re PR tree-optimization/55253 (Revision 193298 miscompiles sqlite with -Os)
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "basic-block.h"
45 #include "target.h"
46
47 struct target_optabs default_target_optabs;
48 struct target_libfuncs default_target_libfuncs;
49 #if SWITCHABLE_TARGET
50 struct target_optabs *this_target_optabs = &default_target_optabs;
51 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
52 #endif
53
54 #define libfunc_hash \
55 (this_target_libfuncs->x_libfunc_hash)
56
57 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
58 enum machine_mode *);
59 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
60 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
61
62 /* Debug facility for use in GDB. */
63 void debug_optab_libfuncs (void);
64
65 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
66 #if ENABLE_DECIMAL_BID_FORMAT
67 #define DECIMAL_PREFIX "bid_"
68 #else
69 #define DECIMAL_PREFIX "dpd_"
70 #endif
71 \f
72 /* Used for libfunc_hash. */
73
74 static hashval_t
75 hash_libfunc (const void *p)
76 {
77 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
78 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
79 }
80
81 /* Used for libfunc_hash. */
82
83 static int
84 eq_libfunc (const void *p, const void *q)
85 {
86 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
87 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
88 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
89 }
90
91 /* Return libfunc corresponding operation defined by OPTAB converting
92 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
93 if no libfunc is available. */
94 rtx
95 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
96 enum machine_mode mode2)
97 {
98 struct libfunc_entry e;
99 struct libfunc_entry **slot;
100
101 /* ??? This ought to be an assert, but not all of the places
102 that we expand optabs know about the optabs that got moved
103 to being direct. */
104 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
105 return NULL_RTX;
106
107 e.op = optab;
108 e.mode1 = mode1;
109 e.mode2 = mode2;
110 slot = (struct libfunc_entry **)
111 htab_find_slot (libfunc_hash, &e, NO_INSERT);
112 if (!slot)
113 {
114 const struct convert_optab_libcall_d *d
115 = &convlib_def[optab - FIRST_CONV_OPTAB];
116
117 if (d->libcall_gen == NULL)
118 return NULL;
119
120 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
121 slot = (struct libfunc_entry **)
122 htab_find_slot (libfunc_hash, &e, NO_INSERT);
123 if (!slot)
124 return NULL;
125 }
126 return (*slot)->libfunc;
127 }
128
129 /* Return libfunc corresponding operation defined by OPTAB in MODE.
130 Trigger lazy initialization if needed, return NULL if no libfunc is
131 available. */
132 rtx
133 optab_libfunc (optab optab, enum machine_mode mode)
134 {
135 struct libfunc_entry e;
136 struct libfunc_entry **slot;
137
138 /* ??? This ought to be an assert, but not all of the places
139 that we expand optabs know about the optabs that got moved
140 to being direct. */
141 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
142 return NULL_RTX;
143
144 e.op = optab;
145 e.mode1 = mode;
146 e.mode2 = VOIDmode;
147 slot = (struct libfunc_entry **)
148 htab_find_slot (libfunc_hash, &e, NO_INSERT);
149 if (!slot)
150 {
151 const struct optab_libcall_d *d
152 = &normlib_def[optab - FIRST_NORM_OPTAB];
153
154 if (d->libcall_gen == NULL)
155 return NULL;
156
157 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
158 slot = (struct libfunc_entry **)
159 htab_find_slot (libfunc_hash, &e, NO_INSERT);
160 if (!slot)
161 return NULL;
162 }
163 return (*slot)->libfunc;
164 }
165
166 \f
167 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
168 the result of operation CODE applied to OP0 (and OP1 if it is a binary
169 operation).
170
171 If the last insn does not set TARGET, don't do anything, but return 1.
172
173 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
174 don't add the REG_EQUAL note but return 0. Our caller can then try
175 again, ensuring that TARGET is not one of the operands. */
176
177 static int
178 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
179 {
180 rtx last_insn, insn, set;
181 rtx note;
182
183 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
184
185 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
186 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
187 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
188 && GET_RTX_CLASS (code) != RTX_COMPARE
189 && GET_RTX_CLASS (code) != RTX_UNARY)
190 return 1;
191
192 if (GET_CODE (target) == ZERO_EXTRACT)
193 return 1;
194
195 for (last_insn = insns;
196 NEXT_INSN (last_insn) != NULL_RTX;
197 last_insn = NEXT_INSN (last_insn))
198 ;
199
200 set = single_set (last_insn);
201 if (set == NULL_RTX)
202 return 1;
203
204 if (! rtx_equal_p (SET_DEST (set), target)
205 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
206 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
207 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
208 return 1;
209
210 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
211 besides the last insn. */
212 if (reg_overlap_mentioned_p (target, op0)
213 || (op1 && reg_overlap_mentioned_p (target, op1)))
214 {
215 insn = PREV_INSN (last_insn);
216 while (insn != NULL_RTX)
217 {
218 if (reg_set_p (target, insn))
219 return 0;
220
221 insn = PREV_INSN (insn);
222 }
223 }
224
225 if (GET_RTX_CLASS (code) == RTX_UNARY)
226 switch (code)
227 {
228 case FFS:
229 case CLZ:
230 case CTZ:
231 case CLRSB:
232 case POPCOUNT:
233 case PARITY:
234 case BSWAP:
235 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
236 {
237 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
238 if (GET_MODE_SIZE (GET_MODE (op0))
239 > GET_MODE_SIZE (GET_MODE (target)))
240 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
241 note, GET_MODE (op0));
242 else
243 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
244 note, GET_MODE (op0));
245 break;
246 }
247 /* FALLTHRU */
248 default:
249 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
250 break;
251 }
252 else
253 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
254
255 set_unique_reg_note (last_insn, REG_EQUAL, note);
256
257 return 1;
258 }
259 \f
260 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
261 for a widening operation would be. In most cases this would be OP0, but if
262 that's a constant it'll be VOIDmode, which isn't useful. */
263
264 static enum machine_mode
265 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
266 {
267 enum machine_mode m0 = GET_MODE (op0);
268 enum machine_mode m1 = GET_MODE (op1);
269 enum machine_mode result;
270
271 if (m0 == VOIDmode && m1 == VOIDmode)
272 return to_mode;
273 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
274 result = m1;
275 else
276 result = m0;
277
278 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
279 return to_mode;
280
281 return result;
282 }
283 \f
284 /* Find a widening optab even if it doesn't widen as much as we want.
285 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
286 direct HI->SI insn, then return SI->DI, if that exists.
287 If PERMIT_NON_WIDENING is non-zero then this can be used with
288 non-widening optabs also. */
289
290 enum insn_code
291 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
292 enum machine_mode from_mode,
293 int permit_non_widening,
294 enum machine_mode *found_mode)
295 {
296 for (; (permit_non_widening || from_mode != to_mode)
297 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
298 && from_mode != VOIDmode;
299 from_mode = GET_MODE_WIDER_MODE (from_mode))
300 {
301 enum insn_code handler = widening_optab_handler (op, to_mode,
302 from_mode);
303
304 if (handler != CODE_FOR_nothing)
305 {
306 if (found_mode)
307 *found_mode = from_mode;
308 return handler;
309 }
310 }
311
312 return CODE_FOR_nothing;
313 }
314 \f
315 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
316 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
317 not actually do a sign-extend or zero-extend, but can leave the
318 higher-order bits of the result rtx undefined, for example, in the case
319 of logical operations, but not right shifts. */
320
321 static rtx
322 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
323 int unsignedp, int no_extend)
324 {
325 rtx result;
326
327 /* If we don't have to extend and this is a constant, return it. */
328 if (no_extend && GET_MODE (op) == VOIDmode)
329 return op;
330
331 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
332 extend since it will be more efficient to do so unless the signedness of
333 a promoted object differs from our extension. */
334 if (! no_extend
335 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
336 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
337 return convert_modes (mode, oldmode, op, unsignedp);
338
339 /* If MODE is no wider than a single word, we return a paradoxical
340 SUBREG. */
341 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
342 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
343
344 /* Otherwise, get an object of MODE, clobber it, and set the low-order
345 part to OP. */
346
347 result = gen_reg_rtx (mode);
348 emit_clobber (result);
349 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
350 return result;
351 }
352 \f
353 /* Return the optab used for computing the operation given by the tree code,
354 CODE and the tree EXP. This function is not always usable (for example, it
355 cannot give complete results for multiplication or division) but probably
356 ought to be relied on more widely throughout the expander. */
357 optab
358 optab_for_tree_code (enum tree_code code, const_tree type,
359 enum optab_subtype subtype)
360 {
361 bool trapv;
362 switch (code)
363 {
364 case BIT_AND_EXPR:
365 return and_optab;
366
367 case BIT_IOR_EXPR:
368 return ior_optab;
369
370 case BIT_NOT_EXPR:
371 return one_cmpl_optab;
372
373 case BIT_XOR_EXPR:
374 return xor_optab;
375
376 case MULT_HIGHPART_EXPR:
377 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
378
379 case TRUNC_MOD_EXPR:
380 case CEIL_MOD_EXPR:
381 case FLOOR_MOD_EXPR:
382 case ROUND_MOD_EXPR:
383 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
384
385 case RDIV_EXPR:
386 case TRUNC_DIV_EXPR:
387 case CEIL_DIV_EXPR:
388 case FLOOR_DIV_EXPR:
389 case ROUND_DIV_EXPR:
390 case EXACT_DIV_EXPR:
391 if (TYPE_SATURATING(type))
392 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
393 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
394
395 case LSHIFT_EXPR:
396 if (TREE_CODE (type) == VECTOR_TYPE)
397 {
398 if (subtype == optab_vector)
399 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
400
401 gcc_assert (subtype == optab_scalar);
402 }
403 if (TYPE_SATURATING(type))
404 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
405 return ashl_optab;
406
407 case RSHIFT_EXPR:
408 if (TREE_CODE (type) == VECTOR_TYPE)
409 {
410 if (subtype == optab_vector)
411 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
412
413 gcc_assert (subtype == optab_scalar);
414 }
415 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
416
417 case LROTATE_EXPR:
418 if (TREE_CODE (type) == VECTOR_TYPE)
419 {
420 if (subtype == optab_vector)
421 return vrotl_optab;
422
423 gcc_assert (subtype == optab_scalar);
424 }
425 return rotl_optab;
426
427 case RROTATE_EXPR:
428 if (TREE_CODE (type) == VECTOR_TYPE)
429 {
430 if (subtype == optab_vector)
431 return vrotr_optab;
432
433 gcc_assert (subtype == optab_scalar);
434 }
435 return rotr_optab;
436
437 case MAX_EXPR:
438 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
439
440 case MIN_EXPR:
441 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
442
443 case REALIGN_LOAD_EXPR:
444 return vec_realign_load_optab;
445
446 case WIDEN_SUM_EXPR:
447 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
448
449 case DOT_PROD_EXPR:
450 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
451
452 case WIDEN_MULT_PLUS_EXPR:
453 return (TYPE_UNSIGNED (type)
454 ? (TYPE_SATURATING (type)
455 ? usmadd_widen_optab : umadd_widen_optab)
456 : (TYPE_SATURATING (type)
457 ? ssmadd_widen_optab : smadd_widen_optab));
458
459 case WIDEN_MULT_MINUS_EXPR:
460 return (TYPE_UNSIGNED (type)
461 ? (TYPE_SATURATING (type)
462 ? usmsub_widen_optab : umsub_widen_optab)
463 : (TYPE_SATURATING (type)
464 ? ssmsub_widen_optab : smsub_widen_optab));
465
466 case FMA_EXPR:
467 return fma_optab;
468
469 case REDUC_MAX_EXPR:
470 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
471
472 case REDUC_MIN_EXPR:
473 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
474
475 case REDUC_PLUS_EXPR:
476 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
477
478 case VEC_LSHIFT_EXPR:
479 return vec_shl_optab;
480
481 case VEC_RSHIFT_EXPR:
482 return vec_shr_optab;
483
484 case VEC_WIDEN_MULT_HI_EXPR:
485 return TYPE_UNSIGNED (type) ?
486 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
487
488 case VEC_WIDEN_MULT_LO_EXPR:
489 return TYPE_UNSIGNED (type) ?
490 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
491
492 case VEC_WIDEN_MULT_EVEN_EXPR:
493 return TYPE_UNSIGNED (type) ?
494 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
495
496 case VEC_WIDEN_MULT_ODD_EXPR:
497 return TYPE_UNSIGNED (type) ?
498 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
499
500 case VEC_WIDEN_LSHIFT_HI_EXPR:
501 return TYPE_UNSIGNED (type) ?
502 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
503
504 case VEC_WIDEN_LSHIFT_LO_EXPR:
505 return TYPE_UNSIGNED (type) ?
506 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
507
508 case VEC_UNPACK_HI_EXPR:
509 return TYPE_UNSIGNED (type) ?
510 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
511
512 case VEC_UNPACK_LO_EXPR:
513 return TYPE_UNSIGNED (type) ?
514 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
515
516 case VEC_UNPACK_FLOAT_HI_EXPR:
517 /* The signedness is determined from input operand. */
518 return TYPE_UNSIGNED (type) ?
519 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
520
521 case VEC_UNPACK_FLOAT_LO_EXPR:
522 /* The signedness is determined from input operand. */
523 return TYPE_UNSIGNED (type) ?
524 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
525
526 case VEC_PACK_TRUNC_EXPR:
527 return vec_pack_trunc_optab;
528
529 case VEC_PACK_SAT_EXPR:
530 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
531
532 case VEC_PACK_FIX_TRUNC_EXPR:
533 /* The signedness is determined from output operand. */
534 return TYPE_UNSIGNED (type) ?
535 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
536
537 default:
538 break;
539 }
540
541 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
542 switch (code)
543 {
544 case POINTER_PLUS_EXPR:
545 case PLUS_EXPR:
546 if (TYPE_SATURATING(type))
547 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
548 return trapv ? addv_optab : add_optab;
549
550 case MINUS_EXPR:
551 if (TYPE_SATURATING(type))
552 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
553 return trapv ? subv_optab : sub_optab;
554
555 case MULT_EXPR:
556 if (TYPE_SATURATING(type))
557 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
558 return trapv ? smulv_optab : smul_optab;
559
560 case NEGATE_EXPR:
561 if (TYPE_SATURATING(type))
562 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
563 return trapv ? negv_optab : neg_optab;
564
565 case ABS_EXPR:
566 return trapv ? absv_optab : abs_optab;
567
568 default:
569 return unknown_optab;
570 }
571 }
572 \f
573
574 /* Expand vector widening operations.
575
576 There are two different classes of operations handled here:
577 1) Operations whose result is wider than all the arguments to the operation.
578 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
579 In this case OP0 and optionally OP1 would be initialized,
580 but WIDE_OP wouldn't (not relevant for this case).
581 2) Operations whose result is of the same size as the last argument to the
582 operation, but wider than all the other arguments to the operation.
583 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
584 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
585
586 E.g, when called to expand the following operations, this is how
587 the arguments will be initialized:
588 nops OP0 OP1 WIDE_OP
589 widening-sum 2 oprnd0 - oprnd1
590 widening-dot-product 3 oprnd0 oprnd1 oprnd2
591 widening-mult 2 oprnd0 oprnd1 -
592 type-promotion (vec-unpack) 1 oprnd0 - - */
593
594 rtx
595 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
596 rtx target, int unsignedp)
597 {
598 struct expand_operand eops[4];
599 tree oprnd0, oprnd1, oprnd2;
600 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
601 optab widen_pattern_optab;
602 enum insn_code icode;
603 int nops = TREE_CODE_LENGTH (ops->code);
604 int op;
605
606 oprnd0 = ops->op0;
607 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
608 widen_pattern_optab =
609 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
610 if (ops->code == WIDEN_MULT_PLUS_EXPR
611 || ops->code == WIDEN_MULT_MINUS_EXPR)
612 icode = find_widening_optab_handler (widen_pattern_optab,
613 TYPE_MODE (TREE_TYPE (ops->op2)),
614 tmode0, 0);
615 else
616 icode = optab_handler (widen_pattern_optab, tmode0);
617 gcc_assert (icode != CODE_FOR_nothing);
618
619 if (nops >= 2)
620 {
621 oprnd1 = ops->op1;
622 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
623 }
624
625 /* The last operand is of a wider mode than the rest of the operands. */
626 if (nops == 2)
627 wmode = tmode1;
628 else if (nops == 3)
629 {
630 gcc_assert (tmode1 == tmode0);
631 gcc_assert (op1);
632 oprnd2 = ops->op2;
633 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
634 }
635
636 op = 0;
637 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
638 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
639 if (op1)
640 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
641 if (wide_op)
642 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
643 expand_insn (icode, op, eops);
644 return eops[0].value;
645 }
646
647 /* Generate code to perform an operation specified by TERNARY_OPTAB
648 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
649
650 UNSIGNEDP is for the case where we have to widen the operands
651 to perform the operation. It says to use zero-extension.
652
653 If TARGET is nonzero, the value
654 is generated there, if it is convenient to do so.
655 In all cases an rtx is returned for the locus of the value;
656 this may or may not be TARGET. */
657
658 rtx
659 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
660 rtx op1, rtx op2, rtx target, int unsignedp)
661 {
662 struct expand_operand ops[4];
663 enum insn_code icode = optab_handler (ternary_optab, mode);
664
665 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
666
667 create_output_operand (&ops[0], target, mode);
668 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
669 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
670 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
671 expand_insn (icode, 4, ops);
672 return ops[0].value;
673 }
674
675
676 /* Like expand_binop, but return a constant rtx if the result can be
677 calculated at compile time. The arguments and return value are
678 otherwise the same as for expand_binop. */
679
680 rtx
681 simplify_expand_binop (enum machine_mode mode, optab binoptab,
682 rtx op0, rtx op1, rtx target, int unsignedp,
683 enum optab_methods methods)
684 {
685 if (CONSTANT_P (op0) && CONSTANT_P (op1))
686 {
687 rtx x = simplify_binary_operation (optab_to_code (binoptab),
688 mode, op0, op1);
689 if (x)
690 return x;
691 }
692
693 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
694 }
695
696 /* Like simplify_expand_binop, but always put the result in TARGET.
697 Return true if the expansion succeeded. */
698
699 bool
700 force_expand_binop (enum machine_mode mode, optab binoptab,
701 rtx op0, rtx op1, rtx target, int unsignedp,
702 enum optab_methods methods)
703 {
704 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
705 target, unsignedp, methods);
706 if (x == 0)
707 return false;
708 if (x != target)
709 emit_move_insn (target, x);
710 return true;
711 }
712
713 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
714
715 rtx
716 expand_vec_shift_expr (sepops ops, rtx target)
717 {
718 struct expand_operand eops[3];
719 enum insn_code icode;
720 rtx rtx_op1, rtx_op2;
721 enum machine_mode mode = TYPE_MODE (ops->type);
722 tree vec_oprnd = ops->op0;
723 tree shift_oprnd = ops->op1;
724 optab shift_optab;
725
726 switch (ops->code)
727 {
728 case VEC_RSHIFT_EXPR:
729 shift_optab = vec_shr_optab;
730 break;
731 case VEC_LSHIFT_EXPR:
732 shift_optab = vec_shl_optab;
733 break;
734 default:
735 gcc_unreachable ();
736 }
737
738 icode = optab_handler (shift_optab, mode);
739 gcc_assert (icode != CODE_FOR_nothing);
740
741 rtx_op1 = expand_normal (vec_oprnd);
742 rtx_op2 = expand_normal (shift_oprnd);
743
744 create_output_operand (&eops[0], target, mode);
745 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
746 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
747 expand_insn (icode, 3, eops);
748
749 return eops[0].value;
750 }
751
752 /* Create a new vector value in VMODE with all elements set to OP. The
753 mode of OP must be the element mode of VMODE. If OP is a constant,
754 then the return value will be a constant. */
755
756 static rtx
757 expand_vector_broadcast (enum machine_mode vmode, rtx op)
758 {
759 enum insn_code icode;
760 rtvec vec;
761 rtx ret;
762 int i, n;
763
764 gcc_checking_assert (VECTOR_MODE_P (vmode));
765
766 n = GET_MODE_NUNITS (vmode);
767 vec = rtvec_alloc (n);
768 for (i = 0; i < n; ++i)
769 RTVEC_ELT (vec, i) = op;
770
771 if (CONSTANT_P (op))
772 return gen_rtx_CONST_VECTOR (vmode, vec);
773
774 /* ??? If the target doesn't have a vec_init, then we have no easy way
775 of performing this operation. Most of this sort of generic support
776 is hidden away in the vector lowering support in gimple. */
777 icode = optab_handler (vec_init_optab, vmode);
778 if (icode == CODE_FOR_nothing)
779 return NULL;
780
781 ret = gen_reg_rtx (vmode);
782 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
783
784 return ret;
785 }
786
787 /* This subroutine of expand_doubleword_shift handles the cases in which
788 the effective shift value is >= BITS_PER_WORD. The arguments and return
789 value are the same as for the parent routine, except that SUPERWORD_OP1
790 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
791 INTO_TARGET may be null if the caller has decided to calculate it. */
792
793 static bool
794 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
795 rtx outof_target, rtx into_target,
796 int unsignedp, enum optab_methods methods)
797 {
798 if (into_target != 0)
799 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
800 into_target, unsignedp, methods))
801 return false;
802
803 if (outof_target != 0)
804 {
805 /* For a signed right shift, we must fill OUTOF_TARGET with copies
806 of the sign bit, otherwise we must fill it with zeros. */
807 if (binoptab != ashr_optab)
808 emit_move_insn (outof_target, CONST0_RTX (word_mode));
809 else
810 if (!force_expand_binop (word_mode, binoptab,
811 outof_input, GEN_INT (BITS_PER_WORD - 1),
812 outof_target, unsignedp, methods))
813 return false;
814 }
815 return true;
816 }
817
818 /* This subroutine of expand_doubleword_shift handles the cases in which
819 the effective shift value is < BITS_PER_WORD. The arguments and return
820 value are the same as for the parent routine. */
821
822 static bool
823 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
824 rtx outof_input, rtx into_input, rtx op1,
825 rtx outof_target, rtx into_target,
826 int unsignedp, enum optab_methods methods,
827 unsigned HOST_WIDE_INT shift_mask)
828 {
829 optab reverse_unsigned_shift, unsigned_shift;
830 rtx tmp, carries;
831
832 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
833 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
834
835 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
836 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
837 the opposite direction to BINOPTAB. */
838 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
839 {
840 carries = outof_input;
841 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
842 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
843 0, true, methods);
844 }
845 else
846 {
847 /* We must avoid shifting by BITS_PER_WORD bits since that is either
848 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
849 has unknown behavior. Do a single shift first, then shift by the
850 remainder. It's OK to use ~OP1 as the remainder if shift counts
851 are truncated to the mode size. */
852 carries = expand_binop (word_mode, reverse_unsigned_shift,
853 outof_input, const1_rtx, 0, unsignedp, methods);
854 if (shift_mask == BITS_PER_WORD - 1)
855 {
856 tmp = immed_double_const (-1, -1, op1_mode);
857 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
858 0, true, methods);
859 }
860 else
861 {
862 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
863 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
864 0, true, methods);
865 }
866 }
867 if (tmp == 0 || carries == 0)
868 return false;
869 carries = expand_binop (word_mode, reverse_unsigned_shift,
870 carries, tmp, 0, unsignedp, methods);
871 if (carries == 0)
872 return false;
873
874 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
875 so the result can go directly into INTO_TARGET if convenient. */
876 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
877 into_target, unsignedp, methods);
878 if (tmp == 0)
879 return false;
880
881 /* Now OR in the bits carried over from OUTOF_INPUT. */
882 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
883 into_target, unsignedp, methods))
884 return false;
885
886 /* Use a standard word_mode shift for the out-of half. */
887 if (outof_target != 0)
888 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
889 outof_target, unsignedp, methods))
890 return false;
891
892 return true;
893 }
894
895
896 #ifdef HAVE_conditional_move
897 /* Try implementing expand_doubleword_shift using conditional moves.
898 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
899 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
900 are the shift counts to use in the former and latter case. All other
901 arguments are the same as the parent routine. */
902
903 static bool
904 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
905 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
906 rtx outof_input, rtx into_input,
907 rtx subword_op1, rtx superword_op1,
908 rtx outof_target, rtx into_target,
909 int unsignedp, enum optab_methods methods,
910 unsigned HOST_WIDE_INT shift_mask)
911 {
912 rtx outof_superword, into_superword;
913
914 /* Put the superword version of the output into OUTOF_SUPERWORD and
915 INTO_SUPERWORD. */
916 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
917 if (outof_target != 0 && subword_op1 == superword_op1)
918 {
919 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
920 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
921 into_superword = outof_target;
922 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
923 outof_superword, 0, unsignedp, methods))
924 return false;
925 }
926 else
927 {
928 into_superword = gen_reg_rtx (word_mode);
929 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
930 outof_superword, into_superword,
931 unsignedp, methods))
932 return false;
933 }
934
935 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
936 if (!expand_subword_shift (op1_mode, binoptab,
937 outof_input, into_input, subword_op1,
938 outof_target, into_target,
939 unsignedp, methods, shift_mask))
940 return false;
941
942 /* Select between them. Do the INTO half first because INTO_SUPERWORD
943 might be the current value of OUTOF_TARGET. */
944 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
945 into_target, into_superword, word_mode, false))
946 return false;
947
948 if (outof_target != 0)
949 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
950 outof_target, outof_superword,
951 word_mode, false))
952 return false;
953
954 return true;
955 }
956 #endif
957
958 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
959 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
960 input operand; the shift moves bits in the direction OUTOF_INPUT->
961 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
962 of the target. OP1 is the shift count and OP1_MODE is its mode.
963 If OP1 is constant, it will have been truncated as appropriate
964 and is known to be nonzero.
965
966 If SHIFT_MASK is zero, the result of word shifts is undefined when the
967 shift count is outside the range [0, BITS_PER_WORD). This routine must
968 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
969
970 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
971 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
972 fill with zeros or sign bits as appropriate.
973
974 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
975 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
976 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
977 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
978 are undefined.
979
980 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
981 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
982 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
983 function wants to calculate it itself.
984
985 Return true if the shift could be successfully synthesized. */
986
987 static bool
988 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
989 rtx outof_input, rtx into_input, rtx op1,
990 rtx outof_target, rtx into_target,
991 int unsignedp, enum optab_methods methods,
992 unsigned HOST_WIDE_INT shift_mask)
993 {
994 rtx superword_op1, tmp, cmp1, cmp2;
995 rtx subword_label, done_label;
996 enum rtx_code cmp_code;
997
998 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
999 fill the result with sign or zero bits as appropriate. If so, the value
1000 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1001 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1002 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1003
1004 This isn't worthwhile for constant shifts since the optimizers will
1005 cope better with in-range shift counts. */
1006 if (shift_mask >= BITS_PER_WORD
1007 && outof_target != 0
1008 && !CONSTANT_P (op1))
1009 {
1010 if (!expand_doubleword_shift (op1_mode, binoptab,
1011 outof_input, into_input, op1,
1012 0, into_target,
1013 unsignedp, methods, shift_mask))
1014 return false;
1015 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1016 outof_target, unsignedp, methods))
1017 return false;
1018 return true;
1019 }
1020
1021 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1022 is true when the effective shift value is less than BITS_PER_WORD.
1023 Set SUPERWORD_OP1 to the shift count that should be used to shift
1024 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1025 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1026 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1027 {
1028 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1029 is a subword shift count. */
1030 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1031 0, true, methods);
1032 cmp2 = CONST0_RTX (op1_mode);
1033 cmp_code = EQ;
1034 superword_op1 = op1;
1035 }
1036 else
1037 {
1038 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1039 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1040 0, true, methods);
1041 cmp2 = CONST0_RTX (op1_mode);
1042 cmp_code = LT;
1043 superword_op1 = cmp1;
1044 }
1045 if (cmp1 == 0)
1046 return false;
1047
1048 /* If we can compute the condition at compile time, pick the
1049 appropriate subroutine. */
1050 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1051 if (tmp != 0 && CONST_INT_P (tmp))
1052 {
1053 if (tmp == const0_rtx)
1054 return expand_superword_shift (binoptab, outof_input, superword_op1,
1055 outof_target, into_target,
1056 unsignedp, methods);
1057 else
1058 return expand_subword_shift (op1_mode, binoptab,
1059 outof_input, into_input, op1,
1060 outof_target, into_target,
1061 unsignedp, methods, shift_mask);
1062 }
1063
1064 #ifdef HAVE_conditional_move
1065 /* Try using conditional moves to generate straight-line code. */
1066 {
1067 rtx start = get_last_insn ();
1068 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1069 cmp_code, cmp1, cmp2,
1070 outof_input, into_input,
1071 op1, superword_op1,
1072 outof_target, into_target,
1073 unsignedp, methods, shift_mask))
1074 return true;
1075 delete_insns_since (start);
1076 }
1077 #endif
1078
1079 /* As a last resort, use branches to select the correct alternative. */
1080 subword_label = gen_label_rtx ();
1081 done_label = gen_label_rtx ();
1082
1083 NO_DEFER_POP;
1084 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1085 0, 0, subword_label, -1);
1086 OK_DEFER_POP;
1087
1088 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1089 outof_target, into_target,
1090 unsignedp, methods))
1091 return false;
1092
1093 emit_jump_insn (gen_jump (done_label));
1094 emit_barrier ();
1095 emit_label (subword_label);
1096
1097 if (!expand_subword_shift (op1_mode, binoptab,
1098 outof_input, into_input, op1,
1099 outof_target, into_target,
1100 unsignedp, methods, shift_mask))
1101 return false;
1102
1103 emit_label (done_label);
1104 return true;
1105 }
1106 \f
1107 /* Subroutine of expand_binop. Perform a double word multiplication of
1108 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1109 as the target's word_mode. This function return NULL_RTX if anything
1110 goes wrong, in which case it may have already emitted instructions
1111 which need to be deleted.
