 if (GET_MODE_CLASS (mode) == MODE_INT
1620 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1621 return gen_lowpart (mode, temp);
1622 else
1623 return convert_to_mode (mode, temp, unsignedp);
1624 }
1625 }
1626
1627 /* If this is a vector shift by a scalar, see if we can do a vector
1628 shift by a vector. If so, broadcast the scalar into a vector. */
1629 if (mclass == MODE_VECTOR_INT)
1630 {
1631 optab otheroptab = unknown_optab;
1632
1633 if (binoptab == ashl_optab)
1634 otheroptab = vashl_optab;
1635 else if (binoptab == ashr_optab)
1636 otheroptab = vashr_optab;
1637 else if (binoptab == lshr_optab)
1638 otheroptab = vlshr_optab;
1639 else if (binoptab == rotl_optab)
1640 otheroptab = vrotl_optab;
1641 else if (binoptab == rotr_optab)
1642 otheroptab = vrotr_optab;
1643
1644 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1645 {
1646 rtx vop1 = expand_vector_broadcast (mode, op1);
1647 if (vop1)
1648 {
1649 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1650 target, unsignedp, methods, last);
1651 if (temp)
1652 return temp;
1653 }
1654 }
1655 }
1656
1657 /* Look for a wider mode of the same class for which we think we
1658 can open-code the operation. Check for a widening multiply at the
1659 wider mode as well. */
1660
1661 if (CLASS_HAS_WIDER_MODES_P (mclass)
1662 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1663 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1664 wider_mode != VOIDmode;
1665 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1666 {
1667 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1668 || (binoptab == smul_optab
1669 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1670 && (find_widening_optab_handler ((unsignedp
1671 ? umul_widen_optab
1672 : smul_widen_optab),
1673 GET_MODE_WIDER_MODE (wider_mode),
1674 mode, 0)
1675 != CODE_FOR_nothing)))
1676 {
1677 rtx xop0 = op0, xop1 = op1;
1678 int no_extend = 0;
1679
1680 /* For certain integer operations, we need not actually extend
1681 the narrow operands, as long as we will truncate
1682 the results to the same narrowness. */
1683
1684 if ((binoptab == ior_optab || binoptab == and_optab
1685 || binoptab == xor_optab
1686 || binoptab == add_optab || binoptab == sub_optab
1687 || binoptab == smul_optab || binoptab == ashl_optab)
1688 && mclass == MODE_INT)
1689 {
1690 no_extend = 1;
1691 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1692 xop0, unsignedp);
1693 if (binoptab != ashl_optab)
1694 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1695 xop1, unsignedp);
1696 }
1697
1698 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1699
1700 /* The second operand of a shift must always be extended. */
1701 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1702 no_extend && binoptab != ashl_optab);
1703
1704 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1705 unsignedp, OPTAB_DIRECT);
1706 if (temp)
1707 {
1708 if (mclass != MODE_INT
1709 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1710 {
1711 if (target == 0)
1712 target = gen_reg_rtx (mode);
1713 convert_move (target, temp, 0);
1714 return target;
1715 }
1716 else
1717 return gen_lowpart (mode, temp);
1718 }
1719 else
1720 delete_insns_since (last);
1721 }
1722 }
1723
1724 /* If operation is commutative,
1725 try to make the first operand a register.
1726 Even better, try to make it the same as the target.
1727 Also try to make the last operand a constant. */
1728 if (commutative_optab_p (binoptab)
1729 && swap_commutative_operands_with_target (target, op0, op1))
1730 {
1731 temp = op1;
1732 op1 = op0;
1733 op0 = temp;
1734 }
1735
1736 /* These can be done a word at a time. */
1737 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1738 && mclass == MODE_INT
1739 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1740 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1741 {
1742 int i;
1743 rtx insns;
1744
1745 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1746 won't be accurate, so use a new target. */
1747 if (target == 0
1748 || target == op0
1749 || target == op1
1750 || !valid_multiword_target_p (target))
1751 target = gen_reg_rtx (mode);
1752
1753 start_sequence ();
1754
1755 /* Do the actual arithmetic. */
1756 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1757 {
1758 rtx target_piece = operand_subword (target, i, 1, mode);
1759 rtx x = expand_binop (word_mode, binoptab,
1760 operand_subword_force (op0, i, mode),
1761 operand_subword_force (op1, i, mode),
1762 target_piece, unsignedp, next_methods);
1763
1764 if (x == 0)
1765 break;
1766
1767 if (target_piece != x)
1768 emit_move_insn (target_piece, x);
1769 }
1770
1771 insns = get_insns ();
1772 end_sequence ();
1773
1774 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1775 {
1776 emit_insn (insns);
1777 return target;
1778 }
1779 }
1780
1781 /* Synthesize double word shifts from single word shifts. */
1782 if ((binoptab == lshr_optab || binoptab == ashl_optab
1783 || binoptab == ashr_optab)
1784 && mclass == MODE_INT
1785 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1786 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1787 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1788 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1789 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1790 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1791 {
1792 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1793 enum machine_mode op1_mode;
1794
1795 double_shift_mask = targetm.shift_truncation_mask (mode);
1796 shift_mask = targetm.shift_truncation_mask (word_mode);
1797 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1798
1799 /* Apply the truncation to constant shifts. */
1800 if (double_shift_mask > 0 && CONST_INT_P (op1))
1801 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1802
1803 if (op1 == CONST0_RTX (op1_mode))
1804 return op0;
1805
1806 /* Make sure that this is a combination that expand_doubleword_shift
1807 can handle. See the comments there for details. */
1808 if (double_shift_mask == 0
1809 || (shift_mask == BITS_PER_WORD - 1
1810 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1811 {
1812 rtx insns;
1813 rtx into_target, outof_target;
1814 rtx into_input, outof_input;
1815 int left_shift, outof_word;
1816
1817 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1818 won't be accurate, so use a new target. */
1819 if (target == 0
1820 || target == op0
1821 || target == op1
1822 || !valid_multiword_target_p (target))
1823 target = gen_reg_rtx (mode);
1824
1825 start_sequence ();
1826
1827 /* OUTOF_* is the word we are shifting bits away from, and
1828 INTO_* is the word that we are shifting bits towards, thus
1829 they differ depending on the direction of the shift and
1830 WORDS_BIG_ENDIAN. */
1831
1832 left_shift = binoptab == ashl_optab;
1833 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1834
1835 outof_target = operand_subword (target, outof_word, 1, mode);
1836 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1837
1838 outof_input = operand_subword_force (op0, outof_word, mode);
1839 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1840
1841 if (expand_doubleword_shift (op1_mode, binoptab,
1842 outof_input, into_input, op1,
1843 outof_target, into_target,
1844 unsignedp, next_methods, shift_mask))
1845 {
1846 insns = get_insns ();
1847 end_sequence ();
1848
1849 emit_insn (insns);
1850 return target;
1851 }
1852 end_sequence ();
1853 }
1854 }
1855
1856 /* Synthesize double word rotates from single word shifts. */
1857 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1858 && mclass == MODE_INT
1859 && CONST_INT_P (op1)
1860 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1861 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1862 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1863 {
1864 rtx insns;
1865 rtx into_target, outof_target;
1866 rtx into_input, outof_input;
1867 rtx inter;
1868 int shift_count, left_shift, outof_word;
1869
1870 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1871 won't be accurate, so use a new target. Do this also if target is not
1872 a REG, first because having a register instead may open optimization
1873 opportunities, and second because if target and op0 happen to be MEMs
1874 designating the same location, we would risk clobbering it too early
1875 in the code sequence we generate below. */
1876 if (target == 0
1877 || target == op0
1878 || target == op1
1879 || !REG_P (target)
1880 || !valid_multiword_target_p (target))
1881 target = gen_reg_rtx (mode);
1882
1883 start_sequence ();
1884
1885 shift_count = INTVAL (op1);
1886
1887 /* OUTOF_* is the word we are shifting bits away from, and
1888 INTO_* is the word that we are shifting bits towards, thus
1889 they differ depending on the direction of the shift and
1890 WORDS_BIG_ENDIAN. */
1891
1892 left_shift = (binoptab == rotl_optab);
1893 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1894
1895 outof_target = operand_subword (target, outof_word, 1, mode);
1896 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1897
1898 outof_input = operand_subword_force (op0, outof_word, mode);
1899 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1900
1901 if (shift_count == BITS_PER_WORD)
1902 {
1903 /* This is just a word swap. */
1904 emit_move_insn (outof_target, into_input);
1905 emit_move_insn (into_target, outof_input);
1906 inter = const0_rtx;
1907 }
1908 else
1909 {
1910 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1911 rtx first_shift_count, second_shift_count;
1912 optab reverse_unsigned_shift, unsigned_shift;
1913
1914 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1915 ? lshr_optab : ashl_optab);
1916
1917 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1918 ? ashl_optab : lshr_optab);
1919
1920 if (shift_count > BITS_PER_WORD)
1921 {
1922 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1923 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1924 }
1925 else
1926 {
1927 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1928 second_shift_count = GEN_INT (shift_count);
1929 }
1930
1931 into_temp1 = expand_binop (word_mode, unsigned_shift,
1932 outof_input, first_shift_count,
1933 NULL_RTX, unsignedp, next_methods);
1934 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1935 into_input, second_shift_count,
1936 NULL_RTX, unsignedp, next_methods);
1937
1938 if (into_temp1 != 0 && into_temp2 != 0)
1939 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1940 into_target, unsignedp, next_methods);
1941 else
1942 inter = 0;
1943
1944 if (inter != 0 && inter != into_target)
1945 emit_move_insn (into_target, inter);
1946
1947 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1948 into_input, first_shift_count,
1949 NULL_RTX, unsignedp, next_methods);
1950 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1951 outof_input, second_shift_count,
1952 NULL_RTX, unsignedp, next_methods);
1953
1954 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1955 inter = expand_binop (word_mode, ior_optab,
1956 outof_temp1, outof_temp2,
1957 outof_target, unsignedp, next_methods);
1958
1959 if (inter != 0 && inter != outof_target)
1960 emit_move_insn (outof_target, inter);
1961 }
1962
1963 insns = get_insns ();
1964 end_sequence ();
1965
1966 if (inter != 0)
1967 {
1968 emit_insn (insns);
1969 return target;
1970 }
1971 }
1972
1973 /* These can be done a word at a time by propagating carries. */
1974 if ((binoptab == add_optab || binoptab == sub_optab)
1975 && mclass == MODE_INT
1976 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1977 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1978 {
1979 unsigned int i;
1980 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1981 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1982 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1983 rtx xop0, xop1, xtarget;
1984
1985 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1986 value is one of those, use it. Otherwise, use 1 since it is the
1987 one easiest to get. */
1988 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1989 int normalizep = STORE_FLAG_VALUE;
1990 #else
1991 int normalizep = 1;
1992 #endif
1993
1994 /* Prepare the operands. */
1995 xop0 = force_reg (mode, op0);
1996 xop1 = force_reg (mode, op1);
1997
1998 xtarget = gen_reg_rtx (mode);
1999
2000 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
2001 target = xtarget;
2002
2003 /* Indicate for flow that the entire target reg is being set. */
2004 if (REG_P (target))
2005 emit_clobber (xtarget);
2006
2007 /* Do the actual arithmetic. */
2008 for (i = 0; i < nwords; i++)
2009 {
2010 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
2011 rtx target_piece = operand_subword (xtarget, index, 1, mode);
2012 rtx op0_piece = operand_subword_force (xop0, index, mode);
2013 rtx op1_piece = operand_subword_force (xop1, index, mode);
2014 rtx x;
2015
2016 /* Main add/subtract of the input operands. */
2017 x = expand_binop (word_mode, binoptab,
2018 op0_piece, op1_piece,
2019 target_piece, unsignedp, next_methods);
2020 if (x == 0)
2021 break;
2022
2023 if (i + 1 < nwords)
2024 {
2025 /* Store carry from main add/subtract. */
2026 carry_out = gen_reg_rtx (word_mode);
2027 carry_out = emit_store_flag_force (carry_out,
2028 (binoptab == add_optab
2029 ? LT : GT),
2030 x, op0_piece,
2031 word_mode, 1, normalizep);
2032 }
2033
2034 if (i > 0)
2035 {
2036 rtx newx;
2037
2038 /* Add/subtract previous carry to main result. */
2039 newx = expand_binop (word_mode,
2040 normalizep == 1 ? binoptab : otheroptab,
2041 x, carry_in,
2042 NULL_RTX, 1, next_methods);
2043
2044 if (i + 1 < nwords)
2045 {
2046 /* Get out carry from adding/subtracting carry in. */
2047 rtx carry_tmp = gen_reg_rtx (word_mode);
2048 carry_tmp = emit_store_flag_force (carry_tmp,
2049 (binoptab == add_optab
2050 ? LT : GT),
2051 newx, x,
2052 word_mode, 1, normalizep);
2053
2054 /* Logical-ior the two poss. carry together. */
2055 carry_out = expand_binop (word_mode, ior_optab,
2056 carry_out, carry_tmp,
2057 carry_out, 0, next_methods);
2058 if (carry_out == 0)
2059 break;
2060 }
2061 emit_move_insn (target_piece, newx);
2062 }
2063 else
2064 {
2065 if (x != target_piece)
2066 emit_move_insn (target_piece, x);
2067 }
2068
2069 carry_in = carry_out;
2070 }
2071
2072 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2073 {
2074 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2075 || ! rtx_equal_p (target, xtarget))
2076 {
2077 rtx temp = emit_move_insn (target, xtarget);
2078
2079 set_dst_reg_note (temp, REG_EQUAL,
2080 gen_rtx_fmt_ee (optab_to_code (binoptab),
2081 mode, copy_rtx (xop0),
2082 copy_rtx (xop1)),
2083 target);
2084 }
2085 else
2086 target = xtarget;
2087
2088 return target;
2089 }
2090
2091 else
2092 delete_insns_since (last);
2093 }
2094
2095 /* Attempt to synthesize double word multiplies using a sequence of word
2096 mode multiplications. We first attempt to generate a sequence using a
2097 more efficient unsigned widening multiply, and if that fails we then
2098 try using a signed widening multiply. */
2099
2100 if (binoptab == smul_optab
2101 && mclass == MODE_INT
2102 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2103 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2104 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2105 {
2106 rtx product = NULL_RTX;
2107 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2108 != CODE_FOR_nothing)
2109 {
2110 product = expand_doubleword_mult (mode, op0, op1, target,
2111 true, methods);
2112 if (!product)
2113 delete_insns_since (last);
2114 }
2115
2116 if (product == NULL_RTX
2117 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2118 != CODE_FOR_nothing)
2119 {
2120 product = expand_doubleword_mult (mode, op0, op1, target,
2121 false, methods);
2122 if (!product)
2123 delete_insns_since (last);
2124 }
2125
2126 if (product != NULL_RTX)
2127 {
2128 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2129 {
2130 temp = emit_move_insn (target ? target : product, product);
2131 set_dst_reg_note (temp,
2132 REG_EQUAL,
2133 gen_rtx_fmt_ee (MULT, mode,
2134 copy_rtx (op0),
2135 copy_rtx (op1)),
2136 target ? target : product);
2137 }
2138 return product;
2139 }
2140 }
2141
2142 /* It can't be open-coded in this mode.
2143 Use a library call if one is available and caller says that's ok. */
2144
2145 libfunc = optab_libfunc (binoptab, mode);
2146 if (libfunc
2147 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2148 {
2149 rtx insns;
2150 rtx op1x = op1;
2151 enum machine_mode op1_mode = mode;
2152 rtx value;
2153
2154 start_sequence ();
2155
2156 if (shift_optab_p (binoptab))
2157 {
2158 op1_mode = targetm.libgcc_shift_count_mode ();
2159 /* Specify unsigned here,
2160 since negative shift counts are meaningless. */
2161 op1x = convert_to_mode (op1_mode, op1, 1);
2162 }
2163
2164 if (GET_MODE (op0) != VOIDmode
2165 && GET_MODE (op0) != mode)
2166 op0 = convert_to_mode (mode, op0, unsignedp);
2167
2168 /* Pass 1 for NO_QUEUE so we don't lose any increments
2169 if the libcall is cse'd or moved. */
2170 value = emit_library_call_value (libfunc,
2171 NULL_RTX, LCT_CONST, mode, 2,
2172 op0, mode, op1x, op1_mode);
2173
2174 insns = get_insns ();
2175 end_sequence ();
2176
2177 target = gen_reg_rtx (mode);
2178 emit_libcall_block_1 (insns, target, value,
2179 gen_rtx_fmt_ee (optab_to_code (binoptab),
2180 mode, op0, op1),
2181 trapv_binoptab_p (binoptab));
2182
2183 return target;
2184 }
2185
2186 delete_insns_since (last);
2187
2188 /* It can't be done in this mode. Can we do it in a wider mode? */
2189
2190 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2191 || methods == OPTAB_MUST_WIDEN))
2192 {
2193 /* Caller says, don't even try. */
2194 delete_insns_since (entry_last);
2195 return 0;
2196 }
2197
2198 /* Compute the value of METHODS to pass to recursive calls.
2199 Don't allow widening to be tried recursively. */
2200
2201 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2202
2203 /* Look for a wider mode of the same class for which it appears we can do
2204 the operation. */
2205
2206 if (CLASS_HAS_WIDER_MODES_P (mclass))
2207 {
2208 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2209 wider_mode != VOIDmode;
2210 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2211 {
2212 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2213 != CODE_FOR_nothing
2214 || (methods == OPTAB_LIB
2215 && optab_libfunc (binoptab, wider_mode)))
2216 {
2217 rtx xop0 = op0, xop1 = op1;
2218 int no_extend = 0;
2219
2220 /* For certain integer operations, we need not actually extend
2221 the narrow operands, as long as we will truncate
2222 the results to the same narrowness. */
2223
2224 if ((binoptab == ior_optab || binoptab == and_optab
2225 || binoptab == xor_optab
2226 || binoptab == add_optab || binoptab == sub_optab
2227 || binoptab == smul_optab || binoptab == ashl_optab)
2228 && mclass == MODE_INT)
2229 no_extend = 1;
2230
2231 xop0 = widen_operand (xop0, wider_mode, mode,
2232 unsignedp, no_extend);
2233
2234 /* The second operand of a shift must always be extended. */
2235 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2236 no_extend && binoptab != ashl_optab);
2237
2238 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2239 unsignedp, methods);
2240 if (temp)
2241 {
2242 if (mclass != MODE_INT
2243 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2244 {
2245 if (target == 0)
2246 target = gen_reg_rtx (mode);
2247 convert_move (target, temp, 0);
2248 return target;
2249 }
2250 else
2251 return gen_lowpart (mode, temp);
2252 }
2253 else
2254 delete_insns_since (last);
2255 }
2256 }
2257 }
2258
2259 delete_insns_since (entry_last);
2260 return 0;
2261 }
2262 \f
2263 /* Expand a binary operator which has both signed and unsigned forms.
2264 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2265 signed operations.
2266
2267 If we widen unsigned operands, we may use a signed wider operation instead
2268 of an unsigned wider operation, since the result would be the same. */
2269
2270 rtx
2271 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2272 rtx op0, rtx op1, rtx target, int unsignedp,
2273 enum optab_methods methods)
2274 {
2275 rtx temp;
2276 optab direct_optab = unsignedp ? uoptab : soptab;
2277 bool save_enable;
2278
2279 /* Do it without widening, if possible. */
2280 temp = expand_binop (mode, direct_optab, op0, op1, target,
2281 unsignedp, OPTAB_DIRECT);
2282 if (temp || methods == OPTAB_DIRECT)
2283 return temp;
2284
2285 /* Try widening to a signed int. Disable any direct use of any
2286 signed insn in the current mode. */
2287 save_enable = swap_optab_enable (soptab, mode, false);
2288
2289 temp = expand_binop (mode, soptab, op0, op1, target,
2290 unsignedp, OPTAB_WIDEN);
2291
2292 /* For unsigned operands, try widening to an unsigned int. */
2293 if (!temp && unsignedp)
2294 temp = expand_binop (mode, uoptab, op0, op1, target,
2295 unsignedp, OPTAB_WIDEN);
2296 if (temp || methods == OPTAB_WIDEN)
2297 goto egress;
2298
2299 /* Use the right width libcall if that exists. */
2300 temp = expand_binop (mode, direct_optab, op0, op1, target,
2301 unsignedp, OPTAB_LIB);
2302 if (temp || methods == OPTAB_LIB)
2303 goto egress;
2304
2305 /* Must widen and use a libcall, use either signed or unsigned. */
2306 temp = expand_binop (mode, soptab, op0, op1, target,
2307 unsignedp, methods);
2308 if (!temp && unsignedp)
2309 temp = expand_binop (mode, uoptab, op0, op1, target,
2310 unsignedp, methods);
2311
2312 egress:
2313 /* Undo the fiddling above. */
2314 if (save_enable)
2315 swap_optab_enable (soptab, mode, true);
2316 return temp;
2317 }
2318 \f
2319 /* Generate code to perform an operation specified by UNOPPTAB
2320 on operand OP0, with two results to TARG0 and TARG1.
2321 We assume that the order of the operands for the instruction
2322 is TARG0, TARG1, OP0.
2323
2324 Either TARG0 or TARG1 may be zero, but what that means is that
2325 the result is not actually wanted. We will generate it into
2326 a dummy pseudo-reg and discard it. They may not both be zero.
2327
2328 Returns 1 if this operation can be performed; 0 if not. */
2329
2330 int
2331 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2332 int unsignedp)
2333 {
2334 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2335 enum mode_class mclass;
2336 enum machine_mode wider_mode;
2337 rtx entry_last = get_last_insn ();
2338 rtx last;
2339
2340 mclass = GET_MODE_CLASS (mode);
2341
2342 if (!targ0)
2343 targ0 = gen_reg_rtx (mode);
2344 if (!targ1)
2345 targ1 = gen_reg_rtx (mode);
2346
2347 /* Record where to go back to if we fail. */
2348 last = get_last_insn ();
2349
2350 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2351 {
2352 struct expand_operand ops[3];
2353 enum insn_code icode = optab_handler (unoptab, mode);
2354
2355 create_fixed_operand (&ops[0], targ0);
2356 create_fixed_operand (&ops[1], targ1);
2357 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2358 if (maybe_expand_insn (icode, 3, ops))
2359 return 1;
2360 }
2361
2362 /* It can't be done in this mode. Can we do it in a wider mode? */
2363
2364 if (CLASS_HAS_WIDER_MODES_P (mclass))
2365 {
2366 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2367 wider_mode != VOIDmode;
2368 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2369 {
2370 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2371 {
2372 rtx t0 = gen_reg_rtx (wider_mode);
2373 rtx t1 = gen_reg_rtx (wider_mode);
2374 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2375
2376 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2377 {
2378 convert_move (targ0, t0, unsignedp);
2379 convert_move (targ1, t1, unsignedp);
2380 return 1;
2381 }
2382 else
2383 delete_insns_since (last);
2384 }
2385 }
2386 }
2387
2388 delete_insns_since (entry_last);
2389 return 0;
2390 }
2391 \f
2392 /* Generate code to perform an operation specified by BINOPTAB
2393 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2394 We assume that the order of the operands for the instruction
2395 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2396 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2397
2398 Either TARG0 or TARG1 may be zero, but what that means is that
2399 the result is not actually wanted. We will generate it into
2400 a dummy pseudo-reg and discard it. They may not both be zero.
