c27e244beb04876c9e26ea420d56a303c055118e
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "predict.h"
26 #include "diagnostic-core.h"
27
28 /* Include insn-config.h before expr.h so that HAVE_conditional_move
29 is properly defined. */
30 #include "insn-config.h"
31 #include "rtl.h"
32 #include "alias.h"
33 #include "tree.h"
34 #include "tree-hasher.h"
35 #include "stor-layout.h"
36 #include "stringpool.h"
37 #include "varasm.h"
38 #include "tm_p.h"
39 #include "flags.h"
40 #include "except.h"
41 #include "expmed.h"
42 #include "dojump.h"
43 #include "explow.h"
44 #include "calls.h"
45 #include "emit-rtl.h"
46 #include "stmt.h"
47 #include "expr.h"
48 #include "insn-codes.h"
49 #include "optabs.h"
50 #include "libfuncs.h"
51 #include "recog.h"
52 #include "reload.h"
53 #include "target.h"
54
55 struct target_optabs default_target_optabs;
56 struct target_libfuncs default_target_libfuncs;
57 struct target_optabs *this_fn_optabs = &default_target_optabs;
58 #if SWITCHABLE_TARGET
59 struct target_optabs *this_target_optabs = &default_target_optabs;
60 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
61 #endif
62
63 #define libfunc_hash \
64 (this_target_libfuncs->x_libfunc_hash)
65
66 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
67 machine_mode *);
68 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
69 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
70
71 /* Debug facility for use in GDB. */
72 void debug_optab_libfuncs (void);
73
74 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
75 #if ENABLE_DECIMAL_BID_FORMAT
76 #define DECIMAL_PREFIX "bid_"
77 #else
78 #define DECIMAL_PREFIX "dpd_"
79 #endif
80 \f
81 /* Used for libfunc_hash. */
82
83 hashval_t
84 libfunc_hasher::hash (libfunc_entry *e)
85 {
86 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
87 }
88
89 /* Used for libfunc_hash. */
90
91 bool
92 libfunc_hasher::equal (libfunc_entry *e1, libfunc_entry *e2)
93 {
94 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
95 }
96
97 /* Return libfunc corresponding operation defined by OPTAB converting
98 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
99 if no libfunc is available. */
100 rtx
101 convert_optab_libfunc (convert_optab optab, machine_mode mode1,
102 machine_mode mode2)
103 {
104 struct libfunc_entry e;
105 struct libfunc_entry **slot;
106
107 /* ??? This ought to be an assert, but not all of the places
108 that we expand optabs know about the optabs that got moved
109 to being direct. */
110 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
111 return NULL_RTX;
112
113 e.op = optab;
114 e.mode1 = mode1;
115 e.mode2 = mode2;
116 slot = libfunc_hash->find_slot (&e, NO_INSERT);
117 if (!slot)
118 {
119 const struct convert_optab_libcall_d *d
120 = &convlib_def[optab - FIRST_CONV_OPTAB];
121
122 if (d->libcall_gen == NULL)
123 return NULL;
124
125 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
126 slot = libfunc_hash->find_slot (&e, NO_INSERT);
127 if (!slot)
128 return NULL;
129 }
130 return (*slot)->libfunc;
131 }
132
133 /* Return libfunc corresponding operation defined by OPTAB in MODE.
134 Trigger lazy initialization if needed, return NULL if no libfunc is
135 available. */
136 rtx
137 optab_libfunc (optab optab, machine_mode mode)
138 {
139 struct libfunc_entry e;
140 struct libfunc_entry **slot;
141
142 /* ??? This ought to be an assert, but not all of the places
143 that we expand optabs know about the optabs that got moved
144 to being direct. */
145 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
146 return NULL_RTX;
147
148 e.op = optab;
149 e.mode1 = mode;
150 e.mode2 = VOIDmode;
151 slot = libfunc_hash->find_slot (&e, NO_INSERT);
152 if (!slot)
153 {
154 const struct optab_libcall_d *d
155 = &normlib_def[optab - FIRST_NORM_OPTAB];
156
157 if (d->libcall_gen == NULL)
158 return NULL;
159
160 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
161 slot = libfunc_hash->find_slot (&e, NO_INSERT);
162 if (!slot)
163 return NULL;
164 }
165 return (*slot)->libfunc;
166 }
167
168 \f
169 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
171 operation).
172
173 If the last insn does not set TARGET, don't do anything, but return 1.
174
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
178
179 static int
180 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
181 {
182 rtx_insn *last_insn;
183 rtx set;
184 rtx note;
185
186 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
187
188 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
189 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
190 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
191 && GET_RTX_CLASS (code) != RTX_COMPARE
192 && GET_RTX_CLASS (code) != RTX_UNARY)
193 return 1;
194
195 if (GET_CODE (target) == ZERO_EXTRACT)
196 return 1;
197
198 for (last_insn = insns;
199 NEXT_INSN (last_insn) != NULL_RTX;
200 last_insn = NEXT_INSN (last_insn))
201 ;
202
203 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
204 a value changing in the insn, so the note would be invalid for CSE. */
205 if (reg_overlap_mentioned_p (target, op0)
206 || (op1 && reg_overlap_mentioned_p (target, op1)))
207 {
208 if (MEM_P (target)
209 && (rtx_equal_p (target, op0)
210 || (op1 && rtx_equal_p (target, op1))))
211 {
212 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
213 over expanding it as temp = MEM op X, MEM = temp. If the target
214 supports MEM = MEM op X instructions, it is sometimes too hard
215 to reconstruct that form later, especially if X is also a memory,
216 and due to multiple occurrences of addresses the address might
217 be forced into register unnecessarily.
218 Note that not emitting the REG_EQUIV note might inhibit
219 CSE in some cases. */
220 set = single_set (last_insn);
221 if (set
222 && GET_CODE (SET_SRC (set)) == code
223 && MEM_P (SET_DEST (set))
224 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
225 || (op1 && rtx_equal_p (SET_DEST (set),
226 XEXP (SET_SRC (set), 1)))))
227 return 1;
228 }
229 return 0;
230 }
231
232 set = set_for_reg_notes (last_insn);
233 if (set == NULL_RTX)
234 return 1;
235
236 if (! rtx_equal_p (SET_DEST (set), target)
237 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
238 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
239 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
240 return 1;
241
242 if (GET_RTX_CLASS (code) == RTX_UNARY)
243 switch (code)
244 {
245 case FFS:
246 case CLZ:
247 case CTZ:
248 case CLRSB:
249 case POPCOUNT:
250 case PARITY:
251 case BSWAP:
252 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
253 {
254 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
255 if (GET_MODE_SIZE (GET_MODE (op0))
256 > GET_MODE_SIZE (GET_MODE (target)))
257 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
258 note, GET_MODE (op0));
259 else
260 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
261 note, GET_MODE (op0));
262 break;
263 }
264 /* FALLTHRU */
265 default:
266 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
267 break;
268 }
269 else
270 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
271
272 set_unique_reg_note (last_insn, REG_EQUAL, note);
273
274 return 1;
275 }
276 \f
277 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
278 for a widening operation would be. In most cases this would be OP0, but if
279 that's a constant it'll be VOIDmode, which isn't useful. */
280
281 static machine_mode
282 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
283 {
284 machine_mode m0 = GET_MODE (op0);
285 machine_mode m1 = GET_MODE (op1);
286 machine_mode result;
287
288 if (m0 == VOIDmode && m1 == VOIDmode)
289 return to_mode;
290 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
291 result = m1;
292 else
293 result = m0;
294
295 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
296 return to_mode;
297
298 return result;
299 }
300 \f
301 /* Like optab_handler, but for widening_operations that have a
302 TO_MODE and a FROM_MODE. */
303
304 enum insn_code
305 widening_optab_handler (optab op, machine_mode to_mode,
306 machine_mode from_mode)
307 {
308 unsigned scode = (op << 16) | to_mode;
309 if (to_mode != from_mode && from_mode != VOIDmode)
310 {
311 /* ??? Why does find_widening_optab_handler_and_mode attempt to
312 widen things that can't be widened? E.g. add_optab... */
313 if (op > LAST_CONV_OPTAB)
314 return CODE_FOR_nothing;
315 scode |= from_mode << 8;
316 }
317 return raw_optab_handler (scode);
318 }
319
320 /* Find a widening optab even if it doesn't widen as much as we want.
321 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
322 direct HI->SI insn, then return SI->DI, if that exists.
323 If PERMIT_NON_WIDENING is non-zero then this can be used with
324 non-widening optabs also. */
325
326 enum insn_code
327 find_widening_optab_handler_and_mode (optab op, machine_mode to_mode,
328 machine_mode from_mode,
329 int permit_non_widening,
330 machine_mode *found_mode)
331 {
332 for (; (permit_non_widening || from_mode != to_mode)
333 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
334 && from_mode != VOIDmode;
335 from_mode = GET_MODE_WIDER_MODE (from_mode))
336 {
337 enum insn_code handler = widening_optab_handler (op, to_mode,
338 from_mode);
339
340 if (handler != CODE_FOR_nothing)
341 {
342 if (found_mode)
343 *found_mode = from_mode;
344 return handler;
345 }
346 }
347
348 return CODE_FOR_nothing;
349 }
350 \f
351 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
352 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
353 not actually do a sign-extend or zero-extend, but can leave the
354 higher-order bits of the result rtx undefined, for example, in the case
355 of logical operations, but not right shifts. */
356
357 static rtx
358 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
359 int unsignedp, int no_extend)
360 {
361 rtx result;
362
363 /* If we don't have to extend and this is a constant, return it. */
364 if (no_extend && GET_MODE (op) == VOIDmode)
365 return op;
366
367 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
368 extend since it will be more efficient to do so unless the signedness of
369 a promoted object differs from our extension. */
370 if (! no_extend
371 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
372 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
373 return convert_modes (mode, oldmode, op, unsignedp);
374
375 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
376 SUBREG. */
377 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
378 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
379
380 /* Otherwise, get an object of MODE, clobber it, and set the low-order
381 part to OP. */
382
383 result = gen_reg_rtx (mode);
384 emit_clobber (result);
385 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
386 return result;
387 }
388 \f
389 /* Return the optab used for computing the operation given by the tree code,
390 CODE and the tree EXP. This function is not always usable (for example, it
391 cannot give complete results for multiplication or division) but probably
392 ought to be relied on more widely throughout the expander. */
393 optab
394 optab_for_tree_code (enum tree_code code, const_tree type,
395 enum optab_subtype subtype)
396 {
397 bool trapv;
398 switch (code)
399 {
400 case BIT_AND_EXPR:
401 return and_optab;
402
403 case BIT_IOR_EXPR:
404 return ior_optab;
405
406 case BIT_NOT_EXPR:
407 return one_cmpl_optab;
408
409 case BIT_XOR_EXPR:
410 return xor_optab;
411
412 case MULT_HIGHPART_EXPR:
413 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
414
415 case TRUNC_MOD_EXPR:
416 case CEIL_MOD_EXPR:
417 case FLOOR_MOD_EXPR:
418 case ROUND_MOD_EXPR:
419 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
420
421 case RDIV_EXPR:
422 case TRUNC_DIV_EXPR:
423 case CEIL_DIV_EXPR:
424 case FLOOR_DIV_EXPR:
425 case ROUND_DIV_EXPR:
426 case EXACT_DIV_EXPR:
427 if (TYPE_SATURATING (type))
428 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
429 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
430
431 case LSHIFT_EXPR:
432 if (TREE_CODE (type) == VECTOR_TYPE)
433 {
434 if (subtype == optab_vector)
435 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
436
437 gcc_assert (subtype == optab_scalar);
438 }
439 if (TYPE_SATURATING (type))
440 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
441 return ashl_optab;
442
443 case RSHIFT_EXPR:
444 if (TREE_CODE (type) == VECTOR_TYPE)
445 {
446 if (subtype == optab_vector)
447 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
448
449 gcc_assert (subtype == optab_scalar);
450 }
451 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
452
453 case LROTATE_EXPR:
454 if (TREE_CODE (type) == VECTOR_TYPE)
455 {
456 if (subtype == optab_vector)
457 return vrotl_optab;
458
459 gcc_assert (subtype == optab_scalar);
460 }
461 return rotl_optab;
462
463 case RROTATE_EXPR:
464 if (TREE_CODE (type) == VECTOR_TYPE)
465 {
466 if (subtype == optab_vector)
467 return vrotr_optab;
468
469 gcc_assert (subtype == optab_scalar);
470 }
471 return rotr_optab;
472
473 case MAX_EXPR:
474 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
475
476 case MIN_EXPR:
477 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
478
479 case REALIGN_LOAD_EXPR:
480 return vec_realign_load_optab;
481
482 case WIDEN_SUM_EXPR:
483 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
484
485 case DOT_PROD_EXPR:
486 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
487
488 case SAD_EXPR:
489 return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
490
491 case WIDEN_MULT_PLUS_EXPR:
492 return (TYPE_UNSIGNED (type)
493 ? (TYPE_SATURATING (type)
494 ? usmadd_widen_optab : umadd_widen_optab)
495 : (TYPE_SATURATING (type)
496 ? ssmadd_widen_optab : smadd_widen_optab));
497
498 case WIDEN_MULT_MINUS_EXPR:
499 return (TYPE_UNSIGNED (type)
500 ? (TYPE_SATURATING (type)
501 ? usmsub_widen_optab : umsub_widen_optab)
502 : (TYPE_SATURATING (type)
503 ? ssmsub_widen_optab : smsub_widen_optab));
504
505 case FMA_EXPR:
506 return fma_optab;
507
508 case REDUC_MAX_EXPR:
509 return TYPE_UNSIGNED (type)
510 ? reduc_umax_scal_optab : reduc_smax_scal_optab;
511
512 case REDUC_MIN_EXPR:
513 return TYPE_UNSIGNED (type)
514 ? reduc_umin_scal_optab : reduc_smin_scal_optab;
515
516 case REDUC_PLUS_EXPR:
517 return reduc_plus_scal_optab;
518
519 case VEC_WIDEN_MULT_HI_EXPR:
520 return TYPE_UNSIGNED (type) ?
521 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
522
523 case VEC_WIDEN_MULT_LO_EXPR:
524 return TYPE_UNSIGNED (type) ?
525 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
526
527 case VEC_WIDEN_MULT_EVEN_EXPR:
528 return TYPE_UNSIGNED (type) ?
529 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
530
531 case VEC_WIDEN_MULT_ODD_EXPR:
532 return TYPE_UNSIGNED (type) ?
533 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
534
535 case VEC_WIDEN_LSHIFT_HI_EXPR:
536 return TYPE_UNSIGNED (type) ?
537 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
538
539 case VEC_WIDEN_LSHIFT_LO_EXPR:
540 return TYPE_UNSIGNED (type) ?
541 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
542
543 case VEC_UNPACK_HI_EXPR:
544 return TYPE_UNSIGNED (type) ?
545 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
546
547 case VEC_UNPACK_LO_EXPR:
548 return TYPE_UNSIGNED (type) ?
549 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
550
551 case VEC_UNPACK_FLOAT_HI_EXPR:
552 /* The signedness is determined from input operand. */
553 return TYPE_UNSIGNED (type) ?
554 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
555
556 case VEC_UNPACK_FLOAT_LO_EXPR:
557 /* The signedness is determined from input operand. */
558 return TYPE_UNSIGNED (type) ?
559 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
560
561 case VEC_PACK_TRUNC_EXPR:
562 return vec_pack_trunc_optab;
563
564 case VEC_PACK_SAT_EXPR:
565 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
566
567 case VEC_PACK_FIX_TRUNC_EXPR:
568 /* The signedness is determined from output operand. */
569 return TYPE_UNSIGNED (type) ?
570 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
571
572 default:
573 break;
574 }
575
576 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
577 switch (code)
578 {
579 case POINTER_PLUS_EXPR:
580 case PLUS_EXPR:
581 if (TYPE_SATURATING (type))
582 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
583 return trapv ? addv_optab : add_optab;
584
585 case MINUS_EXPR:
586 if (TYPE_SATURATING (type))
587 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
588 return trapv ? subv_optab : sub_optab;
589
590 case MULT_EXPR:
591 if (TYPE_SATURATING (type))
592 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
593 return trapv ? smulv_optab : smul_optab;
594
595 case NEGATE_EXPR:
596 if (TYPE_SATURATING (type))
597 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
598 return trapv ? negv_optab : neg_optab;
599
600 case ABS_EXPR:
601 return trapv ? absv_optab : abs_optab;
602
603 default:
604 return unknown_optab;
605 }
606 }
607
608 /* Given optab UNOPTAB that reduces a vector to a scalar, find instead the old
609 optab that produces a vector with the reduction result in one element,
610 for a tree with type TYPE. */
611
612 optab
613 scalar_reduc_to_vector (optab unoptab, const_tree type)
614 {
615 switch (unoptab)
616 {
617 case reduc_plus_scal_optab:
618 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
619
620 case reduc_smin_scal_optab: return reduc_smin_optab;
621 case reduc_umin_scal_optab: return reduc_umin_optab;
622 case reduc_smax_scal_optab: return reduc_smax_optab;
623 case reduc_umax_scal_optab: return reduc_umax_optab;
624 default: return unknown_optab;
625 }
626 }
627
628 /* Expand vector widening operations.
629
630 There are two different classes of operations handled here:
631 1) Operations whose result is wider than all the arguments to the operation.
632 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
633 In this case OP0 and optionally OP1 would be initialized,
634 but WIDE_OP wouldn't (not relevant for this case).
635 2) Operations whose result is of the same size as the last argument to the
636 operation, but wider than all the other arguments to the operation.
637 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
638 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
639
640 E.g, when called to expand the following operations, this is how
641 the arguments will be initialized:
642 nops OP0 OP1 WIDE_OP
643 widening-sum 2 oprnd0 - oprnd1
644 widening-dot-product 3 oprnd0 oprnd1 oprnd2
645 widening-mult 2 oprnd0 oprnd1 -
646 type-promotion (vec-unpack) 1 oprnd0 - - */
647
648 rtx
649 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
650 rtx target, int unsignedp)
651 {
652 struct expand_operand eops[4];
653 tree oprnd0, oprnd1, oprnd2;
654 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
655 optab widen_pattern_optab;
656 enum insn_code icode;
657 int nops = TREE_CODE_LENGTH (ops->code);
658 int op;
659
660 oprnd0 = ops->op0;
661 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
662 widen_pattern_optab =
663 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
664 if (ops->code == WIDEN_MULT_PLUS_EXPR
665 || ops->code == WIDEN_MULT_MINUS_EXPR)
666 icode = find_widening_optab_handler (widen_pattern_optab,
667 TYPE_MODE (TREE_TYPE (ops->op2)),
668 tmode0, 0);
669 else
670 icode = optab_handler (widen_pattern_optab, tmode0);
671 gcc_assert (icode != CODE_FOR_nothing);
672
673 if (nops >= 2)
674 {
675 oprnd1 = ops->op1;
676 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
677 }
678
679 /* The last operand is of a wider mode than the rest of the operands. */
680 if (nops == 2)
681 wmode = tmode1;
682 else if (nops == 3)
683 {
684 gcc_assert (tmode1 == tmode0);
685 gcc_assert (op1);
686 oprnd2 = ops->op2;
687 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
688 }
689
690 op = 0;
691 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
692 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
693 if (op1)
694 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
695 if (wide_op)
696 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
697 expand_insn (icode, op, eops);
698 return eops[0].value;
699 }
700
701 /* Generate code to perform an operation specified by TERNARY_OPTAB
702 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
703
704 UNSIGNEDP is for the case where we have to widen the operands
705 to perform the operation. It says to use zero-extension.
706
707 If TARGET is nonzero, the value
708 is generated there, if it is convenient to do so.
709 In all cases an rtx is returned for the locus of the value;
710 this may or may not be TARGET. */
711
712 rtx
713 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
714 rtx op1, rtx op2, rtx target, int unsignedp)
715 {
716 struct expand_operand ops[4];
717 enum insn_code icode = optab_handler (ternary_optab, mode);
718
719 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
720
721 create_output_operand (&ops[0], target, mode);
722 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
723 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
724 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
725 expand_insn (icode, 4, ops);
726 return ops[0].value;
727 }
728
729
730 /* Like expand_binop, but return a constant rtx if the result can be
731 calculated at compile time. The arguments and return value are
732 otherwise the same as for expand_binop. */
733
734 rtx
735 simplify_expand_binop (machine_mode mode, optab binoptab,
736 rtx op0, rtx op1, rtx target, int unsignedp,
737 enum optab_methods methods)
738 {
739 if (CONSTANT_P (op0) && CONSTANT_P (op1))
740 {
741 rtx x = simplify_binary_operation (optab_to_code (binoptab),
742 mode, op0, op1);
743 if (x)
744 return x;
745 }
746
747 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
748 }
749
750 /* Like simplify_expand_binop, but always put the result in TARGET.
751 Return true if the expansion succeeded. */
752
753 bool
754 force_expand_binop (machine_mode mode, optab binoptab,
755 rtx op0, rtx op1, rtx target, int unsignedp,
756 enum optab_methods methods)
757 {
758 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
759 target, unsignedp, methods);
760 if (x == 0)
761 return false;
762 if (x != target)
763 emit_move_insn (target, x);
764 return true;
765 }
766
767 /* Create a new vector value in VMODE with all elements set to OP. The
768 mode of OP must be the element mode of VMODE. If OP is a constant,
769 then the return value will be a constant. */
770
771 static rtx
772 expand_vector_broadcast (machine_mode vmode, rtx op)
773 {
774 enum insn_code icode;
775 rtvec vec;
776 rtx ret;
777 int i, n;
778
779 gcc_checking_assert (VECTOR_MODE_P (vmode));
780
781 n = GET_MODE_NUNITS (vmode);
782 vec = rtvec_alloc (n);
783 for (i = 0; i < n; ++i)
784 RTVEC_ELT (vec, i) = op;
785
786 if (CONSTANT_P (op))
787 return gen_rtx_CONST_VECTOR (vmode, vec);
788
789 /* ??? If the target doesn't have a vec_init, then we have no easy way
790 of performing this operation. Most of this sort of generic support
791 is hidden away in the vector lowering support in gimple. */
792 icode = optab_handler (vec_init_optab, vmode);
793 if (icode == CODE_FOR_nothing)
794 return NULL;
795
796 ret = gen_reg_rtx (vmode);
797 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
798
799 return ret;
800 }
801
802 /* This subroutine of expand_doubleword_shift handles the cases in which
803 the effective shift value is >= BITS_PER_WORD. The arguments and return
804 value are the same as for the parent routine, except that SUPERWORD_OP1
805 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
806 INTO_TARGET may be null if the caller has decided to calculate it. */
807
808 static bool
809 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
810 rtx outof_target, rtx into_target,
811 int unsignedp, enum optab_methods methods)
812 {
813 if (into_target != 0)
814 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
815 into_target, unsignedp, methods))
816 return false;
817
818 if (outof_target != 0)
819 {
820 /* For a signed right shift, we must fill OUTOF_TARGET with copies
821 of the sign bit, otherwise we must fill it with zeros. */
822 if (binoptab != ashr_optab)
823 emit_move_insn (outof_target, CONST0_RTX (word_mode));
824 else
825 if (!force_expand_binop (word_mode, binoptab,
826 outof_input, GEN_INT (BITS_PER_WORD - 1),
827 outof_target, unsignedp, methods))
828 return false;
829 }
830 return true;
831 }
832
833 /* This subroutine of expand_doubleword_shift handles the cases in which
834 the effective shift value is < BITS_PER_WORD. The arguments and return
835 value are the same as for the parent routine. */
836
837 static bool
838 expand_subword_shift (machine_mode op1_mode, optab binoptab,
839 rtx outof_input, rtx into_input, rtx op1,
840 rtx outof_target, rtx into_target,
841 int unsignedp, enum optab_methods methods,
842 unsigned HOST_WIDE_INT shift_mask)
843 {
844 optab reverse_unsigned_shift, unsigned_shift;
845 rtx tmp, carries;
846
847 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
848 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
849
850 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
851 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
852 the opposite direction to BINOPTAB. */
853 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
854 {
855 carries = outof_input;
856 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
857 op1_mode), op1_mode);
858 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
859 0, true, methods);
860 }
861 else
862 {
863 /* We must avoid shifting by BITS_PER_WORD bits since that is either
864 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
865 has unknown behavior. Do a single shift first, then shift by the
866 remainder. It's OK to use ~OP1 as the remainder if shift counts
867 are truncated to the mode size. */
868 carries = expand_binop (word_mode, reverse_unsigned_shift,
869 outof_input, const1_rtx, 0, unsignedp, methods);
870 if (shift_mask == BITS_PER_WORD - 1)
871 {
872 tmp = immed_wide_int_const
873 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
874 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
875 0, true, methods);
876 }
877 else
878 {
879 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
880 op1_mode), op1_mode);
881 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
882 0, true, methods);
883 }
884 }
885 if (tmp == 0 || carries == 0)
886 return false;
887 carries = expand_binop (word_mode, reverse_unsigned_shift,
888 carries, tmp, 0, unsignedp, methods);
889 if (carries == 0)
890 return false;
891
892 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
893 so the result can go directly into INTO_TARGET if convenient. */
894 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
895 into_target, unsignedp, methods);
896 if (tmp == 0)
897 return false;
898
899 /* Now OR in the bits carried over from OUTOF_INPUT. */
900 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
901 into_target, unsignedp, methods))
902 return false;
903
904 /* Use a standard word_mode shift for the out-of half. */
905 if (outof_target != 0)
906 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
907 outof_target, unsignedp, methods))
908 return false;
909
910 return true;
911 }
912
913
914 /* Try implementing expand_doubleword_shift using conditional moves.
915 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
916 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
917 are the shift counts to use in the former and latter case. All other
918 arguments are the same as the parent routine. */
919
920 static bool
921 expand_doubleword_shift_condmove (machine_mode op1_mode, optab binoptab,
922 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
923 rtx outof_input, rtx into_input,
924 rtx subword_op1, rtx superword_op1,
925 rtx outof_target, rtx into_target,
926 int unsignedp, enum optab_methods methods,
927 unsigned HOST_WIDE_INT shift_mask)
928 {
929 rtx outof_superword, into_superword;
930
931 /* Put the superword version of the output into OUTOF_SUPERWORD and
932 INTO_SUPERWORD. */
933 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
934 if (outof_target != 0 && subword_op1 == superword_op1)
935 {
936 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
937 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
938 into_superword = outof_target;
939 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
940 outof_superword, 0, unsignedp, methods))
941 return false;
942 }
943 else
944 {
945 into_superword = gen_reg_rtx (word_mode);
946 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
947 outof_superword, into_superword,
948 unsignedp, methods))
949 return false;
950 }
951
952 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
953 if (!expand_subword_shift (op1_mode, binoptab,
954 outof_input, into_input, subword_op1,
955 outof_target, into_target,
956 unsignedp, methods, shift_mask))
957 return false;
958
959 /* Select between them. Do the INTO half first because INTO_SUPERWORD
960 might be the current value of OUTOF_TARGET. */
961 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
962 into_target, into_superword, word_mode, false))
963 return false;
964
965 if (outof_target != 0)
966 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
967 outof_target, outof_superword,
968 word_mode, false))
969 return false;
970
971 return true;
972 }
973
974 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
975 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
976 input operand; the shift moves bits in the direction OUTOF_INPUT->
977 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
978 of the target. OP1 is the shift count and OP1_MODE is its mode.
979 If OP1 is constant, it will have been truncated as appropriate
980 and is known to be nonzero.
981
982 If SHIFT_MASK is zero, the result of word shifts is undefined when the
983 shift count is outside the range [0, BITS_PER_WORD). This routine must
984 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
985
986 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
987 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
988 fill with zeros or sign bits as appropriate.
989
990 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
991 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
992 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
993 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
994 are undefined.
995
996 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
997 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
998 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
999 function wants to calculate it itself.
1000
1001 Return true if the shift could be successfully synthesized. */
1002
1003 static bool
1004 expand_doubleword_shift (machine_mode op1_mode, optab binoptab,
1005 rtx outof_input, rtx into_input, rtx op1,
1006 rtx outof_target, rtx into_target,
1007 int unsignedp, enum optab_methods methods,
1008 unsigned HOST_WIDE_INT shift_mask)
1009 {
1010 rtx superword_op1, tmp, cmp1, cmp2;
1011 enum rtx_code cmp_code;
1012
1013 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1014 fill the result with sign or zero bits as appropriate. If so, the value
1015 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1016 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1017 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1018
1019 This isn't worthwhile for constant shifts since the optimizers will
1020 cope better with in-range shift counts. */
1021 if (shift_mask >= BITS_PER_WORD
1022 && outof_target != 0
1023 && !CONSTANT_P (op1))
1024 {
1025 if (!expand_doubleword_shift (op1_mode, binoptab,
1026 outof_input, into_input, op1,
1027 0, into_target,
1028 unsignedp, methods, shift_mask))
1029 return false;
1030 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1031 outof_target, unsignedp, methods))
1032 return false;
1033 return true;
1034 }
1035
1036 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1037 is true when the effective shift value is less than BITS_PER_WORD.
1038 Set SUPERWORD_OP1 to the shift count that should be used to shift
1039 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1040 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
1041 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1042 {
1043 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1044 is a subword shift count. */
1045 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1046 0, true, methods);
1047 cmp2 = CONST0_RTX (op1_mode);
1048 cmp_code = EQ;
1049 superword_op1 = op1;
1050 }
1051 else
1052 {
1053 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1054 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1055 0, true, methods);
1056 cmp2 = CONST0_RTX (op1_mode);
1057 cmp_code = LT;
1058 superword_op1 = cmp1;
1059 }
1060 if (cmp1 == 0)
1061 return false;
1062
1063 /* If we can compute the condition at compile time, pick the
1064 appropriate subroutine. */
1065 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1066 if (tmp != 0 && CONST_INT_P (tmp))
1067 {
1068 if (tmp == const0_rtx)
1069 return expand_superword_shift (binoptab, outof_input, superword_op1,
1070 outof_target, into_target,
1071 unsignedp, methods);
1072 else
1073 return expand_subword_shift (op1_mode, binoptab,
1074 outof_input, into_input, op1,
1075 outof_target, into_target,
1076 unsignedp, methods, shift_mask);
1077 }
1078
1079 /* Try using conditional moves to generate straight-line code. */
1080 if (HAVE_conditional_move)
1081 {
1082 rtx_insn *start = get_last_insn ();
1083 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1084 cmp_code, cmp1, cmp2,
1085 outof_input, into_input,
1086 op1, superword_op1,
1087 outof_target, into_target,
1088 unsignedp, methods, shift_mask))
1089 return true;
1090 delete_insns_since (start);
1091 }
1092
1093 /* As a last resort, use branches to select the correct alternative. */
1094 rtx_code_label *subword_label = gen_label_rtx ();
1095 rtx_code_label *done_label = gen_label_rtx ();
1096
1097 NO_DEFER_POP;
1098 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1099 0, 0, subword_label, -1);
1100 OK_DEFER_POP;
1101
1102 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1103 outof_target, into_target,
1104 unsignedp, methods))
1105 return false;
1106
1107 emit_jump_insn (targetm.gen_jump (done_label));
1108 emit_barrier ();
1109 emit_label (subword_label);
1110
1111 if (!expand_subword_shift (op1_mode, binoptab,
1112 outof_input, into_input, op1,
1113 outof_target, into_target,
1114 unsignedp, methods, shift_mask))
1115 return false;
1116
1117 emit_label (done_label);
1118 return true;
1119 }
1120 \f
1121 /* Subroutine of expand_binop. Perform a double word multiplication of
1122 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1123 as the target's word_mode. This function return NULL_RTX if anything
1124 goes wrong, in which case it may have already emitted instructions
1125 which need to be deleted.
