re PR target/54061 (gcc.c-torture/compile/mipscop-*.c ICEs with -g)
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "basic-block.h"
45 #include "target.h"
46
47 struct target_optabs default_target_optabs;
48 struct target_libfuncs default_target_libfuncs;
49 #if SWITCHABLE_TARGET
50 struct target_optabs *this_target_optabs = &default_target_optabs;
51 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
52 #endif
53
54 #define libfunc_hash \
55 (this_target_libfuncs->x_libfunc_hash)
56
57 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
58 enum machine_mode *);
59 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
60 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
61
62 /* Debug facility for use in GDB. */
63 void debug_optab_libfuncs (void);
64
65 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
66 #if ENABLE_DECIMAL_BID_FORMAT
67 #define DECIMAL_PREFIX "bid_"
68 #else
69 #define DECIMAL_PREFIX "dpd_"
70 #endif
71 \f
72 /* Used for libfunc_hash. */
73
74 static hashval_t
75 hash_libfunc (const void *p)
76 {
77 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
78 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
79 }
80
81 /* Used for libfunc_hash. */
82
83 static int
84 eq_libfunc (const void *p, const void *q)
85 {
86 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
87 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
88 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
89 }
90
91 /* Return libfunc corresponding operation defined by OPTAB converting
92 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
93 if no libfunc is available. */
94 rtx
95 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
96 enum machine_mode mode2)
97 {
98 struct libfunc_entry e;
99 struct libfunc_entry **slot;
100
101 /* ??? This ought to be an assert, but not all of the places
102 that we expand optabs know about the optabs that got moved
103 to being direct. */
104 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
105 return NULL_RTX;
106
107 e.op = optab;
108 e.mode1 = mode1;
109 e.mode2 = mode2;
110 slot = (struct libfunc_entry **)
111 htab_find_slot (libfunc_hash, &e, NO_INSERT);
112 if (!slot)
113 {
114 const struct convert_optab_libcall_d *d
115 = &convlib_def[optab - FIRST_CONV_OPTAB];
116
117 if (d->libcall_gen == NULL)
118 return NULL;
119
120 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
121 slot = (struct libfunc_entry **)
122 htab_find_slot (libfunc_hash, &e, NO_INSERT);
123 if (!slot)
124 return NULL;
125 }
126 return (*slot)->libfunc;
127 }
128
129 /* Return libfunc corresponding operation defined by OPTAB in MODE.
130 Trigger lazy initialization if needed, return NULL if no libfunc is
131 available. */
132 rtx
133 optab_libfunc (optab optab, enum machine_mode mode)
134 {
135 struct libfunc_entry e;
136 struct libfunc_entry **slot;
137
138 /* ??? This ought to be an assert, but not all of the places
139 that we expand optabs know about the optabs that got moved
140 to being direct. */
141 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
142 return NULL_RTX;
143
144 e.op = optab;
145 e.mode1 = mode;
146 e.mode2 = VOIDmode;
147 slot = (struct libfunc_entry **)
148 htab_find_slot (libfunc_hash, &e, NO_INSERT);
149 if (!slot)
150 {
151 const struct optab_libcall_d *d
152 = &normlib_def[optab - FIRST_NORM_OPTAB];
153
154 if (d->libcall_gen == NULL)
155 return NULL;
156
157 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
158 slot = (struct libfunc_entry **)
159 htab_find_slot (libfunc_hash, &e, NO_INSERT);
160 if (!slot)
161 return NULL;
162 }
163 return (*slot)->libfunc;
164 }
165
166 \f
167 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
168 the result of operation CODE applied to OP0 (and OP1 if it is a binary
169 operation).