1112
1113 If we want to multiply two two-word values and have normal and widening
1114 multiplies of single-word values, we can do this with three smaller
1115 multiplications.
1116
1117 The multiplication proceeds as follows:
1118 _______________________
1119 [__op0_high_|__op0_low__]
1120 _______________________
1121 * [__op1_high_|__op1_low__]
1122 _______________________________________________
1123 _______________________
1124 (1) [__op0_low__*__op1_low__]
1125 _______________________
1126 (2a) [__op0_low__*__op1_high_]
1127 _______________________
1128 (2b) [__op0_high_*__op1_low__]
1129 _______________________
1130 (3) [__op0_high_*__op1_high_]
1131
1132
1133 This gives a 4-word result. Since we are only interested in the
1134 lower 2 words, partial result (3) and the upper words of (2a) and
1135 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1136 calculated using non-widening multiplication.
1137
1138 (1), however, needs to be calculated with an unsigned widening
1139 multiplication. If this operation is not directly supported we
1140 try using a signed widening multiplication and adjust the result.
1141 This adjustment works as follows:
1142
1143 If both operands are positive then no adjustment is needed.
1144
1145 If the operands have different signs, for example op0_low < 0 and
1146 op1_low >= 0, the instruction treats the most significant bit of
1147 op0_low as a sign bit instead of a bit with significance
1148 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1149 with 2**BITS_PER_WORD - op0_low, and two's complements the
1150 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1151 the result.
1152
1153 Similarly, if both operands are negative, we need to add
1154 (op0_low + op1_low) * 2**BITS_PER_WORD.
1155
1156 We use a trick to adjust quickly. We logically shift op0_low right
1157 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1158 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1159 logical shift exists, we do an arithmetic right shift and subtract
1160 the 0 or -1. */
1161
1162 static rtx
1163 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1164 bool umulp, enum optab_methods methods)
1165 {
1166 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1167 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1168 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1169 rtx product, adjust, product_high, temp;
1170
1171 rtx op0_high = operand_subword_force (op0, high, mode);
1172 rtx op0_low = operand_subword_force (op0, low, mode);
1173 rtx op1_high = operand_subword_force (op1, high, mode);
1174 rtx op1_low = operand_subword_force (op1, low, mode);
1175
1176 /* If we're using an unsigned multiply to directly compute the product
1177 of the low-order words of the operands and perform any required
1178 adjustments of the operands, we begin by trying two more multiplications
1179 and then computing the appropriate sum.
1180
1181 We have checked above that the required addition is provided.
1182 Full-word addition will normally always succeed, especially if
1183 it is provided at all, so we don't worry about its failure. The
1184 multiplication may well fail, however, so we do handle that. */
1185
1186 if (!umulp)
1187 {
1188 /* ??? This could be done with emit_store_flag where available. */
1189 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1190 NULL_RTX, 1, methods);
1191 if (temp)
1192 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1193 NULL_RTX, 0, OPTAB_DIRECT);
1194 else
1195 {
1196 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1197 NULL_RTX, 0, methods);
1198 if (!temp)
1199 return NULL_RTX;
1200 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1201 NULL_RTX, 0, OPTAB_DIRECT);
1202 }
1203
1204 if (!op0_high)
1205 return NULL_RTX;
1206 }
1207
1208 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1209 NULL_RTX, 0, OPTAB_DIRECT);
1210 if (!adjust)
1211 return NULL_RTX;
1212
1213 /* OP0_HIGH should now be dead. */
1214
1215 if (!umulp)
1216 {
1217 /* ??? This could be done with emit_store_flag where available. */
1218 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1219 NULL_RTX, 1, methods);
1220 if (temp)
1221 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1222 NULL_RTX, 0, OPTAB_DIRECT);
1223 else
1224 {
1225 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1226 NULL_RTX, 0, methods);
1227 if (!temp)
1228 return NULL_RTX;
1229 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1230 NULL_RTX, 0, OPTAB_DIRECT);
1231 }
1232
1233 if (!op1_high)
1234 return NULL_RTX;
1235 }
1236
1237 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 if (!temp)
1240 return NULL_RTX;
1241
1242 /* OP1_HIGH should now be dead. */
1243
1244 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1245 NULL_RTX, 0, OPTAB_DIRECT);
1246
1247 if (target && !REG_P (target))
1248 target = NULL_RTX;
1249
1250 if (umulp)
1251 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1252 target, 1, OPTAB_DIRECT);
1253 else
1254 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1255 target, 1, OPTAB_DIRECT);
1256
1257 if (!product)
1258 return NULL_RTX;
1259
1260 product_high = operand_subword (product, high, 1, mode);
1261 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1262 NULL_RTX, 0, OPTAB_DIRECT);
1263 emit_move_insn (product_high, adjust);
1264 return product;
1265 }
1266 \f
1267 /* Wrapper around expand_binop which takes an rtx code to specify
1268 the operation to perform, not an optab pointer. All other
1269 arguments are the same. */
1270 rtx
1271 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1272 rtx op1, rtx target, int unsignedp,
1273 enum optab_methods methods)
1274 {
1275 optab binop = code_to_optab (code);
1276 gcc_assert (binop);
1277
1278 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1279 }
1280
1281 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1282 binop. Order them according to commutative_operand_precedence and, if
1283 possible, try to put TARGET or a pseudo first. */
1284 static bool
1285 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1286 {
1287 int op0_prec = commutative_operand_precedence (op0);
1288 int op1_prec = commutative_operand_precedence (op1);
1289
1290 if (op0_prec < op1_prec)
1291 return true;
1292
1293 if (op0_prec > op1_prec)
1294 return false;
1295
1296 /* With equal precedence, both orders are ok, but it is better if the
1297 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1298 if (target == 0 || REG_P (target))
1299 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1300 else
1301 return rtx_equal_p (op1, target);
1302 }
1303
1304 /* Return true if BINOPTAB implements a shift operation. */
1305
1306 static bool
1307 shift_optab_p (optab binoptab)
1308 {
1309 switch (optab_to_code (binoptab))
1310 {
1311 case ASHIFT:
1312 case SS_ASHIFT:
1313 case US_ASHIFT:
1314 case ASHIFTRT:
1315 case LSHIFTRT:
1316 case ROTATE:
1317 case ROTATERT:
1318 return true;
1319
1320 default:
1321 return false;
1322 }
1323 }
1324
1325 /* Return true if BINOPTAB implements a commutative binary operation. */
1326
1327 static bool
1328 commutative_optab_p (optab binoptab)
1329 {
1330 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1331 || binoptab == smul_widen_optab
1332 || binoptab == umul_widen_optab
1333 || binoptab == smul_highpart_optab
1334 || binoptab == umul_highpart_optab);
1335 }
1336
1337 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1338 optimizing, and if the operand is a constant that costs more than
1339 1 instruction, force the constant into a register and return that
1340 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1341
1342 static rtx
1343 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1344 int opn, rtx x, bool unsignedp)
1345 {
1346 bool speed = optimize_insn_for_speed_p ();
1347
1348 if (mode != VOIDmode
1349 && optimize
1350 && CONSTANT_P (x)
1351 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1352 > set_src_cost (x, speed)))
1353 {
1354 if (CONST_INT_P (x))
1355 {
1356 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1357 if (intval != INTVAL (x))
1358 x = GEN_INT (intval);
1359 }
1360 else
1361 x = convert_modes (mode, VOIDmode, x, unsignedp);
1362 x = force_reg (mode, x);
1363 }
1364 return x;
1365 }
1366
1367 /* Helper function for expand_binop: handle the case where there
1368 is an insn that directly implements the indicated operation.
1369 Returns null if this is not possible. */
1370 static rtx
1371 expand_binop_directly (enum machine_mode mode, optab binoptab,
1372 rtx op0, rtx op1,
1373 rtx target, int unsignedp, enum optab_methods methods,
1374 rtx last)
1375 {
1376 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1377 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1378 from_mode, 1);
1379 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1380 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1381 enum machine_mode mode0, mode1, tmp_mode;
1382 struct expand_operand ops[3];
1383 bool commutative_p;
1384 rtx pat;
1385 rtx xop0 = op0, xop1 = op1;
1386 rtx swap;
1387
1388 /* If it is a commutative operator and the modes would match
1389 if we would swap the operands, we can save the conversions. */
1390 commutative_p = commutative_optab_p (binoptab);
1391 if (commutative_p
1392 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1393 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1394 {
1395 swap = xop0;
1396 xop0 = xop1;
1397 xop1 = swap;
1398 }
1399
1400 /* If we are optimizing, force expensive constants into a register. */
1401 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1402 if (!shift_optab_p (binoptab))
1403 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1404
1405 /* In case the insn wants input operands in modes different from
1406 those of the actual operands, convert the operands. It would
1407 seem that we don't need to convert CONST_INTs, but we do, so
1408 that they're properly zero-extended, sign-extended or truncated
1409 for their mode. */
1410
1411 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1412 if (xmode0 != VOIDmode && xmode0 != mode0)
1413 {
1414 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1415 mode0 = xmode0;
1416 }
1417
1418 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1419 if (xmode1 != VOIDmode && xmode1 != mode1)
1420 {
1421 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1422 mode1 = xmode1;
1423 }
1424
1425 /* If operation is commutative,
1426 try to make the first operand a register.
1427 Even better, try to make it the same as the target.
1428 Also try to make the last operand a constant. */
1429 if (commutative_p
1430 && swap_commutative_operands_with_target (target, xop0, xop1))
1431 {
1432 swap = xop1;
1433 xop1 = xop0;
1434 xop0 = swap;
1435 }
1436
1437 /* Now, if insn's predicates don't allow our operands, put them into
1438 pseudo regs. */
1439
1440 if (binoptab == vec_pack_trunc_optab
1441 || binoptab == vec_pack_usat_optab
1442 || binoptab == vec_pack_ssat_optab
1443 || binoptab == vec_pack_ufix_trunc_optab
1444 || binoptab == vec_pack_sfix_trunc_optab)
1445 {
1446 /* The mode of the result is different then the mode of the
1447 arguments. */
1448 tmp_mode = insn_data[(int) icode].operand[0].mode;
1449 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1450 {
1451 delete_insns_since (last);
1452 return NULL_RTX;
1453 }
1454 }
1455 else
1456 tmp_mode = mode;
1457
1458 create_output_operand (&ops[0], target, tmp_mode);
1459 create_input_operand (&ops[1], xop0, mode0);
1460 create_input_operand (&ops[2], xop1, mode1);
1461 pat = maybe_gen_insn (icode, 3, ops);
1462 if (pat)
1463 {
1464 /* If PAT is composed of more than one insn, try to add an appropriate
1465 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1466 operand, call expand_binop again, this time without a target. */
1467 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1468 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1469 ops[1].value, ops[2].value))
1470 {
1471 delete_insns_since (last);
1472 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1473 unsignedp, methods);
1474 }
1475
1476 emit_insn (pat);
1477 return ops[0].value;
1478 }
1479 delete_insns_since (last);
1480 return NULL_RTX;
1481 }
1482
1483 /* Generate code to perform an operation specified by BINOPTAB
1484 on operands OP0 and OP1, with result having machine-mode MODE.
1485
1486 UNSIGNEDP is for the case where we have to widen the operands
1487 to perform the operation. It says to use zero-extension.
1488
1489 If TARGET is nonzero, the value
1490 is generated there, if it is convenient to do so.
1491 In all cases an rtx is returned for the locus of the value;
1492 this may or may not be TARGET. */
1493
1494 rtx
1495 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1496 rtx target, int unsignedp, enum optab_methods methods)
1497 {
1498 enum optab_methods next_methods
1499 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1500 ? OPTAB_WIDEN : methods);
1501 enum mode_class mclass;
1502 enum machine_mode wider_mode;
1503 rtx libfunc;
1504 rtx temp;
1505 rtx entry_last = get_last_insn ();
1506 rtx last;
1507
1508 mclass = GET_MODE_CLASS (mode);
1509
1510 /* If subtracting an integer constant, convert this into an addition of
1511 the negated constant. */
1512
1513 if (binoptab == sub_optab && CONST_INT_P (op1))
1514 {
1515 op1 = negate_rtx (mode, op1);
1516 binoptab = add_optab;
1517 }
1518
1519 /* Record where to delete back to if we backtrack. */
1520 last = get_last_insn ();
1521
1522 /* If we can do it with a three-operand insn, do so. */
1523
1524 if (methods != OPTAB_MUST_WIDEN
1525 && find_widening_optab_handler (binoptab, mode,
1526 widened_mode (mode, op0, op1), 1)
1527 != CODE_FOR_nothing)
1528 {
1529 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1530 unsignedp, methods, last);
1531 if (temp)
1532 return temp;
1533 }
1534
1535 /* If we were trying to rotate, and that didn't work, try rotating
1536 the other direction before falling back to shifts and bitwise-or. */
1537 if (((binoptab == rotl_optab
1538 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1539 || (binoptab == rotr_optab
1540 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1541 && mclass == MODE_INT)
1542 {
1543 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1544 rtx newop1;
1545 unsigned int bits = GET_MODE_PRECISION (mode);
1546
1547 if (CONST_INT_P (op1))
1548 newop1 = GEN_INT (bits - INTVAL (op1));
1549 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1550 newop1 = negate_rtx (GET_MODE (op1), op1);
1551 else
1552 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1553 GEN_INT (bits), op1,
1554 NULL_RTX, unsignedp, OPTAB_DIRECT);
1555
1556 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1557 target, unsignedp, methods, last);
1558 if (temp)
1559 return temp;
1560 }
1561
1562 /* If this is a multiply, see if we can do a widening operation that
1563 takes operands of this mode and makes a wider mode. */
1564
1565 if (binoptab == smul_optab
1566 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1567 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1568 : smul_widen_optab),
1569 GET_MODE_2XWIDER_MODE (mode), mode)
1570 != CODE_FOR_nothing))
1571 {
1572 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1573 unsignedp ? umul_widen_optab : smul_widen_optab,
1574 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1575
1576 if (temp != 0)
1577 {
1578 if (GET_MODE_CLASS (mode) == MODE_INT
1579 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1580 return gen_lowpart (mode, temp);
1581 else
1582 return convert_to_mode (mode, temp, unsignedp);
1583 }
1584 }
1585
1586 /* If this is a vector shift by a scalar, see if we can do a vector
1587 shift by a vector. If so, broadcast the scalar into a vector. */
1588 if (mclass == MODE_VECTOR_INT)
1589 {
1590 optab otheroptab = unknown_optab;
1591
1592 if (binoptab == ashl_optab)
1593 otheroptab = vashl_optab;
1594 else if (binoptab == ashr_optab)
1595 otheroptab = vashr_optab;
1596 else if (binoptab == lshr_optab)
1597 otheroptab = vlshr_optab;
1598 else if (binoptab == rotl_optab)
1599 otheroptab = vrotl_optab;
1600 else if (binoptab == rotr_optab)
1601 otheroptab = vrotr_optab;
1602
1603 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1604 {
1605 rtx vop1 = expand_vector_broadcast (mode, op1);
1606 if (vop1)
1607 {
1608 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1609 target, unsignedp, methods, last);
1610 if (temp)
1611 return temp;
1612 }
1613 }
1614 }
1615
1616 /* Look for a wider mode of the same class for which we think we
1617 can open-code the operation. Check for a widening multiply at the
1618 wider mode as well. */
1619
1620 if (CLASS_HAS_WIDER_MODES_P (mclass)
1621 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1622 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1623 wider_mode != VOIDmode;
1624 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1625 {
1626 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1627 || (binoptab == smul_optab
1628 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1629 && (find_widening_optab_handler ((unsignedp
1630 ? umul_widen_optab
1631 : smul_widen_optab),
1632 GET_MODE_WIDER_MODE (wider_mode),
1633 mode, 0)
1634 != CODE_FOR_nothing)))
1635 {
1636 rtx xop0 = op0, xop1 = op1;
1637 int no_extend = 0;
1638
1639 /* For certain integer operations, we need not actually extend
1640 the narrow operands, as long as we will truncate
1641 the results to the same narrowness. */
1642
1643 if ((binoptab == ior_optab || binoptab == and_optab
1644 || binoptab == xor_optab
1645 || binoptab == add_optab || binoptab == sub_optab
1646 || binoptab == smul_optab || binoptab == ashl_optab)
1647 && mclass == MODE_INT)
1648 {
1649 no_extend = 1;
1650 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1651 xop0, unsignedp);
1652 if (binoptab != ashl_optab)
1653 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1654 xop1, unsignedp);
1655 }
1656
1657 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1658
1659 /* The second operand of a shift must always be extended. */
1660 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1661 no_extend && binoptab != ashl_optab);
1662
1663 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1664 unsignedp, OPTAB_DIRECT);
1665 if (temp)
1666 {
1667 if (mclass != MODE_INT
1668 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1669 {
1670 if (target == 0)
1671 target = gen_reg_rtx (mode);
1672 convert_move (target, temp, 0);
1673 return target;
1674 }
1675 else
1676 return gen_lowpart (mode, temp);
1677 }
1678 else
1679 delete_insns_since (last);
1680 }
1681 }
1682
1683 /* If operation is commutative,
1684 try to make the first operand a register.
1685 Even better, try to make it the same as the target.
1686 Also try to make the last operand a constant. */
1687 if (commutative_optab_p (binoptab)
1688 && swap_commutative_operands_with_target (target, op0, op1))
1689 {
1690 temp = op1;
1691 op1 = op0;
1692 op0 = temp;
1693 }
1694
1695 /* These can be done a word at a time. */
1696 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1697 && mclass == MODE_INT
1698 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1699 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1700 {
1701 int i;
1702 rtx insns;
1703
1704 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1705 won't be accurate, so use a new target. */
1706 if (target == 0
1707 || target == op0
1708 || target == op1
1709 || !valid_multiword_target_p (target))
1710 target = gen_reg_rtx (mode);
1711
1712 start_sequence ();
1713
1714 /* Do the actual arithmetic. */
1715 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1716 {
1717 rtx target_piece = operand_subword (target, i, 1, mode);
1718 rtx x = expand_binop (word_mode, binoptab,
1719 operand_subword_force (op0, i, mode),
1720 operand_subword_force (op1, i, mode),
1721 target_piece, unsignedp, next_methods);
1722
1723 if (x == 0)
1724 break;
1725
1726 if (target_piece != x)
1727 emit_move_insn (target_piece, x);
1728 }
1729
1730 insns = get_insns ();
1731 end_sequence ();
1732
1733 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1734 {
1735 emit_insn (insns);
1736 return target;
1737 }
1738 }
1739
1740 /* Synthesize double word shifts from single word shifts. */
1741 if ((binoptab == lshr_optab || binoptab == ashl_optab
1742 || binoptab == ashr_optab)
1743 && mclass == MODE_INT
1744 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1745 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1746 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1747 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1748 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1749 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1750 {
1751 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1752 enum machine_mode op1_mode;
1753
1754 double_shift_mask = targetm.shift_truncation_mask (mode);
1755 shift_mask = targetm.shift_truncation_mask (word_mode);
1756 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1757
1758 /* Apply the truncation to constant shifts. */
1759 if (double_shift_mask > 0 && CONST_INT_P (op1))
1760 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1761
1762 if (op1 == CONST0_RTX (op1_mode))
1763 return op0;
1764
1765 /* Make sure that this is a combination that expand_doubleword_shift
1766 can handle. See the comments there for details. */
1767 if (double_shift_mask == 0
1768 || (shift_mask == BITS_PER_WORD - 1
1769 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1770 {
1771 rtx insns;
1772 rtx into_target, outof_target;
1773 rtx into_input, outof_input;
1774 int left_shift, outof_word;
1775
1776 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1777 won't be accurate, so use a new target. */
1778 if (target == 0
1779 || target == op0
1780 || target == op1
1781 || !valid_multiword_target_p (target))
1782 target = gen_reg_rtx (mode);
1783
1784 start_sequence ();
1785
1786 /* OUTOF_* is the word we are shifting bits away from, and
1787 INTO_* is the word that we are shifting bits towards, thus
1788 they differ depending on the direction of the shift and
1789 WORDS_BIG_ENDIAN. */
1790
1791 left_shift = binoptab == ashl_optab;
1792 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1793
1794 outof_target = operand_subword (target, outof_word, 1, mode);
1795 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1796
1797 outof_input = operand_subword_force (op0, outof_word, mode);
1798 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1799
1800 if (expand_doubleword_shift (op1_mode, binoptab,
1801 outof_input, into_input, op1,
1802 outof_target, into_target,
1803 unsignedp, next_methods, shift_mask))
1804 {
1805 insns = get_insns ();
1806 end_sequence ();
1807
1808 emit_insn (insns);
1809 return target;
1810 }
1811 end_sequence ();
1812 }
1813 }
1814
1815 /* Synthesize double word rotates from single word shifts. */
1816 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1817 && mclass == MODE_INT
1818 && CONST_INT_P (op1)
1819 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1820 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1821 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1822 {
1823 rtx insns;
1824 rtx into_target, outof_target;
1825 rtx into_input, outof_input;
1826 rtx inter;
1827 int shift_count, left_shift, outof_word;
1828
1829 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1830 won't be accurate, so use a new target. Do this also if target is not
1831 a REG, first because having a register instead may open optimization
1832 opportunities, and second because if target and op0 happen to be MEMs
1833 designating the same location, we would risk clobbering it too early
1834 in the code sequence we generate below. */
1835 if (target == 0
1836 || target == op0
1837 || target == op1
1838 || !REG_P (target)
1839 || !valid_multiword_target_p (target))
1840 target = gen_reg_rtx (mode);
1841
1842 start_sequence ();
1843
1844 shift_count = INTVAL (op1);
1845
1846 /* OUTOF_* is the word we are shifting bits away from, and
1847 INTO_* is the word that we are shifting bits towards, thus
1848 they differ depending on the direction of the shift and
1849 WORDS_BIG_ENDIAN. */
1850
1851 left_shift = (binoptab == rotl_optab);
1852 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1853
1854 outof_target = operand_subword (target, outof_word, 1, mode);
1855 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1856
1857 outof_input = operand_subword_force (op0, outof_word, mode);
1858 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1859
1860 if (shift_count == BITS_PER_WORD)
1861 {
1862 /* This is just a word swap. */
1863 emit_move_insn (outof_target, into_input);
1864 emit_move_insn (into_target, outof_input);
1865 inter = const0_rtx;
1866 }
1867 else
1868 {
1869 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1870 rtx first_shift_count, second_shift_count;
1871 optab reverse_unsigned_shift, unsigned_shift;
1872
1873 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1874 ? lshr_optab : ashl_optab);
1875
1876 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1877 ? ashl_optab : lshr_optab);
1878
1879 if (shift_count > BITS_PER_WORD)
1880 {
1881 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1882 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1883 }
1884 else
1885 {
1886 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1887 second_shift_count = GEN_INT (shift_count);
1888 }
1889
1890 into_temp1 = expand_binop (word_mode, unsigned_shift,
1891 outof_input, first_shift_count,
1892 NULL_RTX, unsignedp, next_methods);
1893 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1894 into_input, second_shift_count,
1895 NULL_RTX, unsignedp, next_methods);
1896
1897 if (into_temp1 != 0 && into_temp2 != 0)
1898 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1899 into_target, unsignedp, next_methods);
1900 else
1901 inter = 0;
1902
1903 if (inter != 0 && inter != into_target)
1904 emit_move_insn (into_target, inter);
1905
1906 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1907 into_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 outof_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1912
1913 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab,
1915 outof_temp1, outof_temp2,
1916 outof_target, unsignedp, next_methods);
1917
1918 if (inter != 0 && inter != outof_target)
1919 emit_move_insn (outof_target, inter);
1920 }
1921
1922 insns = get_insns ();
1923 end_sequence ();
1924
1925 if (inter != 0)
1926 {
1927 emit_insn (insns);
1928 return target;
1929 }
1930 }
1931
1932 /* These can be done a word at a time by propagating carries. */
1933 if ((binoptab == add_optab || binoptab == sub_optab)
1934 && mclass == MODE_INT
1935 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1936 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1937 {
1938 unsigned int i;
1939 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1940 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1941 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1942 rtx xop0, xop1, xtarget;
1943
1944 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1945 value is one of those, use it. Otherwise, use 1 since it is the
1946 one easiest to get. */
1947 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1948 int normalizep = STORE_FLAG_VALUE;
1949 #else
1950 int normalizep = 1;
1951 #endif
1952
1953 /* Prepare the operands. */
1954 xop0 = force_reg (mode, op0);
1955 xop1 = force_reg (mode, op1);
1956
1957 xtarget = gen_reg_rtx (mode);
1958
1959 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1960 target = xtarget;
1961
1962 /* Indicate for flow that the entire target reg is being set. */
1963 if (REG_P (target))
1964 emit_clobber (xtarget);
1965
1966 /* Do the actual arithmetic. */
1967 for (i = 0; i < nwords; i++)
1968 {
1969 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1970 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1971 rtx op0_piece = operand_subword_force (xop0, index, mode);
1972 rtx op1_piece = operand_subword_force (xop1, index, mode);
1973 rtx x;
1974
1975 /* Main add/subtract of the input operands. */
1976 x = expand_binop (word_mode, binoptab,
1977 op0_piece, op1_piece,
1978 target_piece, unsignedp, next_methods);
1979 if (x == 0)
1980 break;
1981
1982 if (i + 1 < nwords)
1983 {
1984 /* Store carry from main add/subtract. */
1985 carry_out = gen_reg_rtx (word_mode);
1986 carry_out = emit_store_flag_force (carry_out,
1987 (binoptab == add_optab
1988 ? LT : GT),
1989 x, op0_piece,
1990 word_mode, 1, normalizep);
1991 }
1992
1993 if (i > 0)
1994 {
1995 rtx newx;
1996
1997 /* Add/subtract previous carry to main result. */
1998 newx = expand_binop (word_mode,
1999 normalizep == 1 ? binoptab : otheroptab,
2000 x, carry_in,
2001 NULL_RTX, 1, next_methods);
2002
2003 if (i + 1 < nwords)
2004 {
2005 /* Get out carry from adding/subtracting carry in. */
2006 rtx carry_tmp = gen_reg_rtx (word_mode);
2007 carry_tmp = emit_store_flag_force (carry_tmp,
2008 (binoptab == add_optab
2009 ? LT : GT),
2010 newx, x,
2011 word_mode, 1, normalizep);
2012
2013 /* Logical-ior the two poss. carry together. */
2014 carry_out = expand_binop (word_mode, ior_optab,
2015 carry_out, carry_tmp,
2016 carry_out, 0, next_methods);
2017 if (carry_out == 0)
2018 break;
2019 }
2020 emit_move_insn (target_piece, newx);
2021 }
2022 else
2023 {
2024 if (x != target_piece)
2025 emit_move_insn (target_piece, x);
2026 }
2027
2028 carry_in = carry_out;
2029 }
2030
2031 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2032 {
2033 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2034 || ! rtx_equal_p (target, xtarget))
2035 {
2036 rtx temp = emit_move_insn (target, xtarget);
2037
2038 set_dst_reg_note (temp, REG_EQUAL,
2039 gen_rtx_fmt_ee (optab_to_code (binoptab),
2040 mode, copy_rtx (xop0),
2041 copy_rtx (xop1)),
2042 target);
2043 }
2044 else
2045 target = xtarget;
2046
2047 return target;
2048 }
2049
2050 else
2051 delete_insns_since (last);
2052 }
2053
2054 /* Attempt to synthesize double word multiplies using a sequence of word
2055 mode multiplications. We first attempt to generate a sequence using a
2056 more efficient unsigned widening multiply, and if that fails we then
2057 try using a signed widening multiply. */
2058
2059 if (binoptab == smul_optab
2060 && mclass == MODE_INT
2061 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2062 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2063 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2064 {
2065 rtx product = NULL_RTX;
2066 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2067 != CODE_FOR_nothing)
2068 {
2069 product = expand_doubleword_mult (mode, op0, op1, target,
2070 true, methods);
2071 if (!product)
2072 delete_insns_since (last);
2073 }
2074
2075 if (product == NULL_RTX
2076 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2077 != CODE_FOR_nothing)
2078 {
2079 product = expand_doubleword_mult (mode, op0, op1, target,
2080 false, methods);
2081 if (!product)
2082 delete_insns_since (last);
2083 }
2084
2085 if (product != NULL_RTX)
2086 {
2087 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2088 {
2089 temp = emit_move_insn (target ? target : product, product);
2090 set_dst_reg_note (temp,
2091 REG_EQUAL,
2092 gen_rtx_fmt_ee (MULT, mode,
2093 copy_rtx (op0),
2094 copy_rtx (op1)),
2095 target ? target : product);
2096 }
2097 return product;
2098 }
2099 }
2100
2101 /* It can't be open-coded in this mode.