2401
2402 Returns 1 if this operation can be performed; 0 if not. */
2403
2404 int
2405 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2406 int unsignedp)
2407 {
2408 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2409 enum mode_class mclass;
2410 enum machine_mode wider_mode;
2411 rtx entry_last = get_last_insn ();
2412 rtx last;
2413
2414 mclass = GET_MODE_CLASS (mode);
2415
2416 if (!targ0)
2417 targ0 = gen_reg_rtx (mode);
2418 if (!targ1)
2419 targ1 = gen_reg_rtx (mode);
2420
2421 /* Record where to go back to if we fail. */
2422 last = get_last_insn ();
2423
2424 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2425 {
2426 struct expand_operand ops[4];
2427 enum insn_code icode = optab_handler (binoptab, mode);
2428 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2429 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2430 rtx xop0 = op0, xop1 = op1;
2431
2432 /* If we are optimizing, force expensive constants into a register. */
2433 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2434 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2435
2436 create_fixed_operand (&ops[0], targ0);
2437 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2438 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2439 create_fixed_operand (&ops[3], targ1);
2440 if (maybe_expand_insn (icode, 4, ops))
2441 return 1;
2442 delete_insns_since (last);
2443 }
2444
2445 /* It can't be done in this mode. Can we do it in a wider mode? */
2446
2447 if (CLASS_HAS_WIDER_MODES_P (mclass))
2448 {
2449 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2450 wider_mode != VOIDmode;
2451 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2452 {
2453 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2454 {
2455 rtx t0 = gen_reg_rtx (wider_mode);
2456 rtx t1 = gen_reg_rtx (wider_mode);
2457 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2458 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2459
2460 if (expand_twoval_binop (binoptab, cop0, cop1,
2461 t0, t1, unsignedp))
2462 {
2463 convert_move (targ0, t0, unsignedp);
2464 convert_move (targ1, t1, unsignedp);
2465 return 1;
2466 }
2467 else
2468 delete_insns_since (last);
2469 }
2470 }
2471 }
2472
2473 delete_insns_since (entry_last);
2474 return 0;
2475 }
2476
2477 /* Expand the two-valued library call indicated by BINOPTAB, but
2478 preserve only one of the values. If TARG0 is non-NULL, the first
2479 value is placed into TARG0; otherwise the second value is placed
2480 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2481 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2482 This routine assumes that the value returned by the library call is
2483 as if the return value was of an integral mode twice as wide as the
2484 mode of OP0. Returns 1 if the call was successful. */
2485
2486 bool
2487 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2488 rtx targ0, rtx targ1, enum rtx_code code)
2489 {
2490 enum machine_mode mode;
2491 enum machine_mode libval_mode;
2492 rtx libval;
2493 rtx insns;
2494 rtx libfunc;
2495
2496 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2497 gcc_assert (!targ0 != !targ1);
2498
2499 mode = GET_MODE (op0);
2500 libfunc = optab_libfunc (binoptab, mode);
2501 if (!libfunc)
2502 return false;
2503
2504 /* The value returned by the library function will have twice as
2505 many bits as the nominal MODE. */
2506 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2507 MODE_INT);
2508 start_sequence ();
2509 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2510 libval_mode, 2,
2511 op0, mode,
2512 op1, mode);
2513 /* Get the part of VAL containing the value that we want. */
2514 libval = simplify_gen_subreg (mode, libval, libval_mode,
2515 targ0 ? 0 : GET_MODE_SIZE (mode));
2516 insns = get_insns ();
2517 end_sequence ();
2518 /* Move the into the desired location. */
2519 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2520 gen_rtx_fmt_ee (code, mode, op0, op1));
2521
2522 return true;
2523 }
2524
2525 \f
2526 /* Wrapper around expand_unop which takes an rtx code to specify
2527 the operation to perform, not an optab pointer. All other
2528 arguments are the same. */
2529 rtx
2530 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2531 rtx target, int unsignedp)
2532 {
2533 optab unop = code_to_optab (code);
2534 gcc_assert (unop);
2535
2536 return expand_unop (mode, unop, op0, target, unsignedp);
2537 }
2538
2539 /* Try calculating
2540 (clz:narrow x)
2541 as
2542 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2543
2544 A similar operation can be used for clrsb. UNOPTAB says which operation
2545 we are trying to expand. */
2546 static rtx
2547 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2548 {
2549 enum mode_class mclass = GET_MODE_CLASS (mode);
2550 if (CLASS_HAS_WIDER_MODES_P (mclass))
2551 {
2552 enum machine_mode wider_mode;
2553 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2554 wider_mode != VOIDmode;
2555 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2556 {
2557 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2558 {
2559 rtx xop0, temp, last;
2560
2561 last = get_last_insn ();
2562
2563 if (target == 0)
2564 target = gen_reg_rtx (mode);
2565 xop0 = widen_operand (op0, wider_mode, mode,
2566 unoptab != clrsb_optab, false);
2567 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2568 unoptab != clrsb_optab);
2569 if (temp != 0)
2570 temp = expand_binop
2571 (wider_mode, sub_optab, temp,
2572 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2573 - GET_MODE_PRECISION (mode),
2574 wider_mode),
2575 target, true, OPTAB_DIRECT);
2576 if (temp == 0)
2577 delete_insns_since (last);
2578
2579 return temp;
2580 }
2581 }
2582 }
2583 return 0;
2584 }
2585
2586 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2587 quantities, choosing which based on whether the high word is nonzero. */
2588 static rtx
2589 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2590 {
2591 rtx xop0 = force_reg (mode, op0);
2592 rtx subhi = gen_highpart (word_mode, xop0);
2593 rtx sublo = gen_lowpart (word_mode, xop0);
2594 rtx hi0_label = gen_label_rtx ();
2595 rtx after_label = gen_label_rtx ();
2596 rtx seq, temp, result;
2597
2598 /* If we were not given a target, use a word_mode register, not a
2599 'mode' register. The result will fit, and nobody is expecting
2600 anything bigger (the return type of __builtin_clz* is int). */
2601 if (!target)
2602 target = gen_reg_rtx (word_mode);
2603
2604 /* In any case, write to a word_mode scratch in both branches of the
2605 conditional, so we can ensure there is a single move insn setting
2606 'target' to tag a REG_EQUAL note on. */
2607 result = gen_reg_rtx (word_mode);
2608
2609 start_sequence ();
2610
2611 /* If the high word is not equal to zero,
2612 then clz of the full value is clz of the high word. */
2613 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2614 word_mode, true, hi0_label);
2615
2616 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2617 if (!temp)
2618 goto fail;
2619
2620 if (temp != result)
2621 convert_move (result, temp, true);
2622
2623 emit_jump_insn (gen_jump (after_label));
2624 emit_barrier ();
2625
2626 /* Else clz of the full value is clz of the low word plus the number
2627 of bits in the high word. */
2628 emit_label (hi0_label);
2629
2630 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2631 if (!temp)
2632 goto fail;
2633 temp = expand_binop (word_mode, add_optab, temp,
2634 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2635 result, true, OPTAB_DIRECT);
2636 if (!temp)
2637 goto fail;
2638 if (temp != result)
2639 convert_move (result, temp, true);
2640
2641 emit_label (after_label);
2642 convert_move (target, result, true);
2643
2644 seq = get_insns ();
2645 end_sequence ();
2646
2647 add_equal_note (seq, target, CLZ, xop0, 0);
2648 emit_insn (seq);
2649 return target;
2650
2651 fail:
2652 end_sequence ();
2653 return 0;
2654 }
2655
2656 /* Try calculating
2657 (bswap:narrow x)
2658 as
2659 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2660 static rtx
2661 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2662 {
2663 enum mode_class mclass = GET_MODE_CLASS (mode);
2664 enum machine_mode wider_mode;
2665 rtx x, last;
2666
2667 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2668 return NULL_RTX;
2669
2670 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2671 wider_mode != VOIDmode;
2672 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2673 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2674 goto found;
2675 return NULL_RTX;
2676
2677 found:
2678 last = get_last_insn ();
2679
2680 x = widen_operand (op0, wider_mode, mode, true, true);
2681 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2682
2683 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2684 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2685 if (x != 0)
2686 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2687 GET_MODE_BITSIZE (wider_mode)
2688 - GET_MODE_BITSIZE (mode),
2689 NULL_RTX, true);
2690
2691 if (x != 0)
2692 {
2693 if (target == 0)
2694 target = gen_reg_rtx (mode);
2695 emit_move_insn (target, gen_lowpart (mode, x));
2696 }
2697 else
2698 delete_insns_since (last);
2699
2700 return target;
2701 }
2702
2703 /* Try calculating bswap as two bswaps of two word-sized operands. */
2704
2705 static rtx
2706 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2707 {
2708 rtx t0, t1;
2709
2710 t1 = expand_unop (word_mode, bswap_optab,
2711 operand_subword_force (op, 0, mode), NULL_RTX, true);
2712 t0 = expand_unop (word_mode, bswap_optab,
2713 operand_subword_force (op, 1, mode), NULL_RTX, true);
2714
2715 if (target == 0 || !valid_multiword_target_p (target))
2716 target = gen_reg_rtx (mode);
2717 if (REG_P (target))
2718 emit_clobber (target);
2719 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2720 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2721
2722 return target;
2723 }
2724
2725 /* Try calculating (parity x) as (and (popcount x) 1), where
2726 popcount can also be done in a wider mode. */
2727 static rtx
2728 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2729 {
2730 enum mode_class mclass = GET_MODE_CLASS (mode);
2731 if (CLASS_HAS_WIDER_MODES_P (mclass))
2732 {
2733 enum machine_mode wider_mode;
2734 for (wider_mode = mode; wider_mode != VOIDmode;
2735 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2736 {
2737 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2738 {
2739 rtx xop0, temp, last;
2740
2741 last = get_last_insn ();
2742
2743 if (target == 0)
2744 target = gen_reg_rtx (mode);
2745 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2746 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2747 true);
2748 if (temp != 0)
2749 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2750 target, true, OPTAB_DIRECT);
2751 if (temp == 0)
2752 delete_insns_since (last);
2753
2754 return temp;
2755 }
2756 }
2757 }
2758 return 0;
2759 }
2760
2761 /* Try calculating ctz(x) as K - clz(x & -x) ,
2762 where K is GET_MODE_PRECISION(mode) - 1.
2763
2764 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2765 don't have to worry about what the hardware does in that case. (If
2766 the clz instruction produces the usual value at 0, which is K, the
2767 result of this code sequence will be -1; expand_ffs, below, relies
2768 on this. It might be nice to have it be K instead, for consistency
2769 with the (very few) processors that provide a ctz with a defined
2770 value, but that would take one more instruction, and it would be
2771 less convenient for expand_ffs anyway. */
2772
2773 static rtx
2774 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2775 {
2776 rtx seq, temp;
2777
2778 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2779 return 0;
2780
2781 start_sequence ();
2782
2783 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2784 if (temp)
2785 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2786 true, OPTAB_DIRECT);
2787 if (temp)
2788 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2789 if (temp)
2790 temp = expand_binop (mode, sub_optab,
2791 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2792 temp, target,
2793 true, OPTAB_DIRECT);
2794 if (temp == 0)
2795 {
2796 end_sequence ();
2797 return 0;
2798 }
2799
2800 seq = get_insns ();
2801 end_sequence ();
2802
2803 add_equal_note (seq, temp, CTZ, op0, 0);
2804 emit_insn (seq);
2805 return temp;
2806 }
2807
2808
2809 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2810 else with the sequence used by expand_clz.
2811
2812 The ffs builtin promises to return zero for a zero value and ctz/clz
2813 may have an undefined value in that case. If they do not give us a
2814 convenient value, we have to generate a test and branch. */
2815 static rtx
2816 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2817 {
2818 HOST_WIDE_INT val = 0;
2819 bool defined_at_zero = false;
2820 rtx temp, seq;
2821
2822 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2823 {
2824 start_sequence ();
2825
2826 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2827 if (!temp)
2828 goto fail;
2829
2830 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2831 }
2832 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2833 {
2834 start_sequence ();
2835 temp = expand_ctz (mode, op0, 0);
2836 if (!temp)
2837 goto fail;
2838
2839 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2840 {
2841 defined_at_zero = true;
2842 val = (GET_MODE_PRECISION (mode) - 1) - val;
2843 }
2844 }
2845 else
2846 return 0;
2847
2848 if (defined_at_zero && val == -1)
2849 /* No correction needed at zero. */;
2850 else
2851 {
2852 /* We don't try to do anything clever with the situation found
2853 on some processors (eg Alpha) where ctz(0:mode) ==
2854 bitsize(mode). If someone can think of a way to send N to -1
2855 and leave alone all values in the range 0..N-1 (where N is a
2856 power of two), cheaper than this test-and-branch, please add it.
2857
2858 The test-and-branch is done after the operation itself, in case
2859 the operation sets condition codes that can be recycled for this.
2860 (This is true on i386, for instance.) */
2861
2862 rtx nonzero_label = gen_label_rtx ();
2863 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2864 mode, true, nonzero_label);
2865
2866 convert_move (temp, GEN_INT (-1), false);
2867 emit_label (nonzero_label);
2868 }
2869
2870 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2871 to produce a value in the range 0..bitsize. */
2872 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2873 target, false, OPTAB_DIRECT);
2874 if (!temp)
2875 goto fail;
2876
2877 seq = get_insns ();
2878 end_sequence ();
2879
2880 add_equal_note (seq, temp, FFS, op0, 0);
2881 emit_insn (seq);
2882 return temp;
2883
2884 fail:
2885 end_sequence ();
2886 return 0;
2887 }
2888
2889 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2890 conditions, VAL may already be a SUBREG against which we cannot generate
2891 a further SUBREG. In this case, we expect forcing the value into a
2892 register will work around the situation. */
2893
2894 static rtx
2895 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2896 enum machine_mode imode)
2897 {
2898 rtx ret;
2899 ret = lowpart_subreg (omode, val, imode);
2900 if (ret == NULL)
2901 {
2902 val = force_reg (imode, val);
2903 ret = lowpart_subreg (omode, val, imode);
2904 gcc_assert (ret != NULL);
2905 }
2906 return ret;
2907 }
2908
2909 /* Expand a floating point absolute value or negation operation via a
2910 logical operation on the sign bit. */
2911
2912 static rtx
2913 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2914 rtx op0, rtx target)
2915 {
2916 const struct real_format *fmt;
2917 int bitpos, word, nwords, i;
2918 enum machine_mode imode;
2919 rtx temp, insns;
2920
2921 /* The format has to have a simple sign bit. */
2922 fmt = REAL_MODE_FORMAT (mode);
2923 if (fmt == NULL)
2924 return NULL_RTX;
2925
2926 bitpos = fmt->signbit_rw;
2927 if (bitpos < 0)
2928 return NULL_RTX;
2929
2930 /* Don't create negative zeros if the format doesn't support them. */
2931 if (code == NEG && !fmt->has_signed_zero)
2932 return NULL_RTX;
2933
2934 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2935 {
2936 imode = int_mode_for_mode (mode);
2937 if (imode == BLKmode)
2938 return NULL_RTX;
2939 word = 0;
2940 nwords = 1;
2941 }
2942 else
2943 {
2944 imode = word_mode;
2945
2946 if (FLOAT_WORDS_BIG_ENDIAN)
2947 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2948 else
2949 word = bitpos / BITS_PER_WORD;
2950 bitpos = bitpos % BITS_PER_WORD;
2951 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2952 }
2953
2954 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2955 if (code == ABS)
2956 mask = ~mask;
2957
2958 if (target == 0
2959 || target == op0
2960 || (nwords > 1 && !valid_multiword_target_p (target)))
2961 target = gen_reg_rtx (mode);
2962
2963 if (nwords > 1)
2964 {
2965 start_sequence ();
2966
2967 for (i = 0; i < nwords; ++i)
2968 {
2969 rtx targ_piece = operand_subword (target, i, 1, mode);
2970 rtx op0_piece = operand_subword_force (op0, i, mode);
2971
2972 if (i == word)
2973 {
2974 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2975 op0_piece,
2976 immed_wide_int_const (mask, imode),
2977 targ_piece, 1, OPTAB_LIB_WIDEN);
2978 if (temp != targ_piece)
2979 emit_move_insn (targ_piece, temp);
2980 }
2981 else
2982 emit_move_insn (targ_piece, op0_piece);
2983 }
2984
2985 insns = get_insns ();
2986 end_sequence ();
2987
2988 emit_insn (insns);
2989 }
2990 else
2991 {
2992 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2993 gen_lowpart (imode, op0),
2994 immed_wide_int_const (mask, imode),
2995 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2996 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2997
2998 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2999 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
3000 target);
3001 }
3002
3003 return target;
3004 }
3005
3006 /* As expand_unop, but will fail rather than attempt the operation in a
3007 different mode or with a libcall. */
3008 static rtx
3009 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3010 int unsignedp)
3011 {
3012 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
3013 {
3014 struct expand_operand ops[2];
3015 enum insn_code icode = optab_handler (unoptab, mode);
3016 rtx last = get_last_insn ();
3017 rtx pat;
3018
3019 create_output_operand (&ops[0], target, mode);
3020 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
3021 pat = maybe_gen_insn (icode, 2, ops);
3022 if (pat)
3023 {
3024 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3025 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
3026 ops[1].value, NULL_RTX))
3027 {
3028 delete_insns_since (last);
3029 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3030 }
3031
3032 emit_insn (pat);
3033
3034 return ops[0].value;
3035 }
3036 }
3037 return 0;
3038 }
3039
3040 /* Generate code to perform an operation specified by UNOPTAB
3041 on operand OP0, with result having machine-mode MODE.
3042
3043 UNSIGNEDP is for the case where we have to widen the operands
3044 to perform the operation. It says to use zero-extension.
3045
3046 If TARGET is nonzero, the value
3047 is generated there, if it is convenient to do so.
3048 In all cases an rtx is returned for the locus of the value;
3049 this may or may not be TARGET. */
3050
3051 rtx
3052 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3053 int unsignedp)
3054 {
3055 enum mode_class mclass = GET_MODE_CLASS (mode);
3056 enum machine_mode wider_mode;
3057 rtx temp;
3058 rtx libfunc;
3059
3060 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3061 if (temp)
3062 return temp;
3063
3064 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3065
3066 /* Widening (or narrowing) clz needs special treatment. */
3067 if (unoptab == clz_optab)
3068 {
3069 temp = widen_leading (mode, op0, target, unoptab);
3070 if (temp)
3071 return temp;
3072
3073 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3074 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3075 {
3076 temp = expand_doubleword_clz (mode, op0, target);
3077 if (temp)
3078 return temp;
3079 }
3080
3081 goto try_libcall;
3082 }
3083
3084 if (unoptab == clrsb_optab)
3085 {
3086 temp = widen_leading (mode, op0, target, unoptab);
3087 if (temp)
3088 return temp;
3089 goto try_libcall;
3090 }
3091
3092 /* Widening (or narrowing) bswap needs special treatment. */
3093 if (unoptab == bswap_optab)
3094 {
3095 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3096 or ROTATERT. First try these directly; if this fails, then try the
3097 obvious pair of shifts with allowed widening, as this will probably
3098 be always more efficient than the other fallback methods. */
3099 if (mode == HImode)
3100 {
3101 rtx last, temp1, temp2;
3102
3103 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3104 {
3105 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3106 unsignedp, OPTAB_DIRECT);
3107 if (temp)
3108 return temp;
3109 }
3110
3111 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3112 {
3113 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3114 unsignedp, OPTAB_DIRECT);
3115 if (temp)
3116 return temp;
3117 }
3118
3119 last = get_last_insn ();
3120
3121 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3122 unsignedp, OPTAB_WIDEN);
3123 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3124 unsignedp, OPTAB_WIDEN);
3125 if (temp1 && temp2)
3126 {
3127 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3128 unsignedp, OPTAB_WIDEN);
3129 if (temp)
3130 return temp;
3131 }
3132
3133 delete_insns_since (last);
3134 }
3135
3136 temp = widen_bswap (mode, op0, target);
3137 if (temp)
3138 return temp;
3139
3140 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3141 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3142 {
3143 temp = expand_doubleword_bswap (mode, op0, target);
3144 if (temp)
3145 return temp;
3146 }
3147
3148 goto try_libcall;
3149 }
3150
3151 if (CLASS_HAS_WIDER_MODES_P (mclass))
3152 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3153 wider_mode != VOIDmode;
3154 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3155 {
3156 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3157 {
3158 rtx xop0 = op0;
3159 rtx last = get_last_insn ();
3160
3161 /* For certain operations, we need not actually extend
3162 the narrow operand, as long as we will truncate the
3163 results to the same narrowness. */
3164
3165 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3166 (unoptab == neg_optab
3167 || unoptab == one_cmpl_optab)
3168 && mclass == MODE_INT);
3169
3170 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3171 unsignedp);
3172
3173 if (temp)
3174 {
3175 if (mclass != MODE_INT
3176 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3177 {
3178 if (target == 0)
3179 target = gen_reg_rtx (mode);
3180 convert_move (target, temp, 0);
3181 return target;
3182 }
3183 else
3184 return gen_lowpart (mode, temp);
3185 }
3186 else
3187 delete_insns_since (last);
3188 }
3189 }
3190
3191 /* These can be done a word at a time. */
3192 if (unoptab == one_cmpl_optab
3193 && mclass == MODE_INT
3194 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3195 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3196 {
3197 int i;
3198 rtx insns;
3199
3200 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3201 target = gen_reg_rtx (mode);
3202
3203 start_sequence ();
3204
3205 /* Do the actual arithmetic. */
3206 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3207 {
3208 rtx target_piece = operand_subword (target, i, 1, mode);
3209 rtx x = expand_unop (word_mode, unoptab,
3210 operand_subword_force (op0, i, mode),
3211 target_piece, unsignedp);
3212
3213 if (target_piece != x)
3214 emit_move_insn (target_piece, x);
3215 }
3216
3217 insns = get_insns ();
3218 end_sequence ();
3219
3220 emit_insn (insns);
3221 return target;
3222 }
3223
3224 if (optab_to_code (unoptab) == NEG)
3225 {
3226 /* Try negating floating point values by flipping the sign bit. */
3227 if (SCALAR_FLOAT_MODE_P (mode))
3228 {
3229 temp = expand_absneg_bit (NEG, mode, op0, target);
3230 if (temp)
3231 return temp;
3232 }
3233
3234 /* If there is no negation pattern, and we have no negative zero,
3235 try subtracting from zero. */
3236 if (!HONOR_SIGNED_ZEROS (mode))
3237 {
3238 temp = expand_binop (mode, (unoptab == negv_optab
3239 ? subv_optab : sub_optab),
3240 CONST0_RTX (mode), op0, target,
3241 unsignedp, OPTAB_DIRECT);
3242 if (temp)
3243 return temp;
3244 }
3245 }
3246
3247 /* Try calculating parity (x) as popcount (x) % 2. */
3248 if (unoptab == parity_optab)
3249 {
3250 temp = expand_parity (mode, op0, target);
3251 if (temp)
3252 return temp;
3253 }
3254
3255 /* Try implementing ffs (x) in terms of clz (x). */
3256 if (unoptab == ffs_optab)
3257 {
3258 temp = expand_ffs (mode, op0, target);
3259 if (temp)
3260 return temp;
3261 }
3262
3263 /* Try implementing ctz (x) in terms of clz (x). */
3264 if (unoptab == ctz_optab)
3265 {
3266 temp = expand_ctz (mode, op0, target);
3267 if (temp)
3268 return temp;
3269 }
3270
3271 try_libcall:
3272 /* Now try a library call in this mode. */
3273 libfunc = optab_libfunc (unoptab, mode);
3274 if (libfunc)
3275 {
3276 rtx insns;
3277 rtx value;
3278 rtx eq_value;
3279 enum machine_mode outmode = mode;
3280
3281 /* All of these functions return small values. Thus we choose to
3282 have them return something that isn't a double-word. */
3283 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3284 || unoptab == clrsb_optab || unoptab == popcount_optab
3285 || unoptab == parity_optab)
3286 outmode
3287 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3288 optab_libfunc (unoptab, mode)));
3289
3290 start_sequence ();
3291
3292 /* Pass 1 for NO_QUEUE so we don't lose any increments
3293 if the libcall is cse'd or moved. */
3294 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3295 1, op0, mode);
3296 insns = get_insns ();
3297 end_sequence ();
3298
3299 target = gen_reg_rtx (outmode);
3300 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3301 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3302 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3303 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3304 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3305 emit_libcall_block_1 (insns, target, value, eq_value,
3306 trapv_unoptab_p (unoptab));
3307
3308 return target;
3309 }
3310
3311 /* It can't be done in this mode. Can we do it in a wider mode? */
3312
3313 if (CLASS_HAS_WIDER_MODES_P (mclass))
3314 {
3315 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3316 wider_mode != VOIDmode;
3317 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3318 {
3319 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3320 || optab_libfunc (unoptab, wider_mode))
3321 {
3322 rtx xop0 = op0;
3323 rtx last = get_last_insn ();
3324
3325 /* For certain operations, we need not actually extend
3326 the narrow operand, as long as we will truncate the
3327 results to the same narrowness. */
3328 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3329 (unoptab == neg_optab
3330 || unoptab == one_cmpl_optab
3331 || unoptab == bswap_optab)
3332 && mclass == MODE_INT);
3333
3334 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3335 unsignedp);
3336
3337 /* If we are generating clz using wider mode, adjust the
3338 result. Similarly for clrsb. */
3339 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3340 && temp != 0)
3341 temp = expand_binop
3342 (wider_mode, sub_optab, temp,
3343 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3344 - GET_MODE_PRECISION (mode),
3345 wider_mode),
3346 target, true, OPTAB_DIRECT);
3347
3348 /* Likewise for bswap. */
3349 if (unoptab == bswap_optab && temp != 0)
3350 {
3351 gcc_assert (GET_MODE_PRECISION (wider_mode)
3352 == GET_MODE_BITSIZE (wider_mode)
3353 && GET_MODE_PRECISION (mode)
3354 == GET_MODE_BITSIZE (mode));
3355
3356 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3357 GET_MODE_BITSIZE (wider_mode)
3358 - GET_MODE_BITSIZE (mode),
3359 NULL_RTX, true);
3360 }
3361
3362 if (temp)
3363 {
3364 if (mclass != MODE_INT)
3365 {
3366 if (target == 0)
3367 target = gen_reg_rtx (mode);
3368 convert_move (target, temp, 0);
3369 return target;
3370 }
3371 else
3372 return gen_lowpart (mode, temp);
3373 }
3374 else
3375 delete_insns_since (last);
3376 }
3377 }
3378 }
3379
3380 /* One final attempt at implementing negation via subtraction,
3381 this time allowing widening of the operand. */
3382 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3383 {
3384 rtx temp;
3385 temp = expand_binop (mode,
3386 unoptab == negv_optab ? subv_optab : sub_optab,
3387 CONST0_RTX (mode), op0,
3388 target, unsignedp, OPTAB_LIB_WIDEN);
3389 if (temp)
3390 return temp;
3391 }
3392
3393 return 0;
3394 }
3395 \f
3396 /* Emit code to compute the absolute value of OP0, with result to
3397 TARGET if convenient. (TARGET may be 0.) The return value says
3398 where the result actually is to be found.