170
171 If the last insn does not set TARGET, don't do anything, but return 1.
172
173 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
174 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
175 try again, ensuring that TARGET is not one of the operands. */
176
177 static int
178 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
179 {
180 rtx last_insn, set;
181 rtx note;
182
183 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
184
185 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
186 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
187 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
188 && GET_RTX_CLASS (code) != RTX_COMPARE
189 && GET_RTX_CLASS (code) != RTX_UNARY)
190 return 1;
191
192 if (GET_CODE (target) == ZERO_EXTRACT)
193 return 1;
194
195 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
196 a value changing in the insn, so the note would be invalid for CSE. */
197 if (reg_overlap_mentioned_p (target, op0)
198 || (op1 && reg_overlap_mentioned_p (target, op1)))
199 return 0;
200
201 for (last_insn = insns;
202 NEXT_INSN (last_insn) != NULL_RTX;
203 last_insn = NEXT_INSN (last_insn))
204 ;
205
206 set = single_set (last_insn);
207 if (set == NULL_RTX)
208 return 1;
209
210 if (! rtx_equal_p (SET_DEST (set), target)
211 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
212 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
213 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
214 return 1;
215
216 if (GET_RTX_CLASS (code) == RTX_UNARY)
217 switch (code)
218 {
219 case FFS:
220 case CLZ:
221 case CTZ:
222 case CLRSB:
223 case POPCOUNT:
224 case PARITY:
225 case BSWAP:
226 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
227 {
228 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
229 if (GET_MODE_SIZE (GET_MODE (op0))
230 > GET_MODE_SIZE (GET_MODE (target)))
231 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
232 note, GET_MODE (op0));
233 else
234 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
235 note, GET_MODE (op0));
236 break;
237 }
238 /* FALLTHRU */
239 default:
240 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
241 break;
242 }
243 else
244 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
245
246 set_unique_reg_note (last_insn, REG_EQUAL, note);
247
248 return 1;
249 }
250 \f
251 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
252 for a widening operation would be. In most cases this would be OP0, but if
253 that's a constant it'll be VOIDmode, which isn't useful. */
254
255 static enum machine_mode
256 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
257 {
258 enum machine_mode m0 = GET_MODE (op0);
259 enum machine_mode m1 = GET_MODE (op1);
260 enum machine_mode result;
261
262 if (m0 == VOIDmode && m1 == VOIDmode)
263 return to_mode;
264 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
265 result = m1;
266 else
267 result = m0;
268
269 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
270 return to_mode;
271
272 return result;
273 }
274 \f
275 /* Find a widening optab even if it doesn't widen as much as we want.
276 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
277 direct HI->SI insn, then return SI->DI, if that exists.
278 If PERMIT_NON_WIDENING is non-zero then this can be used with
279 non-widening optabs also. */
280
281 enum insn_code
282 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
283 enum machine_mode from_mode,
284 int permit_non_widening,
285 enum machine_mode *found_mode)
286 {
287 for (; (permit_non_widening || from_mode != to_mode)
288 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
289 && from_mode != VOIDmode;
290 from_mode = GET_MODE_WIDER_MODE (from_mode))
291 {
292 enum insn_code handler = widening_optab_handler (op, to_mode,
293 from_mode);
294
295 if (handler != CODE_FOR_nothing)
296 {
297 if (found_mode)
298 *found_mode = from_mode;
299 return handler;
300 }
301 }
302
303 return CODE_FOR_nothing;
304 }
305 \f
306 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
307 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
308 not actually do a sign-extend or zero-extend, but can leave the
309 higher-order bits of the result rtx undefined, for example, in the case
310 of logical operations, but not right shifts. */
311
312 static rtx
313 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
314 int unsignedp, int no_extend)
315 {
316 rtx result;
317
318 /* If we don't have to extend and this is a constant, return it. */
319 if (no_extend && GET_MODE (op) == VOIDmode)
320 return op;
321
322 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
323 extend since it will be more efficient to do so unless the signedness of
324 a promoted object differs from our extension. */
325 if (! no_extend
326 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