1126
1127 If we want to multiply two two-word values and have normal and widening
1128 multiplies of single-word values, we can do this with three smaller
1129 multiplications.
1130
1131 The multiplication proceeds as follows:
1132 _______________________
1133 [__op0_high_|__op0_low__]
1134 _______________________
1135 * [__op1_high_|__op1_low__]
1136 _______________________________________________
1137 _______________________
1138 (1) [__op0_low__*__op1_low__]
1139 _______________________
1140 (2a) [__op0_low__*__op1_high_]
1141 _______________________
1142 (2b) [__op0_high_*__op1_low__]
1143 _______________________
1144 (3) [__op0_high_*__op1_high_]
1145
1146
1147 This gives a 4-word result. Since we are only interested in the
1148 lower 2 words, partial result (3) and the upper words of (2a) and
1149 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1150 calculated using non-widening multiplication.
1151
1152 (1), however, needs to be calculated with an unsigned widening
1153 multiplication. If this operation is not directly supported we
1154 try using a signed widening multiplication and adjust the result.
1155 This adjustment works as follows:
1156
1157 If both operands are positive then no adjustment is needed.
1158
1159 If the operands have different signs, for example op0_low < 0 and
1160 op1_low >= 0, the instruction treats the most significant bit of
1161 op0_low as a sign bit instead of a bit with significance
1162 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1163 with 2**BITS_PER_WORD - op0_low, and two's complements the
1164 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1165 the result.
1166
1167 Similarly, if both operands are negative, we need to add
1168 (op0_low + op1_low) * 2**BITS_PER_WORD.
1169
1170 We use a trick to adjust quickly. We logically shift op0_low right
1171 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1172 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1173 logical shift exists, we do an arithmetic right shift and subtract
1174 the 0 or -1. */
1175
1176 static rtx
1177 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
1178 bool umulp, enum optab_methods methods)
1179 {
1180 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1181 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1182 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1183 rtx product, adjust, product_high, temp;
1184
1185 rtx op0_high = operand_subword_force (op0, high, mode);
1186 rtx op0_low = operand_subword_force (op0, low, mode);
1187 rtx op1_high = operand_subword_force (op1, high, mode);
1188 rtx op1_low = operand_subword_force (op1, low, mode);
1189
1190 /* If we're using an unsigned multiply to directly compute the product
1191 of the low-order words of the operands and perform any required
1192 adjustments of the operands, we begin by trying two more multiplications
1193 and then computing the appropriate sum.
1194
1195 We have checked above that the required addition is provided.
1196 Full-word addition will normally always succeed, especially if
1197 it is provided at all, so we don't worry about its failure. The
1198 multiplication may well fail, however, so we do handle that. */
1199
1200 if (!umulp)
1201 {
1202 /* ??? This could be done with emit_store_flag where available. */
1203 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1204 NULL_RTX, 1, methods);
1205 if (temp)
1206 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1207 NULL_RTX, 0, OPTAB_DIRECT);
1208 else
1209 {
1210 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1211 NULL_RTX, 0, methods);
1212 if (!temp)
1213 return NULL_RTX;
1214 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1215 NULL_RTX, 0, OPTAB_DIRECT);
1216 }
1217
1218 if (!op0_high)
1219 return NULL_RTX;
1220 }
1221
1222 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1223 NULL_RTX, 0, OPTAB_DIRECT);
1224 if (!adjust)
1225 return NULL_RTX;
1226
1227 /* OP0_HIGH should now be dead. */
1228
1229 if (!umulp)
1230 {
1231 /* ??? This could be done with emit_store_flag where available. */
1232 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1233 NULL_RTX, 1, methods);
1234 if (temp)
1235 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1236 NULL_RTX, 0, OPTAB_DIRECT);
1237 else
1238 {
1239 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1240 NULL_RTX, 0, methods);
1241 if (!temp)
1242 return NULL_RTX;
1243 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1244 NULL_RTX, 0, OPTAB_DIRECT);
1245 }
1246
1247 if (!op1_high)
1248 return NULL_RTX;
1249 }
1250
1251 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1252 NULL_RTX, 0, OPTAB_DIRECT);
1253 if (!temp)
1254 return NULL_RTX;
1255
1256 /* OP1_HIGH should now be dead. */
1257
1258 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1259 NULL_RTX, 0, OPTAB_DIRECT);
1260
1261 if (target && !REG_P (target))
1262 target = NULL_RTX;
1263
1264 if (umulp)
1265 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1266 target, 1, OPTAB_DIRECT);
1267 else
1268 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1269 target, 1, OPTAB_DIRECT);
1270
1271 if (!product)
1272 return NULL_RTX;
1273
1274 product_high = operand_subword (product, high, 1, mode);
1275 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1276 NULL_RTX, 0, OPTAB_DIRECT);
1277 emit_move_insn (product_high, adjust);
1278 return product;
1279 }
1280 \f
1281 /* Wrapper around expand_binop which takes an rtx code to specify
1282 the operation to perform, not an optab pointer. All other
1283 arguments are the same. */
1284 rtx
1285 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
1286 rtx op1, rtx target, int unsignedp,
1287 enum optab_methods methods)
1288 {
1289 optab binop = code_to_optab (code);
1290 gcc_assert (binop);
1291
1292 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1293 }
1294
1295 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1296 binop. Order them according to commutative_operand_precedence and, if
1297 possible, try to put TARGET or a pseudo first. */
1298 static bool
1299 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1300 {
1301 int op0_prec = commutative_operand_precedence (op0);
1302 int op1_prec = commutative_operand_precedence (op1);
1303
1304 if (op0_prec < op1_prec)
1305 return true;
1306
1307 if (op0_prec > op1_prec)
1308 return false;
1309
1310 /* With equal precedence, both orders are ok, but it is better if the
1311 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1312 if (target == 0 || REG_P (target))
1313 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1314 else
1315 return rtx_equal_p (op1, target);
1316 }
1317
1318 /* Return true if BINOPTAB implements a shift operation. */
1319
1320 static bool
1321 shift_optab_p (optab binoptab)
1322 {
1323 switch (optab_to_code (binoptab))
1324 {
1325 case ASHIFT:
1326 case SS_ASHIFT:
1327 case US_ASHIFT:
1328 case ASHIFTRT:
1329 case LSHIFTRT:
1330 case ROTATE:
1331 case ROTATERT:
1332 return true;
1333
1334 default:
1335 return false;
1336 }
1337 }
1338
1339 /* Return true if BINOPTAB implements a commutative binary operation. */
1340
1341 static bool
1342 commutative_optab_p (optab binoptab)
1343 {
1344 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1345 || binoptab == smul_widen_optab
1346 || binoptab == umul_widen_optab
1347 || binoptab == smul_highpart_optab
1348 || binoptab == umul_highpart_optab);
1349 }
1350
1351 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1352 optimizing, and if the operand is a constant that costs more than
1353 1 instruction, force the constant into a register and return that
1354 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1355
1356 static rtx
1357 avoid_expensive_constant (machine_mode mode, optab binoptab,
1358 int opn, rtx x, bool unsignedp)
1359 {
1360 bool speed = optimize_insn_for_speed_p ();
1361
1362 if (mode != VOIDmode
1363 && optimize
1364 && CONSTANT_P (x)
1365 && (rtx_cost (x, mode, optab_to_code (binoptab), opn, speed)
1366 > set_src_cost (x, mode, speed)))
1367 {
1368 if (CONST_INT_P (x))
1369 {
1370 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1371 if (intval != INTVAL (x))
1372 x = GEN_INT (intval);
1373 }
1374 else
1375 x = convert_modes (mode, VOIDmode, x, unsignedp);
1376 x = force_reg (mode, x);
1377 }
1378 return x;
1379 }
1380
1381 /* Helper function for expand_binop: handle the case where there
1382 is an insn that directly implements the indicated operation.
1383 Returns null if this is not possible. */
1384 static rtx
1385 expand_binop_directly (machine_mode mode, optab binoptab,
1386 rtx op0, rtx op1,
1387 rtx target, int unsignedp, enum optab_methods methods,
1388 rtx_insn *last)
1389 {
1390 machine_mode from_mode = widened_mode (mode, op0, op1);
1391 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1392 from_mode, 1);
1393 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1394 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1395 machine_mode mode0, mode1, tmp_mode;
1396 struct expand_operand ops[3];
1397 bool commutative_p;
1398 rtx_insn *pat;
1399 rtx xop0 = op0, xop1 = op1;
1400
1401 /* If it is a commutative operator and the modes would match
1402 if we would swap the operands, we can save the conversions. */
1403 commutative_p = commutative_optab_p (binoptab);
1404 if (commutative_p
1405 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1406 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1407 std::swap (xop0, xop1);
1408
1409 /* If we are optimizing, force expensive constants into a register. */
1410 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1411 if (!shift_optab_p (binoptab))
1412 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1413
1414 /* In case the insn wants input operands in modes different from
1415 those of the actual operands, convert the operands. It would
1416 seem that we don't need to convert CONST_INTs, but we do, so
1417 that they're properly zero-extended, sign-extended or truncated
1418 for their mode. */
1419
1420 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1421 if (xmode0 != VOIDmode && xmode0 != mode0)
1422 {
1423 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1424 mode0 = xmode0;
1425 }
1426
1427 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1428 if (xmode1 != VOIDmode && xmode1 != mode1)
1429 {
1430 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1431 mode1 = xmode1;
1432 }
1433
1434 /* If operation is commutative,
1435 try to make the first operand a register.
1436 Even better, try to make it the same as the target.
1437 Also try to make the last operand a constant. */
1438 if (commutative_p
1439 && swap_commutative_operands_with_target (target, xop0, xop1))
1440 std::swap (xop0, xop1);
1441
1442 /* Now, if insn's predicates don't allow our operands, put them into
1443 pseudo regs. */
1444
1445 if (binoptab == vec_pack_trunc_optab
1446 || binoptab == vec_pack_usat_optab
1447 || binoptab == vec_pack_ssat_optab
1448 || binoptab == vec_pack_ufix_trunc_optab
1449 || binoptab == vec_pack_sfix_trunc_optab)
1450 {
1451 /* The mode of the result is different then the mode of the
1452 arguments. */
1453 tmp_mode = insn_data[(int) icode].operand[0].mode;
1454 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1455 {
1456 delete_insns_since (last);
1457 return NULL_RTX;
1458 }
1459 }
1460 else
1461 tmp_mode = mode;
1462
1463 create_output_operand (&ops[0], target, tmp_mode);
1464 create_input_operand (&ops[1], xop0, mode0);
1465 create_input_operand (&ops[2], xop1, mode1);
1466 pat = maybe_gen_insn (icode, 3, ops);
1467 if (pat)
1468 {
1469 /* If PAT is composed of more than one insn, try to add an appropriate
1470 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1471 operand, call expand_binop again, this time without a target. */
1472 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1473 && ! add_equal_note (pat, ops[0].value,
1474 optab_to_code (binoptab),
1475 ops[1].value, ops[2].value))
1476 {
1477 delete_insns_since (last);
1478 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1479 unsignedp, methods);
1480 }
1481
1482 emit_insn (pat);
1483 return ops[0].value;
1484 }
1485 delete_insns_since (last);
1486 return NULL_RTX;
1487 }
1488
1489 /* Generate code to perform an operation specified by BINOPTAB
1490 on operands OP0 and OP1, with result having machine-mode MODE.
1491
1492 UNSIGNEDP is for the case where we have to widen the operands
1493 to perform the operation. It says to use zero-extension.
1494
1495 If TARGET is nonzero, the value
1496 is generated there, if it is convenient to do so.
1497 In all cases an rtx is returned for the locus of the value;
1498 this may or may not be TARGET. */
1499
1500 rtx
1501 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1502 rtx target, int unsignedp, enum optab_methods methods)
1503 {
1504 enum optab_methods next_methods
1505 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1506 ? OPTAB_WIDEN : methods);
1507 enum mode_class mclass;
1508 machine_mode wider_mode;
1509 rtx libfunc;
1510 rtx temp;
1511 rtx_insn *entry_last = get_last_insn ();
1512 rtx_insn *last;
1513
1514 mclass = GET_MODE_CLASS (mode);
1515
1516 /* If subtracting an integer constant, convert this into an addition of
1517 the negated constant. */
1518
1519 if (binoptab == sub_optab && CONST_INT_P (op1))
1520 {
1521 op1 = negate_rtx (mode, op1);
1522 binoptab = add_optab;
1523 }
1524
1525 /* Record where to delete back to if we backtrack. */
1526 last = get_last_insn ();
1527
1528 /* If we can do it with a three-operand insn, do so. */
1529
1530 if (methods != OPTAB_MUST_WIDEN
1531 && find_widening_optab_handler (binoptab, mode,
1532 widened_mode (mode, op0, op1), 1)
1533 != CODE_FOR_nothing)
1534 {
1535 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1536 unsignedp, methods, last);
1537 if (temp)
1538 return temp;
1539 }
1540
1541 /* If we were trying to rotate, and that didn't work, try rotating
1542 the other direction before falling back to shifts and bitwise-or. */
1543 if (((binoptab == rotl_optab
1544 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1545 || (binoptab == rotr_optab
1546 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1547 && mclass == MODE_INT)
1548 {
1549 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1550 rtx newop1;
1551 unsigned int bits = GET_MODE_PRECISION (mode);
1552
1553 if (CONST_INT_P (op1))
1554 newop1 = GEN_INT (bits - INTVAL (op1));
1555 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1556 newop1 = negate_rtx (GET_MODE (op1), op1);
1557 else
1558 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1559 gen_int_mode (bits, GET_MODE (op1)), op1,
1560 NULL_RTX, unsignedp, OPTAB_DIRECT);
1561
1562 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1563 target, unsignedp, methods, last);
1564 if (temp)
1565 return temp;
1566 }
1567
1568 /* If this is a multiply, see if we can do a widening operation that
1569 takes operands of this mode and makes a wider mode. */
1570
1571 if (binoptab == smul_optab
1572 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1573 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1574 : smul_widen_optab),
1575 GET_MODE_2XWIDER_MODE (mode), mode)
1576 != CODE_FOR_nothing))
1577 {
1578 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1579 unsignedp ? umul_widen_optab : smul_widen_optab,
1580 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1581
1582 if (temp != 0)
1583 {
1584 if (GET_MODE_CLASS (mode) == MODE_INT
1585 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1586 return gen_lowpart (mode, temp);
1587 else
1588 return convert_to_mode (mode, temp, unsignedp);
1589 }
1590 }
1591
1592 /* If this is a vector shift by a scalar, see if we can do a vector
1593 shift by a vector. If so, broadcast the scalar into a vector. */
1594 if (mclass == MODE_VECTOR_INT)
1595 {
1596 optab otheroptab = unknown_optab;
1597
1598 if (binoptab == ashl_optab)
1599 otheroptab = vashl_optab;
1600 else if (binoptab == ashr_optab)
1601 otheroptab = vashr_optab;
1602 else if (binoptab == lshr_optab)
1603 otheroptab = vlshr_optab;
1604 else if (binoptab == rotl_optab)
1605 otheroptab = vrotl_optab;
1606 else if (binoptab == rotr_optab)
1607 otheroptab = vrotr_optab;
1608
1609 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1610 {
1611 rtx vop1 = expand_vector_broadcast (mode, op1);
1612 if (vop1)
1613 {
1614 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1615 target, unsignedp, methods, last);
1616 if (temp)
1617 return temp;
1618 }
1619 }
1620 }
1621
1622 /* Look for a wider mode of the same class for which we think we
1623 can open-code the operation. Check for a widening multiply at the
1624 wider mode as well. */
1625
1626 if (CLASS_HAS_WIDER_MODES_P (mclass)
1627 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1628 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1629 wider_mode != VOIDmode;
1630 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1631 {
1632 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1633 || (binoptab == smul_optab
1634 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1635 && (find_widening_optab_handler ((unsignedp
1636 ? umul_widen_optab
1637 : smul_widen_optab),
1638 GET_MODE_WIDER_MODE (wider_mode),
1639 mode, 0)
1640 != CODE_FOR_nothing)))
1641 {
1642 rtx xop0 = op0, xop1 = op1;
1643 int no_extend = 0;
1644
1645 /* For certain integer operations, we need not actually extend
1646 the narrow operands, as long as we will truncate
1647 the results to the same narrowness. */
1648
1649 if ((binoptab == ior_optab || binoptab == and_optab
1650 || binoptab == xor_optab
1651 || binoptab == add_optab || binoptab == sub_optab
1652 || binoptab == smul_optab || binoptab == ashl_optab)
1653 && mclass == MODE_INT)
1654 {
1655 no_extend = 1;
1656 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1657 xop0, unsignedp);
1658 if (binoptab != ashl_optab)
1659 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1660 xop1, unsignedp);
1661 }
1662
1663 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1664
1665 /* The second operand of a shift must always be extended. */
1666 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1667 no_extend && binoptab != ashl_optab);
1668
1669 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1670 unsignedp, OPTAB_DIRECT);
1671 if (temp)
1672 {
1673 if (mclass != MODE_INT
1674 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1675 {
1676 if (target == 0)
1677 target = gen_reg_rtx (mode);
1678 convert_move (target, temp, 0);
1679 return target;
1680 }
1681 else
1682 return gen_lowpart (mode, temp);
1683 }
1684 else
1685 delete_insns_since (last);
1686 }
1687 }
1688
1689 /* If operation is commutative,
1690 try to make the first operand a register.
1691 Even better, try to make it the same as the target.
1692 Also try to make the last operand a constant. */
1693 if (commutative_optab_p (binoptab)
1694 && swap_commutative_operands_with_target (target, op0, op1))
1695 std::swap (op0, op1);
1696
1697 /* These can be done a word at a time. */
1698 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1699 && mclass == MODE_INT
1700 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1701 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1702 {
1703 int i;
1704 rtx_insn *insns;
1705
1706 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1707 won't be accurate, so use a new target. */
1708 if (target == 0
1709 || target == op0
1710 || target == op1
1711 || !valid_multiword_target_p (target))
1712 target = gen_reg_rtx (mode);
1713
1714 start_sequence ();
1715
1716 /* Do the actual arithmetic. */
1717 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1718 {
1719 rtx target_piece = operand_subword (target, i, 1, mode);
1720 rtx x = expand_binop (word_mode, binoptab,
1721 operand_subword_force (op0, i, mode),
1722 operand_subword_force (op1, i, mode),
1723 target_piece, unsignedp, next_methods);
1724
1725 if (x == 0)
1726 break;
1727
1728 if (target_piece != x)
1729 emit_move_insn (target_piece, x);
1730 }
1731
1732 insns = get_insns ();
1733 end_sequence ();
1734
1735 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1736 {
1737 emit_insn (insns);
1738 return target;
1739 }
1740 }
1741
1742 /* Synthesize double word shifts from single word shifts. */
1743 if ((binoptab == lshr_optab || binoptab == ashl_optab
1744 || binoptab == ashr_optab)
1745 && mclass == MODE_INT
1746 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1747 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1748 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1749 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1750 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1751 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1752 {
1753 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1754 machine_mode op1_mode;
1755
1756 double_shift_mask = targetm.shift_truncation_mask (mode);
1757 shift_mask = targetm.shift_truncation_mask (word_mode);
1758 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1759
1760 /* Apply the truncation to constant shifts. */
1761 if (double_shift_mask > 0 && CONST_INT_P (op1))
1762 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1763
1764 if (op1 == CONST0_RTX (op1_mode))
1765 return op0;
1766
1767 /* Make sure that this is a combination that expand_doubleword_shift
1768 can handle. See the comments there for details. */
1769 if (double_shift_mask == 0
1770 || (shift_mask == BITS_PER_WORD - 1
1771 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1772 {
1773 rtx_insn *insns;
1774 rtx into_target, outof_target;
1775 rtx into_input, outof_input;
1776 int left_shift, outof_word;
1777
1778 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1779 won't be accurate, so use a new target. */
1780 if (target == 0
1781 || target == op0
1782 || target == op1
1783 || !valid_multiword_target_p (target))
1784 target = gen_reg_rtx (mode);
1785
1786 start_sequence ();
1787
1788 /* OUTOF_* is the word we are shifting bits away from, and
1789 INTO_* is the word that we are shifting bits towards, thus
1790 they differ depending on the direction of the shift and
1791 WORDS_BIG_ENDIAN. */
1792
1793 left_shift = binoptab == ashl_optab;
1794 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1795
1796 outof_target = operand_subword (target, outof_word, 1, mode);
1797 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1798
1799 outof_input = operand_subword_force (op0, outof_word, mode);
1800 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1801
1802 if (expand_doubleword_shift (op1_mode, binoptab,
1803 outof_input, into_input, op1,
1804 outof_target, into_target,
1805 unsignedp, next_methods, shift_mask))
1806 {
1807 insns = get_insns ();
1808 end_sequence ();
1809
1810 emit_insn (insns);
1811 return target;
1812 }
1813 end_sequence ();
1814 }
1815 }
1816
1817 /* Synthesize double word rotates from single word shifts. */
1818 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1819 && mclass == MODE_INT
1820 && CONST_INT_P (op1)
1821 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1822 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1823 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1824 {
1825 rtx_insn *insns;
1826 rtx into_target, outof_target;
1827 rtx into_input, outof_input;
1828 rtx inter;
1829 int shift_count, left_shift, outof_word;
1830
1831 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1832 won't be accurate, so use a new target. Do this also if target is not
1833 a REG, first because having a register instead may open optimization
1834 opportunities, and second because if target and op0 happen to be MEMs
1835 designating the same location, we would risk clobbering it too early
1836 in the code sequence we generate below. */
1837 if (target == 0
1838 || target == op0
1839 || target == op1
1840 || !REG_P (target)
1841 || !valid_multiword_target_p (target))
1842 target = gen_reg_rtx (mode);
1843
1844 start_sequence ();
1845
1846 shift_count = INTVAL (op1);
1847
1848 /* OUTOF_* is the word we are shifting bits away from, and
1849 INTO_* is the word that we are shifting bits towards, thus
1850 they differ depending on the direction of the shift and
1851 WORDS_BIG_ENDIAN. */
1852
1853 left_shift = (binoptab == rotl_optab);
1854 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1855
1856 outof_target = operand_subword (target, outof_word, 1, mode);
1857 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1858
1859 outof_input = operand_subword_force (op0, outof_word, mode);
1860 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1861
1862 if (shift_count == BITS_PER_WORD)
1863 {
1864 /* This is just a word swap. */
1865 emit_move_insn (outof_target, into_input);
1866 emit_move_insn (into_target, outof_input);
1867 inter = const0_rtx;
1868 }
1869 else
1870 {
1871 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1872 rtx first_shift_count, second_shift_count;
1873 optab reverse_unsigned_shift, unsigned_shift;
1874
1875 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1876 ? lshr_optab : ashl_optab);
1877
1878 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1879 ? ashl_optab : lshr_optab);
1880
1881 if (shift_count > BITS_PER_WORD)
1882 {
1883 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1884 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1885 }
1886 else
1887 {
1888 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1889 second_shift_count = GEN_INT (shift_count);
1890 }
1891
1892 into_temp1 = expand_binop (word_mode, unsigned_shift,
1893 outof_input, first_shift_count,
1894 NULL_RTX, unsignedp, next_methods);
1895 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1896 into_input, second_shift_count,
1897 NULL_RTX, unsignedp, next_methods);
1898
1899 if (into_temp1 != 0 && into_temp2 != 0)
1900 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1901 into_target, unsignedp, next_methods);
1902 else
1903 inter = 0;
1904
1905 if (inter != 0 && inter != into_target)
1906 emit_move_insn (into_target, inter);
1907
1908 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1909 into_input, first_shift_count,
1910 NULL_RTX, unsignedp, next_methods);
1911 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1912 outof_input, second_shift_count,
1913 NULL_RTX, unsignedp, next_methods);
1914
1915 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1916 inter = expand_binop (word_mode, ior_optab,
1917 outof_temp1, outof_temp2,
1918 outof_target, unsignedp, next_methods);
1919
1920 if (inter != 0 && inter != outof_target)
1921 emit_move_insn (outof_target, inter);
1922 }
1923
1924 insns = get_insns ();
1925 end_sequence ();
1926
1927 if (inter != 0)
1928 {
1929 emit_insn (insns);
1930 return target;
1931 }
1932 }
1933
1934 /* These can be done a word at a time by propagating carries. */
1935 if ((binoptab == add_optab || binoptab == sub_optab)
1936 && mclass == MODE_INT
1937 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1938 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1939 {
1940 unsigned int i;
1941 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1942 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1943 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1944 rtx xop0, xop1, xtarget;
1945
1946 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1947 value is one of those, use it. Otherwise, use 1 since it is the
1948 one easiest to get. */
1949 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1950 int normalizep = STORE_FLAG_VALUE;
1951 #else
1952 int normalizep = 1;
1953 #endif
1954
1955 /* Prepare the operands. */
1956 xop0 = force_reg (mode, op0);
1957 xop1 = force_reg (mode, op1);
1958
1959 xtarget = gen_reg_rtx (mode);
1960
1961 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1962 target = xtarget;
1963
1964 /* Indicate for flow that the entire target reg is being set. */
1965 if (REG_P (target))
1966 emit_clobber (xtarget);
1967
1968 /* Do the actual arithmetic. */
1969 for (i = 0; i < nwords; i++)
1970 {
1971 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1972 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1973 rtx op0_piece = operand_subword_force (xop0, index, mode);
1974 rtx op1_piece = operand_subword_force (xop1, index, mode);
1975 rtx x;
1976
1977 /* Main add/subtract of the input operands. */
1978 x = expand_binop (word_mode, binoptab,
1979 op0_piece, op1_piece,
1980 target_piece, unsignedp, next_methods);
1981 if (x == 0)
1982 break;
1983
1984 if (i + 1 < nwords)
1985 {
1986 /* Store carry from main add/subtract. */
1987 carry_out = gen_reg_rtx (word_mode);
1988 carry_out = emit_store_flag_force (carry_out,
1989 (binoptab == add_optab
1990 ? LT : GT),
1991 x, op0_piece,
1992 word_mode, 1, normalizep);
1993 }
1994
1995 if (i > 0)
1996 {
1997 rtx newx;
1998
1999 /* Add/subtract previous carry to main result. */
2000 newx = expand_binop (word_mode,
2001 normalizep == 1 ? binoptab : otheroptab,
2002 x, carry_in,
2003 NULL_RTX, 1, next_methods);
2004
2005 if (i + 1 < nwords)
2006 {
2007 /* Get out carry from adding/subtracting carry in. */
2008 rtx carry_tmp = gen_reg_rtx (word_mode);
2009 carry_tmp = emit_store_flag_force (carry_tmp,
2010 (binoptab == add_optab
2011 ? LT : GT),
2012 newx, x,
2013 word_mode, 1, normalizep);
2014
2015 /* Logical-ior the two poss. carry together. */
2016 carry_out = expand_binop (word_mode, ior_optab,
2017 carry_out, carry_tmp,
2018 carry_out, 0, next_methods);
2019 if (carry_out == 0)
2020 break;
2021 }
2022 emit_move_insn (target_piece, newx);
2023 }
2024 else
2025 {
2026 if (x != target_piece)
2027 emit_move_insn (target_piece, x);
2028 }
2029
2030 carry_in = carry_out;
2031 }
2032
2033 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2034 {
2035 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2036 || ! rtx_equal_p (target, xtarget))
2037 {
2038 rtx_insn *temp = emit_move_insn (target, xtarget);
2039
2040 set_dst_reg_note (temp, REG_EQUAL,
2041 gen_rtx_fmt_ee (optab_to_code (binoptab),
2042 mode, copy_rtx (xop0),
2043 copy_rtx (xop1)),
2044 target);
2045 }
2046 else
2047 target = xtarget;
2048
2049 return target;
2050 }
2051
2052 else
2053 delete_insns_since (last);
2054 }
2055
2056 /* Attempt to synthesize double word multiplies using a sequence of word
2057 mode multiplications. We first attempt to generate a sequence using a
2058 more efficient unsigned widening multiply, and if that fails we then
2059 try using a signed widening multiply. */
2060
2061 if (binoptab == smul_optab
2062 && mclass == MODE_INT
2063 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2064 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2065 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2066 {
2067 rtx product = NULL_RTX;
2068 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2069 != CODE_FOR_nothing)
2070 {
2071 product = expand_doubleword_mult (mode, op0, op1, target,
2072 true, methods);
2073 if (!product)
2074 delete_insns_since (last);
2075 }
2076
2077 if (product == NULL_RTX
2078 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2079 != CODE_FOR_nothing)
2080 {
2081 product = expand_doubleword_mult (mode, op0, op1, target,
2082 false, methods);
2083 if (!product)
2084 delete_insns_since (last);
2085 }
2086
2087 if (product != NULL_RTX)
2088 {
2089 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2090 {
2091 temp = emit_move_insn (target ? target : product, product);
2092 set_dst_reg_note (temp,
2093 REG_EQUAL,
2094 gen_rtx_fmt_ee (MULT, mode,
2095 copy_rtx (op0),
2096 copy_rtx (op1)),
2097 target ? target : product);
2098 }
2099 return product;
2100 }
2101 }
2102
2103 /* It can't be open-coded in this mode.
2104 Use a library call if one is available and caller says that's ok. */
2105
2106 libfunc = optab_libfunc (binoptab, mode);
2107 if (libfunc
2108 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2109 {
2110 rtx_insn *insns;
2111 rtx op1x = op1;
2112 machine_mode op1_mode = mode;
2113 rtx value;
2114
2115 start_sequence ();
2116
2117 if (shift_optab_p (binoptab))
2118 {
2119 op1_mode = targetm.libgcc_shift_count_mode ();
2120 /* Specify unsigned here,
2121 since negative shift counts are meaningless. */
2122 op1x = convert_to_mode (op1_mode, op1, 1);
2123 }
2124
2125 if (GET_MODE (op0) != VOIDmode
2126 && GET_MODE (op0) != mode)
2127 op0 = convert_to_mode (mode, op0, unsignedp);
2128
2129 /* Pass 1 for NO_QUEUE so we don't lose any increments
2130 if the libcall is cse'd or moved. */
2131 value = emit_library_call_value (libfunc,
2132 NULL_RTX, LCT_CONST, mode, 2,
2133 op0, mode, op1x, op1_mode);
2134
2135 insns = get_insns ();
2136 end_sequence ();
2137
2138 target = gen_reg_rtx (mode);
2139 emit_libcall_block_1 (insns, target, value,
2140 gen_rtx_fmt_ee (optab_to_code (binoptab),
2141 mode, op0, op1),
2142 trapv_binoptab_p (binoptab));
2143
2144 return target;
2145 }
2146
2147 delete_insns_since (last);
2148
2149 /* It can't be done in this mode. Can we do it in a wider mode? */
2150
2151 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2152 || methods == OPTAB_MUST_WIDEN))
2153 {
2154 /* Caller says, don't even try. */
2155 delete_insns_since (entry_last);
2156 return 0;
2157 }
2158
2159 /* Compute the value of METHODS to pass to recursive calls.