2102 Use a library call if one is available and caller says that's ok. */
2103
2104 libfunc = optab_libfunc (binoptab, mode);
2105 if (libfunc
2106 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2107 {
2108 rtx insns;
2109 rtx op1x = op1;
2110 enum machine_mode op1_mode = mode;
2111 rtx value;
2112
2113 start_sequence ();
2114
2115 if (shift_optab_p (binoptab))
2116 {
2117 op1_mode = targetm.libgcc_shift_count_mode ();
2118 /* Specify unsigned here,
2119 since negative shift counts are meaningless. */
2120 op1x = convert_to_mode (op1_mode, op1, 1);
2121 }
2122
2123 if (GET_MODE (op0) != VOIDmode
2124 && GET_MODE (op0) != mode)
2125 op0 = convert_to_mode (mode, op0, unsignedp);
2126
2127 /* Pass 1 for NO_QUEUE so we don't lose any increments
2128 if the libcall is cse'd or moved. */
2129 value = emit_library_call_value (libfunc,
2130 NULL_RTX, LCT_CONST, mode, 2,
2131 op0, mode, op1x, op1_mode);
2132
2133 insns = get_insns ();
2134 end_sequence ();
2135
2136 target = gen_reg_rtx (mode);
2137 emit_libcall_block_1 (insns, target, value,
2138 gen_rtx_fmt_ee (optab_to_code (binoptab),
2139 mode, op0, op1),
2140 trapv_binoptab_p (binoptab));
2141
2142 return target;
2143 }
2144
2145 delete_insns_since (last);
2146
2147 /* It can't be done in this mode. Can we do it in a wider mode? */
2148
2149 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2150 || methods == OPTAB_MUST_WIDEN))
2151 {
2152 /* Caller says, don't even try. */
2153 delete_insns_since (entry_last);
2154 return 0;
2155 }
2156
2157 /* Compute the value of METHODS to pass to recursive calls.
2158 Don't allow widening to be tried recursively. */
2159
2160 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2161
2162 /* Look for a wider mode of the same class for which it appears we can do
2163 the operation. */
2164
2165 if (CLASS_HAS_WIDER_MODES_P (mclass))
2166 {
2167 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2168 wider_mode != VOIDmode;
2169 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2170 {
2171 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2172 != CODE_FOR_nothing
2173 || (methods == OPTAB_LIB
2174 && optab_libfunc (binoptab, wider_mode)))
2175 {
2176 rtx xop0 = op0, xop1 = op1;
2177 int no_extend = 0;
2178
2179 /* For certain integer operations, we need not actually extend
2180 the narrow operands, as long as we will truncate
2181 the results to the same narrowness. */
2182
2183 if ((binoptab == ior_optab || binoptab == and_optab
2184 || binoptab == xor_optab
2185 || binoptab == add_optab || binoptab == sub_optab
2186 || binoptab == smul_optab || binoptab == ashl_optab)
2187 && mclass == MODE_INT)
2188 no_extend = 1;
2189
2190 xop0 = widen_operand (xop0, wider_mode, mode,
2191 unsignedp, no_extend);
2192
2193 /* The second operand of a shift must always be extended. */
2194 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2195 no_extend && binoptab != ashl_optab);
2196
2197 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2198 unsignedp, methods);
2199 if (temp)
2200 {
2201 if (mclass != MODE_INT
2202 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2203 {
2204 if (target == 0)
2205 target = gen_reg_rtx (mode);
2206 convert_move (target, temp, 0);
2207 return target;
2208 }
2209 else
2210 return gen_lowpart (mode, temp);
2211 }
2212 else
2213 delete_insns_since (last);
2214 }
2215 }
2216 }
2217
2218 delete_insns_since (entry_last);
2219 return 0;
2220 }
2221 \f
2222 /* Expand a binary operator which has both signed and unsigned forms.
2223 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2224 signed operations.
2225
2226 If we widen unsigned operands, we may use a signed wider operation instead
2227 of an unsigned wider operation, since the result would be the same. */
2228
2229 rtx
2230 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2231 rtx op0, rtx op1, rtx target, int unsignedp,
2232 enum optab_methods methods)
2233 {
2234 rtx temp;
2235 optab direct_optab = unsignedp ? uoptab : soptab;
2236 bool save_enable;
2237
2238 /* Do it without widening, if possible. */
2239 temp = expand_binop (mode, direct_optab, op0, op1, target,
2240 unsignedp, OPTAB_DIRECT);
2241 if (temp || methods == OPTAB_DIRECT)
2242 return temp;
2243
2244 /* Try widening to a signed int. Disable any direct use of any
2245 signed insn in the current mode. */
2246 save_enable = swap_optab_enable (soptab, mode, false);
2247
2248 temp = expand_binop (mode, soptab, op0, op1, target,
2249 unsignedp, OPTAB_WIDEN);
2250
2251 /* For unsigned operands, try widening to an unsigned int. */
2252 if (!temp && unsignedp)
2253 temp = expand_binop (mode, uoptab, op0, op1, target,
2254 unsignedp, OPTAB_WIDEN);
2255 if (temp || methods == OPTAB_WIDEN)
2256 goto egress;
2257
2258 /* Use the right width libcall if that exists. */
2259 temp = expand_binop (mode, direct_optab, op0, op1, target,
2260 unsignedp, OPTAB_LIB);
2261 if (temp || methods == OPTAB_LIB)
2262 goto egress;
2263
2264 /* Must widen and use a libcall, use either signed or unsigned. */
2265 temp = expand_binop (mode, soptab, op0, op1, target,
2266 unsignedp, methods);
2267 if (!temp && unsignedp)
2268 temp = expand_binop (mode, uoptab, op0, op1, target,
2269 unsignedp, methods);
2270
2271 egress:
2272 /* Undo the fiddling above. */
2273 if (save_enable)
2274 swap_optab_enable (soptab, mode, true);
2275 return temp;
2276 }
2277 \f
2278 /* Generate code to perform an operation specified by UNOPPTAB
2279 on operand OP0, with two results to TARG0 and TARG1.
2280 We assume that the order of the operands for the instruction
2281 is TARG0, TARG1, OP0.
2282
2283 Either TARG0 or TARG1 may be zero, but what that means is that
2284 the result is not actually wanted. We will generate it into
2285 a dummy pseudo-reg and discard it. They may not both be zero.
2286
2287 Returns 1 if this operation can be performed; 0 if not. */
2288
2289 int
2290 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2291 int unsignedp)
2292 {
2293 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2294 enum mode_class mclass;
2295 enum machine_mode wider_mode;
2296 rtx entry_last = get_last_insn ();
2297 rtx last;
2298
2299 mclass = GET_MODE_CLASS (mode);
2300
2301 if (!targ0)
2302 targ0 = gen_reg_rtx (mode);
2303 if (!targ1)
2304 targ1 = gen_reg_rtx (mode);
2305
2306 /* Record where to go back to if we fail. */
2307 last = get_last_insn ();
2308
2309 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2310 {
2311 struct expand_operand ops[3];
2312 enum insn_code icode = optab_handler (unoptab, mode);
2313
2314 create_fixed_operand (&ops[0], targ0);
2315 create_fixed_operand (&ops[1], targ1);
2316 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2317 if (maybe_expand_insn (icode, 3, ops))
2318 return 1;
2319 }
2320
2321 /* It can't be done in this mode. Can we do it in a wider mode? */
2322
2323 if (CLASS_HAS_WIDER_MODES_P (mclass))
2324 {
2325 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2326 wider_mode != VOIDmode;
2327 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2328 {
2329 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2330 {
2331 rtx t0 = gen_reg_rtx (wider_mode);
2332 rtx t1 = gen_reg_rtx (wider_mode);
2333 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2334
2335 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2336 {
2337 convert_move (targ0, t0, unsignedp);
2338 convert_move (targ1, t1, unsignedp);
2339 return 1;
2340 }
2341 else
2342 delete_insns_since (last);
2343 }
2344 }
2345 }
2346
2347 delete_insns_since (entry_last);
2348 return 0;
2349 }
2350 \f
2351 /* Generate code to perform an operation specified by BINOPTAB
2352 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2353 We assume that the order of the operands for the instruction
2354 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2355 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2356
2357 Either TARG0 or TARG1 may be zero, but what that means is that
2358 the result is not actually wanted. We will generate it into
2359 a dummy pseudo-reg and discard it. They may not both be zero.
2360
2361 Returns 1 if this operation can be performed; 0 if not. */
2362
2363 int
2364 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2365 int unsignedp)
2366 {
2367 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2368 enum mode_class mclass;
2369 enum machine_mode wider_mode;
2370 rtx entry_last = get_last_insn ();
2371 rtx last;
2372
2373 mclass = GET_MODE_CLASS (mode);
2374
2375 if (!targ0)
2376 targ0 = gen_reg_rtx (mode);
2377 if (!targ1)
2378 targ1 = gen_reg_rtx (mode);
2379
2380 /* Record where to go back to if we fail. */
2381 last = get_last_insn ();
2382
2383 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2384 {
2385 struct expand_operand ops[4];
2386 enum insn_code icode = optab_handler (binoptab, mode);
2387 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2388 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2389 rtx xop0 = op0, xop1 = op1;
2390
2391 /* If we are optimizing, force expensive constants into a register. */
2392 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2393 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2394
2395 create_fixed_operand (&ops[0], targ0);
2396 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2397 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2398 create_fixed_operand (&ops[3], targ1);
2399 if (maybe_expand_insn (icode, 4, ops))
2400 return 1;
2401 delete_insns_since (last);
2402 }
2403
2404 /* It can't be done in this mode. Can we do it in a wider mode? */
2405
2406 if (CLASS_HAS_WIDER_MODES_P (mclass))
2407 {
2408 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2409 wider_mode != VOIDmode;
2410 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2411 {
2412 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2413 {
2414 rtx t0 = gen_reg_rtx (wider_mode);
2415 rtx t1 = gen_reg_rtx (wider_mode);
2416 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2417 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2418
2419 if (expand_twoval_binop (binoptab, cop0, cop1,
2420 t0, t1, unsignedp))
2421 {
2422 convert_move (targ0, t0, unsignedp);
2423 convert_move (targ1, t1, unsignedp);
2424 return 1;
2425 }
2426 else
2427 delete_insns_since (last);
2428 }
2429 }
2430 }
2431
2432 delete_insns_since (entry_last);
2433 return 0;
2434 }
2435
2436 /* Expand the two-valued library call indicated by BINOPTAB, but
2437 preserve only one of the values. If TARG0 is non-NULL, the first
2438 value is placed into TARG0; otherwise the second value is placed
2439 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2440 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2441 This routine assumes that the value returned by the library call is
2442 as if the return value was of an integral mode twice as wide as the
2443 mode of OP0. Returns 1 if the call was successful. */
2444
2445 bool
2446 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2447 rtx targ0, rtx targ1, enum rtx_code code)
2448 {
2449 enum machine_mode mode;
2450 enum machine_mode libval_mode;
2451 rtx libval;
2452 rtx insns;
2453 rtx libfunc;
2454
2455 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2456 gcc_assert (!targ0 != !targ1);
2457
2458 mode = GET_MODE (op0);
2459 libfunc = optab_libfunc (binoptab, mode);
2460 if (!libfunc)
2461 return false;
2462
2463 /* The value returned by the library function will have twice as
2464 many bits as the nominal MODE. */
2465 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2466 MODE_INT);
2467 start_sequence ();
2468 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2469 libval_mode, 2,
2470 op0, mode,
2471 op1, mode);
2472 /* Get the part of VAL containing the value that we want. */
2473 libval = simplify_gen_subreg (mode, libval, libval_mode,
2474 targ0 ? 0 : GET_MODE_SIZE (mode));
2475 insns = get_insns ();
2476 end_sequence ();
2477 /* Move the into the desired location. */
2478 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2479 gen_rtx_fmt_ee (code, mode, op0, op1));
2480
2481 return true;
2482 }
2483
2484 \f
2485 /* Wrapper around expand_unop which takes an rtx code to specify
2486 the operation to perform, not an optab pointer. All other
2487 arguments are the same. */
2488 rtx
2489 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2490 rtx target, int unsignedp)
2491 {
2492 optab unop = code_to_optab (code);
2493 gcc_assert (unop);
2494
2495 return expand_unop (mode, unop, op0, target, unsignedp);
2496 }
2497
2498 /* Try calculating
2499 (clz:narrow x)
2500 as
2501 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2502
2503 A similar operation can be used for clrsb. UNOPTAB says which operation
2504 we are trying to expand. */
2505 static rtx
2506 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2507 {
2508 enum mode_class mclass = GET_MODE_CLASS (mode);
2509 if (CLASS_HAS_WIDER_MODES_P (mclass))
2510 {
2511 enum machine_mode wider_mode;
2512 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2513 wider_mode != VOIDmode;
2514 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2515 {
2516 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2517 {
2518 rtx xop0, temp, last;
2519
2520 last = get_last_insn ();
2521
2522 if (target == 0)
2523 target = gen_reg_rtx (mode);
2524 xop0 = widen_operand (op0, wider_mode, mode,
2525 unoptab != clrsb_optab, false);
2526 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2527 unoptab != clrsb_optab);
2528 if (temp != 0)
2529 temp = expand_binop (wider_mode, sub_optab, temp,
2530 GEN_INT (GET_MODE_PRECISION (wider_mode)
2531 - GET_MODE_PRECISION (mode)),
2532 target, true, OPTAB_DIRECT);
2533 if (temp == 0)
2534 delete_insns_since (last);
2535
2536 return temp;
2537 }
2538 }
2539 }
2540 return 0;
2541 }
2542
2543 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2544 quantities, choosing which based on whether the high word is nonzero. */
2545 static rtx
2546 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2547 {
2548 rtx xop0 = force_reg (mode, op0);
2549 rtx subhi = gen_highpart (word_mode, xop0);
2550 rtx sublo = gen_lowpart (word_mode, xop0);
2551 rtx hi0_label = gen_label_rtx ();
2552 rtx after_label = gen_label_rtx ();
2553 rtx seq, temp, result;
2554
2555 /* If we were not given a target, use a word_mode register, not a
2556 'mode' register. The result will fit, and nobody is expecting
2557 anything bigger (the return type of __builtin_clz* is int). */
2558 if (!target)
2559 target = gen_reg_rtx (word_mode);
2560
2561 /* In any case, write to a word_mode scratch in both branches of the
2562 conditional, so we can ensure there is a single move insn setting
2563 'target' to tag a REG_EQUAL note on. */
2564 result = gen_reg_rtx (word_mode);
2565
2566 start_sequence ();
2567
2568 /* If the high word is not equal to zero,
2569 then clz of the full value is clz of the high word. */
2570 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2571 word_mode, true, hi0_label);
2572
2573 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2574 if (!temp)
2575 goto fail;
2576
2577 if (temp != result)
2578 convert_move (result, temp, true);
2579
2580 emit_jump_insn (gen_jump (after_label));
2581 emit_barrier ();
2582
2583 /* Else clz of the full value is clz of the low word plus the number
2584 of bits in the high word. */
2585 emit_label (hi0_label);
2586
2587 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2588 if (!temp)
2589 goto fail;
2590 temp = expand_binop (word_mode, add_optab, temp,
2591 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2592 result, true, OPTAB_DIRECT);
2593 if (!temp)
2594 goto fail;
2595 if (temp != result)
2596 convert_move (result, temp, true);
2597
2598 emit_label (after_label);
2599 convert_move (target, result, true);
2600
2601 seq = get_insns ();
2602 end_sequence ();
2603
2604 add_equal_note (seq, target, CLZ, xop0, 0);
2605 emit_insn (seq);
2606 return target;
2607
2608 fail:
2609 end_sequence ();
2610 return 0;
2611 }
2612
2613 /* Try calculating
2614 (bswap:narrow x)
2615 as
2616 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2617 static rtx
2618 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2619 {
2620 enum mode_class mclass = GET_MODE_CLASS (mode);
2621 enum machine_mode wider_mode;
2622 rtx x, last;
2623
2624 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2625 return NULL_RTX;
2626
2627 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2628 wider_mode != VOIDmode;
2629 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2630 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2631 goto found;
2632 return NULL_RTX;
2633
2634 found:
2635 last = get_last_insn ();
2636
2637 x = widen_operand (op0, wider_mode, mode, true, true);
2638 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2639
2640 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2641 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2642 if (x != 0)
2643 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2644 GET_MODE_BITSIZE (wider_mode)
2645 - GET_MODE_BITSIZE (mode),
2646 NULL_RTX, true);
2647
2648 if (x != 0)
2649 {
2650 if (target == 0)
2651 target = gen_reg_rtx (mode);
2652 emit_move_insn (target, gen_lowpart (mode, x));
2653 }
2654 else
2655 delete_insns_since (last);
2656
2657 return target;
2658 }
2659
2660 /* Try calculating bswap as two bswaps of two word-sized operands. */
2661
2662 static rtx
2663 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2664 {
2665 rtx t0, t1;
2666
2667 t1 = expand_unop (word_mode, bswap_optab,
2668 operand_subword_force (op, 0, mode), NULL_RTX, true);
2669 t0 = expand_unop (word_mode, bswap_optab,
2670 operand_subword_force (op, 1, mode), NULL_RTX, true);
2671
2672 if (target == 0 || !valid_multiword_target_p (target))
2673 target = gen_reg_rtx (mode);
2674 if (REG_P (target))
2675 emit_clobber (target);
2676 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2677 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2678
2679 return target;
2680 }
2681
2682 /* Try calculating (parity x) as (and (popcount x) 1), where
2683 popcount can also be done in a wider mode. */
2684 static rtx
2685 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2686 {
2687 enum mode_class mclass = GET_MODE_CLASS (mode);
2688 if (CLASS_HAS_WIDER_MODES_P (mclass))
2689 {
2690 enum machine_mode wider_mode;
2691 for (wider_mode = mode; wider_mode != VOIDmode;
2692 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2693 {
2694 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2695 {
2696 rtx xop0, temp, last;
2697
2698 last = get_last_insn ();
2699
2700 if (target == 0)
2701 target = gen_reg_rtx (mode);
2702 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2703 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2704 true);
2705 if (temp != 0)
2706 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2707 target, true, OPTAB_DIRECT);
2708 if (temp == 0)
2709 delete_insns_since (last);
2710
2711 return temp;
2712 }
2713 }
2714 }
2715 return 0;
2716 }
2717
2718 /* Try calculating ctz(x) as K - clz(x & -x) ,
2719 where K is GET_MODE_PRECISION(mode) - 1.
2720
2721 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2722 don't have to worry about what the hardware does in that case. (If
2723 the clz instruction produces the usual value at 0, which is K, the
2724 result of this code sequence will be -1; expand_ffs, below, relies
2725 on this. It might be nice to have it be K instead, for consistency
2726 with the (very few) processors that provide a ctz with a defined
2727 value, but that would take one more instruction, and it would be
2728 less convenient for expand_ffs anyway. */
2729
2730 static rtx
2731 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2732 {
2733 rtx seq, temp;
2734
2735 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2736 return 0;
2737
2738 start_sequence ();
2739
2740 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2741 if (temp)
2742 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2743 true, OPTAB_DIRECT);
2744 if (temp)
2745 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2746 if (temp)
2747 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_PRECISION (mode) - 1),
2748 temp, target,
2749 true, OPTAB_DIRECT);
2750 if (temp == 0)
2751 {
2752 end_sequence ();
2753 return 0;
2754 }
2755
2756 seq = get_insns ();
2757 end_sequence ();
2758
2759 add_equal_note (seq, temp, CTZ, op0, 0);
2760 emit_insn (seq);
2761 return temp;
2762 }
2763
2764
2765 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2766 else with the sequence used by expand_clz.
2767
2768 The ffs builtin promises to return zero for a zero value and ctz/clz
2769 may have an undefined value in that case. If they do not give us a
2770 convenient value, we have to generate a test and branch. */
2771 static rtx
2772 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2773 {
2774 HOST_WIDE_INT val = 0;
2775 bool defined_at_zero = false;
2776 rtx temp, seq;
2777
2778 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2779 {
2780 start_sequence ();
2781
2782 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2783 if (!temp)
2784 goto fail;
2785
2786 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2787 }
2788 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2789 {
2790 start_sequence ();
2791 temp = expand_ctz (mode, op0, 0);
2792 if (!temp)
2793 goto fail;
2794
2795 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2796 {
2797 defined_at_zero = true;
2798 val = (GET_MODE_PRECISION (mode) - 1) - val;
2799 }
2800 }
2801 else
2802 return 0;
2803
2804 if (defined_at_zero && val == -1)
2805 /* No correction needed at zero. */;
2806 else
2807 {
2808 /* We don't try to do anything clever with the situation found
2809 on some processors (eg Alpha) where ctz(0:mode) ==
2810 bitsize(mode). If someone can think of a way to send N to -1
2811 and leave alone all values in the range 0..N-1 (where N is a
2812 power of two), cheaper than this test-and-branch, please add it.
2813
2814 The test-and-branch is done after the operation itself, in case
2815 the operation sets condition codes that can be recycled for this.
2816 (This is true on i386, for instance.) */
2817
2818 rtx nonzero_label = gen_label_rtx ();
2819 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2820 mode, true, nonzero_label);
2821
2822 convert_move (temp, GEN_INT (-1), false);
2823 emit_label (nonzero_label);
2824 }
2825
2826 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2827 to produce a value in the range 0..bitsize. */
2828 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2829 target, false, OPTAB_DIRECT);
2830 if (!temp)
2831 goto fail;
2832
2833 seq = get_insns ();
2834 end_sequence ();
2835
2836 add_equal_note (seq, temp, FFS, op0, 0);
2837 emit_insn (seq);
2838 return temp;
2839
2840 fail:
2841 end_sequence ();
2842 return 0;
2843 }
2844
2845 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2846 conditions, VAL may already be a SUBREG against which we cannot generate
2847 a further SUBREG. In this case, we expect forcing the value into a
2848 register will work around the situation. */
2849
2850 static rtx
2851 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2852 enum machine_mode imode)
2853 {
2854 rtx ret;
2855 ret = lowpart_subreg (omode, val, imode);
2856 if (ret == NULL)
2857 {
2858 val = force_reg (imode, val);
2859 ret = lowpart_subreg (omode, val, imode);
2860 gcc_assert (ret != NULL);
2861 }
2862 return ret;
2863 }
2864
2865 /* Expand a floating point absolute value or negation operation via a
2866 logical operation on the sign bit. */
2867
2868 static rtx
2869 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2870 rtx op0, rtx target)
2871 {
2872 const struct real_format *fmt;
2873 int bitpos, word, nwords, i;
2874 enum machine_mode imode;
2875 double_int mask;
2876 rtx temp, insns;
2877
2878 /* The format has to have a simple sign bit. */
2879 fmt = REAL_MODE_FORMAT (mode);
2880 if (fmt == NULL)
2881 return NULL_RTX;
2882
2883 bitpos = fmt->signbit_rw;
2884 if (bitpos < 0)
2885 return NULL_RTX;
2886
2887 /* Don't create negative zeros if the format doesn't support them. */
2888 if (code == NEG && !fmt->has_signed_zero)
2889 return NULL_RTX;
2890
2891 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2892 {
2893 imode = int_mode_for_mode (mode);
2894 if (imode == BLKmode)
2895 return NULL_RTX;
2896 word = 0;
2897 nwords = 1;
2898 }
2899 else
2900 {
2901 imode = word_mode;
2902
2903 if (FLOAT_WORDS_BIG_ENDIAN)
2904 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2905 else
2906 word = bitpos / BITS_PER_WORD;
2907 bitpos = bitpos % BITS_PER_WORD;
2908 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2909 }
2910
2911 mask = double_int_zero.set_bit (bitpos);
2912 if (code == ABS)
2913 mask = ~mask;
2914
2915 if (target == 0
2916 || target == op0
2917 || (nwords > 1 && !valid_multiword_target_p (target)))
2918 target = gen_reg_rtx (mode);
2919
2920 if (nwords > 1)
2921 {
2922 start_sequence ();
2923
2924 for (i = 0; i < nwords; ++i)
2925 {
2926 rtx targ_piece = operand_subword (target, i, 1, mode);
2927 rtx op0_piece = operand_subword_force (op0, i, mode);
2928
2929 if (i == word)
2930 {
2931 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2932 op0_piece,
2933 immed_double_int_const (mask, imode),
2934 targ_piece, 1, OPTAB_LIB_WIDEN);
2935 if (temp != targ_piece)
2936 emit_move_insn (targ_piece, temp);
2937 }
2938 else
2939 emit_move_insn (targ_piece, op0_piece);
2940 }
2941
2942 insns = get_insns ();
2943 end_sequence ();
2944
2945 emit_insn (insns);
2946 }
2947 else
2948 {
2949 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2950 gen_lowpart (imode, op0),
2951 immed_double_int_const (mask, imode),
2952 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2953 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2954
2955 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2956 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2957 target);
2958 }
2959
2960 return target;
2961 }
2962
2963 /* As expand_unop, but will fail rather than attempt the operation in a
2964 different mode or with a libcall. */
2965 static rtx
2966 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2967 int unsignedp)
2968 {
2969 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2970 {
2971 struct expand_operand ops[2];
2972 enum insn_code icode = optab_handler (unoptab, mode);
2973 rtx last = get_last_insn ();
2974 rtx pat;
2975
2976 create_output_operand (&ops[0], target, mode);
2977 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2978 pat = maybe_gen_insn (icode, 2, ops);
2979 if (pat)
2980 {
2981 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2982 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
2983 ops[1].value, NULL_RTX))
2984 {
2985 delete_insns_since (last);
2986 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2987 }
2988
2989 emit_insn (pat);
2990
2991 return ops[0].value;
2992 }
2993 }
2994 return 0;
2995 }
2996
2997 /* Generate code to perform an operation specified by UNOPTAB
2998 on operand OP0, with result having machine-mode MODE.
2999
3000 UNSIGNEDP is for the case where we have to widen the operands
3001 to perform the operation. It says to use zero-extension.
3002
3003 If TARGET is nonzero, the value
3004 is generated there, if it is convenient to do so.