3399
3400 MODE is the mode of the operand; the mode of the result is
3401 different but can be deduced from MODE.
3402
3403 */
3404
3405 rtx
3406 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3407 int result_unsignedp)
3408 {
3409 rtx temp;
3410
3411 if (GET_MODE_CLASS (mode) != MODE_INT
3412 || ! flag_trapv)
3413 result_unsignedp = 1;
3414
3415 /* First try to do it with a special abs instruction. */
3416 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3417 op0, target, 0);
3418 if (temp != 0)
3419 return temp;
3420
3421 /* For floating point modes, try clearing the sign bit. */
3422 if (SCALAR_FLOAT_MODE_P (mode))
3423 {
3424 temp = expand_absneg_bit (ABS, mode, op0, target);
3425 if (temp)
3426 return temp;
3427 }
3428
3429 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3430 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3431 && !HONOR_SIGNED_ZEROS (mode))
3432 {
3433 rtx last = get_last_insn ();
3434
3435 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3436 op0, NULL_RTX, 0);
3437 if (temp != 0)
3438 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3439 OPTAB_WIDEN);
3440
3441 if (temp != 0)
3442 return temp;
3443
3444 delete_insns_since (last);
3445 }
3446
3447 /* If this machine has expensive jumps, we can do integer absolute
3448 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3449 where W is the width of MODE. */
3450
3451 if (GET_MODE_CLASS (mode) == MODE_INT
3452 && BRANCH_COST (optimize_insn_for_speed_p (),
3453 false) >= 2)
3454 {
3455 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3456 GET_MODE_PRECISION (mode) - 1,
3457 NULL_RTX, 0);
3458
3459 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3460 OPTAB_LIB_WIDEN);
3461 if (temp != 0)
3462 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3463 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3464
3465 if (temp != 0)
3466 return temp;
3467 }
3468
3469 return NULL_RTX;
3470 }
3471
3472 rtx
3473 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3474 int result_unsignedp, int safe)
3475 {
3476 rtx temp, op1;
3477
3478 if (GET_MODE_CLASS (mode) != MODE_INT
3479 || ! flag_trapv)
3480 result_unsignedp = 1;
3481
3482 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3483 if (temp != 0)
3484 return temp;
3485
3486 /* If that does not win, use conditional jump and negate. */
3487
3488 /* It is safe to use the target if it is the same
3489 as the source if this is also a pseudo register */
3490 if (op0 == target && REG_P (op0)
3491 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3492 safe = 1;
3493
3494 op1 = gen_label_rtx ();
3495 if (target == 0 || ! safe
3496 || GET_MODE (target) != mode
3497 || (MEM_P (target) && MEM_VOLATILE_P (target))
3498 || (REG_P (target)
3499 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3500 target = gen_reg_rtx (mode);
3501
3502 emit_move_insn (target, op0);
3503 NO_DEFER_POP;
3504
3505 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3506 NULL_RTX, NULL_RTX, op1, -1);
3507
3508 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3509 target, target, 0);
3510 if (op0 != target)
3511 emit_move_insn (target, op0);
3512 emit_label (op1);
3513 OK_DEFER_POP;
3514 return target;
3515 }
3516
3517 /* Emit code to compute the one's complement absolute value of OP0
3518 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3519 (TARGET may be NULL_RTX.) The return value says where the result
3520 actually is to be found.
3521
3522 MODE is the mode of the operand; the mode of the result is
3523 different but can be deduced from MODE. */
3524
3525 rtx
3526 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3527 {
3528 rtx temp;
3529
3530 /* Not applicable for floating point modes. */
3531 if (FLOAT_MODE_P (mode))
3532 return NULL_RTX;
3533
3534 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3535 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3536 {
3537 rtx last = get_last_insn ();
3538
3539 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3540 if (temp != 0)
3541 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3542 OPTAB_WIDEN);
3543
3544 if (temp != 0)
3545 return temp;
3546
3547 delete_insns_since (last);
3548 }
3549
3550 /* If this machine has expensive jumps, we can do one's complement
3551 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3552
3553 if (GET_MODE_CLASS (mode) == MODE_INT
3554 && BRANCH_COST (optimize_insn_for_speed_p (),
3555 false) >= 2)
3556 {
3557 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3558 GET_MODE_PRECISION (mode) - 1,
3559 NULL_RTX, 0);
3560
3561 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3562 OPTAB_LIB_WIDEN);
3563
3564 if (temp != 0)
3565 return temp;
3566 }
3567
3568 return NULL_RTX;
3569 }
3570
3571 /* A subroutine of expand_copysign, perform the copysign operation using the
3572 abs and neg primitives advertised to exist on the target. The assumption
3573 is that we have a split register file, and leaving op0 in fp registers,
3574 and not playing with subregs so much, will help the register allocator. */
3575
3576 static rtx
3577 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3578 int bitpos, bool op0_is_abs)
3579 {
3580 enum machine_mode imode;
3581 enum insn_code icode;
3582 rtx sign, label;
3583
3584 if (target == op1)
3585 target = NULL_RTX;
3586
3587 /* Check if the back end provides an insn that handles signbit for the
3588 argument's mode. */
3589 icode = optab_handler (signbit_optab, mode);
3590 if (icode != CODE_FOR_nothing)
3591 {
3592 imode = insn_data[(int) icode].operand[0].mode;
3593 sign = gen_reg_rtx (imode);
3594 emit_unop_insn (icode, sign, op1, UNKNOWN);
3595 }
3596 else
3597 {
3598 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3599 {
3600 imode = int_mode_for_mode (mode);
3601 if (imode == BLKmode)
3602 return NULL_RTX;
3603 op1 = gen_lowpart (imode, op1);
3604 }
3605 else
3606 {
3607 int word;
3608
3609 imode = word_mode;
3610 if (FLOAT_WORDS_BIG_ENDIAN)
3611 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3612 else
3613 word = bitpos / BITS_PER_WORD;
3614 bitpos = bitpos % BITS_PER_WORD;
3615 op1 = operand_subword_force (op1, word, mode);
3616 }
3617
3618 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3619 sign = expand_binop (imode, and_optab, op1,
3620 immed_wide_int_const (mask, imode),
3621 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3622 }
3623
3624 if (!op0_is_abs)
3625 {
3626 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3627 if (op0 == NULL)
3628 return NULL_RTX;
3629 target = op0;
3630 }
3631 else
3632 {
3633 if (target == NULL_RTX)
3634 target = copy_to_reg (op0);
3635 else
3636 emit_move_insn (target, op0);
3637 }
3638
3639 label = gen_label_rtx ();
3640 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3641
3642 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3643 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3644 else
3645 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3646 if (op0 != target)
3647 emit_move_insn (target, op0);
3648
3649 emit_label (label);
3650
3651 return target;
3652 }
3653
3654
3655 /* A subroutine of expand_copysign, perform the entire copysign operation
3656 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3657 is true if op0 is known to have its sign bit clear. */
3658
3659 static rtx
3660 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3661 int bitpos, bool op0_is_abs)
3662 {
3663 enum machine_mode imode;
3664 int word, nwords, i;
3665 rtx temp, insns;
3666
3667 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3668 {
3669 imode = int_mode_for_mode (mode);
3670 if (imode == BLKmode)
3671 return NULL_RTX;
3672 word = 0;
3673 nwords = 1;
3674 }
3675 else
3676 {
3677 imode = word_mode;
3678
3679 if (FLOAT_WORDS_BIG_ENDIAN)
3680 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3681 else
3682 word = bitpos / BITS_PER_WORD;
3683 bitpos = bitpos % BITS_PER_WORD;
3684 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3685 }
3686
3687 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3688
3689 if (target == 0
3690 || target == op0
3691 || target == op1
3692 || (nwords > 1 && !valid_multiword_target_p (target)))
3693 target = gen_reg_rtx (mode);
3694
3695 if (nwords > 1)
3696 {
3697 start_sequence ();
3698
3699 for (i = 0; i < nwords; ++i)
3700 {
3701 rtx targ_piece = operand_subword (target, i, 1, mode);
3702 rtx op0_piece = operand_subword_force (op0, i, mode);
3703
3704 if (i == word)
3705 {
3706 if (!op0_is_abs)
3707 op0_piece
3708 = expand_binop (imode, and_optab, op0_piece,
3709 immed_wide_int_const (~mask, imode),
3710 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3711 op1 = expand_binop (imode, and_optab,
3712 operand_subword_force (op1, i, mode),
3713 immed_wide_int_const (mask, imode),
3714 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3715
3716 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3717 targ_piece, 1, OPTAB_LIB_WIDEN);
3718 if (temp != targ_piece)
3719 emit_move_insn (targ_piece, temp);
3720 }
3721 else
3722 emit_move_insn (targ_piece, op0_piece);
3723 }
3724
3725 insns = get_insns ();
3726 end_sequence ();
3727
3728 emit_insn (insns);
3729 }
3730 else
3731 {
3732 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3733 immed_wide_int_const (mask, imode),
3734 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3735
3736 op0 = gen_lowpart (imode, op0);
3737 if (!op0_is_abs)
3738 op0 = expand_binop (imode, and_optab, op0,
3739 immed_wide_int_const (~mask, imode),
3740 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3741
3742 temp = expand_binop (imode, ior_optab, op0, op1,
3743 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3744 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3745 }
3746
3747 return target;
3748 }
3749
3750 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3751 scalar floating point mode. Return NULL if we do not know how to
3752 expand the operation inline. */
3753
3754 rtx
3755 expand_copysign (rtx op0, rtx op1, rtx target)
3756 {
3757 enum machine_mode mode = GET_MODE (op0);
3758 const struct real_format *fmt;
3759 bool op0_is_abs;
3760 rtx temp;
3761
3762 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3763 gcc_assert (GET_MODE (op1) == mode);
3764
3765 /* First try to do it with a special instruction. */
3766 temp = expand_binop (mode, copysign_optab, op0, op1,
3767 target, 0, OPTAB_DIRECT);
3768 if (temp)
3769 return temp;
3770
3771 fmt = REAL_MODE_FORMAT (mode);
3772 if (fmt == NULL || !fmt->has_signed_zero)
3773 return NULL_RTX;
3774
3775 op0_is_abs = false;
3776 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3777 {
3778 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3779 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3780 op0_is_abs = true;
3781 }
3782
3783 if (fmt->signbit_ro >= 0
3784 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3785 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3786 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3787 {
3788 temp = expand_copysign_absneg (mode, op0, op1, target,
3789 fmt->signbit_ro, op0_is_abs);
3790 if (temp)
3791 return temp;
3792 }
3793
3794 if (fmt->signbit_rw < 0)
3795 return NULL_RTX;
3796 return expand_copysign_bit (mode, op0, op1, target,
3797 fmt->signbit_rw, op0_is_abs);
3798 }
3799 \f
3800 /* Generate an instruction whose insn-code is INSN_CODE,
3801 with two operands: an output TARGET and an input OP0.
3802 TARGET *must* be nonzero, and the output is always stored there.
3803 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3804 the value that is stored into TARGET.
3805
3806 Return false if expansion failed. */
3807
3808 bool
3809 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3810 enum rtx_code code)
3811 {
3812 struct expand_operand ops[2];
3813 rtx pat;
3814
3815 create_output_operand (&ops[0], target, GET_MODE (target));
3816 create_input_operand (&ops[1], op0, GET_MODE (op0));
3817 pat = maybe_gen_insn (icode, 2, ops);
3818 if (!pat)
3819 return false;
3820
3821 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3822 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3823
3824 emit_insn (pat);
3825
3826 if (ops[0].value != target)
3827 emit_move_insn (target, ops[0].value);
3828 return true;
3829 }
3830 /* Generate an instruction whose insn-code is INSN_CODE,
3831 with two operands: an output TARGET and an input OP0.
3832 TARGET *must* be nonzero, and the output is always stored there.
3833 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3834 the value that is stored into TARGET. */
3835
3836 void
3837 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3838 {
3839 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3840 gcc_assert (ok);
3841 }
3842 \f
3843 struct no_conflict_data
3844 {
3845 rtx target, first, insn;
3846 bool must_stay;
3847 };
3848
3849 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3850 the currently examined clobber / store has to stay in the list of
3851 insns that constitute the actual libcall block. */
3852 static void
3853 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3854 {
3855 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3856
3857 /* If this inns directly contributes to setting the target, it must stay. */
3858 if (reg_overlap_mentioned_p (p->target, dest))
3859 p->must_stay = true;
3860 /* If we haven't committed to keeping any other insns in the list yet,
3861 there is nothing more to check. */
3862 else if (p->insn == p->first)
3863 return;
3864 /* If this insn sets / clobbers a register that feeds one of the insns
3865 already in the list, this insn has to stay too. */
3866 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3867 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3868 || reg_used_between_p (dest, p->first, p->insn)
3869 /* Likewise if this insn depends on a register set by a previous
3870 insn in the list, or if it sets a result (presumably a hard
3871 register) that is set or clobbered by a previous insn.
3872 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3873 SET_DEST perform the former check on the address, and the latter
3874 check on the MEM. */
3875 || (GET_CODE (set) == SET
3876 && (modified_in_p (SET_SRC (set), p->first)
3877 || modified_in_p (SET_DEST (set), p->first)
3878 || modified_between_p (SET_SRC (set), p->first, p->insn)
3879 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3880 p->must_stay = true;
3881 }
3882
3883 \f
3884 /* Emit code to make a call to a constant function or a library call.
3885
3886 INSNS is a list containing all insns emitted in the call.
3887 These insns leave the result in RESULT. Our block is to copy RESULT
3888 to TARGET, which is logically equivalent to EQUIV.
3889
3890 We first emit any insns that set a pseudo on the assumption that these are
3891 loading constants into registers; doing so allows them to be safely cse'ed
3892 between blocks. Then we emit all the other insns in the block, followed by
3893 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3894 note with an operand of EQUIV. */
3895
3896 static void
3897 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3898 bool equiv_may_trap)
3899 {
3900 rtx final_dest = target;
3901 rtx next, last, insn;
3902
3903 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3904 into a MEM later. Protect the libcall block from this change. */
3905 if (! REG_P (target) || REG_USERVAR_P (target))
3906 target = gen_reg_rtx (GET_MODE (target));
3907
3908 /* If we're using non-call exceptions, a libcall corresponding to an
3909 operation that may trap may also trap. */
3910 /* ??? See the comment in front of make_reg_eh_region_note. */
3911 if (cfun->can_throw_non_call_exceptions
3912 && (equiv_may_trap || may_trap_p (equiv)))
3913 {
3914 for (insn = insns; insn; insn = NEXT_INSN (insn))
3915 if (CALL_P (insn))
3916 {
3917 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3918 if (note)
3919 {
3920 int lp_nr = INTVAL (XEXP (note, 0));
3921 if (lp_nr == 0 || lp_nr == INT_MIN)
3922 remove_note (insn, note);
3923 }
3924 }
3925 }
3926 else
3927 {
3928 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3929 reg note to indicate that this call cannot throw or execute a nonlocal
3930 goto (unless there is already a REG_EH_REGION note, in which case
3931 we update it). */
3932 for (insn = insns; insn; insn = NEXT_INSN (insn))
3933 if (CALL_P (insn))
3934 make_reg_eh_region_note_nothrow_nononlocal (insn);
3935 }
3936
3937 /* First emit all insns that set pseudos. Remove them from the list as
3938 we go. Avoid insns that set pseudos which were referenced in previous
3939 insns. These can be generated by move_by_pieces, for example,
3940 to update an address. Similarly, avoid insns that reference things
3941 set in previous insns. */
3942
3943 for (insn = insns; insn; insn = next)
3944 {
3945 rtx set = single_set (insn);
3946
3947 next = NEXT_INSN (insn);
3948
3949 if (set != 0 && REG_P (SET_DEST (set))
3950 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3951 {
3952 struct no_conflict_data data;
3953
3954 data.target = const0_rtx;
3955 data.first = insns;
3956 data.insn = insn;
3957 data.must_stay = 0;
3958 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3959 if (! data.must_stay)
3960 {
3961 if (PREV_INSN (insn))
3962 NEXT_INSN (PREV_INSN (insn)) = next;
3963 else
3964 insns = next;
3965
3966 if (next)
3967 PREV_INSN (next) = PREV_INSN (insn);
3968
3969 add_insn (insn);
3970 }
3971 }
3972
3973 /* Some ports use a loop to copy large arguments onto the stack.
3974 Don't move anything outside such a loop. */
3975 if (LABEL_P (insn))
3976 break;
3977 }
3978
3979 /* Write the remaining insns followed by the final copy. */
3980 for (insn = insns; insn; insn = next)
3981 {
3982 next = NEXT_INSN (insn);
3983
3984 add_insn (insn);
3985 }
3986
3987 last = emit_move_insn (target, result);
3988 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3989
3990 if (final_dest != target)
3991 emit_move_insn (final_dest, target);
3992 }
3993
3994 void
3995 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3996 {
3997 emit_libcall_block_1 (insns, target, result, equiv, false);
3998 }
3999 \f
4000 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
4001 PURPOSE describes how this comparison will be used. CODE is the rtx
4002 comparison code we will be using.
4003
4004 ??? Actually, CODE is slightly weaker than that. A target is still
4005 required to implement all of the normal bcc operations, but not
4006 required to implement all (or any) of the unordered bcc operations. */
4007
4008 int
4009 can_compare_p (enum rtx_code code, enum machine_mode mode,
4010 enum can_compare_purpose purpose)
4011 {
4012 rtx test;
4013 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
4014 do
4015 {
4016 enum insn_code icode;
4017
4018 if (purpose == ccp_jump
4019 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
4020 && insn_operand_matches (icode, 0, test))
4021 return 1;
4022 if (purpose == ccp_store_flag
4023 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4024 && insn_operand_matches (icode, 1, test))
4025 return 1;
4026 if (purpose == ccp_cmov
4027 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4028 return 1;
4029
4030 mode = GET_MODE_WIDER_MODE (mode);
4031 PUT_MODE (test, mode);
4032 }
4033 while (mode != VOIDmode);
4034
4035 return 0;
4036 }
4037
4038 /* This function is called when we are going to emit a compare instruction that
4039 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4040
4041 *PMODE is the mode of the inputs (in case they are const_int).
4042 *PUNSIGNEDP nonzero says that the operands are unsigned;
4043 this matters if they need to be widened (as given by METHODS).
4044
4045 If they have mode BLKmode, then SIZE specifies the size of both operands.
4046
4047 This function performs all the setup necessary so that the caller only has
4048 to emit a single comparison insn. This setup can involve doing a BLKmode
4049 comparison or emitting a library call to perform the comparison if no insn
4050 is available to handle it.
4051 The values which are passed in through pointers can be modified; the caller
4052 should perform the comparison on the modified values. Constant
4053 comparisons must have already been folded. */
4054
4055 static void
4056 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4057 int unsignedp, enum optab_methods methods,
4058 rtx *ptest, enum machine_mode *pmode)
4059 {
4060 enum machine_mode mode = *pmode;
4061 rtx libfunc, test;
4062 enum machine_mode cmp_mode;
4063 enum mode_class mclass;
4064
4065 /* The other methods are not needed. */
4066 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4067 || methods == OPTAB_LIB_WIDEN);
4068
4069 /* If we are optimizing, force expensive constants into a register. */
4070 if (CONSTANT_P (x) && optimize
4071 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4072 > COSTS_N_INSNS (1)))
4073 x = force_reg (mode, x);
4074
4075 if (CONSTANT_P (y) && optimize
4076 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4077 > COSTS_N_INSNS (1)))
4078 y = force_reg (mode, y);
4079
4080 #ifdef HAVE_cc0
4081 /* Make sure if we have a canonical comparison. The RTL
4082 documentation states that canonical comparisons are required only
4083 for targets which have cc0. */
4084 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4085 #endif
4086
4087 /* Don't let both operands fail to indicate the mode. */
4088 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4089 x = force_reg (mode, x);
4090 if (mode == VOIDmode)
4091 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4092
4093 /* Handle all BLKmode compares. */
4094
4095 if (mode == BLKmode)
4096 {
4097 enum machine_mode result_mode;
4098 enum insn_code cmp_code;
4099 tree length_type;
4100 rtx libfunc;
4101 rtx result;
4102 rtx opalign
4103 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4104
4105 gcc_assert (size);
4106
4107 /* Try to use a memory block compare insn - either cmpstr
4108 or cmpmem will do. */
4109 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4110 cmp_mode != VOIDmode;
4111 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4112 {
4113 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4114 if (cmp_code == CODE_FOR_nothing)
4115 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4116 if (cmp_code == CODE_FOR_nothing)
4117 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4118 if (cmp_code == CODE_FOR_nothing)
4119 continue;
4120
4121 /* Must make sure the size fits the insn's mode. */
4122 if ((CONST_INT_P (size)
4123 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4124 || (GET_MODE_BITSIZE (GET_MODE (size))
4125 > GET_MODE_BITSIZE (cmp_mode)))
4126 continue;
4127
4128 result_mode = insn_data[cmp_code].operand[0].mode;
4129 result = gen_reg_rtx (result_mode);
4130 size = convert_to_mode (cmp_mode, size, 1);
4131 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4132
4133 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4134 *pmode = result_mode;
4135 return;
4136 }
4137
4138 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4139 goto fail;
4140
4141 /* Otherwise call a library function, memcmp. */
4142 libfunc = memcmp_libfunc;
4143 length_type = sizetype;
4144 result_mode = TYPE_MODE (integer_type_node);
4145 cmp_mode = TYPE_MODE (length_type);
4146 size = convert_to_mode (TYPE_MODE (length_type), size,
4147 TYPE_UNSIGNED (length_type));
4148
4149 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4150 result_mode, 3,
4151 XEXP (x, 0), Pmode,
4152 XEXP (y, 0), Pmode,
4153 size, cmp_mode);
4154 x = result;
4155 y = const0_rtx;
4156 mode = result_mode;
4157 methods = OPTAB_LIB_WIDEN;
4158 unsignedp = false;
4159 }
4160
4161 /* Don't allow operands to the compare to trap, as that can put the
4162 compare and branch in different basic blocks. */
4163 if (cfun->can_throw_non_call_exceptions)
4164 {
4165 if (may_trap_p (x))
4166 x = force_reg (mode, x);
4167 if (may_trap_p (y))
4168 y = force_reg (mode, y);
4169 }
4170
4171 if (GET_MODE_CLASS (mode) == MODE_CC)
4172 {
4173 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4174 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4175 return;
4176 }
4177
4178 mclass = GET_MODE_CLASS (mode);
4179 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4180 cmp_mode = mode;
4181 do
4182 {
4183 enum insn_code icode;
4184 icode = optab_handler (cbranch_optab, cmp_mode);
4185 if (icode != CODE_FOR_nothing
4186 && insn_operand_matches (icode, 0, test))
4187 {
4188 rtx last = get_last_insn ();
4189 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4190 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4191 if (op0 && op1
4192 && insn_operand_matches (icode, 1, op0)
4193 && insn_operand_matches (icode, 2, op1))
4194 {
4195 XEXP (test, 0) = op0;
4196 XEXP (test, 1) = op1;
4197 *ptest = test;
4198 *pmode = cmp_mode;
4199 return;
4200 }
4201 delete_insns_since (last);
4202 }
4203
4204 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4205 break;
4206 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4207 }
4208 while (cmp_mode != VOIDmode);
4209
4210 if (methods != OPTAB_LIB_WIDEN)
4211 goto fail;
4212
4213 if (!SCALAR_FLOAT_MODE_P (mode))
4214 {
4215 rtx result;
4216 enum machine_mode ret_mode;
4217
4218 /* Handle a libcall just for the mode we are using. */
4219 libfunc = optab_libfunc (cmp_optab, mode);
4220 gcc_assert (libfunc);
4221
4222 /* If we want unsigned, and this mode has a distinct unsigned
4223 comparison routine, use that. */
4224 if (unsignedp)
4225 {
4226 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4227 if (ulibfunc)
4228 libfunc = ulibfunc;
4229 }
4230
4231 ret_mode = targetm.libgcc_cmp_return_mode ();
4232 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4233 ret_mode, 2, x, mode, y, mode);
4234
4235 /* There are two kinds of comparison routines. Biased routines
4236 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4237 of gcc expect that the comparison operation is equivalent
4238 to the modified comparison. For signed comparisons compare the
4239 result against 1 in the biased case, and zero in the unbiased
4240 case. For unsigned comparisons always compare against 1 after
4241 biasing the unbiased result by adding 1. This gives us a way to
4242 represent LTU.