2160 Don't allow widening to be tried recursively. */
2161
2162 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2163
2164 /* Look for a wider mode of the same class for which it appears we can do
2165 the operation. */
2166
2167 if (CLASS_HAS_WIDER_MODES_P (mclass))
2168 {
2169 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2170 wider_mode != VOIDmode;
2171 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2172 {
2173 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2174 != CODE_FOR_nothing
2175 || (methods == OPTAB_LIB
2176 && optab_libfunc (binoptab, wider_mode)))
2177 {
2178 rtx xop0 = op0, xop1 = op1;
2179 int no_extend = 0;
2180
2181 /* For certain integer operations, we need not actually extend
2182 the narrow operands, as long as we will truncate
2183 the results to the same narrowness. */
2184
2185 if ((binoptab == ior_optab || binoptab == and_optab
2186 || binoptab == xor_optab
2187 || binoptab == add_optab || binoptab == sub_optab
2188 || binoptab == smul_optab || binoptab == ashl_optab)
2189 && mclass == MODE_INT)
2190 no_extend = 1;
2191
2192 xop0 = widen_operand (xop0, wider_mode, mode,
2193 unsignedp, no_extend);
2194
2195 /* The second operand of a shift must always be extended. */
2196 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2197 no_extend && binoptab != ashl_optab);
2198
2199 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2200 unsignedp, methods);
2201 if (temp)
2202 {
2203 if (mclass != MODE_INT
2204 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2205 {
2206 if (target == 0)
2207 target = gen_reg_rtx (mode);
2208 convert_move (target, temp, 0);
2209 return target;
2210 }
2211 else
2212 return gen_lowpart (mode, temp);
2213 }
2214 else
2215 delete_insns_since (last);
2216 }
2217 }
2218 }
2219
2220 delete_insns_since (entry_last);
2221 return 0;
2222 }
2223 \f
2224 /* Expand a binary operator which has both signed and unsigned forms.
2225 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2226 signed operations.
2227
2228 If we widen unsigned operands, we may use a signed wider operation instead
2229 of an unsigned wider operation, since the result would be the same. */
2230
2231 rtx
2232 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
2233 rtx op0, rtx op1, rtx target, int unsignedp,
2234 enum optab_methods methods)
2235 {
2236 rtx temp;
2237 optab direct_optab = unsignedp ? uoptab : soptab;
2238 bool save_enable;
2239
2240 /* Do it without widening, if possible. */
2241 temp = expand_binop (mode, direct_optab, op0, op1, target,
2242 unsignedp, OPTAB_DIRECT);
2243 if (temp || methods == OPTAB_DIRECT)
2244 return temp;
2245
2246 /* Try widening to a signed int. Disable any direct use of any
2247 signed insn in the current mode. */
2248 save_enable = swap_optab_enable (soptab, mode, false);
2249
2250 temp = expand_binop (mode, soptab, op0, op1, target,
2251 unsignedp, OPTAB_WIDEN);
2252
2253 /* For unsigned operands, try widening to an unsigned int. */
2254 if (!temp && unsignedp)
2255 temp = expand_binop (mode, uoptab, op0, op1, target,
2256 unsignedp, OPTAB_WIDEN);
2257 if (temp || methods == OPTAB_WIDEN)
2258 goto egress;
2259
2260 /* Use the right width libcall if that exists. */
2261 temp = expand_binop (mode, direct_optab, op0, op1, target,
2262 unsignedp, OPTAB_LIB);
2263 if (temp || methods == OPTAB_LIB)
2264 goto egress;
2265
2266 /* Must widen and use a libcall, use either signed or unsigned. */
2267 temp = expand_binop (mode, soptab, op0, op1, target,
2268 unsignedp, methods);
2269 if (!temp && unsignedp)
2270 temp = expand_binop (mode, uoptab, op0, op1, target,
2271 unsignedp, methods);
2272
2273 egress:
2274 /* Undo the fiddling above. */
2275 if (save_enable)
2276 swap_optab_enable (soptab, mode, true);
2277 return temp;
2278 }
2279 \f
2280 /* Generate code to perform an operation specified by UNOPPTAB
2281 on operand OP0, with two results to TARG0 and TARG1.
2282 We assume that the order of the operands for the instruction
2283 is TARG0, TARG1, OP0.
2284
2285 Either TARG0 or TARG1 may be zero, but what that means is that
2286 the result is not actually wanted. We will generate it into
2287 a dummy pseudo-reg and discard it. They may not both be zero.
2288
2289 Returns 1 if this operation can be performed; 0 if not. */
2290
2291 int
2292 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2293 int unsignedp)
2294 {
2295 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2296 enum mode_class mclass;
2297 machine_mode wider_mode;
2298 rtx_insn *entry_last = get_last_insn ();
2299 rtx_insn *last;
2300
2301 mclass = GET_MODE_CLASS (mode);
2302
2303 if (!targ0)
2304 targ0 = gen_reg_rtx (mode);
2305 if (!targ1)
2306 targ1 = gen_reg_rtx (mode);
2307
2308 /* Record where to go back to if we fail. */
2309 last = get_last_insn ();
2310
2311 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2312 {
2313 struct expand_operand ops[3];
2314 enum insn_code icode = optab_handler (unoptab, mode);
2315
2316 create_fixed_operand (&ops[0], targ0);
2317 create_fixed_operand (&ops[1], targ1);
2318 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2319 if (maybe_expand_insn (icode, 3, ops))
2320 return 1;
2321 }
2322
2323 /* It can't be done in this mode. Can we do it in a wider mode? */
2324
2325 if (CLASS_HAS_WIDER_MODES_P (mclass))
2326 {
2327 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2328 wider_mode != VOIDmode;
2329 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2330 {
2331 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2332 {
2333 rtx t0 = gen_reg_rtx (wider_mode);
2334 rtx t1 = gen_reg_rtx (wider_mode);
2335 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2336
2337 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2338 {
2339 convert_move (targ0, t0, unsignedp);
2340 convert_move (targ1, t1, unsignedp);
2341 return 1;
2342 }
2343 else
2344 delete_insns_since (last);
2345 }
2346 }
2347 }
2348
2349 delete_insns_since (entry_last);
2350 return 0;
2351 }
2352 \f
2353 /* Generate code to perform an operation specified by BINOPTAB
2354 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2355 We assume that the order of the operands for the instruction
2356 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2357 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2358
2359 Either TARG0 or TARG1 may be zero, but what that means is that
2360 the result is not actually wanted. We will generate it into
2361 a dummy pseudo-reg and discard it. They may not both be zero.
2362
2363 Returns 1 if this operation can be performed; 0 if not. */
2364
2365 int
2366 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2367 int unsignedp)
2368 {
2369 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2370 enum mode_class mclass;
2371 machine_mode wider_mode;
2372 rtx_insn *entry_last = get_last_insn ();
2373 rtx_insn *last;
2374
2375 mclass = GET_MODE_CLASS (mode);
2376
2377 if (!targ0)
2378 targ0 = gen_reg_rtx (mode);
2379 if (!targ1)
2380 targ1 = gen_reg_rtx (mode);
2381
2382 /* Record where to go back to if we fail. */
2383 last = get_last_insn ();
2384
2385 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2386 {
2387 struct expand_operand ops[4];
2388 enum insn_code icode = optab_handler (binoptab, mode);
2389 machine_mode mode0 = insn_data[icode].operand[1].mode;
2390 machine_mode mode1 = insn_data[icode].operand[2].mode;
2391 rtx xop0 = op0, xop1 = op1;
2392
2393 /* If we are optimizing, force expensive constants into a register. */
2394 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2395 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2396
2397 create_fixed_operand (&ops[0], targ0);
2398 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2399 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2400 create_fixed_operand (&ops[3], targ1);
2401 if (maybe_expand_insn (icode, 4, ops))
2402 return 1;
2403 delete_insns_since (last);
2404 }
2405
2406 /* It can't be done in this mode. Can we do it in a wider mode? */
2407
2408 if (CLASS_HAS_WIDER_MODES_P (mclass))
2409 {
2410 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2411 wider_mode != VOIDmode;
2412 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2413 {
2414 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2415 {
2416 rtx t0 = gen_reg_rtx (wider_mode);
2417 rtx t1 = gen_reg_rtx (wider_mode);
2418 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2419 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2420
2421 if (expand_twoval_binop (binoptab, cop0, cop1,
2422 t0, t1, unsignedp))
2423 {
2424 convert_move (targ0, t0, unsignedp);
2425 convert_move (targ1, t1, unsignedp);
2426 return 1;
2427 }
2428 else
2429 delete_insns_since (last);
2430 }
2431 }
2432 }
2433
2434 delete_insns_since (entry_last);
2435 return 0;
2436 }
2437
2438 /* Expand the two-valued library call indicated by BINOPTAB, but
2439 preserve only one of the values. If TARG0 is non-NULL, the first
2440 value is placed into TARG0; otherwise the second value is placed
2441 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2442 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2443 This routine assumes that the value returned by the library call is
2444 as if the return value was of an integral mode twice as wide as the
2445 mode of OP0. Returns 1 if the call was successful. */
2446
2447 bool
2448 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2449 rtx targ0, rtx targ1, enum rtx_code code)
2450 {
2451 machine_mode mode;
2452 machine_mode libval_mode;
2453 rtx libval;
2454 rtx_insn *insns;
2455 rtx libfunc;
2456
2457 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2458 gcc_assert (!targ0 != !targ1);
2459
2460 mode = GET_MODE (op0);
2461 libfunc = optab_libfunc (binoptab, mode);
2462 if (!libfunc)
2463 return false;
2464
2465 /* The value returned by the library function will have twice as
2466 many bits as the nominal MODE. */
2467 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2468 MODE_INT);
2469 start_sequence ();
2470 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2471 libval_mode, 2,
2472 op0, mode,
2473 op1, mode);
2474 /* Get the part of VAL containing the value that we want. */
2475 libval = simplify_gen_subreg (mode, libval, libval_mode,
2476 targ0 ? 0 : GET_MODE_SIZE (mode));
2477 insns = get_insns ();
2478 end_sequence ();
2479 /* Move the into the desired location. */
2480 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2481 gen_rtx_fmt_ee (code, mode, op0, op1));
2482
2483 return true;
2484 }
2485
2486 \f
2487 /* Wrapper around expand_unop which takes an rtx code to specify
2488 the operation to perform, not an optab pointer. All other
2489 arguments are the same. */
2490 rtx
2491 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2492 rtx target, int unsignedp)
2493 {
2494 optab unop = code_to_optab (code);
2495 gcc_assert (unop);
2496
2497 return expand_unop (mode, unop, op0, target, unsignedp);
2498 }
2499
2500 /* Try calculating
2501 (clz:narrow x)
2502 as
2503 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2504
2505 A similar operation can be used for clrsb. UNOPTAB says which operation
2506 we are trying to expand. */
2507 static rtx
2508 widen_leading (machine_mode mode, rtx op0, rtx target, optab unoptab)
2509 {
2510 enum mode_class mclass = GET_MODE_CLASS (mode);
2511 if (CLASS_HAS_WIDER_MODES_P (mclass))
2512 {
2513 machine_mode wider_mode;
2514 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2515 wider_mode != VOIDmode;
2516 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2517 {
2518 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2519 {
2520 rtx xop0, temp;
2521 rtx_insn *last;
2522
2523 last = get_last_insn ();
2524
2525 if (target == 0)
2526 target = gen_reg_rtx (mode);
2527 xop0 = widen_operand (op0, wider_mode, mode,
2528 unoptab != clrsb_optab, false);
2529 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2530 unoptab != clrsb_optab);
2531 if (temp != 0)
2532 temp = expand_binop
2533 (wider_mode, sub_optab, temp,
2534 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2535 - GET_MODE_PRECISION (mode),
2536 wider_mode),
2537 target, true, OPTAB_DIRECT);
2538 if (temp == 0)
2539 delete_insns_since (last);
2540
2541 return temp;
2542 }
2543 }
2544 }
2545 return 0;
2546 }
2547
2548 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2549 quantities, choosing which based on whether the high word is nonzero. */
2550 static rtx
2551 expand_doubleword_clz (machine_mode mode, rtx op0, rtx target)
2552 {
2553 rtx xop0 = force_reg (mode, op0);
2554 rtx subhi = gen_highpart (word_mode, xop0);
2555 rtx sublo = gen_lowpart (word_mode, xop0);
2556 rtx_code_label *hi0_label = gen_label_rtx ();
2557 rtx_code_label *after_label = gen_label_rtx ();
2558 rtx_insn *seq;
2559 rtx temp, result;
2560
2561 /* If we were not given a target, use a word_mode register, not a
2562 'mode' register. The result will fit, and nobody is expecting
2563 anything bigger (the return type of __builtin_clz* is int). */
2564 if (!target)
2565 target = gen_reg_rtx (word_mode);
2566
2567 /* In any case, write to a word_mode scratch in both branches of the
2568 conditional, so we can ensure there is a single move insn setting
2569 'target' to tag a REG_EQUAL note on. */
2570 result = gen_reg_rtx (word_mode);
2571
2572 start_sequence ();
2573
2574 /* If the high word is not equal to zero,
2575 then clz of the full value is clz of the high word. */
2576 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2577 word_mode, true, hi0_label);
2578
2579 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2580 if (!temp)
2581 goto fail;
2582
2583 if (temp != result)
2584 convert_move (result, temp, true);
2585
2586 emit_jump_insn (targetm.gen_jump (after_label));
2587 emit_barrier ();
2588
2589 /* Else clz of the full value is clz of the low word plus the number
2590 of bits in the high word. */
2591 emit_label (hi0_label);
2592
2593 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2594 if (!temp)
2595 goto fail;
2596 temp = expand_binop (word_mode, add_optab, temp,
2597 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2598 result, true, OPTAB_DIRECT);
2599 if (!temp)
2600 goto fail;
2601 if (temp != result)
2602 convert_move (result, temp, true);
2603
2604 emit_label (after_label);
2605 convert_move (target, result, true);
2606
2607 seq = get_insns ();
2608 end_sequence ();
2609
2610 add_equal_note (seq, target, CLZ, xop0, 0);
2611 emit_insn (seq);
2612 return target;
2613
2614 fail:
2615 end_sequence ();
2616 return 0;
2617 }
2618
2619 /* Try calculating
2620 (bswap:narrow x)
2621 as
2622 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2623 static rtx
2624 widen_bswap (machine_mode mode, rtx op0, rtx target)
2625 {
2626 enum mode_class mclass = GET_MODE_CLASS (mode);
2627 machine_mode wider_mode;
2628 rtx x;
2629 rtx_insn *last;
2630
2631 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2632 return NULL_RTX;
2633
2634 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2635 wider_mode != VOIDmode;
2636 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2637 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2638 goto found;
2639 return NULL_RTX;
2640
2641 found:
2642 last = get_last_insn ();
2643
2644 x = widen_operand (op0, wider_mode, mode, true, true);
2645 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2646
2647 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2648 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2649 if (x != 0)
2650 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2651 GET_MODE_BITSIZE (wider_mode)
2652 - GET_MODE_BITSIZE (mode),
2653 NULL_RTX, true);
2654
2655 if (x != 0)
2656 {
2657 if (target == 0)
2658 target = gen_reg_rtx (mode);
2659 emit_move_insn (target, gen_lowpart (mode, x));
2660 }
2661 else
2662 delete_insns_since (last);
2663
2664 return target;
2665 }
2666
2667 /* Try calculating bswap as two bswaps of two word-sized operands. */
2668
2669 static rtx
2670 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2671 {
2672 rtx t0, t1;
2673
2674 t1 = expand_unop (word_mode, bswap_optab,
2675 operand_subword_force (op, 0, mode), NULL_RTX, true);
2676 t0 = expand_unop (word_mode, bswap_optab,
2677 operand_subword_force (op, 1, mode), NULL_RTX, true);
2678
2679 if (target == 0 || !valid_multiword_target_p (target))
2680 target = gen_reg_rtx (mode);
2681 if (REG_P (target))
2682 emit_clobber (target);
2683 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2684 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2685
2686 return target;
2687 }
2688
2689 /* Try calculating (parity x) as (and (popcount x) 1), where
2690 popcount can also be done in a wider mode. */
2691 static rtx
2692 expand_parity (machine_mode mode, rtx op0, rtx target)
2693 {
2694 enum mode_class mclass = GET_MODE_CLASS (mode);
2695 if (CLASS_HAS_WIDER_MODES_P (mclass))
2696 {
2697 machine_mode wider_mode;
2698 for (wider_mode = mode; wider_mode != VOIDmode;
2699 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2700 {
2701 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2702 {
2703 rtx xop0, temp;
2704 rtx_insn *last;
2705
2706 last = get_last_insn ();
2707
2708 if (target == 0)
2709 target = gen_reg_rtx (mode);
2710 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2711 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2712 true);
2713 if (temp != 0)
2714 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2715 target, true, OPTAB_DIRECT);
2716 if (temp == 0)
2717 delete_insns_since (last);
2718
2719 return temp;
2720 }
2721 }
2722 }
2723 return 0;
2724 }
2725
2726 /* Try calculating ctz(x) as K - clz(x & -x) ,
2727 where K is GET_MODE_PRECISION(mode) - 1.
2728
2729 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2730 don't have to worry about what the hardware does in that case. (If
2731 the clz instruction produces the usual value at 0, which is K, the
2732 result of this code sequence will be -1; expand_ffs, below, relies
2733 on this. It might be nice to have it be K instead, for consistency
2734 with the (very few) processors that provide a ctz with a defined
2735 value, but that would take one more instruction, and it would be
2736 less convenient for expand_ffs anyway. */
2737
2738 static rtx
2739 expand_ctz (machine_mode mode, rtx op0, rtx target)
2740 {
2741 rtx_insn *seq;
2742 rtx temp;
2743
2744 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2745 return 0;
2746
2747 start_sequence ();
2748
2749 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2750 if (temp)
2751 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2752 true, OPTAB_DIRECT);
2753 if (temp)
2754 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2755 if (temp)
2756 temp = expand_binop (mode, sub_optab,
2757 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2758 temp, target,
2759 true, OPTAB_DIRECT);
2760 if (temp == 0)
2761 {
2762 end_sequence ();
2763 return 0;
2764 }
2765
2766 seq = get_insns ();
2767 end_sequence ();
2768
2769 add_equal_note (seq, temp, CTZ, op0, 0);
2770 emit_insn (seq);
2771 return temp;
2772 }
2773
2774
2775 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2776 else with the sequence used by expand_clz.
2777
2778 The ffs builtin promises to return zero for a zero value and ctz/clz
2779 may have an undefined value in that case. If they do not give us a
2780 convenient value, we have to generate a test and branch. */
2781 static rtx
2782 expand_ffs (machine_mode mode, rtx op0, rtx target)
2783 {
2784 HOST_WIDE_INT val = 0;
2785 bool defined_at_zero = false;
2786 rtx temp;
2787 rtx_insn *seq;
2788
2789 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2790 {
2791 start_sequence ();
2792
2793 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2794 if (!temp)
2795 goto fail;
2796
2797 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2798 }
2799 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2800 {
2801 start_sequence ();
2802 temp = expand_ctz (mode, op0, 0);
2803 if (!temp)
2804 goto fail;
2805
2806 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2807 {
2808 defined_at_zero = true;
2809 val = (GET_MODE_PRECISION (mode) - 1) - val;
2810 }
2811 }
2812 else
2813 return 0;
2814
2815 if (defined_at_zero && val == -1)
2816 /* No correction needed at zero. */;
2817 else
2818 {
2819 /* We don't try to do anything clever with the situation found
2820 on some processors (eg Alpha) where ctz(0:mode) ==
2821 bitsize(mode). If someone can think of a way to send N to -1
2822 and leave alone all values in the range 0..N-1 (where N is a
2823 power of two), cheaper than this test-and-branch, please add it.
2824
2825 The test-and-branch is done after the operation itself, in case
2826 the operation sets condition codes that can be recycled for this.
2827 (This is true on i386, for instance.) */
2828
2829 rtx_code_label *nonzero_label = gen_label_rtx ();
2830 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2831 mode, true, nonzero_label);
2832
2833 convert_move (temp, GEN_INT (-1), false);
2834 emit_label (nonzero_label);
2835 }
2836
2837 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2838 to produce a value in the range 0..bitsize. */
2839 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2840 target, false, OPTAB_DIRECT);
2841 if (!temp)
2842 goto fail;
2843
2844 seq = get_insns ();
2845 end_sequence ();
2846
2847 add_equal_note (seq, temp, FFS, op0, 0);
2848 emit_insn (seq);
2849 return temp;
2850
2851 fail:
2852 end_sequence ();
2853 return 0;
2854 }
2855
2856 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2857 conditions, VAL may already be a SUBREG against which we cannot generate
2858 a further SUBREG. In this case, we expect forcing the value into a
2859 register will work around the situation. */
2860
2861 static rtx
2862 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2863 machine_mode imode)
2864 {
2865 rtx ret;
2866 ret = lowpart_subreg (omode, val, imode);
2867 if (ret == NULL)
2868 {
2869 val = force_reg (imode, val);
2870 ret = lowpart_subreg (omode, val, imode);
2871 gcc_assert (ret != NULL);
2872 }
2873 return ret;
2874 }
2875
2876 /* Expand a floating point absolute value or negation operation via a
2877 logical operation on the sign bit. */
2878
2879 static rtx
2880 expand_absneg_bit (enum rtx_code code, machine_mode mode,
2881 rtx op0, rtx target)
2882 {
2883 const struct real_format *fmt;
2884 int bitpos, word, nwords, i;
2885 machine_mode imode;
2886 rtx temp;
2887 rtx_insn *insns;
2888
2889 /* The format has to have a simple sign bit. */
2890 fmt = REAL_MODE_FORMAT (mode);
2891 if (fmt == NULL)
2892 return NULL_RTX;
2893
2894 bitpos = fmt->signbit_rw;
2895 if (bitpos < 0)
2896 return NULL_RTX;
2897
2898 /* Don't create negative zeros if the format doesn't support them. */
2899 if (code == NEG && !fmt->has_signed_zero)
2900 return NULL_RTX;
2901
2902 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2903 {
2904 imode = int_mode_for_mode (mode);
2905 if (imode == BLKmode)
2906 return NULL_RTX;
2907 word = 0;
2908 nwords = 1;
2909 }
2910 else
2911 {
2912 imode = word_mode;
2913
2914 if (FLOAT_WORDS_BIG_ENDIAN)
2915 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2916 else
2917 word = bitpos / BITS_PER_WORD;
2918 bitpos = bitpos % BITS_PER_WORD;
2919 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2920 }
2921
2922 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2923 if (code == ABS)
2924 mask = ~mask;
2925
2926 if (target == 0
2927 || target == op0
2928 || (nwords > 1 && !valid_multiword_target_p (target)))
2929 target = gen_reg_rtx (mode);
2930
2931 if (nwords > 1)
2932 {
2933 start_sequence ();
2934
2935 for (i = 0; i < nwords; ++i)
2936 {
2937 rtx targ_piece = operand_subword (target, i, 1, mode);
2938 rtx op0_piece = operand_subword_force (op0, i, mode);
2939
2940 if (i == word)
2941 {
2942 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2943 op0_piece,
2944 immed_wide_int_const (mask, imode),
2945 targ_piece, 1, OPTAB_LIB_WIDEN);
2946 if (temp != targ_piece)
2947 emit_move_insn (targ_piece, temp);
2948 }
2949 else
2950 emit_move_insn (targ_piece, op0_piece);
2951 }
2952
2953 insns = get_insns ();
2954 end_sequence ();
2955
2956 emit_insn (insns);
2957 }
2958 else
2959 {
2960 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2961 gen_lowpart (imode, op0),
2962 immed_wide_int_const (mask, imode),
2963 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2964 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2965
2966 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2967 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2968 target);
2969 }
2970
2971 return target;
2972 }
2973
2974 /* As expand_unop, but will fail rather than attempt the operation in a
2975 different mode or with a libcall. */
2976 static rtx
2977 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2978 int unsignedp)
2979 {
2980 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2981 {
2982 struct expand_operand ops[2];
2983 enum insn_code icode = optab_handler (unoptab, mode);
2984 rtx_insn *last = get_last_insn ();
2985 rtx_insn *pat;
2986
2987 create_output_operand (&ops[0], target, mode);
2988 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2989 pat = maybe_gen_insn (icode, 2, ops);
2990 if (pat)
2991 {
2992 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2993 && ! add_equal_note (pat, ops[0].value,
2994 optab_to_code (unoptab),
2995 ops[1].value, NULL_RTX))
2996 {
2997 delete_insns_since (last);
2998 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2999 }
3000
3001 emit_insn (pat);
3002
3003 return ops[0].value;
3004 }
3005 }
3006 return 0;
3007 }
3008
3009 /* Generate code to perform an operation specified by UNOPTAB
3010 on operand OP0, with result having machine-mode MODE.
3011
3012 UNSIGNEDP is for the case where we have to widen the operands
3013 to perform the operation. It says to use zero-extension.
3014
3015 If TARGET is nonzero, the value
3016 is generated there, if it is convenient to do so.
3017 In all cases an rtx is returned for the locus of the value;
3018 this may or may not be TARGET. */
3019
3020 rtx
3021 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
3022 int unsignedp)
3023 {
3024 enum mode_class mclass = GET_MODE_CLASS (mode);
3025 machine_mode wider_mode;
3026 rtx temp;
3027 rtx libfunc;
3028
3029 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3030 if (temp)
3031 return temp;
3032
3033 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3034
3035 /* Widening (or narrowing) clz needs special treatment. */
3036 if (unoptab == clz_optab)
3037 {
3038 temp = widen_leading (mode, op0, target, unoptab);
3039 if (temp)
3040 return temp;
3041
3042 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3043 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3044 {
3045 temp = expand_doubleword_clz (mode, op0, target);
3046 if (temp)
3047 return temp;
3048 }
3049
3050 goto try_libcall;
3051 }
3052
3053 if (unoptab == clrsb_optab)
3054 {
3055 temp = widen_leading (mode, op0, target, unoptab);
3056 if (temp)
3057 return temp;
3058 goto try_libcall;
3059 }
3060
3061 /* Widening (or narrowing) bswap needs special treatment. */
3062 if (unoptab == bswap_optab)
3063 {
3064 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3065 or ROTATERT. First try these directly; if this fails, then try the
3066 obvious pair of shifts with allowed widening, as this will probably
3067 be always more efficient than the other fallback methods. */
3068 if (mode == HImode)
3069 {
3070 rtx_insn *last;
3071 rtx temp1, temp2;
3072
3073 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3074 {
3075 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3076 unsignedp, OPTAB_DIRECT);
3077 if (temp)
3078 return temp;
3079 }
3080
3081 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3082 {
3083 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3084 unsignedp, OPTAB_DIRECT);
3085 if (temp)
3086 return temp;
3087 }
3088
3089 last = get_last_insn ();
3090
3091 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3092 unsignedp, OPTAB_WIDEN);
3093 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3094 unsignedp, OPTAB_WIDEN);
3095 if (temp1 && temp2)
3096 {
3097 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3098 unsignedp, OPTAB_WIDEN);
3099 if (temp)
3100 return temp;
3101 }
3102
3103 delete_insns_since (last);
3104 }
3105
3106 temp = widen_bswap (mode, op0, target);
3107 if (temp)
3108 return temp;
3109
3110 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3111 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3112 {
3113 temp = expand_doubleword_bswap (mode, op0, target);
3114 if (temp)
3115 return temp;
3116 }
3117
3118 goto try_libcall;
3119 }
3120
3121 if (CLASS_HAS_WIDER_MODES_P (mclass))
3122 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3123 wider_mode != VOIDmode;
3124 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3125 {
3126 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3127 {
3128 rtx xop0 = op0;
3129 rtx_insn *last = get_last_insn ();
3130
3131 /* For certain operations, we need not actually extend
3132 the narrow operand, as long as we will truncate the
3133 results to the same narrowness. */
3134
3135 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3136 (unoptab == neg_optab
3137 || unoptab == one_cmpl_optab)
3138 && mclass == MODE_INT);
3139
3140 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3141 unsignedp);
3142
3143 if (temp)
3144 {
3145 if (mclass != MODE_INT
3146 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3147 {
3148 if (target == 0)
3149 target = gen_reg_rtx (mode);
3150 convert_move (target, temp, 0);
3151 return target;
3152 }
3153 else
3154 return gen_lowpart (mode, temp);
3155 }
3156 else
3157 delete_insns_since (last);
3158 }
3159 }
3160
3161 /* These can be done a word at a time. */
3162 if (unoptab == one_cmpl_optab
3163 && mclass == MODE_INT
3164 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3165 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3166 {
3167 int i;
3168 rtx_insn *insns;
3169
3170 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3171 target = gen_reg_rtx (mode);
3172
3173 start_sequence ();
3174
3175 /* Do the actual arithmetic. */
3176 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3177 {
3178 rtx target_piece = operand_subword (target, i, 1, mode);
3179 rtx x = expand_unop (word_mode, unoptab,
3180 operand_subword_force (op0, i, mode),
3181 target_piece, unsignedp);
3182
3183 if (target_piece != x)
3184 emit_move_insn (target_piece, x);
3185 }
3186
3187 insns = get_insns ();
3188 end_sequence ();
3189
3190 emit_insn (insns);
3191 return target;
3192 }
3193
3194 if (optab_to_code (unoptab) == NEG)
3195 {
3196 /* Try negating floating point values by flipping the sign bit. */
3197 if (SCALAR_FLOAT_MODE_P (mode))
3198 {
3199 temp = expand_absneg_bit (NEG, mode, op0, target);
3200 if (temp)
3201 return temp;
3202 }
3203
3204 /* If there is no negation pattern, and we have no negative zero,
3205 try subtracting from zero. */
3206 if (!HONOR_SIGNED_ZEROS (mode))
3207 {
3208 temp = expand_binop (mode, (unoptab == negv_optab
3209 ? subv_optab : sub_optab),
3210 CONST0_RTX (mode), op0, target,
3211 unsignedp, OPTAB_DIRECT);
3212 if (temp)
3213 return temp;
3214 }
3215 }
3216
3217 /* Try calculating parity (x) as popcount (x) % 2. */
3218 if (unoptab == parity_optab)
3219 {
3220 temp = expand_parity (mode, op0, target);
3221 if (temp)
3222 return temp;
3223 }
3224
3225 /* Try implementing ffs (x) in terms of clz (x). */
3226 if (unoptab == ffs_optab)
3227 {
3228 temp = expand_ffs (mode, op0, target);
3229 if (temp)
3230 return temp;
3231 }
3232
3233 /* Try implementing ctz (x) in terms of clz (x). */
3234 if (unoptab == ctz_optab)
3235 {
3236 temp = expand_ctz (mode, op0, target);
3237 if (temp)
3238 return temp;
3239 }
3240
3241 try_libcall:
3242 /* Now try a library call in this mode. */
3243 libfunc = optab_libfunc (unoptab, mode);
3244 if (libfunc)
3245 {
3246 rtx_insn *insns;
3247 rtx value;
3248 rtx eq_value;
3249 machine_mode outmode = mode;
3250
3251 /* All of these functions return small values. Thus we choose to
3252 have them return something that isn't a double-word. */
3253 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3254 || unoptab == clrsb_optab || unoptab == popcount_optab
3255 || unoptab == parity_optab)
3256 outmode
3257 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3258 optab_libfunc (unoptab, mode)));
3259
3260 start_sequence ();
3261
3262 /* Pass 1 for NO_QUEUE so we don't lose any increments
3263 if the libcall is cse'd or moved. */
3264 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3265 1, op0, mode);
3266 insns = get_insns ();
3267 end_sequence ();
3268
3269 target = gen_reg_rtx (outmode);
3270 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3271 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3272 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3273 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3274 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3275 emit_libcall_block_1 (insns, target, value, eq_value,
3276 trapv_unoptab_p (unoptab));
3277
3278 return target;
3279 }
3280
3281 /* It can't be done in this mode. Can we do it in a wider mode? */
3282
3283 if (CLASS_HAS_WIDER_MODES_P (mclass))
3284 {
3285 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3286 wider_mode != VOIDmode;
3287 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3288 {
3289 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3290 || optab_libfunc (unoptab, wider_mode))
3291 {
3292 rtx xop0 = op0;
3293 rtx_insn *last = get_last_insn ();
3294
3295 /* For certain operations, we need not actually extend
3296 the narrow operand, as long as we will truncate the
3297 results to the same narrowness. */
3298 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3299 (unoptab == neg_optab
3300 || unoptab == one_cmpl_optab
3301 || unoptab == bswap_optab)
3302 && mclass == MODE_INT);
3303
3304 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3305 unsignedp);
3306
3307 /* If we are generating clz using wider mode, adjust the
3308 result. Similarly for clrsb. */
3309 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3310 && temp != 0)
3311 temp = expand_binop
3312 (wider_mode, sub_optab, temp,
3313 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3314 - GET_MODE_PRECISION (mode),
3315 wider_mode),
3316 target, true, OPTAB_DIRECT);
3317
3318 /* Likewise for bswap. */
3319 if (unoptab == bswap_optab && temp != 0)
3320 {
3321 gcc_assert (GET_MODE_PRECISION (wider_mode)
3322 == GET_MODE_BITSIZE (wider_mode)
3323 && GET_MODE_PRECISION (mode)
3324 == GET_MODE_BITSIZE (mode));
3325
3326 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3327 GET_MODE_BITSIZE (wider_mode)
3328 - GET_MODE_BITSIZE (mode),
3329 NULL_RTX, true);
3330 }
3331
3332 if (temp)
3333 {
3334 if (mclass != MODE_INT)
3335 {
3336 if (target == 0)
3337 target = gen_reg_rtx (mode);
3338 convert_move (target, temp, 0);
3339 return target;
3340 }
3341 else
3342 return gen_lowpart (mode, temp);
3343 }
3344 else
3345 delete_insns_since (last);
3346 }
3347 }
3348 }
3349
3350 /* One final attempt at implementing negation via subtraction,
3351 this time allowing widening of the operand. */
3352 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3353 {
3354 rtx temp;
3355 temp = expand_binop (mode,
3356 unoptab == negv_optab ? subv_optab : sub_optab,
3357 CONST0_RTX (mode), op0,
3358 target, unsignedp, OPTAB_LIB_WIDEN);
3359 if (temp)
3360 return temp;
3361 }
3362
3363 return 0;
3364 }
3365 \f
3366 /* Emit code to compute the absolute value of OP0, with result to
3367 TARGET if convenient. (TARGET may be 0.) The return value says
3368 where the result actually is to be found.