327 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
328 return convert_modes (mode, oldmode, op, unsignedp);
329
330 /* If MODE is no wider than a single word, we return a paradoxical
331 SUBREG. */
332 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
333 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
334
335 /* Otherwise, get an object of MODE, clobber it, and set the low-order
336 part to OP. */
337
338 result = gen_reg_rtx (mode);
339 emit_clobber (result);
340 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
341 return result;
342 }
343 \f
344 /* Return the optab used for computing the operation given by the tree code,
345 CODE and the tree EXP. This function is not always usable (for example, it
346 cannot give complete results for multiplication or division) but probably
347 ought to be relied on more widely throughout the expander. */
348 optab
349 optab_for_tree_code (enum tree_code code, const_tree type,
350 enum optab_subtype subtype)
351 {
352 bool trapv;
353 switch (code)
354 {
355 case BIT_AND_EXPR:
356 return and_optab;
357
358 case BIT_IOR_EXPR:
359 return ior_optab;
360
361 case BIT_NOT_EXPR:
362 return one_cmpl_optab;
363
364 case BIT_XOR_EXPR:
365 return xor_optab;
366
367 case MULT_HIGHPART_EXPR:
368 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
369
370 case TRUNC_MOD_EXPR:
371 case CEIL_MOD_EXPR:
372 case FLOOR_MOD_EXPR:
373 case ROUND_MOD_EXPR:
374 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
375
376 case RDIV_EXPR:
377 case TRUNC_DIV_EXPR:
378 case CEIL_DIV_EXPR:
379 case FLOOR_DIV_EXPR:
380 case ROUND_DIV_EXPR:
381 case EXACT_DIV_EXPR:
382 if (TYPE_SATURATING(type))
383 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
384 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
385
386 case LSHIFT_EXPR:
387 if (TREE_CODE (type) == VECTOR_TYPE)
388 {
389 if (subtype == optab_vector)
390 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
391
392 gcc_assert (subtype == optab_scalar);
393 }
394 if (TYPE_SATURATING(type))
395 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
396 return ashl_optab;
397
398 case RSHIFT_EXPR:
399 if (TREE_CODE (type) == VECTOR_TYPE)
400 {
401 if (subtype == optab_vector)
402 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
403
404 gcc_assert (subtype == optab_scalar);
405 }
406 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
407
408 case LROTATE_EXPR:
409 if (TREE_CODE (type) == VECTOR_TYPE)
410 {
411 if (subtype == optab_vector)
412 return vrotl_optab;
413
414 gcc_assert (subtype == optab_scalar);
415 }
416 return rotl_optab;
417
418 case RROTATE_EXPR:
419 if (TREE_CODE (type) == VECTOR_TYPE)
420 {
421 if (subtype == optab_vector)
422 return vrotr_optab;
423
424 gcc_assert (subtype == optab_scalar);
425 }
426 return rotr_optab;
427
428 case MAX_EXPR:
429 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
430
431 case MIN_EXPR:
432 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
433
434 case REALIGN_LOAD_EXPR:
435 return vec_realign_load_optab;
436
437 case WIDEN_SUM_EXPR:
438 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
439
440 case DOT_PROD_EXPR:
441 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
442
443 case WIDEN_MULT_PLUS_EXPR:
444 return (TYPE_UNSIGNED (type)
445 ? (TYPE_SATURATING (type)
446 ? usmadd_widen_optab : umadd_widen_optab)
447 : (TYPE_SATURATING (type)
448 ? ssmadd_widen_optab : smadd_widen_optab));
449
450 case WIDEN_MULT_MINUS_EXPR:
451 return (TYPE_UNSIGNED (type)
452 ? (TYPE_SATURATING (type)
453 ? usmsub_widen_optab : umsub_widen_optab)
454 : (TYPE_SATURATING (type)
455 ? ssmsub_widen_optab : smsub_widen_optab));
456
457 case FMA_EXPR:
458 return fma_optab;
459
460 case REDUC_MAX_EXPR:
461 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
462
463 case REDUC_MIN_EXPR:
464 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
465
466 case REDUC_PLUS_EXPR:
467 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
468
469 case VEC_LSHIFT_EXPR:
470 return vec_shl_optab;
471
472 case VEC_RSHIFT_EXPR:
473 return vec_shr_optab;
474
475 case VEC_WIDEN_MULT_HI_EXPR:
476 return TYPE_UNSIGNED (type) ?
477 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
478
479 case VEC_WIDEN_MULT_LO_EXPR:
480 return TYPE_UNSIGNED (type) ?
481 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
482
483 case VEC_WIDEN_MULT_EVEN_EXPR:
484 return TYPE_UNSIGNED (type) ?
485 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
486
487 case VEC_WIDEN_MULT_ODD_EXPR:
488 return TYPE_UNSIGNED (type) ?
489 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
490
491 case VEC_WIDEN_LSHIFT_HI_EXPR:
492 return TYPE_UNSIGNED (type) ?
493 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
494
495 case VEC_WIDEN_LSHIFT_LO_EXPR:
496 return TYPE_UNSIGNED (type) ?