4243 The comparisons in the fixed-point helper library are always
4244 biased. */
4245 x = result;
4246 y = const1_rtx;
4247
4248 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4249 {
4250 if (unsignedp)
4251 x = plus_constant (ret_mode, result, 1);
4252 else
4253 y = const0_rtx;
4254 }
4255
4256 *pmode = word_mode;
4257 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4258 ptest, pmode);
4259 }
4260 else
4261 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4262
4263 return;
4264
4265 fail:
4266 *ptest = NULL_RTX;
4267 }
4268
4269 /* Before emitting an insn with code ICODE, make sure that X, which is going
4270 to be used for operand OPNUM of the insn, is converted from mode MODE to
4271 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4272 that it is accepted by the operand predicate. Return the new value. */
4273
4274 rtx
4275 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4276 enum machine_mode wider_mode, int unsignedp)
4277 {
4278 if (mode != wider_mode)
4279 x = convert_modes (wider_mode, mode, x, unsignedp);
4280
4281 if (!insn_operand_matches (icode, opnum, x))
4282 {
4283 if (reload_completed)
4284 return NULL_RTX;
4285 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4286 }
4287
4288 return x;
4289 }
4290
4291 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4292 we can do the branch. */
4293
4294 static void
4295 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4296 {
4297 enum machine_mode optab_mode;
4298 enum mode_class mclass;
4299 enum insn_code icode;
4300 rtx insn;
4301
4302 mclass = GET_MODE_CLASS (mode);
4303 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4304 icode = optab_handler (cbranch_optab, optab_mode);
4305
4306 gcc_assert (icode != CODE_FOR_nothing);
4307 gcc_assert (insn_operand_matches (icode, 0, test));
4308 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4309 XEXP (test, 1), label));
4310 if (prob != -1
4311 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4312 && insn
4313 && JUMP_P (insn)
4314 && any_condjump_p (insn)
4315 && !find_reg_note (insn, REG_BR_PROB, 0))
4316 add_int_reg_note (insn, REG_BR_PROB, prob);
4317 }
4318
4319 /* Generate code to compare X with Y so that the condition codes are
4320 set and to jump to LABEL if the condition is true. If X is a
4321 constant and Y is not a constant, then the comparison is swapped to
4322 ensure that the comparison RTL has the canonical form.
4323
4324 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4325 need to be widened. UNSIGNEDP is also used to select the proper
4326 branch condition code.
4327
4328 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4329
4330 MODE is the mode of the inputs (in case they are const_int).
4331
4332 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4333 It will be potentially converted into an unsigned variant based on
4334 UNSIGNEDP to select a proper jump instruction.
4335
4336 PROB is the probability of jumping to LABEL. */
4337
4338 void
4339 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4340 enum machine_mode mode, int unsignedp, rtx label,
4341 int prob)
4342 {
4343 rtx op0 = x, op1 = y;
4344 rtx test;
4345
4346 /* Swap operands and condition to ensure canonical RTL. */
4347 if (swap_commutative_operands_p (x, y)
4348 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4349 {
4350 op0 = y, op1 = x;
4351 comparison = swap_condition (comparison);
4352 }
4353
4354 /* If OP0 is still a constant, then both X and Y must be constants
4355 or the opposite comparison is not supported. Force X into a register
4356 to create canonical RTL. */
4357 if (CONSTANT_P (op0))
4358 op0 = force_reg (mode, op0);
4359
4360 if (unsignedp)
4361 comparison = unsigned_condition (comparison);
4362
4363 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4364 &test, &mode);
4365 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4366 }
4367
4368 \f
4369 /* Emit a library call comparison between floating point X and Y.
4370 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4371
4372 static void
4373 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4374 rtx *ptest, enum machine_mode *pmode)
4375 {
4376 enum rtx_code swapped = swap_condition (comparison);
4377 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4378 enum machine_mode orig_mode = GET_MODE (x);
4379 enum machine_mode mode, cmp_mode;
4380 rtx true_rtx, false_rtx;
4381 rtx value, target, insns, equiv;
4382 rtx libfunc = 0;
4383 bool reversed_p = false;
4384 cmp_mode = targetm.libgcc_cmp_return_mode ();
4385
4386 for (mode = orig_mode;
4387 mode != VOIDmode;
4388 mode = GET_MODE_WIDER_MODE (mode))
4389 {
4390 if (code_to_optab (comparison)
4391 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4392 break;
4393
4394 if (code_to_optab (swapped)
4395 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4396 {
4397 rtx tmp;
4398 tmp = x; x = y; y = tmp;
4399 comparison = swapped;
4400 break;
4401 }
4402
4403 if (code_to_optab (reversed)
4404 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4405 {
4406 comparison = reversed;
4407 reversed_p = true;
4408 break;
4409 }
4410 }
4411
4412 gcc_assert (mode != VOIDmode);
4413
4414 if (mode != orig_mode)
4415 {
4416 x = convert_to_mode (mode, x, 0);
4417 y = convert_to_mode (mode, y, 0);
4418 }
4419
4420 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4421 the RTL. The allows the RTL optimizers to delete the libcall if the
4422 condition can be determined at compile-time. */
4423 if (comparison == UNORDERED
4424 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4425 {
4426 true_rtx = const_true_rtx;
4427 false_rtx = const0_rtx;
4428 }
4429 else
4430 {
4431 switch (comparison)
4432 {
4433 case EQ:
4434 true_rtx = const0_rtx;
4435 false_rtx = const_true_rtx;
4436 break;
4437
4438 case NE:
4439 true_rtx = const_true_rtx;
4440 false_rtx = const0_rtx;
4441 break;
4442
4443 case GT:
4444 true_rtx = const1_rtx;
4445 false_rtx = const0_rtx;
4446 break;
4447
4448 case GE:
4449 true_rtx = const0_rtx;
4450 false_rtx = constm1_rtx;
4451 break;
4452
4453 case LT:
4454 true_rtx = constm1_rtx;
4455 false_rtx = const0_rtx;
4456 break;
4457
4458 case LE:
4459 true_rtx = const0_rtx;
4460 false_rtx = const1_rtx;
4461 break;
4462
4463 default:
4464 gcc_unreachable ();
4465 }
4466 }
4467
4468 if (comparison == UNORDERED)
4469 {
4470 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4471 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4472 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4473 temp, const_true_rtx, equiv);
4474 }
4475 else
4476 {
4477 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4478 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4479 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4480 equiv, true_rtx, false_rtx);
4481 }
4482
4483 start_sequence ();
4484 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4485 cmp_mode, 2, x, mode, y, mode);
4486 insns = get_insns ();
4487 end_sequence ();
4488
4489 target = gen_reg_rtx (cmp_mode);
4490 emit_libcall_block (insns, target, value, equiv);
4491
4492 if (comparison == UNORDERED
4493 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4494 || reversed_p)
4495 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4496 else
4497 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4498
4499 *pmode = cmp_mode;
4500 }
4501 \f
4502 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4503
4504 void
4505 emit_indirect_jump (rtx loc)
4506 {
4507 struct expand_operand ops[1];
4508
4509 create_address_operand (&ops[0], loc);
4510 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4511 emit_barrier ();
4512 }
4513 \f
4514 #ifdef HAVE_conditional_move
4515
4516 /* Emit a conditional move instruction if the machine supports one for that
4517 condition and machine mode.
4518
4519 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4520 the mode to use should they be constants. If it is VOIDmode, they cannot
4521 both be constants.
4522
4523 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4524 should be stored there. MODE is the mode to use should they be constants.
4525 If it is VOIDmode, they cannot both be constants.
4526
4527 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4528 is not supported. */
4529
4530 rtx
4531 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4532 enum machine_mode cmode, rtx op2, rtx op3,
4533 enum machine_mode mode, int unsignedp)
4534 {
4535 rtx tem, comparison, last;
4536 enum insn_code icode;
4537 enum rtx_code reversed;
4538
4539 /* If one operand is constant, make it the second one. Only do this
4540 if the other operand is not constant as well. */
4541
4542 if (swap_commutative_operands_p (op0, op1))
4543 {
4544 tem = op0;
4545 op0 = op1;
4546 op1 = tem;
4547 code = swap_condition (code);
4548 }
4549
4550 /* get_condition will prefer to generate LT and GT even if the old
4551 comparison was against zero, so undo that canonicalization here since
4552 comparisons against zero are cheaper. */
4553 if (code == LT && op1 == const1_rtx)
4554 code = LE, op1 = const0_rtx;
4555 else if (code == GT && op1 == constm1_rtx)
4556 code = GE, op1 = const0_rtx;
4557
4558 if (cmode == VOIDmode)
4559 cmode = GET_MODE (op0);
4560
4561 if (swap_commutative_operands_p (op2, op3)
4562 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4563 != UNKNOWN))
4564 {
4565 tem = op2;
4566 op2 = op3;
4567 op3 = tem;
4568 code = reversed;
4569 }
4570
4571 if (mode == VOIDmode)
4572 mode = GET_MODE (op2);
4573
4574 icode = direct_optab_handler (movcc_optab, mode);
4575
4576 if (icode == CODE_FOR_nothing)
4577 return 0;
4578
4579 if (!target)
4580 target = gen_reg_rtx (mode);
4581
4582 code = unsignedp ? unsigned_condition (code) : code;
4583 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4584
4585 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4586 return NULL and let the caller figure out how best to deal with this
4587 situation. */
4588 if (!COMPARISON_P (comparison))
4589 return NULL_RTX;
4590
4591 saved_pending_stack_adjust save;
4592 save_pending_stack_adjust (&save);
4593 last = get_last_insn ();
4594 do_pending_stack_adjust ();
4595 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4596 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4597 &comparison, &cmode);
4598 if (comparison)
4599 {
4600 struct expand_operand ops[4];
4601
4602 create_output_operand (&ops[0], target, mode);
4603 create_fixed_operand (&ops[1], comparison);
4604 create_input_operand (&ops[2], op2, mode);
4605 create_input_operand (&ops[3], op3, mode);
4606 if (maybe_expand_insn (icode, 4, ops))
4607 {
4608 if (ops[0].value != target)
4609 convert_move (target, ops[0].value, false);
4610 return target;
4611 }
4612 }
4613 delete_insns_since (last);
4614 restore_pending_stack_adjust (&save);
4615 return NULL_RTX;
4616 }
4617
4618 /* Return nonzero if a conditional move of mode MODE is supported.
4619
4620 This function is for combine so it can tell whether an insn that looks
4621 like a conditional move is actually supported by the hardware. If we
4622 guess wrong we lose a bit on optimization, but that's it. */
4623 /* ??? sparc64 supports conditionally moving integers values based on fp
4624 comparisons, and vice versa. How do we handle them? */
4625
4626 int
4627 can_conditionally_move_p (enum machine_mode mode)
4628 {
4629 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4630 return 1;
4631
4632 return 0;
4633 }
4634
4635 #endif /* HAVE_conditional_move */
4636
4637 /* Emit a conditional addition instruction if the machine supports one for that
4638 condition and machine mode.
4639
4640 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4641 the mode to use should they be constants. If it is VOIDmode, they cannot
4642 both be constants.
4643
4644 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4645 should be stored there. MODE is the mode to use should they be constants.
4646 If it is VOIDmode, they cannot both be constants.
4647
4648 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4649 is not supported. */
4650
4651 rtx
4652 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4653 enum machine_mode cmode, rtx op2, rtx op3,
4654 enum machine_mode mode, int unsignedp)
4655 {
4656 rtx tem, comparison, last;
4657 enum insn_code icode;
4658
4659 /* If one operand is constant, make it the second one. Only do this
4660 if the other operand is not constant as well. */
4661
4662 if (swap_commutative_operands_p (op0, op1))
4663 {
4664 tem = op0;
4665 op0 = op1;
4666 op1 = tem;
4667 code = swap_condition (code);
4668 }
4669
4670 /* get_condition will prefer to generate LT and GT even if the old
4671 comparison was against zero, so undo that canonicalization here since
4672 comparisons against zero are cheaper. */
4673 if (code == LT && op1 == const1_rtx)
4674 code = LE, op1 = const0_rtx;
4675 else if (code == GT && op1 == constm1_rtx)
4676 code = GE, op1 = const0_rtx;
4677
4678 if (cmode == VOIDmode)
4679 cmode = GET_MODE (op0);
4680
4681 if (mode == VOIDmode)
4682 mode = GET_MODE (op2);
4683
4684 icode = optab_handler (addcc_optab, mode);
4685
4686 if (icode == CODE_FOR_nothing)
4687 return 0;
4688
4689 if (!target)
4690 target = gen_reg_rtx (mode);
4691
4692 code = unsignedp ? unsigned_condition (code) : code;
4693 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4694
4695 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4696 return NULL and let the caller figure out how best to deal with this
4697 situation. */
4698 if (!COMPARISON_P (comparison))
4699 return NULL_RTX;
4700
4701 do_pending_stack_adjust ();
4702 last = get_last_insn ();
4703 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4704 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4705 &comparison, &cmode);
4706 if (comparison)
4707 {
4708 struct expand_operand ops[4];
4709
4710 create_output_operand (&ops[0], target, mode);
4711 create_fixed_operand (&ops[1], comparison);
4712 create_input_operand (&ops[2], op2, mode);
4713 create_input_operand (&ops[3], op3, mode);
4714 if (maybe_expand_insn (icode, 4, ops))
4715 {
4716 if (ops[0].value != target)
4717 convert_move (target, ops[0].value, false);
4718 return target;
4719 }
4720 }
4721 delete_insns_since (last);
4722 return NULL_RTX;
4723 }
4724 \f
4725 /* These functions attempt to generate an insn body, rather than
4726 emitting the insn, but if the gen function already emits them, we
4727 make no attempt to turn them back into naked patterns. */
4728
4729 /* Generate and return an insn body to add Y to X. */
4730
4731 rtx
4732 gen_add2_insn (rtx x, rtx y)
4733 {
4734 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4735
4736 gcc_assert (insn_operand_matches (icode, 0, x));
4737 gcc_assert (insn_operand_matches (icode, 1, x));
4738 gcc_assert (insn_operand_matches (icode, 2, y));
4739
4740 return GEN_FCN (icode) (x, x, y);
4741 }
4742
4743 /* Generate and return an insn body to add r1 and c,
4744 storing the result in r0. */
4745
4746 rtx
4747 gen_add3_insn (rtx r0, rtx r1, rtx c)
4748 {
4749 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4750
4751 if (icode == CODE_FOR_nothing
4752 || !insn_operand_matches (icode, 0, r0)
4753 || !insn_operand_matches (icode, 1, r1)
4754 || !insn_operand_matches (icode, 2, c))
4755 return NULL_RTX;
4756
4757 return GEN_FCN (icode) (r0, r1, c);
4758 }
4759
4760 int
4761 have_add2_insn (rtx x, rtx y)
4762 {
4763 enum insn_code icode;
4764
4765 gcc_assert (GET_MODE (x) != VOIDmode);
4766
4767 icode = optab_handler (add_optab, GET_MODE (x));
4768
4769 if (icode == CODE_FOR_nothing)
4770 return 0;
4771
4772 if (!insn_operand_matches (icode, 0, x)
4773 || !insn_operand_matches (icode, 1, x)
4774 || !insn_operand_matches (icode, 2, y))
4775 return 0;
4776
4777 return 1;
4778 }
4779
4780 /* Generate and return an insn body to add Y to X. */
4781
4782 rtx
4783 gen_addptr3_insn (rtx x, rtx y, rtx z)
4784 {
4785 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4786
4787 gcc_assert (insn_operand_matches (icode, 0, x));
4788 gcc_assert (insn_operand_matches (icode, 1, y));
4789 gcc_assert (insn_operand_matches (icode, 2, z));
4790
4791 return GEN_FCN (icode) (x, y, z);
4792 }
4793
4794 /* Return true if the target implements an addptr pattern and X, Y,
4795 and Z are valid for the pattern predicates. */
4796
4797 int
4798 have_addptr3_insn (rtx x, rtx y, rtx z)
4799 {
4800 enum insn_code icode;
4801
4802 gcc_assert (GET_MODE (x) != VOIDmode);
4803
4804 icode = optab_handler (addptr3_optab, GET_MODE (x));
4805
4806 if (icode == CODE_FOR_nothing)
4807 return 0;
4808
4809 if (!insn_operand_matches (icode, 0, x)
4810 || !insn_operand_matches (icode, 1, y)
4811 || !insn_operand_matches (icode, 2, z))
4812 return 0;
4813
4814 return 1;
4815 }
4816
4817 /* Generate and return an insn body to subtract Y from X. */
4818
4819 rtx
4820 gen_sub2_insn (rtx x, rtx y)
4821 {
4822 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4823
4824 gcc_assert (insn_operand_matches (icode, 0, x));
4825 gcc_assert (insn_operand_matches (icode, 1, x));
4826 gcc_assert (insn_operand_matches (icode, 2, y));
4827
4828 return GEN_FCN (icode) (x, x, y);
4829 }
4830
4831 /* Generate and return an insn body to subtract r1 and c,
4832 storing the result in r0. */
4833
4834 rtx
4835 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4836 {
4837 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4838
4839 if (icode == CODE_FOR_nothing
4840 || !insn_operand_matches (icode, 0, r0)
4841 || !insn_operand_matches (icode, 1, r1)
4842 || !insn_operand_matches (icode, 2, c))
4843 return NULL_RTX;
4844
4845 return GEN_FCN (icode) (r0, r1, c);
4846 }
4847
4848 int
4849 have_sub2_insn (rtx x, rtx y)
4850 {
4851 enum insn_code icode;
4852
4853 gcc_assert (GET_MODE (x) != VOIDmode);
4854
4855 icode = optab_handler (sub_optab, GET_MODE (x));
4856
4857 if (icode == CODE_FOR_nothing)
4858 return 0;
4859
4860 if (!insn_operand_matches (icode, 0, x)
4861 || !insn_operand_matches (icode, 1, x)
4862 || !insn_operand_matches (icode, 2, y))
4863 return 0;
4864
4865 return 1;
4866 }
4867
4868 /* Generate the body of an instruction to copy Y into X.
4869 It may be a list of insns, if one insn isn't enough. */
4870
4871 rtx
4872 gen_move_insn (rtx x, rtx y)
4873 {
4874 rtx seq;
4875
4876 start_sequence ();
4877 emit_move_insn_1 (x, y);
4878 seq = get_insns ();
4879 end_sequence ();
4880 return seq;
4881 }
4882 \f
4883 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4884 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4885 no such operation exists, CODE_FOR_nothing will be returned. */
4886
4887 enum insn_code
4888 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4889 int unsignedp)
4890 {
4891 convert_optab tab;
4892 #ifdef HAVE_ptr_extend
4893 if (unsignedp < 0)
4894 return CODE_FOR_ptr_extend;
4895 #endif
4896
4897 tab = unsignedp ? zext_optab : sext_optab;
4898 return convert_optab_handler (tab, to_mode, from_mode);
4899 }
4900
4901 /* Generate the body of an insn to extend Y (with mode MFROM)
4902 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4903
4904 rtx
4905 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4906 enum machine_mode mfrom, int unsignedp)
4907 {
4908 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4909 return GEN_FCN (icode) (x, y);
4910 }
4911 \f
4912 /* can_fix_p and can_float_p say whether the target machine
4913 can directly convert a given fixed point type to
4914 a given floating point type, or vice versa.
4915 The returned value is the CODE_FOR_... value to use,
4916 or CODE_FOR_nothing if these modes cannot be directly converted.
4917
4918 *TRUNCP_PTR is set to 1 if it is necessary to output
4919 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4920
4921 static enum insn_code
4922 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4923 int unsignedp, int *truncp_ptr)
4924 {
4925 convert_optab tab;
4926 enum insn_code icode;
4927
4928 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4929 icode = convert_optab_handler (tab, fixmode, fltmode);
4930 if (icode != CODE_FOR_nothing)
4931 {
4932 *truncp_ptr = 0;
4933 return icode;
4934 }
4935
4936 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4937 for this to work. We need to rework the fix* and ftrunc* patterns
4938 and documentation. */
4939 tab = unsignedp ? ufix_optab : sfix_optab;
4940 icode = convert_optab_handler (tab, fixmode, fltmode);
4941 if (icode != CODE_FOR_nothing
4942 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4943 {
4944 *truncp_ptr = 1;
4945 return icode;
4946 }
4947
4948 *truncp_ptr = 0;
4949 return CODE_FOR_nothing;
4950 }
4951
4952 enum insn_code
4953 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4954 int unsignedp)
4955 {
4956 convert_optab tab;
4957
4958 tab = unsignedp ? ufloat_optab : sfloat_optab;
4959 return convert_optab_handler (tab, fltmode, fixmode);
4960 }
4961
4962 /* Function supportable_convert_operation
4963
4964 Check whether an operation represented by the code CODE is a
4965 convert operation that is supported by the target platform in
4966 vector form (i.e., when operating on arguments of type VECTYPE_IN
4967 producing a result of type VECTYPE_OUT).
4968
4969 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4970 This function checks if these operations are supported
4971 by the target platform either directly (via vector tree-codes), or via
4972 target builtins.
4973
4974 Output:
4975 - CODE1 is code of vector operation to be used when
4976 vectorizing the operation, if available.
4977 - DECL is decl of target builtin functions to be used
4978 when vectorizing the operation, if available. In this case,
4979 CODE1 is CALL_EXPR. */
4980
4981 bool
4982 supportable_convert_operation (enum tree_code code,
4983 tree vectype_out, tree vectype_in,
4984 tree *decl, enum tree_code *code1)
4985 {
4986 enum machine_mode m1,m2;
4987 int truncp;
4988
4989 m1 = TYPE_MODE (vectype_out);
4990 m2 = TYPE_MODE (vectype_in);
4991
4992 /* First check if we can done conversion directly. */
4993 if ((code == FIX_TRUNC_EXPR
4994 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4995 != CODE_FOR_nothing)
4996 || (code == FLOAT_EXPR
4997 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4998 != CODE_FOR_nothing))
4999 {
5000 *code1 = code;
5001 return true;
5002 }
5003
5004 /* Now check for builtin. */
5005 if (targetm.vectorize.builtin_conversion
5006 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
5007 {
5008 *code1 = CALL_EXPR;
5009 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
5010 return true;
5011 }
5012 return false;
5013 }
5014
5015 \f
5016 /* Generate code to convert FROM to floating point
5017 and store in TO. FROM must be fixed point and not VOIDmode.
5018 UNSIGNEDP nonzero means regard FROM as unsigned.
5019 Normally this is done by correcting the final value
5020 if it is negative. */
5021
5022 void
5023 expand_float (rtx to, rtx from, int unsignedp)
5024 {
5025 enum insn_code icode;
5026 rtx target = to;
5027 enum machine_mode fmode, imode;
5028 bool can_do_signed = false;
5029
5030 /* Crash now, because we won't be able to decide which mode to use. */
5031 gcc_assert (GET_MODE (from) != VOIDmode);
5032
5033 /* Look for an insn to do the conversion. Do it in the specified
5034 modes if possible; otherwise convert either input, output or both to
5035 wider mode. If the integer mode is wider than the mode of FROM,
5036 we can do the conversion signed even if the input is unsigned. */
5037
5038 for (fmode = GET_MODE (to); fmode != VOIDmode;
5039 fmode = GET_MODE_WIDER_MODE (fmode))
5040 for (imode = GET_MODE (from); imode != VOIDmode;
5041 imode = GET_MODE_WIDER_MODE (imode))
5042 {
5043 int doing_unsigned = unsignedp;
5044
5045 if (fmode != GET_MODE (to)
5046 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
5047 continue;
5048
5049 icode = can_float_p (fmode, imode, unsignedp);
5050 if (icode == CODE_FOR_nothing && unsignedp)
5051 {
5052 enum insn_code scode = can_float_p (fmode, imode, 0);
5053 if (scode != CODE_FOR_nothing)
5054 can_do_signed = true;
5055 if (imode != GET_MODE (from))
5056 icode = scode, doing_unsigned = 0;
5057 }
5058
5059 if (icode != CODE_FOR_nothing)
5060 {
5061 if (imode != GET_MODE (from))
5062 from = convert_to_mode (imode, from, unsignedp);
5063
5064 if (fmode != GET_MODE (to))
5065 target = gen_reg_rtx (fmode);
5066
5067 emit_unop_insn (icode, target, from,
5068 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5069
5070 if (target != to)
5071 convert_move (to, target, 0);
5072 return;
5073 }
5074 }
5075
5076 /* Unsigned integer, and no way to convert directly. Convert as signed,
5077 then unconditionally adjust the result. */
5078 if (unsignedp && can_do_signed)
5079 {
5080 rtx label = gen_label_rtx ();
5081 rtx temp;
5082 REAL_VALUE_TYPE offset;
5083
5084 /* Look for a usable floating mode FMODE wider than the source and at
5085 least as wide as the target. Using FMODE will avoid rounding woes
5086 with unsigned values greater than the signed maximum value. */
5087
5088 for (fmode = GET_MODE (to); fmode != VOIDmode;
5089 fmode = GET_MODE_WIDER_MODE (fmode))
5090 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5091 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5092 break;
5093
5094 if (fmode == VOIDmode)
5095 {
5096 /* There is no such mode. Pretend the target is wide enough. */
5097 fmode = GET_MODE (to);
5098
5099 /* Avoid double-rounding when TO is narrower than FROM. */
5100 if ((significand_size (fmode) + 1)
5101 < GET_MODE_PRECISION (GET_MODE (from)))
5102 {
5103 rtx temp1;
5104 rtx neglabel = gen_label_rtx ();
5105
5106 /* Don't use TARGET if it isn't a register, is a hard register,
5107 or is the wrong mode. */
5108 if (!REG_P (target)
5109 || REGNO (target) < FIRST_PSEUDO_REGISTER
5110 || GET_MODE (target) != fmode)
5111 target = gen_reg_rtx (fmode);
5112
5113 imode = GET_MODE (from);
5114 do_pending_stack_adjust ();
5115
5116 /* Test whether the sign bit is set. */
5117 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5118 0, neglabel);
5119
5120 /* The sign bit is not set. Convert as signed. */
5121 expand_float (target, from, 0);
5122 emit_jump_insn (gen_jump (label));
5123 emit_barrier ();
5124
5125 /* The sign bit is set.