3369
3370 MODE is the mode of the operand; the mode of the result is
3371 different but can be deduced from MODE.
3372
3373 */
3374
3375 rtx
3376 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3377 int result_unsignedp)
3378 {
3379 rtx temp;
3380
3381 if (GET_MODE_CLASS (mode) != MODE_INT
3382 || ! flag_trapv)
3383 result_unsignedp = 1;
3384
3385 /* First try to do it with a special abs instruction. */
3386 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3387 op0, target, 0);
3388 if (temp != 0)
3389 return temp;
3390
3391 /* For floating point modes, try clearing the sign bit. */
3392 if (SCALAR_FLOAT_MODE_P (mode))
3393 {
3394 temp = expand_absneg_bit (ABS, mode, op0, target);
3395 if (temp)
3396 return temp;
3397 }
3398
3399 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3400 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3401 && !HONOR_SIGNED_ZEROS (mode))
3402 {
3403 rtx_insn *last = get_last_insn ();
3404
3405 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3406 op0, NULL_RTX, 0);
3407 if (temp != 0)
3408 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3409 OPTAB_WIDEN);
3410
3411 if (temp != 0)
3412 return temp;
3413
3414 delete_insns_since (last);
3415 }
3416
3417 /* If this machine has expensive jumps, we can do integer absolute
3418 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3419 where W is the width of MODE. */
3420
3421 if (GET_MODE_CLASS (mode) == MODE_INT
3422 && BRANCH_COST (optimize_insn_for_speed_p (),
3423 false) >= 2)
3424 {
3425 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3426 GET_MODE_PRECISION (mode) - 1,
3427 NULL_RTX, 0);
3428
3429 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3430 OPTAB_LIB_WIDEN);
3431 if (temp != 0)
3432 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3433 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3434
3435 if (temp != 0)
3436 return temp;
3437 }
3438
3439 return NULL_RTX;
3440 }
3441
3442 rtx
3443 expand_abs (machine_mode mode, rtx op0, rtx target,
3444 int result_unsignedp, int safe)
3445 {
3446 rtx temp;
3447 rtx_code_label *op1;
3448
3449 if (GET_MODE_CLASS (mode) != MODE_INT
3450 || ! flag_trapv)
3451 result_unsignedp = 1;
3452
3453 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3454 if (temp != 0)
3455 return temp;
3456
3457 /* If that does not win, use conditional jump and negate. */
3458
3459 /* It is safe to use the target if it is the same
3460 as the source if this is also a pseudo register */
3461 if (op0 == target && REG_P (op0)
3462 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3463 safe = 1;
3464
3465 op1 = gen_label_rtx ();
3466 if (target == 0 || ! safe
3467 || GET_MODE (target) != mode
3468 || (MEM_P (target) && MEM_VOLATILE_P (target))
3469 || (REG_P (target)
3470 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3471 target = gen_reg_rtx (mode);
3472
3473 emit_move_insn (target, op0);
3474 NO_DEFER_POP;
3475
3476 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3477 NULL_RTX, NULL, op1, -1);
3478
3479 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3480 target, target, 0);
3481 if (op0 != target)
3482 emit_move_insn (target, op0);
3483 emit_label (op1);
3484 OK_DEFER_POP;
3485 return target;
3486 }
3487
3488 /* Emit code to compute the one's complement absolute value of OP0
3489 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3490 (TARGET may be NULL_RTX.) The return value says where the result
3491 actually is to be found.
3492
3493 MODE is the mode of the operand; the mode of the result is
3494 different but can be deduced from MODE. */
3495
3496 rtx
3497 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3498 {
3499 rtx temp;
3500
3501 /* Not applicable for floating point modes. */
3502 if (FLOAT_MODE_P (mode))
3503 return NULL_RTX;
3504
3505 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3506 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3507 {
3508 rtx_insn *last = get_last_insn ();
3509
3510 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3511 if (temp != 0)
3512 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3513 OPTAB_WIDEN);
3514
3515 if (temp != 0)
3516 return temp;
3517
3518 delete_insns_since (last);
3519 }
3520
3521 /* If this machine has expensive jumps, we can do one's complement
3522 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3523
3524 if (GET_MODE_CLASS (mode) == MODE_INT
3525 && BRANCH_COST (optimize_insn_for_speed_p (),
3526 false) >= 2)
3527 {
3528 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3529 GET_MODE_PRECISION (mode) - 1,
3530 NULL_RTX, 0);
3531
3532 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3533 OPTAB_LIB_WIDEN);
3534
3535 if (temp != 0)
3536 return temp;
3537 }
3538
3539 return NULL_RTX;
3540 }
3541
3542 /* A subroutine of expand_copysign, perform the copysign operation using the
3543 abs and neg primitives advertised to exist on the target. The assumption
3544 is that we have a split register file, and leaving op0 in fp registers,
3545 and not playing with subregs so much, will help the register allocator. */
3546
3547 static rtx
3548 expand_copysign_absneg (machine_mode mode, rtx op0, rtx op1, rtx target,
3549 int bitpos, bool op0_is_abs)
3550 {
3551 machine_mode imode;
3552 enum insn_code icode;
3553 rtx sign;
3554 rtx_code_label *label;
3555
3556 if (target == op1)
3557 target = NULL_RTX;
3558
3559 /* Check if the back end provides an insn that handles signbit for the
3560 argument's mode. */
3561 icode = optab_handler (signbit_optab, mode);
3562 if (icode != CODE_FOR_nothing)
3563 {
3564 imode = insn_data[(int) icode].operand[0].mode;
3565 sign = gen_reg_rtx (imode);
3566 emit_unop_insn (icode, sign, op1, UNKNOWN);
3567 }
3568 else
3569 {
3570 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3571 {
3572 imode = int_mode_for_mode (mode);
3573 if (imode == BLKmode)
3574 return NULL_RTX;
3575 op1 = gen_lowpart (imode, op1);
3576 }
3577 else
3578 {
3579 int word;
3580
3581 imode = word_mode;
3582 if (FLOAT_WORDS_BIG_ENDIAN)
3583 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3584 else
3585 word = bitpos / BITS_PER_WORD;
3586 bitpos = bitpos % BITS_PER_WORD;
3587 op1 = operand_subword_force (op1, word, mode);
3588 }
3589
3590 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3591 sign = expand_binop (imode, and_optab, op1,
3592 immed_wide_int_const (mask, imode),
3593 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3594 }
3595
3596 if (!op0_is_abs)
3597 {
3598 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3599 if (op0 == NULL)
3600 return NULL_RTX;
3601 target = op0;
3602 }
3603 else
3604 {
3605 if (target == NULL_RTX)
3606 target = copy_to_reg (op0);
3607 else
3608 emit_move_insn (target, op0);
3609 }
3610
3611 label = gen_label_rtx ();
3612 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3613
3614 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3615 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3616 else
3617 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3618 if (op0 != target)
3619 emit_move_insn (target, op0);
3620
3621 emit_label (label);
3622
3623 return target;
3624 }
3625
3626
3627 /* A subroutine of expand_copysign, perform the entire copysign operation
3628 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3629 is true if op0 is known to have its sign bit clear. */
3630
3631 static rtx
3632 expand_copysign_bit (machine_mode mode, rtx op0, rtx op1, rtx target,
3633 int bitpos, bool op0_is_abs)
3634 {
3635 machine_mode imode;
3636 int word, nwords, i;
3637 rtx temp;
3638 rtx_insn *insns;
3639
3640 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3641 {
3642 imode = int_mode_for_mode (mode);
3643 if (imode == BLKmode)
3644 return NULL_RTX;
3645 word = 0;
3646 nwords = 1;
3647 }
3648 else
3649 {
3650 imode = word_mode;
3651
3652 if (FLOAT_WORDS_BIG_ENDIAN)
3653 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3654 else
3655 word = bitpos / BITS_PER_WORD;
3656 bitpos = bitpos % BITS_PER_WORD;
3657 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3658 }
3659
3660 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3661
3662 if (target == 0
3663 || target == op0
3664 || target == op1
3665 || (nwords > 1 && !valid_multiword_target_p (target)))
3666 target = gen_reg_rtx (mode);
3667
3668 if (nwords > 1)
3669 {
3670 start_sequence ();
3671
3672 for (i = 0; i < nwords; ++i)
3673 {
3674 rtx targ_piece = operand_subword (target, i, 1, mode);
3675 rtx op0_piece = operand_subword_force (op0, i, mode);
3676
3677 if (i == word)
3678 {
3679 if (!op0_is_abs)
3680 op0_piece
3681 = expand_binop (imode, and_optab, op0_piece,
3682 immed_wide_int_const (~mask, imode),
3683 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3684 op1 = expand_binop (imode, and_optab,
3685 operand_subword_force (op1, i, mode),
3686 immed_wide_int_const (mask, imode),
3687 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3688
3689 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3690 targ_piece, 1, OPTAB_LIB_WIDEN);
3691 if (temp != targ_piece)
3692 emit_move_insn (targ_piece, temp);
3693 }
3694 else
3695 emit_move_insn (targ_piece, op0_piece);
3696 }
3697
3698 insns = get_insns ();
3699 end_sequence ();
3700
3701 emit_insn (insns);
3702 }
3703 else
3704 {
3705 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3706 immed_wide_int_const (mask, imode),
3707 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3708
3709 op0 = gen_lowpart (imode, op0);
3710 if (!op0_is_abs)
3711 op0 = expand_binop (imode, and_optab, op0,
3712 immed_wide_int_const (~mask, imode),
3713 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3714
3715 temp = expand_binop (imode, ior_optab, op0, op1,
3716 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3717 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3718 }
3719
3720 return target;
3721 }
3722
3723 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3724 scalar floating point mode. Return NULL if we do not know how to
3725 expand the operation inline. */
3726
3727 rtx
3728 expand_copysign (rtx op0, rtx op1, rtx target)
3729 {
3730 machine_mode mode = GET_MODE (op0);
3731 const struct real_format *fmt;
3732 bool op0_is_abs;
3733 rtx temp;
3734
3735 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3736 gcc_assert (GET_MODE (op1) == mode);
3737
3738 /* First try to do it with a special instruction. */
3739 temp = expand_binop (mode, copysign_optab, op0, op1,
3740 target, 0, OPTAB_DIRECT);
3741 if (temp)
3742 return temp;
3743
3744 fmt = REAL_MODE_FORMAT (mode);
3745 if (fmt == NULL || !fmt->has_signed_zero)
3746 return NULL_RTX;
3747
3748 op0_is_abs = false;
3749 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3750 {
3751 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3752 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3753 op0_is_abs = true;
3754 }
3755
3756 if (fmt->signbit_ro >= 0
3757 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3758 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3759 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3760 {
3761 temp = expand_copysign_absneg (mode, op0, op1, target,
3762 fmt->signbit_ro, op0_is_abs);
3763 if (temp)
3764 return temp;
3765 }
3766
3767 if (fmt->signbit_rw < 0)
3768 return NULL_RTX;
3769 return expand_copysign_bit (mode, op0, op1, target,
3770 fmt->signbit_rw, op0_is_abs);
3771 }
3772 \f
3773 /* Generate an instruction whose insn-code is INSN_CODE,
3774 with two operands: an output TARGET and an input OP0.
3775 TARGET *must* be nonzero, and the output is always stored there.
3776 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3777 the value that is stored into TARGET.
3778
3779 Return false if expansion failed. */
3780
3781 bool
3782 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3783 enum rtx_code code)
3784 {
3785 struct expand_operand ops[2];
3786 rtx_insn *pat;
3787
3788 create_output_operand (&ops[0], target, GET_MODE (target));
3789 create_input_operand (&ops[1], op0, GET_MODE (op0));
3790 pat = maybe_gen_insn (icode, 2, ops);
3791 if (!pat)
3792 return false;
3793
3794 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3795 && code != UNKNOWN)
3796 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3797
3798 emit_insn (pat);
3799
3800 if (ops[0].value != target)
3801 emit_move_insn (target, ops[0].value);
3802 return true;
3803 }
3804 /* Generate an instruction whose insn-code is INSN_CODE,
3805 with two operands: an output TARGET and an input OP0.
3806 TARGET *must* be nonzero, and the output is always stored there.
3807 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3808 the value that is stored into TARGET. */
3809
3810 void
3811 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3812 {
3813 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3814 gcc_assert (ok);
3815 }
3816 \f
3817 struct no_conflict_data
3818 {
3819 rtx target;
3820 rtx_insn *first, *insn;
3821 bool must_stay;
3822 };
3823
3824 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3825 the currently examined clobber / store has to stay in the list of
3826 insns that constitute the actual libcall block. */
3827 static void
3828 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3829 {
3830 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3831
3832 /* If this inns directly contributes to setting the target, it must stay. */
3833 if (reg_overlap_mentioned_p (p->target, dest))
3834 p->must_stay = true;
3835 /* If we haven't committed to keeping any other insns in the list yet,
3836 there is nothing more to check. */
3837 else if (p->insn == p->first)
3838 return;
3839 /* If this insn sets / clobbers a register that feeds one of the insns
3840 already in the list, this insn has to stay too. */
3841 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3842 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3843 || reg_used_between_p (dest, p->first, p->insn)
3844 /* Likewise if this insn depends on a register set by a previous
3845 insn in the list, or if it sets a result (presumably a hard
3846 register) that is set or clobbered by a previous insn.
3847 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3848 SET_DEST perform the former check on the address, and the latter
3849 check on the MEM. */
3850 || (GET_CODE (set) == SET
3851 && (modified_in_p (SET_SRC (set), p->first)
3852 || modified_in_p (SET_DEST (set), p->first)
3853 || modified_between_p (SET_SRC (set), p->first, p->insn)
3854 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3855 p->must_stay = true;
3856 }
3857
3858 \f
3859 /* Emit code to make a call to a constant function or a library call.
3860
3861 INSNS is a list containing all insns emitted in the call.
3862 These insns leave the result in RESULT. Our block is to copy RESULT
3863 to TARGET, which is logically equivalent to EQUIV.
3864
3865 We first emit any insns that set a pseudo on the assumption that these are
3866 loading constants into registers; doing so allows them to be safely cse'ed
3867 between blocks. Then we emit all the other insns in the block, followed by
3868 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3869 note with an operand of EQUIV. */
3870
3871 static void
3872 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3873 bool equiv_may_trap)
3874 {
3875 rtx final_dest = target;
3876 rtx_insn *next, *last, *insn;
3877
3878 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3879 into a MEM later. Protect the libcall block from this change. */
3880 if (! REG_P (target) || REG_USERVAR_P (target))
3881 target = gen_reg_rtx (GET_MODE (target));
3882
3883 /* If we're using non-call exceptions, a libcall corresponding to an
3884 operation that may trap may also trap. */
3885 /* ??? See the comment in front of make_reg_eh_region_note. */
3886 if (cfun->can_throw_non_call_exceptions
3887 && (equiv_may_trap || may_trap_p (equiv)))
3888 {
3889 for (insn = insns; insn; insn = NEXT_INSN (insn))
3890 if (CALL_P (insn))
3891 {
3892 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3893 if (note)
3894 {
3895 int lp_nr = INTVAL (XEXP (note, 0));
3896 if (lp_nr == 0 || lp_nr == INT_MIN)
3897 remove_note (insn, note);
3898 }
3899 }
3900 }
3901 else
3902 {
3903 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3904 reg note to indicate that this call cannot throw or execute a nonlocal
3905 goto (unless there is already a REG_EH_REGION note, in which case
3906 we update it). */
3907 for (insn = insns; insn; insn = NEXT_INSN (insn))
3908 if (CALL_P (insn))
3909 make_reg_eh_region_note_nothrow_nononlocal (insn);
3910 }
3911
3912 /* First emit all insns that set pseudos. Remove them from the list as
3913 we go. Avoid insns that set pseudos which were referenced in previous
3914 insns. These can be generated by move_by_pieces, for example,
3915 to update an address. Similarly, avoid insns that reference things
3916 set in previous insns. */
3917
3918 for (insn = insns; insn; insn = next)
3919 {
3920 rtx set = single_set (insn);
3921
3922 next = NEXT_INSN (insn);
3923
3924 if (set != 0 && REG_P (SET_DEST (set))
3925 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3926 {
3927 struct no_conflict_data data;
3928
3929 data.target = const0_rtx;
3930 data.first = insns;
3931 data.insn = insn;
3932 data.must_stay = 0;
3933 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3934 if (! data.must_stay)
3935 {
3936 if (PREV_INSN (insn))
3937 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3938 else
3939 insns = next;
3940
3941 if (next)
3942 SET_PREV_INSN (next) = PREV_INSN (insn);
3943
3944 add_insn (insn);
3945 }
3946 }
3947
3948 /* Some ports use a loop to copy large arguments onto the stack.
3949 Don't move anything outside such a loop. */
3950 if (LABEL_P (insn))
3951 break;
3952 }
3953
3954 /* Write the remaining insns followed by the final copy. */
3955 for (insn = insns; insn; insn = next)
3956 {
3957 next = NEXT_INSN (insn);
3958
3959 add_insn (insn);
3960 }
3961
3962 last = emit_move_insn (target, result);
3963 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3964
3965 if (final_dest != target)
3966 emit_move_insn (final_dest, target);
3967 }
3968
3969 void
3970 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3971 {
3972 emit_libcall_block_1 (safe_as_a <rtx_insn *> (insns),
3973 target, result, equiv, false);
3974 }
3975 \f
3976 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3977 PURPOSE describes how this comparison will be used. CODE is the rtx
3978 comparison code we will be using.
3979
3980 ??? Actually, CODE is slightly weaker than that. A target is still
3981 required to implement all of the normal bcc operations, but not
3982 required to implement all (or any) of the unordered bcc operations. */
3983
3984 int
3985 can_compare_p (enum rtx_code code, machine_mode mode,
3986 enum can_compare_purpose purpose)
3987 {
3988 rtx test;
3989 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3990 do
3991 {
3992 enum insn_code icode;
3993
3994 if (purpose == ccp_jump
3995 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3996 && insn_operand_matches (icode, 0, test))
3997 return 1;
3998 if (purpose == ccp_store_flag
3999 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4000 && insn_operand_matches (icode, 1, test))
4001 return 1;
4002 if (purpose == ccp_cmov
4003 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4004 return 1;
4005
4006 mode = GET_MODE_WIDER_MODE (mode);
4007 PUT_MODE (test, mode);
4008 }
4009 while (mode != VOIDmode);
4010
4011 return 0;
4012 }
4013
4014 /* This function is called when we are going to emit a compare instruction that
4015 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4016
4017 *PMODE is the mode of the inputs (in case they are const_int).
4018 *PUNSIGNEDP nonzero says that the operands are unsigned;
4019 this matters if they need to be widened (as given by METHODS).
4020
4021 If they have mode BLKmode, then SIZE specifies the size of both operands.
4022
4023 This function performs all the setup necessary so that the caller only has
4024 to emit a single comparison insn. This setup can involve doing a BLKmode
4025 comparison or emitting a library call to perform the comparison if no insn
4026 is available to handle it.
4027 The values which are passed in through pointers can be modified; the caller
4028 should perform the comparison on the modified values. Constant
4029 comparisons must have already been folded. */
4030
4031 static void
4032 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4033 int unsignedp, enum optab_methods methods,
4034 rtx *ptest, machine_mode *pmode)
4035 {
4036 machine_mode mode = *pmode;
4037 rtx libfunc, test;
4038 machine_mode cmp_mode;
4039 enum mode_class mclass;
4040
4041 /* The other methods are not needed. */
4042 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4043 || methods == OPTAB_LIB_WIDEN);
4044
4045 /* If we are optimizing, force expensive constants into a register. */
4046 if (CONSTANT_P (x) && optimize
4047 && (rtx_cost (x, mode, COMPARE, 0, optimize_insn_for_speed_p ())
4048 > COSTS_N_INSNS (1)))
4049 x = force_reg (mode, x);
4050
4051 if (CONSTANT_P (y) && optimize
4052 && (rtx_cost (y, mode, COMPARE, 1, optimize_insn_for_speed_p ())
4053 > COSTS_N_INSNS (1)))
4054 y = force_reg (mode, y);
4055
4056 #if HAVE_cc0
4057 /* Make sure if we have a canonical comparison. The RTL
4058 documentation states that canonical comparisons are required only
4059 for targets which have cc0. */
4060 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4061 #endif
4062
4063 /* Don't let both operands fail to indicate the mode. */
4064 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4065 x = force_reg (mode, x);
4066 if (mode == VOIDmode)
4067 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4068
4069 /* Handle all BLKmode compares. */
4070
4071 if (mode == BLKmode)
4072 {
4073 machine_mode result_mode;
4074 enum insn_code cmp_code;
4075 tree length_type;
4076 rtx libfunc;
4077 rtx result;
4078 rtx opalign
4079 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4080
4081 gcc_assert (size);
4082
4083 /* Try to use a memory block compare insn - either cmpstr
4084 or cmpmem will do. */
4085 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4086 cmp_mode != VOIDmode;
4087 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4088 {
4089 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4090 if (cmp_code == CODE_FOR_nothing)
4091 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4092 if (cmp_code == CODE_FOR_nothing)
4093 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4094 if (cmp_code == CODE_FOR_nothing)
4095 continue;
4096
4097 /* Must make sure the size fits the insn's mode. */
4098 if ((CONST_INT_P (size)
4099 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4100 || (GET_MODE_BITSIZE (GET_MODE (size))
4101 > GET_MODE_BITSIZE (cmp_mode)))
4102 continue;
4103
4104 result_mode = insn_data[cmp_code].operand[0].mode;
4105 result = gen_reg_rtx (result_mode);
4106 size = convert_to_mode (cmp_mode, size, 1);
4107 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4108
4109 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4110 *pmode = result_mode;
4111 return;
4112 }
4113
4114 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4115 goto fail;
4116
4117 /* Otherwise call a library function, memcmp. */
4118 libfunc = memcmp_libfunc;
4119 length_type = sizetype;
4120 result_mode = TYPE_MODE (integer_type_node);
4121 cmp_mode = TYPE_MODE (length_type);
4122 size = convert_to_mode (TYPE_MODE (length_type), size,
4123 TYPE_UNSIGNED (length_type));
4124
4125 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4126 result_mode, 3,
4127 XEXP (x, 0), Pmode,
4128 XEXP (y, 0), Pmode,
4129 size, cmp_mode);
4130 x = result;
4131 y = const0_rtx;
4132 mode = result_mode;
4133 methods = OPTAB_LIB_WIDEN;
4134 unsignedp = false;
4135 }
4136
4137 /* Don't allow operands to the compare to trap, as that can put the
4138 compare and branch in different basic blocks. */
4139 if (cfun->can_throw_non_call_exceptions)
4140 {
4141 if (may_trap_p (x))
4142 x = force_reg (mode, x);
4143 if (may_trap_p (y))
4144 y = force_reg (mode, y);
4145 }
4146
4147 if (GET_MODE_CLASS (mode) == MODE_CC)
4148 {
4149 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
4150 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4151 gcc_assert (icode != CODE_FOR_nothing
4152 && insn_operand_matches (icode, 0, test));
4153 *ptest = test;
4154 return;
4155 }
4156
4157 mclass = GET_MODE_CLASS (mode);
4158 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4159 cmp_mode = mode;
4160 do
4161 {
4162 enum insn_code icode;
4163 icode = optab_handler (cbranch_optab, cmp_mode);
4164 if (icode != CODE_FOR_nothing
4165 && insn_operand_matches (icode, 0, test))
4166 {
4167 rtx_insn *last = get_last_insn ();
4168 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4169 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4170 if (op0 && op1
4171 && insn_operand_matches (icode, 1, op0)
4172 && insn_operand_matches (icode, 2, op1))
4173 {
4174 XEXP (test, 0) = op0;
4175 XEXP (test, 1) = op1;
4176 *ptest = test;
4177 *pmode = cmp_mode;
4178 return;
4179 }
4180 delete_insns_since (last);
4181 }
4182
4183 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4184 break;
4185 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4186 }
4187 while (cmp_mode != VOIDmode);
4188
4189 if (methods != OPTAB_LIB_WIDEN)
4190 goto fail;
4191
4192 if (!SCALAR_FLOAT_MODE_P (mode))
4193 {
4194 rtx result;
4195 machine_mode ret_mode;
4196
4197 /* Handle a libcall just for the mode we are using. */
4198 libfunc = optab_libfunc (cmp_optab, mode);
4199 gcc_assert (libfunc);
4200
4201 /* If we want unsigned, and this mode has a distinct unsigned
4202 comparison routine, use that. */
4203 if (unsignedp)
4204 {
4205 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4206 if (ulibfunc)
4207 libfunc = ulibfunc;
4208 }
4209
4210 ret_mode = targetm.libgcc_cmp_return_mode ();
4211 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4212 ret_mode, 2, x, mode, y, mode);
4213
4214 /* There are two kinds of comparison routines. Biased routines
4215 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4216 of gcc expect that the comparison operation is equivalent
4217 to the modified comparison. For signed comparisons compare the
4218 result against 1 in the biased case, and zero in the unbiased
4219 case. For unsigned comparisons always compare against 1 after
4220 biasing the unbiased result by adding 1. This gives us a way to
4221 represent LTU.
4222 The comparisons in the fixed-point helper library are always
4223 biased. */
4224 x = result;
4225 y = const1_rtx;
4226
4227 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4228 {
4229 if (unsignedp)
4230 x = plus_constant (ret_mode, result, 1);
4231 else
4232 y = const0_rtx;
4233 }
4234
4235 *pmode = ret_mode;
4236 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4237 ptest, pmode);
4238 }
4239 else
4240 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4241
4242 return;
4243
4244 fail:
4245 *ptest = NULL_RTX;
4246 }
4247
4248 /* Before emitting an insn with code ICODE, make sure that X, which is going
4249 to be used for operand OPNUM of the insn, is converted from mode MODE to
4250 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4251 that it is accepted by the operand predicate. Return the new value. */
4252
4253 rtx
4254 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
4255 machine_mode wider_mode, int unsignedp)
4256 {
4257 if (mode != wider_mode)
4258 x = convert_modes (wider_mode, mode, x, unsignedp);
4259
4260 if (!insn_operand_matches (icode, opnum, x))
4261 {
4262 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
4263 if (reload_completed)
4264 return NULL_RTX;
4265 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
4266 return NULL_RTX;
4267 x = copy_to_mode_reg (op_mode, x);
4268 }
4269
4270 return x;
4271 }
4272
4273 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4274 we can do the branch. */
4275
4276 static void
4277 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label, int prob)
4278 {
4279 machine_mode optab_mode;
4280 enum mode_class mclass;
4281 enum insn_code icode;
4282 rtx_insn *insn;
4283
4284 mclass = GET_MODE_CLASS (mode);
4285 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4286 icode = optab_handler (cbranch_optab, optab_mode);
4287
4288 gcc_assert (icode != CODE_FOR_nothing);
4289 gcc_assert (insn_operand_matches (icode, 0, test));
4290 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4291 XEXP (test, 1), label));
4292 if (prob != -1
4293 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4294 && insn
4295 && JUMP_P (insn)
4296 && any_condjump_p (insn)
4297 && !find_reg_note (insn, REG_BR_PROB, 0))
4298 add_int_reg_note (insn, REG_BR_PROB, prob);
4299 }
4300
4301 /* Generate code to compare X with Y so that the condition codes are
4302 set and to jump to LABEL if the condition is true. If X is a
4303 constant and Y is not a constant, then the comparison is swapped to
4304 ensure that the comparison RTL has the canonical form.
4305
4306 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4307 need to be widened. UNSIGNEDP is also used to select the proper
4308 branch condition code.
4309
4310 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4311
4312 MODE is the mode of the inputs (in case they are const_int).
4313
4314 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4315 It will be potentially converted into an unsigned variant based on
4316 UNSIGNEDP to select a proper jump instruction.
4317
4318 PROB is the probability of jumping to LABEL. */
4319
4320 void
4321 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4322 machine_mode mode, int unsignedp, rtx label,
4323 int prob)
4324 {
4325 rtx op0 = x, op1 = y;
4326 rtx test;
4327
4328 /* Swap operands and condition to ensure canonical RTL. */
4329 if (swap_commutative_operands_p (x, y)
4330 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4331 {
4332 op0 = y, op1 = x;
4333 comparison = swap_condition (comparison);
4334 }
4335
4336 /* If OP0 is still a constant, then both X and Y must be constants
4337 or the opposite comparison is not supported. Force X into a register
4338 to create canonical RTL. */
4339 if (CONSTANT_P (op0))
4340 op0 = force_reg (mode, op0);
4341
4342 if (unsignedp)
4343 comparison = unsigned_condition (comparison);
4344
4345 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4346 &test, &mode);
4347 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4348 }
4349
4350 \f
4351 /* Emit a library call comparison between floating point X and Y.