3005 In all cases an rtx is returned for the locus of the value;
3006 this may or may not be TARGET. */
3007
3008 rtx
3009 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3010 int unsignedp)
3011 {
3012 enum mode_class mclass = GET_MODE_CLASS (mode);
3013 enum machine_mode wider_mode;
3014 rtx temp;
3015 rtx libfunc;
3016
3017 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3018 if (temp)
3019 return temp;
3020
3021 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3022
3023 /* Widening (or narrowing) clz needs special treatment. */
3024 if (unoptab == clz_optab)
3025 {
3026 temp = widen_leading (mode, op0, target, unoptab);
3027 if (temp)
3028 return temp;
3029
3030 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3031 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3032 {
3033 temp = expand_doubleword_clz (mode, op0, target);
3034 if (temp)
3035 return temp;
3036 }
3037
3038 goto try_libcall;
3039 }
3040
3041 if (unoptab == clrsb_optab)
3042 {
3043 temp = widen_leading (mode, op0, target, unoptab);
3044 if (temp)
3045 return temp;
3046 goto try_libcall;
3047 }
3048
3049 /* Widening (or narrowing) bswap needs special treatment. */
3050 if (unoptab == bswap_optab)
3051 {
3052 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3053 or ROTATERT. First try these directly; if this fails, then try the
3054 obvious pair of shifts with allowed widening, as this will probably
3055 be always more efficient than the other fallback methods. */
3056 if (mode == HImode)
3057 {
3058 rtx last, temp1, temp2;
3059
3060 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3061 {
3062 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3063 unsignedp, OPTAB_DIRECT);
3064 if (temp)
3065 return temp;
3066 }
3067
3068 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3069 {
3070 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3071 unsignedp, OPTAB_DIRECT);
3072 if (temp)
3073 return temp;
3074 }
3075
3076 last = get_last_insn ();
3077
3078 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3079 unsignedp, OPTAB_WIDEN);
3080 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3081 unsignedp, OPTAB_WIDEN);
3082 if (temp1 && temp2)
3083 {
3084 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3085 unsignedp, OPTAB_WIDEN);
3086 if (temp)
3087 return temp;
3088 }
3089
3090 delete_insns_since (last);
3091 }
3092
3093 temp = widen_bswap (mode, op0, target);
3094 if (temp)
3095 return temp;
3096
3097 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3098 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3099 {
3100 temp = expand_doubleword_bswap (mode, op0, target);
3101 if (temp)
3102 return temp;
3103 }
3104
3105 goto try_libcall;
3106 }
3107
3108 if (CLASS_HAS_WIDER_MODES_P (mclass))
3109 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3110 wider_mode != VOIDmode;
3111 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3112 {
3113 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3114 {
3115 rtx xop0 = op0;
3116 rtx last = get_last_insn ();
3117
3118 /* For certain operations, we need not actually extend
3119 the narrow operand, as long as we will truncate the
3120 results to the same narrowness. */
3121
3122 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3123 (unoptab == neg_optab
3124 || unoptab == one_cmpl_optab)
3125 && mclass == MODE_INT);
3126
3127 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3128 unsignedp);
3129
3130 if (temp)
3131 {
3132 if (mclass != MODE_INT
3133 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3134 {
3135 if (target == 0)
3136 target = gen_reg_rtx (mode);
3137 convert_move (target, temp, 0);
3138 return target;
3139 }
3140 else
3141 return gen_lowpart (mode, temp);
3142 }
3143 else
3144 delete_insns_since (last);
3145 }
3146 }
3147
3148 /* These can be done a word at a time. */
3149 if (unoptab == one_cmpl_optab
3150 && mclass == MODE_INT
3151 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3152 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3153 {
3154 int i;
3155 rtx insns;
3156
3157 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3158 target = gen_reg_rtx (mode);
3159
3160 start_sequence ();
3161
3162 /* Do the actual arithmetic. */
3163 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3164 {
3165 rtx target_piece = operand_subword (target, i, 1, mode);
3166 rtx x = expand_unop (word_mode, unoptab,
3167 operand_subword_force (op0, i, mode),
3168 target_piece, unsignedp);
3169
3170 if (target_piece != x)
3171 emit_move_insn (target_piece, x);
3172 }
3173
3174 insns = get_insns ();
3175 end_sequence ();
3176
3177 emit_insn (insns);
3178 return target;
3179 }
3180
3181 if (optab_to_code (unoptab) == NEG)
3182 {
3183 /* Try negating floating point values by flipping the sign bit. */
3184 if (SCALAR_FLOAT_MODE_P (mode))
3185 {
3186 temp = expand_absneg_bit (NEG, mode, op0, target);
3187 if (temp)
3188 return temp;
3189 }
3190
3191 /* If there is no negation pattern, and we have no negative zero,
3192 try subtracting from zero. */
3193 if (!HONOR_SIGNED_ZEROS (mode))
3194 {
3195 temp = expand_binop (mode, (unoptab == negv_optab
3196 ? subv_optab : sub_optab),
3197 CONST0_RTX (mode), op0, target,
3198 unsignedp, OPTAB_DIRECT);
3199 if (temp)
3200 return temp;
3201 }
3202 }
3203
3204 /* Try calculating parity (x) as popcount (x) % 2. */
3205 if (unoptab == parity_optab)
3206 {
3207 temp = expand_parity (mode, op0, target);
3208 if (temp)
3209 return temp;
3210 }
3211
3212 /* Try implementing ffs (x) in terms of clz (x). */
3213 if (unoptab == ffs_optab)
3214 {
3215 temp = expand_ffs (mode, op0, target);
3216 if (temp)
3217 return temp;
3218 }
3219
3220 /* Try implementing ctz (x) in terms of clz (x). */
3221 if (unoptab == ctz_optab)
3222 {
3223 temp = expand_ctz (mode, op0, target);
3224 if (temp)
3225 return temp;
3226 }
3227
3228 try_libcall:
3229 /* Now try a library call in this mode. */
3230 libfunc = optab_libfunc (unoptab, mode);
3231 if (libfunc)
3232 {
3233 rtx insns;
3234 rtx value;
3235 rtx eq_value;
3236 enum machine_mode outmode = mode;
3237
3238 /* All of these functions return small values. Thus we choose to
3239 have them return something that isn't a double-word. */
3240 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3241 || unoptab == clrsb_optab || unoptab == popcount_optab
3242 || unoptab == parity_optab)
3243 outmode
3244 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3245 optab_libfunc (unoptab, mode)));
3246
3247 start_sequence ();
3248
3249 /* Pass 1 for NO_QUEUE so we don't lose any increments
3250 if the libcall is cse'd or moved. */
3251 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3252 1, op0, mode);
3253 insns = get_insns ();
3254 end_sequence ();
3255
3256 target = gen_reg_rtx (outmode);
3257 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3258 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3259 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3260 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3261 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3262 emit_libcall_block_1 (insns, target, value, eq_value,
3263 trapv_unoptab_p (unoptab));
3264
3265 return target;
3266 }
3267
3268 /* It can't be done in this mode. Can we do it in a wider mode? */
3269
3270 if (CLASS_HAS_WIDER_MODES_P (mclass))
3271 {
3272 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3273 wider_mode != VOIDmode;
3274 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3275 {
3276 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3277 || optab_libfunc (unoptab, wider_mode))
3278 {
3279 rtx xop0 = op0;
3280 rtx last = get_last_insn ();
3281
3282 /* For certain operations, we need not actually extend
3283 the narrow operand, as long as we will truncate the
3284 results to the same narrowness. */
3285 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3286 (unoptab == neg_optab
3287 || unoptab == one_cmpl_optab
3288 || unoptab == bswap_optab)
3289 && mclass == MODE_INT);
3290
3291 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3292 unsignedp);
3293
3294 /* If we are generating clz using wider mode, adjust the
3295 result. Similarly for clrsb. */
3296 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3297 && temp != 0)
3298 temp = expand_binop (wider_mode, sub_optab, temp,
3299 GEN_INT (GET_MODE_PRECISION (wider_mode)
3300 - GET_MODE_PRECISION (mode)),
3301 target, true, OPTAB_DIRECT);
3302
3303 /* Likewise for bswap. */
3304 if (unoptab == bswap_optab && temp != 0)
3305 {
3306 gcc_assert (GET_MODE_PRECISION (wider_mode)
3307 == GET_MODE_BITSIZE (wider_mode)
3308 && GET_MODE_PRECISION (mode)
3309 == GET_MODE_BITSIZE (mode));
3310
3311 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3312 GET_MODE_BITSIZE (wider_mode)
3313 - GET_MODE_BITSIZE (mode),
3314 NULL_RTX, true);
3315 }
3316
3317 if (temp)
3318 {
3319 if (mclass != MODE_INT)
3320 {
3321 if (target == 0)
3322 target = gen_reg_rtx (mode);
3323 convert_move (target, temp, 0);
3324 return target;
3325 }
3326 else
3327 return gen_lowpart (mode, temp);
3328 }
3329 else
3330 delete_insns_since (last);
3331 }
3332 }
3333 }
3334
3335 /* One final attempt at implementing negation via subtraction,
3336 this time allowing widening of the operand. */
3337 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3338 {
3339 rtx temp;
3340 temp = expand_binop (mode,
3341 unoptab == negv_optab ? subv_optab : sub_optab,
3342 CONST0_RTX (mode), op0,
3343 target, unsignedp, OPTAB_LIB_WIDEN);
3344 if (temp)
3345 return temp;
3346 }
3347
3348 return 0;
3349 }
3350 \f
3351 /* Emit code to compute the absolute value of OP0, with result to
3352 TARGET if convenient. (TARGET may be 0.) The return value says
3353 where the result actually is to be found.
3354
3355 MODE is the mode of the operand; the mode of the result is
3356 different but can be deduced from MODE.
3357
3358 */
3359
3360 rtx
3361 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3362 int result_unsignedp)
3363 {
3364 rtx temp;
3365
3366 if (! flag_trapv)
3367 result_unsignedp = 1;
3368
3369 /* First try to do it with a special abs instruction. */
3370 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3371 op0, target, 0);
3372 if (temp != 0)
3373 return temp;
3374
3375 /* For floating point modes, try clearing the sign bit. */
3376 if (SCALAR_FLOAT_MODE_P (mode))
3377 {
3378 temp = expand_absneg_bit (ABS, mode, op0, target);
3379 if (temp)
3380 return temp;
3381 }
3382
3383 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3384 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3385 && !HONOR_SIGNED_ZEROS (mode))
3386 {
3387 rtx last = get_last_insn ();
3388
3389 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3390 if (temp != 0)
3391 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3392 OPTAB_WIDEN);
3393
3394 if (temp != 0)
3395 return temp;
3396
3397 delete_insns_since (last);
3398 }
3399
3400 /* If this machine has expensive jumps, we can do integer absolute
3401 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3402 where W is the width of MODE. */
3403
3404 if (GET_MODE_CLASS (mode) == MODE_INT
3405 && BRANCH_COST (optimize_insn_for_speed_p (),
3406 false) >= 2)
3407 {
3408 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3409 GET_MODE_PRECISION (mode) - 1,
3410 NULL_RTX, 0);
3411
3412 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3413 OPTAB_LIB_WIDEN);
3414 if (temp != 0)
3415 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3416 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3417
3418 if (temp != 0)
3419 return temp;
3420 }
3421
3422 return NULL_RTX;
3423 }
3424
3425 rtx
3426 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3427 int result_unsignedp, int safe)
3428 {
3429 rtx temp, op1;
3430
3431 if (! flag_trapv)
3432 result_unsignedp = 1;
3433
3434 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3435 if (temp != 0)
3436 return temp;
3437
3438 /* If that does not win, use conditional jump and negate. */
3439
3440 /* It is safe to use the target if it is the same
3441 as the source if this is also a pseudo register */
3442 if (op0 == target && REG_P (op0)
3443 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3444 safe = 1;
3445
3446 op1 = gen_label_rtx ();
3447 if (target == 0 || ! safe
3448 || GET_MODE (target) != mode
3449 || (MEM_P (target) && MEM_VOLATILE_P (target))
3450 || (REG_P (target)
3451 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3452 target = gen_reg_rtx (mode);
3453
3454 emit_move_insn (target, op0);
3455 NO_DEFER_POP;
3456
3457 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3458 NULL_RTX, NULL_RTX, op1, -1);
3459
3460 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3461 target, target, 0);
3462 if (op0 != target)
3463 emit_move_insn (target, op0);
3464 emit_label (op1);
3465 OK_DEFER_POP;
3466 return target;
3467 }
3468
3469 /* Emit code to compute the one's complement absolute value of OP0
3470 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3471 (TARGET may be NULL_RTX.) The return value says where the result
3472 actually is to be found.
3473
3474 MODE is the mode of the operand; the mode of the result is
3475 different but can be deduced from MODE. */
3476
3477 rtx
3478 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3479 {
3480 rtx temp;
3481
3482 /* Not applicable for floating point modes. */
3483 if (FLOAT_MODE_P (mode))
3484 return NULL_RTX;
3485
3486 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3487 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3488 {
3489 rtx last = get_last_insn ();
3490
3491 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3492 if (temp != 0)
3493 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3494 OPTAB_WIDEN);
3495
3496 if (temp != 0)
3497 return temp;
3498
3499 delete_insns_since (last);
3500 }
3501
3502 /* If this machine has expensive jumps, we can do one's complement
3503 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3504
3505 if (GET_MODE_CLASS (mode) == MODE_INT
3506 && BRANCH_COST (optimize_insn_for_speed_p (),
3507 false) >= 2)
3508 {
3509 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3510 GET_MODE_PRECISION (mode) - 1,
3511 NULL_RTX, 0);
3512
3513 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3514 OPTAB_LIB_WIDEN);
3515
3516 if (temp != 0)
3517 return temp;
3518 }
3519
3520 return NULL_RTX;
3521 }
3522
3523 /* A subroutine of expand_copysign, perform the copysign operation using the
3524 abs and neg primitives advertised to exist on the target. The assumption
3525 is that we have a split register file, and leaving op0 in fp registers,
3526 and not playing with subregs so much, will help the register allocator. */
3527
3528 static rtx
3529 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3530 int bitpos, bool op0_is_abs)
3531 {
3532 enum machine_mode imode;
3533 enum insn_code icode;
3534 rtx sign, label;
3535
3536 if (target == op1)
3537 target = NULL_RTX;
3538
3539 /* Check if the back end provides an insn that handles signbit for the
3540 argument's mode. */
3541 icode = optab_handler (signbit_optab, mode);
3542 if (icode != CODE_FOR_nothing)
3543 {
3544 imode = insn_data[(int) icode].operand[0].mode;
3545 sign = gen_reg_rtx (imode);
3546 emit_unop_insn (icode, sign, op1, UNKNOWN);
3547 }
3548 else
3549 {
3550 double_int mask;
3551
3552 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3553 {
3554 imode = int_mode_for_mode (mode);
3555 if (imode == BLKmode)
3556 return NULL_RTX;
3557 op1 = gen_lowpart (imode, op1);
3558 }
3559 else
3560 {
3561 int word;
3562
3563 imode = word_mode;
3564 if (FLOAT_WORDS_BIG_ENDIAN)
3565 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3566 else
3567 word = bitpos / BITS_PER_WORD;
3568 bitpos = bitpos % BITS_PER_WORD;
3569 op1 = operand_subword_force (op1, word, mode);
3570 }
3571
3572 mask = double_int_zero.set_bit (bitpos);
3573
3574 sign = expand_binop (imode, and_optab, op1,
3575 immed_double_int_const (mask, imode),
3576 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3577 }
3578
3579 if (!op0_is_abs)
3580 {
3581 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3582 if (op0 == NULL)
3583 return NULL_RTX;
3584 target = op0;
3585 }
3586 else
3587 {
3588 if (target == NULL_RTX)
3589 target = copy_to_reg (op0);
3590 else
3591 emit_move_insn (target, op0);
3592 }
3593
3594 label = gen_label_rtx ();
3595 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3596
3597 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3598 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3599 else
3600 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3601 if (op0 != target)
3602 emit_move_insn (target, op0);
3603
3604 emit_label (label);
3605
3606 return target;
3607 }
3608
3609
3610 /* A subroutine of expand_copysign, perform the entire copysign operation
3611 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3612 is true if op0 is known to have its sign bit clear. */
3613
3614 static rtx
3615 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3616 int bitpos, bool op0_is_abs)
3617 {
3618 enum machine_mode imode;
3619 double_int mask;
3620 int word, nwords, i;
3621 rtx temp, insns;
3622
3623 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3624 {
3625 imode = int_mode_for_mode (mode);
3626 if (imode == BLKmode)
3627 return NULL_RTX;
3628 word = 0;
3629 nwords = 1;
3630 }
3631 else
3632 {
3633 imode = word_mode;
3634
3635 if (FLOAT_WORDS_BIG_ENDIAN)
3636 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3637 else
3638 word = bitpos / BITS_PER_WORD;
3639 bitpos = bitpos % BITS_PER_WORD;
3640 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3641 }
3642
3643 mask = double_int_zero.set_bit (bitpos);
3644
3645 if (target == 0
3646 || target == op0
3647 || target == op1
3648 || (nwords > 1 && !valid_multiword_target_p (target)))
3649 target = gen_reg_rtx (mode);
3650
3651 if (nwords > 1)
3652 {
3653 start_sequence ();
3654
3655 for (i = 0; i < nwords; ++i)
3656 {
3657 rtx targ_piece = operand_subword (target, i, 1, mode);
3658 rtx op0_piece = operand_subword_force (op0, i, mode);
3659
3660 if (i == word)
3661 {
3662 if (!op0_is_abs)
3663 op0_piece
3664 = expand_binop (imode, and_optab, op0_piece,
3665 immed_double_int_const (~mask, imode),
3666 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3667
3668 op1 = expand_binop (imode, and_optab,
3669 operand_subword_force (op1, i, mode),
3670 immed_double_int_const (mask, imode),
3671 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3672
3673 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3674 targ_piece, 1, OPTAB_LIB_WIDEN);
3675 if (temp != targ_piece)
3676 emit_move_insn (targ_piece, temp);
3677 }
3678 else
3679 emit_move_insn (targ_piece, op0_piece);
3680 }
3681
3682 insns = get_insns ();
3683 end_sequence ();
3684
3685 emit_insn (insns);
3686 }
3687 else
3688 {
3689 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3690 immed_double_int_const (mask, imode),
3691 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3692
3693 op0 = gen_lowpart (imode, op0);
3694 if (!op0_is_abs)
3695 op0 = expand_binop (imode, and_optab, op0,
3696 immed_double_int_const (~mask, imode),
3697 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3698
3699 temp = expand_binop (imode, ior_optab, op0, op1,
3700 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3701 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3702 }
3703
3704 return target;
3705 }
3706
3707 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3708 scalar floating point mode. Return NULL if we do not know how to
3709 expand the operation inline. */
3710
3711 rtx
3712 expand_copysign (rtx op0, rtx op1, rtx target)
3713 {
3714 enum machine_mode mode = GET_MODE (op0);
3715 const struct real_format *fmt;
3716 bool op0_is_abs;
3717 rtx temp;
3718
3719 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3720 gcc_assert (GET_MODE (op1) == mode);
3721
3722 /* First try to do it with a special instruction. */
3723 temp = expand_binop (mode, copysign_optab, op0, op1,
3724 target, 0, OPTAB_DIRECT);
3725 if (temp)
3726 return temp;
3727
3728 fmt = REAL_MODE_FORMAT (mode);
3729 if (fmt == NULL || !fmt->has_signed_zero)
3730 return NULL_RTX;
3731
3732 op0_is_abs = false;
3733 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3734 {
3735 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3736 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3737 op0_is_abs = true;
3738 }
3739
3740 if (fmt->signbit_ro >= 0
3741 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3742 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3743 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3744 {
3745 temp = expand_copysign_absneg (mode, op0, op1, target,
3746 fmt->signbit_ro, op0_is_abs);
3747 if (temp)
3748 return temp;
3749 }
3750
3751 if (fmt->signbit_rw < 0)
3752 return NULL_RTX;
3753 return expand_copysign_bit (mode, op0, op1, target,
3754 fmt->signbit_rw, op0_is_abs);
3755 }
3756 \f
3757 /* Generate an instruction whose insn-code is INSN_CODE,
3758 with two operands: an output TARGET and an input OP0.
3759 TARGET *must* be nonzero, and the output is always stored there.
3760 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3761 the value that is stored into TARGET.
3762
3763 Return false if expansion failed. */
3764
3765 bool
3766 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3767 enum rtx_code code)
3768 {
3769 struct expand_operand ops[2];
3770 rtx pat;
3771
3772 create_output_operand (&ops[0], target, GET_MODE (target));
3773 create_input_operand (&ops[1], op0, GET_MODE (op0));
3774 pat = maybe_gen_insn (icode, 2, ops);
3775 if (!pat)
3776 return false;
3777
3778 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3779 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3780
3781 emit_insn (pat);
3782
3783 if (ops[0].value != target)
3784 emit_move_insn (target, ops[0].value);
3785 return true;
3786 }
3787 /* Generate an instruction whose insn-code is INSN_CODE,
3788 with two operands: an output TARGET and an input OP0.
3789 TARGET *must* be nonzero, and the output is always stored there.
3790 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3791 the value that is stored into TARGET. */
3792
3793 void
3794 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3795 {
3796 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3797 gcc_assert (ok);
3798 }
3799 \f
3800 struct no_conflict_data
3801 {
3802 rtx target, first, insn;
3803 bool must_stay;
3804 };
3805
3806 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3807 the currently examined clobber / store has to stay in the list of
3808 insns that constitute the actual libcall block. */
3809 static void
3810 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3811 {
3812 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3813
3814 /* If this inns directly contributes to setting the target, it must stay. */
3815 if (reg_overlap_mentioned_p (p->target, dest))
3816 p->must_stay = true;
3817 /* If we haven't committed to keeping any other insns in the list yet,
3818 there is nothing more to check. */
3819 else if (p->insn == p->first)
3820 return;
3821 /* If this insn sets / clobbers a register that feeds one of the insns
3822 already in the list, this insn has to stay too. */
3823 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3824 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3825 || reg_used_between_p (dest, p->first, p->insn)
3826 /* Likewise if this insn depends on a register set by a previous
3827 insn in the list, or if it sets a result (presumably a hard
3828 register) that is set or clobbered by a previous insn.
3829 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3830 SET_DEST perform the former check on the address, and the latter
3831 check on the MEM. */
3832 || (GET_CODE (set) == SET
3833 && (modified_in_p (SET_SRC (set), p->first)
3834 || modified_in_p (SET_DEST (set), p->first)
3835 || modified_between_p (SET_SRC (set), p->first, p->insn)
3836 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3837 p->must_stay = true;
3838 }
3839
3840 \f
3841 /* Emit code to make a call to a constant function or a library call.
3842
3843 INSNS is a list containing all insns emitted in the call.
3844 These insns leave the result in RESULT. Our block is to copy RESULT
3845 to TARGET, which is logically equivalent to EQUIV.
3846
3847 We first emit any insns that set a pseudo on the assumption that these are
3848 loading constants into registers; doing so allows them to be safely cse'ed
3849 between blocks. Then we emit all the other insns in the block, followed by
3850 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3851 note with an operand of EQUIV. */
3852
3853 static void
3854 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3855 bool equiv_may_trap)
3856 {
3857 rtx final_dest = target;
3858 rtx next, last, insn;
3859
3860 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3861 into a MEM later. Protect the libcall block from this change. */
3862 if (! REG_P (target) || REG_USERVAR_P (target))
3863 target = gen_reg_rtx (GET_MODE (target));
3864
3865 /* If we're using non-call exceptions, a libcall corresponding to an
3866 operation that may trap may also trap. */
3867 /* ??? See the comment in front of make_reg_eh_region_note. */
3868 if (cfun->can_throw_non_call_exceptions
3869 && (equiv_may_trap || may_trap_p (equiv)))
3870 {
3871 for (insn = insns; insn; insn = NEXT_INSN (insn))
3872 if (CALL_P (insn))
3873 {
3874 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3875 if (note)
3876 {
3877 int lp_nr = INTVAL (XEXP (note, 0));
3878 if (lp_nr == 0 || lp_nr == INT_MIN)
3879 remove_note (insn, note);
3880 }
3881 }
3882 }
3883 else
3884 {
3885 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3886 reg note to indicate that this call cannot throw or execute a nonlocal
3887 goto (unless there is already a REG_EH_REGION note, in which case
3888 we update it). */
3889 for (insn = insns; insn; insn = NEXT_INSN (insn))
3890 if (CALL_P (insn))
3891 make_reg_eh_region_note_nothrow_nononlocal (insn);
3892 }
3893
3894 /* First emit all insns that set pseudos. Remove them from the list as
3895 we go. Avoid insns that set pseudos which were referenced in previous
3896 insns. These can be generated by move_by_pieces, for example,
3897 to update an address. Similarly, avoid insns that reference things
3898 set in previous insns. */
3899
3900 for (insn = insns; insn; insn = next)
3901 {
3902 rtx set = single_set (insn);
3903
3904 next = NEXT_INSN (insn);
3905
3906 if (set != 0 && REG_P (SET_DEST (set))
3907 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3908 {
3909 struct no_conflict_data data;
3910
3911 data.target = const0_rtx;
3912 data.first = insns;
3913 data.insn = insn;
3914 data.must_stay = 0;
3915 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3916 if (! data.must_stay)
3917 {
3918 if (PREV_INSN (insn))
3919 NEXT_INSN (PREV_INSN (insn)) = next;
3920 else
3921 insns = next;
3922
3923 if (next)
3924 PREV_INSN (next) = PREV_INSN (insn);
3925
3926 add_insn (insn);
3927 }
3928 }
3929
3930 /* Some ports use a loop to copy large arguments onto the stack.
3931 Don't move anything outside such a loop. */
3932 if (LABEL_P (insn))
3933 break;
3934 }
3935
3936 /* Write the remaining insns followed by the final copy. */
3937 for (insn = insns; insn; insn = next)
3938 {
3939 next = NEXT_INSN (insn);
3940
3941 add_insn (insn);
3942 }
3943
3944 last = emit_move_insn (target, result);
3945 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3946
3947 if (final_dest != target)
3948 emit_move_insn (final_dest, target);
3949 }
3950
3951 void
3952 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3953 {
3954 emit_libcall_block_1 (insns, target, result, equiv, false);
3955 }
3956 \f
3957 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3958 PURPOSE describes how this comparison will be used. CODE is the rtx
3959 comparison code we will be using.
3960
3961 ??? Actually, CODE is slightly weaker than that. A target is still
3962 required to implement all of the normal bcc operations, but not
3963 required to implement all (or any) of the unordered bcc operations. */
3964
3965 int
3966 can_compare_p (enum rtx_code code, enum machine_mode mode,
3967 enum can_compare_purpose purpose)
3968 {
3969 rtx test;
3970 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3971 do
3972 {
3973 enum insn_code icode;
3974
3975 if (purpose == ccp_jump
3976 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3977 && insn_operand_matches (icode, 0, test))
3978 return 1;
3979 if (purpose == ccp_store_flag
3980 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3981 && insn_operand_matches (icode, 1, test))
3982 return 1;
3983 if (purpose == ccp_cmov
3984 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3985 return 1;
3986
3987 mode = GET_MODE_WIDER_MODE (mode);
3988 PUT_MODE (test, mode);
3989 }
3990 while (mode != VOIDmode);
3991
3992 return 0;
3993 }
3994
3995 /* This function is called when we are going to emit a compare instruction that
3996 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3997
3998 *PMODE is the mode of the inputs (in case they are const_int).
3999 *PUNSIGNEDP nonzero says that the operands are unsigned;
4000 this matters if they need to be widened (as given by METHODS).
4001
4002 If they have mode BLKmode, then SIZE specifies the size of both operands.
4003
4004 This function performs all the setup necessary so that the caller only has
4005 to emit a single comparison insn. This setup can involve doing a BLKmode
4006 comparison or emitting a library call to perform the comparison if no insn
4007 is available to handle it.
4008 The values which are passed in through pointers can be modified; the caller
4009 should perform the comparison on the modified values. Constant
4010 comparisons must have already been folded. */
4011
4012 static void
4013 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4014 int unsignedp, enum optab_methods methods,
4015 rtx *ptest, enum machine_mode *pmode)
4016 {
4017 enum machine_mode mode = *pmode;
4018 rtx libfunc, test;
4019 enum machine_mode cmp_mode;
4020 enum mode_class mclass;
4021
4022 /* The other methods are not needed. */
4023 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4024 || methods == OPTAB_LIB_WIDEN);
4025
4026 /* If we are optimizing, force expensive constants into a register. */
4027 if (CONSTANT_P (x) && optimize
4028 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4029 > COSTS_N_INSNS (1)))
4030 x = force_reg (mode, x);
4031
4032 if (CONSTANT_P (y) && optimize
4033 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4034 > COSTS_N_INSNS (1)))
4035 y = force_reg (mode, y);
4036
4037 #ifdef HAVE_cc0
4038 /* Make sure if we have a canonical comparison. The RTL
4039 documentation states that canonical comparisons are required only
4040 for targets which have cc0. */
4041 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4042 #endif
4043
4044 /* Don't let both operands fail to indicate the mode. */
4045 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4046 x = force_reg (mode, x);
4047 if (mode == VOIDmode)
4048 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4049
4050 /* Handle all BLKmode compares. */
4051
4052 if (mode == BLKmode)
4053 {
4054 enum machine_mode result_mode;
4055 enum insn_code cmp_code;
4056 tree length_type;
4057 rtx libfunc;
4058 rtx result;
4059 rtx opalign
4060 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4061
4062 gcc_assert (size);
4063
4064 /* Try to use a memory block compare insn - either cmpstr
4065 or cmpmem will do. */
4066 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4067 cmp_mode != VOIDmode;
4068 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4069 {
4070 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4071 if (cmp_code == CODE_FOR_nothing)
4072 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4073 if (cmp_code == CODE_FOR_nothing)
4074 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4075 if (cmp_code == CODE_FOR_nothing)
4076 continue;
4077
4078 /* Must make sure the size fits the insn's mode. */
4079 if ((CONST_INT_P (size)
4080 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4081 || (GET_MODE_BITSIZE (GET_MODE (size))
4082 > GET_MODE_BITSIZE (cmp_mode)))
4083 continue;
4084
4085 result_mode = insn_data[cmp_code].operand[0].mode;
4086 result = gen_reg_rtx (result_mode);
4087 size = convert_to_mode (cmp_mode, size, 1);
4088 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4089
4090 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4091 *pmode = result_mode;
4092 return;
4093 }
4094
4095 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4096 goto fail;
4097
4098 /* Otherwise call a library function, memcmp. */
4099 libfunc = memcmp_libfunc;
4100 length_type = sizetype;
4101 result_mode = TYPE_MODE (integer_type_node);
4102 cmp_mode = TYPE_MODE (length_type);
4103 size = convert_to_mode (TYPE_MODE (length_type), size,
4104 TYPE_UNSIGNED (length_type));
4105
4106 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4107 result_mode, 3,
4108 XEXP (x, 0), Pmode,
4109 XEXP (y, 0), Pmode,
4110 size, cmp_mode);
4111 x = result;
4112 y = const0_rtx;
4113 mode = result_mode;
4114 methods = OPTAB_LIB_WIDEN;
4115 unsignedp = false;
4116 }
4117
4118 /* Don't allow operands to the compare to trap, as that can put the
4119 compare and branch in different basic blocks. */
4120 if (cfun->can_throw_non_call_exceptions)
4121 {
4122 if (may_trap_p (x))
4123 x = force_reg (mode, x);
4124 if (may_trap_p (y))
4125 y = force_reg (mode, y);
4126 }
4127
4128 if (GET_MODE_CLASS (mode) == MODE_CC)
4129 {
4130 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4131 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4132 return;
4133 }
4134
4135 mclass = GET_MODE_CLASS (mode);
4136 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4137 cmp_mode = mode;
4138 do
4139 {
4140 enum insn_code icode;
4141 icode = optab_handler (cbranch_optab, cmp_mode);
4142 if (icode != CODE_FOR_nothing
4143 && insn_operand_matches (icode, 0, test))
4144 {
4145 rtx last = get_last_insn ();
4146 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4147 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4148 if (op0 && op1
4149 && insn_operand_matches (icode, 1, op0)
4150 && insn_operand_matches (icode, 2, op1))
4151 {
4152 XEXP (test, 0) = op0;
4153 XEXP (test, 1) = op1;
4154 *ptest = test;
4155 *pmode = cmp_mode;
4156 return;
4157 }
4158 delete_insns_since (last);
4159 }
4160
4161 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4162 break;
4163 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4164 }
4165 while (cmp_mode != VOIDmode);
4166
4167 if (methods != OPTAB_LIB_WIDEN)
4168 goto fail;
4169
4170 if (!SCALAR_FLOAT_MODE_P (mode))
4171 {
4172 rtx result;
4173 enum machine_mode ret_mode;
4174
4175 /* Handle a libcall just for the mode we are using. */
4176 libfunc = optab_libfunc (cmp_optab, mode);
4177 gcc_assert (libfunc);
4178
4179 /* If we want unsigned, and this mode has a distinct unsigned
4180 comparison routine, use that. */
4181 if (unsignedp)
4182 {
4183 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4184 if (ulibfunc)
4185 libfunc = ulibfunc;
4186 }
4187
4188 ret_mode = targetm.libgcc_cmp_return_mode ();
4189 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4190 ret_mode, 2, x, mode, y, mode);
4191
4192 /* There are two kinds of comparison routines. Biased routines
4193 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4194 of gcc expect that the comparison operation is equivalent
4195 to the modified comparison. For signed comparisons compare the
4196 result against 1 in the biased case, and zero in the unbiased
4197 case. For unsigned comparisons always compare against 1 after
4198 biasing the unbiased result by adding 1. This gives us a way to
4199 represent LTU.