5126 Convert to a usable (positive signed) value by shifting right
5127 one bit, while remembering if a nonzero bit was shifted
5128 out; i.e., compute (from & 1) | (from >> 1). */
5129
5130 emit_label (neglabel);
5131 temp = expand_binop (imode, and_optab, from, const1_rtx,
5132 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5133 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5134 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5135 OPTAB_LIB_WIDEN);
5136 expand_float (target, temp, 0);
5137
5138 /* Multiply by 2 to undo the shift above. */
5139 temp = expand_binop (fmode, add_optab, target, target,
5140 target, 0, OPTAB_LIB_WIDEN);
5141 if (temp != target)
5142 emit_move_insn (target, temp);
5143
5144 do_pending_stack_adjust ();
5145 emit_label (label);
5146 goto done;
5147 }
5148 }
5149
5150 /* If we are about to do some arithmetic to correct for an
5151 unsigned operand, do it in a pseudo-register. */
5152
5153 if (GET_MODE (to) != fmode
5154 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5155 target = gen_reg_rtx (fmode);
5156
5157 /* Convert as signed integer to floating. */
5158 expand_float (target, from, 0);
5159
5160 /* If FROM is negative (and therefore TO is negative),
5161 correct its value by 2**bitwidth. */
5162
5163 do_pending_stack_adjust ();
5164 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5165 0, label);
5166
5167
5168 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5169 temp = expand_binop (fmode, add_optab, target,
5170 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5171 target, 0, OPTAB_LIB_WIDEN);
5172 if (temp != target)
5173 emit_move_insn (target, temp);
5174
5175 do_pending_stack_adjust ();
5176 emit_label (label);
5177 goto done;
5178 }
5179
5180 /* No hardware instruction available; call a library routine. */
5181 {
5182 rtx libfunc;
5183 rtx insns;
5184 rtx value;
5185 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5186
5187 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5188 from = convert_to_mode (SImode, from, unsignedp);
5189
5190 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5191 gcc_assert (libfunc);
5192
5193 start_sequence ();
5194
5195 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5196 GET_MODE (to), 1, from,
5197 GET_MODE (from));
5198 insns = get_insns ();
5199 end_sequence ();
5200
5201 emit_libcall_block (insns, target, value,
5202 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5203 GET_MODE (to), from));
5204 }
5205
5206 done:
5207
5208 /* Copy result to requested destination
5209 if we have been computing in a temp location. */
5210
5211 if (target != to)
5212 {
5213 if (GET_MODE (target) == GET_MODE (to))
5214 emit_move_insn (to, target);
5215 else
5216 convert_move (to, target, 0);
5217 }
5218 }
5219 \f
5220 /* Generate code to convert FROM to fixed point and store in TO. FROM
5221 must be floating point. */
5222
5223 void
5224 expand_fix (rtx to, rtx from, int unsignedp)
5225 {
5226 enum insn_code icode;
5227 rtx target = to;
5228 enum machine_mode fmode, imode;
5229 int must_trunc = 0;
5230
5231 /* We first try to find a pair of modes, one real and one integer, at
5232 least as wide as FROM and TO, respectively, in which we can open-code
5233 this conversion. If the integer mode is wider than the mode of TO,
5234 we can do the conversion either signed or unsigned. */
5235
5236 for (fmode = GET_MODE (from); fmode != VOIDmode;
5237 fmode = GET_MODE_WIDER_MODE (fmode))
5238 for (imode = GET_MODE (to); imode != VOIDmode;
5239 imode = GET_MODE_WIDER_MODE (imode))
5240 {
5241 int doing_unsigned = unsignedp;
5242
5243 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5244 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5245 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5246
5247 if (icode != CODE_FOR_nothing)
5248 {
5249 rtx last = get_last_insn ();
5250 if (fmode != GET_MODE (from))
5251 from = convert_to_mode (fmode, from, 0);
5252
5253 if (must_trunc)
5254 {
5255 rtx temp = gen_reg_rtx (GET_MODE (from));
5256 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5257 temp, 0);
5258 }
5259
5260 if (imode != GET_MODE (to))
5261 target = gen_reg_rtx (imode);
5262
5263 if (maybe_emit_unop_insn (icode, target, from,
5264 doing_unsigned ? UNSIGNED_FIX : FIX))
5265 {
5266 if (target != to)
5267 convert_move (to, target, unsignedp);
5268 return;
5269 }
5270 delete_insns_since (last);
5271 }
5272 }
5273
5274 /* For an unsigned conversion, there is one more way to do it.
5275 If we have a signed conversion, we generate code that compares
5276 the real value to the largest representable positive number. If if
5277 is smaller, the conversion is done normally. Otherwise, subtract
5278 one plus the highest signed number, convert, and add it back.
5279
5280 We only need to check all real modes, since we know we didn't find
5281 anything with a wider integer mode.
5282
5283 This code used to extend FP value into mode wider than the destination.
5284 This is needed for decimal float modes which cannot accurately
5285 represent one plus the highest signed number of the same size, but
5286 not for binary modes. Consider, for instance conversion from SFmode
5287 into DImode.
5288
5289 The hot path through the code is dealing with inputs smaller than 2^63
5290 and doing just the conversion, so there is no bits to lose.
5291
5292 In the other path we know the value is positive in the range 2^63..2^64-1
5293 inclusive. (as for other input overflow happens and result is undefined)
5294 So we know that the most important bit set in mantissa corresponds to
5295 2^63. The subtraction of 2^63 should not generate any rounding as it
5296 simply clears out that bit. The rest is trivial. */
5297
5298 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5299 for (fmode = GET_MODE (from); fmode != VOIDmode;
5300 fmode = GET_MODE_WIDER_MODE (fmode))
5301 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5302 && (!DECIMAL_FLOAT_MODE_P (fmode)
5303 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5304 {
5305 int bitsize;
5306 REAL_VALUE_TYPE offset;
5307 rtx limit, lab1, lab2, insn;
5308
5309 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5310 real_2expN (&offset, bitsize - 1, fmode);
5311 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5312 lab1 = gen_label_rtx ();
5313 lab2 = gen_label_rtx ();
5314
5315 if (fmode != GET_MODE (from))
5316 from = convert_to_mode (fmode, from, 0);
5317
5318 /* See if we need to do the subtraction. */
5319 do_pending_stack_adjust ();
5320 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5321 0, lab1);
5322
5323 /* If not, do the signed "fix" and branch around fixup code. */
5324 expand_fix (to, from, 0);
5325 emit_jump_insn (gen_jump (lab2));
5326 emit_barrier ();
5327
5328 /* Otherwise, subtract 2**(N-1), convert to signed number,
5329 then add 2**(N-1). Do the addition using XOR since this
5330 will often generate better code. */
5331 emit_label (lab1);
5332 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5333 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5334 expand_fix (to, target, 0);
5335 target = expand_binop (GET_MODE (to), xor_optab, to,
5336 gen_int_mode
5337 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5338 GET_MODE (to)),
5339 to, 1, OPTAB_LIB_WIDEN);
5340
5341 if (target != to)
5342 emit_move_insn (to, target);
5343
5344 emit_label (lab2);
5345
5346 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5347 {
5348 /* Make a place for a REG_NOTE and add it. */
5349 insn = emit_move_insn (to, to);
5350 set_dst_reg_note (insn, REG_EQUAL,
5351 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5352 copy_rtx (from)),
5353 to);
5354 }
5355
5356 return;
5357 }
5358
5359 /* We can't do it with an insn, so use a library call. But first ensure
5360 that the mode of TO is at least as wide as SImode, since those are the
5361 only library calls we know about. */
5362
5363 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5364 {
5365 target = gen_reg_rtx (SImode);
5366
5367 expand_fix (target, from, unsignedp);
5368 }
5369 else
5370 {
5371 rtx insns;
5372 rtx value;
5373 rtx libfunc;
5374
5375 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5376 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5377 gcc_assert (libfunc);
5378
5379 start_sequence ();
5380
5381 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5382 GET_MODE (to), 1, from,
5383 GET_MODE (from));
5384 insns = get_insns ();
5385 end_sequence ();
5386
5387 emit_libcall_block (insns, target, value,
5388 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5389 GET_MODE (to), from));
5390 }
5391
5392 if (target != to)
5393 {
5394 if (GET_MODE (to) == GET_MODE (target))
5395 emit_move_insn (to, target);
5396 else
5397 convert_move (to, target, 0);
5398 }
5399 }
5400
5401 /* Generate code to convert FROM or TO a fixed-point.
5402 If UINTP is true, either TO or FROM is an unsigned integer.
5403 If SATP is true, we need to saturate the result. */
5404
5405 void
5406 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5407 {
5408 enum machine_mode to_mode = GET_MODE (to);
5409 enum machine_mode from_mode = GET_MODE (from);
5410 convert_optab tab;
5411 enum rtx_code this_code;
5412 enum insn_code code;
5413 rtx insns, value;
5414 rtx libfunc;
5415
5416 if (to_mode == from_mode)
5417 {
5418 emit_move_insn (to, from);
5419 return;
5420 }
5421
5422 if (uintp)
5423 {
5424 tab = satp ? satfractuns_optab : fractuns_optab;
5425 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5426 }
5427 else
5428 {
5429 tab = satp ? satfract_optab : fract_optab;
5430 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5431 }
5432 code = convert_optab_handler (tab, to_mode, from_mode);
5433 if (code != CODE_FOR_nothing)
5434 {
5435 emit_unop_insn (code, to, from, this_code);
5436 return;
5437 }
5438
5439 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5440 gcc_assert (libfunc);
5441
5442 start_sequence ();
5443 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5444 1, from, from_mode);
5445 insns = get_insns ();
5446 end_sequence ();
5447
5448 emit_libcall_block (insns, to, value,
5449 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5450 }
5451
5452 /* Generate code to convert FROM to fixed point and store in TO. FROM
5453 must be floating point, TO must be signed. Use the conversion optab
5454 TAB to do the conversion. */
5455
5456 bool
5457 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5458 {
5459 enum insn_code icode;
5460 rtx target = to;
5461 enum machine_mode fmode, imode;
5462
5463 /* We first try to find a pair of modes, one real and one integer, at
5464 least as wide as FROM and TO, respectively, in which we can open-code
5465 this conversion. If the integer mode is wider than the mode of TO,
5466 we can do the conversion either signed or unsigned. */
5467
5468 for (fmode = GET_MODE (from); fmode != VOIDmode;
5469 fmode = GET_MODE_WIDER_MODE (fmode))
5470 for (imode = GET_MODE (to); imode != VOIDmode;
5471 imode = GET_MODE_WIDER_MODE (imode))
5472 {
5473 icode = convert_optab_handler (tab, imode, fmode);
5474 if (icode != CODE_FOR_nothing)
5475 {
5476 rtx last = get_last_insn ();
5477 if (fmode != GET_MODE (from))
5478 from = convert_to_mode (fmode, from, 0);
5479
5480 if (imode != GET_MODE (to))
5481 target = gen_reg_rtx (imode);
5482
5483 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5484 {
5485 delete_insns_since (last);
5486 continue;
5487 }
5488 if (target != to)
5489 convert_move (to, target, 0);
5490 return true;
5491 }
5492 }
5493
5494 return false;
5495 }
5496 \f
5497 /* Report whether we have an instruction to perform the operation
5498 specified by CODE on operands of mode MODE. */
5499 int
5500 have_insn_for (enum rtx_code code, enum machine_mode mode)
5501 {
5502 return (code_to_optab (code)
5503 && (optab_handler (code_to_optab (code), mode)
5504 != CODE_FOR_nothing));
5505 }
5506
5507 /* Initialize the libfunc fields of an entire group of entries in some
5508 optab. Each entry is set equal to a string consisting of a leading
5509 pair of underscores followed by a generic operation name followed by
5510 a mode name (downshifted to lowercase) followed by a single character
5511 representing the number of operands for the given operation (which is
5512 usually one of the characters '2', '3', or '4').
5513
5514 OPTABLE is the table in which libfunc fields are to be initialized.
5515 OPNAME is the generic (string) name of the operation.
5516 SUFFIX is the character which specifies the number of operands for
5517 the given generic operation.
5518 MODE is the mode to generate for.
5519 */
5520
5521 static void
5522 gen_libfunc (optab optable, const char *opname, int suffix,
5523 enum machine_mode mode)
5524 {
5525 unsigned opname_len = strlen (opname);
5526 const char *mname = GET_MODE_NAME (mode);
5527 unsigned mname_len = strlen (mname);
5528 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5529 int len = prefix_len + opname_len + mname_len + 1 + 1;
5530 char *libfunc_name = XALLOCAVEC (char, len);
5531 char *p;
5532 const char *q;
5533
5534 p = libfunc_name;
5535 *p++ = '_';
5536 *p++ = '_';
5537 if (targetm.libfunc_gnu_prefix)
5538 {
5539 *p++ = 'g';
5540 *p++ = 'n';
5541 *p++ = 'u';
5542 *p++ = '_';
5543 }
5544 for (q = opname; *q; )
5545 *p++ = *q++;
5546 for (q = mname; *q; q++)
5547 *p++ = TOLOWER (*q);
5548 *p++ = suffix;
5549 *p = '\0';
5550
5551 set_optab_libfunc (optable, mode,
5552 ggc_alloc_string (libfunc_name, p - libfunc_name));
5553 }
5554
5555 /* Like gen_libfunc, but verify that integer operation is involved. */
5556
5557 void
5558 gen_int_libfunc (optab optable, const char *opname, char suffix,
5559 enum machine_mode mode)
5560 {
5561 int maxsize = 2 * BITS_PER_WORD;
5562
5563 if (GET_MODE_CLASS (mode) != MODE_INT)
5564 return;
5565 if (maxsize < LONG_LONG_TYPE_SIZE)
5566 maxsize = LONG_LONG_TYPE_SIZE;
5567 if (GET_MODE_CLASS (mode) != MODE_INT
5568 || GET_MODE_BITSIZE (mode) < BITS_PER_WORD
5569 || GET_MODE_BITSIZE (mode) > maxsize)
5570 return;
5571 gen_libfunc (optable, opname, suffix, mode);
5572 }
5573
5574 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5575
5576 void
5577 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5578 enum machine_mode mode)
5579 {
5580 char *dec_opname;
5581
5582 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5583 gen_libfunc (optable, opname, suffix, mode);
5584 if (DECIMAL_FLOAT_MODE_P (mode))
5585 {
5586 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5587 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5588 depending on the low level floating format used. */
5589 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5590 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5591 gen_libfunc (optable, dec_opname, suffix, mode);
5592 }
5593 }
5594
5595 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5596
5597 void
5598 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5599 enum machine_mode mode)
5600 {
5601 if (!ALL_FIXED_POINT_MODE_P (mode))
5602 return;
5603 gen_libfunc (optable, opname, suffix, mode);
5604 }
5605
5606 /* Like gen_libfunc, but verify that signed fixed-point operation is
5607 involved. */
5608
5609 void
5610 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5611 enum machine_mode mode)
5612 {
5613 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5614 return;
5615 gen_libfunc (optable, opname, suffix, mode);
5616 }
5617
5618 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5619 involved. */
5620
5621 void
5622 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5623 enum machine_mode mode)
5624 {
5625 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5626 return;
5627 gen_libfunc (optable, opname, suffix, mode);
5628 }
5629
5630 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5631
5632 void
5633 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5634 enum machine_mode mode)
5635 {
5636 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5637 gen_fp_libfunc (optable, name, suffix, mode);
5638 if (INTEGRAL_MODE_P (mode))
5639 gen_int_libfunc (optable, name, suffix, mode);
5640 }
5641
5642 /* Like gen_libfunc, but verify that FP or INT operation is involved
5643 and add 'v' suffix for integer operation. */
5644
5645 void
5646 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5647 enum machine_mode mode)
5648 {
5649 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5650 gen_fp_libfunc (optable, name, suffix, mode);
5651 if (GET_MODE_CLASS (mode) == MODE_INT)
5652 {
5653 int len = strlen (name);
5654 char *v_name = XALLOCAVEC (char, len + 2);
5655 strcpy (v_name, name);
5656 v_name[len] = 'v';
5657 v_name[len + 1] = 0;
5658 gen_int_libfunc (optable, v_name, suffix, mode);
5659 }
5660 }
5661
5662 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5663 involved. */
5664
5665 void
5666 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5667 enum machine_mode mode)
5668 {
5669 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5670 gen_fp_libfunc (optable, name, suffix, mode);
5671 if (INTEGRAL_MODE_P (mode))
5672 gen_int_libfunc (optable, name, suffix, mode);
5673 if (ALL_FIXED_POINT_MODE_P (mode))
5674 gen_fixed_libfunc (optable, name, suffix, mode);
5675 }
5676
5677 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5678 involved. */
5679
5680 void
5681 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5682 enum machine_mode mode)
5683 {
5684 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5685 gen_fp_libfunc (optable, name, suffix, mode);
5686 if (INTEGRAL_MODE_P (mode))
5687 gen_int_libfunc (optable, name, suffix, mode);
5688 if (SIGNED_FIXED_POINT_MODE_P (mode))
5689 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5690 }
5691
5692 /* Like gen_libfunc, but verify that INT or FIXED operation is
5693 involved. */
5694
5695 void
5696 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5697 enum machine_mode mode)
5698 {
5699 if (INTEGRAL_MODE_P (mode))
5700 gen_int_libfunc (optable, name, suffix, mode);
5701 if (ALL_FIXED_POINT_MODE_P (mode))
5702 gen_fixed_libfunc (optable, name, suffix, mode);
5703 }
5704
5705 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5706 involved. */
5707
5708 void
5709 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5710 enum machine_mode mode)
5711 {
5712 if (INTEGRAL_MODE_P (mode))
5713 gen_int_libfunc (optable, name, suffix, mode);
5714 if (SIGNED_FIXED_POINT_MODE_P (mode))
5715 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5716 }
5717
5718 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5719 involved. */
5720
5721 void
5722 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5723 enum machine_mode mode)
5724 {
5725 if (INTEGRAL_MODE_P (mode))
5726 gen_int_libfunc (optable, name, suffix, mode);
5727 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5728 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5729 }
5730
5731 /* Initialize the libfunc fields of an entire group of entries of an
5732 inter-mode-class conversion optab. The string formation rules are
5733 similar to the ones for init_libfuncs, above, but instead of having
5734 a mode name and an operand count these functions have two mode names
5735 and no operand count. */
5736
5737 void
5738 gen_interclass_conv_libfunc (convert_optab tab,
5739 const char *opname,
5740 enum machine_mode tmode,
5741 enum machine_mode fmode)
5742 {
5743 size_t opname_len = strlen (opname);
5744 size_t mname_len = 0;
5745
5746 const char *fname, *tname;
5747 const char *q;
5748 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5749 char *libfunc_name, *suffix;
5750 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5751 char *p;
5752
5753 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5754 depends on which underlying decimal floating point format is used. */
5755 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5756
5757 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5758
5759 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5760 nondec_name[0] = '_';
5761 nondec_name[1] = '_';
5762 if (targetm.libfunc_gnu_prefix)
5763 {
5764 nondec_name[2] = 'g';
5765 nondec_name[3] = 'n';
5766 nondec_name[4] = 'u';
5767 nondec_name[5] = '_';
5768 }
5769
5770 memcpy (&nondec_name[prefix_len], opname, opname_len);
5771 nondec_suffix = nondec_name + opname_len + prefix_len;
5772
5773 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5774 dec_name[0] = '_';
5775 dec_name[1] = '_';
5776 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5777 memcpy (&dec_name[2+dec_len], opname, opname_len);
5778 dec_suffix = dec_name + dec_len + opname_len + 2;
5779
5780 fname = GET_MODE_NAME (fmode);
5781 tname = GET_MODE_NAME (tmode);
5782
5783 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5784 {
5785 libfunc_name = dec_name;
5786 suffix = dec_suffix;
5787 }
5788 else
5789 {
5790 libfunc_name = nondec_name;
5791 suffix = nondec_suffix;
5792 }
5793
5794 p = suffix;
5795 for (q = fname; *q; p++, q++)
5796 *p = TOLOWER (*q);
5797 for (q = tname; *q; p++, q++)
5798 *p = TOLOWER (*q);
5799
5800 *p = '\0';
5801
5802 set_conv_libfunc (tab, tmode, fmode,
5803 ggc_alloc_string (libfunc_name, p - libfunc_name));
5804 }
5805
5806 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5807 int->fp conversion. */
5808
5809 void
5810 gen_int_to_fp_conv_libfunc (convert_optab tab,
5811 const char *opname,
5812 enum machine_mode tmode,
5813 enum machine_mode fmode)
5814 {
5815 if (GET_MODE_CLASS (fmode) != MODE_INT)
5816 return;
5817 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5818 return;
5819 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5820 }
5821
5822 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5823 naming scheme. */
5824
5825 void
5826 gen_ufloat_conv_libfunc (convert_optab tab,
5827 const char *opname ATTRIBUTE_UNUSED,
5828 enum machine_mode tmode,
5829 enum machine_mode fmode)
5830 {
5831 if (DECIMAL_FLOAT_MODE_P (tmode))
5832 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5833 else
5834 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5835 }
5836
5837 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5838 fp->int conversion. */
5839
5840 void
5841 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5842 const char *opname,
5843 enum machine_mode tmode,
5844 enum machine_mode fmode)
5845 {
5846 if (GET_MODE_CLASS (fmode) != MODE_INT)
5847 return;
5848 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5849 return;
5850 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5851 }
5852
5853 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5854 fp->int conversion with no decimal floating point involved. */
5855
5856 void
5857 gen_fp_to_int_conv_libfunc (convert_optab tab,
5858 const char *opname,
5859 enum machine_mode tmode,
5860 enum machine_mode fmode)
5861 {
5862 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5863 return;
5864 if (GET_MODE_CLASS (tmode) != MODE_INT)
5865 return;
5866 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5867 }
5868
5869 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5870 The string formation rules are
5871 similar to the ones for init_libfunc, above. */
5872
5873 void
5874 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5875 enum machine_mode tmode, enum machine_mode fmode)
5876 {
5877 size_t opname_len = strlen (opname);
5878 size_t mname_len = 0;
5879
5880 const char *fname, *tname;
5881 const char *q;
5882 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5883 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5884 char *libfunc_name, *suffix;
5885 char *p;
5886
5887 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5888 depends on which underlying decimal floating point format is used. */
5889 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5890
5891 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5892
5893 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5894 nondec_name[0] = '_';
5895 nondec_name[1] = '_';
5896 if (targetm.libfunc_gnu_prefix)
5897 {
5898 nondec_name[2] = 'g';
5899 nondec_name[3] = 'n';
5900 nondec_name[4] = 'u';
5901 nondec_name[5] = '_';
5902 }
5903 memcpy (&nondec_name[prefix_len], opname, opname_len);
5904 nondec_suffix = nondec_name + opname_len + prefix_len;
5905
5906 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5907 dec_name[0] = '_';
5908 dec_name[1] = '_';
5909 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5910 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5911 dec_suffix = dec_name + dec_len + opname_len + 2;
5912
5913 fname = GET_MODE_NAME (fmode);
5914 tname = GET_MODE_NAME (tmode);
5915
5916 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5917 {
5918 libfunc_name = dec_name;
5919 suffix = dec_suffix;
5920 }
5921 else
5922 {
5923 libfunc_name = nondec_name;
5924 suffix = nondec_suffix;
5925 }
5926
5927 p = suffix;
5928 for (q = fname; *q; p++, q++)
5929 *p = TOLOWER (*q);
5930 for (q = tname; *q; p++, q++)
5931 *p = TOLOWER (*q);
5932
5933 *p++ = '2';
5934 *p = '\0';
5935
5936 set_conv_libfunc (tab, tmode, fmode,
5937 ggc_alloc_string (libfunc_name, p - libfunc_name));
5938 }
5939
5940 /* Pick proper libcall for trunc_optab. We need to chose if we do
5941 truncation or extension and interclass or intraclass. */
5942
5943 void
5944 gen_trunc_conv_libfunc (convert_optab tab,
5945 const char *opname,
5946 enum machine_mode tmode,
5947 enum machine_mode fmode)
5948 {
5949 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5950 return;
5951 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5952 return;
5953 if (tmode == fmode)
5954 return;
5955
5956 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5957 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5958 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5959
5960 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5961 return;
5962
5963 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5964 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5965 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5966 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5967 }
5968
5969 /* Pick proper libcall for extend_optab. We need to chose if we do
5970 truncation or extension and interclass or intraclass. */
5971
5972 void
5973 gen_extend_conv_libfunc (convert_optab tab,
5974 const char *opname ATTRIBUTE_UNUSED,
5975 enum machine_mode tmode,
5976 enum machine_mode fmode)
5977 {
5978 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5979 return;
5980 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5981 return;
5982 if (tmode == fmode)
5983 return;
5984
5985 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5986 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5987 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5988
5989 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5990 return;
5991
5992 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5993 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5994 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5995 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5996 }
5997
5998 /* Pick proper libcall for fract_optab. We need to chose if we do
5999 interclass or intraclass. */
6000
6001 void
6002 gen_fract_conv_libfunc (convert_optab tab,
6003 const char *opname,
6004 enum machine_mode tmode,
6005 enum machine_mode fmode)
6006 {
6007 if (tmode == fmode)
6008 return;
6009 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
6010 return;
6011
6012 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6013 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6014 else
6015 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6016 }
6017
6018 /* Pick proper libcall for fractuns_optab. */
6019
6020 void
6021 gen_fractuns_conv_libfunc (convert_optab tab,
6022 const char *opname,
6023 enum machine_mode tmode,
6024 enum machine_mode fmode)
6025 {
6026 if (tmode == fmode)
6027 return;
6028 /* One mode must be a fixed-point mode, and the other must be an integer
6029 mode. */
6030 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
6031 || (ALL_FIXED_POINT_MODE_P (fmode)
6032 && GET_MODE_CLASS (tmode) == MODE_INT)))
6033 return;
6034
6035 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6036 }
6037
6038 /* Pick proper libcall for satfract_optab. We need to chose if we do
6039 interclass or intraclass. */
6040
6041 void
6042 gen_satfract_conv_libfunc (convert_optab tab,
6043 const char *opname,
6044 enum machine_mode tmode,
6045 enum machine_mode fmode)
6046 {
6047 if (tmode == fmode)
6048 return;
6049 /* TMODE must be a fixed-point mode. */
6050 if (!ALL_FIXED_POINT_MODE_P (tmode))
6051 return;
6052
6053 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6054 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6055 else
6056 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6057 }
6058
6059 /* Pick proper libcall for satfractuns_optab. */
6060
6061 void
6062 gen_satfractuns_conv_libfunc (convert_optab tab,
6063 const char *opname,
6064 enum machine_mode tmode,
6065 enum machine_mode fmode)
6066 {
6067 if (tmode == fmode)
6068 return;
6069 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6070 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6071 return;
6072
6073 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6074 }
6075
6076 /* A table of previously-created libfuncs, hashed by name. */
6077 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6078
6079 /* Hashtable callbacks for libfunc_decls. */
6080
6081 static hashval_t
6082 libfunc_decl_hash (const void *entry)
6083 {
6084 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6085 }
6086
6087 static int
6088 libfunc_decl_eq (const void *entry1, const void *entry2)
6089 {
6090 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6091 }
6092
6093 /* Build a decl for a libfunc named NAME. */
6094
6095 tree
6096 build_libfunc_function (const char *name)
6097 {
6098 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6099 get_identifier (name),
6100 build_function_type (integer_type_node, NULL_TREE));
6101 /* ??? We don't have any type information except for this is
6102 a function. Pretend this is "int foo()". */
6103 DECL_ARTIFICIAL (decl) = 1;
6104 DECL_EXTERNAL (decl) = 1;
6105 TREE_PUBLIC (decl) = 1;
6106 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6107
6108 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6109 are the flags assigned by targetm.encode_section_info. */
6110 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6111
6112 return decl;
6113 }
6114
6115 rtx
6116 init_one_libfunc (const char *name)
6117 {
6118 tree id, decl;
6119 void **slot;
6120 hashval_t hash;
6121
6122 if (libfunc_decls == NULL)
6123 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6124 libfunc_decl_eq, NULL);
6125
6126 /* See if we have already created a libfunc decl for this function. */
6127 id = get_identifier (name);
6128 hash = IDENTIFIER_HASH_VALUE (id);
6129 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6130 decl = (tree) *slot;
6131 if (decl == NULL)
6132 {
6133 /* Create a new decl, so that it can be passed to
6134 targetm.encode_section_info. */
6135 decl = build_libfunc_function (name);
6136 *slot = decl;
6137 }
6138 return XEXP (DECL_RTL (decl), 0);
6139 }
6140
6141 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6142
6143 rtx
6144 set_user_assembler_libfunc (const char *name, const char *asmspec)
6145 {
6146 tree id, decl;
6147 void **slot;
6148 hashval_t hash;
6149
6150 id = get_identifier (name);
6151 hash = IDENTIFIER_HASH_VALUE (id);
6152 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6153 gcc_assert (slot);
6154 decl = (tree) *slot;
6155 set_user_assembler_name (decl, asmspec);
6156 return XEXP (DECL_RTL (decl), 0);
6157 }
6158
6159 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6160 MODE to NAME, which should be either 0 or a string constant. */
6161 void
6162 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6163 {
6164 rtx val;
6165 struct libfunc_entry e;
6166 struct libfunc_entry **slot;
6167
6168 e.op = op;
6169 e.mode1 = mode;
6170 e.mode2 = VOIDmode;
6171
6172 if (name)
6173 val = init_one_libfunc (name);
6174 else
6175 val = 0;
6176 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6177 if (*slot == NULL)
6178 *slot = ggc_alloc<libfunc_entry> ();
6179 (*slot)->op = op;
6180 (*slot)->mode1 = mode;
6181 (*slot)->mode2 = VOIDmode;
6182 (*slot)->libfunc = val;
6183 }
6184
6185 /* Call this to reset the function entry for one conversion optab
6186 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6187 either 0 or a string constant. */
6188 void
6189 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6190 enum machine_mode fmode, const char *name)
6191 {
6192 rtx val;
6193 struct libfunc_entry e;
6194 struct libfunc_entry **slot;
6195
6196 e.op = optab;
6197 e.mode1 = tmode;
6198 e.mode2 = fmode;
6199
6200 if (name)
6201 val = init_one_libfunc (name);
6202 else
6203 val = 0;
6204 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6205 if (*slot == NULL)
6206 *slot = ggc_alloc<libfunc_entry> ();
6207 (*slot)->op = optab;
6208 (*slot)->mode1 = tmode;
6209 (*slot)->mode2 = fmode;
6210 (*slot)->libfunc = val;
6211 }
6212
6213 /* Call this to initialize the contents of the optabs
6214 appropriately for the current target machine. */
6215
6216 void
6217 init_optabs (void)
6218 {
6219 if (libfunc_hash)
6220 htab_empty (libfunc_hash);
6221 else
6222 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6223
6224 /* Fill in the optabs with the insns we support. */
6225 init_all_optabs (this_fn_optabs);
6226
6227 /* The ffs function operates on `int'. Fall back on it if we do not
6228 have a libgcc2 function for that width. */
6229 if (INT_TYPE_SIZE < BITS_PER_WORD)
6230 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6231 "ffs");
6232
6233 /* Explicitly initialize the bswap libfuncs since we need them to be
6234 valid for things other than word_mode. */
6235 if (targetm.libfunc_gnu_prefix)
6236 {
6237 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6238 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6239 }
6240 else
6241 {
6242 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6243 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6244 }
6245
6246 /* Use cabs for double complex abs, since systems generally have cabs.