4352 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4353
4354 static void
4355 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4356 rtx *ptest, machine_mode *pmode)
4357 {
4358 enum rtx_code swapped = swap_condition (comparison);
4359 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4360 machine_mode orig_mode = GET_MODE (x);
4361 machine_mode mode, cmp_mode;
4362 rtx true_rtx, false_rtx;
4363 rtx value, target, equiv;
4364 rtx_insn *insns;
4365 rtx libfunc = 0;
4366 bool reversed_p = false;
4367 cmp_mode = targetm.libgcc_cmp_return_mode ();
4368
4369 for (mode = orig_mode;
4370 mode != VOIDmode;
4371 mode = GET_MODE_WIDER_MODE (mode))
4372 {
4373 if (code_to_optab (comparison)
4374 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4375 break;
4376
4377 if (code_to_optab (swapped)
4378 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4379 {
4380 std::swap (x, y);
4381 comparison = swapped;
4382 break;
4383 }
4384
4385 if (code_to_optab (reversed)
4386 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4387 {
4388 comparison = reversed;
4389 reversed_p = true;
4390 break;
4391 }
4392 }
4393
4394 gcc_assert (mode != VOIDmode);
4395
4396 if (mode != orig_mode)
4397 {
4398 x = convert_to_mode (mode, x, 0);
4399 y = convert_to_mode (mode, y, 0);
4400 }
4401
4402 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4403 the RTL. The allows the RTL optimizers to delete the libcall if the
4404 condition can be determined at compile-time. */
4405 if (comparison == UNORDERED
4406 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4407 {
4408 true_rtx = const_true_rtx;
4409 false_rtx = const0_rtx;
4410 }
4411 else
4412 {
4413 switch (comparison)
4414 {
4415 case EQ:
4416 true_rtx = const0_rtx;
4417 false_rtx = const_true_rtx;
4418 break;
4419
4420 case NE:
4421 true_rtx = const_true_rtx;
4422 false_rtx = const0_rtx;
4423 break;
4424
4425 case GT:
4426 true_rtx = const1_rtx;
4427 false_rtx = const0_rtx;
4428 break;
4429
4430 case GE:
4431 true_rtx = const0_rtx;
4432 false_rtx = constm1_rtx;
4433 break;
4434
4435 case LT:
4436 true_rtx = constm1_rtx;
4437 false_rtx = const0_rtx;
4438 break;
4439
4440 case LE:
4441 true_rtx = const0_rtx;
4442 false_rtx = const1_rtx;
4443 break;
4444
4445 default:
4446 gcc_unreachable ();
4447 }
4448 }
4449
4450 if (comparison == UNORDERED)
4451 {
4452 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4453 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4454 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4455 temp, const_true_rtx, equiv);
4456 }
4457 else
4458 {
4459 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4460 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4461 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4462 equiv, true_rtx, false_rtx);
4463 }
4464
4465 start_sequence ();
4466 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4467 cmp_mode, 2, x, mode, y, mode);
4468 insns = get_insns ();
4469 end_sequence ();
4470
4471 target = gen_reg_rtx (cmp_mode);
4472 emit_libcall_block (insns, target, value, equiv);
4473
4474 if (comparison == UNORDERED
4475 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4476 || reversed_p)
4477 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4478 else
4479 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4480
4481 *pmode = cmp_mode;
4482 }
4483 \f
4484 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4485
4486 void
4487 emit_indirect_jump (rtx loc)
4488 {
4489 if (!targetm.have_indirect_jump ())
4490 sorry ("indirect jumps are not available on this target");
4491
4492 struct expand_operand ops[1];
4493 create_address_operand (&ops[0], loc);
4494 expand_jump_insn (targetm.code_for_indirect_jump, 1, ops);
4495 emit_barrier ();
4496 }
4497 \f
4498
4499 /* Emit a conditional move instruction if the machine supports one for that
4500 condition and machine mode.
4501
4502 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4503 the mode to use should they be constants. If it is VOIDmode, they cannot
4504 both be constants.
4505
4506 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4507 should be stored there. MODE is the mode to use should they be constants.
4508 If it is VOIDmode, they cannot both be constants.
4509
4510 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4511 is not supported. */
4512
4513 rtx
4514 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4515 machine_mode cmode, rtx op2, rtx op3,
4516 machine_mode mode, int unsignedp)
4517 {
4518 rtx comparison;
4519 rtx_insn *last;
4520 enum insn_code icode;
4521 enum rtx_code reversed;
4522
4523 /* If one operand is constant, make it the second one. Only do this
4524 if the other operand is not constant as well. */
4525
4526 if (swap_commutative_operands_p (op0, op1))
4527 {
4528 std::swap (op0, op1);
4529 code = swap_condition (code);
4530 }
4531
4532 /* get_condition will prefer to generate LT and GT even if the old
4533 comparison was against zero, so undo that canonicalization here since
4534 comparisons against zero are cheaper. */
4535 if (code == LT && op1 == const1_rtx)
4536 code = LE, op1 = const0_rtx;
4537 else if (code == GT && op1 == constm1_rtx)
4538 code = GE, op1 = const0_rtx;
4539
4540 if (cmode == VOIDmode)
4541 cmode = GET_MODE (op0);
4542
4543 if (swap_commutative_operands_p (op2, op3)
4544 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4545 != UNKNOWN))
4546 {
4547 std::swap (op2, op3);
4548 code = reversed;
4549 }
4550
4551 if (mode == VOIDmode)
4552 mode = GET_MODE (op2);
4553
4554 icode = direct_optab_handler (movcc_optab, mode);
4555
4556 if (icode == CODE_FOR_nothing)
4557 return 0;
4558
4559 if (!target)
4560 target = gen_reg_rtx (mode);
4561
4562 code = unsignedp ? unsigned_condition (code) : code;
4563 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4564
4565 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4566 return NULL and let the caller figure out how best to deal with this
4567 situation. */
4568 if (!COMPARISON_P (comparison))
4569 return NULL_RTX;
4570
4571 saved_pending_stack_adjust save;
4572 save_pending_stack_adjust (&save);
4573 last = get_last_insn ();
4574 do_pending_stack_adjust ();
4575 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4576 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4577 &comparison, &cmode);
4578 if (comparison)
4579 {
4580 struct expand_operand ops[4];
4581
4582 create_output_operand (&ops[0], target, mode);
4583 create_fixed_operand (&ops[1], comparison);
4584 create_input_operand (&ops[2], op2, mode);
4585 create_input_operand (&ops[3], op3, mode);
4586 if (maybe_expand_insn (icode, 4, ops))
4587 {
4588 if (ops[0].value != target)
4589 convert_move (target, ops[0].value, false);
4590 return target;
4591 }
4592 }
4593 delete_insns_since (last);
4594 restore_pending_stack_adjust (&save);
4595 return NULL_RTX;
4596 }
4597
4598 /* Return nonzero if a conditional move of mode MODE is supported.
4599
4600 This function is for combine so it can tell whether an insn that looks
4601 like a conditional move is actually supported by the hardware. If we
4602 guess wrong we lose a bit on optimization, but that's it. */
4603 /* ??? sparc64 supports conditionally moving integers values based on fp
4604 comparisons, and vice versa. How do we handle them? */
4605
4606 int
4607 can_conditionally_move_p (machine_mode mode)
4608 {
4609 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4610 return 1;
4611
4612 return 0;
4613 }
4614
4615 /* Emit a conditional addition instruction if the machine supports one for that
4616 condition and machine mode.
4617
4618 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4619 the mode to use should they be constants. If it is VOIDmode, they cannot
4620 both be constants.
4621
4622 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4623 should be stored there. MODE is the mode to use should they be constants.
4624 If it is VOIDmode, they cannot both be constants.
4625
4626 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4627 is not supported. */
4628
4629 rtx
4630 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4631 machine_mode cmode, rtx op2, rtx op3,
4632 machine_mode mode, int unsignedp)
4633 {
4634 rtx comparison;
4635 rtx_insn *last;
4636 enum insn_code icode;
4637
4638 /* If one operand is constant, make it the second one. Only do this
4639 if the other operand is not constant as well. */
4640
4641 if (swap_commutative_operands_p (op0, op1))
4642 {
4643 std::swap (op0, op1);
4644 code = swap_condition (code);
4645 }
4646
4647 /* get_condition will prefer to generate LT and GT even if the old
4648 comparison was against zero, so undo that canonicalization here since
4649 comparisons against zero are cheaper. */
4650 if (code == LT && op1 == const1_rtx)
4651 code = LE, op1 = const0_rtx;
4652 else if (code == GT && op1 == constm1_rtx)
4653 code = GE, op1 = const0_rtx;
4654
4655 if (cmode == VOIDmode)
4656 cmode = GET_MODE (op0);
4657
4658 if (mode == VOIDmode)
4659 mode = GET_MODE (op2);
4660
4661 icode = optab_handler (addcc_optab, mode);
4662
4663 if (icode == CODE_FOR_nothing)
4664 return 0;
4665
4666 if (!target)
4667 target = gen_reg_rtx (mode);
4668
4669 code = unsignedp ? unsigned_condition (code) : code;
4670 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4671
4672 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4673 return NULL and let the caller figure out how best to deal with this
4674 situation. */
4675 if (!COMPARISON_P (comparison))
4676 return NULL_RTX;
4677
4678 do_pending_stack_adjust ();
4679 last = get_last_insn ();
4680 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4681 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4682 &comparison, &cmode);
4683 if (comparison)
4684 {
4685 struct expand_operand ops[4];
4686
4687 create_output_operand (&ops[0], target, mode);
4688 create_fixed_operand (&ops[1], comparison);
4689 create_input_operand (&ops[2], op2, mode);
4690 create_input_operand (&ops[3], op3, mode);
4691 if (maybe_expand_insn (icode, 4, ops))
4692 {
4693 if (ops[0].value != target)
4694 convert_move (target, ops[0].value, false);
4695 return target;
4696 }
4697 }
4698 delete_insns_since (last);
4699 return NULL_RTX;
4700 }
4701 \f
4702 /* These functions attempt to generate an insn body, rather than
4703 emitting the insn, but if the gen function already emits them, we
4704 make no attempt to turn them back into naked patterns. */
4705
4706 /* Generate and return an insn body to add Y to X. */
4707
4708 rtx_insn *
4709 gen_add2_insn (rtx x, rtx y)
4710 {
4711 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4712
4713 gcc_assert (insn_operand_matches (icode, 0, x));
4714 gcc_assert (insn_operand_matches (icode, 1, x));
4715 gcc_assert (insn_operand_matches (icode, 2, y));
4716
4717 return GEN_FCN (icode) (x, x, y);
4718 }
4719
4720 /* Generate and return an insn body to add r1 and c,
4721 storing the result in r0. */
4722
4723 rtx_insn *
4724 gen_add3_insn (rtx r0, rtx r1, rtx c)
4725 {
4726 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4727
4728 if (icode == CODE_FOR_nothing
4729 || !insn_operand_matches (icode, 0, r0)
4730 || !insn_operand_matches (icode, 1, r1)
4731 || !insn_operand_matches (icode, 2, c))
4732 return NULL;
4733
4734 return GEN_FCN (icode) (r0, r1, c);
4735 }
4736
4737 int
4738 have_add2_insn (rtx x, rtx y)
4739 {
4740 enum insn_code icode;
4741
4742 gcc_assert (GET_MODE (x) != VOIDmode);
4743
4744 icode = optab_handler (add_optab, GET_MODE (x));
4745
4746 if (icode == CODE_FOR_nothing)
4747 return 0;
4748
4749 if (!insn_operand_matches (icode, 0, x)
4750 || !insn_operand_matches (icode, 1, x)
4751 || !insn_operand_matches (icode, 2, y))
4752 return 0;
4753
4754 return 1;
4755 }
4756
4757 /* Generate and return an insn body to add Y to X. */
4758
4759 rtx_insn *
4760 gen_addptr3_insn (rtx x, rtx y, rtx z)
4761 {
4762 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4763
4764 gcc_assert (insn_operand_matches (icode, 0, x));
4765 gcc_assert (insn_operand_matches (icode, 1, y));
4766 gcc_assert (insn_operand_matches (icode, 2, z));
4767
4768 return GEN_FCN (icode) (x, y, z);
4769 }
4770
4771 /* Return true if the target implements an addptr pattern and X, Y,
4772 and Z are valid for the pattern predicates. */
4773
4774 int
4775 have_addptr3_insn (rtx x, rtx y, rtx z)
4776 {
4777 enum insn_code icode;
4778
4779 gcc_assert (GET_MODE (x) != VOIDmode);
4780
4781 icode = optab_handler (addptr3_optab, GET_MODE (x));
4782
4783 if (icode == CODE_FOR_nothing)
4784 return 0;
4785
4786 if (!insn_operand_matches (icode, 0, x)
4787 || !insn_operand_matches (icode, 1, y)
4788 || !insn_operand_matches (icode, 2, z))
4789 return 0;
4790
4791 return 1;
4792 }
4793
4794 /* Generate and return an insn body to subtract Y from X. */
4795
4796 rtx_insn *
4797 gen_sub2_insn (rtx x, rtx y)
4798 {
4799 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4800
4801 gcc_assert (insn_operand_matches (icode, 0, x));
4802 gcc_assert (insn_operand_matches (icode, 1, x));
4803 gcc_assert (insn_operand_matches (icode, 2, y));
4804
4805 return GEN_FCN (icode) (x, x, y);
4806 }
4807
4808 /* Generate and return an insn body to subtract r1 and c,
4809 storing the result in r0. */
4810
4811 rtx_insn *
4812 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4813 {
4814 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4815
4816 if (icode == CODE_FOR_nothing
4817 || !insn_operand_matches (icode, 0, r0)
4818 || !insn_operand_matches (icode, 1, r1)
4819 || !insn_operand_matches (icode, 2, c))
4820 return NULL;
4821
4822 return GEN_FCN (icode) (r0, r1, c);
4823 }
4824
4825 int
4826 have_sub2_insn (rtx x, rtx y)
4827 {
4828 enum insn_code icode;
4829
4830 gcc_assert (GET_MODE (x) != VOIDmode);
4831
4832 icode = optab_handler (sub_optab, GET_MODE (x));
4833
4834 if (icode == CODE_FOR_nothing)
4835 return 0;
4836
4837 if (!insn_operand_matches (icode, 0, x)
4838 || !insn_operand_matches (icode, 1, x)
4839 || !insn_operand_matches (icode, 2, y))
4840 return 0;
4841
4842 return 1;
4843 }
4844 \f
4845 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4846 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4847 no such operation exists, CODE_FOR_nothing will be returned. */
4848
4849 enum insn_code
4850 can_extend_p (machine_mode to_mode, machine_mode from_mode,
4851 int unsignedp)
4852 {
4853 convert_optab tab;
4854 #ifdef HAVE_ptr_extend
4855 if (unsignedp < 0)
4856 return CODE_FOR_ptr_extend;
4857 #endif
4858
4859 tab = unsignedp ? zext_optab : sext_optab;
4860 return convert_optab_handler (tab, to_mode, from_mode);
4861 }
4862
4863 /* Generate the body of an insn to extend Y (with mode MFROM)
4864 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4865
4866 rtx_insn *
4867 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4868 machine_mode mfrom, int unsignedp)
4869 {
4870 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4871 return GEN_FCN (icode) (x, y);
4872 }
4873 \f
4874 /* can_fix_p and can_float_p say whether the target machine
4875 can directly convert a given fixed point type to
4876 a given floating point type, or vice versa.
4877 The returned value is the CODE_FOR_... value to use,
4878 or CODE_FOR_nothing if these modes cannot be directly converted.
4879
4880 *TRUNCP_PTR is set to 1 if it is necessary to output
4881 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4882
4883 static enum insn_code
4884 can_fix_p (machine_mode fixmode, machine_mode fltmode,
4885 int unsignedp, int *truncp_ptr)
4886 {
4887 convert_optab tab;
4888 enum insn_code icode;
4889
4890 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4891 icode = convert_optab_handler (tab, fixmode, fltmode);
4892 if (icode != CODE_FOR_nothing)
4893 {
4894 *truncp_ptr = 0;
4895 return icode;
4896 }
4897
4898 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4899 for this to work. We need to rework the fix* and ftrunc* patterns
4900 and documentation. */
4901 tab = unsignedp ? ufix_optab : sfix_optab;
4902 icode = convert_optab_handler (tab, fixmode, fltmode);
4903 if (icode != CODE_FOR_nothing
4904 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4905 {
4906 *truncp_ptr = 1;
4907 return icode;
4908 }
4909
4910 *truncp_ptr = 0;
4911 return CODE_FOR_nothing;
4912 }
4913
4914 enum insn_code
4915 can_float_p (machine_mode fltmode, machine_mode fixmode,
4916 int unsignedp)
4917 {
4918 convert_optab tab;
4919
4920 tab = unsignedp ? ufloat_optab : sfloat_optab;
4921 return convert_optab_handler (tab, fltmode, fixmode);
4922 }
4923
4924 /* Function supportable_convert_operation
4925
4926 Check whether an operation represented by the code CODE is a
4927 convert operation that is supported by the target platform in
4928 vector form (i.e., when operating on arguments of type VECTYPE_IN
4929 producing a result of type VECTYPE_OUT).
4930
4931 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4932 This function checks if these operations are supported
4933 by the target platform either directly (via vector tree-codes), or via
4934 target builtins.
4935
4936 Output:
4937 - CODE1 is code of vector operation to be used when
4938 vectorizing the operation, if available.
4939 - DECL is decl of target builtin functions to be used
4940 when vectorizing the operation, if available. In this case,
4941 CODE1 is CALL_EXPR. */
4942
4943 bool
4944 supportable_convert_operation (enum tree_code code,
4945 tree vectype_out, tree vectype_in,
4946 tree *decl, enum tree_code *code1)
4947 {
4948 machine_mode m1,m2;
4949 int truncp;
4950
4951 m1 = TYPE_MODE (vectype_out);
4952 m2 = TYPE_MODE (vectype_in);
4953
4954 /* First check if we can done conversion directly. */
4955 if ((code == FIX_TRUNC_EXPR
4956 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4957 != CODE_FOR_nothing)
4958 || (code == FLOAT_EXPR
4959 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4960 != CODE_FOR_nothing))
4961 {
4962 *code1 = code;
4963 return true;
4964 }
4965
4966 /* Now check for builtin. */
4967 if (targetm.vectorize.builtin_conversion
4968 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4969 {
4970 *code1 = CALL_EXPR;
4971 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4972 return true;
4973 }
4974 return false;
4975 }
4976
4977 \f
4978 /* Generate code to convert FROM to floating point
4979 and store in TO. FROM must be fixed point and not VOIDmode.
4980 UNSIGNEDP nonzero means regard FROM as unsigned.
4981 Normally this is done by correcting the final value
4982 if it is negative. */
4983
4984 void
4985 expand_float (rtx to, rtx from, int unsignedp)
4986 {
4987 enum insn_code icode;
4988 rtx target = to;
4989 machine_mode fmode, imode;
4990 bool can_do_signed = false;
4991
4992 /* Crash now, because we won't be able to decide which mode to use. */
4993 gcc_assert (GET_MODE (from) != VOIDmode);
4994
4995 /* Look for an insn to do the conversion. Do it in the specified
4996 modes if possible; otherwise convert either input, output or both to
4997 wider mode. If the integer mode is wider than the mode of FROM,
4998 we can do the conversion signed even if the input is unsigned. */
4999
5000 for (fmode = GET_MODE (to); fmode != VOIDmode;
5001 fmode = GET_MODE_WIDER_MODE (fmode))
5002 for (imode = GET_MODE (from); imode != VOIDmode;
5003 imode = GET_MODE_WIDER_MODE (imode))
5004 {
5005 int doing_unsigned = unsignedp;
5006
5007 if (fmode != GET_MODE (to)
5008 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
5009 continue;
5010
5011 icode = can_float_p (fmode, imode, unsignedp);
5012 if (icode == CODE_FOR_nothing && unsignedp)
5013 {
5014 enum insn_code scode = can_float_p (fmode, imode, 0);
5015 if (scode != CODE_FOR_nothing)
5016 can_do_signed = true;
5017 if (imode != GET_MODE (from))
5018 icode = scode, doing_unsigned = 0;
5019 }
5020
5021 if (icode != CODE_FOR_nothing)
5022 {
5023 if (imode != GET_MODE (from))
5024 from = convert_to_mode (imode, from, unsignedp);
5025
5026 if (fmode != GET_MODE (to))
5027 target = gen_reg_rtx (fmode);
5028
5029 emit_unop_insn (icode, target, from,
5030 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5031
5032 if (target != to)
5033 convert_move (to, target, 0);
5034 return;
5035 }
5036 }
5037
5038 /* Unsigned integer, and no way to convert directly. Convert as signed,
5039 then unconditionally adjust the result. */
5040 if (unsignedp && can_do_signed)
5041 {
5042 rtx_code_label *label = gen_label_rtx ();
5043 rtx temp;
5044 REAL_VALUE_TYPE offset;
5045
5046 /* Look for a usable floating mode FMODE wider than the source and at
5047 least as wide as the target. Using FMODE will avoid rounding woes
5048 with unsigned values greater than the signed maximum value. */
5049
5050 for (fmode = GET_MODE (to); fmode != VOIDmode;
5051 fmode = GET_MODE_WIDER_MODE (fmode))
5052 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5053 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5054 break;
5055
5056 if (fmode == VOIDmode)
5057 {
5058 /* There is no such mode. Pretend the target is wide enough. */
5059 fmode = GET_MODE (to);
5060
5061 /* Avoid double-rounding when TO is narrower than FROM. */
5062 if ((significand_size (fmode) + 1)
5063 < GET_MODE_PRECISION (GET_MODE (from)))
5064 {
5065 rtx temp1;
5066 rtx_code_label *neglabel = gen_label_rtx ();
5067
5068 /* Don't use TARGET if it isn't a register, is a hard register,
5069 or is the wrong mode. */
5070 if (!REG_P (target)
5071 || REGNO (target) < FIRST_PSEUDO_REGISTER
5072 || GET_MODE (target) != fmode)
5073 target = gen_reg_rtx (fmode);
5074
5075 imode = GET_MODE (from);
5076 do_pending_stack_adjust ();
5077
5078 /* Test whether the sign bit is set. */
5079 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5080 0, neglabel);
5081
5082 /* The sign bit is not set. Convert as signed. */
5083 expand_float (target, from, 0);
5084 emit_jump_insn (targetm.gen_jump (label));
5085 emit_barrier ();
5086
5087 /* The sign bit is set.
5088 Convert to a usable (positive signed) value by shifting right
5089 one bit, while remembering if a nonzero bit was shifted
5090 out; i.e., compute (from & 1) | (from >> 1). */
5091
5092 emit_label (neglabel);
5093 temp = expand_binop (imode, and_optab, from, const1_rtx,
5094 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5095 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5096 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5097 OPTAB_LIB_WIDEN);
5098 expand_float (target, temp, 0);
5099
5100 /* Multiply by 2 to undo the shift above. */
5101 temp = expand_binop (fmode, add_optab, target, target,
5102 target, 0, OPTAB_LIB_WIDEN);
5103 if (temp != target)
5104 emit_move_insn (target, temp);
5105
5106 do_pending_stack_adjust ();
5107 emit_label (label);
5108 goto done;
5109 }
5110 }
5111
5112 /* If we are about to do some arithmetic to correct for an
5113 unsigned operand, do it in a pseudo-register. */
5114
5115 if (GET_MODE (to) != fmode
5116 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5117 target = gen_reg_rtx (fmode);
5118
5119 /* Convert as signed integer to floating. */
5120 expand_float (target, from, 0);
5121
5122 /* If FROM is negative (and therefore TO is negative),
5123 correct its value by 2**bitwidth. */
5124
5125 do_pending_stack_adjust ();
5126 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5127 0, label);
5128
5129
5130 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5131 temp = expand_binop (fmode, add_optab, target,
5132 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5133 target, 0, OPTAB_LIB_WIDEN);
5134 if (temp != target)
5135 emit_move_insn (target, temp);
5136
5137 do_pending_stack_adjust ();
5138 emit_label (label);
5139 goto done;
5140 }
5141
5142 /* No hardware instruction available; call a library routine. */
5143 {
5144 rtx libfunc;
5145 rtx_insn *insns;
5146 rtx value;
5147 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5148
5149 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_PRECISION (SImode))
5150 from = convert_to_mode (SImode, from, unsignedp);
5151
5152 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5153 gcc_assert (libfunc);
5154
5155 start_sequence ();
5156
5157 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5158 GET_MODE (to), 1, from,
5159 GET_MODE (from));
5160 insns = get_insns ();
5161 end_sequence ();
5162
5163 emit_libcall_block (insns, target, value,
5164 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5165 GET_MODE (to), from));
5166 }
5167
5168 done:
5169
5170 /* Copy result to requested destination
5171 if we have been computing in a temp location. */
5172
5173 if (target != to)
5174 {
5175 if (GET_MODE (target) == GET_MODE (to))
5176 emit_move_insn (to, target);
5177 else
5178 convert_move (to, target, 0);
5179 }
5180 }
5181 \f
5182 /* Generate code to convert FROM to fixed point and store in TO. FROM
5183 must be floating point. */
5184
5185 void
5186 expand_fix (rtx to, rtx from, int unsignedp)
5187 {
5188 enum insn_code icode;
5189 rtx target = to;
5190 machine_mode fmode, imode;
5191 int must_trunc = 0;
5192
5193 /* We first try to find a pair of modes, one real and one integer, at
5194 least as wide as FROM and TO, respectively, in which we can open-code
5195 this conversion. If the integer mode is wider than the mode of TO,
5196 we can do the conversion either signed or unsigned. */
5197
5198 for (fmode = GET_MODE (from); fmode != VOIDmode;
5199 fmode = GET_MODE_WIDER_MODE (fmode))
5200 for (imode = GET_MODE (to); imode != VOIDmode;
5201 imode = GET_MODE_WIDER_MODE (imode))
5202 {
5203 int doing_unsigned = unsignedp;
5204
5205 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5206 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5207 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5208
5209 if (icode != CODE_FOR_nothing)
5210 {
5211 rtx_insn *last = get_last_insn ();
5212 if (fmode != GET_MODE (from))
5213 from = convert_to_mode (fmode, from, 0);
5214
5215 if (must_trunc)
5216 {
5217 rtx temp = gen_reg_rtx (GET_MODE (from));
5218 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5219 temp, 0);
5220 }
5221
5222 if (imode != GET_MODE (to))
5223 target = gen_reg_rtx (imode);
5224
5225 if (maybe_emit_unop_insn (icode, target, from,
5226 doing_unsigned ? UNSIGNED_FIX : FIX))
5227 {
5228 if (target != to)
5229 convert_move (to, target, unsignedp);
5230 return;
5231 }
5232 delete_insns_since (last);
5233 }
5234 }
5235
5236 /* For an unsigned conversion, there is one more way to do it.
5237 If we have a signed conversion, we generate code that compares
5238 the real value to the largest representable positive number. If if
5239 is smaller, the conversion is done normally. Otherwise, subtract
5240 one plus the highest signed number, convert, and add it back.
5241
5242 We only need to check all real modes, since we know we didn't find
5243 anything with a wider integer mode.
5244
5245 This code used to extend FP value into mode wider than the destination.
5246 This is needed for decimal float modes which cannot accurately
5247 represent one plus the highest signed number of the same size, but
5248 not for binary modes. Consider, for instance conversion from SFmode
5249 into DImode.
5250
5251 The hot path through the code is dealing with inputs smaller than 2^63
5252 and doing just the conversion, so there is no bits to lose.
5253
5254 In the other path we know the value is positive in the range 2^63..2^64-1
5255 inclusive. (as for other input overflow happens and result is undefined)
5256 So we know that the most important bit set in mantissa corresponds to
5257 2^63. The subtraction of 2^63 should not generate any rounding as it
5258 simply clears out that bit. The rest is trivial. */
5259
5260 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5261 for (fmode = GET_MODE (from); fmode != VOIDmode;
5262 fmode = GET_MODE_WIDER_MODE (fmode))
5263 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5264 && (!DECIMAL_FLOAT_MODE_P (fmode)
5265 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5266 {
5267 int bitsize;
5268 REAL_VALUE_TYPE offset;
5269 rtx limit;
5270 rtx_code_label *lab1, *lab2;
5271 rtx_insn *insn;
5272
5273 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5274 real_2expN (&offset, bitsize - 1, fmode);
5275 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5276 lab1 = gen_label_rtx ();
5277 lab2 = gen_label_rtx ();
5278
5279 if (fmode != GET_MODE (from))
5280 from = convert_to_mode (fmode, from, 0);
5281
5282 /* See if we need to do the subtraction. */
5283 do_pending_stack_adjust ();
5284 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5285 0, lab1);
5286
5287 /* If not, do the signed "fix" and branch around fixup code. */
5288 expand_fix (to, from, 0);
5289 emit_jump_insn (targetm.gen_jump (lab2));
5290 emit_barrier ();
5291
5292 /* Otherwise, subtract 2**(N-1), convert to signed number,
5293 then add 2**(N-1). Do the addition using XOR since this
5294 will often generate better code. */
5295 emit_label (lab1);
5296 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5297 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5298 expand_fix (to, target, 0);
5299 target = expand_binop (GET_MODE (to), xor_optab, to,
5300 gen_int_mode
5301 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5302 GET_MODE (to)),
5303 to, 1, OPTAB_LIB_WIDEN);
5304
5305 if (target != to)
5306 emit_move_insn (to, target);
5307
5308 emit_label (lab2);
5309
5310 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5311 {
5312 /* Make a place for a REG_NOTE and add it. */
5313 insn = emit_move_insn (to, to);
5314 set_dst_reg_note (insn, REG_EQUAL,
5315 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5316 copy_rtx (from)),
5317 to);
5318 }
5319
5320 return;
5321 }
5322
5323 /* We can't do it with an insn, so use a library call. But first ensure
5324 that the mode of TO is at least as wide as SImode, since those are the
5325 only library calls we know about. */
5326
5327 if (GET_MODE_PRECISION (GET_MODE (to)) < GET_MODE_PRECISION (SImode))
5328 {
5329 target = gen_reg_rtx (SImode);
5330
5331 expand_fix (target, from, unsignedp);
5332 }
5333 else
5334 {
5335 rtx_insn *insns;
5336 rtx value;
5337 rtx libfunc;
5338
5339 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5340 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5341 gcc_assert (libfunc);
5342
5343 start_sequence ();
5344
5345 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5346 GET_MODE (to), 1, from,
5347 GET_MODE (from));
5348 insns = get_insns ();
5349 end_sequence ();
5350
5351 emit_libcall_block (insns, target, value,
5352 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5353 GET_MODE (to), from));
5354 }
5355
5356 if (target != to)
5357 {
5358 if (GET_MODE (to) == GET_MODE (target))
5359 emit_move_insn (to, target);
5360 else
5361 convert_move (to, target, 0);
5362 }
5363 }
5364
5365 /* Generate code to convert FROM or TO a fixed-point.