4200 The comparisons in the fixed-point helper library are always
4201 biased. */
4202 x = result;
4203 y = const1_rtx;
4204
4205 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4206 {
4207 if (unsignedp)
4208 x = plus_constant (ret_mode, result, 1);
4209 else
4210 y = const0_rtx;
4211 }
4212
4213 *pmode = word_mode;
4214 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4215 ptest, pmode);
4216 }
4217 else
4218 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4219
4220 return;
4221
4222 fail:
4223 *ptest = NULL_RTX;
4224 }
4225
4226 /* Before emitting an insn with code ICODE, make sure that X, which is going
4227 to be used for operand OPNUM of the insn, is converted from mode MODE to
4228 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4229 that it is accepted by the operand predicate. Return the new value. */
4230
4231 rtx
4232 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4233 enum machine_mode wider_mode, int unsignedp)
4234 {
4235 if (mode != wider_mode)
4236 x = convert_modes (wider_mode, mode, x, unsignedp);
4237
4238 if (!insn_operand_matches (icode, opnum, x))
4239 {
4240 if (reload_completed)
4241 return NULL_RTX;
4242 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4243 }
4244
4245 return x;
4246 }
4247
4248 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4249 we can do the branch. */
4250
4251 static void
4252 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4253 {
4254 enum machine_mode optab_mode;
4255 enum mode_class mclass;
4256 enum insn_code icode;
4257 rtx insn;
4258
4259 mclass = GET_MODE_CLASS (mode);
4260 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4261 icode = optab_handler (cbranch_optab, optab_mode);
4262
4263 gcc_assert (icode != CODE_FOR_nothing);
4264 gcc_assert (insn_operand_matches (icode, 0, test));
4265 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4266 XEXP (test, 1), label));
4267 if (prob != -1
4268 && profile_status != PROFILE_ABSENT
4269 && insn
4270 && JUMP_P (insn)
4271 && any_condjump_p (insn)
4272 && !find_reg_note (insn, REG_BR_PROB, 0))
4273 add_reg_note (insn, REG_BR_PROB, GEN_INT (prob));
4274 }
4275
4276 /* Generate code to compare X with Y so that the condition codes are
4277 set and to jump to LABEL if the condition is true. If X is a
4278 constant and Y is not a constant, then the comparison is swapped to
4279 ensure that the comparison RTL has the canonical form.
4280
4281 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4282 need to be widened. UNSIGNEDP is also used to select the proper
4283 branch condition code.
4284
4285 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4286
4287 MODE is the mode of the inputs (in case they are const_int).
4288
4289 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4290 It will be potentially converted into an unsigned variant based on
4291 UNSIGNEDP to select a proper jump instruction.
4292
4293 PROB is the probability of jumping to LABEL. */
4294
4295 void
4296 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4297 enum machine_mode mode, int unsignedp, rtx label,
4298 int prob)
4299 {
4300 rtx op0 = x, op1 = y;
4301 rtx test;
4302
4303 /* Swap operands and condition to ensure canonical RTL. */
4304 if (swap_commutative_operands_p (x, y)
4305 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4306 {
4307 op0 = y, op1 = x;
4308 comparison = swap_condition (comparison);
4309 }
4310
4311 /* If OP0 is still a constant, then both X and Y must be constants
4312 or the opposite comparison is not supported. Force X into a register
4313 to create canonical RTL. */
4314 if (CONSTANT_P (op0))
4315 op0 = force_reg (mode, op0);
4316
4317 if (unsignedp)
4318 comparison = unsigned_condition (comparison);
4319
4320 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4321 &test, &mode);
4322 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4323 }
4324
4325 \f
4326 /* Emit a library call comparison between floating point X and Y.
4327 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4328
4329 static void
4330 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4331 rtx *ptest, enum machine_mode *pmode)
4332 {
4333 enum rtx_code swapped = swap_condition (comparison);
4334 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4335 enum machine_mode orig_mode = GET_MODE (x);
4336 enum machine_mode mode, cmp_mode;
4337 rtx true_rtx, false_rtx;
4338 rtx value, target, insns, equiv;
4339 rtx libfunc = 0;
4340 bool reversed_p = false;
4341 cmp_mode = targetm.libgcc_cmp_return_mode ();
4342
4343 for (mode = orig_mode;
4344 mode != VOIDmode;
4345 mode = GET_MODE_WIDER_MODE (mode))
4346 {
4347 if (code_to_optab (comparison)
4348 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4349 break;
4350
4351 if (code_to_optab (swapped)
4352 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4353 {
4354 rtx tmp;
4355 tmp = x; x = y; y = tmp;
4356 comparison = swapped;
4357 break;
4358 }
4359
4360 if (code_to_optab (reversed)
4361 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4362 {
4363 comparison = reversed;
4364 reversed_p = true;
4365 break;
4366 }
4367 }
4368
4369 gcc_assert (mode != VOIDmode);
4370
4371 if (mode != orig_mode)
4372 {
4373 x = convert_to_mode (mode, x, 0);
4374 y = convert_to_mode (mode, y, 0);
4375 }
4376
4377 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4378 the RTL. The allows the RTL optimizers to delete the libcall if the
4379 condition can be determined at compile-time. */
4380 if (comparison == UNORDERED
4381 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4382 {
4383 true_rtx = const_true_rtx;
4384 false_rtx = const0_rtx;
4385 }
4386 else
4387 {
4388 switch (comparison)
4389 {
4390 case EQ:
4391 true_rtx = const0_rtx;
4392 false_rtx = const_true_rtx;
4393 break;
4394
4395 case NE:
4396 true_rtx = const_true_rtx;
4397 false_rtx = const0_rtx;
4398 break;
4399
4400 case GT:
4401 true_rtx = const1_rtx;
4402 false_rtx = const0_rtx;
4403 break;
4404
4405 case GE:
4406 true_rtx = const0_rtx;
4407 false_rtx = constm1_rtx;
4408 break;
4409
4410 case LT:
4411 true_rtx = constm1_rtx;
4412 false_rtx = const0_rtx;
4413 break;
4414
4415 case LE:
4416 true_rtx = const0_rtx;
4417 false_rtx = const1_rtx;
4418 break;
4419
4420 default:
4421 gcc_unreachable ();
4422 }
4423 }
4424
4425 if (comparison == UNORDERED)
4426 {
4427 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4428 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4429 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4430 temp, const_true_rtx, equiv);
4431 }
4432 else
4433 {
4434 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4435 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4436 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4437 equiv, true_rtx, false_rtx);
4438 }
4439
4440 start_sequence ();
4441 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4442 cmp_mode, 2, x, mode, y, mode);
4443 insns = get_insns ();
4444 end_sequence ();
4445
4446 target = gen_reg_rtx (cmp_mode);
4447 emit_libcall_block (insns, target, value, equiv);
4448
4449 if (comparison == UNORDERED
4450 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4451 || reversed_p)
4452 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4453 else
4454 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4455
4456 *pmode = cmp_mode;
4457 }
4458 \f
4459 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4460
4461 void
4462 emit_indirect_jump (rtx loc)
4463 {
4464 struct expand_operand ops[1];
4465
4466 create_address_operand (&ops[0], loc);
4467 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4468 emit_barrier ();
4469 }
4470 \f
4471 #ifdef HAVE_conditional_move
4472
4473 /* Emit a conditional move instruction if the machine supports one for that
4474 condition and machine mode.
4475
4476 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4477 the mode to use should they be constants. If it is VOIDmode, they cannot
4478 both be constants.
4479
4480 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4481 should be stored there. MODE is the mode to use should they be constants.
4482 If it is VOIDmode, they cannot both be constants.
4483
4484 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4485 is not supported. */
4486
4487 rtx
4488 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4489 enum machine_mode cmode, rtx op2, rtx op3,
4490 enum machine_mode mode, int unsignedp)
4491 {
4492 rtx tem, comparison, last;
4493 enum insn_code icode;
4494 enum rtx_code reversed;
4495
4496 /* If one operand is constant, make it the second one. Only do this
4497 if the other operand is not constant as well. */
4498
4499 if (swap_commutative_operands_p (op0, op1))
4500 {
4501 tem = op0;
4502 op0 = op1;
4503 op1 = tem;
4504 code = swap_condition (code);
4505 }
4506
4507 /* get_condition will prefer to generate LT and GT even if the old
4508 comparison was against zero, so undo that canonicalization here since
4509 comparisons against zero are cheaper. */
4510 if (code == LT && op1 == const1_rtx)
4511 code = LE, op1 = const0_rtx;
4512 else if (code == GT && op1 == constm1_rtx)
4513 code = GE, op1 = const0_rtx;
4514
4515 if (cmode == VOIDmode)
4516 cmode = GET_MODE (op0);
4517
4518 if (swap_commutative_operands_p (op2, op3)
4519 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4520 != UNKNOWN))
4521 {
4522 tem = op2;
4523 op2 = op3;
4524 op3 = tem;
4525 code = reversed;
4526 }
4527
4528 if (mode == VOIDmode)
4529 mode = GET_MODE (op2);
4530
4531 icode = direct_optab_handler (movcc_optab, mode);
4532
4533 if (icode == CODE_FOR_nothing)
4534 return 0;
4535
4536 if (!target)
4537 target = gen_reg_rtx (mode);
4538
4539 code = unsignedp ? unsigned_condition (code) : code;
4540 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4541
4542 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4543 return NULL and let the caller figure out how best to deal with this
4544 situation. */
4545 if (!COMPARISON_P (comparison))
4546 return NULL_RTX;
4547
4548 do_pending_stack_adjust ();
4549 last = get_last_insn ();
4550 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4551 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4552 &comparison, &cmode);
4553 if (comparison)
4554 {
4555 struct expand_operand ops[4];
4556
4557 create_output_operand (&ops[0], target, mode);
4558 create_fixed_operand (&ops[1], comparison);
4559 create_input_operand (&ops[2], op2, mode);
4560 create_input_operand (&ops[3], op3, mode);
4561 if (maybe_expand_insn (icode, 4, ops))
4562 {
4563 if (ops[0].value != target)
4564 convert_move (target, ops[0].value, false);
4565 return target;
4566 }
4567 }
4568 delete_insns_since (last);
4569 return NULL_RTX;
4570 }
4571
4572 /* Return nonzero if a conditional move of mode MODE is supported.
4573
4574 This function is for combine so it can tell whether an insn that looks
4575 like a conditional move is actually supported by the hardware. If we
4576 guess wrong we lose a bit on optimization, but that's it. */
4577 /* ??? sparc64 supports conditionally moving integers values based on fp
4578 comparisons, and vice versa. How do we handle them? */
4579
4580 int
4581 can_conditionally_move_p (enum machine_mode mode)
4582 {
4583 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4584 return 1;
4585
4586 return 0;
4587 }
4588
4589 #endif /* HAVE_conditional_move */
4590
4591 /* Emit a conditional addition instruction if the machine supports one for that
4592 condition and machine mode.
4593
4594 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4595 the mode to use should they be constants. If it is VOIDmode, they cannot
4596 both be constants.
4597
4598 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4599 should be stored there. MODE is the mode to use should they be constants.
4600 If it is VOIDmode, they cannot both be constants.
4601
4602 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4603 is not supported. */
4604
4605 rtx
4606 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4607 enum machine_mode cmode, rtx op2, rtx op3,
4608 enum machine_mode mode, int unsignedp)
4609 {
4610 rtx tem, comparison, last;
4611 enum insn_code icode;
4612
4613 /* If one operand is constant, make it the second one. Only do this
4614 if the other operand is not constant as well. */
4615
4616 if (swap_commutative_operands_p (op0, op1))
4617 {
4618 tem = op0;
4619 op0 = op1;
4620 op1 = tem;
4621 code = swap_condition (code);
4622 }
4623
4624 /* get_condition will prefer to generate LT and GT even if the old
4625 comparison was against zero, so undo that canonicalization here since
4626 comparisons against zero are cheaper. */
4627 if (code == LT && op1 == const1_rtx)
4628 code = LE, op1 = const0_rtx;
4629 else if (code == GT && op1 == constm1_rtx)
4630 code = GE, op1 = const0_rtx;
4631
4632 if (cmode == VOIDmode)
4633 cmode = GET_MODE (op0);
4634
4635 if (mode == VOIDmode)
4636 mode = GET_MODE (op2);
4637
4638 icode = optab_handler (addcc_optab, mode);
4639
4640 if (icode == CODE_FOR_nothing)
4641 return 0;
4642
4643 if (!target)
4644 target = gen_reg_rtx (mode);
4645
4646 code = unsignedp ? unsigned_condition (code) : code;
4647 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4648
4649 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4650 return NULL and let the caller figure out how best to deal with this
4651 situation. */
4652 if (!COMPARISON_P (comparison))
4653 return NULL_RTX;
4654
4655 do_pending_stack_adjust ();
4656 last = get_last_insn ();
4657 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4658 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4659 &comparison, &cmode);
4660 if (comparison)
4661 {
4662 struct expand_operand ops[4];
4663
4664 create_output_operand (&ops[0], target, mode);
4665 create_fixed_operand (&ops[1], comparison);
4666 create_input_operand (&ops[2], op2, mode);
4667 create_input_operand (&ops[3], op3, mode);
4668 if (maybe_expand_insn (icode, 4, ops))
4669 {
4670 if (ops[0].value != target)
4671 convert_move (target, ops[0].value, false);
4672 return target;
4673 }
4674 }
4675 delete_insns_since (last);
4676 return NULL_RTX;
4677 }
4678 \f
4679 /* These functions attempt to generate an insn body, rather than
4680 emitting the insn, but if the gen function already emits them, we
4681 make no attempt to turn them back into naked patterns. */
4682
4683 /* Generate and return an insn body to add Y to X. */
4684
4685 rtx
4686 gen_add2_insn (rtx x, rtx y)
4687 {
4688 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4689
4690 gcc_assert (insn_operand_matches (icode, 0, x));
4691 gcc_assert (insn_operand_matches (icode, 1, x));
4692 gcc_assert (insn_operand_matches (icode, 2, y));
4693
4694 return GEN_FCN (icode) (x, x, y);
4695 }
4696
4697 /* Generate and return an insn body to add r1 and c,
4698 storing the result in r0. */
4699
4700 rtx
4701 gen_add3_insn (rtx r0, rtx r1, rtx c)
4702 {
4703 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4704
4705 if (icode == CODE_FOR_nothing
4706 || !insn_operand_matches (icode, 0, r0)
4707 || !insn_operand_matches (icode, 1, r1)
4708 || !insn_operand_matches (icode, 2, c))
4709 return NULL_RTX;
4710
4711 return GEN_FCN (icode) (r0, r1, c);
4712 }
4713
4714 int
4715 have_add2_insn (rtx x, rtx y)
4716 {
4717 enum insn_code icode;
4718
4719 gcc_assert (GET_MODE (x) != VOIDmode);
4720
4721 icode = optab_handler (add_optab, GET_MODE (x));
4722
4723 if (icode == CODE_FOR_nothing)
4724 return 0;
4725
4726 if (!insn_operand_matches (icode, 0, x)
4727 || !insn_operand_matches (icode, 1, x)
4728 || !insn_operand_matches (icode, 2, y))
4729 return 0;
4730
4731 return 1;
4732 }
4733
4734 /* Generate and return an insn body to subtract Y from X. */
4735
4736 rtx
4737 gen_sub2_insn (rtx x, rtx y)
4738 {
4739 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4740
4741 gcc_assert (insn_operand_matches (icode, 0, x));
4742 gcc_assert (insn_operand_matches (icode, 1, x));
4743 gcc_assert (insn_operand_matches (icode, 2, y));
4744
4745 return GEN_FCN (icode) (x, x, y);
4746 }
4747
4748 /* Generate and return an insn body to subtract r1 and c,
4749 storing the result in r0. */
4750
4751 rtx
4752 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4753 {
4754 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4755
4756 if (icode == CODE_FOR_nothing
4757 || !insn_operand_matches (icode, 0, r0)
4758 || !insn_operand_matches (icode, 1, r1)
4759 || !insn_operand_matches (icode, 2, c))
4760 return NULL_RTX;
4761
4762 return GEN_FCN (icode) (r0, r1, c);
4763 }
4764
4765 int
4766 have_sub2_insn (rtx x, rtx y)
4767 {
4768 enum insn_code icode;
4769
4770 gcc_assert (GET_MODE (x) != VOIDmode);
4771
4772 icode = optab_handler (sub_optab, GET_MODE (x));
4773
4774 if (icode == CODE_FOR_nothing)
4775 return 0;
4776
4777 if (!insn_operand_matches (icode, 0, x)
4778 || !insn_operand_matches (icode, 1, x)
4779 || !insn_operand_matches (icode, 2, y))
4780 return 0;
4781
4782 return 1;
4783 }
4784
4785 /* Generate the body of an instruction to copy Y into X.
4786 It may be a list of insns, if one insn isn't enough. */
4787
4788 rtx
4789 gen_move_insn (rtx x, rtx y)
4790 {
4791 rtx seq;
4792
4793 start_sequence ();
4794 emit_move_insn_1 (x, y);
4795 seq = get_insns ();
4796 end_sequence ();
4797 return seq;
4798 }
4799 \f
4800 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4801 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4802 no such operation exists, CODE_FOR_nothing will be returned. */
4803
4804 enum insn_code
4805 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4806 int unsignedp)
4807 {
4808 convert_optab tab;
4809 #ifdef HAVE_ptr_extend
4810 if (unsignedp < 0)
4811 return CODE_FOR_ptr_extend;
4812 #endif
4813
4814 tab = unsignedp ? zext_optab : sext_optab;
4815 return convert_optab_handler (tab, to_mode, from_mode);
4816 }
4817
4818 /* Generate the body of an insn to extend Y (with mode MFROM)
4819 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4820
4821 rtx
4822 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4823 enum machine_mode mfrom, int unsignedp)
4824 {
4825 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4826 return GEN_FCN (icode) (x, y);
4827 }
4828 \f
4829 /* can_fix_p and can_float_p say whether the target machine
4830 can directly convert a given fixed point type to
4831 a given floating point type, or vice versa.
4832 The returned value is the CODE_FOR_... value to use,
4833 or CODE_FOR_nothing if these modes cannot be directly converted.
4834
4835 *TRUNCP_PTR is set to 1 if it is necessary to output
4836 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4837
4838 static enum insn_code
4839 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4840 int unsignedp, int *truncp_ptr)
4841 {
4842 convert_optab tab;
4843 enum insn_code icode;
4844
4845 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4846 icode = convert_optab_handler (tab, fixmode, fltmode);
4847 if (icode != CODE_FOR_nothing)
4848 {
4849 *truncp_ptr = 0;
4850 return icode;
4851 }
4852
4853 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4854 for this to work. We need to rework the fix* and ftrunc* patterns
4855 and documentation. */
4856 tab = unsignedp ? ufix_optab : sfix_optab;
4857 icode = convert_optab_handler (tab, fixmode, fltmode);
4858 if (icode != CODE_FOR_nothing
4859 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4860 {
4861 *truncp_ptr = 1;
4862 return icode;
4863 }
4864
4865 *truncp_ptr = 0;
4866 return CODE_FOR_nothing;
4867 }
4868
4869 enum insn_code
4870 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4871 int unsignedp)
4872 {
4873 convert_optab tab;
4874
4875 tab = unsignedp ? ufloat_optab : sfloat_optab;
4876 return convert_optab_handler (tab, fltmode, fixmode);
4877 }
4878
4879 /* Function supportable_convert_operation
4880
4881 Check whether an operation represented by the code CODE is a
4882 convert operation that is supported by the target platform in
4883 vector form (i.e., when operating on arguments of type VECTYPE_IN
4884 producing a result of type VECTYPE_OUT).
4885
4886 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4887 This function checks if these operations are supported
4888 by the target platform either directly (via vector tree-codes), or via
4889 target builtins.
4890
4891 Output:
4892 - CODE1 is code of vector operation to be used when
4893 vectorizing the operation, if available.
4894 - DECL is decl of target builtin functions to be used
4895 when vectorizing the operation, if available. In this case,
4896 CODE1 is CALL_EXPR. */
4897
4898 bool
4899 supportable_convert_operation (enum tree_code code,
4900 tree vectype_out, tree vectype_in,
4901 tree *decl, enum tree_code *code1)
4902 {
4903 enum machine_mode m1,m2;
4904 int truncp;
4905
4906 m1 = TYPE_MODE (vectype_out);
4907 m2 = TYPE_MODE (vectype_in);
4908
4909 /* First check if we can done conversion directly. */
4910 if ((code == FIX_TRUNC_EXPR
4911 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4912 != CODE_FOR_nothing)
4913 || (code == FLOAT_EXPR
4914 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4915 != CODE_FOR_nothing))
4916 {
4917 *code1 = code;
4918 return true;
4919 }
4920
4921 /* Now check for builtin. */
4922 if (targetm.vectorize.builtin_conversion
4923 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4924 {
4925 *code1 = CALL_EXPR;
4926 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4927 return true;
4928 }
4929 return false;
4930 }
4931
4932 \f
4933 /* Generate code to convert FROM to floating point
4934 and store in TO. FROM must be fixed point and not VOIDmode.
4935 UNSIGNEDP nonzero means regard FROM as unsigned.
4936 Normally this is done by correcting the final value
4937 if it is negative. */
4938
4939 void
4940 expand_float (rtx to, rtx from, int unsignedp)
4941 {
4942 enum insn_code icode;
4943 rtx target = to;
4944 enum machine_mode fmode, imode;
4945 bool can_do_signed = false;
4946
4947 /* Crash now, because we won't be able to decide which mode to use. */
4948 gcc_assert (GET_MODE (from) != VOIDmode);
4949
4950 /* Look for an insn to do the conversion. Do it in the specified
4951 modes if possible; otherwise convert either input, output or both to
4952 wider mode. If the integer mode is wider than the mode of FROM,
4953 we can do the conversion signed even if the input is unsigned. */
4954
4955 for (fmode = GET_MODE (to); fmode != VOIDmode;
4956 fmode = GET_MODE_WIDER_MODE (fmode))
4957 for (imode = GET_MODE (from); imode != VOIDmode;
4958 imode = GET_MODE_WIDER_MODE (imode))
4959 {
4960 int doing_unsigned = unsignedp;
4961
4962 if (fmode != GET_MODE (to)
4963 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4964 continue;
4965
4966 icode = can_float_p (fmode, imode, unsignedp);
4967 if (icode == CODE_FOR_nothing && unsignedp)
4968 {
4969 enum insn_code scode = can_float_p (fmode, imode, 0);
4970 if (scode != CODE_FOR_nothing)
4971 can_do_signed = true;
4972 if (imode != GET_MODE (from))
4973 icode = scode, doing_unsigned = 0;
4974 }
4975
4976 if (icode != CODE_FOR_nothing)
4977 {
4978 if (imode != GET_MODE (from))
4979 from = convert_to_mode (imode, from, unsignedp);
4980
4981 if (fmode != GET_MODE (to))
4982 target = gen_reg_rtx (fmode);
4983
4984 emit_unop_insn (icode, target, from,
4985 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4986
4987 if (target != to)
4988 convert_move (to, target, 0);
4989 return;
4990 }
4991 }
4992
4993 /* Unsigned integer, and no way to convert directly. Convert as signed,
4994 then unconditionally adjust the result. */
4995 if (unsignedp && can_do_signed)
4996 {
4997 rtx label = gen_label_rtx ();
4998 rtx temp;
4999 REAL_VALUE_TYPE offset;
5000
5001 /* Look for a usable floating mode FMODE wider than the source and at
5002 least as wide as the target. Using FMODE will avoid rounding woes
5003 with unsigned values greater than the signed maximum value. */
5004
5005 for (fmode = GET_MODE (to); fmode != VOIDmode;
5006 fmode = GET_MODE_WIDER_MODE (fmode))
5007 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5008 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5009 break;
5010
5011 if (fmode == VOIDmode)
5012 {
5013 /* There is no such mode. Pretend the target is wide enough. */
5014 fmode = GET_MODE (to);
5015
5016 /* Avoid double-rounding when TO is narrower than FROM. */
5017 if ((significand_size (fmode) + 1)
5018 < GET_MODE_PRECISION (GET_MODE (from)))
5019 {
5020 rtx temp1;
5021 rtx neglabel = gen_label_rtx ();
5022
5023 /* Don't use TARGET if it isn't a register, is a hard register,
5024 or is the wrong mode. */
5025 if (!REG_P (target)
5026 || REGNO (target) < FIRST_PSEUDO_REGISTER
5027 || GET_MODE (target) != fmode)
5028 target = gen_reg_rtx (fmode);
5029
5030 imode = GET_MODE (from);
5031 do_pending_stack_adjust ();
5032
5033 /* Test whether the sign bit is set. */
5034 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5035 0, neglabel);
5036
5037 /* The sign bit is not set. Convert as signed. */
5038 expand_float (target, from, 0);
5039 emit_jump_insn (gen_jump (label));
5040 emit_barrier ();
5041
5042 /* The sign bit is set.
5043 Convert to a usable (positive signed) value by shifting right
5044 one bit, while remembering if a nonzero bit was shifted
5045 out; i.e., compute (from & 1) | (from >> 1). */
5046
5047 emit_label (neglabel);
5048 temp = expand_binop (imode, and_optab, from, const1_rtx,
5049 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5050 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5051 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5052 OPTAB_LIB_WIDEN);
5053 expand_float (target, temp, 0);
5054
5055 /* Multiply by 2 to undo the shift above. */
5056 temp = expand_binop (fmode, add_optab, target, target,
5057 target, 0, OPTAB_LIB_WIDEN);
5058 if (temp != target)
5059 emit_move_insn (target, temp);
5060
5061 do_pending_stack_adjust ();
5062 emit_label (label);
5063 goto done;
5064 }
5065 }
5066
5067 /* If we are about to do some arithmetic to correct for an
5068 unsigned operand, do it in a pseudo-register. */
5069
5070 if (GET_MODE (to) != fmode
5071 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5072 target = gen_reg_rtx (fmode);
5073
5074 /* Convert as signed integer to floating. */
5075 expand_float (target, from, 0);
5076
5077 /* If FROM is negative (and therefore TO is negative),
5078 correct its value by 2**bitwidth. */
5079
5080 do_pending_stack_adjust ();
5081 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5082 0, label);
5083
5084
5085 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5086 temp = expand_binop (fmode, add_optab, target,
5087 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5088 target, 0, OPTAB_LIB_WIDEN);
5089 if (temp != target)
5090 emit_move_insn (target, temp);
5091
5092 do_pending_stack_adjust ();
5093 emit_label (label);
5094 goto done;
5095 }
5096
5097 /* No hardware instruction available; call a library routine. */
5098 {
5099 rtx libfunc;
5100 rtx insns;
5101 rtx value;
5102 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5103
5104 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5105 from = convert_to_mode (SImode, from, unsignedp);
5106
5107 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5108 gcc_assert (libfunc);
5109
5110 start_sequence ();
5111
5112 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5113 GET_MODE (to), 1, from,
5114 GET_MODE (from));
5115 insns = get_insns ();
5116 end_sequence ();
5117
5118 emit_libcall_block (insns, target, value,
5119 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5120 GET_MODE (to), from));
5121 }
5122
5123 done:
5124
5125 /* Copy result to requested destination
5126 if we have been computing in a temp location. */
5127
5128 if (target != to)
5129 {
5130 if (GET_MODE (target) == GET_MODE (to))
5131 emit_move_insn (to, target);
5132 else
5133 convert_move (to, target, 0);
5134 }
5135 }
5136 \f
5137 /* Generate code to convert FROM to fixed point and store in TO. FROM
5138 must be floating point. */
5139
5140 void
5141 expand_fix (rtx to, rtx from, int unsignedp)
5142 {
5143 enum insn_code icode;
5144 rtx target = to;
5145 enum machine_mode fmode, imode;
5146 int must_trunc = 0;
5147
5148 /* We first try to find a pair of modes, one real and one integer, at
5149 least as wide as FROM and TO, respectively, in which we can open-code
5150 this conversion. If the integer mode is wider than the mode of TO,
5151 we can do the conversion either signed or unsigned. */
5152
5153 for (fmode = GET_MODE (from); fmode != VOIDmode;
5154 fmode = GET_MODE_WIDER_MODE (fmode))
5155 for (imode = GET_MODE (to); imode != VOIDmode;
5156 imode = GET_MODE_WIDER_MODE (imode))
5157 {
5158 int doing_unsigned = unsignedp;
5159
5160 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5161 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5162 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5163
5164 if (icode != CODE_FOR_nothing)
5165 {
5166 rtx last = get_last_insn ();
5167 if (fmode != GET_MODE (from))
5168 from = convert_to_mode (fmode, from, 0);
5169
5170 if (must_trunc)
5171 {
5172 rtx temp = gen_reg_rtx (GET_MODE (from));
5173 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5174 temp, 0);
5175 }
5176
5177 if (imode != GET_MODE (to))
5178 target = gen_reg_rtx (imode);
5179
5180 if (maybe_emit_unop_insn (icode, target, from,
5181 doing_unsigned ? UNSIGNED_FIX : FIX))
5182 {
5183 if (target != to)
5184 convert_move (to, target, unsignedp);
5185 return;
5186 }
5187 delete_insns_since (last);
5188 }
5189 }
5190
5191 /* For an unsigned conversion, there is one more way to do it.