6247 Don't define any libcall for float complex, so that cabs will be used. */
6248 if (complex_double_type_node)
6249 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6250 "cabs");
6251
6252 abort_libfunc = init_one_libfunc ("abort");
6253 memcpy_libfunc = init_one_libfunc ("memcpy");
6254 memmove_libfunc = init_one_libfunc ("memmove");
6255 memcmp_libfunc = init_one_libfunc ("memcmp");
6256 memset_libfunc = init_one_libfunc ("memset");
6257 setbits_libfunc = init_one_libfunc ("__setbits");
6258
6259 #ifndef DONT_USE_BUILTIN_SETJMP
6260 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6261 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6262 #else
6263 setjmp_libfunc = init_one_libfunc ("setjmp");
6264 longjmp_libfunc = init_one_libfunc ("longjmp");
6265 #endif
6266 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6267 unwind_sjlj_unregister_libfunc
6268 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6269
6270 /* For function entry/exit instrumentation. */
6271 profile_function_entry_libfunc
6272 = init_one_libfunc ("__cyg_profile_func_enter");
6273 profile_function_exit_libfunc
6274 = init_one_libfunc ("__cyg_profile_func_exit");
6275
6276 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6277
6278 /* Allow the target to add more libcalls or rename some, etc. */
6279 targetm.init_libfuncs ();
6280 }
6281
6282 /* Use the current target and options to initialize
6283 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6284
6285 void
6286 init_tree_optimization_optabs (tree optnode)
6287 {
6288 /* Quick exit if we have already computed optabs for this target. */
6289 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6290 return;
6291
6292 /* Forget any previous information and set up for the current target. */
6293 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6294 struct target_optabs *tmp_optabs = (struct target_optabs *)
6295 TREE_OPTIMIZATION_OPTABS (optnode);
6296 if (tmp_optabs)
6297 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6298 else
6299 tmp_optabs = ggc_alloc<target_optabs> ();
6300
6301 /* Generate a new set of optabs into tmp_optabs. */
6302 init_all_optabs (tmp_optabs);
6303
6304 /* If the optabs changed, record it. */
6305 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6306 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
6307 else
6308 {
6309 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6310 ggc_free (tmp_optabs);
6311 }
6312 }
6313
6314 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6315 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6316
6317 static void
6318 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6319 {
6320 enum machine_mode mode;
6321 char buf[64];
6322 size_t len = strlen (base);
6323 int i;
6324
6325 gcc_assert (max <= 8);
6326 gcc_assert (len + 3 < sizeof (buf));
6327
6328 memcpy (buf, base, len);
6329 buf[len] = '_';
6330 buf[len + 1] = '0';
6331 buf[len + 2] = '\0';
6332
6333 mode = QImode;
6334 for (i = 1; i <= max; i *= 2)
6335 {
6336 buf[len + 1] = '0' + i;
6337 set_optab_libfunc (tab, mode, buf);
6338 mode = GET_MODE_2XWIDER_MODE (mode);
6339 }
6340 }
6341
6342 void
6343 init_sync_libfuncs (int max)
6344 {
6345 if (!flag_sync_libcalls)
6346 return;
6347
6348 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6349 "__sync_val_compare_and_swap", max);
6350 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6351 "__sync_lock_test_and_set", max);
6352
6353 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6354 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6355 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6356 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6357 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6358 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6359
6360 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6361 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6362 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6363 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6364 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6365 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6366 }
6367
6368 /* Print information about the current contents of the optabs on
6369 STDERR. */
6370
6371 DEBUG_FUNCTION void
6372 debug_optab_libfuncs (void)
6373 {
6374 int i, j, k;
6375
6376 /* Dump the arithmetic optabs. */
6377 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6378 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6379 {
6380 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6381 if (l)
6382 {
6383 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6384 fprintf (stderr, "%s\t%s:\t%s\n",
6385 GET_RTX_NAME (optab_to_code ((optab) i)),
6386 GET_MODE_NAME (j),
6387 XSTR (l, 0));
6388 }
6389 }
6390
6391 /* Dump the conversion optabs. */
6392 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6393 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6394 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6395 {
6396 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6397 (enum machine_mode) k);
6398 if (l)
6399 {
6400 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6401 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6402 GET_RTX_NAME (optab_to_code ((optab) i)),
6403 GET_MODE_NAME (j),
6404 GET_MODE_NAME (k),
6405 XSTR (l, 0));
6406 }
6407 }
6408 }
6409
6410 \f
6411 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6412 CODE. Return 0 on failure. */
6413
6414 rtx
6415 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6416 {
6417 enum machine_mode mode = GET_MODE (op1);
6418 enum insn_code icode;
6419 rtx insn;
6420 rtx trap_rtx;
6421
6422 if (mode == VOIDmode)
6423 return 0;
6424
6425 icode = optab_handler (ctrap_optab, mode);
6426 if (icode == CODE_FOR_nothing)
6427 return 0;
6428
6429 /* Some targets only accept a zero trap code. */
6430 if (!insn_operand_matches (icode, 3, tcode))
6431 return 0;
6432
6433 do_pending_stack_adjust ();
6434 start_sequence ();
6435 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6436 &trap_rtx, &mode);
6437 if (!trap_rtx)
6438 insn = NULL_RTX;
6439 else
6440 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6441 tcode);
6442
6443 /* If that failed, then give up. */
6444 if (insn == 0)
6445 {
6446 end_sequence ();
6447 return 0;
6448 }
6449
6450 emit_insn (insn);
6451 insn = get_insns ();
6452 end_sequence ();
6453 return insn;
6454 }
6455
6456 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6457 or unsigned operation code. */
6458
6459 static enum rtx_code
6460 get_rtx_code (enum tree_code tcode, bool unsignedp)
6461 {
6462 enum rtx_code code;
6463 switch (tcode)
6464 {
6465 case EQ_EXPR:
6466 code = EQ;
6467 break;
6468 case NE_EXPR:
6469 code = NE;
6470 break;
6471 case LT_EXPR:
6472 code = unsignedp ? LTU : LT;
6473 break;
6474 case LE_EXPR:
6475 code = unsignedp ? LEU : LE;
6476 break;
6477 case GT_EXPR:
6478 code = unsignedp ? GTU : GT;
6479 break;
6480 case GE_EXPR:
6481 code = unsignedp ? GEU : GE;
6482 break;
6483
6484 case UNORDERED_EXPR:
6485 code = UNORDERED;
6486 break;
6487 case ORDERED_EXPR:
6488 code = ORDERED;
6489 break;
6490 case UNLT_EXPR:
6491 code = UNLT;
6492 break;
6493 case UNLE_EXPR:
6494 code = UNLE;
6495 break;
6496 case UNGT_EXPR:
6497 code = UNGT;
6498 break;
6499 case UNGE_EXPR:
6500 code = UNGE;
6501 break;
6502 case UNEQ_EXPR:
6503 code = UNEQ;
6504 break;
6505 case LTGT_EXPR:
6506 code = LTGT;
6507 break;
6508
6509 default:
6510 gcc_unreachable ();
6511 }
6512 return code;
6513 }
6514
6515 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6516 unsigned operators. Do not generate compare instruction. */
6517
6518 static rtx
6519 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6520 bool unsignedp, enum insn_code icode)
6521 {
6522 struct expand_operand ops[2];
6523 rtx rtx_op0, rtx_op1;
6524 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6525
6526 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6527
6528 /* Expand operands. */
6529 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6530 EXPAND_STACK_PARM);
6531 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6532 EXPAND_STACK_PARM);
6533
6534 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6535 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6536 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6537 gcc_unreachable ();
6538 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6539 }
6540
6541 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6542 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6543
6544 bool
6545 can_vec_perm_p (enum machine_mode mode, bool variable,
6546 const unsigned char *sel)
6547 {
6548 enum machine_mode qimode;
6549
6550 /* If the target doesn't implement a vector mode for the vector type,
6551 then no operations are supported. */
6552 if (!VECTOR_MODE_P (mode))
6553 return false;
6554
6555 if (!variable)
6556 {
6557 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6558 && (sel == NULL
6559 || targetm.vectorize.vec_perm_const_ok == NULL
6560 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6561 return true;
6562 }
6563
6564 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6565 return true;
6566
6567 /* We allow fallback to a QI vector mode, and adjust the mask. */
6568 if (GET_MODE_INNER (mode) == QImode)
6569 return false;
6570 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6571 if (!VECTOR_MODE_P (qimode))
6572 return false;
6573
6574 /* ??? For completeness, we ought to check the QImode version of
6575 vec_perm_const_optab. But all users of this implicit lowering
6576 feature implement the variable vec_perm_optab. */
6577 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6578 return false;
6579
6580 /* In order to support the lowering of variable permutations,
6581 we need to support shifts and adds. */
6582 if (variable)
6583 {
6584 if (GET_MODE_UNIT_SIZE (mode) > 2
6585 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6586 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6587 return false;
6588 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6589 return false;
6590 }
6591
6592 return true;
6593 }
6594
6595 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6596
6597 static rtx
6598 expand_vec_perm_1 (enum insn_code icode, rtx target,
6599 rtx v0, rtx v1, rtx sel)
6600 {
6601 enum machine_mode tmode = GET_MODE (target);
6602 enum machine_mode smode = GET_MODE (sel);
6603 struct expand_operand ops[4];
6604
6605 create_output_operand (&ops[0], target, tmode);
6606 create_input_operand (&ops[3], sel, smode);
6607
6608 /* Make an effort to preserve v0 == v1. The target expander is able to
6609 rely on this to determine if we're permuting a single input operand. */
6610 if (rtx_equal_p (v0, v1))
6611 {
6612 if (!insn_operand_matches (icode, 1, v0))
6613 v0 = force_reg (tmode, v0);
6614 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6615 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6616
6617 create_fixed_operand (&ops[1], v0);
6618 create_fixed_operand (&ops[2], v0);
6619 }
6620 else
6621 {
6622 create_input_operand (&ops[1], v0, tmode);
6623 create_input_operand (&ops[2], v1, tmode);
6624 }
6625
6626 if (maybe_expand_insn (icode, 4, ops))
6627 return ops[0].value;
6628 return NULL_RTX;
6629 }
6630
6631 /* Generate instructions for vec_perm optab given its mode
6632 and three operands. */
6633
6634 rtx
6635 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6636 {
6637 enum insn_code icode;
6638 enum machine_mode qimode;
6639 unsigned int i, w, e, u;
6640 rtx tmp, sel_qi = NULL;
6641 rtvec vec;
6642
6643 if (!target || GET_MODE (target) != mode)
6644 target = gen_reg_rtx (mode);
6645
6646 w = GET_MODE_SIZE (mode);
6647 e = GET_MODE_NUNITS (mode);
6648 u = GET_MODE_UNIT_SIZE (mode);
6649
6650 /* Set QIMODE to a different vector mode with byte elements.
6651 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6652 qimode = VOIDmode;
6653 if (GET_MODE_INNER (mode) != QImode)
6654 {
6655 qimode = mode_for_vector (QImode, w);
6656 if (!VECTOR_MODE_P (qimode))
6657 qimode = VOIDmode;
6658 }
6659
6660 /* If the input is a constant, expand it specially. */
6661 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6662 if (GET_CODE (sel) == CONST_VECTOR)
6663 {
6664 icode = direct_optab_handler (vec_perm_const_optab, mode);
6665 if (icode != CODE_FOR_nothing)
6666 {
6667 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6668 if (tmp)
6669 return tmp;
6670 }
6671
6672 /* Fall back to a constant byte-based permutation. */
6673 if (qimode != VOIDmode)
6674 {
6675 vec = rtvec_alloc (w);
6676 for (i = 0; i < e; ++i)
6677 {
6678 unsigned int j, this_e;
6679
6680 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6681 this_e &= 2 * e - 1;
6682 this_e *= u;
6683
6684 for (j = 0; j < u; ++j)
6685 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6686 }
6687 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6688
6689 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6690 if (icode != CODE_FOR_nothing)
6691 {
6692 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6693 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6694 gen_lowpart (qimode, v1), sel_qi);
6695 if (tmp)
6696 return gen_lowpart (mode, tmp);
6697 }
6698 }
6699 }
6700
6701 /* Otherwise expand as a fully variable permuation. */
6702 icode = direct_optab_handler (vec_perm_optab, mode);
6703 if (icode != CODE_FOR_nothing)
6704 {
6705 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6706 if (tmp)
6707 return tmp;
6708 }
6709
6710 /* As a special case to aid several targets, lower the element-based
6711 permutation to a byte-based permutation and try again. */
6712 if (qimode == VOIDmode)
6713 return NULL_RTX;
6714 icode = direct_optab_handler (vec_perm_optab, qimode);
6715 if (icode == CODE_FOR_nothing)
6716 return NULL_RTX;
6717
6718 if (sel_qi == NULL)
6719 {
6720 /* Multiply each element by its byte size. */
6721 enum machine_mode selmode = GET_MODE (sel);
6722 if (u == 2)
6723 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6724 sel, 0, OPTAB_DIRECT);
6725 else
6726 sel = expand_simple_binop (selmode, ASHIFT, sel,
6727 GEN_INT (exact_log2 (u)),
6728 sel, 0, OPTAB_DIRECT);
6729 gcc_assert (sel != NULL);
6730
6731 /* Broadcast the low byte each element into each of its bytes. */
6732 vec = rtvec_alloc (w);
6733 for (i = 0; i < w; ++i)
6734 {
6735 int this_e = i / u * u;
6736 if (BYTES_BIG_ENDIAN)
6737 this_e += u - 1;
6738 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6739 }
6740 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6741 sel = gen_lowpart (qimode, sel);
6742 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6743 gcc_assert (sel != NULL);
6744
6745 /* Add the byte offset to each byte element. */
6746 /* Note that the definition of the indicies here is memory ordering,
6747 so there should be no difference between big and little endian. */
6748 vec = rtvec_alloc (w);
6749 for (i = 0; i < w; ++i)
6750 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6751 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6752 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6753 sel, 0, OPTAB_DIRECT);
6754 gcc_assert (sel_qi != NULL);
6755 }
6756
6757 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6758 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6759 gen_lowpart (qimode, v1), sel_qi);
6760 if (tmp)
6761 tmp = gen_lowpart (mode, tmp);
6762 return tmp;
6763 }
6764
6765 /* Return insn code for a conditional operator with a comparison in
6766 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6767
6768 static inline enum insn_code
6769 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6770 {
6771 enum insn_code icode = CODE_FOR_nothing;
6772 if (uns)
6773 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6774 else
6775 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6776 return icode;
6777 }
6778
6779 /* Return TRUE iff, appropriate vector insns are available
6780 for vector cond expr with vector type VALUE_TYPE and a comparison
6781 with operand vector types in CMP_OP_TYPE. */
6782
6783 bool
6784 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6785 {
6786 enum machine_mode value_mode = TYPE_MODE (value_type);
6787 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6788 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6789 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6790 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6791 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6792 return false;
6793 return true;
6794 }
6795
6796 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6797 three operands. */
6798
6799 rtx
6800 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6801 rtx target)
6802 {
6803 struct expand_operand ops[6];
6804 enum insn_code icode;
6805 rtx comparison, rtx_op1, rtx_op2;
6806 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6807 enum machine_mode cmp_op_mode;
6808 bool unsignedp;
6809 tree op0a, op0b;
6810 enum tree_code tcode;
6811
6812 if (COMPARISON_CLASS_P (op0))
6813 {
6814 op0a = TREE_OPERAND (op0, 0);
6815 op0b = TREE_OPERAND (op0, 1);
6816 tcode = TREE_CODE (op0);
6817 }
6818 else
6819 {
6820 /* Fake op0 < 0. */
6821 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6822 op0a = op0;
6823 op0b = build_zero_cst (TREE_TYPE (op0));
6824 tcode = LT_EXPR;
6825 }
6826 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6827 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6828
6829
6830 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6831 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6832
6833 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6834 if (icode == CODE_FOR_nothing)
6835 return 0;
6836
6837 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6838 rtx_op1 = expand_normal (op1);
6839 rtx_op2 = expand_normal (op2);
6840
6841 create_output_operand (&ops[0], target, mode);
6842 create_input_operand (&ops[1], rtx_op1, mode);
6843 create_input_operand (&ops[2], rtx_op2, mode);
6844 create_fixed_operand (&ops[3], comparison);
6845 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6846 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6847 expand_insn (icode, 6, ops);
6848 return ops[0].value;
6849 }
6850
6851 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6852 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6853 2 for even/odd widening, and 3 for hi/lo widening. */
6854
6855 int
6856 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6857 {
6858 optab op;
6859 unsigned char *sel;
6860 unsigned i, nunits;
6861
6862 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6863 if (optab_handler (op, mode) != CODE_FOR_nothing)
6864 return 1;
6865
6866 /* If the mode is an integral vector, synth from widening operations. */
6867 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6868 return 0;
6869
6870 nunits = GET_MODE_NUNITS (mode);
6871 sel = XALLOCAVEC (unsigned char, nunits);
6872
6873 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6874 if (optab_handler (op, mode) != CODE_FOR_nothing)
6875 {
6876 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6877 if (optab_handler (op, mode) != CODE_FOR_nothing)
6878 {
6879 for (i = 0; i < nunits; ++i)
6880 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6881 if (can_vec_perm_p (mode, false, sel))
6882 return 2;
6883 }
6884 }
6885
6886 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6887 if (optab_handler (op, mode) != CODE_FOR_nothing)
6888 {
6889 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6890 if (optab_handler (op, mode) != CODE_FOR_nothing)
6891 {
6892 for (i = 0; i < nunits; ++i)
6893 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6894 if (can_vec_perm_p (mode, false, sel))
6895 return 3;
6896 }
6897 }
6898
6899 return 0;
6900 }
6901
6902 /* Expand a highpart multiply. */
6903
6904 rtx
6905 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6906 rtx target, bool uns_p)
6907 {
6908 struct expand_operand eops[3];
6909 enum insn_code icode;
6910 int method, i, nunits;
6911 enum machine_mode wmode;
6912 rtx m1, m2, perm;
6913 optab tab1, tab2;
6914 rtvec v;
6915
6916 method = can_mult_highpart_p (mode, uns_p);
6917 switch (method)
6918 {
6919 case 0:
6920 return NULL_RTX;
6921 case 1:
6922 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6923 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6924 OPTAB_LIB_WIDEN);
6925 case 2:
6926 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6927 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6928 break;
6929 case 3:
6930 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6931 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6932 if (BYTES_BIG_ENDIAN)
6933 {
6934 optab t = tab1;
6935 tab1 = tab2;
6936 tab2 = t;
6937 }
6938 break;
6939 default:
6940 gcc_unreachable ();
6941 }
6942
6943 icode = optab_handler (tab1, mode);
6944 nunits = GET_MODE_NUNITS (mode);
6945 wmode = insn_data[icode].operand[0].mode;
6946 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6947 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6948
6949 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6950 create_input_operand (&eops[1], op0, mode);
6951 create_input_operand (&eops[2], op1, mode);
6952 expand_insn (icode, 3, eops);
6953 m1 = gen_lowpart (mode, eops[0].value);
6954
6955 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6956 create_input_operand (&eops[1], op0, mode);
6957 create_input_operand (&eops[2], op1, mode);
6958 expand_insn (optab_handler (tab2, mode), 3, eops);
6959 m2 = gen_lowpart (mode, eops[0].value);
6960
6961 v = rtvec_alloc (nunits);
6962 if (method == 2)
6963 {
6964 for (i = 0; i < nunits; ++i)
6965 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6966 + ((i & 1) ? nunits : 0));
6967 }
6968 else
6969 {
6970 for (i = 0; i < nunits; ++i)
6971 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6972 }
6973 perm = gen_rtx_CONST_VECTOR (mode, v);
6974
6975 return expand_vec_perm (mode, m1, m2, perm, target);
6976 }
6977
6978 /* Return true if target supports vector masked load/store for mode. */
6979 bool
6980 can_vec_mask_load_store_p (enum machine_mode mode, bool is_load)
6981 {
6982 optab op = is_load ? maskload_optab : maskstore_optab;
6983 enum machine_mode vmode;
6984 unsigned int vector_sizes;
6985
6986 /* If mode is vector mode, check it directly. */
6987 if (VECTOR_MODE_P (mode))
6988 return optab_handler (op, mode) != CODE_FOR_nothing;
6989
6990 /* Otherwise, return true if there is some vector mode with
6991 the mask load/store supported. */
6992
6993 /* See if there is any chance the mask load or store might be
6994 vectorized. If not, punt. */
6995 vmode = targetm.vectorize.preferred_simd_mode (mode);
6996 if (!VECTOR_MODE_P (vmode))
6997 return false;
6998
6999 if (optab_handler (op, vmode) != CODE_FOR_nothing)
7000 return true;
7001
7002 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
7003 while (vector_sizes != 0)
7004 {
7005 unsigned int cur = 1 << floor_log2 (vector_sizes);
7006 vector_sizes &= ~cur;
7007 if (cur <= GET_MODE_SIZE (mode))
7008 continue;
7009 vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode));
7010 if (VECTOR_MODE_P (vmode)
7011 && optab_handler (op, vmode) != CODE_FOR_nothing)
7012 return true;
7013 }
7014 return false;
7015 }
7016 \f
7017 /* Return true if there is a compare_and_swap pattern. */
7018
7019 bool
7020 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
7021 {
7022 enum insn_code icode;
7023
7024 /* Check for __atomic_compare_and_swap. */
7025 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7026 if (icode != CODE_FOR_nothing)
7027 return true;
7028
7029 /* Check for __sync_compare_and_swap. */
7030 icode = optab_handler (sync_compare_and_swap_optab, mode);
7031 if (icode != CODE_FOR_nothing)
7032 return true;
7033 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
7034 return true;
7035
7036 /* No inline compare and swap. */
7037 return false;
7038 }
7039
7040 /* Return true if an atomic exchange can be performed. */
7041
7042 bool
7043 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
7044 {
7045 enum insn_code icode;
7046
7047 /* Check for __atomic_exchange. */
7048 icode = direct_optab_handler (atomic_exchange_optab, mode);
7049 if (icode != CODE_FOR_nothing)
7050 return true;
7051
7052 /* Don't check __sync_test_and_set, as on some platforms that
7053 has reduced functionality. Targets that really do support
7054 a proper exchange should simply be updated to the __atomics. */
7055
7056 return can_compare_and_swap_p (mode, allow_libcall);
7057 }
7058
7059
7060 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7061 pattern. */
7062
7063 static void
7064 find_cc_set (rtx x, const_rtx pat, void *data)
7065 {
7066 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7067 && GET_CODE (pat) == SET)
7068 {
7069 rtx *p_cc_reg = (rtx *) data;
7070 gcc_assert (!*p_cc_reg);
7071 *p_cc_reg = x;
7072 }
7073 }
7074
7075 /* This is a helper function for the other atomic operations. This function
7076 emits a loop that contains SEQ that iterates until a compare-and-swap
7077 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7078 a set of instructions that takes a value from OLD_REG as an input and
7079 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7080 set to the current contents of MEM. After SEQ, a compare-and-swap will
7081 attempt to update MEM with NEW_REG. The function returns true when the
7082 loop was generated successfully. */
7083
7084 static bool
7085 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7086 {
7087 enum machine_mode mode = GET_MODE (mem);
7088 rtx label, cmp_reg, success, oldval;
7089
7090 /* The loop we want to generate looks like
7091
7092 cmp_reg = mem;
7093 label:
7094 old_reg = cmp_reg;
7095 seq;
7096 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7097 if (success)
7098 goto label;
7099
7100 Note that we only do the plain load from memory once. Subsequent
7101 iterations use the value loaded by the compare-and-swap pattern. */
7102
7103 label = gen_label_rtx ();
7104 cmp_reg = gen_reg_rtx (mode);
7105
7106 emit_move_insn (cmp_reg, mem);
7107 emit_label (label);
7108 emit_move_insn (old_reg, cmp_reg);
7109 if (seq)
7110 emit_insn (seq);
7111
7112 success = NULL_RTX;
7113 oldval = cmp_reg;
7114 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7115 new_reg, false, MEMMODEL_SEQ_CST,
7116 MEMMODEL_RELAXED))
7117 return false;
7118
7119 if (oldval != cmp_reg)
7120 emit_move_insn (cmp_reg, oldval);
7121
7122 /* Mark this jump predicted not taken. */
7123 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7124 GET_MODE (success), 1, label, 0);
7125 return true;
7126 }
7127
7128
7129 /* This function tries to emit an atomic_exchange intruction. VAL is written
7130 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7131 using TARGET if possible. */
7132
7133 static rtx
7134 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7135 {
7136 enum machine_mode mode = GET_MODE (mem);
7137 enum insn_code icode;
7138
7139 /* If the target supports the exchange directly, great. */
7140 icode = direct_optab_handler (atomic_exchange_optab, mode);
7141 if (icode != CODE_FOR_nothing)
7142 {
7143 struct expand_operand ops[4];
7144
7145 create_output_operand (&ops[0], target, mode);
7146 create_fixed_operand (&ops[1], mem);
7147 create_input_operand (&ops[2], val, mode);
7148 create_integer_operand (&ops[3], model);
7149 if (maybe_expand_insn (icode, 4, ops))
7150 return ops[0].value;
7151 }
7152
7153 return NULL_RTX;
7154 }
7155
7156 /* This function tries to implement an atomic exchange operation using
7157 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7158 The previous contents of *MEM are returned, using TARGET if possible.