5366 If UINTP is true, either TO or FROM is an unsigned integer.
5367 If SATP is true, we need to saturate the result. */
5368
5369 void
5370 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5371 {
5372 machine_mode to_mode = GET_MODE (to);
5373 machine_mode from_mode = GET_MODE (from);
5374 convert_optab tab;
5375 enum rtx_code this_code;
5376 enum insn_code code;
5377 rtx_insn *insns;
5378 rtx value;
5379 rtx libfunc;
5380
5381 if (to_mode == from_mode)
5382 {
5383 emit_move_insn (to, from);
5384 return;
5385 }
5386
5387 if (uintp)
5388 {
5389 tab = satp ? satfractuns_optab : fractuns_optab;
5390 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5391 }
5392 else
5393 {
5394 tab = satp ? satfract_optab : fract_optab;
5395 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5396 }
5397 code = convert_optab_handler (tab, to_mode, from_mode);
5398 if (code != CODE_FOR_nothing)
5399 {
5400 emit_unop_insn (code, to, from, this_code);
5401 return;
5402 }
5403
5404 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5405 gcc_assert (libfunc);
5406
5407 start_sequence ();
5408 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5409 1, from, from_mode);
5410 insns = get_insns ();
5411 end_sequence ();
5412
5413 emit_libcall_block (insns, to, value,
5414 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5415 }
5416
5417 /* Generate code to convert FROM to fixed point and store in TO. FROM
5418 must be floating point, TO must be signed. Use the conversion optab
5419 TAB to do the conversion. */
5420
5421 bool
5422 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5423 {
5424 enum insn_code icode;
5425 rtx target = to;
5426 machine_mode fmode, imode;
5427
5428 /* We first try to find a pair of modes, one real and one integer, at
5429 least as wide as FROM and TO, respectively, in which we can open-code
5430 this conversion. If the integer mode is wider than the mode of TO,
5431 we can do the conversion either signed or unsigned. */
5432
5433 for (fmode = GET_MODE (from); fmode != VOIDmode;
5434 fmode = GET_MODE_WIDER_MODE (fmode))
5435 for (imode = GET_MODE (to); imode != VOIDmode;
5436 imode = GET_MODE_WIDER_MODE (imode))
5437 {
5438 icode = convert_optab_handler (tab, imode, fmode);
5439 if (icode != CODE_FOR_nothing)
5440 {
5441 rtx_insn *last = get_last_insn ();
5442 if (fmode != GET_MODE (from))
5443 from = convert_to_mode (fmode, from, 0);
5444
5445 if (imode != GET_MODE (to))
5446 target = gen_reg_rtx (imode);
5447
5448 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5449 {
5450 delete_insns_since (last);
5451 continue;
5452 }
5453 if (target != to)
5454 convert_move (to, target, 0);
5455 return true;
5456 }
5457 }
5458
5459 return false;
5460 }
5461 \f
5462 /* Report whether we have an instruction to perform the operation
5463 specified by CODE on operands of mode MODE. */
5464 int
5465 have_insn_for (enum rtx_code code, machine_mode mode)
5466 {
5467 return (code_to_optab (code)
5468 && (optab_handler (code_to_optab (code), mode)
5469 != CODE_FOR_nothing));
5470 }
5471
5472 /* Initialize the libfunc fields of an entire group of entries in some
5473 optab. Each entry is set equal to a string consisting of a leading
5474 pair of underscores followed by a generic operation name followed by
5475 a mode name (downshifted to lowercase) followed by a single character
5476 representing the number of operands for the given operation (which is
5477 usually one of the characters '2', '3', or '4').
5478
5479 OPTABLE is the table in which libfunc fields are to be initialized.
5480 OPNAME is the generic (string) name of the operation.
5481 SUFFIX is the character which specifies the number of operands for
5482 the given generic operation.
5483 MODE is the mode to generate for.
5484 */
5485
5486 static void
5487 gen_libfunc (optab optable, const char *opname, int suffix,
5488 machine_mode mode)
5489 {
5490 unsigned opname_len = strlen (opname);
5491 const char *mname = GET_MODE_NAME (mode);
5492 unsigned mname_len = strlen (mname);
5493 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5494 int len = prefix_len + opname_len + mname_len + 1 + 1;
5495 char *libfunc_name = XALLOCAVEC (char, len);
5496 char *p;
5497 const char *q;
5498
5499 p = libfunc_name;
5500 *p++ = '_';
5501 *p++ = '_';
5502 if (targetm.libfunc_gnu_prefix)
5503 {
5504 *p++ = 'g';
5505 *p++ = 'n';
5506 *p++ = 'u';
5507 *p++ = '_';
5508 }
5509 for (q = opname; *q; )
5510 *p++ = *q++;
5511 for (q = mname; *q; q++)
5512 *p++ = TOLOWER (*q);
5513 *p++ = suffix;
5514 *p = '\0';
5515
5516 set_optab_libfunc (optable, mode,
5517 ggc_alloc_string (libfunc_name, p - libfunc_name));
5518 }
5519
5520 /* Like gen_libfunc, but verify that integer operation is involved. */
5521
5522 void
5523 gen_int_libfunc (optab optable, const char *opname, char suffix,
5524 machine_mode mode)
5525 {
5526 int maxsize = 2 * BITS_PER_WORD;
5527 int minsize = BITS_PER_WORD;
5528
5529 if (GET_MODE_CLASS (mode) != MODE_INT)
5530 return;
5531 if (maxsize < LONG_LONG_TYPE_SIZE)
5532 maxsize = LONG_LONG_TYPE_SIZE;
5533 if (minsize > INT_TYPE_SIZE
5534 && (trapv_binoptab_p (optable)
5535 || trapv_unoptab_p (optable)))
5536 minsize = INT_TYPE_SIZE;
5537 if (GET_MODE_BITSIZE (mode) < minsize
5538 || GET_MODE_BITSIZE (mode) > maxsize)
5539 return;
5540 gen_libfunc (optable, opname, suffix, mode);
5541 }
5542
5543 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5544
5545 void
5546 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5547 machine_mode mode)
5548 {
5549 char *dec_opname;
5550
5551 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5552 gen_libfunc (optable, opname, suffix, mode);
5553 if (DECIMAL_FLOAT_MODE_P (mode))
5554 {
5555 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5556 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5557 depending on the low level floating format used. */
5558 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5559 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5560 gen_libfunc (optable, dec_opname, suffix, mode);
5561 }
5562 }
5563
5564 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5565
5566 void
5567 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5568 machine_mode mode)
5569 {
5570 if (!ALL_FIXED_POINT_MODE_P (mode))
5571 return;
5572 gen_libfunc (optable, opname, suffix, mode);
5573 }
5574
5575 /* Like gen_libfunc, but verify that signed fixed-point operation is
5576 involved. */
5577
5578 void
5579 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5580 machine_mode mode)
5581 {
5582 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5583 return;
5584 gen_libfunc (optable, opname, suffix, mode);
5585 }
5586
5587 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5588 involved. */
5589
5590 void
5591 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5592 machine_mode mode)
5593 {
5594 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5595 return;
5596 gen_libfunc (optable, opname, suffix, mode);
5597 }
5598
5599 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5600
5601 void
5602 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5603 machine_mode mode)
5604 {
5605 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5606 gen_fp_libfunc (optable, name, suffix, mode);
5607 if (INTEGRAL_MODE_P (mode))
5608 gen_int_libfunc (optable, name, suffix, mode);
5609 }
5610
5611 /* Like gen_libfunc, but verify that FP or INT operation is involved
5612 and add 'v' suffix for integer operation. */
5613
5614 void
5615 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5616 machine_mode mode)
5617 {
5618 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5619 gen_fp_libfunc (optable, name, suffix, mode);
5620 if (GET_MODE_CLASS (mode) == MODE_INT)
5621 {
5622 int len = strlen (name);
5623 char *v_name = XALLOCAVEC (char, len + 2);
5624 strcpy (v_name, name);
5625 v_name[len] = 'v';
5626 v_name[len + 1] = 0;
5627 gen_int_libfunc (optable, v_name, suffix, mode);
5628 }
5629 }
5630
5631 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5632 involved. */
5633
5634 void
5635 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5636 machine_mode mode)
5637 {
5638 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5639 gen_fp_libfunc (optable, name, suffix, mode);
5640 if (INTEGRAL_MODE_P (mode))
5641 gen_int_libfunc (optable, name, suffix, mode);
5642 if (ALL_FIXED_POINT_MODE_P (mode))
5643 gen_fixed_libfunc (optable, name, suffix, mode);
5644 }
5645
5646 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5647 involved. */
5648
5649 void
5650 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5651 machine_mode mode)
5652 {
5653 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5654 gen_fp_libfunc (optable, name, suffix, mode);
5655 if (INTEGRAL_MODE_P (mode))
5656 gen_int_libfunc (optable, name, suffix, mode);
5657 if (SIGNED_FIXED_POINT_MODE_P (mode))
5658 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5659 }
5660
5661 /* Like gen_libfunc, but verify that INT or FIXED operation is
5662 involved. */
5663
5664 void
5665 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5666 machine_mode mode)
5667 {
5668 if (INTEGRAL_MODE_P (mode))
5669 gen_int_libfunc (optable, name, suffix, mode);
5670 if (ALL_FIXED_POINT_MODE_P (mode))
5671 gen_fixed_libfunc (optable, name, suffix, mode);
5672 }
5673
5674 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5675 involved. */
5676
5677 void
5678 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5679 machine_mode mode)
5680 {
5681 if (INTEGRAL_MODE_P (mode))
5682 gen_int_libfunc (optable, name, suffix, mode);
5683 if (SIGNED_FIXED_POINT_MODE_P (mode))
5684 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5685 }
5686
5687 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5688 involved. */
5689
5690 void
5691 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5692 machine_mode mode)
5693 {
5694 if (INTEGRAL_MODE_P (mode))
5695 gen_int_libfunc (optable, name, suffix, mode);
5696 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5697 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5698 }
5699
5700 /* Initialize the libfunc fields of an entire group of entries of an
5701 inter-mode-class conversion optab. The string formation rules are
5702 similar to the ones for init_libfuncs, above, but instead of having
5703 a mode name and an operand count these functions have two mode names
5704 and no operand count. */
5705
5706 void
5707 gen_interclass_conv_libfunc (convert_optab tab,
5708 const char *opname,
5709 machine_mode tmode,
5710 machine_mode fmode)
5711 {
5712 size_t opname_len = strlen (opname);
5713 size_t mname_len = 0;
5714
5715 const char *fname, *tname;
5716 const char *q;
5717 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5718 char *libfunc_name, *suffix;
5719 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5720 char *p;
5721
5722 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5723 depends on which underlying decimal floating point format is used. */
5724 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5725
5726 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5727
5728 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5729 nondec_name[0] = '_';
5730 nondec_name[1] = '_';
5731 if (targetm.libfunc_gnu_prefix)
5732 {
5733 nondec_name[2] = 'g';
5734 nondec_name[3] = 'n';
5735 nondec_name[4] = 'u';
5736 nondec_name[5] = '_';
5737 }
5738
5739 memcpy (&nondec_name[prefix_len], opname, opname_len);
5740 nondec_suffix = nondec_name + opname_len + prefix_len;
5741
5742 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5743 dec_name[0] = '_';
5744 dec_name[1] = '_';
5745 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5746 memcpy (&dec_name[2+dec_len], opname, opname_len);
5747 dec_suffix = dec_name + dec_len + opname_len + 2;
5748
5749 fname = GET_MODE_NAME (fmode);
5750 tname = GET_MODE_NAME (tmode);
5751
5752 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5753 {
5754 libfunc_name = dec_name;
5755 suffix = dec_suffix;
5756 }
5757 else
5758 {
5759 libfunc_name = nondec_name;
5760 suffix = nondec_suffix;
5761 }
5762
5763 p = suffix;
5764 for (q = fname; *q; p++, q++)
5765 *p = TOLOWER (*q);
5766 for (q = tname; *q; p++, q++)
5767 *p = TOLOWER (*q);
5768
5769 *p = '\0';
5770
5771 set_conv_libfunc (tab, tmode, fmode,
5772 ggc_alloc_string (libfunc_name, p - libfunc_name));
5773 }
5774
5775 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5776 int->fp conversion. */
5777
5778 void
5779 gen_int_to_fp_conv_libfunc (convert_optab tab,
5780 const char *opname,
5781 machine_mode tmode,
5782 machine_mode fmode)
5783 {
5784 if (GET_MODE_CLASS (fmode) != MODE_INT)
5785 return;
5786 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5787 return;
5788 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5789 }
5790
5791 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5792 naming scheme. */
5793
5794 void
5795 gen_ufloat_conv_libfunc (convert_optab tab,
5796 const char *opname ATTRIBUTE_UNUSED,
5797 machine_mode tmode,
5798 machine_mode fmode)
5799 {
5800 if (DECIMAL_FLOAT_MODE_P (tmode))
5801 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5802 else
5803 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5804 }
5805
5806 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5807 fp->int conversion. */
5808
5809 void
5810 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5811 const char *opname,
5812 machine_mode tmode,
5813 machine_mode fmode)
5814 {
5815 if (GET_MODE_CLASS (fmode) != MODE_INT)
5816 return;
5817 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5818 return;
5819 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5820 }
5821
5822 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5823 fp->int conversion with no decimal floating point involved. */
5824
5825 void
5826 gen_fp_to_int_conv_libfunc (convert_optab tab,
5827 const char *opname,
5828 machine_mode tmode,
5829 machine_mode fmode)
5830 {
5831 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5832 return;
5833 if (GET_MODE_CLASS (tmode) != MODE_INT)
5834 return;
5835 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5836 }
5837
5838 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5839 The string formation rules are
5840 similar to the ones for init_libfunc, above. */
5841
5842 void
5843 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5844 machine_mode tmode, machine_mode fmode)
5845 {
5846 size_t opname_len = strlen (opname);
5847 size_t mname_len = 0;
5848
5849 const char *fname, *tname;
5850 const char *q;
5851 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5852 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5853 char *libfunc_name, *suffix;
5854 char *p;
5855
5856 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5857 depends on which underlying decimal floating point format is used. */
5858 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5859
5860 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5861
5862 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5863 nondec_name[0] = '_';
5864 nondec_name[1] = '_';
5865 if (targetm.libfunc_gnu_prefix)
5866 {
5867 nondec_name[2] = 'g';
5868 nondec_name[3] = 'n';
5869 nondec_name[4] = 'u';
5870 nondec_name[5] = '_';
5871 }
5872 memcpy (&nondec_name[prefix_len], opname, opname_len);
5873 nondec_suffix = nondec_name + opname_len + prefix_len;
5874
5875 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5876 dec_name[0] = '_';
5877 dec_name[1] = '_';
5878 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5879 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5880 dec_suffix = dec_name + dec_len + opname_len + 2;
5881
5882 fname = GET_MODE_NAME (fmode);
5883 tname = GET_MODE_NAME (tmode);
5884
5885 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5886 {
5887 libfunc_name = dec_name;
5888 suffix = dec_suffix;
5889 }
5890 else
5891 {
5892 libfunc_name = nondec_name;
5893 suffix = nondec_suffix;
5894 }
5895
5896 p = suffix;
5897 for (q = fname; *q; p++, q++)
5898 *p = TOLOWER (*q);
5899 for (q = tname; *q; p++, q++)
5900 *p = TOLOWER (*q);
5901
5902 *p++ = '2';
5903 *p = '\0';
5904
5905 set_conv_libfunc (tab, tmode, fmode,
5906 ggc_alloc_string (libfunc_name, p - libfunc_name));
5907 }
5908
5909 /* Pick proper libcall for trunc_optab. We need to chose if we do
5910 truncation or extension and interclass or intraclass. */
5911
5912 void
5913 gen_trunc_conv_libfunc (convert_optab tab,
5914 const char *opname,
5915 machine_mode tmode,
5916 machine_mode fmode)
5917 {
5918 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5919 return;
5920 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5921 return;
5922 if (tmode == fmode)
5923 return;
5924
5925 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5926 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5927 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5928
5929 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5930 return;
5931
5932 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5933 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5934 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5935 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5936 }
5937
5938 /* Pick proper libcall for extend_optab. We need to chose if we do
5939 truncation or extension and interclass or intraclass. */
5940
5941 void
5942 gen_extend_conv_libfunc (convert_optab tab,
5943 const char *opname ATTRIBUTE_UNUSED,
5944 machine_mode tmode,
5945 machine_mode fmode)
5946 {
5947 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5948 return;
5949 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5950 return;
5951 if (tmode == fmode)
5952 return;
5953
5954 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5955 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5956 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5957
5958 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5959 return;
5960
5961 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5962 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5963 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5964 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5965 }
5966
5967 /* Pick proper libcall for fract_optab. We need to chose if we do
5968 interclass or intraclass. */
5969
5970 void
5971 gen_fract_conv_libfunc (convert_optab tab,
5972 const char *opname,
5973 machine_mode tmode,
5974 machine_mode fmode)
5975 {
5976 if (tmode == fmode)
5977 return;
5978 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5979 return;
5980
5981 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5982 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5983 else
5984 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5985 }
5986
5987 /* Pick proper libcall for fractuns_optab. */
5988
5989 void
5990 gen_fractuns_conv_libfunc (convert_optab tab,
5991 const char *opname,
5992 machine_mode tmode,
5993 machine_mode fmode)
5994 {
5995 if (tmode == fmode)
5996 return;
5997 /* One mode must be a fixed-point mode, and the other must be an integer
5998 mode. */
5999 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
6000 || (ALL_FIXED_POINT_MODE_P (fmode)
6001 && GET_MODE_CLASS (tmode) == MODE_INT)))
6002 return;
6003
6004 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6005 }
6006
6007 /* Pick proper libcall for satfract_optab. We need to chose if we do
6008 interclass or intraclass. */
6009
6010 void
6011 gen_satfract_conv_libfunc (convert_optab tab,
6012 const char *opname,
6013 machine_mode tmode,
6014 machine_mode fmode)
6015 {
6016 if (tmode == fmode)
6017 return;
6018 /* TMODE must be a fixed-point mode. */
6019 if (!ALL_FIXED_POINT_MODE_P (tmode))
6020 return;
6021
6022 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6023 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6024 else
6025 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6026 }
6027
6028 /* Pick proper libcall for satfractuns_optab. */
6029
6030 void
6031 gen_satfractuns_conv_libfunc (convert_optab tab,
6032 const char *opname,
6033 machine_mode tmode,
6034 machine_mode fmode)
6035 {
6036 if (tmode == fmode)
6037 return;
6038 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6039 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6040 return;
6041
6042 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6043 }
6044
6045 /* Hashtable callbacks for libfunc_decls. */
6046
6047 struct libfunc_decl_hasher : ggc_ptr_hash<tree_node>
6048 {
6049 static hashval_t
6050 hash (tree entry)
6051 {
6052 return IDENTIFIER_HASH_VALUE (DECL_NAME (entry));
6053 }
6054
6055 static bool
6056 equal (tree decl, tree name)
6057 {
6058 return DECL_NAME (decl) == name;
6059 }
6060 };
6061
6062 /* A table of previously-created libfuncs, hashed by name. */
6063 static GTY (()) hash_table<libfunc_decl_hasher> *libfunc_decls;
6064
6065 /* Build a decl for a libfunc named NAME. */
6066
6067 tree
6068 build_libfunc_function (const char *name)
6069 {
6070 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6071 get_identifier (name),
6072 build_function_type (integer_type_node, NULL_TREE));
6073 /* ??? We don't have any type information except for this is
6074 a function. Pretend this is "int foo()". */
6075 DECL_ARTIFICIAL (decl) = 1;
6076 DECL_EXTERNAL (decl) = 1;
6077 TREE_PUBLIC (decl) = 1;
6078 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6079
6080 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6081 are the flags assigned by targetm.encode_section_info. */
6082 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6083
6084 return decl;
6085 }
6086
6087 rtx
6088 init_one_libfunc (const char *name)
6089 {
6090 tree id, decl;
6091 hashval_t hash;
6092
6093 if (libfunc_decls == NULL)
6094 libfunc_decls = hash_table<libfunc_decl_hasher>::create_ggc (37);
6095
6096 /* See if we have already created a libfunc decl for this function. */
6097 id = get_identifier (name);
6098 hash = IDENTIFIER_HASH_VALUE (id);
6099 tree *slot = libfunc_decls->find_slot_with_hash (id, hash, INSERT);
6100 decl = *slot;
6101 if (decl == NULL)
6102 {
6103 /* Create a new decl, so that it can be passed to
6104 targetm.encode_section_info. */
6105 decl = build_libfunc_function (name);
6106 *slot = decl;
6107 }
6108 return XEXP (DECL_RTL (decl), 0);
6109 }
6110
6111 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6112
6113 rtx
6114 set_user_assembler_libfunc (const char *name, const char *asmspec)
6115 {
6116 tree id, decl;
6117 hashval_t hash;
6118
6119 id = get_identifier (name);
6120 hash = IDENTIFIER_HASH_VALUE (id);
6121 tree *slot = libfunc_decls->find_slot_with_hash (id, hash, NO_INSERT);
6122 gcc_assert (slot);
6123 decl = (tree) *slot;
6124 set_user_assembler_name (decl, asmspec);
6125 return XEXP (DECL_RTL (decl), 0);
6126 }
6127
6128 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6129 MODE to NAME, which should be either 0 or a string constant. */
6130 void
6131 set_optab_libfunc (optab op, machine_mode mode, const char *name)
6132 {
6133 rtx val;
6134 struct libfunc_entry e;
6135 struct libfunc_entry **slot;
6136
6137 e.op = op;
6138 e.mode1 = mode;
6139 e.mode2 = VOIDmode;
6140
6141 if (name)
6142 val = init_one_libfunc (name);
6143 else
6144 val = 0;
6145 slot = libfunc_hash->find_slot (&e, INSERT);
6146 if (*slot == NULL)
6147 *slot = ggc_alloc<libfunc_entry> ();
6148 (*slot)->op = op;
6149 (*slot)->mode1 = mode;
6150 (*slot)->mode2 = VOIDmode;
6151 (*slot)->libfunc = val;
6152 }
6153
6154 /* Call this to reset the function entry for one conversion optab
6155 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6156 either 0 or a string constant. */
6157 void
6158 set_conv_libfunc (convert_optab optab, machine_mode tmode,
6159 machine_mode fmode, const char *name)
6160 {
6161 rtx val;
6162 struct libfunc_entry e;
6163 struct libfunc_entry **slot;
6164
6165 e.op = optab;
6166 e.mode1 = tmode;
6167 e.mode2 = fmode;
6168
6169 if (name)
6170 val = init_one_libfunc (name);
6171 else
6172 val = 0;
6173 slot = libfunc_hash->find_slot (&e, INSERT);
6174 if (*slot == NULL)
6175 *slot = ggc_alloc<libfunc_entry> ();
6176 (*slot)->op = optab;
6177 (*slot)->mode1 = tmode;
6178 (*slot)->mode2 = fmode;
6179 (*slot)->libfunc = val;
6180 }
6181
6182 /* Call this to initialize the contents of the optabs
6183 appropriately for the current target machine. */
6184
6185 void
6186 init_optabs (void)
6187 {
6188 if (libfunc_hash)
6189 libfunc_hash->empty ();
6190 else
6191 libfunc_hash = hash_table<libfunc_hasher>::create_ggc (10);
6192
6193 /* Fill in the optabs with the insns we support. */
6194 init_all_optabs (this_fn_optabs);
6195
6196 /* The ffs function operates on `int'. Fall back on it if we do not
6197 have a libgcc2 function for that width. */
6198 if (INT_TYPE_SIZE < BITS_PER_WORD)
6199 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6200 "ffs");
6201
6202 /* Explicitly initialize the bswap libfuncs since we need them to be
6203 valid for things other than word_mode. */
6204 if (targetm.libfunc_gnu_prefix)
6205 {
6206 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6207 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6208 }
6209 else
6210 {
6211 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6212 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6213 }
6214
6215 /* Use cabs for double complex abs, since systems generally have cabs.
6216 Don't define any libcall for float complex, so that cabs will be used. */
6217 if (complex_double_type_node)
6218 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6219 "cabs");
6220
6221 abort_libfunc = init_one_libfunc ("abort");
6222 memcpy_libfunc = init_one_libfunc ("memcpy");
6223 memmove_libfunc = init_one_libfunc ("memmove");
6224 memcmp_libfunc = init_one_libfunc ("memcmp");
6225 memset_libfunc = init_one_libfunc ("memset");
6226 setbits_libfunc = init_one_libfunc ("__setbits");
6227
6228 #ifndef DONT_USE_BUILTIN_SETJMP
6229 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6230 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6231 #else
6232 setjmp_libfunc = init_one_libfunc ("setjmp");
6233 longjmp_libfunc = init_one_libfunc ("longjmp");
6234 #endif
6235 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6236 unwind_sjlj_unregister_libfunc
6237 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6238
6239 /* For function entry/exit instrumentation. */
6240 profile_function_entry_libfunc
6241 = init_one_libfunc ("__cyg_profile_func_enter");
6242 profile_function_exit_libfunc
6243 = init_one_libfunc ("__cyg_profile_func_exit");
6244
6245 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6246
6247 /* Allow the target to add more libcalls or rename some, etc. */
6248 targetm.init_libfuncs ();
6249 }
6250
6251 /* Use the current target and options to initialize
6252 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6253
6254 void
6255 init_tree_optimization_optabs (tree optnode)
6256 {
6257 /* Quick exit if we have already computed optabs for this target. */
6258 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6259 return;
6260
6261 /* Forget any previous information and set up for the current target. */
6262 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6263 struct target_optabs *tmp_optabs = (struct target_optabs *)
6264 TREE_OPTIMIZATION_OPTABS (optnode);
6265 if (tmp_optabs)
6266 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6267 else
6268 tmp_optabs = ggc_alloc<target_optabs> ();
6269
6270 /* Generate a new set of optabs into tmp_optabs. */
6271 init_all_optabs (tmp_optabs);
6272
6273 /* If the optabs changed, record it. */
6274 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6275 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
6276 else
6277 {
6278 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6279 ggc_free (tmp_optabs);
6280 }
6281 }
6282
6283 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6284 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6285
6286 static void
6287 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6288 {
6289 machine_mode mode;
6290 char buf[64];
6291 size_t len = strlen (base);
6292 int i;
6293
6294 gcc_assert (max <= 8);
6295 gcc_assert (len + 3 < sizeof (buf));
6296
6297 memcpy (buf, base, len);
6298 buf[len] = '_';
6299 buf[len + 1] = '0';
6300 buf[len + 2] = '\0';
6301
6302 mode = QImode;
6303 for (i = 1; i <= max; i *= 2)
6304 {
6305 buf[len + 1] = '0' + i;
6306 set_optab_libfunc (tab, mode, buf);
6307 mode = GET_MODE_2XWIDER_MODE (mode);
6308 }
6309 }
6310
6311 void
6312 init_sync_libfuncs (int max)
6313 {
6314 if (!flag_sync_libcalls)
6315 return;
6316
6317 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6318 "__sync_val_compare_and_swap", max);
6319 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6320 "__sync_lock_test_and_set", max);
6321
6322 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6323 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6324 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6325 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6326 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6327 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6328
6329 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6330 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6331 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6332 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6333 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6334 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6335 }
6336
6337 /* Print information about the current contents of the optabs on
6338 STDERR. */
6339
6340 DEBUG_FUNCTION void
6341 debug_optab_libfuncs (void)
6342 {
6343 int i, j, k;
6344
6345 /* Dump the arithmetic optabs. */
6346 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6347 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6348 {
6349 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
6350 if (l)
6351 {
6352 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6353 fprintf (stderr, "%s\t%s:\t%s\n",
6354 GET_RTX_NAME (optab_to_code ((optab) i)),
6355 GET_MODE_NAME (j),
6356 XSTR (l, 0));
6357 }
6358 }
6359
6360 /* Dump the conversion optabs. */
6361 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6362 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6363 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6364 {
6365 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
6366 (machine_mode) k);
6367 if (l)
6368 {
6369 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6370 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6371 GET_RTX_NAME (optab_to_code ((optab) i)),
6372 GET_MODE_NAME (j),
6373 GET_MODE_NAME (k),
6374 XSTR (l, 0));
6375 }
6376 }
6377 }
6378
6379 \f
6380 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6381 CODE. Return 0 on failure. */
6382
6383 rtx_insn *
6384 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6385 {
6386 machine_mode mode = GET_MODE (op1);
6387 enum insn_code icode;
6388 rtx_insn *insn;
6389 rtx trap_rtx;
6390
6391 if (mode == VOIDmode)
6392 return 0;
6393
6394 icode = optab_handler (ctrap_optab, mode);
6395 if (icode == CODE_FOR_nothing)
6396 return 0;
6397
6398 /* Some targets only accept a zero trap code. */
6399 if (!insn_operand_matches (icode, 3, tcode))
6400 return 0;
6401
6402 do_pending_stack_adjust ();
6403 start_sequence ();
6404 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6405 &trap_rtx, &mode);
6406 if (!trap_rtx)
6407 insn = NULL;
6408 else
6409 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6410 tcode);
6411
6412 /* If that failed, then give up. */
6413 if (insn == 0)
6414 {
6415 end_sequence ();
6416 return 0;
6417 }
6418
6419 emit_insn (insn);
6420 insn = get_insns ();
6421 end_sequence ();
6422 return insn;
6423 }
6424
6425 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6426 or unsigned operation code. */
6427
6428 enum rtx_code
6429 get_rtx_code (enum tree_code tcode, bool unsignedp)
6430 {
6431 enum rtx_code code;
6432 switch (tcode)
6433 {
6434 case EQ_EXPR:
6435 code = EQ;
6436 break;
6437 case NE_EXPR:
6438 code = NE;
6439 break;
6440 case LT_EXPR:
6441 code = unsignedp ? LTU : LT;
6442 break;
6443 case LE_EXPR:
6444 code = unsignedp ? LEU : LE;
6445 break;
6446 case GT_EXPR:
6447 code = unsignedp ? GTU : GT;
6448 break;
6449 case GE_EXPR:
6450 code = unsignedp ? GEU : GE;
6451 break;
6452
6453 case UNORDERED_EXPR:
6454 code = UNORDERED;
6455 break;
6456 case ORDERED_EXPR:
6457 code = ORDERED;
6458 break;
6459 case UNLT_EXPR:
6460 code = UNLT;
6461 break;
6462 case UNLE_EXPR:
6463 code = UNLE;
6464 break;
6465 case UNGT_EXPR:
6466 code = UNGT;
6467 break;
6468 case UNGE_EXPR:
6469 code = UNGE;
6470 break;
6471 case UNEQ_EXPR:
6472 code = UNEQ;
6473 break;
6474 case LTGT_EXPR:
6475 code = LTGT;
6476 break;
6477
6478 case BIT_AND_EXPR:
6479 code = AND;
6480 break;
6481
6482 case BIT_IOR_EXPR:
6483 code = IOR;
6484 break;
6485
6486 default:
6487 gcc_unreachable ();
6488 }
6489 return code;
6490 }
6491
6492 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6493 unsigned operators. Do not generate compare instruction. */
6494
6495 static rtx
6496 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6497 bool unsignedp, enum insn_code icode)
6498 {
6499 struct expand_operand ops[2];
6500 rtx rtx_op0, rtx_op1;
6501 machine_mode m0, m1;
6502 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6503
6504 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6505
6506 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
6507 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
6508 cases, use the original mode. */
6509 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6510 EXPAND_STACK_PARM);
6511 m0 = GET_MODE (rtx_op0);
6512 if (m0 == VOIDmode)
6513 m0 = TYPE_MODE (TREE_TYPE (t_op0));
6514
6515 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6516 EXPAND_STACK_PARM);
6517 m1 = GET_MODE (rtx_op1);
6518 if (m1 == VOIDmode)
6519 m1 = TYPE_MODE (TREE_TYPE (t_op1));
6520
6521 create_input_operand (&ops[0], rtx_op0, m0);
6522 create_input_operand (&ops[1], rtx_op1, m1);
6523 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6524 gcc_unreachable ();
6525 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6526 }
6527
6528 /* Return true if VEC_PERM_EXPR of arbitrary input vectors can be expanded using
6529 SIMD extensions of the CPU. SEL may be NULL, which stands for an unknown
6530 constant. Note that additional permutations representing whole-vector shifts
6531 may also be handled via the vec_shr optab, but only where the second input
6532 vector is entirely constant zeroes; this case is not dealt with here. */
6533
6534 bool
6535 can_vec_perm_p (machine_mode mode, bool variable,
6536 const unsigned char *sel)
6537 {
6538 machine_mode qimode;
6539
6540 /* If the target doesn't implement a vector mode for the vector type,
6541 then no operations are supported. */
6542 if (!VECTOR_MODE_P (mode))
6543 return false;
6544
6545 if (!variable)
6546 {
6547 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6548 && (sel == NULL
6549 || targetm.vectorize.vec_perm_const_ok == NULL
6550 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6551 return true;
6552 }
6553
6554 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6555 return true;
6556
6557 /* We allow fallback to a QI vector mode, and adjust the mask. */
6558 if (GET_MODE_INNER (mode) == QImode)
6559 return false;
6560 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6561 if (!VECTOR_MODE_P (qimode))
6562 return false;
6563
6564 /* ??? For completeness, we ought to check the QImode version of
6565 vec_perm_const_optab. But all users of this implicit lowering
6566 feature implement the variable vec_perm_optab. */
6567 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6568 return false;
6569
6570 /* In order to support the lowering of variable permutations,
6571 we need to support shifts and adds. */
6572 if (variable)
6573 {
6574 if (GET_MODE_UNIT_SIZE (mode) > 2
6575 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6576 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6577 return false;
6578 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6579 return false;
6580 }
6581
6582 return true;
6583 }
6584
6585 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
6586 vec_perm operand, assuming the second operand is a constant vector of zeroes.