5192 If we have a signed conversion, we generate code that compares
5193 the real value to the largest representable positive number. If if
5194 is smaller, the conversion is done normally. Otherwise, subtract
5195 one plus the highest signed number, convert, and add it back.
5196
5197 We only need to check all real modes, since we know we didn't find
5198 anything with a wider integer mode.
5199
5200 This code used to extend FP value into mode wider than the destination.
5201 This is needed for decimal float modes which cannot accurately
5202 represent one plus the highest signed number of the same size, but
5203 not for binary modes. Consider, for instance conversion from SFmode
5204 into DImode.
5205
5206 The hot path through the code is dealing with inputs smaller than 2^63
5207 and doing just the conversion, so there is no bits to lose.
5208
5209 In the other path we know the value is positive in the range 2^63..2^64-1
5210 inclusive. (as for other input overflow happens and result is undefined)
5211 So we know that the most important bit set in mantissa corresponds to
5212 2^63. The subtraction of 2^63 should not generate any rounding as it
5213 simply clears out that bit. The rest is trivial. */
5214
5215 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5216 for (fmode = GET_MODE (from); fmode != VOIDmode;
5217 fmode = GET_MODE_WIDER_MODE (fmode))
5218 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5219 && (!DECIMAL_FLOAT_MODE_P (fmode)
5220 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5221 {
5222 int bitsize;
5223 REAL_VALUE_TYPE offset;
5224 rtx limit, lab1, lab2, insn;
5225
5226 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5227 real_2expN (&offset, bitsize - 1, fmode);
5228 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5229 lab1 = gen_label_rtx ();
5230 lab2 = gen_label_rtx ();
5231
5232 if (fmode != GET_MODE (from))
5233 from = convert_to_mode (fmode, from, 0);
5234
5235 /* See if we need to do the subtraction. */
5236 do_pending_stack_adjust ();
5237 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5238 0, lab1);
5239
5240 /* If not, do the signed "fix" and branch around fixup code. */
5241 expand_fix (to, from, 0);
5242 emit_jump_insn (gen_jump (lab2));
5243 emit_barrier ();
5244
5245 /* Otherwise, subtract 2**(N-1), convert to signed number,
5246 then add 2**(N-1). Do the addition using XOR since this
5247 will often generate better code. */
5248 emit_label (lab1);
5249 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5250 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5251 expand_fix (to, target, 0);
5252 target = expand_binop (GET_MODE (to), xor_optab, to,
5253 gen_int_mode
5254 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5255 GET_MODE (to)),
5256 to, 1, OPTAB_LIB_WIDEN);
5257
5258 if (target != to)
5259 emit_move_insn (to, target);
5260
5261 emit_label (lab2);
5262
5263 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5264 {
5265 /* Make a place for a REG_NOTE and add it. */
5266 insn = emit_move_insn (to, to);
5267 set_dst_reg_note (insn, REG_EQUAL,
5268 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5269 copy_rtx (from)),
5270 to);
5271 }
5272
5273 return;
5274 }
5275
5276 /* We can't do it with an insn, so use a library call. But first ensure
5277 that the mode of TO is at least as wide as SImode, since those are the
5278 only library calls we know about. */
5279
5280 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5281 {
5282 target = gen_reg_rtx (SImode);
5283
5284 expand_fix (target, from, unsignedp);
5285 }
5286 else
5287 {
5288 rtx insns;
5289 rtx value;
5290 rtx libfunc;
5291
5292 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5293 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5294 gcc_assert (libfunc);
5295
5296 start_sequence ();
5297
5298 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5299 GET_MODE (to), 1, from,
5300 GET_MODE (from));
5301 insns = get_insns ();
5302 end_sequence ();
5303
5304 emit_libcall_block (insns, target, value,
5305 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5306 GET_MODE (to), from));
5307 }
5308
5309 if (target != to)
5310 {
5311 if (GET_MODE (to) == GET_MODE (target))
5312 emit_move_insn (to, target);
5313 else
5314 convert_move (to, target, 0);
5315 }
5316 }
5317
5318 /* Generate code to convert FROM or TO a fixed-point.
5319 If UINTP is true, either TO or FROM is an unsigned integer.
5320 If SATP is true, we need to saturate the result. */
5321
5322 void
5323 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5324 {
5325 enum machine_mode to_mode = GET_MODE (to);
5326 enum machine_mode from_mode = GET_MODE (from);
5327 convert_optab tab;
5328 enum rtx_code this_code;
5329 enum insn_code code;
5330 rtx insns, value;
5331 rtx libfunc;
5332
5333 if (to_mode == from_mode)
5334 {
5335 emit_move_insn (to, from);
5336 return;
5337 }
5338
5339 if (uintp)
5340 {
5341 tab = satp ? satfractuns_optab : fractuns_optab;
5342 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5343 }
5344 else
5345 {
5346 tab = satp ? satfract_optab : fract_optab;
5347 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5348 }
5349 code = convert_optab_handler (tab, to_mode, from_mode);
5350 if (code != CODE_FOR_nothing)
5351 {
5352 emit_unop_insn (code, to, from, this_code);
5353 return;
5354 }
5355
5356 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5357 gcc_assert (libfunc);
5358
5359 start_sequence ();
5360 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5361 1, from, from_mode);
5362 insns = get_insns ();
5363 end_sequence ();
5364
5365 emit_libcall_block (insns, to, value,
5366 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5367 }
5368
5369 /* Generate code to convert FROM to fixed point and store in TO. FROM
5370 must be floating point, TO must be signed. Use the conversion optab
5371 TAB to do the conversion. */
5372
5373 bool
5374 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5375 {
5376 enum insn_code icode;
5377 rtx target = to;
5378 enum machine_mode fmode, imode;
5379
5380 /* We first try to find a pair of modes, one real and one integer, at
5381 least as wide as FROM and TO, respectively, in which we can open-code
5382 this conversion. If the integer mode is wider than the mode of TO,
5383 we can do the conversion either signed or unsigned. */
5384
5385 for (fmode = GET_MODE (from); fmode != VOIDmode;
5386 fmode = GET_MODE_WIDER_MODE (fmode))
5387 for (imode = GET_MODE (to); imode != VOIDmode;
5388 imode = GET_MODE_WIDER_MODE (imode))
5389 {
5390 icode = convert_optab_handler (tab, imode, fmode);
5391 if (icode != CODE_FOR_nothing)
5392 {
5393 rtx last = get_last_insn ();
5394 if (fmode != GET_MODE (from))
5395 from = convert_to_mode (fmode, from, 0);
5396
5397 if (imode != GET_MODE (to))
5398 target = gen_reg_rtx (imode);
5399
5400 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5401 {
5402 delete_insns_since (last);
5403 continue;
5404 }
5405 if (target != to)
5406 convert_move (to, target, 0);
5407 return true;
5408 }
5409 }
5410
5411 return false;
5412 }
5413 \f
5414 /* Report whether we have an instruction to perform the operation
5415 specified by CODE on operands of mode MODE. */
5416 int
5417 have_insn_for (enum rtx_code code, enum machine_mode mode)
5418 {
5419 return (code_to_optab (code)
5420 && (optab_handler (code_to_optab (code), mode)
5421 != CODE_FOR_nothing));
5422 }
5423
5424 /* Initialize the libfunc fields of an entire group of entries in some
5425 optab. Each entry is set equal to a string consisting of a leading
5426 pair of underscores followed by a generic operation name followed by
5427 a mode name (downshifted to lowercase) followed by a single character
5428 representing the number of operands for the given operation (which is
5429 usually one of the characters '2', '3', or '4').
5430
5431 OPTABLE is the table in which libfunc fields are to be initialized.
5432 OPNAME is the generic (string) name of the operation.
5433 SUFFIX is the character which specifies the number of operands for
5434 the given generic operation.
5435 MODE is the mode to generate for.
5436 */
5437
5438 static void
5439 gen_libfunc (optab optable, const char *opname, int suffix,
5440 enum machine_mode mode)
5441 {
5442 unsigned opname_len = strlen (opname);
5443 const char *mname = GET_MODE_NAME (mode);
5444 unsigned mname_len = strlen (mname);
5445 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5446 int len = prefix_len + opname_len + mname_len + 1 + 1;
5447 char *libfunc_name = XALLOCAVEC (char, len);
5448 char *p;
5449 const char *q;
5450
5451 p = libfunc_name;
5452 *p++ = '_';
5453 *p++ = '_';
5454 if (targetm.libfunc_gnu_prefix)
5455 {
5456 *p++ = 'g';
5457 *p++ = 'n';
5458 *p++ = 'u';
5459 *p++ = '_';
5460 }
5461 for (q = opname; *q; )
5462 *p++ = *q++;
5463 for (q = mname; *q; q++)
5464 *p++ = TOLOWER (*q);
5465 *p++ = suffix;
5466 *p = '\0';
5467
5468 set_optab_libfunc (optable, mode,
5469 ggc_alloc_string (libfunc_name, p - libfunc_name));
5470 }
5471
5472 /* Like gen_libfunc, but verify that integer operation is involved. */
5473
5474 void
5475 gen_int_libfunc (optab optable, const char *opname, char suffix,
5476 enum machine_mode mode)
5477 {
5478 int maxsize = 2 * BITS_PER_WORD;
5479
5480 if (GET_MODE_CLASS (mode) != MODE_INT)
5481 return;
5482 if (maxsize < LONG_LONG_TYPE_SIZE)
5483 maxsize = LONG_LONG_TYPE_SIZE;
5484 if (GET_MODE_CLASS (mode) != MODE_INT
5485 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5486 return;
5487 gen_libfunc (optable, opname, suffix, mode);
5488 }
5489
5490 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5491
5492 void
5493 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5494 enum machine_mode mode)
5495 {
5496 char *dec_opname;
5497
5498 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5499 gen_libfunc (optable, opname, suffix, mode);
5500 if (DECIMAL_FLOAT_MODE_P (mode))
5501 {
5502 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5503 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5504 depending on the low level floating format used. */
5505 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5506 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5507 gen_libfunc (optable, dec_opname, suffix, mode);
5508 }
5509 }
5510
5511 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5512
5513 void
5514 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5515 enum machine_mode mode)
5516 {
5517 if (!ALL_FIXED_POINT_MODE_P (mode))
5518 return;
5519 gen_libfunc (optable, opname, suffix, mode);
5520 }
5521
5522 /* Like gen_libfunc, but verify that signed fixed-point operation is
5523 involved. */
5524
5525 void
5526 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5527 enum machine_mode mode)
5528 {
5529 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5530 return;
5531 gen_libfunc (optable, opname, suffix, mode);
5532 }
5533
5534 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5535 involved. */
5536
5537 void
5538 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5539 enum machine_mode mode)
5540 {
5541 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5542 return;
5543 gen_libfunc (optable, opname, suffix, mode);
5544 }
5545
5546 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5547
5548 void
5549 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5550 enum machine_mode mode)
5551 {
5552 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5553 gen_fp_libfunc (optable, name, suffix, mode);
5554 if (INTEGRAL_MODE_P (mode))
5555 gen_int_libfunc (optable, name, suffix, mode);
5556 }
5557
5558 /* Like gen_libfunc, but verify that FP or INT operation is involved
5559 and add 'v' suffix for integer operation. */
5560
5561 void
5562 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5563 enum machine_mode mode)
5564 {
5565 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5566 gen_fp_libfunc (optable, name, suffix, mode);
5567 if (GET_MODE_CLASS (mode) == MODE_INT)
5568 {
5569 int len = strlen (name);
5570 char *v_name = XALLOCAVEC (char, len + 2);
5571 strcpy (v_name, name);
5572 v_name[len] = 'v';
5573 v_name[len + 1] = 0;
5574 gen_int_libfunc (optable, v_name, suffix, mode);
5575 }
5576 }
5577
5578 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5579 involved. */
5580
5581 void
5582 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5583 enum machine_mode mode)
5584 {
5585 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5586 gen_fp_libfunc (optable, name, suffix, mode);
5587 if (INTEGRAL_MODE_P (mode))
5588 gen_int_libfunc (optable, name, suffix, mode);
5589 if (ALL_FIXED_POINT_MODE_P (mode))
5590 gen_fixed_libfunc (optable, name, suffix, mode);
5591 }
5592
5593 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5594 involved. */
5595
5596 void
5597 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5598 enum machine_mode mode)
5599 {
5600 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5601 gen_fp_libfunc (optable, name, suffix, mode);
5602 if (INTEGRAL_MODE_P (mode))
5603 gen_int_libfunc (optable, name, suffix, mode);
5604 if (SIGNED_FIXED_POINT_MODE_P (mode))
5605 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5606 }
5607
5608 /* Like gen_libfunc, but verify that INT or FIXED operation is
5609 involved. */
5610
5611 void
5612 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5613 enum machine_mode mode)
5614 {
5615 if (INTEGRAL_MODE_P (mode))
5616 gen_int_libfunc (optable, name, suffix, mode);
5617 if (ALL_FIXED_POINT_MODE_P (mode))
5618 gen_fixed_libfunc (optable, name, suffix, mode);
5619 }
5620
5621 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5622 involved. */
5623
5624 void
5625 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5626 enum machine_mode mode)
5627 {
5628 if (INTEGRAL_MODE_P (mode))
5629 gen_int_libfunc (optable, name, suffix, mode);
5630 if (SIGNED_FIXED_POINT_MODE_P (mode))
5631 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5632 }
5633
5634 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5635 involved. */
5636
5637 void
5638 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5639 enum machine_mode mode)
5640 {
5641 if (INTEGRAL_MODE_P (mode))
5642 gen_int_libfunc (optable, name, suffix, mode);
5643 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5644 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5645 }
5646
5647 /* Initialize the libfunc fields of an entire group of entries of an
5648 inter-mode-class conversion optab. The string formation rules are
5649 similar to the ones for init_libfuncs, above, but instead of having
5650 a mode name and an operand count these functions have two mode names
5651 and no operand count. */
5652
5653 void
5654 gen_interclass_conv_libfunc (convert_optab tab,
5655 const char *opname,
5656 enum machine_mode tmode,
5657 enum machine_mode fmode)
5658 {
5659 size_t opname_len = strlen (opname);
5660 size_t mname_len = 0;
5661
5662 const char *fname, *tname;
5663 const char *q;
5664 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5665 char *libfunc_name, *suffix;
5666 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5667 char *p;
5668
5669 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5670 depends on which underlying decimal floating point format is used. */
5671 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5672
5673 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5674
5675 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5676 nondec_name[0] = '_';
5677 nondec_name[1] = '_';
5678 if (targetm.libfunc_gnu_prefix)
5679 {
5680 nondec_name[2] = 'g';
5681 nondec_name[3] = 'n';
5682 nondec_name[4] = 'u';
5683 nondec_name[5] = '_';
5684 }
5685
5686 memcpy (&nondec_name[prefix_len], opname, opname_len);
5687 nondec_suffix = nondec_name + opname_len + prefix_len;
5688
5689 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5690 dec_name[0] = '_';
5691 dec_name[1] = '_';
5692 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5693 memcpy (&dec_name[2+dec_len], opname, opname_len);
5694 dec_suffix = dec_name + dec_len + opname_len + 2;
5695
5696 fname = GET_MODE_NAME (fmode);
5697 tname = GET_MODE_NAME (tmode);
5698
5699 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5700 {
5701 libfunc_name = dec_name;
5702 suffix = dec_suffix;
5703 }
5704 else
5705 {
5706 libfunc_name = nondec_name;
5707 suffix = nondec_suffix;
5708 }
5709
5710 p = suffix;
5711 for (q = fname; *q; p++, q++)
5712 *p = TOLOWER (*q);
5713 for (q = tname; *q; p++, q++)
5714 *p = TOLOWER (*q);
5715
5716 *p = '\0';
5717
5718 set_conv_libfunc (tab, tmode, fmode,
5719 ggc_alloc_string (libfunc_name, p - libfunc_name));
5720 }
5721
5722 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5723 int->fp conversion. */
5724
5725 void
5726 gen_int_to_fp_conv_libfunc (convert_optab tab,
5727 const char *opname,
5728 enum machine_mode tmode,
5729 enum machine_mode fmode)
5730 {
5731 if (GET_MODE_CLASS (fmode) != MODE_INT)
5732 return;
5733 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5734 return;
5735 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5736 }
5737
5738 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5739 naming scheme. */
5740
5741 void
5742 gen_ufloat_conv_libfunc (convert_optab tab,
5743 const char *opname ATTRIBUTE_UNUSED,
5744 enum machine_mode tmode,
5745 enum machine_mode fmode)
5746 {
5747 if (DECIMAL_FLOAT_MODE_P (tmode))
5748 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5749 else
5750 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5751 }
5752
5753 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5754 fp->int conversion. */
5755
5756 void
5757 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5758 const char *opname,
5759 enum machine_mode tmode,
5760 enum machine_mode fmode)
5761 {
5762 if (GET_MODE_CLASS (fmode) != MODE_INT)
5763 return;
5764 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5765 return;
5766 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5767 }
5768
5769 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5770 fp->int conversion with no decimal floating point involved. */
5771
5772 void
5773 gen_fp_to_int_conv_libfunc (convert_optab tab,
5774 const char *opname,
5775 enum machine_mode tmode,
5776 enum machine_mode fmode)
5777 {
5778 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5779 return;
5780 if (GET_MODE_CLASS (tmode) != MODE_INT)
5781 return;
5782 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5783 }
5784
5785 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5786 The string formation rules are
5787 similar to the ones for init_libfunc, above. */
5788
5789 void
5790 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5791 enum machine_mode tmode, enum machine_mode fmode)
5792 {
5793 size_t opname_len = strlen (opname);
5794 size_t mname_len = 0;
5795
5796 const char *fname, *tname;
5797 const char *q;
5798 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5799 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5800 char *libfunc_name, *suffix;
5801 char *p;
5802
5803 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5804 depends on which underlying decimal floating point format is used. */
5805 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5806
5807 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5808
5809 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5810 nondec_name[0] = '_';
5811 nondec_name[1] = '_';
5812 if (targetm.libfunc_gnu_prefix)
5813 {
5814 nondec_name[2] = 'g';
5815 nondec_name[3] = 'n';
5816 nondec_name[4] = 'u';
5817 nondec_name[5] = '_';
5818 }
5819 memcpy (&nondec_name[prefix_len], opname, opname_len);
5820 nondec_suffix = nondec_name + opname_len + prefix_len;
5821
5822 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5823 dec_name[0] = '_';
5824 dec_name[1] = '_';
5825 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5826 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5827 dec_suffix = dec_name + dec_len + opname_len + 2;
5828
5829 fname = GET_MODE_NAME (fmode);
5830 tname = GET_MODE_NAME (tmode);
5831
5832 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5833 {
5834 libfunc_name = dec_name;
5835 suffix = dec_suffix;
5836 }
5837 else
5838 {
5839 libfunc_name = nondec_name;
5840 suffix = nondec_suffix;
5841 }
5842
5843 p = suffix;
5844 for (q = fname; *q; p++, q++)
5845 *p = TOLOWER (*q);
5846 for (q = tname; *q; p++, q++)
5847 *p = TOLOWER (*q);
5848
5849 *p++ = '2';
5850 *p = '\0';
5851
5852 set_conv_libfunc (tab, tmode, fmode,
5853 ggc_alloc_string (libfunc_name, p - libfunc_name));
5854 }
5855
5856 /* Pick proper libcall for trunc_optab. We need to chose if we do
5857 truncation or extension and interclass or intraclass. */
5858
5859 void
5860 gen_trunc_conv_libfunc (convert_optab tab,
5861 const char *opname,
5862 enum machine_mode tmode,
5863 enum machine_mode fmode)
5864 {
5865 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5866 return;
5867 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5868 return;
5869 if (tmode == fmode)
5870 return;
5871
5872 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5873 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5874 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5875
5876 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5877 return;
5878
5879 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5880 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5881 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5882 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5883 }
5884
5885 /* Pick proper libcall for extend_optab. We need to chose if we do
5886 truncation or extension and interclass or intraclass. */
5887
5888 void
5889 gen_extend_conv_libfunc (convert_optab tab,
5890 const char *opname ATTRIBUTE_UNUSED,
5891 enum machine_mode tmode,
5892 enum machine_mode fmode)
5893 {
5894 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5895 return;
5896 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5897 return;
5898 if (tmode == fmode)
5899 return;
5900
5901 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5902 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5903 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5904
5905 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5906 return;
5907
5908 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5909 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5910 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5911 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5912 }
5913
5914 /* Pick proper libcall for fract_optab. We need to chose if we do
5915 interclass or intraclass. */
5916
5917 void
5918 gen_fract_conv_libfunc (convert_optab tab,
5919 const char *opname,
5920 enum machine_mode tmode,
5921 enum machine_mode fmode)
5922 {
5923 if (tmode == fmode)
5924 return;
5925 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5926 return;
5927
5928 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5929 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5930 else
5931 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5932 }
5933
5934 /* Pick proper libcall for fractuns_optab. */
5935
5936 void
5937 gen_fractuns_conv_libfunc (convert_optab tab,
5938 const char *opname,
5939 enum machine_mode tmode,
5940 enum machine_mode fmode)
5941 {
5942 if (tmode == fmode)
5943 return;
5944 /* One mode must be a fixed-point mode, and the other must be an integer
5945 mode. */
5946 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5947 || (ALL_FIXED_POINT_MODE_P (fmode)
5948 && GET_MODE_CLASS (tmode) == MODE_INT)))
5949 return;
5950
5951 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5952 }
5953
5954 /* Pick proper libcall for satfract_optab. We need to chose if we do
5955 interclass or intraclass. */
5956
5957 void
5958 gen_satfract_conv_libfunc (convert_optab tab,
5959 const char *opname,
5960 enum machine_mode tmode,
5961 enum machine_mode fmode)
5962 {
5963 if (tmode == fmode)
5964 return;
5965 /* TMODE must be a fixed-point mode. */
5966 if (!ALL_FIXED_POINT_MODE_P (tmode))
5967 return;
5968
5969 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5970 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5971 else
5972 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5973 }
5974
5975 /* Pick proper libcall for satfractuns_optab. */
5976
5977 void
5978 gen_satfractuns_conv_libfunc (convert_optab tab,
5979 const char *opname,
5980 enum machine_mode tmode,
5981 enum machine_mode fmode)
5982 {
5983 if (tmode == fmode)
5984 return;
5985 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5986 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
5987 return;
5988
5989 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5990 }
5991
5992 /* A table of previously-created libfuncs, hashed by name. */
5993 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
5994
5995 /* Hashtable callbacks for libfunc_decls. */
5996
5997 static hashval_t
5998 libfunc_decl_hash (const void *entry)
5999 {
6000 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6001 }
6002
6003 static int
6004 libfunc_decl_eq (const void *entry1, const void *entry2)
6005 {
6006 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6007 }
6008
6009 /* Build a decl for a libfunc named NAME. */
6010
6011 tree
6012 build_libfunc_function (const char *name)
6013 {
6014 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6015 get_identifier (name),
6016 build_function_type (integer_type_node, NULL_TREE));
6017 /* ??? We don't have any type information except for this is
6018 a function. Pretend this is "int foo()". */
6019 DECL_ARTIFICIAL (decl) = 1;
6020 DECL_EXTERNAL (decl) = 1;
6021 TREE_PUBLIC (decl) = 1;
6022 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6023
6024 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6025 are the flags assigned by targetm.encode_section_info. */
6026 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6027
6028 return decl;
6029 }
6030
6031 rtx
6032 init_one_libfunc (const char *name)
6033 {
6034 tree id, decl;
6035 void **slot;
6036 hashval_t hash;
6037
6038 if (libfunc_decls == NULL)
6039 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6040 libfunc_decl_eq, NULL);
6041
6042 /* See if we have already created a libfunc decl for this function. */
6043 id = get_identifier (name);
6044 hash = IDENTIFIER_HASH_VALUE (id);
6045 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6046 decl = (tree) *slot;
6047 if (decl == NULL)
6048 {
6049 /* Create a new decl, so that it can be passed to
6050 targetm.encode_section_info. */
6051 decl = build_libfunc_function (name);
6052 *slot = decl;
6053 }
6054 return XEXP (DECL_RTL (decl), 0);
6055 }
6056
6057 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6058
6059 rtx
6060 set_user_assembler_libfunc (const char *name, const char *asmspec)
6061 {
6062 tree id, decl;
6063 void **slot;
6064 hashval_t hash;
6065
6066 id = get_identifier (name);
6067 hash = IDENTIFIER_HASH_VALUE (id);
6068 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6069 gcc_assert (slot);
6070 decl = (tree) *slot;
6071 set_user_assembler_name (decl, asmspec);
6072 return XEXP (DECL_RTL (decl), 0);
6073 }
6074
6075 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6076 MODE to NAME, which should be either 0 or a string constant. */
6077 void
6078 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6079 {
6080 rtx val;
6081 struct libfunc_entry e;
6082 struct libfunc_entry **slot;
6083
6084 e.op = op;
6085 e.mode1 = mode;
6086 e.mode2 = VOIDmode;
6087
6088 if (name)
6089 val = init_one_libfunc (name);
6090 else
6091 val = 0;
6092 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6093 if (*slot == NULL)
6094 *slot = ggc_alloc_libfunc_entry ();
6095 (*slot)->op = op;
6096 (*slot)->mode1 = mode;
6097 (*slot)->mode2 = VOIDmode;
6098 (*slot)->libfunc = val;
6099 }
6100
6101 /* Call this to reset the function entry for one conversion optab
6102 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6103 either 0 or a string constant. */
6104 void
6105 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6106 enum machine_mode fmode, const char *name)
6107 {
6108 rtx val;
6109 struct libfunc_entry e;
6110 struct libfunc_entry **slot;
6111
6112 e.op = optab;
6113 e.mode1 = tmode;
6114 e.mode2 = fmode;
6115
6116 if (name)
6117 val = init_one_libfunc (name);
6118 else
6119 val = 0;
6120 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6121 if (*slot == NULL)
6122 *slot = ggc_alloc_libfunc_entry ();
6123 (*slot)->op = optab;
6124 (*slot)->mode1 = tmode;
6125 (*slot)->mode2 = fmode;
6126 (*slot)->libfunc = val;
6127 }
6128
6129 /* Call this to initialize the contents of the optabs
6130 appropriately for the current target machine. */
6131
6132 void
6133 init_optabs (void)
6134 {
6135 if (libfunc_hash)
6136 htab_empty (libfunc_hash);
6137 else
6138 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6139
6140 /* Fill in the optabs with the insns we support. */
6141 init_all_optabs ();
6142
6143 /* The ffs function operates on `int'. Fall back on it if we do not
6144 have a libgcc2 function for that width. */
6145 if (INT_TYPE_SIZE < BITS_PER_WORD)
6146 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6147 "ffs");
6148
6149 /* Explicitly initialize the bswap libfuncs since we need them to be
6150 valid for things other than word_mode. */
6151 if (targetm.libfunc_gnu_prefix)
6152 {
6153 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6154 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6155 }
6156 else
6157 {
6158 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6159 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6160 }
6161
6162 /* Use cabs for double complex abs, since systems generally have cabs.