7159 Since this instructionn is an acquire barrier only, stronger memory
7160 models may require additional barriers to be emitted. */
7161
7162 static rtx
7163 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7164 enum memmodel model)
7165 {
7166 enum machine_mode mode = GET_MODE (mem);
7167 enum insn_code icode;
7168 rtx last_insn = get_last_insn ();
7169
7170 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7171
7172 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7173 exists, and the memory model is stronger than acquire, add a release
7174 barrier before the instruction. */
7175
7176 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7177 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7178 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7179 expand_mem_thread_fence (model);
7180
7181 if (icode != CODE_FOR_nothing)
7182 {
7183 struct expand_operand ops[3];
7184 create_output_operand (&ops[0], target, mode);
7185 create_fixed_operand (&ops[1], mem);
7186 create_input_operand (&ops[2], val, mode);
7187 if (maybe_expand_insn (icode, 3, ops))
7188 return ops[0].value;
7189 }
7190
7191 /* If an external test-and-set libcall is provided, use that instead of
7192 any external compare-and-swap that we might get from the compare-and-
7193 swap-loop expansion later. */
7194 if (!can_compare_and_swap_p (mode, false))
7195 {
7196 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7197 if (libfunc != NULL)
7198 {
7199 rtx addr;
7200
7201 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7202 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7203 mode, 2, addr, ptr_mode,
7204 val, mode);
7205 }
7206 }
7207
7208 /* If the test_and_set can't be emitted, eliminate any barrier that might
7209 have been emitted. */
7210 delete_insns_since (last_insn);
7211 return NULL_RTX;
7212 }
7213
7214 /* This function tries to implement an atomic exchange operation using a
7215 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7216 *MEM are returned, using TARGET if possible. No memory model is required
7217 since a compare_and_swap loop is seq-cst. */
7218
7219 static rtx
7220 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7221 {
7222 enum machine_mode mode = GET_MODE (mem);
7223
7224 if (can_compare_and_swap_p (mode, true))
7225 {
7226 if (!target || !register_operand (target, mode))
7227 target = gen_reg_rtx (mode);
7228 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7229 return target;
7230 }
7231
7232 return NULL_RTX;
7233 }
7234
7235 /* This function tries to implement an atomic test-and-set operation
7236 using the atomic_test_and_set instruction pattern. A boolean value
7237 is returned from the operation, using TARGET if possible. */
7238
7239 #ifndef HAVE_atomic_test_and_set
7240 #define HAVE_atomic_test_and_set 0
7241 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7242 #endif
7243
7244 static rtx
7245 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7246 {
7247 enum machine_mode pat_bool_mode;
7248 struct expand_operand ops[3];
7249
7250 if (!HAVE_atomic_test_and_set)
7251 return NULL_RTX;
7252
7253 /* While we always get QImode from __atomic_test_and_set, we get
7254 other memory modes from __sync_lock_test_and_set. Note that we
7255 use no endian adjustment here. This matches the 4.6 behavior
7256 in the Sparc backend. */
7257 gcc_checking_assert
7258 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7259 if (GET_MODE (mem) != QImode)
7260 mem = adjust_address_nv (mem, QImode, 0);
7261
7262 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7263 create_output_operand (&ops[0], target, pat_bool_mode);
7264 create_fixed_operand (&ops[1], mem);
7265 create_integer_operand (&ops[2], model);
7266
7267 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7268 return ops[0].value;
7269 return NULL_RTX;
7270 }
7271
7272 /* This function expands the legacy _sync_lock test_and_set operation which is
7273 generally an atomic exchange. Some limited targets only allow the
7274 constant 1 to be stored. This is an ACQUIRE operation.
7275
7276 TARGET is an optional place to stick the return value.
7277 MEM is where VAL is stored. */
7278
7279 rtx
7280 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7281 {
7282 rtx ret;
7283
7284 /* Try an atomic_exchange first. */
7285 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7286 if (ret)
7287 return ret;
7288
7289 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7290 if (ret)
7291 return ret;
7292
7293 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7294 if (ret)
7295 return ret;
7296
7297 /* If there are no other options, try atomic_test_and_set if the value
7298 being stored is 1. */
7299 if (val == const1_rtx)
7300 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7301
7302 return ret;
7303 }
7304
7305 /* This function expands the atomic test_and_set operation:
7306 atomically store a boolean TRUE into MEM and return the previous value.
7307
7308 MEMMODEL is the memory model variant to use.
7309 TARGET is an optional place to stick the return value. */
7310
7311 rtx
7312 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7313 {
7314 enum machine_mode mode = GET_MODE (mem);
7315 rtx ret, trueval, subtarget;
7316
7317 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7318 if (ret)
7319 return ret;
7320
7321 /* Be binary compatible with non-default settings of trueval, and different
7322 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7323 another only has atomic-exchange. */
7324 if (targetm.atomic_test_and_set_trueval == 1)
7325 {
7326 trueval = const1_rtx;
7327 subtarget = target ? target : gen_reg_rtx (mode);
7328 }
7329 else
7330 {
7331 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7332 subtarget = gen_reg_rtx (mode);
7333 }
7334
7335 /* Try the atomic-exchange optab... */
7336 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7337
7338 /* ... then an atomic-compare-and-swap loop ... */
7339 if (!ret)
7340 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7341
7342 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7343 if (!ret)
7344 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7345
7346 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7347 things with the value 1. Thus we try again without trueval. */
7348 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7349 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7350
7351 /* Failing all else, assume a single threaded environment and simply
7352 perform the operation. */
7353 if (!ret)
7354 {
7355 emit_move_insn (subtarget, mem);
7356 emit_move_insn (mem, trueval);
7357 ret = subtarget;
7358 }
7359
7360 /* Recall that have to return a boolean value; rectify if trueval
7361 is not exactly one. */
7362 if (targetm.atomic_test_and_set_trueval != 1)
7363 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7364
7365 return ret;
7366 }
7367
7368 /* This function expands the atomic exchange operation:
7369 atomically store VAL in MEM and return the previous value in MEM.
7370
7371 MEMMODEL is the memory model variant to use.
7372 TARGET is an optional place to stick the return value. */
7373
7374 rtx
7375 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7376 {
7377 rtx ret;
7378
7379 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7380
7381 /* Next try a compare-and-swap loop for the exchange. */
7382 if (!ret)
7383 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7384
7385 return ret;
7386 }
7387
7388 /* This function expands the atomic compare exchange operation:
7389
7390 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7391 *PTARGET_OVAL is an optional place to store the old value from memory.
7392 Both target parameters may be NULL to indicate that we do not care about
7393 that return value. Both target parameters are updated on success to
7394 the actual location of the corresponding result.
7395
7396 MEMMODEL is the memory model variant to use.
7397
7398 The return value of the function is true for success. */
7399
7400 bool
7401 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7402 rtx mem, rtx expected, rtx desired,
7403 bool is_weak, enum memmodel succ_model,
7404 enum memmodel fail_model)
7405 {
7406 enum machine_mode mode = GET_MODE (mem);
7407 struct expand_operand ops[8];
7408 enum insn_code icode;
7409 rtx target_oval, target_bool = NULL_RTX;
7410 rtx libfunc;
7411
7412 /* Load expected into a register for the compare and swap. */
7413 if (MEM_P (expected))
7414 expected = copy_to_reg (expected);
7415
7416 /* Make sure we always have some place to put the return oldval.
7417 Further, make sure that place is distinct from the input expected,
7418 just in case we need that path down below. */
7419 if (ptarget_oval == NULL
7420 || (target_oval = *ptarget_oval) == NULL
7421 || reg_overlap_mentioned_p (expected, target_oval))
7422 target_oval = gen_reg_rtx (mode);
7423
7424 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7425 if (icode != CODE_FOR_nothing)
7426 {
7427 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7428
7429 /* Make sure we always have a place for the bool operand. */
7430 if (ptarget_bool == NULL
7431 || (target_bool = *ptarget_bool) == NULL
7432 || GET_MODE (target_bool) != bool_mode)
7433 target_bool = gen_reg_rtx (bool_mode);
7434
7435 /* Emit the compare_and_swap. */
7436 create_output_operand (&ops[0], target_bool, bool_mode);
7437 create_output_operand (&ops[1], target_oval, mode);
7438 create_fixed_operand (&ops[2], mem);
7439 create_input_operand (&ops[3], expected, mode);
7440 create_input_operand (&ops[4], desired, mode);
7441 create_integer_operand (&ops[5], is_weak);
7442 create_integer_operand (&ops[6], succ_model);
7443 create_integer_operand (&ops[7], fail_model);
7444 if (maybe_expand_insn (icode, 8, ops))
7445 {
7446 /* Return success/failure. */
7447 target_bool = ops[0].value;
7448 target_oval = ops[1].value;
7449 goto success;
7450 }
7451 }
7452
7453 /* Otherwise fall back to the original __sync_val_compare_and_swap
7454 which is always seq-cst. */
7455 icode = optab_handler (sync_compare_and_swap_optab, mode);
7456 if (icode != CODE_FOR_nothing)
7457 {
7458 rtx cc_reg;
7459
7460 create_output_operand (&ops[0], target_oval, mode);
7461 create_fixed_operand (&ops[1], mem);
7462 create_input_operand (&ops[2], expected, mode);
7463 create_input_operand (&ops[3], desired, mode);
7464 if (!maybe_expand_insn (icode, 4, ops))
7465 return false;
7466
7467 target_oval = ops[0].value;
7468
7469 /* If the caller isn't interested in the boolean return value,
7470 skip the computation of it. */
7471 if (ptarget_bool == NULL)
7472 goto success;
7473
7474 /* Otherwise, work out if the compare-and-swap succeeded. */
7475 cc_reg = NULL_RTX;
7476 if (have_insn_for (COMPARE, CCmode))
7477 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7478 if (cc_reg)
7479 {
7480 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7481 const0_rtx, VOIDmode, 0, 1);
7482 goto success;
7483 }
7484 goto success_bool_from_val;
7485 }
7486
7487 /* Also check for library support for __sync_val_compare_and_swap. */
7488 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7489 if (libfunc != NULL)
7490 {
7491 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7492 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7493 mode, 3, addr, ptr_mode,
7494 expected, mode, desired, mode);
7495
7496 /* Compute the boolean return value only if requested. */
7497 if (ptarget_bool)
7498 goto success_bool_from_val;
7499 else
7500 goto success;
7501 }
7502
7503 /* Failure. */
7504 return false;
7505
7506 success_bool_from_val:
7507 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7508 expected, VOIDmode, 1, 1);
7509 success:
7510 /* Make sure that the oval output winds up where the caller asked. */
7511 if (ptarget_oval)
7512 *ptarget_oval = target_oval;
7513 if (ptarget_bool)
7514 *ptarget_bool = target_bool;
7515 return true;
7516 }
7517
7518 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7519
7520 static void
7521 expand_asm_memory_barrier (void)
7522 {
7523 rtx asm_op, clob;
7524
7525 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7526 rtvec_alloc (0), rtvec_alloc (0),
7527 rtvec_alloc (0), UNKNOWN_LOCATION);
7528 MEM_VOLATILE_P (asm_op) = 1;
7529
7530 clob = gen_rtx_SCRATCH (VOIDmode);
7531 clob = gen_rtx_MEM (BLKmode, clob);
7532 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7533
7534 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7535 }
7536
7537 /* This routine will either emit the mem_thread_fence pattern or issue a
7538 sync_synchronize to generate a fence for memory model MEMMODEL. */
7539
7540 #ifndef HAVE_mem_thread_fence
7541 # define HAVE_mem_thread_fence 0
7542 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7543 #endif
7544 #ifndef HAVE_memory_barrier
7545 # define HAVE_memory_barrier 0
7546 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7547 #endif
7548
7549 void
7550 expand_mem_thread_fence (enum memmodel model)
7551 {
7552 if (HAVE_mem_thread_fence)
7553 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7554 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7555 {
7556 if (HAVE_memory_barrier)
7557 emit_insn (gen_memory_barrier ());
7558 else if (synchronize_libfunc != NULL_RTX)
7559 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7560 else
7561 expand_asm_memory_barrier ();
7562 }
7563 }
7564
7565 /* This routine will either emit the mem_signal_fence pattern or issue a
7566 sync_synchronize to generate a fence for memory model MEMMODEL. */
7567
7568 #ifndef HAVE_mem_signal_fence
7569 # define HAVE_mem_signal_fence 0
7570 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7571 #endif
7572
7573 void
7574 expand_mem_signal_fence (enum memmodel model)
7575 {
7576 if (HAVE_mem_signal_fence)
7577 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7578 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7579 {
7580 /* By default targets are coherent between a thread and the signal
7581 handler running on the same thread. Thus this really becomes a
7582 compiler barrier, in that stores must not be sunk past
7583 (or raised above) a given point. */
7584 expand_asm_memory_barrier ();
7585 }
7586 }
7587
7588 /* This function expands the atomic load operation:
7589 return the atomically loaded value in MEM.
7590
7591 MEMMODEL is the memory model variant to use.
7592 TARGET is an option place to stick the return value. */
7593
7594 rtx
7595 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7596 {
7597 enum machine_mode mode = GET_MODE (mem);
7598 enum insn_code icode;
7599
7600 /* If the target supports the load directly, great. */
7601 icode = direct_optab_handler (atomic_load_optab, mode);
7602 if (icode != CODE_FOR_nothing)
7603 {
7604 struct expand_operand ops[3];
7605
7606 create_output_operand (&ops[0], target, mode);
7607 create_fixed_operand (&ops[1], mem);
7608 create_integer_operand (&ops[2], model);
7609 if (maybe_expand_insn (icode, 3, ops))
7610 return ops[0].value;
7611 }
7612
7613 /* If the size of the object is greater than word size on this target,
7614 then we assume that a load will not be atomic. */
7615 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7616 {
7617 /* Issue val = compare_and_swap (mem, 0, 0).
7618 This may cause the occasional harmless store of 0 when the value is
7619 already 0, but it seems to be OK according to the standards guys. */
7620 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7621 const0_rtx, false, model, model))
7622 return target;
7623 else
7624 /* Otherwise there is no atomic load, leave the library call. */
7625 return NULL_RTX;
7626 }
7627
7628 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7629 if (!target || target == const0_rtx)
7630 target = gen_reg_rtx (mode);
7631
7632 /* For SEQ_CST, emit a barrier before the load. */
7633 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7634 expand_mem_thread_fence (model);
7635
7636 emit_move_insn (target, mem);
7637
7638 /* Emit the appropriate barrier after the load. */
7639 expand_mem_thread_fence (model);
7640
7641 return target;
7642 }
7643
7644 /* This function expands the atomic store operation:
7645 Atomically store VAL in MEM.
7646 MEMMODEL is the memory model variant to use.
7647 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7648 function returns const0_rtx if a pattern was emitted. */
7649
7650 rtx
7651 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7652 {
7653 enum machine_mode mode = GET_MODE (mem);
7654 enum insn_code icode;
7655 struct expand_operand ops[3];
7656
7657 /* If the target supports the store directly, great. */
7658 icode = direct_optab_handler (atomic_store_optab, mode);
7659 if (icode != CODE_FOR_nothing)
7660 {
7661 create_fixed_operand (&ops[0], mem);
7662 create_input_operand (&ops[1], val, mode);
7663 create_integer_operand (&ops[2], model);
7664 if (maybe_expand_insn (icode, 3, ops))
7665 return const0_rtx;
7666 }
7667
7668 /* If using __sync_lock_release is a viable alternative, try it. */
7669 if (use_release)
7670 {
7671 icode = direct_optab_handler (sync_lock_release_optab, mode);
7672 if (icode != CODE_FOR_nothing)
7673 {
7674 create_fixed_operand (&ops[0], mem);
7675 create_input_operand (&ops[1], const0_rtx, mode);
7676 if (maybe_expand_insn (icode, 2, ops))
7677 {
7678 /* lock_release is only a release barrier. */
7679 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7680 expand_mem_thread_fence (model);
7681 return const0_rtx;
7682 }
7683 }
7684 }
7685
7686 /* If the size of the object is greater than word size on this target,
7687 a default store will not be atomic, Try a mem_exchange and throw away
7688 the result. If that doesn't work, don't do anything. */
7689 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7690 {
7691 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7692 if (!target)
7693 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7694 if (target)
7695 return const0_rtx;
7696 else
7697 return NULL_RTX;
7698 }
7699
7700 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7701 expand_mem_thread_fence (model);
7702
7703 emit_move_insn (mem, val);
7704
7705 /* For SEQ_CST, also emit a barrier after the store. */
7706 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7707 expand_mem_thread_fence (model);
7708
7709 return const0_rtx;
7710 }
7711
7712
7713 /* Structure containing the pointers and values required to process the
7714 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7715
7716 struct atomic_op_functions
7717 {
7718 direct_optab mem_fetch_before;
7719 direct_optab mem_fetch_after;
7720 direct_optab mem_no_result;
7721 optab fetch_before;
7722 optab fetch_after;
7723 direct_optab no_result;
7724 enum rtx_code reverse_code;
7725 };
7726
7727
7728 /* Fill in structure pointed to by OP with the various optab entries for an
7729 operation of type CODE. */
7730
7731 static void
7732 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7733 {
7734 gcc_assert (op!= NULL);
7735
7736 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7737 in the source code during compilation, and the optab entries are not
7738 computable until runtime. Fill in the values at runtime. */
7739 switch (code)
7740 {
7741 case PLUS:
7742 op->mem_fetch_before = atomic_fetch_add_optab;
7743 op->mem_fetch_after = atomic_add_fetch_optab;
7744 op->mem_no_result = atomic_add_optab;
7745 op->fetch_before = sync_old_add_optab;
7746 op->fetch_after = sync_new_add_optab;
7747 op->no_result = sync_add_optab;
7748 op->reverse_code = MINUS;
7749 break;
7750 case MINUS:
7751 op->mem_fetch_before = atomic_fetch_sub_optab;
7752 op->mem_fetch_after = atomic_sub_fetch_optab;
7753 op->mem_no_result = atomic_sub_optab;
7754 op->fetch_before = sync_old_sub_optab;
7755 op->fetch_after = sync_new_sub_optab;
7756 op->no_result = sync_sub_optab;
7757 op->reverse_code = PLUS;
7758 break;
7759 case XOR:
7760 op->mem_fetch_before = atomic_fetch_xor_optab;
7761 op->mem_fetch_after = atomic_xor_fetch_optab;
7762 op->mem_no_result = atomic_xor_optab;
7763 op->fetch_before = sync_old_xor_optab;
7764 op->fetch_after = sync_new_xor_optab;
7765 op->no_result = sync_xor_optab;
7766 op->reverse_code = XOR;
7767 break;
7768 case AND:
7769 op->mem_fetch_before = atomic_fetch_and_optab;
7770 op->mem_fetch_after = atomic_and_fetch_optab;
7771 op->mem_no_result = atomic_and_optab;
7772 op->fetch_before = sync_old_and_optab;
7773 op->fetch_after = sync_new_and_optab;
7774 op->no_result = sync_and_optab;
7775 op->reverse_code = UNKNOWN;
7776 break;
7777 case IOR:
7778 op->mem_fetch_before = atomic_fetch_or_optab;
7779 op->mem_fetch_after = atomic_or_fetch_optab;
7780 op->mem_no_result = atomic_or_optab;
7781 op->fetch_before = sync_old_ior_optab;
7782 op->fetch_after = sync_new_ior_optab;
7783 op->no_result = sync_ior_optab;
7784 op->reverse_code = UNKNOWN;
7785 break;
7786 case NOT:
7787 op->mem_fetch_before = atomic_fetch_nand_optab;
7788 op->mem_fetch_after = atomic_nand_fetch_optab;
7789 op->mem_no_result = atomic_nand_optab;
7790 op->fetch_before = sync_old_nand_optab;
7791 op->fetch_after = sync_new_nand_optab;
7792 op->no_result = sync_nand_optab;
7793 op->reverse_code = UNKNOWN;
7794 break;
7795 default:
7796 gcc_unreachable ();
7797 }
7798 }
7799
7800 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7801 using memory order MODEL. If AFTER is true the operation needs to return
7802 the value of *MEM after the operation, otherwise the previous value.