6587 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
6588 shift. */
6589 static rtx
6590 shift_amt_for_vec_perm_mask (rtx sel)
6591 {
6592 unsigned int i, first, nelt = GET_MODE_NUNITS (GET_MODE (sel));
6593 unsigned int bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (sel)));
6594
6595 if (GET_CODE (sel) != CONST_VECTOR)
6596 return NULL_RTX;
6597
6598 first = INTVAL (CONST_VECTOR_ELT (sel, 0));
6599 if (first >= 2*nelt)
6600 return NULL_RTX;
6601 for (i = 1; i < nelt; i++)
6602 {
6603 int idx = INTVAL (CONST_VECTOR_ELT (sel, i));
6604 unsigned int expected = (i + first) & (2 * nelt - 1);
6605 /* Indices into the second vector are all equivalent. */
6606 if (idx < 0 || (MIN (nelt, (unsigned) idx) != MIN (nelt, expected)))
6607 return NULL_RTX;
6608 }
6609
6610 return GEN_INT (first * bitsize);
6611 }
6612
6613 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6614
6615 static rtx
6616 expand_vec_perm_1 (enum insn_code icode, rtx target,
6617 rtx v0, rtx v1, rtx sel)
6618 {
6619 machine_mode tmode = GET_MODE (target);
6620 machine_mode smode = GET_MODE (sel);
6621 struct expand_operand ops[4];
6622
6623 create_output_operand (&ops[0], target, tmode);
6624 create_input_operand (&ops[3], sel, smode);
6625
6626 /* Make an effort to preserve v0 == v1. The target expander is able to
6627 rely on this to determine if we're permuting a single input operand. */
6628 if (rtx_equal_p (v0, v1))
6629 {
6630 if (!insn_operand_matches (icode, 1, v0))
6631 v0 = force_reg (tmode, v0);
6632 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6633 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6634
6635 create_fixed_operand (&ops[1], v0);
6636 create_fixed_operand (&ops[2], v0);
6637 }
6638 else
6639 {
6640 create_input_operand (&ops[1], v0, tmode);
6641 /* See if this can be handled with a vec_shr. We only do this if the
6642 second vector is all zeroes. */
6643 enum insn_code shift_code = optab_handler (vec_shr_optab, GET_MODE (v0));
6644 if (v1 == CONST0_RTX (GET_MODE (v1)) && shift_code)
6645 if (rtx shift_amt = shift_amt_for_vec_perm_mask (sel))
6646 {
6647 create_convert_operand_from_type (&ops[2], shift_amt,
6648 sizetype_tab[(int) stk_sizetype]);
6649 if (maybe_expand_insn (shift_code, 3, ops))
6650 return ops[0].value;
6651 }
6652 create_input_operand (&ops[2], v1, tmode);
6653 }
6654
6655 if (maybe_expand_insn (icode, 4, ops))
6656 return ops[0].value;
6657 return NULL_RTX;
6658 }
6659
6660 /* Generate instructions for vec_perm optab given its mode
6661 and three operands. */
6662
6663 rtx
6664 expand_vec_perm (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6665 {
6666 enum insn_code icode;
6667 machine_mode qimode;
6668 unsigned int i, w, e, u;
6669 rtx tmp, sel_qi = NULL;
6670 rtvec vec;
6671
6672 if (!target || GET_MODE (target) != mode)
6673 target = gen_reg_rtx (mode);
6674
6675 w = GET_MODE_SIZE (mode);
6676 e = GET_MODE_NUNITS (mode);
6677 u = GET_MODE_UNIT_SIZE (mode);
6678
6679 /* Set QIMODE to a different vector mode with byte elements.
6680 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6681 qimode = VOIDmode;
6682 if (GET_MODE_INNER (mode) != QImode)
6683 {
6684 qimode = mode_for_vector (QImode, w);
6685 if (!VECTOR_MODE_P (qimode))
6686 qimode = VOIDmode;
6687 }
6688
6689 /* If the input is a constant, expand it specially. */
6690 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6691 if (GET_CODE (sel) == CONST_VECTOR)
6692 {
6693 icode = direct_optab_handler (vec_perm_const_optab, mode);
6694 if (icode != CODE_FOR_nothing)
6695 {
6696 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6697 if (tmp)
6698 return tmp;
6699 }
6700
6701 /* Fall back to a constant byte-based permutation. */
6702 if (qimode != VOIDmode)
6703 {
6704 vec = rtvec_alloc (w);
6705 for (i = 0; i < e; ++i)
6706 {
6707 unsigned int j, this_e;
6708
6709 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6710 this_e &= 2 * e - 1;
6711 this_e *= u;
6712
6713 for (j = 0; j < u; ++j)
6714 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6715 }
6716 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6717
6718 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6719 if (icode != CODE_FOR_nothing)
6720 {
6721 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6722 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6723 gen_lowpart (qimode, v1), sel_qi);
6724 if (tmp)
6725 return gen_lowpart (mode, tmp);
6726 }
6727 }
6728 }
6729
6730 /* Otherwise expand as a fully variable permuation. */
6731 icode = direct_optab_handler (vec_perm_optab, mode);
6732 if (icode != CODE_FOR_nothing)
6733 {
6734 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6735 if (tmp)
6736 return tmp;
6737 }
6738
6739 /* As a special case to aid several targets, lower the element-based
6740 permutation to a byte-based permutation and try again. */
6741 if (qimode == VOIDmode)
6742 return NULL_RTX;
6743 icode = direct_optab_handler (vec_perm_optab, qimode);
6744 if (icode == CODE_FOR_nothing)
6745 return NULL_RTX;
6746
6747 if (sel_qi == NULL)
6748 {
6749 /* Multiply each element by its byte size. */
6750 machine_mode selmode = GET_MODE (sel);
6751 if (u == 2)
6752 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6753 NULL, 0, OPTAB_DIRECT);
6754 else
6755 sel = expand_simple_binop (selmode, ASHIFT, sel,
6756 GEN_INT (exact_log2 (u)),
6757 NULL, 0, OPTAB_DIRECT);
6758 gcc_assert (sel != NULL);
6759
6760 /* Broadcast the low byte each element into each of its bytes. */
6761 vec = rtvec_alloc (w);
6762 for (i = 0; i < w; ++i)
6763 {
6764 int this_e = i / u * u;
6765 if (BYTES_BIG_ENDIAN)
6766 this_e += u - 1;
6767 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6768 }
6769 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6770 sel = gen_lowpart (qimode, sel);
6771 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6772 gcc_assert (sel != NULL);
6773
6774 /* Add the byte offset to each byte element. */
6775 /* Note that the definition of the indicies here is memory ordering,
6776 so there should be no difference between big and little endian. */
6777 vec = rtvec_alloc (w);
6778 for (i = 0; i < w; ++i)
6779 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6780 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6781 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6782 sel, 0, OPTAB_DIRECT);
6783 gcc_assert (sel_qi != NULL);
6784 }
6785
6786 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6787 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6788 gen_lowpart (qimode, v1), sel_qi);
6789 if (tmp)
6790 tmp = gen_lowpart (mode, tmp);
6791 return tmp;
6792 }
6793
6794 /* Return insn code for a conditional operator with a comparison in
6795 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6796
6797 static inline enum insn_code
6798 get_vcond_icode (machine_mode vmode, machine_mode cmode, bool uns)
6799 {
6800 enum insn_code icode = CODE_FOR_nothing;
6801 if (uns)
6802 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6803 else
6804 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6805 return icode;
6806 }
6807
6808 /* Return TRUE iff, appropriate vector insns are available
6809 for vector cond expr with vector type VALUE_TYPE and a comparison
6810 with operand vector types in CMP_OP_TYPE. */
6811
6812 bool
6813 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6814 {
6815 machine_mode value_mode = TYPE_MODE (value_type);
6816 machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6817 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6818 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6819 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6820 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6821 return false;
6822 return true;
6823 }
6824
6825 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6826 three operands. */
6827
6828 rtx
6829 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6830 rtx target)
6831 {
6832 struct expand_operand ops[6];
6833 enum insn_code icode;
6834 rtx comparison, rtx_op1, rtx_op2;
6835 machine_mode mode = TYPE_MODE (vec_cond_type);
6836 machine_mode cmp_op_mode;
6837 bool unsignedp;
6838 tree op0a, op0b;
6839 enum tree_code tcode;
6840
6841 if (COMPARISON_CLASS_P (op0))
6842 {
6843 op0a = TREE_OPERAND (op0, 0);
6844 op0b = TREE_OPERAND (op0, 1);
6845 tcode = TREE_CODE (op0);
6846 }
6847 else
6848 {
6849 /* Fake op0 < 0. */
6850 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6851 op0a = op0;
6852 op0b = build_zero_cst (TREE_TYPE (op0));
6853 tcode = LT_EXPR;
6854 }
6855 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6856 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6857
6858
6859 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6860 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6861
6862 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6863 if (icode == CODE_FOR_nothing)
6864 return 0;
6865
6866 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6867 rtx_op1 = expand_normal (op1);
6868 rtx_op2 = expand_normal (op2);
6869
6870 create_output_operand (&ops[0], target, mode);
6871 create_input_operand (&ops[1], rtx_op1, mode);
6872 create_input_operand (&ops[2], rtx_op2, mode);
6873 create_fixed_operand (&ops[3], comparison);
6874 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6875 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6876 expand_insn (icode, 6, ops);
6877 return ops[0].value;
6878 }
6879
6880 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6881 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6882 2 for even/odd widening, and 3 for hi/lo widening. */
6883
6884 int
6885 can_mult_highpart_p (machine_mode mode, bool uns_p)
6886 {
6887 optab op;
6888 unsigned char *sel;
6889 unsigned i, nunits;
6890
6891 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6892 if (optab_handler (op, mode) != CODE_FOR_nothing)
6893 return 1;
6894
6895 /* If the mode is an integral vector, synth from widening operations. */
6896 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6897 return 0;
6898
6899 nunits = GET_MODE_NUNITS (mode);
6900 sel = XALLOCAVEC (unsigned char, nunits);
6901
6902 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6903 if (optab_handler (op, mode) != CODE_FOR_nothing)
6904 {
6905 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6906 if (optab_handler (op, mode) != CODE_FOR_nothing)
6907 {
6908 for (i = 0; i < nunits; ++i)
6909 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6910 if (can_vec_perm_p (mode, false, sel))
6911 return 2;
6912 }
6913 }
6914
6915 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6916 if (optab_handler (op, mode) != CODE_FOR_nothing)
6917 {
6918 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6919 if (optab_handler (op, mode) != CODE_FOR_nothing)
6920 {
6921 for (i = 0; i < nunits; ++i)
6922 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6923 if (can_vec_perm_p (mode, false, sel))
6924 return 3;
6925 }
6926 }
6927
6928 return 0;
6929 }
6930
6931 /* Expand a highpart multiply. */
6932
6933 rtx
6934 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
6935 rtx target, bool uns_p)
6936 {
6937 struct expand_operand eops[3];
6938 enum insn_code icode;
6939 int method, i, nunits;
6940 machine_mode wmode;
6941 rtx m1, m2, perm;
6942 optab tab1, tab2;
6943 rtvec v;
6944
6945 method = can_mult_highpart_p (mode, uns_p);
6946 switch (method)
6947 {
6948 case 0:
6949 return NULL_RTX;
6950 case 1:
6951 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6952 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6953 OPTAB_LIB_WIDEN);
6954 case 2:
6955 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6956 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6957 break;
6958 case 3:
6959 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6960 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6961 if (BYTES_BIG_ENDIAN)
6962 std::swap (tab1, tab2);
6963 break;
6964 default:
6965 gcc_unreachable ();
6966 }
6967
6968 icode = optab_handler (tab1, mode);
6969 nunits = GET_MODE_NUNITS (mode);
6970 wmode = insn_data[icode].operand[0].mode;
6971 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6972 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6973
6974 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6975 create_input_operand (&eops[1], op0, mode);
6976 create_input_operand (&eops[2], op1, mode);
6977 expand_insn (icode, 3, eops);
6978 m1 = gen_lowpart (mode, eops[0].value);
6979
6980 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6981 create_input_operand (&eops[1], op0, mode);
6982 create_input_operand (&eops[2], op1, mode);
6983 expand_insn (optab_handler (tab2, mode), 3, eops);
6984 m2 = gen_lowpart (mode, eops[0].value);
6985
6986 v = rtvec_alloc (nunits);
6987 if (method == 2)
6988 {
6989 for (i = 0; i < nunits; ++i)
6990 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6991 + ((i & 1) ? nunits : 0));
6992 }
6993 else
6994 {
6995 for (i = 0; i < nunits; ++i)
6996 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6997 }
6998 perm = gen_rtx_CONST_VECTOR (mode, v);
6999
7000 return expand_vec_perm (mode, m1, m2, perm, target);
7001 }
7002
7003 /* Return true if target supports vector masked load/store for mode. */
7004 bool
7005 can_vec_mask_load_store_p (machine_mode mode, bool is_load)
7006 {
7007 optab op = is_load ? maskload_optab : maskstore_optab;
7008 machine_mode vmode;
7009 unsigned int vector_sizes;
7010
7011 /* If mode is vector mode, check it directly. */
7012 if (VECTOR_MODE_P (mode))
7013 return optab_handler (op, mode) != CODE_FOR_nothing;
7014
7015 /* Otherwise, return true if there is some vector mode with
7016 the mask load/store supported. */
7017
7018 /* See if there is any chance the mask load or store might be
7019 vectorized. If not, punt. */
7020 vmode = targetm.vectorize.preferred_simd_mode (mode);
7021 if (!VECTOR_MODE_P (vmode))
7022 return false;
7023
7024 if (optab_handler (op, vmode) != CODE_FOR_nothing)
7025 return true;
7026
7027 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
7028 while (vector_sizes != 0)
7029 {
7030 unsigned int cur = 1 << floor_log2 (vector_sizes);
7031 vector_sizes &= ~cur;
7032 if (cur <= GET_MODE_SIZE (mode))
7033 continue;
7034 vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode));
7035 if (VECTOR_MODE_P (vmode)
7036 && optab_handler (op, vmode) != CODE_FOR_nothing)
7037 return true;
7038 }
7039 return false;
7040 }
7041 \f
7042 /* Return true if there is a compare_and_swap pattern. */
7043
7044 bool
7045 can_compare_and_swap_p (machine_mode mode, bool allow_libcall)
7046 {
7047 enum insn_code icode;
7048
7049 /* Check for __atomic_compare_and_swap. */
7050 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7051 if (icode != CODE_FOR_nothing)
7052 return true;
7053
7054 /* Check for __sync_compare_and_swap. */
7055 icode = optab_handler (sync_compare_and_swap_optab, mode);
7056 if (icode != CODE_FOR_nothing)
7057 return true;
7058 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
7059 return true;
7060
7061 /* No inline compare and swap. */
7062 return false;
7063 }
7064
7065 /* Return true if an atomic exchange can be performed. */
7066
7067 bool
7068 can_atomic_exchange_p (machine_mode mode, bool allow_libcall)
7069 {
7070 enum insn_code icode;
7071
7072 /* Check for __atomic_exchange. */
7073 icode = direct_optab_handler (atomic_exchange_optab, mode);
7074 if (icode != CODE_FOR_nothing)
7075 return true;
7076
7077 /* Don't check __sync_test_and_set, as on some platforms that
7078 has reduced functionality. Targets that really do support
7079 a proper exchange should simply be updated to the __atomics. */
7080
7081 return can_compare_and_swap_p (mode, allow_libcall);
7082 }
7083
7084
7085 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7086 pattern. */
7087
7088 static void
7089 find_cc_set (rtx x, const_rtx pat, void *data)
7090 {
7091 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7092 && GET_CODE (pat) == SET)
7093 {
7094 rtx *p_cc_reg = (rtx *) data;
7095 gcc_assert (!*p_cc_reg);
7096 *p_cc_reg = x;
7097 }
7098 }
7099
7100 /* This is a helper function for the other atomic operations. This function
7101 emits a loop that contains SEQ that iterates until a compare-and-swap
7102 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7103 a set of instructions that takes a value from OLD_REG as an input and
7104 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7105 set to the current contents of MEM. After SEQ, a compare-and-swap will
7106 attempt to update MEM with NEW_REG. The function returns true when the
7107 loop was generated successfully. */
7108
7109 static bool
7110 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7111 {
7112 machine_mode mode = GET_MODE (mem);
7113 rtx_code_label *label;
7114 rtx cmp_reg, success, oldval;
7115
7116 /* The loop we want to generate looks like
7117
7118 cmp_reg = mem;
7119 label:
7120 old_reg = cmp_reg;
7121 seq;
7122 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7123 if (success)
7124 goto label;
7125
7126 Note that we only do the plain load from memory once. Subsequent
7127 iterations use the value loaded by the compare-and-swap pattern. */
7128
7129 label = gen_label_rtx ();
7130 cmp_reg = gen_reg_rtx (mode);
7131
7132 emit_move_insn (cmp_reg, mem);
7133 emit_label (label);
7134 emit_move_insn (old_reg, cmp_reg);
7135 if (seq)
7136 emit_insn (seq);
7137
7138 success = NULL_RTX;
7139 oldval = cmp_reg;
7140 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7141 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
7142 MEMMODEL_RELAXED))
7143 return false;
7144
7145 if (oldval != cmp_reg)
7146 emit_move_insn (cmp_reg, oldval);
7147
7148 /* Mark this jump predicted not taken. */
7149 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7150 GET_MODE (success), 1, label, 0);
7151 return true;
7152 }
7153
7154
7155 /* This function tries to emit an atomic_exchange intruction. VAL is written
7156 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7157 using TARGET if possible. */
7158
7159 static rtx
7160 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7161 {
7162 machine_mode mode = GET_MODE (mem);
7163 enum insn_code icode;
7164
7165 /* If the target supports the exchange directly, great. */
7166 icode = direct_optab_handler (atomic_exchange_optab, mode);
7167 if (icode != CODE_FOR_nothing)
7168 {
7169 struct expand_operand ops[4];
7170
7171 create_output_operand (&ops[0], target, mode);
7172 create_fixed_operand (&ops[1], mem);
7173 create_input_operand (&ops[2], val, mode);
7174 create_integer_operand (&ops[3], model);
7175 if (maybe_expand_insn (icode, 4, ops))
7176 return ops[0].value;
7177 }
7178
7179 return NULL_RTX;
7180 }
7181
7182 /* This function tries to implement an atomic exchange operation using
7183 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7184 The previous contents of *MEM are returned, using TARGET if possible.
7185 Since this instructionn is an acquire barrier only, stronger memory
7186 models may require additional barriers to be emitted. */
7187
7188 static rtx
7189 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7190 enum memmodel model)
7191 {
7192 machine_mode mode = GET_MODE (mem);
7193 enum insn_code icode;
7194 rtx_insn *last_insn = get_last_insn ();
7195
7196 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7197
7198 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7199 exists, and the memory model is stronger than acquire, add a release
7200 barrier before the instruction. */
7201
7202 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
7203 expand_mem_thread_fence (model);
7204
7205 if (icode != CODE_FOR_nothing)
7206 {
7207 struct expand_operand ops[3];
7208 create_output_operand (&ops[0], target, mode);
7209 create_fixed_operand (&ops[1], mem);
7210 create_input_operand (&ops[2], val, mode);
7211 if (maybe_expand_insn (icode, 3, ops))
7212 return ops[0].value;
7213 }
7214
7215 /* If an external test-and-set libcall is provided, use that instead of
7216 any external compare-and-swap that we might get from the compare-and-
7217 swap-loop expansion later. */
7218 if (!can_compare_and_swap_p (mode, false))
7219 {
7220 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7221 if (libfunc != NULL)
7222 {
7223 rtx addr;
7224
7225 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7226 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7227 mode, 2, addr, ptr_mode,
7228 val, mode);
7229 }
7230 }
7231
7232 /* If the test_and_set can't be emitted, eliminate any barrier that might
7233 have been emitted. */
7234 delete_insns_since (last_insn);
7235 return NULL_RTX;
7236 }
7237
7238 /* This function tries to implement an atomic exchange operation using a
7239 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7240 *MEM are returned, using TARGET if possible. No memory model is required
7241 since a compare_and_swap loop is seq-cst. */
7242
7243 static rtx
7244 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7245 {
7246 machine_mode mode = GET_MODE (mem);
7247
7248 if (can_compare_and_swap_p (mode, true))
7249 {
7250 if (!target || !register_operand (target, mode))
7251 target = gen_reg_rtx (mode);
7252 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7253 return target;
7254 }
7255
7256 return NULL_RTX;
7257 }
7258
7259 /* This function tries to implement an atomic test-and-set operation
7260 using the atomic_test_and_set instruction pattern. A boolean value
7261 is returned from the operation, using TARGET if possible. */
7262
7263 #ifndef HAVE_atomic_test_and_set
7264 #define HAVE_atomic_test_and_set 0
7265 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7266 #endif
7267
7268 static rtx
7269 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7270 {
7271 machine_mode pat_bool_mode;
7272 struct expand_operand ops[3];
7273
7274 if (!HAVE_atomic_test_and_set)
7275 return NULL_RTX;
7276
7277 /* While we always get QImode from __atomic_test_and_set, we get
7278 other memory modes from __sync_lock_test_and_set. Note that we
7279 use no endian adjustment here. This matches the 4.6 behavior
7280 in the Sparc backend. */
7281 gcc_checking_assert
7282 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7283 if (GET_MODE (mem) != QImode)
7284 mem = adjust_address_nv (mem, QImode, 0);
7285
7286 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7287 create_output_operand (&ops[0], target, pat_bool_mode);
7288 create_fixed_operand (&ops[1], mem);
7289 create_integer_operand (&ops[2], model);
7290
7291 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7292 return ops[0].value;
7293 return NULL_RTX;
7294 }
7295
7296 /* This function expands the legacy _sync_lock test_and_set operation which is
7297 generally an atomic exchange. Some limited targets only allow the
7298 constant 1 to be stored. This is an ACQUIRE operation.
7299
7300 TARGET is an optional place to stick the return value.
7301 MEM is where VAL is stored. */
7302
7303 rtx
7304 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7305 {
7306 rtx ret;
7307
7308 /* Try an atomic_exchange first. */
7309 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
7310 if (ret)
7311 return ret;
7312
7313 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
7314 MEMMODEL_SYNC_ACQUIRE);
7315 if (ret)
7316 return ret;
7317
7318 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7319 if (ret)
7320 return ret;
7321
7322 /* If there are no other options, try atomic_test_and_set if the value
7323 being stored is 1. */
7324 if (val == const1_rtx)
7325 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
7326
7327 return ret;
7328 }
7329
7330 /* This function expands the atomic test_and_set operation:
7331 atomically store a boolean TRUE into MEM and return the previous value.
7332
7333 MEMMODEL is the memory model variant to use.
7334 TARGET is an optional place to stick the return value. */
7335
7336 rtx
7337 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7338 {
7339 machine_mode mode = GET_MODE (mem);
7340 rtx ret, trueval, subtarget;
7341
7342 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7343 if (ret)
7344 return ret;
7345
7346 /* Be binary compatible with non-default settings of trueval, and different
7347 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7348 another only has atomic-exchange. */
7349 if (targetm.atomic_test_and_set_trueval == 1)
7350 {
7351 trueval = const1_rtx;
7352 subtarget = target ? target : gen_reg_rtx (mode);
7353 }
7354 else
7355 {
7356 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7357 subtarget = gen_reg_rtx (mode);
7358 }
7359
7360 /* Try the atomic-exchange optab... */
7361 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7362
7363 /* ... then an atomic-compare-and-swap loop ... */
7364 if (!ret)
7365 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7366
7367 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7368 if (!ret)
7369 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7370
7371 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7372 things with the value 1. Thus we try again without trueval. */
7373 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7374 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7375
7376 /* Failing all else, assume a single threaded environment and simply
7377 perform the operation. */
7378 if (!ret)
7379 {
7380 /* If the result is ignored skip the move to target. */
7381 if (subtarget != const0_rtx)
7382 emit_move_insn (subtarget, mem);
7383
7384 emit_move_insn (mem, trueval);
7385 ret = subtarget;
7386 }
7387
7388 /* Recall that have to return a boolean value; rectify if trueval
7389 is not exactly one. */
7390 if (targetm.atomic_test_and_set_trueval != 1)
7391 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7392
7393 return ret;
7394 }
7395
7396 /* This function expands the atomic exchange operation:
7397 atomically store VAL in MEM and return the previous value in MEM.
7398
7399 MEMMODEL is the memory model variant to use.
7400 TARGET is an optional place to stick the return value. */
7401
7402 rtx
7403 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7404 {
7405 rtx ret;
7406
7407 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7408
7409 /* Next try a compare-and-swap loop for the exchange. */
7410 if (!ret)
7411 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7412
7413 return ret;
7414 }
7415
7416 /* This function expands the atomic compare exchange operation:
7417
7418 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7419 *PTARGET_OVAL is an optional place to store the old value from memory.
7420 Both target parameters may be NULL to indicate that we do not care about
7421 that return value. Both target parameters are updated on success to
7422 the actual location of the corresponding result.
7423
7424 MEMMODEL is the memory model variant to use.
7425
7426 The return value of the function is true for success. */
7427
7428 bool
7429 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7430 rtx mem, rtx expected, rtx desired,
7431 bool is_weak, enum memmodel succ_model,
7432 enum memmodel fail_model)
7433 {
7434 machine_mode mode = GET_MODE (mem);
7435 struct expand_operand ops[8];
7436 enum insn_code icode;
7437 rtx target_oval, target_bool = NULL_RTX;
7438 rtx libfunc;
7439
7440 /* Load expected into a register for the compare and swap. */
7441 if (MEM_P (expected))
7442 expected = copy_to_reg (expected);
7443
7444 /* Make sure we always have some place to put the return oldval.
7445 Further, make sure that place is distinct from the input expected,
7446 just in case we need that path down below. */
7447 if (ptarget_oval == NULL
7448 || (target_oval = *ptarget_oval) == NULL
7449 || reg_overlap_mentioned_p (expected, target_oval))
7450 target_oval = gen_reg_rtx (mode);
7451
7452 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7453 if (icode != CODE_FOR_nothing)
7454 {
7455 machine_mode bool_mode = insn_data[icode].operand[0].mode;
7456
7457 /* Make sure we always have a place for the bool operand. */
7458 if (ptarget_bool == NULL
7459 || (target_bool = *ptarget_bool) == NULL
7460 || GET_MODE (target_bool) != bool_mode)
7461 target_bool = gen_reg_rtx (bool_mode);
7462
7463 /* Emit the compare_and_swap. */
7464 create_output_operand (&ops[0], target_bool, bool_mode);
7465 create_output_operand (&ops[1], target_oval, mode);
7466 create_fixed_operand (&ops[2], mem);
7467 create_input_operand (&ops[3], expected, mode);
7468 create_input_operand (&ops[4], desired, mode);
7469 create_integer_operand (&ops[5], is_weak);
7470 create_integer_operand (&ops[6], succ_model);
7471 create_integer_operand (&ops[7], fail_model);
7472 if (maybe_expand_insn (icode, 8, ops))
7473 {
7474 /* Return success/failure. */
7475 target_bool = ops[0].value;
7476 target_oval = ops[1].value;
7477 goto success;
7478 }
7479 }
7480
7481 /* Otherwise fall back to the original __sync_val_compare_and_swap
7482 which is always seq-cst. */
7483 icode = optab_handler (sync_compare_and_swap_optab, mode);
7484 if (icode != CODE_FOR_nothing)
7485 {
7486 rtx cc_reg;
7487
7488 create_output_operand (&ops[0], target_oval, mode);
7489 create_fixed_operand (&ops[1], mem);
7490 create_input_operand (&ops[2], expected, mode);
7491 create_input_operand (&ops[3], desired, mode);
7492 if (!maybe_expand_insn (icode, 4, ops))
7493 return false;
7494
7495 target_oval = ops[0].value;
7496
7497 /* If the caller isn't interested in the boolean return value,
7498 skip the computation of it. */
7499 if (ptarget_bool == NULL)
7500 goto success;
7501
7502 /* Otherwise, work out if the compare-and-swap succeeded. */
7503 cc_reg = NULL_RTX;
7504 if (have_insn_for (COMPARE, CCmode))
7505 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7506 if (cc_reg)
7507 {
7508 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7509 const0_rtx, VOIDmode, 0, 1);
7510 goto success;
7511 }
7512 goto success_bool_from_val;
7513 }
7514
7515 /* Also check for library support for __sync_val_compare_and_swap. */
7516 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7517 if (libfunc != NULL)
7518 {
7519 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7520 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7521 mode, 3, addr, ptr_mode,
7522 expected, mode, desired, mode);
7523
7524 /* Compute the boolean return value only if requested. */
7525 if (ptarget_bool)
7526 goto success_bool_from_val;
7527 else
7528 goto success;
7529 }
7530
7531 /* Failure. */
7532 return false;
7533
7534 success_bool_from_val:
7535 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7536 expected, VOIDmode, 1, 1);
7537 success:
7538 /* Make sure that the oval output winds up where the caller asked. */
7539 if (ptarget_oval)
7540 *ptarget_oval = target_oval;
7541 if (ptarget_bool)
7542 *ptarget_bool = target_bool;
7543 return true;
7544 }
7545
7546 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7547
7548 static void
7549 expand_asm_memory_barrier (void)
7550 {
7551 rtx asm_op, clob;
7552
7553 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7554 rtvec_alloc (0), rtvec_alloc (0),
7555 rtvec_alloc (0), UNKNOWN_LOCATION);
7556 MEM_VOLATILE_P (asm_op) = 1;
7557
7558 clob = gen_rtx_SCRATCH (VOIDmode);
7559 clob = gen_rtx_MEM (BLKmode, clob);
7560 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7561
7562 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7563 }
7564
7565 /* This routine will either emit the mem_thread_fence pattern or issue a
7566 sync_synchronize to generate a fence for memory model MEMMODEL. */
7567
7568 void
7569 expand_mem_thread_fence (enum memmodel model)
7570 {
7571 if (targetm.have_mem_thread_fence ())
7572 emit_insn (targetm.gen_mem_thread_fence (GEN_INT (model)));
7573 else if (!is_mm_relaxed (model))
7574 {
7575 if (targetm.have_memory_barrier ())
7576 emit_insn (targetm.gen_memory_barrier ());
7577 else if (synchronize_libfunc != NULL_RTX)
7578 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7579 else
7580 expand_asm_memory_barrier ();
7581 }
7582 }
7583
7584 /* This routine will either emit the mem_signal_fence pattern or issue a
7585 sync_synchronize to generate a fence for memory model MEMMODEL. */
7586
7587 void
7588 expand_mem_signal_fence (enum memmodel model)
7589 {
7590 if (targetm.have_mem_signal_fence ())
7591 emit_insn (targetm.gen_mem_signal_fence (GEN_INT (model)));
7592 else if (!is_mm_relaxed (model))
7593 {
7594 /* By default targets are coherent between a thread and the signal
7595 handler running on the same thread. Thus this really becomes a
7596 compiler barrier, in that stores must not be sunk past
7597 (or raised above) a given point. */
7598 expand_asm_memory_barrier ();
7599 }
7600 }
7601
7602 /* This function expands the atomic load operation:
7603 return the atomically loaded value in MEM.