6163 Don't define any libcall for float complex, so that cabs will be used. */
6164 if (complex_double_type_node)
6165 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6166 "cabs");
6167
6168 abort_libfunc = init_one_libfunc ("abort");
6169 memcpy_libfunc = init_one_libfunc ("memcpy");
6170 memmove_libfunc = init_one_libfunc ("memmove");
6171 memcmp_libfunc = init_one_libfunc ("memcmp");
6172 memset_libfunc = init_one_libfunc ("memset");
6173 setbits_libfunc = init_one_libfunc ("__setbits");
6174
6175 #ifndef DONT_USE_BUILTIN_SETJMP
6176 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6177 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6178 #else
6179 setjmp_libfunc = init_one_libfunc ("setjmp");
6180 longjmp_libfunc = init_one_libfunc ("longjmp");
6181 #endif
6182 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6183 unwind_sjlj_unregister_libfunc
6184 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6185
6186 /* For function entry/exit instrumentation. */
6187 profile_function_entry_libfunc
6188 = init_one_libfunc ("__cyg_profile_func_enter");
6189 profile_function_exit_libfunc
6190 = init_one_libfunc ("__cyg_profile_func_exit");
6191
6192 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6193
6194 /* Allow the target to add more libcalls or rename some, etc. */
6195 targetm.init_libfuncs ();
6196 }
6197
6198 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6199 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6200
6201 static void
6202 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6203 {
6204 enum machine_mode mode;
6205 char buf[64];
6206 size_t len = strlen (base);
6207 int i;
6208
6209 gcc_assert (max <= 8);
6210 gcc_assert (len + 3 < sizeof (buf));
6211
6212 memcpy (buf, base, len);
6213 buf[len] = '_';
6214 buf[len + 1] = '0';
6215 buf[len + 2] = '\0';
6216
6217 mode = QImode;
6218 for (i = 1; i <= max; i *= 2)
6219 {
6220 buf[len + 1] = '0' + i;
6221 set_optab_libfunc (tab, mode, buf);
6222 mode = GET_MODE_2XWIDER_MODE (mode);
6223 }
6224 }
6225
6226 void
6227 init_sync_libfuncs (int max)
6228 {
6229 if (!flag_sync_libcalls)
6230 return;
6231
6232 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6233 "__sync_val_compare_and_swap", max);
6234 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6235 "__sync_lock_test_and_set", max);
6236
6237 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6238 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6239 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6240 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6241 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6242 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6243
6244 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6245 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6246 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6247 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6248 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6249 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6250 }
6251
6252 /* Print information about the current contents of the optabs on
6253 STDERR. */
6254
6255 DEBUG_FUNCTION void
6256 debug_optab_libfuncs (void)
6257 {
6258 int i, j, k;
6259
6260 /* Dump the arithmetic optabs. */
6261 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6262 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6263 {
6264 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6265 if (l)
6266 {
6267 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6268 fprintf (stderr, "%s\t%s:\t%s\n",
6269 GET_RTX_NAME (optab_to_code ((optab) i)),
6270 GET_MODE_NAME (j),
6271 XSTR (l, 0));
6272 }
6273 }
6274
6275 /* Dump the conversion optabs. */
6276 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6277 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6278 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6279 {
6280 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6281 (enum machine_mode) k);
6282 if (l)
6283 {
6284 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6285 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6286 GET_RTX_NAME (optab_to_code ((optab) i)),
6287 GET_MODE_NAME (j),
6288 GET_MODE_NAME (k),
6289 XSTR (l, 0));
6290 }
6291 }
6292 }
6293
6294 \f
6295 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6296 CODE. Return 0 on failure. */
6297
6298 rtx
6299 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6300 {
6301 enum machine_mode mode = GET_MODE (op1);
6302 enum insn_code icode;
6303 rtx insn;
6304 rtx trap_rtx;
6305
6306 if (mode == VOIDmode)
6307 return 0;
6308
6309 icode = optab_handler (ctrap_optab, mode);
6310 if (icode == CODE_FOR_nothing)
6311 return 0;
6312
6313 /* Some targets only accept a zero trap code. */
6314 if (!insn_operand_matches (icode, 3, tcode))
6315 return 0;
6316
6317 do_pending_stack_adjust ();
6318 start_sequence ();
6319 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6320 &trap_rtx, &mode);
6321 if (!trap_rtx)
6322 insn = NULL_RTX;
6323 else
6324 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6325 tcode);
6326
6327 /* If that failed, then give up. */
6328 if (insn == 0)
6329 {
6330 end_sequence ();
6331 return 0;
6332 }
6333
6334 emit_insn (insn);
6335 insn = get_insns ();
6336 end_sequence ();
6337 return insn;
6338 }
6339
6340 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6341 or unsigned operation code. */
6342
6343 static enum rtx_code
6344 get_rtx_code (enum tree_code tcode, bool unsignedp)
6345 {
6346 enum rtx_code code;
6347 switch (tcode)
6348 {
6349 case EQ_EXPR:
6350 code = EQ;
6351 break;
6352 case NE_EXPR:
6353 code = NE;
6354 break;
6355 case LT_EXPR:
6356 code = unsignedp ? LTU : LT;
6357 break;
6358 case LE_EXPR:
6359 code = unsignedp ? LEU : LE;
6360 break;
6361 case GT_EXPR:
6362 code = unsignedp ? GTU : GT;
6363 break;
6364 case GE_EXPR:
6365 code = unsignedp ? GEU : GE;
6366 break;
6367
6368 case UNORDERED_EXPR:
6369 code = UNORDERED;
6370 break;
6371 case ORDERED_EXPR:
6372 code = ORDERED;
6373 break;
6374 case UNLT_EXPR:
6375 code = UNLT;
6376 break;
6377 case UNLE_EXPR:
6378 code = UNLE;
6379 break;
6380 case UNGT_EXPR:
6381 code = UNGT;
6382 break;
6383 case UNGE_EXPR:
6384 code = UNGE;
6385 break;
6386 case UNEQ_EXPR:
6387 code = UNEQ;
6388 break;
6389 case LTGT_EXPR:
6390 code = LTGT;
6391 break;
6392
6393 default:
6394 gcc_unreachable ();
6395 }
6396 return code;
6397 }
6398
6399 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6400 unsigned operators. Do not generate compare instruction. */
6401
6402 static rtx
6403 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6404 bool unsignedp, enum insn_code icode)
6405 {
6406 struct expand_operand ops[2];
6407 rtx rtx_op0, rtx_op1;
6408 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6409
6410 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6411
6412 /* Expand operands. */
6413 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6414 EXPAND_STACK_PARM);
6415 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6416 EXPAND_STACK_PARM);
6417
6418 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6419 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6420 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6421 gcc_unreachable ();
6422 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6423 }
6424
6425 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6426 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6427
6428 bool
6429 can_vec_perm_p (enum machine_mode mode, bool variable,
6430 const unsigned char *sel)
6431 {
6432 enum machine_mode qimode;
6433
6434 /* If the target doesn't implement a vector mode for the vector type,
6435 then no operations are supported. */
6436 if (!VECTOR_MODE_P (mode))
6437 return false;
6438
6439 if (!variable)
6440 {
6441 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6442 && (sel == NULL
6443 || targetm.vectorize.vec_perm_const_ok == NULL
6444 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6445 return true;
6446 }
6447
6448 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6449 return true;
6450
6451 /* We allow fallback to a QI vector mode, and adjust the mask. */
6452 if (GET_MODE_INNER (mode) == QImode)
6453 return false;
6454 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6455 if (!VECTOR_MODE_P (qimode))
6456 return false;
6457
6458 /* ??? For completeness, we ought to check the QImode version of
6459 vec_perm_const_optab. But all users of this implicit lowering
6460 feature implement the variable vec_perm_optab. */
6461 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6462 return false;
6463
6464 /* In order to support the lowering of variable permutations,
6465 we need to support shifts and adds. */
6466 if (variable)
6467 {
6468 if (GET_MODE_UNIT_SIZE (mode) > 2
6469 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6470 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6471 return false;
6472 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6473 return false;
6474 }
6475
6476 return true;
6477 }
6478
6479 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6480
6481 static rtx
6482 expand_vec_perm_1 (enum insn_code icode, rtx target,
6483 rtx v0, rtx v1, rtx sel)
6484 {
6485 enum machine_mode tmode = GET_MODE (target);
6486 enum machine_mode smode = GET_MODE (sel);
6487 struct expand_operand ops[4];
6488
6489 create_output_operand (&ops[0], target, tmode);
6490 create_input_operand (&ops[3], sel, smode);
6491
6492 /* Make an effort to preserve v0 == v1. The target expander is able to
6493 rely on this to determine if we're permuting a single input operand. */
6494 if (rtx_equal_p (v0, v1))
6495 {
6496 if (!insn_operand_matches (icode, 1, v0))
6497 v0 = force_reg (tmode, v0);
6498 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6499 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6500
6501 create_fixed_operand (&ops[1], v0);
6502 create_fixed_operand (&ops[2], v0);
6503 }
6504 else
6505 {
6506 create_input_operand (&ops[1], v0, tmode);
6507 create_input_operand (&ops[2], v1, tmode);
6508 }
6509
6510 if (maybe_expand_insn (icode, 4, ops))
6511 return ops[0].value;
6512 return NULL_RTX;
6513 }
6514
6515 /* Generate instructions for vec_perm optab given its mode
6516 and three operands. */
6517
6518 rtx
6519 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6520 {
6521 enum insn_code icode;
6522 enum machine_mode qimode;
6523 unsigned int i, w, e, u;
6524 rtx tmp, sel_qi = NULL;
6525 rtvec vec;
6526
6527 if (!target || GET_MODE (target) != mode)
6528 target = gen_reg_rtx (mode);
6529
6530 w = GET_MODE_SIZE (mode);
6531 e = GET_MODE_NUNITS (mode);
6532 u = GET_MODE_UNIT_SIZE (mode);
6533
6534 /* Set QIMODE to a different vector mode with byte elements.
6535 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6536 qimode = VOIDmode;
6537 if (GET_MODE_INNER (mode) != QImode)
6538 {
6539 qimode = mode_for_vector (QImode, w);
6540 if (!VECTOR_MODE_P (qimode))
6541 qimode = VOIDmode;
6542 }
6543
6544 /* If the input is a constant, expand it specially. */
6545 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6546 if (GET_CODE (sel) == CONST_VECTOR)
6547 {
6548 icode = direct_optab_handler (vec_perm_const_optab, mode);
6549 if (icode != CODE_FOR_nothing)
6550 {
6551 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6552 if (tmp)
6553 return tmp;
6554 }
6555
6556 /* Fall back to a constant byte-based permutation. */
6557 if (qimode != VOIDmode)
6558 {
6559 vec = rtvec_alloc (w);
6560 for (i = 0; i < e; ++i)
6561 {
6562 unsigned int j, this_e;
6563
6564 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6565 this_e &= 2 * e - 1;
6566 this_e *= u;
6567
6568 for (j = 0; j < u; ++j)
6569 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6570 }
6571 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6572
6573 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6574 if (icode != CODE_FOR_nothing)
6575 {
6576 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6577 gen_lowpart (qimode, v0),
6578 gen_lowpart (qimode, v1), sel_qi);
6579 if (tmp)
6580 return gen_lowpart (mode, tmp);
6581 }
6582 }
6583 }
6584
6585 /* Otherwise expand as a fully variable permuation. */
6586 icode = direct_optab_handler (vec_perm_optab, mode);
6587 if (icode != CODE_FOR_nothing)
6588 {
6589 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6590 if (tmp)
6591 return tmp;
6592 }
6593
6594 /* As a special case to aid several targets, lower the element-based
6595 permutation to a byte-based permutation and try again. */
6596 if (qimode == VOIDmode)
6597 return NULL_RTX;
6598 icode = direct_optab_handler (vec_perm_optab, qimode);
6599 if (icode == CODE_FOR_nothing)
6600 return NULL_RTX;
6601
6602 if (sel_qi == NULL)
6603 {
6604 /* Multiply each element by its byte size. */
6605 enum machine_mode selmode = GET_MODE (sel);
6606 if (u == 2)
6607 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6608 sel, 0, OPTAB_DIRECT);
6609 else
6610 sel = expand_simple_binop (selmode, ASHIFT, sel,
6611 GEN_INT (exact_log2 (u)),
6612 sel, 0, OPTAB_DIRECT);
6613 gcc_assert (sel != NULL);
6614
6615 /* Broadcast the low byte each element into each of its bytes. */
6616 vec = rtvec_alloc (w);
6617 for (i = 0; i < w; ++i)
6618 {
6619 int this_e = i / u * u;
6620 if (BYTES_BIG_ENDIAN)
6621 this_e += u - 1;
6622 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6623 }
6624 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6625 sel = gen_lowpart (qimode, sel);
6626 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6627 gcc_assert (sel != NULL);
6628
6629 /* Add the byte offset to each byte element. */
6630 /* Note that the definition of the indicies here is memory ordering,
6631 so there should be no difference between big and little endian. */
6632 vec = rtvec_alloc (w);
6633 for (i = 0; i < w; ++i)
6634 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6635 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6636 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6637 sel, 0, OPTAB_DIRECT);
6638 gcc_assert (sel_qi != NULL);
6639 }
6640
6641 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6642 gen_lowpart (qimode, v0),
6643 gen_lowpart (qimode, v1), sel_qi);
6644 if (tmp)
6645 tmp = gen_lowpart (mode, tmp);
6646 return tmp;
6647 }
6648
6649 /* Return insn code for a conditional operator with a comparison in
6650 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6651
6652 static inline enum insn_code
6653 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6654 {
6655 enum insn_code icode = CODE_FOR_nothing;
6656 if (uns)
6657 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6658 else
6659 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6660 return icode;
6661 }
6662
6663 /* Return TRUE iff, appropriate vector insns are available
6664 for vector cond expr with vector type VALUE_TYPE and a comparison
6665 with operand vector types in CMP_OP_TYPE. */
6666
6667 bool
6668 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6669 {
6670 enum machine_mode value_mode = TYPE_MODE (value_type);
6671 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6672 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6673 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6674 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6675 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6676 return false;
6677 return true;
6678 }
6679
6680 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6681 three operands. */
6682
6683 rtx
6684 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6685 rtx target)
6686 {
6687 struct expand_operand ops[6];
6688 enum insn_code icode;
6689 rtx comparison, rtx_op1, rtx_op2;
6690 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6691 enum machine_mode cmp_op_mode;
6692 bool unsignedp;
6693 tree op0a, op0b;
6694 enum tree_code tcode;
6695
6696 if (COMPARISON_CLASS_P (op0))
6697 {
6698 op0a = TREE_OPERAND (op0, 0);
6699 op0b = TREE_OPERAND (op0, 1);
6700 tcode = TREE_CODE (op0);
6701 }
6702 else
6703 {
6704 /* Fake op0 < 0. */
6705 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6706 op0a = op0;
6707 op0b = build_zero_cst (TREE_TYPE (op0));
6708 tcode = LT_EXPR;
6709 }
6710 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6711 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6712
6713
6714 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6715 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6716
6717 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6718 if (icode == CODE_FOR_nothing)
6719 return 0;
6720
6721 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6722 rtx_op1 = expand_normal (op1);
6723 rtx_op2 = expand_normal (op2);
6724
6725 create_output_operand (&ops[0], target, mode);
6726 create_input_operand (&ops[1], rtx_op1, mode);
6727 create_input_operand (&ops[2], rtx_op2, mode);
6728 create_fixed_operand (&ops[3], comparison);
6729 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6730 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6731 expand_insn (icode, 6, ops);
6732 return ops[0].value;
6733 }
6734
6735 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6736 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6737 2 for even/odd widening, and 3 for hi/lo widening. */
6738
6739 int
6740 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6741 {
6742 optab op;
6743 unsigned char *sel;
6744 unsigned i, nunits;
6745
6746 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6747 if (optab_handler (op, mode) != CODE_FOR_nothing)
6748 return 1;
6749
6750 /* If the mode is an integral vector, synth from widening operations. */
6751 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6752 return 0;
6753
6754 nunits = GET_MODE_NUNITS (mode);
6755 sel = XALLOCAVEC (unsigned char, nunits);
6756
6757 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6758 if (optab_handler (op, mode) != CODE_FOR_nothing)
6759 {
6760 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6761 if (optab_handler (op, mode) != CODE_FOR_nothing)
6762 {
6763 for (i = 0; i < nunits; ++i)
6764 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6765 if (can_vec_perm_p (mode, false, sel))
6766 return 2;
6767 }
6768 }
6769
6770 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6771 if (optab_handler (op, mode) != CODE_FOR_nothing)
6772 {
6773 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6774 if (optab_handler (op, mode) != CODE_FOR_nothing)
6775 {
6776 for (i = 0; i < nunits; ++i)
6777 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6778 if (can_vec_perm_p (mode, false, sel))
6779 return 3;
6780 }
6781 }
6782
6783 return 0;
6784 }
6785
6786 /* Expand a highpart multiply. */
6787
6788 rtx
6789 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6790 rtx target, bool uns_p)
6791 {
6792 struct expand_operand eops[3];
6793 enum insn_code icode;
6794 int method, i, nunits;
6795 enum machine_mode wmode;
6796 rtx m1, m2, perm;
6797 optab tab1, tab2;
6798 rtvec v;
6799
6800 method = can_mult_highpart_p (mode, uns_p);
6801 switch (method)
6802 {
6803 case 0:
6804 return NULL_RTX;
6805 case 1:
6806 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6807 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6808 OPTAB_LIB_WIDEN);
6809 case 2:
6810 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6811 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6812 break;
6813 case 3:
6814 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6815 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6816 if (BYTES_BIG_ENDIAN)
6817 {
6818 optab t = tab1;
6819 tab1 = tab2;
6820 tab2 = t;
6821 }
6822 break;
6823 default:
6824 gcc_unreachable ();
6825 }
6826
6827 icode = optab_handler (tab1, mode);
6828 nunits = GET_MODE_NUNITS (mode);
6829 wmode = insn_data[icode].operand[0].mode;
6830 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6831 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6832
6833 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6834 create_input_operand (&eops[1], op0, mode);
6835 create_input_operand (&eops[2], op1, mode);
6836 expand_insn (icode, 3, eops);
6837 m1 = gen_lowpart (mode, eops[0].value);
6838
6839 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6840 create_input_operand (&eops[1], op0, mode);
6841 create_input_operand (&eops[2], op1, mode);
6842 expand_insn (optab_handler (tab2, mode), 3, eops);
6843 m2 = gen_lowpart (mode, eops[0].value);
6844
6845 v = rtvec_alloc (nunits);
6846 if (method == 2)
6847 {
6848 for (i = 0; i < nunits; ++i)
6849 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6850 + ((i & 1) ? nunits : 0));
6851 }
6852 else
6853 {
6854 for (i = 0; i < nunits; ++i)
6855 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6856 }
6857 perm = gen_rtx_CONST_VECTOR (mode, v);
6858
6859 return expand_vec_perm (mode, m1, m2, perm, target);
6860 }
6861 \f
6862 /* Return true if there is a compare_and_swap pattern. */
6863
6864 bool
6865 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6866 {
6867 enum insn_code icode;
6868
6869 /* Check for __atomic_compare_and_swap. */
6870 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6871 if (icode != CODE_FOR_nothing)
6872 return true;
6873
6874 /* Check for __sync_compare_and_swap. */
6875 icode = optab_handler (sync_compare_and_swap_optab, mode);
6876 if (icode != CODE_FOR_nothing)
6877 return true;
6878 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6879 return true;
6880
6881 /* No inline compare and swap. */
6882 return false;
6883 }
6884
6885 /* Return true if an atomic exchange can be performed. */
6886
6887 bool
6888 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6889 {
6890 enum insn_code icode;
6891
6892 /* Check for __atomic_exchange. */
6893 icode = direct_optab_handler (atomic_exchange_optab, mode);
6894 if (icode != CODE_FOR_nothing)
6895 return true;
6896
6897 /* Don't check __sync_test_and_set, as on some platforms that
6898 has reduced functionality. Targets that really do support
6899 a proper exchange should simply be updated to the __atomics. */
6900
6901 return can_compare_and_swap_p (mode, allow_libcall);
6902 }
6903
6904
6905 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6906 pattern. */
6907
6908 static void
6909 find_cc_set (rtx x, const_rtx pat, void *data)
6910 {
6911 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6912 && GET_CODE (pat) == SET)
6913 {
6914 rtx *p_cc_reg = (rtx *) data;
6915 gcc_assert (!*p_cc_reg);
6916 *p_cc_reg = x;
6917 }
6918 }
6919
6920 /* This is a helper function for the other atomic operations. This function
6921 emits a loop that contains SEQ that iterates until a compare-and-swap
6922 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6923 a set of instructions that takes a value from OLD_REG as an input and
6924 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6925 set to the current contents of MEM. After SEQ, a compare-and-swap will
6926 attempt to update MEM with NEW_REG. The function returns true when the
6927 loop was generated successfully. */
6928
6929 static bool
6930 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6931 {
6932 enum machine_mode mode = GET_MODE (mem);
6933 rtx label, cmp_reg, success, oldval;
6934
6935 /* The loop we want to generate looks like
6936
6937 cmp_reg = mem;
6938 label:
6939 old_reg = cmp_reg;
6940 seq;
6941 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6942 if (success)
6943 goto label;
6944
6945 Note that we only do the plain load from memory once. Subsequent
6946 iterations use the value loaded by the compare-and-swap pattern. */
6947
6948 label = gen_label_rtx ();
6949 cmp_reg = gen_reg_rtx (mode);
6950
6951 emit_move_insn (cmp_reg, mem);
6952 emit_label (label);
6953 emit_move_insn (old_reg, cmp_reg);
6954 if (seq)
6955 emit_insn (seq);
6956
6957 success = NULL_RTX;
6958 oldval = cmp_reg;
6959 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
6960 new_reg, false, MEMMODEL_SEQ_CST,
6961 MEMMODEL_RELAXED))
6962 return false;
6963
6964 if (oldval != cmp_reg)
6965 emit_move_insn (cmp_reg, oldval);
6966
6967 /* Mark this jump predicted not taken. */
6968 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
6969 GET_MODE (success), 1, label, 0);
6970 return true;
6971 }
6972
6973
6974 /* This function tries to emit an atomic_exchange intruction. VAL is written
6975 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6976 using TARGET if possible. */
6977
6978 static rtx
6979 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6980 {
6981 enum machine_mode mode = GET_MODE (mem);
6982 enum insn_code icode;
6983
6984 /* If the target supports the exchange directly, great. */
6985 icode = direct_optab_handler (atomic_exchange_optab, mode);
6986 if (icode != CODE_FOR_nothing)
6987 {
6988 struct expand_operand ops[4];
6989
6990 create_output_operand (&ops[0], target, mode);
6991 create_fixed_operand (&ops[1], mem);
6992 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6993 create_convert_operand_to (&ops[2], val, mode, true);
6994 create_integer_operand (&ops[3], model);
6995 if (maybe_expand_insn (icode, 4, ops))
6996 return ops[0].value;
6997 }
6998
6999 return NULL_RTX;
7000 }
7001
7002 /* This function tries to implement an atomic exchange operation using
7003 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7004 The previous contents of *MEM are returned, using TARGET if possible.
7005 Since this instructionn is an acquire barrier only, stronger memory
7006 models may require additional barriers to be emitted. */
7007
7008 static rtx
7009 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7010 enum memmodel model)
7011 {
7012 enum machine_mode mode = GET_MODE (mem);
7013 enum insn_code icode;
7014 rtx last_insn = get_last_insn ();
7015
7016 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7017
7018 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7019 exists, and the memory model is stronger than acquire, add a release
7020 barrier before the instruction. */
7021
7022 if (model == MEMMODEL_SEQ_CST
7023 || model == MEMMODEL_RELEASE
7024 || model == MEMMODEL_ACQ_REL)
7025 expand_mem_thread_fence (model);
7026
7027 if (icode != CODE_FOR_nothing)
7028 {
7029 struct expand_operand ops[3];
7030 create_output_operand (&ops[0], target, mode);
7031 create_fixed_operand (&ops[1], mem);
7032 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7033 create_convert_operand_to (&ops[2], val, mode, true);
7034 if (maybe_expand_insn (icode, 3, ops))
7035 return ops[0].value;
7036 }
7037
7038 /* If an external test-and-set libcall is provided, use that instead of
7039 any external compare-and-swap that we might get from the compare-and-
7040 swap-loop expansion later. */
7041 if (!can_compare_and_swap_p (mode, false))
7042 {
7043 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7044 if (libfunc != NULL)
7045 {
7046 rtx addr;
7047
7048 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7049 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7050 mode, 2, addr, ptr_mode,
7051 val, mode);
7052 }
7053 }
7054
7055 /* If the test_and_set can't be emitted, eliminate any barrier that might
7056 have been emitted. */
7057 delete_insns_since (last_insn);
7058 return NULL_RTX;
7059 }
7060
7061 /* This function tries to implement an atomic exchange operation using a
7062 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7063 *MEM are returned, using TARGET if possible. No memory model is required
7064 since a compare_and_swap loop is seq-cst. */
7065
7066 static rtx
7067 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7068 {
7069 enum machine_mode mode = GET_MODE (mem);
7070
7071 if (can_compare_and_swap_p (mode, true))
7072 {
7073 if (!target || !register_operand (target, mode))
7074 target = gen_reg_rtx (mode);
7075 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7076 val = convert_modes (mode, GET_MODE (val), val, 1);
7077 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7078 return target;
7079 }
7080
7081 return NULL_RTX;
7082 }
7083
7084 /* This function tries to implement an atomic test-and-set operation
7085 using the atomic_test_and_set instruction pattern. A boolean value
7086 is returned from the operation, using TARGET if possible. */
7087
7088 #ifndef HAVE_atomic_test_and_set
7089 #define HAVE_atomic_test_and_set 0
7090 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7091 #endif
7092
7093 static rtx
7094 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7095 {
7096 enum machine_mode pat_bool_mode;
7097 struct expand_operand ops[3];
7098
7099 if (!HAVE_atomic_test_and_set)
7100 return NULL_RTX;
7101
7102 /* While we always get QImode from __atomic_test_and_set, we get
7103 other memory modes from __sync_lock_test_and_set. Note that we
7104 use no endian adjustment here. This matches the 4.6 behavior
7105 in the Sparc backend. */
7106 gcc_checking_assert
7107 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7108 if (GET_MODE (mem) != QImode)
7109 mem = adjust_address_nv (mem, QImode, 0);
7110
7111 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7112 create_output_operand (&ops[0], target, pat_bool_mode);
7113 create_fixed_operand (&ops[1], mem);
7114 create_integer_operand (&ops[2], model);
7115
7116 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7117 return ops[0].value;
7118 return NULL_RTX;
7119 }
7120
7121 /* This function expands the legacy _sync_lock test_and_set operation which is
7122 generally an atomic exchange. Some limited targets only allow the
7123 constant 1 to be stored. This is an ACQUIRE operation.
7124
7125 TARGET is an optional place to stick the return value.
7126 MEM is where VAL is stored. */
7127
7128 rtx
7129 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7130 {
7131 rtx ret;
7132
7133 /* Try an atomic_exchange first. */
7134 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7135 if (ret)
7136 return ret;
7137
7138 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7139 if (ret)
7140 return ret;
7141
7142 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7143 if (ret)
7144 return ret;
7145
7146 /* If there are no other options, try atomic_test_and_set if the value
7147 being stored is 1. */
7148 if (val == const1_rtx)
7149 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7150
7151 return ret;
7152 }
7153
7154 /* This function expands the atomic test_and_set operation:
7155 atomically store a boolean TRUE into MEM and return the previous value.
7156
7157 MEMMODEL is the memory model variant to use.
7158 TARGET is an optional place to stick the return value. */
7159
7160 rtx
7161 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7162 {
7163 enum machine_mode mode = GET_MODE (mem);
7164 rtx ret, trueval, subtarget;
7165
7166 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7167 if (ret)
7168 return ret;
7169
7170 /* Be binary compatible with non-default settings of trueval, and different
7171 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7172 another only has atomic-exchange. */
7173 if (targetm.atomic_test_and_set_trueval == 1)
7174 {
7175 trueval = const1_rtx;
7176 subtarget = target ? target : gen_reg_rtx (mode);
7177 }
7178 else
7179 {
7180 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7181 subtarget = gen_reg_rtx (mode);
7182 }
7183
7184 /* Try the atomic-exchange optab... */
7185 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7186
7187 /* ... then an atomic-compare-and-swap loop ... */
7188 if (!ret)
7189 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7190
7191 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7192 if (!ret)
7193 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7194
7195 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7196 things with the value 1. Thus we try again without trueval. */
7197 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7198 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7199
7200 /* Failing all else, assume a single threaded environment and simply
7201 perform the operation. */
7202 if (!ret)
7203 {
7204 emit_move_insn (subtarget, mem);
7205 emit_move_insn (mem, trueval);
7206 ret = subtarget;
7207 }
7208
7209 /* Recall that have to return a boolean value; rectify if trueval
7210 is not exactly one. */
7211 if (targetm.atomic_test_and_set_trueval != 1)
7212 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7213
7214 return ret;
7215 }
7216
7217 /* This function expands the atomic exchange operation:
7218 atomically store VAL in MEM and return the previous value in MEM.
7219
7220 MEMMODEL is the memory model variant to use.
7221 TARGET is an optional place to stick the return value. */
7222
7223 rtx
7224 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7225 {
7226 rtx ret;
7227
7228 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7229
7230 /* Next try a compare-and-swap loop for the exchange. */
7231 if (!ret)
7232 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7233
7234 return ret;
7235 }
7236
7237 /* This function expands the atomic compare exchange operation:
7238
7239 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7240 *PTARGET_OVAL is an optional place to store the old value from memory.
7241 Both target parameters may be NULL to indicate that we do not care about
7242 that return value. Both target parameters are updated on success to
7243 the actual location of the corresponding result.
7244
7245 MEMMODEL is the memory model variant to use.
7246
7247 The return value of the function is true for success. */
7248
7249 bool
7250 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7251 rtx mem, rtx expected, rtx desired,
7252 bool is_weak, enum memmodel succ_model,
7253 enum memmodel fail_model)
7254 {
7255 enum machine_mode mode = GET_MODE (mem);
7256 struct expand_operand ops[8];
7257 enum insn_code icode;
7258 rtx target_oval, target_bool = NULL_RTX;
7259 rtx libfunc;
7260
7261 /* Load expected into a register for the compare and swap. */
7262 if (MEM_P (expected))
7263 expected = copy_to_reg (expected);
7264
7265 /* Make sure we always have some place to put the return oldval.