7803 TARGET is an optional place to place the result. The result is unused if
7804 it is const0_rtx.
7805 Return the result if there is a better sequence, otherwise NULL_RTX. */
7806
7807 static rtx
7808 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7809 enum memmodel model, bool after)
7810 {
7811 /* If the value is prefetched, or not used, it may be possible to replace
7812 the sequence with a native exchange operation. */
7813 if (!after || target == const0_rtx)
7814 {
7815 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7816 if (code == AND && val == const0_rtx)
7817 {
7818 if (target == const0_rtx)
7819 target = gen_reg_rtx (GET_MODE (mem));
7820 return maybe_emit_atomic_exchange (target, mem, val, model);
7821 }
7822
7823 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7824 if (code == IOR && val == constm1_rtx)
7825 {
7826 if (target == const0_rtx)
7827 target = gen_reg_rtx (GET_MODE (mem));
7828 return maybe_emit_atomic_exchange (target, mem, val, model);
7829 }
7830 }
7831
7832 return NULL_RTX;
7833 }
7834
7835 /* Try to emit an instruction for a specific operation varaition.
7836 OPTAB contains the OP functions.
7837 TARGET is an optional place to return the result. const0_rtx means unused.
7838 MEM is the memory location to operate on.
7839 VAL is the value to use in the operation.
7840 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7841 MODEL is the memory model, if used.
7842 AFTER is true if the returned result is the value after the operation. */
7843
7844 static rtx
7845 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7846 rtx val, bool use_memmodel, enum memmodel model, bool after)
7847 {
7848 enum machine_mode mode = GET_MODE (mem);
7849 struct expand_operand ops[4];
7850 enum insn_code icode;
7851 int op_counter = 0;
7852 int num_ops;
7853
7854 /* Check to see if there is a result returned. */
7855 if (target == const0_rtx)
7856 {
7857 if (use_memmodel)
7858 {
7859 icode = direct_optab_handler (optab->mem_no_result, mode);
7860 create_integer_operand (&ops[2], model);
7861 num_ops = 3;
7862 }
7863 else
7864 {
7865 icode = direct_optab_handler (optab->no_result, mode);
7866 num_ops = 2;
7867 }
7868 }
7869 /* Otherwise, we need to generate a result. */
7870 else
7871 {
7872 if (use_memmodel)
7873 {
7874 icode = direct_optab_handler (after ? optab->mem_fetch_after
7875 : optab->mem_fetch_before, mode);
7876 create_integer_operand (&ops[3], model);
7877 num_ops = 4;
7878 }
7879 else
7880 {
7881 icode = optab_handler (after ? optab->fetch_after
7882 : optab->fetch_before, mode);
7883 num_ops = 3;
7884 }
7885 create_output_operand (&ops[op_counter++], target, mode);
7886 }
7887 if (icode == CODE_FOR_nothing)
7888 return NULL_RTX;
7889
7890 create_fixed_operand (&ops[op_counter++], mem);
7891 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7892 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7893
7894 if (maybe_expand_insn (icode, num_ops, ops))
7895 return (target == const0_rtx ? const0_rtx : ops[0].value);
7896
7897 return NULL_RTX;
7898 }
7899
7900
7901 /* This function expands an atomic fetch_OP or OP_fetch operation:
7902 TARGET is an option place to stick the return value. const0_rtx indicates
7903 the result is unused.
7904 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7905 CODE is the operation being performed (OP)
7906 MEMMODEL is the memory model variant to use.
7907 AFTER is true to return the result of the operation (OP_fetch).
7908 AFTER is false to return the value before the operation (fetch_OP).
7909
7910 This function will *only* generate instructions if there is a direct
7911 optab. No compare and swap loops or libcalls will be generated. */
7912
7913 static rtx
7914 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7915 enum rtx_code code, enum memmodel model,
7916 bool after)
7917 {
7918 enum machine_mode mode = GET_MODE (mem);
7919 struct atomic_op_functions optab;
7920 rtx result;
7921 bool unused_result = (target == const0_rtx);
7922
7923 get_atomic_op_for_code (&optab, code);
7924
7925 /* Check to see if there are any better instructions. */
7926 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7927 if (result)
7928 return result;
7929
7930 /* Check for the case where the result isn't used and try those patterns. */
7931 if (unused_result)
7932 {
7933 /* Try the memory model variant first. */
7934 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7935 if (result)
7936 return result;
7937
7938 /* Next try the old style withuot a memory model. */
7939 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7940 if (result)
7941 return result;
7942
7943 /* There is no no-result pattern, so try patterns with a result. */
7944 target = NULL_RTX;
7945 }
7946
7947 /* Try the __atomic version. */
7948 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7949 if (result)
7950 return result;
7951
7952 /* Try the older __sync version. */
7953 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7954 if (result)
7955 return result;
7956
7957 /* If the fetch value can be calculated from the other variation of fetch,
7958 try that operation. */
7959 if (after || unused_result || optab.reverse_code != UNKNOWN)
7960 {
7961 /* Try the __atomic version, then the older __sync version. */
7962 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7963 if (!result)
7964 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7965
7966 if (result)
7967 {
7968 /* If the result isn't used, no need to do compensation code. */
7969 if (unused_result)
7970 return result;
7971
7972 /* Issue compensation code. Fetch_after == fetch_before OP val.
7973 Fetch_before == after REVERSE_OP val. */
7974 if (!after)
7975 code = optab.reverse_code;
7976 if (code == NOT)
7977 {
7978 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7979 true, OPTAB_LIB_WIDEN);
7980 result = expand_simple_unop (mode, NOT, result, target, true);
7981 }
7982 else
7983 result = expand_simple_binop (mode, code, result, val, target,
7984 true, OPTAB_LIB_WIDEN);
7985 return result;
7986 }
7987 }
7988
7989 /* No direct opcode can be generated. */
7990 return NULL_RTX;
7991 }
7992
7993
7994
7995 /* This function expands an atomic fetch_OP or OP_fetch operation:
7996 TARGET is an option place to stick the return value. const0_rtx indicates
7997 the result is unused.
7998 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7999 CODE is the operation being performed (OP)
8000 MEMMODEL is the memory model variant to use.
8001 AFTER is true to return the result of the operation (OP_fetch).
8002 AFTER is false to return the value before the operation (fetch_OP). */
8003 rtx
8004 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
8005 enum memmodel model, bool after)
8006 {
8007 enum machine_mode mode = GET_MODE (mem);
8008 rtx result;
8009 bool unused_result = (target == const0_rtx);
8010
8011 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
8012 after);
8013
8014 if (result)
8015 return result;
8016
8017 /* Add/sub can be implemented by doing the reverse operation with -(val). */
8018 if (code == PLUS || code == MINUS)
8019 {
8020 rtx tmp;
8021 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
8022
8023 start_sequence ();
8024 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
8025 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
8026 model, after);
8027 if (result)
8028 {
8029 /* PLUS worked so emit the insns and return. */
8030 tmp = get_insns ();
8031 end_sequence ();
8032 emit_insn (tmp);
8033 return result;
8034 }
8035
8036 /* PLUS did not work, so throw away the negation code and continue. */
8037 end_sequence ();
8038 }
8039
8040 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8041 if (!can_compare_and_swap_p (mode, false))
8042 {
8043 rtx libfunc;
8044 bool fixup = false;
8045 enum rtx_code orig_code = code;
8046 struct atomic_op_functions optab;
8047
8048 get_atomic_op_for_code (&optab, code);
8049 libfunc = optab_libfunc (after ? optab.fetch_after
8050 : optab.fetch_before, mode);
8051 if (libfunc == NULL
8052 && (after || unused_result || optab.reverse_code != UNKNOWN))
8053 {
8054 fixup = true;
8055 if (!after)
8056 code = optab.reverse_code;
8057 libfunc = optab_libfunc (after ? optab.fetch_before
8058 : optab.fetch_after, mode);
8059 }
8060 if (libfunc != NULL)
8061 {
8062 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8063 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8064 2, addr, ptr_mode, val, mode);
8065
8066 if (!unused_result && fixup)
8067 result = expand_simple_binop (mode, code, result, val, target,
8068 true, OPTAB_LIB_WIDEN);
8069 return result;
8070 }
8071
8072 /* We need the original code for any further attempts. */
8073 code = orig_code;
8074 }
8075
8076 /* If nothing else has succeeded, default to a compare and swap loop. */
8077 if (can_compare_and_swap_p (mode, true))
8078 {
8079 rtx insn;
8080 rtx t0 = gen_reg_rtx (mode), t1;
8081
8082 start_sequence ();
8083
8084 /* If the result is used, get a register for it. */
8085 if (!unused_result)
8086 {
8087 if (!target || !register_operand (target, mode))
8088 target = gen_reg_rtx (mode);
8089 /* If fetch_before, copy the value now. */
8090 if (!after)
8091 emit_move_insn (target, t0);
8092 }
8093 else
8094 target = const0_rtx;
8095
8096 t1 = t0;
8097 if (code == NOT)
8098 {
8099 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8100 true, OPTAB_LIB_WIDEN);
8101 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8102 }
8103 else
8104 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8105 OPTAB_LIB_WIDEN);
8106
8107 /* For after, copy the value now. */
8108 if (!unused_result && after)
8109 emit_move_insn (target, t1);
8110 insn = get_insns ();
8111 end_sequence ();
8112
8113 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8114 return target;
8115 }
8116
8117 return NULL_RTX;
8118 }
8119 \f
8120 /* Return true if OPERAND is suitable for operand number OPNO of
8121 instruction ICODE. */
8122
8123 bool
8124 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8125 {
8126 return (!insn_data[(int) icode].operand[opno].predicate
8127 || (insn_data[(int) icode].operand[opno].predicate
8128 (operand, insn_data[(int) icode].operand[opno].mode)));
8129 }
8130 \f
8131 /* TARGET is a target of a multiword operation that we are going to
8132 implement as a series of word-mode operations. Return true if
8133 TARGET is suitable for this purpose. */
8134
8135 bool
8136 valid_multiword_target_p (rtx target)
8137 {
8138 enum machine_mode mode;
8139 int i;
8140
8141 mode = GET_MODE (target);
8142 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8143 if (!validate_subreg (word_mode, mode, target, i))
8144 return false;
8145 return true;
8146 }
8147
8148 /* Like maybe_legitimize_operand, but do not change the code of the
8149 current rtx value. */
8150
8151 static bool
8152 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8153 struct expand_operand *op)
8154 {
8155 /* See if the operand matches in its current form. */
8156 if (insn_operand_matches (icode, opno, op->value))
8157 return true;
8158
8159 /* If the operand is a memory whose address has no side effects,
8160 try forcing the address into a non-virtual pseudo register.
8161 The check for side effects is important because copy_to_mode_reg
8162 cannot handle things like auto-modified addresses. */
8163 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8164 {
8165 rtx addr, mem;
8166
8167 mem = op->value;
8168 addr = XEXP (mem, 0);
8169 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8170 && !side_effects_p (addr))
8171 {
8172 rtx last;
8173 enum machine_mode mode;
8174
8175 last = get_last_insn ();
8176 mode = get_address_mode (mem);
8177 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8178 if (insn_operand_matches (icode, opno, mem))
8179 {
8180 op->value = mem;
8181 return true;
8182 }
8183 delete_insns_since (last);
8184 }
8185 }
8186
8187 return false;
8188 }
8189
8190 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8191 on success, storing the new operand value back in OP. */
8192
8193 static bool
8194 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8195 struct expand_operand *op)
8196 {
8197 enum machine_mode mode, imode;
8198 bool old_volatile_ok, result;
8199
8200 mode = op->mode;
8201 switch (op->type)
8202 {
8203 case EXPAND_FIXED:
8204 old_volatile_ok = volatile_ok;
8205 volatile_ok = true;
8206 result = maybe_legitimize_operand_same_code (icode, opno, op);
8207 volatile_ok = old_volatile_ok;
8208 return result;
8209
8210 case EXPAND_OUTPUT:
8211 gcc_assert (mode != VOIDmode);
8212 if (op->value
8213 && op->value != const0_rtx
8214 && GET_MODE (op->value) == mode
8215 && maybe_legitimize_operand_same_code (icode, opno, op))
8216 return true;
8217
8218 op->value = gen_reg_rtx (mode);
8219 break;
8220
8221 case EXPAND_INPUT:
8222 input:
8223 gcc_assert (mode != VOIDmode);
8224 gcc_assert (GET_MODE (op->value) == VOIDmode
8225 || GET_MODE (op->value) == mode);
8226 if (maybe_legitimize_operand_same_code (icode, opno, op))
8227 return true;
8228
8229 op->value = copy_to_mode_reg (mode, op->value);
8230 break;
8231
8232 case EXPAND_CONVERT_TO:
8233 gcc_assert (mode != VOIDmode);
8234 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8235 goto input;
8236
8237 case EXPAND_CONVERT_FROM:
8238 if (GET_MODE (op->value) != VOIDmode)
8239 mode = GET_MODE (op->value);
8240 else
8241 /* The caller must tell us what mode this value has. */
8242 gcc_assert (mode != VOIDmode);
8243
8244 imode = insn_data[(int) icode].operand[opno].mode;
8245 if (imode != VOIDmode && imode != mode)
8246 {
8247 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8248 mode = imode;
8249 }
8250 goto input;
8251
8252 case EXPAND_ADDRESS:
8253 gcc_assert (mode != VOIDmode);
8254 op->value = convert_memory_address (mode, op->value);
8255 goto input;
8256
8257 case EXPAND_INTEGER:
8258 mode = insn_data[(int) icode].operand[opno].mode;
8259 if (mode != VOIDmode && const_int_operand (op->value, mode))
8260 goto input;
8261 break;
8262 }
8263 return insn_operand_matches (icode, opno, op->value);
8264 }
8265
8266 /* Make OP describe an input operand that should have the same value
8267 as VALUE, after any mode conversion that the target might request.
8268 TYPE is the type of VALUE. */
8269
8270 void
8271 create_convert_operand_from_type (struct expand_operand *op,
8272 rtx value, tree type)
8273 {
8274 create_convert_operand_from (op, value, TYPE_MODE (type),
8275 TYPE_UNSIGNED (type));
8276 }
8277
8278 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8279 of instruction ICODE. Return true on success, leaving the new operand
8280 values in the OPS themselves. Emit no code on failure. */
8281
8282 bool
8283 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8284 unsigned int nops, struct expand_operand *ops)
8285 {
8286 rtx last;
8287 unsigned int i;
8288
8289 last = get_last_insn ();
8290 for (i = 0; i < nops; i++)
8291 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8292 {
8293 delete_insns_since (last);
8294 return false;
8295 }
8296 return true;
8297 }
8298
8299 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8300 as its operands. Return the instruction pattern on success,
8301 and emit any necessary set-up code. Return null and emit no
8302 code on failure. */
8303
8304 rtx
8305 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8306 struct expand_operand *ops)
8307 {
8308 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8309 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8310 return NULL_RTX;
8311
8312 switch (nops)
8313 {
8314 case 1:
8315 return GEN_FCN (icode) (ops[0].value);
8316 case 2:
8317 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8318 case 3:
8319 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8320 case 4:
8321 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8322 ops[3].value);
8323 case 5:
8324 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8325 ops[3].value, ops[4].value);
8326 case 6:
8327 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8328 ops[3].value, ops[4].value, ops[5].value);
8329 case 7:
8330 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8331 ops[3].value, ops[4].value, ops[5].value,
8332 ops[6].value);
8333 case 8:
8334 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8335 ops[3].value, ops[4].value, ops[5].value,
8336 ops[6].value, ops[7].value);
8337 case 9:
8338 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8339 ops[3].value, ops[4].value, ops[5].value,
8340 ops[6].value, ops[7].value, ops[8].value);
8341 }
8342 gcc_unreachable ();
8343 }
8344
8345 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8346 as its operands. Return true on success and emit no code on failure. */
8347
8348 bool
8349 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8350 struct expand_operand *ops)
8351 {
8352 rtx pat = maybe_gen_insn (icode, nops, ops);
8353 if (pat)
8354 {
8355 emit_insn (pat);
8356 return true;
8357 }
8358 return false;
8359 }
8360
8361 /* Like maybe_expand_insn, but for jumps. */
8362
8363 bool
8364 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8365 struct expand_operand *ops)
8366 {
8367 rtx pat = maybe_gen_insn (icode, nops, ops);
8368 if (pat)
8369 {
8370 emit_jump_insn (pat);
8371 return true;
8372 }
8373 return false;
8374 }
8375
8376 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8377 as its operands. */
8378
8379 void
8380 expand_insn (enum insn_code icode, unsigned int nops,
8381 struct expand_operand *ops)
8382 {
8383 if (!maybe_expand_insn (icode, nops, ops))
8384 gcc_unreachable ();
8385 }
8386
8387 /* Like expand_insn, but for jumps. */
8388
8389 void
8390 expand_jump_insn (enum insn_code icode, unsigned int nops,
8391 struct expand_operand *ops)
8392 {
8393 if (!maybe_expand_jump_insn (icode, nops, ops))
8394 gcc_unreachable ();
8395 }
8396
8397 /* Reduce conditional compilation elsewhere. */
8398 #ifndef HAVE_insv
8399 #define HAVE_insv 0
8400 #define CODE_FOR_insv CODE_FOR_nothing
8401 #endif
8402 #ifndef HAVE_extv
8403 #define HAVE_extv 0
8404 #define CODE_FOR_extv CODE_FOR_nothing
8405 #endif
8406 #ifndef HAVE_extzv
8407 #define HAVE_extzv 0
8408 #define CODE_FOR_extzv CODE_FOR_nothing
8409 #endif
8410
8411 /* Enumerates the possible types of structure operand to an
8412 extraction_insn. */
8413 enum extraction_type { ET_unaligned_mem, ET_reg };
8414
8415 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8416 insertion or extraction of type TYPE on a structure of mode MODE.
8417 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8418 operand number of the structure (the first sign_extract or zero_extract
8419 operand) and FIELD_OP is the operand number of the field (the other
8420 side of the set from the sign_extract or zero_extract). */
8421
8422 static bool
8423 get_traditional_extraction_insn (extraction_insn *insn,
8424 enum extraction_type type,
8425 enum machine_mode mode,
8426 enum insn_code icode,
8427 int struct_op, int field_op)
8428 {
8429 const struct insn_data_d *data = &insn_data[icode];
8430
8431 enum machine_mode struct_mode = data->operand[struct_op].mode;
8432 if (struct_mode == VOIDmode)
8433 struct_mode = word_mode;
8434 if (mode != struct_mode)
8435 return false;
8436
8437 enum machine_mode field_mode = data->operand[field_op].mode;
8438 if (field_mode == VOIDmode)
8439 field_mode = word_mode;
8440
8441 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8442 if (pos_mode == VOIDmode)
8443 pos_mode = word_mode;
8444
8445 insn->icode = icode;
8446 insn->field_mode = field_mode;
8447 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8448 insn->pos_mode = pos_mode;
8449 return true;
8450 }
8451
8452 /* Return true if an optab exists to perform an insertion or extraction
8453 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8454
8455 REG_OPTAB is the optab to use for register structures and
8456 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8457 POS_OP is the operand number of the bit position. */
8458
8459 static bool
8460 get_optab_extraction_insn (struct extraction_insn *insn,
8461 enum extraction_type type,
8462 enum machine_mode mode, direct_optab reg_optab,
8463 direct_optab misalign_optab, int pos_op)
8464 {
8465 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8466 enum insn_code icode = direct_optab_handler (optab, mode);
8467 if (icode == CODE_FOR_nothing)
8468 return false;
8469
8470 const struct insn_data_d *data = &insn_data[icode];
8471
8472 insn->icode = icode;
8473 insn->field_mode = mode;
8474 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8475 insn->pos_mode = data->operand[pos_op].mode;
8476 if (insn->pos_mode == VOIDmode)
8477 insn->pos_mode = word_mode;
8478 return true;
8479 }
8480
8481 /* Return true if an instruction exists to perform an insertion or
8482 extraction (PATTERN says which) of type TYPE in mode MODE.
8483 Describe the instruction in *INSN if so. */
8484
8485 static bool
8486 get_extraction_insn (extraction_insn *insn,
8487 enum extraction_pattern pattern,
8488 enum extraction_type type,
8489 enum machine_mode mode)
8490 {
8491 switch (pattern)
8492 {
8493 case EP_insv:
8494 if (HAVE_insv
8495 && get_traditional_extraction_insn (insn, type, mode,
8496 CODE_FOR_insv, 0, 3))
8497 return true;
8498 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8499 insvmisalign_optab, 2);
8500
8501 case EP_extv:
8502 if (HAVE_extv
8503 && get_traditional_extraction_insn (insn, type, mode,
8504 CODE_FOR_extv, 1, 0))
8505 return true;
8506 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8507 extvmisalign_optab, 3);
8508
8509 case EP_extzv:
8510 if (HAVE_extzv
8511 && get_traditional_extraction_insn (insn, type, mode,
8512 CODE_FOR_extzv, 1, 0))
8513 return true;
8514 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8515 extzvmisalign_optab, 3);
8516
8517 default:
8518 gcc_unreachable ();
8519 }
8520 }
8521
8522 /* Return true if an instruction exists to access a field of mode
8523 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8524 Describe the "best" such instruction in *INSN if so. PATTERN and
8525 TYPE describe the type of insertion or extraction we want to perform.
8526
8527 For an insertion, the number of significant structure bits includes
8528 all bits of the target. For an extraction, it need only include the
8529 most significant bit of the field. Larger widths are acceptable
8530 in both cases. */
8531
8532 static bool
8533 get_best_extraction_insn (extraction_insn *insn,
8534 enum extraction_pattern pattern,
8535 enum extraction_type type,
8536 unsigned HOST_WIDE_INT struct_bits,
8537 enum machine_mode field_mode)
8538 {
8539 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8540 while (mode != VOIDmode)
8541 {
8542 if (get_extraction_insn (insn, pattern, type, mode))
8543 {
8544 while (mode != VOIDmode
8545 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8546 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8547 field_mode))
8548 {
8549 get_extraction_insn (insn, pattern, type, mode);
8550 mode = GET_MODE_WIDER_MODE (mode);
8551 }
8552 return true;
8553 }
8554 mode = GET_MODE_WIDER_MODE (mode);
8555 }
8556 return false;
8557 }
8558
8559 /* Return true if an instruction exists to access a field of mode
8560 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8561 Describe the "best" such instruction in *INSN if so. PATTERN describes
8562 the type of insertion or extraction we want to perform.
8563
8564 For an insertion, the number of significant structure bits includes
8565 all bits of the target. For an extraction, it need only include the
8566 most significant bit of the field. Larger widths are acceptable
8567 in both cases. */
8568
8569 bool
8570 get_best_reg_extraction_insn (extraction_insn *insn,
8571 enum extraction_pattern pattern,
8572 unsigned HOST_WIDE_INT struct_bits,
8573 enum machine_mode field_mode)
8574 {
8575 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8576 field_mode);
8577 }
8578
8579 /* Return true if an instruction exists to access a field of BITSIZE
8580 bits starting BITNUM bits into a memory structure. Describe the
8581 "best" such instruction in *INSN if so. PATTERN describes the type
8582 of insertion or extraction we want to perform and FIELDMODE is the
8583 natural mode of the extracted field.
8584
8585 The instructions considered here only access bytes that overlap
8586 the bitfield; they do not touch any surrounding bytes. */
8587
8588 bool
8589 get_best_mem_extraction_insn (extraction_insn *insn,
8590 enum extraction_pattern pattern,
8591 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8592 enum machine_mode field_mode)
8593 {
8594 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8595 + bitsize
8596 + BITS_PER_UNIT - 1);
8597 struct_bits -= struct_bits % BITS_PER_UNIT;
8598 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8599 struct_bits, field_mode);
8600 }
8601
8602 #include "gt-optabs.h"