7604
7605 MEMMODEL is the memory model variant to use.
7606 TARGET is an option place to stick the return value. */
7607
7608 rtx
7609 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7610 {
7611 machine_mode mode = GET_MODE (mem);
7612 enum insn_code icode;
7613
7614 /* If the target supports the load directly, great. */
7615 icode = direct_optab_handler (atomic_load_optab, mode);
7616 if (icode != CODE_FOR_nothing)
7617 {
7618 struct expand_operand ops[3];
7619
7620 create_output_operand (&ops[0], target, mode);
7621 create_fixed_operand (&ops[1], mem);
7622 create_integer_operand (&ops[2], model);
7623 if (maybe_expand_insn (icode, 3, ops))
7624 return ops[0].value;
7625 }
7626
7627 /* If the size of the object is greater than word size on this target,
7628 then we assume that a load will not be atomic. */
7629 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7630 {
7631 /* Issue val = compare_and_swap (mem, 0, 0).
7632 This may cause the occasional harmless store of 0 when the value is
7633 already 0, but it seems to be OK according to the standards guys. */
7634 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7635 const0_rtx, false, model, model))
7636 return target;
7637 else
7638 /* Otherwise there is no atomic load, leave the library call. */
7639 return NULL_RTX;
7640 }
7641
7642 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7643 if (!target || target == const0_rtx)
7644 target = gen_reg_rtx (mode);
7645
7646 /* For SEQ_CST, emit a barrier before the load. */
7647 if (is_mm_seq_cst (model))
7648 expand_mem_thread_fence (model);
7649
7650 emit_move_insn (target, mem);
7651
7652 /* Emit the appropriate barrier after the load. */
7653 expand_mem_thread_fence (model);
7654
7655 return target;
7656 }
7657
7658 /* This function expands the atomic store operation:
7659 Atomically store VAL in MEM.
7660 MEMMODEL is the memory model variant to use.
7661 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7662 function returns const0_rtx if a pattern was emitted. */
7663
7664 rtx
7665 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7666 {
7667 machine_mode mode = GET_MODE (mem);
7668 enum insn_code icode;
7669 struct expand_operand ops[3];
7670
7671 /* If the target supports the store directly, great. */
7672 icode = direct_optab_handler (atomic_store_optab, mode);
7673 if (icode != CODE_FOR_nothing)
7674 {
7675 create_fixed_operand (&ops[0], mem);
7676 create_input_operand (&ops[1], val, mode);
7677 create_integer_operand (&ops[2], model);
7678 if (maybe_expand_insn (icode, 3, ops))
7679 return const0_rtx;
7680 }
7681
7682 /* If using __sync_lock_release is a viable alternative, try it. */
7683 if (use_release)
7684 {
7685 icode = direct_optab_handler (sync_lock_release_optab, mode);
7686 if (icode != CODE_FOR_nothing)
7687 {
7688 create_fixed_operand (&ops[0], mem);
7689 create_input_operand (&ops[1], const0_rtx, mode);
7690 if (maybe_expand_insn (icode, 2, ops))
7691 {
7692 /* lock_release is only a release barrier. */
7693 if (is_mm_seq_cst (model))
7694 expand_mem_thread_fence (model);
7695 return const0_rtx;
7696 }
7697 }
7698 }
7699
7700 /* If the size of the object is greater than word size on this target,
7701 a default store will not be atomic, Try a mem_exchange and throw away
7702 the result. If that doesn't work, don't do anything. */
7703 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7704 {
7705 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7706 if (!target)
7707 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7708 if (target)
7709 return const0_rtx;
7710 else
7711 return NULL_RTX;
7712 }
7713
7714 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7715 expand_mem_thread_fence (model);
7716
7717 emit_move_insn (mem, val);
7718
7719 /* For SEQ_CST, also emit a barrier after the store. */
7720 if (is_mm_seq_cst (model))
7721 expand_mem_thread_fence (model);
7722
7723 return const0_rtx;
7724 }
7725
7726
7727 /* Structure containing the pointers and values required to process the
7728 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7729
7730 struct atomic_op_functions
7731 {
7732 direct_optab mem_fetch_before;
7733 direct_optab mem_fetch_after;
7734 direct_optab mem_no_result;
7735 optab fetch_before;
7736 optab fetch_after;
7737 direct_optab no_result;
7738 enum rtx_code reverse_code;
7739 };
7740
7741
7742 /* Fill in structure pointed to by OP with the various optab entries for an
7743 operation of type CODE. */
7744
7745 static void
7746 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7747 {
7748 gcc_assert (op!= NULL);
7749
7750 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7751 in the source code during compilation, and the optab entries are not
7752 computable until runtime. Fill in the values at runtime. */
7753 switch (code)
7754 {
7755 case PLUS:
7756 op->mem_fetch_before = atomic_fetch_add_optab;
7757 op->mem_fetch_after = atomic_add_fetch_optab;
7758 op->mem_no_result = atomic_add_optab;
7759 op->fetch_before = sync_old_add_optab;
7760 op->fetch_after = sync_new_add_optab;
7761 op->no_result = sync_add_optab;
7762 op->reverse_code = MINUS;
7763 break;
7764 case MINUS:
7765 op->mem_fetch_before = atomic_fetch_sub_optab;
7766 op->mem_fetch_after = atomic_sub_fetch_optab;
7767 op->mem_no_result = atomic_sub_optab;
7768 op->fetch_before = sync_old_sub_optab;
7769 op->fetch_after = sync_new_sub_optab;
7770 op->no_result = sync_sub_optab;
7771 op->reverse_code = PLUS;
7772 break;
7773 case XOR:
7774 op->mem_fetch_before = atomic_fetch_xor_optab;
7775 op->mem_fetch_after = atomic_xor_fetch_optab;
7776 op->mem_no_result = atomic_xor_optab;
7777 op->fetch_before = sync_old_xor_optab;
7778 op->fetch_after = sync_new_xor_optab;
7779 op->no_result = sync_xor_optab;
7780 op->reverse_code = XOR;
7781 break;
7782 case AND:
7783 op->mem_fetch_before = atomic_fetch_and_optab;
7784 op->mem_fetch_after = atomic_and_fetch_optab;
7785 op->mem_no_result = atomic_and_optab;
7786 op->fetch_before = sync_old_and_optab;
7787 op->fetch_after = sync_new_and_optab;
7788 op->no_result = sync_and_optab;
7789 op->reverse_code = UNKNOWN;
7790 break;
7791 case IOR:
7792 op->mem_fetch_before = atomic_fetch_or_optab;
7793 op->mem_fetch_after = atomic_or_fetch_optab;
7794 op->mem_no_result = atomic_or_optab;
7795 op->fetch_before = sync_old_ior_optab;
7796 op->fetch_after = sync_new_ior_optab;
7797 op->no_result = sync_ior_optab;
7798 op->reverse_code = UNKNOWN;
7799 break;
7800 case NOT:
7801 op->mem_fetch_before = atomic_fetch_nand_optab;
7802 op->mem_fetch_after = atomic_nand_fetch_optab;
7803 op->mem_no_result = atomic_nand_optab;
7804 op->fetch_before = sync_old_nand_optab;
7805 op->fetch_after = sync_new_nand_optab;
7806 op->no_result = sync_nand_optab;
7807 op->reverse_code = UNKNOWN;
7808 break;
7809 default:
7810 gcc_unreachable ();
7811 }
7812 }
7813
7814 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7815 using memory order MODEL. If AFTER is true the operation needs to return
7816 the value of *MEM after the operation, otherwise the previous value.
7817 TARGET is an optional place to place the result. The result is unused if
7818 it is const0_rtx.
7819 Return the result if there is a better sequence, otherwise NULL_RTX. */
7820
7821 static rtx
7822 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7823 enum memmodel model, bool after)
7824 {
7825 /* If the value is prefetched, or not used, it may be possible to replace
7826 the sequence with a native exchange operation. */
7827 if (!after || target == const0_rtx)
7828 {
7829 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7830 if (code == AND && val == const0_rtx)
7831 {
7832 if (target == const0_rtx)
7833 target = gen_reg_rtx (GET_MODE (mem));
7834 return maybe_emit_atomic_exchange (target, mem, val, model);
7835 }
7836
7837 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7838 if (code == IOR && val == constm1_rtx)
7839 {
7840 if (target == const0_rtx)
7841 target = gen_reg_rtx (GET_MODE (mem));
7842 return maybe_emit_atomic_exchange (target, mem, val, model);
7843 }
7844 }
7845
7846 return NULL_RTX;
7847 }
7848
7849 /* Try to emit an instruction for a specific operation varaition.
7850 OPTAB contains the OP functions.
7851 TARGET is an optional place to return the result. const0_rtx means unused.
7852 MEM is the memory location to operate on.
7853 VAL is the value to use in the operation.
7854 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7855 MODEL is the memory model, if used.
7856 AFTER is true if the returned result is the value after the operation. */
7857
7858 static rtx
7859 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7860 rtx val, bool use_memmodel, enum memmodel model, bool after)
7861 {
7862 machine_mode mode = GET_MODE (mem);
7863 struct expand_operand ops[4];
7864 enum insn_code icode;
7865 int op_counter = 0;
7866 int num_ops;
7867
7868 /* Check to see if there is a result returned. */
7869 if (target == const0_rtx)
7870 {
7871 if (use_memmodel)
7872 {
7873 icode = direct_optab_handler (optab->mem_no_result, mode);
7874 create_integer_operand (&ops[2], model);
7875 num_ops = 3;
7876 }
7877 else
7878 {
7879 icode = direct_optab_handler (optab->no_result, mode);
7880 num_ops = 2;
7881 }
7882 }
7883 /* Otherwise, we need to generate a result. */
7884 else
7885 {
7886 if (use_memmodel)
7887 {
7888 icode = direct_optab_handler (after ? optab->mem_fetch_after
7889 : optab->mem_fetch_before, mode);
7890 create_integer_operand (&ops[3], model);
7891 num_ops = 4;
7892 }
7893 else
7894 {
7895 icode = optab_handler (after ? optab->fetch_after
7896 : optab->fetch_before, mode);
7897 num_ops = 3;
7898 }
7899 create_output_operand (&ops[op_counter++], target, mode);
7900 }
7901 if (icode == CODE_FOR_nothing)
7902 return NULL_RTX;
7903
7904 create_fixed_operand (&ops[op_counter++], mem);
7905 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7906 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7907
7908 if (maybe_expand_insn (icode, num_ops, ops))
7909 return (target == const0_rtx ? const0_rtx : ops[0].value);
7910
7911 return NULL_RTX;
7912 }
7913
7914
7915 /* This function expands an atomic fetch_OP or OP_fetch operation:
7916 TARGET is an option place to stick the return value. const0_rtx indicates
7917 the result is unused.
7918 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7919 CODE is the operation being performed (OP)
7920 MEMMODEL is the memory model variant to use.
7921 AFTER is true to return the result of the operation (OP_fetch).
7922 AFTER is false to return the value before the operation (fetch_OP).
7923
7924 This function will *only* generate instructions if there is a direct
7925 optab. No compare and swap loops or libcalls will be generated. */
7926
7927 static rtx
7928 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7929 enum rtx_code code, enum memmodel model,
7930 bool after)
7931 {
7932 machine_mode mode = GET_MODE (mem);
7933 struct atomic_op_functions optab;
7934 rtx result;
7935 bool unused_result = (target == const0_rtx);
7936
7937 get_atomic_op_for_code (&optab, code);
7938
7939 /* Check to see if there are any better instructions. */
7940 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7941 if (result)
7942 return result;
7943
7944 /* Check for the case where the result isn't used and try those patterns. */
7945 if (unused_result)
7946 {
7947 /* Try the memory model variant first. */
7948 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7949 if (result)
7950 return result;
7951
7952 /* Next try the old style withuot a memory model. */
7953 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7954 if (result)
7955 return result;
7956
7957 /* There is no no-result pattern, so try patterns with a result. */
7958 target = NULL_RTX;
7959 }
7960
7961 /* Try the __atomic version. */
7962 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7963 if (result)
7964 return result;
7965
7966 /* Try the older __sync version. */
7967 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7968 if (result)
7969 return result;
7970
7971 /* If the fetch value can be calculated from the other variation of fetch,
7972 try that operation. */
7973 if (after || unused_result || optab.reverse_code != UNKNOWN)
7974 {
7975 /* Try the __atomic version, then the older __sync version. */
7976 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7977 if (!result)
7978 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7979
7980 if (result)
7981 {
7982 /* If the result isn't used, no need to do compensation code. */
7983 if (unused_result)
7984 return result;
7985
7986 /* Issue compensation code. Fetch_after == fetch_before OP val.
7987 Fetch_before == after REVERSE_OP val. */
7988 if (!after)
7989 code = optab.reverse_code;
7990 if (code == NOT)
7991 {
7992 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7993 true, OPTAB_LIB_WIDEN);
7994 result = expand_simple_unop (mode, NOT, result, target, true);
7995 }
7996 else
7997 result = expand_simple_binop (mode, code, result, val, target,
7998 true, OPTAB_LIB_WIDEN);
7999 return result;
8000 }
8001 }
8002
8003 /* No direct opcode can be generated. */
8004 return NULL_RTX;
8005 }
8006
8007
8008
8009 /* This function expands an atomic fetch_OP or OP_fetch operation:
8010 TARGET is an option place to stick the return value. const0_rtx indicates
8011 the result is unused.
8012 atomically fetch MEM, perform the operation with VAL and return it to MEM.
8013 CODE is the operation being performed (OP)
8014 MEMMODEL is the memory model variant to use.
8015 AFTER is true to return the result of the operation (OP_fetch).
8016 AFTER is false to return the value before the operation (fetch_OP). */
8017 rtx
8018 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
8019 enum memmodel model, bool after)
8020 {
8021 machine_mode mode = GET_MODE (mem);
8022 rtx result;
8023 bool unused_result = (target == const0_rtx);
8024
8025 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
8026 after);
8027
8028 if (result)
8029 return result;
8030
8031 /* Add/sub can be implemented by doing the reverse operation with -(val). */
8032 if (code == PLUS || code == MINUS)
8033 {
8034 rtx tmp;
8035 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
8036
8037 start_sequence ();
8038 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
8039 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
8040 model, after);
8041 if (result)
8042 {
8043 /* PLUS worked so emit the insns and return. */
8044 tmp = get_insns ();
8045 end_sequence ();
8046 emit_insn (tmp);
8047 return result;
8048 }
8049
8050 /* PLUS did not work, so throw away the negation code and continue. */
8051 end_sequence ();
8052 }
8053
8054 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8055 if (!can_compare_and_swap_p (mode, false))
8056 {
8057 rtx libfunc;
8058 bool fixup = false;
8059 enum rtx_code orig_code = code;
8060 struct atomic_op_functions optab;
8061
8062 get_atomic_op_for_code (&optab, code);
8063 libfunc = optab_libfunc (after ? optab.fetch_after
8064 : optab.fetch_before, mode);
8065 if (libfunc == NULL
8066 && (after || unused_result || optab.reverse_code != UNKNOWN))
8067 {
8068 fixup = true;
8069 if (!after)
8070 code = optab.reverse_code;
8071 libfunc = optab_libfunc (after ? optab.fetch_before
8072 : optab.fetch_after, mode);
8073 }
8074 if (libfunc != NULL)
8075 {
8076 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8077 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8078 2, addr, ptr_mode, val, mode);
8079
8080 if (!unused_result && fixup)
8081 result = expand_simple_binop (mode, code, result, val, target,
8082 true, OPTAB_LIB_WIDEN);
8083 return result;
8084 }
8085
8086 /* We need the original code for any further attempts. */
8087 code = orig_code;
8088 }
8089
8090 /* If nothing else has succeeded, default to a compare and swap loop. */
8091 if (can_compare_and_swap_p (mode, true))
8092 {
8093 rtx_insn *insn;
8094 rtx t0 = gen_reg_rtx (mode), t1;
8095
8096 start_sequence ();
8097
8098 /* If the result is used, get a register for it. */
8099 if (!unused_result)
8100 {
8101 if (!target || !register_operand (target, mode))
8102 target = gen_reg_rtx (mode);
8103 /* If fetch_before, copy the value now. */
8104 if (!after)
8105 emit_move_insn (target, t0);
8106 }
8107 else
8108 target = const0_rtx;
8109
8110 t1 = t0;
8111 if (code == NOT)
8112 {
8113 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8114 true, OPTAB_LIB_WIDEN);
8115 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8116 }
8117 else
8118 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8119 OPTAB_LIB_WIDEN);
8120
8121 /* For after, copy the value now. */
8122 if (!unused_result && after)
8123 emit_move_insn (target, t1);
8124 insn = get_insns ();
8125 end_sequence ();
8126
8127 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8128 return target;
8129 }
8130
8131 return NULL_RTX;
8132 }
8133 \f
8134 /* Return true if OPERAND is suitable for operand number OPNO of
8135 instruction ICODE. */
8136
8137 bool
8138 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8139 {
8140 return (!insn_data[(int) icode].operand[opno].predicate
8141 || (insn_data[(int) icode].operand[opno].predicate
8142 (operand, insn_data[(int) icode].operand[opno].mode)));
8143 }
8144 \f
8145 /* TARGET is a target of a multiword operation that we are going to
8146 implement as a series of word-mode operations. Return true if
8147 TARGET is suitable for this purpose. */
8148
8149 bool
8150 valid_multiword_target_p (rtx target)
8151 {
8152 machine_mode mode;
8153 int i;
8154
8155 mode = GET_MODE (target);
8156 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8157 if (!validate_subreg (word_mode, mode, target, i))
8158 return false;
8159 return true;
8160 }
8161
8162 /* Like maybe_legitimize_operand, but do not change the code of the
8163 current rtx value. */
8164
8165 static bool
8166 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8167 struct expand_operand *op)
8168 {
8169 /* See if the operand matches in its current form. */
8170 if (insn_operand_matches (icode, opno, op->value))
8171 return true;
8172
8173 /* If the operand is a memory whose address has no side effects,
8174 try forcing the address into a non-virtual pseudo register.
8175 The check for side effects is important because copy_to_mode_reg
8176 cannot handle things like auto-modified addresses. */
8177 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8178 {
8179 rtx addr, mem;
8180
8181 mem = op->value;
8182 addr = XEXP (mem, 0);
8183 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8184 && !side_effects_p (addr))
8185 {
8186 rtx_insn *last;
8187 machine_mode mode;
8188
8189 last = get_last_insn ();
8190 mode = get_address_mode (mem);
8191 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8192 if (insn_operand_matches (icode, opno, mem))
8193 {
8194 op->value = mem;
8195 return true;
8196 }
8197 delete_insns_since (last);
8198 }
8199 }
8200
8201 return false;
8202 }
8203
8204 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8205 on success, storing the new operand value back in OP. */
8206
8207 static bool
8208 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8209 struct expand_operand *op)
8210 {
8211 machine_mode mode, imode;
8212 bool old_volatile_ok, result;
8213
8214 mode = op->mode;
8215 switch (op->type)
8216 {
8217 case EXPAND_FIXED:
8218 old_volatile_ok = volatile_ok;
8219 volatile_ok = true;
8220 result = maybe_legitimize_operand_same_code (icode, opno, op);
8221 volatile_ok = old_volatile_ok;
8222 return result;
8223
8224 case EXPAND_OUTPUT:
8225 gcc_assert (mode != VOIDmode);
8226 if (op->value
8227 && op->value != const0_rtx
8228 && GET_MODE (op->value) == mode
8229 && maybe_legitimize_operand_same_code (icode, opno, op))
8230 return true;
8231
8232 op->value = gen_reg_rtx (mode);
8233 break;
8234
8235 case EXPAND_INPUT:
8236 input:
8237 gcc_assert (mode != VOIDmode);
8238 gcc_assert (GET_MODE (op->value) == VOIDmode
8239 || GET_MODE (op->value) == mode);
8240 if (maybe_legitimize_operand_same_code (icode, opno, op))
8241 return true;
8242
8243 op->value = copy_to_mode_reg (mode, op->value);
8244 break;
8245
8246 case EXPAND_CONVERT_TO:
8247 gcc_assert (mode != VOIDmode);
8248 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8249 goto input;
8250
8251 case EXPAND_CONVERT_FROM:
8252 if (GET_MODE (op->value) != VOIDmode)
8253 mode = GET_MODE (op->value);
8254 else
8255 /* The caller must tell us what mode this value has. */
8256 gcc_assert (mode != VOIDmode);
8257
8258 imode = insn_data[(int) icode].operand[opno].mode;
8259 if (imode != VOIDmode && imode != mode)
8260 {
8261 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8262 mode = imode;
8263 }
8264 goto input;
8265
8266 case EXPAND_ADDRESS:
8267 gcc_assert (mode != VOIDmode);
8268 op->value = convert_memory_address (mode, op->value);
8269 goto input;
8270
8271 case EXPAND_INTEGER:
8272 mode = insn_data[(int) icode].operand[opno].mode;
8273 if (mode != VOIDmode && const_int_operand (op->value, mode))
8274 goto input;
8275 break;
8276 }
8277 return insn_operand_matches (icode, opno, op->value);
8278 }
8279
8280 /* Make OP describe an input operand that should have the same value
8281 as VALUE, after any mode conversion that the target might request.
8282 TYPE is the type of VALUE. */
8283
8284 void
8285 create_convert_operand_from_type (struct expand_operand *op,
8286 rtx value, tree type)
8287 {
8288 create_convert_operand_from (op, value, TYPE_MODE (type),
8289 TYPE_UNSIGNED (type));
8290 }
8291
8292 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8293 of instruction ICODE. Return true on success, leaving the new operand
8294 values in the OPS themselves. Emit no code on failure. */
8295
8296 bool
8297 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8298 unsigned int nops, struct expand_operand *ops)
8299 {
8300 rtx_insn *last;
8301 unsigned int i;
8302
8303 last = get_last_insn ();
8304 for (i = 0; i < nops; i++)
8305 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8306 {
8307 delete_insns_since (last);
8308 return false;
8309 }
8310 return true;
8311 }
8312
8313 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8314 as its operands. Return the instruction pattern on success,
8315 and emit any necessary set-up code. Return null and emit no
8316 code on failure. */
8317
8318 rtx_insn *
8319 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8320 struct expand_operand *ops)
8321 {
8322 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8323 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8324 return NULL;
8325
8326 switch (nops)
8327 {
8328 case 1:
8329 return GEN_FCN (icode) (ops[0].value);
8330 case 2:
8331 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8332 case 3:
8333 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8334 case 4:
8335 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8336 ops[3].value);
8337 case 5:
8338 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8339 ops[3].value, ops[4].value);
8340 case 6:
8341 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8342 ops[3].value, ops[4].value, ops[5].value);
8343 case 7:
8344 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8345 ops[3].value, ops[4].value, ops[5].value,
8346 ops[6].value);
8347 case 8:
8348 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8349 ops[3].value, ops[4].value, ops[5].value,
8350 ops[6].value, ops[7].value);
8351 case 9:
8352 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8353 ops[3].value, ops[4].value, ops[5].value,
8354 ops[6].value, ops[7].value, ops[8].value);
8355 }
8356 gcc_unreachable ();
8357 }
8358
8359 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8360 as its operands. Return true on success and emit no code on failure. */
8361
8362 bool
8363 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8364 struct expand_operand *ops)
8365 {
8366 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
8367 if (pat)
8368 {
8369 emit_insn (pat);
8370 return true;
8371 }
8372 return false;
8373 }
8374
8375 /* Like maybe_expand_insn, but for jumps. */
8376
8377 bool
8378 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8379 struct expand_operand *ops)
8380 {
8381 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
8382 if (pat)
8383 {
8384 emit_jump_insn (pat);
8385 return true;
8386 }
8387 return false;
8388 }
8389
8390 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8391 as its operands. */
8392
8393 void
8394 expand_insn (enum insn_code icode, unsigned int nops,
8395 struct expand_operand *ops)
8396 {
8397 if (!maybe_expand_insn (icode, nops, ops))
8398 gcc_unreachable ();
8399 }
8400
8401 /* Like expand_insn, but for jumps. */
8402
8403 void
8404 expand_jump_insn (enum insn_code icode, unsigned int nops,
8405 struct expand_operand *ops)
8406 {
8407 if (!maybe_expand_jump_insn (icode, nops, ops))
8408 gcc_unreachable ();
8409 }
8410
8411 /* Reduce conditional compilation elsewhere. */
8412
8413 /* Enumerates the possible types of structure operand to an
8414 extraction_insn. */
8415 enum extraction_type { ET_unaligned_mem, ET_reg };
8416
8417 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8418 insertion or extraction of type TYPE on a structure of mode MODE.
8419 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8420 operand number of the structure (the first sign_extract or zero_extract
8421 operand) and FIELD_OP is the operand number of the field (the other
8422 side of the set from the sign_extract or zero_extract). */
8423
8424 static bool
8425 get_traditional_extraction_insn (extraction_insn *insn,
8426 enum extraction_type type,
8427 machine_mode mode,
8428 enum insn_code icode,
8429 int struct_op, int field_op)
8430 {
8431 const struct insn_data_d *data = &insn_data[icode];
8432
8433 machine_mode struct_mode = data->operand[struct_op].mode;
8434 if (struct_mode == VOIDmode)
8435 struct_mode = word_mode;
8436 if (mode != struct_mode)
8437 return false;
8438
8439 machine_mode field_mode = data->operand[field_op].mode;
8440 if (field_mode == VOIDmode)
8441 field_mode = word_mode;
8442
8443 machine_mode pos_mode = data->operand[struct_op + 2].mode;
8444 if (pos_mode == VOIDmode)
8445 pos_mode = word_mode;
8446
8447 insn->icode = icode;
8448 insn->field_mode = field_mode;
8449 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8450 insn->pos_mode = pos_mode;
8451 return true;
8452 }
8453
8454 /* Return true if an optab exists to perform an insertion or extraction
8455 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8456
8457 REG_OPTAB is the optab to use for register structures and
8458 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8459 POS_OP is the operand number of the bit position. */
8460
8461 static bool
8462 get_optab_extraction_insn (struct extraction_insn *insn,
8463 enum extraction_type type,
8464 machine_mode mode, direct_optab reg_optab,
8465 direct_optab misalign_optab, int pos_op)
8466 {
8467 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8468 enum insn_code icode = direct_optab_handler (optab, mode);
8469 if (icode == CODE_FOR_nothing)
8470 return false;
8471
8472 const struct insn_data_d *data = &insn_data[icode];
8473
8474 insn->icode = icode;
8475 insn->field_mode = mode;
8476 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8477 insn->pos_mode = data->operand[pos_op].mode;
8478 if (insn->pos_mode == VOIDmode)
8479 insn->pos_mode = word_mode;
8480 return true;
8481 }
8482
8483 /* Return true if an instruction exists to perform an insertion or
8484 extraction (PATTERN says which) of type TYPE in mode MODE.
8485 Describe the instruction in *INSN if so. */
8486
8487 static bool
8488 get_extraction_insn (extraction_insn *insn,
8489 enum extraction_pattern pattern,
8490 enum extraction_type type,
8491 machine_mode mode)
8492 {
8493 switch (pattern)
8494 {
8495 case EP_insv:
8496 if (targetm.have_insv ()
8497 && get_traditional_extraction_insn (insn, type, mode,
8498 targetm.code_for_insv, 0, 3))
8499 return true;
8500 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8501 insvmisalign_optab, 2);
8502
8503 case EP_extv:
8504 if (targetm.have_extv ()
8505 && get_traditional_extraction_insn (insn, type, mode,
8506 targetm.code_for_extv, 1, 0))
8507 return true;
8508 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8509 extvmisalign_optab, 3);
8510
8511 case EP_extzv:
8512 if (targetm.have_extzv ()
8513 && get_traditional_extraction_insn (insn, type, mode,
8514 targetm.code_for_extzv, 1, 0))
8515 return true;
8516 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8517 extzvmisalign_optab, 3);
8518
8519 default:
8520 gcc_unreachable ();
8521 }
8522 }
8523
8524 /* Return true if an instruction exists to access a field of mode
8525 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8526 Describe the "best" such instruction in *INSN if so. PATTERN and
8527 TYPE describe the type of insertion or extraction we want to perform.
8528
8529 For an insertion, the number of significant structure bits includes
8530 all bits of the target. For an extraction, it need only include the
8531 most significant bit of the field. Larger widths are acceptable
8532 in both cases. */
8533
8534 static bool
8535 get_best_extraction_insn (extraction_insn *insn,
8536 enum extraction_pattern pattern,
8537 enum extraction_type type,
8538 unsigned HOST_WIDE_INT struct_bits,
8539 machine_mode field_mode)
8540 {
8541 machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8542 while (mode != VOIDmode)
8543 {
8544 if (get_extraction_insn (insn, pattern, type, mode))
8545 {
8546 while (mode != VOIDmode
8547 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8548 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8549 field_mode))
8550 {
8551 get_extraction_insn (insn, pattern, type, mode);
8552 mode = GET_MODE_WIDER_MODE (mode);
8553 }
8554 return true;
8555 }
8556 mode = GET_MODE_WIDER_MODE (mode);
8557 }
8558 return false;
8559 }
8560
8561 /* Return true if an instruction exists to access a field of mode
8562 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8563 Describe the "best" such instruction in *INSN if so. PATTERN describes
8564 the type of insertion or extraction we want to perform.
8565
8566 For an insertion, the number of significant structure bits includes
8567 all bits of the target. For an extraction, it need only include the
8568 most significant bit of the field. Larger widths are acceptable
8569 in both cases. */
8570
8571 bool
8572 get_best_reg_extraction_insn (extraction_insn *insn,
8573 enum extraction_pattern pattern,
8574 unsigned HOST_WIDE_INT struct_bits,
8575 machine_mode field_mode)
8576 {
8577 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8578 field_mode);
8579 }
8580
8581 /* Return true if an instruction exists to access a field of BITSIZE
8582 bits starting BITNUM bits into a memory structure. Describe the
8583 "best" such instruction in *INSN if so. PATTERN describes the type
8584 of insertion or extraction we want to perform and FIELDMODE is the
8585 natural mode of the extracted field.
8586
8587 The instructions considered here only access bytes that overlap
8588 the bitfield; they do not touch any surrounding bytes. */
8589
8590 bool
8591 get_best_mem_extraction_insn (extraction_insn *insn,
8592 enum extraction_pattern pattern,
8593 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8594 machine_mode field_mode)
8595 {
8596 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8597 + bitsize
8598 + BITS_PER_UNIT - 1);
8599 struct_bits -= struct_bits % BITS_PER_UNIT;
8600 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8601 struct_bits, field_mode);
8602 }
8603
8604 /* Determine whether "1 << x" is relatively cheap in word_mode. */
8605
8606 bool
8607 lshift_cheap_p (bool speed_p)
8608 {
8609 /* FIXME: This should be made target dependent via this "this_target"
8610 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
8611 static bool init[2] = { false, false };
8612 static bool cheap[2] = { true, true };
8613
8614 /* If the targer has no lshift in word_mode, the operation will most
8615 probably not be cheap. ??? Does GCC even work for such targets? */
8616 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
8617 return false;
8618
8619 if (!init[speed_p])
8620 {
8621 rtx reg = gen_raw_REG (word_mode, 10000);
8622 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
8623 word_mode, speed_p);
8624 cheap[speed_p] = cost < COSTS_N_INSNS (3);
8625 init[speed_p] = true;
8626 }
8627
8628 return cheap[speed_p];
8629 }
8630
8631 #include "gt-optabs.h"