497 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
498
499 case VEC_UNPACK_HI_EXPR:
500 return TYPE_UNSIGNED (type) ?
501 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
502
503 case VEC_UNPACK_LO_EXPR:
504 return TYPE_UNSIGNED (type) ?
505 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
506
507 case VEC_UNPACK_FLOAT_HI_EXPR:
508 /* The signedness is determined from input operand. */
509 return TYPE_UNSIGNED (type) ?
510 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
511
512 case VEC_UNPACK_FLOAT_LO_EXPR:
513 /* The signedness is determined from input operand. */
514 return TYPE_UNSIGNED (type) ?
515 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
516
517 case VEC_PACK_TRUNC_EXPR:
518 return vec_pack_trunc_optab;
519
520 case VEC_PACK_SAT_EXPR:
521 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
522
523 case VEC_PACK_FIX_TRUNC_EXPR:
524 /* The signedness is determined from output operand. */
525 return TYPE_UNSIGNED (type) ?
526 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
527
528 default:
529 break;
530 }
531
532 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
533 switch (code)
534 {
535 case POINTER_PLUS_EXPR:
536 case PLUS_EXPR:
537 if (TYPE_SATURATING(type))
538 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
539 return trapv ? addv_optab : add_optab;
540
541 case MINUS_EXPR:
542 if (TYPE_SATURATING(type))
543 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
544 return trapv ? subv_optab : sub_optab;
545
546 case MULT_EXPR:
547 if (TYPE_SATURATING(type))
548 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
549 return trapv ? smulv_optab : smul_optab;
550
551 case NEGATE_EXPR:
552 if (TYPE_SATURATING(type))
553 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
554 return trapv ? negv_optab : neg_optab;
555
556 case ABS_EXPR:
557 return trapv ? absv_optab : abs_optab;
558
559 default:
560 return unknown_optab;
561 }
562 }
563 \f
564
565 /* Expand vector widening operations.
566
567 There are two different classes of operations handled here:
568 1) Operations whose result is wider than all the arguments to the operation.
569 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
570 In this case OP0 and optionally OP1 would be initialized,
571 but WIDE_OP wouldn't (not relevant for this case).
572 2) Operations whose result is of the same size as the last argument to the
573 operation, but wider than all the other arguments to the operation.
574 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
575 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
576
577 E.g, when called to expand the following operations, this is how
578 the arguments will be initialized:
579 nops OP0 OP1 WIDE_OP
580 widening-sum 2 oprnd0 - oprnd1
581 widening-dot-product 3 oprnd0 oprnd1 oprnd2
582 widening-mult 2 oprnd0 oprnd1 -
583 type-promotion (vec-unpack) 1 oprnd0 - - */
584
585 rtx
586 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
587 rtx target, int unsignedp)
588 {
589 struct expand_operand eops[4];
590 tree oprnd0, oprnd1, oprnd2;
591 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
592 optab widen_pattern_optab;
593 enum insn_code icode;
594 int nops = TREE_CODE_LENGTH (ops->code);
595 int op;
596
597 oprnd0 = ops->op0;
598 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
599 widen_pattern_optab =
600 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
601 if (ops->code == WIDEN_MULT_PLUS_EXPR
602 || ops->code == WIDEN_MULT_MINUS_EXPR)
603 icode = find_widening_optab_handler (widen_pattern_optab,
604 TYPE_MODE (TREE_TYPE (ops->op2)),
605 tmode0, 0);
606 else
607 icode = optab_handler (widen_pattern_optab, tmode0);
608 gcc_assert (icode != CODE_FOR_nothing);
609
610 if (nops >= 2)
611 {
612 oprnd1 = ops->op1;
613 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
614 }
615
616 /* The last operand is of a wider mode than the rest of the operands. */
617 if (nops == 2)
618 wmode = tmode1;
619 else if (nops == 3)
620 {
621 gcc_assert (tmode1 == tmode0);
622 gcc_assert (op1);
623 oprnd2 = ops->op2;
624 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
625 }
626
627 op = 0;
628 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
629 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
630 if (op1)
631 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
632 if (wide_op)
633 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
634 expand_insn (icode, op, eops);
635 return eops[0].value;
636 }
637
638 /* Generate code to perform an operation specified by TERNARY_OPTAB
639 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
640
641 UNSIGNEDP is for the case where we have to widen the operands
642 to perform the operation. It says to use zero-extension.