7266 Further, make sure that place is distinct from the input expected,
7267 just in case we need that path down below. */
7268 if (ptarget_oval == NULL
7269 || (target_oval = *ptarget_oval) == NULL
7270 || reg_overlap_mentioned_p (expected, target_oval))
7271 target_oval = gen_reg_rtx (mode);
7272
7273 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7274 if (icode != CODE_FOR_nothing)
7275 {
7276 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7277
7278 /* Make sure we always have a place for the bool operand. */
7279 if (ptarget_bool == NULL
7280 || (target_bool = *ptarget_bool) == NULL
7281 || GET_MODE (target_bool) != bool_mode)
7282 target_bool = gen_reg_rtx (bool_mode);
7283
7284 /* Emit the compare_and_swap. */
7285 create_output_operand (&ops[0], target_bool, bool_mode);
7286 create_output_operand (&ops[1], target_oval, mode);
7287 create_fixed_operand (&ops[2], mem);
7288 create_convert_operand_to (&ops[3], expected, mode, true);
7289 create_convert_operand_to (&ops[4], desired, mode, true);
7290 create_integer_operand (&ops[5], is_weak);
7291 create_integer_operand (&ops[6], succ_model);
7292 create_integer_operand (&ops[7], fail_model);
7293 expand_insn (icode, 8, ops);
7294
7295 /* Return success/failure. */
7296 target_bool = ops[0].value;
7297 target_oval = ops[1].value;
7298 goto success;
7299 }
7300
7301 /* Otherwise fall back to the original __sync_val_compare_and_swap
7302 which is always seq-cst. */
7303 icode = optab_handler (sync_compare_and_swap_optab, mode);
7304 if (icode != CODE_FOR_nothing)
7305 {
7306 rtx cc_reg;
7307
7308 create_output_operand (&ops[0], target_oval, mode);
7309 create_fixed_operand (&ops[1], mem);
7310 create_convert_operand_to (&ops[2], expected, mode, true);
7311 create_convert_operand_to (&ops[3], desired, mode, true);
7312 if (!maybe_expand_insn (icode, 4, ops))
7313 return false;
7314
7315 target_oval = ops[0].value;
7316
7317 /* If the caller isn't interested in the boolean return value,
7318 skip the computation of it. */
7319 if (ptarget_bool == NULL)
7320 goto success;
7321
7322 /* Otherwise, work out if the compare-and-swap succeeded. */
7323 cc_reg = NULL_RTX;
7324 if (have_insn_for (COMPARE, CCmode))
7325 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7326 if (cc_reg)
7327 {
7328 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7329 const0_rtx, VOIDmode, 0, 1);
7330 goto success;
7331 }
7332 goto success_bool_from_val;
7333 }
7334
7335 /* Also check for library support for __sync_val_compare_and_swap. */
7336 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7337 if (libfunc != NULL)
7338 {
7339 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7340 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7341 mode, 3, addr, ptr_mode,
7342 expected, mode, desired, mode);
7343
7344 /* Compute the boolean return value only if requested. */
7345 if (ptarget_bool)
7346 goto success_bool_from_val;
7347 else
7348 goto success;
7349 }
7350
7351 /* Failure. */
7352 return false;
7353
7354 success_bool_from_val:
7355 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7356 expected, VOIDmode, 1, 1);
7357 success:
7358 /* Make sure that the oval output winds up where the caller asked. */
7359 if (ptarget_oval)
7360 *ptarget_oval = target_oval;
7361 if (ptarget_bool)
7362 *ptarget_bool = target_bool;
7363 return true;
7364 }
7365
7366 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7367
7368 static void
7369 expand_asm_memory_barrier (void)
7370 {
7371 rtx asm_op, clob;
7372
7373 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7374 rtvec_alloc (0), rtvec_alloc (0),
7375 rtvec_alloc (0), UNKNOWN_LOCATION);
7376 MEM_VOLATILE_P (asm_op) = 1;
7377
7378 clob = gen_rtx_SCRATCH (VOIDmode);
7379 clob = gen_rtx_MEM (BLKmode, clob);
7380 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7381
7382 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7383 }
7384
7385 /* This routine will either emit the mem_thread_fence pattern or issue a
7386 sync_synchronize to generate a fence for memory model MEMMODEL. */
7387
7388 #ifndef HAVE_mem_thread_fence
7389 # define HAVE_mem_thread_fence 0
7390 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7391 #endif
7392 #ifndef HAVE_memory_barrier
7393 # define HAVE_memory_barrier 0
7394 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7395 #endif
7396
7397 void
7398 expand_mem_thread_fence (enum memmodel model)
7399 {
7400 if (HAVE_mem_thread_fence)
7401 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7402 else if (model != MEMMODEL_RELAXED)
7403 {
7404 if (HAVE_memory_barrier)
7405 emit_insn (gen_memory_barrier ());
7406 else if (synchronize_libfunc != NULL_RTX)
7407 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7408 else
7409 expand_asm_memory_barrier ();
7410 }
7411 }
7412
7413 /* This routine will either emit the mem_signal_fence pattern or issue a
7414 sync_synchronize to generate a fence for memory model MEMMODEL. */
7415
7416 #ifndef HAVE_mem_signal_fence
7417 # define HAVE_mem_signal_fence 0
7418 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7419 #endif
7420
7421 void
7422 expand_mem_signal_fence (enum memmodel model)
7423 {
7424 if (HAVE_mem_signal_fence)
7425 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7426 else if (model != MEMMODEL_RELAXED)
7427 {
7428 /* By default targets are coherent between a thread and the signal
7429 handler running on the same thread. Thus this really becomes a
7430 compiler barrier, in that stores must not be sunk past
7431 (or raised above) a given point. */
7432 expand_asm_memory_barrier ();
7433 }
7434 }
7435
7436 /* This function expands the atomic load operation:
7437 return the atomically loaded value in MEM.
7438
7439 MEMMODEL is the memory model variant to use.
7440 TARGET is an option place to stick the return value. */
7441
7442 rtx
7443 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7444 {
7445 enum machine_mode mode = GET_MODE (mem);
7446 enum insn_code icode;
7447
7448 /* If the target supports the load directly, great. */
7449 icode = direct_optab_handler (atomic_load_optab, mode);
7450 if (icode != CODE_FOR_nothing)
7451 {
7452 struct expand_operand ops[3];
7453
7454 create_output_operand (&ops[0], target, mode);
7455 create_fixed_operand (&ops[1], mem);
7456 create_integer_operand (&ops[2], model);
7457 if (maybe_expand_insn (icode, 3, ops))
7458 return ops[0].value;
7459 }
7460
7461 /* If the size of the object is greater than word size on this target,
7462 then we assume that a load will not be atomic. */
7463 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7464 {
7465 /* Issue val = compare_and_swap (mem, 0, 0).
7466 This may cause the occasional harmless store of 0 when the value is
7467 already 0, but it seems to be OK according to the standards guys. */
7468 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7469 const0_rtx, false, model, model))
7470 return target;
7471 else
7472 /* Otherwise there is no atomic load, leave the library call. */
7473 return NULL_RTX;
7474 }
7475
7476 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7477 if (!target || target == const0_rtx)
7478 target = gen_reg_rtx (mode);
7479
7480 /* Emit the appropriate barrier before the load. */
7481 expand_mem_thread_fence (model);
7482
7483 emit_move_insn (target, mem);
7484
7485 /* For SEQ_CST, also emit a barrier after the load. */
7486 if (model == MEMMODEL_SEQ_CST)
7487 expand_mem_thread_fence (model);
7488
7489 return target;
7490 }
7491
7492 /* This function expands the atomic store operation:
7493 Atomically store VAL in MEM.
7494 MEMMODEL is the memory model variant to use.
7495 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7496 function returns const0_rtx if a pattern was emitted. */
7497
7498 rtx
7499 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7500 {
7501 enum machine_mode mode = GET_MODE (mem);
7502 enum insn_code icode;
7503 struct expand_operand ops[3];
7504
7505 /* If the target supports the store directly, great. */
7506 icode = direct_optab_handler (atomic_store_optab, mode);
7507 if (icode != CODE_FOR_nothing)
7508 {
7509 create_fixed_operand (&ops[0], mem);
7510 create_input_operand (&ops[1], val, mode);
7511 create_integer_operand (&ops[2], model);
7512 if (maybe_expand_insn (icode, 3, ops))
7513 return const0_rtx;
7514 }
7515
7516 /* If using __sync_lock_release is a viable alternative, try it. */
7517 if (use_release)
7518 {
7519 icode = direct_optab_handler (sync_lock_release_optab, mode);
7520 if (icode != CODE_FOR_nothing)
7521 {
7522 create_fixed_operand (&ops[0], mem);
7523 create_input_operand (&ops[1], const0_rtx, mode);
7524 if (maybe_expand_insn (icode, 2, ops))
7525 {
7526 /* lock_release is only a release barrier. */
7527 if (model == MEMMODEL_SEQ_CST)
7528 expand_mem_thread_fence (model);
7529 return const0_rtx;
7530 }
7531 }
7532 }
7533
7534 /* If the size of the object is greater than word size on this target,
7535 a default store will not be atomic, Try a mem_exchange and throw away
7536 the result. If that doesn't work, don't do anything. */
7537 if (GET_MODE_PRECISION(mode) > BITS_PER_WORD)
7538 {
7539 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7540 if (!target)
7541 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7542 if (target)
7543 return const0_rtx;
7544 else
7545 return NULL_RTX;
7546 }
7547
7548 /* If there is no mem_store, default to a move with barriers */
7549 if (model == MEMMODEL_SEQ_CST || model == MEMMODEL_RELEASE)
7550 expand_mem_thread_fence (model);
7551
7552 emit_move_insn (mem, val);
7553
7554 /* For SEQ_CST, also emit a barrier after the load. */
7555 if (model == MEMMODEL_SEQ_CST)
7556 expand_mem_thread_fence (model);
7557
7558 return const0_rtx;
7559 }
7560
7561
7562 /* Structure containing the pointers and values required to process the
7563 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7564
7565 struct atomic_op_functions
7566 {
7567 direct_optab mem_fetch_before;
7568 direct_optab mem_fetch_after;
7569 direct_optab mem_no_result;
7570 optab fetch_before;
7571 optab fetch_after;
7572 direct_optab no_result;
7573 enum rtx_code reverse_code;
7574 };
7575
7576
7577 /* Fill in structure pointed to by OP with the various optab entries for an
7578 operation of type CODE. */
7579
7580 static void
7581 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7582 {
7583 gcc_assert (op!= NULL);
7584
7585 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7586 in the source code during compilation, and the optab entries are not
7587 computable until runtime. Fill in the values at runtime. */
7588 switch (code)
7589 {
7590 case PLUS:
7591 op->mem_fetch_before = atomic_fetch_add_optab;
7592 op->mem_fetch_after = atomic_add_fetch_optab;
7593 op->mem_no_result = atomic_add_optab;
7594 op->fetch_before = sync_old_add_optab;
7595 op->fetch_after = sync_new_add_optab;
7596 op->no_result = sync_add_optab;
7597 op->reverse_code = MINUS;
7598 break;
7599 case MINUS:
7600 op->mem_fetch_before = atomic_fetch_sub_optab;
7601 op->mem_fetch_after = atomic_sub_fetch_optab;
7602 op->mem_no_result = atomic_sub_optab;
7603 op->fetch_before = sync_old_sub_optab;
7604 op->fetch_after = sync_new_sub_optab;
7605 op->no_result = sync_sub_optab;
7606 op->reverse_code = PLUS;
7607 break;
7608 case XOR:
7609 op->mem_fetch_before = atomic_fetch_xor_optab;
7610 op->mem_fetch_after = atomic_xor_fetch_optab;
7611 op->mem_no_result = atomic_xor_optab;
7612 op->fetch_before = sync_old_xor_optab;
7613 op->fetch_after = sync_new_xor_optab;
7614 op->no_result = sync_xor_optab;
7615 op->reverse_code = XOR;
7616 break;
7617 case AND:
7618 op->mem_fetch_before = atomic_fetch_and_optab;
7619 op->mem_fetch_after = atomic_and_fetch_optab;
7620 op->mem_no_result = atomic_and_optab;
7621 op->fetch_before = sync_old_and_optab;
7622 op->fetch_after = sync_new_and_optab;
7623 op->no_result = sync_and_optab;
7624 op->reverse_code = UNKNOWN;
7625 break;
7626 case IOR:
7627 op->mem_fetch_before = atomic_fetch_or_optab;
7628 op->mem_fetch_after = atomic_or_fetch_optab;
7629 op->mem_no_result = atomic_or_optab;
7630 op->fetch_before = sync_old_ior_optab;
7631 op->fetch_after = sync_new_ior_optab;
7632 op->no_result = sync_ior_optab;
7633 op->reverse_code = UNKNOWN;
7634 break;
7635 case NOT:
7636 op->mem_fetch_before = atomic_fetch_nand_optab;
7637 op->mem_fetch_after = atomic_nand_fetch_optab;
7638 op->mem_no_result = atomic_nand_optab;
7639 op->fetch_before = sync_old_nand_optab;
7640 op->fetch_after = sync_new_nand_optab;
7641 op->no_result = sync_nand_optab;
7642 op->reverse_code = UNKNOWN;
7643 break;
7644 default:
7645 gcc_unreachable ();
7646 }
7647 }
7648
7649 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7650 using memory order MODEL. If AFTER is true the operation needs to return
7651 the value of *MEM after the operation, otherwise the previous value.
7652 TARGET is an optional place to place the result. The result is unused if
7653 it is const0_rtx.
7654 Return the result if there is a better sequence, otherwise NULL_RTX. */
7655
7656 static rtx
7657 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7658 enum memmodel model, bool after)
7659 {
7660 /* If the value is prefetched, or not used, it may be possible to replace
7661 the sequence with a native exchange operation. */
7662 if (!after || target == const0_rtx)
7663 {
7664 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7665 if (code == AND && val == const0_rtx)
7666 {
7667 if (target == const0_rtx)
7668 target = gen_reg_rtx (GET_MODE (mem));
7669 return maybe_emit_atomic_exchange (target, mem, val, model);
7670 }
7671
7672 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7673 if (code == IOR && val == constm1_rtx)
7674 {
7675 if (target == const0_rtx)
7676 target = gen_reg_rtx (GET_MODE (mem));
7677 return maybe_emit_atomic_exchange (target, mem, val, model);
7678 }
7679 }
7680
7681 return NULL_RTX;
7682 }
7683
7684 /* Try to emit an instruction for a specific operation varaition.
7685 OPTAB contains the OP functions.
7686 TARGET is an optional place to return the result. const0_rtx means unused.
7687 MEM is the memory location to operate on.
7688 VAL is the value to use in the operation.
7689 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7690 MODEL is the memory model, if used.
7691 AFTER is true if the returned result is the value after the operation. */
7692
7693 static rtx
7694 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7695 rtx val, bool use_memmodel, enum memmodel model, bool after)
7696 {
7697 enum machine_mode mode = GET_MODE (mem);
7698 struct expand_operand ops[4];
7699 enum insn_code icode;
7700 int op_counter = 0;
7701 int num_ops;
7702
7703 /* Check to see if there is a result returned. */
7704 if (target == const0_rtx)
7705 {
7706 if (use_memmodel)
7707 {
7708 icode = direct_optab_handler (optab->mem_no_result, mode);
7709 create_integer_operand (&ops[2], model);
7710 num_ops = 3;
7711 }
7712 else
7713 {
7714 icode = direct_optab_handler (optab->no_result, mode);
7715 num_ops = 2;
7716 }
7717 }
7718 /* Otherwise, we need to generate a result. */
7719 else
7720 {
7721 if (use_memmodel)
7722 {
7723 icode = direct_optab_handler (after ? optab->mem_fetch_after
7724 : optab->mem_fetch_before, mode);
7725 create_integer_operand (&ops[3], model);
7726 num_ops = 4;
7727 }
7728 else
7729 {
7730 icode = optab_handler (after ? optab->fetch_after
7731 : optab->fetch_before, mode);
7732 num_ops = 3;
7733 }
7734 create_output_operand (&ops[op_counter++], target, mode);
7735 }
7736 if (icode == CODE_FOR_nothing)
7737 return NULL_RTX;
7738
7739 create_fixed_operand (&ops[op_counter++], mem);
7740 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7741 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7742
7743 if (maybe_expand_insn (icode, num_ops, ops))
7744 return (target == const0_rtx ? const0_rtx : ops[0].value);
7745
7746 return NULL_RTX;
7747 }
7748
7749
7750 /* This function expands an atomic fetch_OP or OP_fetch operation:
7751 TARGET is an option place to stick the return value. const0_rtx indicates
7752 the result is unused.
7753 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7754 CODE is the operation being performed (OP)
7755 MEMMODEL is the memory model variant to use.
7756 AFTER is true to return the result of the operation (OP_fetch).
7757 AFTER is false to return the value before the operation (fetch_OP).
7758
7759 This function will *only* generate instructions if there is a direct
7760 optab. No compare and swap loops or libcalls will be generated. */
7761
7762 static rtx
7763 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7764 enum rtx_code code, enum memmodel model,
7765 bool after)
7766 {
7767 enum machine_mode mode = GET_MODE (mem);
7768 struct atomic_op_functions optab;
7769 rtx result;
7770 bool unused_result = (target == const0_rtx);
7771
7772 get_atomic_op_for_code (&optab, code);
7773
7774 /* Check to see if there are any better instructions. */
7775 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7776 if (result)
7777 return result;
7778
7779 /* Check for the case where the result isn't used and try those patterns. */
7780 if (unused_result)
7781 {
7782 /* Try the memory model variant first. */
7783 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7784 if (result)
7785 return result;
7786
7787 /* Next try the old style withuot a memory model. */
7788 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7789 if (result)
7790 return result;
7791
7792 /* There is no no-result pattern, so try patterns with a result. */
7793 target = NULL_RTX;
7794 }
7795
7796 /* Try the __atomic version. */
7797 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7798 if (result)
7799 return result;
7800
7801 /* Try the older __sync version. */
7802 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7803 if (result)
7804 return result;
7805
7806 /* If the fetch value can be calculated from the other variation of fetch,
7807 try that operation. */
7808 if (after || unused_result || optab.reverse_code != UNKNOWN)
7809 {
7810 /* Try the __atomic version, then the older __sync version. */
7811 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7812 if (!result)
7813 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7814
7815 if (result)
7816 {
7817 /* If the result isn't used, no need to do compensation code. */
7818 if (unused_result)
7819 return result;
7820
7821 /* Issue compensation code. Fetch_after == fetch_before OP val.
7822 Fetch_before == after REVERSE_OP val. */
7823 if (!after)
7824 code = optab.reverse_code;
7825 if (code == NOT)
7826 {
7827 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7828 true, OPTAB_LIB_WIDEN);
7829 result = expand_simple_unop (mode, NOT, result, target, true);
7830 }
7831 else
7832 result = expand_simple_binop (mode, code, result, val, target,
7833 true, OPTAB_LIB_WIDEN);
7834 return result;
7835 }
7836 }
7837
7838 /* No direct opcode can be generated. */
7839 return NULL_RTX;
7840 }
7841
7842
7843
7844 /* This function expands an atomic fetch_OP or OP_fetch operation:
7845 TARGET is an option place to stick the return value. const0_rtx indicates
7846 the result is unused.
7847 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7848 CODE is the operation being performed (OP)
7849 MEMMODEL is the memory model variant to use.
7850 AFTER is true to return the result of the operation (OP_fetch).
7851 AFTER is false to return the value before the operation (fetch_OP). */
7852 rtx
7853 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7854 enum memmodel model, bool after)
7855 {
7856 enum machine_mode mode = GET_MODE (mem);
7857 rtx result;
7858 bool unused_result = (target == const0_rtx);
7859
7860 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7861 after);
7862
7863 if (result)
7864 return result;
7865
7866 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7867 if (code == PLUS || code == MINUS)
7868 {
7869 rtx tmp;
7870 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7871
7872 start_sequence ();
7873 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7874 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7875 model, after);
7876 if (result)
7877 {
7878 /* PLUS worked so emit the insns and return. */
7879 tmp = get_insns ();
7880 end_sequence ();
7881 emit_insn (tmp);
7882 return result;
7883 }
7884
7885 /* PLUS did not work, so throw away the negation code and continue. */
7886 end_sequence ();
7887 }
7888
7889 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7890 if (!can_compare_and_swap_p (mode, false))
7891 {
7892 rtx libfunc;
7893 bool fixup = false;
7894 enum rtx_code orig_code = code;
7895 struct atomic_op_functions optab;
7896
7897 get_atomic_op_for_code (&optab, code);
7898 libfunc = optab_libfunc (after ? optab.fetch_after
7899 : optab.fetch_before, mode);
7900 if (libfunc == NULL
7901 && (after || unused_result || optab.reverse_code != UNKNOWN))
7902 {
7903 fixup = true;
7904 if (!after)
7905 code = optab.reverse_code;
7906 libfunc = optab_libfunc (after ? optab.fetch_before
7907 : optab.fetch_after, mode);
7908 }
7909 if (libfunc != NULL)
7910 {
7911 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7912 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7913 2, addr, ptr_mode, val, mode);
7914
7915 if (!unused_result && fixup)
7916 result = expand_simple_binop (mode, code, result, val, target,
7917 true, OPTAB_LIB_WIDEN);
7918 return result;
7919 }
7920
7921 /* We need the original code for any further attempts. */
7922 code = orig_code;
7923 }
7924
7925 /* If nothing else has succeeded, default to a compare and swap loop. */
7926 if (can_compare_and_swap_p (mode, true))
7927 {
7928 rtx insn;
7929 rtx t0 = gen_reg_rtx (mode), t1;
7930
7931 start_sequence ();
7932
7933 /* If the result is used, get a register for it. */
7934 if (!unused_result)
7935 {
7936 if (!target || !register_operand (target, mode))
7937 target = gen_reg_rtx (mode);
7938 /* If fetch_before, copy the value now. */
7939 if (!after)
7940 emit_move_insn (target, t0);
7941 }
7942 else
7943 target = const0_rtx;
7944
7945 t1 = t0;
7946 if (code == NOT)
7947 {
7948 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7949 true, OPTAB_LIB_WIDEN);
7950 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7951 }
7952 else
7953 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7954 OPTAB_LIB_WIDEN);
7955
7956 /* For after, copy the value now. */
7957 if (!unused_result && after)
7958 emit_move_insn (target, t1);
7959 insn = get_insns ();
7960 end_sequence ();
7961
7962 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7963 return target;
7964 }
7965
7966 return NULL_RTX;
7967 }
7968 \f
7969 /* Return true if OPERAND is suitable for operand number OPNO of
7970 instruction ICODE. */
7971
7972 bool
7973 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
7974 {
7975 return (!insn_data[(int) icode].operand[opno].predicate
7976 || (insn_data[(int) icode].operand[opno].predicate
7977 (operand, insn_data[(int) icode].operand[opno].mode)));
7978 }
7979 \f
7980 /* TARGET is a target of a multiword operation that we are going to
7981 implement as a series of word-mode operations. Return true if
7982 TARGET is suitable for this purpose. */
7983
7984 bool
7985 valid_multiword_target_p (rtx target)
7986 {
7987 enum machine_mode mode;
7988 int i;
7989
7990 mode = GET_MODE (target);
7991 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
7992 if (!validate_subreg (word_mode, mode, target, i))
7993 return false;
7994 return true;
7995 }
7996
7997 /* Like maybe_legitimize_operand, but do not change the code of the
7998 current rtx value. */
7999
8000 static bool
8001 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8002 struct expand_operand *op)
8003 {
8004 /* See if the operand matches in its current form. */
8005 if (insn_operand_matches (icode, opno, op->value))
8006 return true;
8007
8008 /* If the operand is a memory whose address has no side effects,
8009 try forcing the address into a non-virtual pseudo register.
8010 The check for side effects is important because copy_to_mode_reg
8011 cannot handle things like auto-modified addresses. */
8012 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8013 {
8014 rtx addr, mem;
8015
8016 mem = op->value;
8017 addr = XEXP (mem, 0);
8018 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8019 && !side_effects_p (addr))
8020 {
8021 rtx last;
8022 enum machine_mode mode;
8023
8024 last = get_last_insn ();
8025 mode = get_address_mode (mem);
8026 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8027 if (insn_operand_matches (icode, opno, mem))
8028 {
8029 op->value = mem;
8030 return true;
8031 }
8032 delete_insns_since (last);
8033 }
8034 }
8035
8036 return false;
8037 }
8038
8039 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8040 on success, storing the new operand value back in OP. */
8041
8042 static bool
8043 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8044 struct expand_operand *op)
8045 {
8046 enum machine_mode mode, imode;
8047 bool old_volatile_ok, result;
8048
8049 mode = op->mode;
8050 switch (op->type)
8051 {
8052 case EXPAND_FIXED:
8053 old_volatile_ok = volatile_ok;
8054 volatile_ok = true;
8055 result = maybe_legitimize_operand_same_code (icode, opno, op);
8056 volatile_ok = old_volatile_ok;
8057 return result;
8058
8059 case EXPAND_OUTPUT:
8060 gcc_assert (mode != VOIDmode);
8061 if (op->value
8062 && op->value != const0_rtx
8063 && GET_MODE (op->value) == mode
8064 && maybe_legitimize_operand_same_code (icode, opno, op))
8065 return true;
8066
8067 op->value = gen_reg_rtx (mode);
8068 break;
8069
8070 case EXPAND_INPUT:
8071 input:
8072 gcc_assert (mode != VOIDmode);
8073 gcc_assert (GET_MODE (op->value) == VOIDmode
8074 || GET_MODE (op->value) == mode);
8075 if (maybe_legitimize_operand_same_code (icode, opno, op))
8076 return true;
8077
8078 op->value = copy_to_mode_reg (mode, op->value);
8079 break;
8080
8081 case EXPAND_CONVERT_TO:
8082 gcc_assert (mode != VOIDmode);
8083 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8084 goto input;
8085
8086 case EXPAND_CONVERT_FROM:
8087 if (GET_MODE (op->value) != VOIDmode)
8088 mode = GET_MODE (op->value);
8089 else
8090 /* The caller must tell us what mode this value has. */
8091 gcc_assert (mode != VOIDmode);
8092
8093 imode = insn_data[(int) icode].operand[opno].mode;
8094 if (imode != VOIDmode && imode != mode)
8095 {
8096 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8097 mode = imode;
8098 }
8099 goto input;
8100
8101 case EXPAND_ADDRESS:
8102 gcc_assert (mode != VOIDmode);
8103 op->value = convert_memory_address (mode, op->value);
8104 goto input;
8105
8106 case EXPAND_INTEGER:
8107 mode = insn_data[(int) icode].operand[opno].mode;
8108 if (mode != VOIDmode && const_int_operand (op->value, mode))
8109 goto input;
8110 break;
8111 }
8112 return insn_operand_matches (icode, opno, op->value);
8113 }
8114
8115 /* Make OP describe an input operand that should have the same value
8116 as VALUE, after any mode conversion that the target might request.
8117 TYPE is the type of VALUE. */
8118
8119 void
8120 create_convert_operand_from_type (struct expand_operand *op,
8121 rtx value, tree type)
8122 {
8123 create_convert_operand_from (op, value, TYPE_MODE (type),
8124 TYPE_UNSIGNED (type));
8125 }
8126
8127 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8128 of instruction ICODE. Return true on success, leaving the new operand
8129 values in the OPS themselves. Emit no code on failure. */
8130
8131 bool
8132 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8133 unsigned int nops, struct expand_operand *ops)
8134 {
8135 rtx last;
8136 unsigned int i;
8137
8138 last = get_last_insn ();
8139 for (i = 0; i < nops; i++)
8140 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8141 {
8142 delete_insns_since (last);
8143 return false;
8144 }
8145 return true;
8146 }
8147
8148 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8149 as its operands. Return the instruction pattern on success,
8150 and emit any necessary set-up code. Return null and emit no
8151 code on failure. */
8152
8153 rtx
8154 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8155 struct expand_operand *ops)
8156 {
8157 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8158 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8159 return NULL_RTX;
8160
8161 switch (nops)
8162 {
8163 case 1:
8164 return GEN_FCN (icode) (ops[0].value);
8165 case 2:
8166 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8167 case 3:
8168 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8169 case 4:
8170 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8171 ops[3].value);
8172 case 5:
8173 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8174 ops[3].value, ops[4].value);
8175 case 6:
8176 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8177 ops[3].value, ops[4].value, ops[5].value);
8178 case 7:
8179 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8180 ops[3].value, ops[4].value, ops[5].value,
8181 ops[6].value);
8182 case 8:
8183 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8184 ops[3].value, ops[4].value, ops[5].value,
8185 ops[6].value, ops[7].value);
8186 }
8187 gcc_unreachable ();
8188 }
8189
8190 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8191 as its operands. Return true on success and emit no code on failure. */
8192
8193 bool
8194 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8195 struct expand_operand *ops)
8196 {
8197 rtx pat = maybe_gen_insn (icode, nops, ops);
8198 if (pat)
8199 {
8200 emit_insn (pat);
8201 return true;
8202 }
8203 return false;
8204 }
8205
8206 /* Like maybe_expand_insn, but for jumps. */
8207
8208 bool
8209 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8210 struct expand_operand *ops)
8211 {
8212 rtx pat = maybe_gen_insn (icode, nops, ops);
8213 if (pat)
8214 {
8215 emit_jump_insn (pat);
8216 return true;
8217 }
8218 return false;
8219 }
8220
8221 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8222 as its operands. */
8223
8224 void
8225 expand_insn (enum insn_code icode, unsigned int nops,
8226 struct expand_operand *ops)
8227 {
8228 if (!maybe_expand_insn (icode, nops, ops))
8229 gcc_unreachable ();
8230 }
8231
8232 /* Like expand_insn, but for jumps. */
8233
8234 void
8235 expand_jump_insn (enum insn_code icode, unsigned int nops,
8236 struct expand_operand *ops)
8237 {
8238 if (!maybe_expand_jump_insn (icode, nops, ops))
8239 gcc_unreachable ();
8240 }
8241
8242 #include "gt-optabs.h"