643
644 If TARGET is nonzero, the value
645 is generated there, if it is convenient to do so.
646 In all cases an rtx is returned for the locus of the value;
647 this may or may not be TARGET. */
648
649 rtx
650 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
651 rtx op1, rtx op2, rtx target, int unsignedp)
652 {
653 struct expand_operand ops[4];
654 enum insn_code icode = optab_handler (ternary_optab, mode);
655
656 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
657
658 create_output_operand (&ops[0], target, mode);
659 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
660 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
661 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
662 expand_insn (icode, 4, ops);
663 return ops[0].value;
664 }
665
666
667 /* Like expand_binop, but return a constant rtx if the result can be
668 calculated at compile time. The arguments and return value are
669 otherwise the same as for expand_binop. */
670
671 rtx
672 simplify_expand_binop (enum machine_mode mode, optab binoptab,
673 rtx op0, rtx op1, rtx target, int unsignedp,
674 enum optab_methods methods)
675 {
676 if (CONSTANT_P (op0) && CONSTANT_P (op1))
677 {
678 rtx x = simplify_binary_operation (optab_to_code (binoptab),
679 mode, op0, op1);
680 if (x)
681 return x;
682 }
683
684 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
685 }
686
687 /* Like simplify_expand_binop, but always put the result in TARGET.
688 Return true if the expansion succeeded. */
689
690 bool
691 force_expand_binop (enum machine_mode mode, optab binoptab,
692 rtx op0, rtx op1, rtx target, int unsignedp,
693 enum optab_methods methods)
694 {
695 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
696 target, unsignedp, methods);
697 if (x == 0)
698 return false;
699 if (x != target)
700 emit_move_insn (target, x);
701 return true;
702 }
703
704 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
705
706 rtx
707 expand_vec_shift_expr (sepops ops, rtx target)
708 {
709 struct expand_operand eops[3];
710 enum insn_code icode;
711 rtx rtx_op1, rtx_op2;
712 enum machine_mode mode = TYPE_MODE (ops->type);
713 tree vec_oprnd = ops->op0;
714 tree shift_oprnd = ops->op1;
715 optab shift_optab;
716
717 switch (ops->code)
718 {
719 case VEC_RSHIFT_EXPR:
720 shift_optab = vec_shr_optab;
721 break;
722 case VEC_LSHIFT_EXPR:
723 shift_optab = vec_shl_optab;
724 break;
725 default:
726 gcc_unreachable ();
727 }
728
729 icode = optab_handler (shift_optab, mode);
730 gcc_assert (icode != CODE_FOR_nothing);
731
732 rtx_op1 = expand_normal (vec_oprnd);
733 rtx_op2 = expand_normal (shift_oprnd);
734
735 create_output_operand (&eops[0], target, mode);
736 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
737 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
738 expand_insn (icode, 3, eops);
739
740 return eops[0].value;
741 }
742
743 /* Create a new vector value in VMODE with all elements set to OP. The
744 mode of OP must be the element mode of VMODE. If OP is a constant,
745 then the return value will be a constant. */
746
747 static rtx
748 expand_vector_broadcast (enum machine_mode vmode, rtx op)
749 {
750 enum insn_code icode;
751 rtvec vec;
752 rtx ret;
753 int i, n;
754
755 gcc_checking_assert (VECTOR_MODE_P (vmode));
756
757 n = GET_MODE_NUNITS (vmode);
758 vec = rtvec_alloc (n);
759 for (i = 0; i < n; ++i)
760 RTVEC_ELT (vec, i) = op;
761
762 if (CONSTANT_P (op))
763 return gen_rtx_CONST_VECTOR (vmode, vec);
764
765 /* ??? If the target doesn't have a vec_init, then we have no easy way
766 of performing this operation. Most of this sort of generic support
767 is hidden away in the vector lowering support in gimple. */
768 icode = optab_handler (vec_init_optab, vmode);
769 if (icode == CODE_FOR_nothing)
770 return NULL;
771
772 ret = gen_reg_rtx (vmode);
773 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
774
775 return ret;
776 }
777
778 /* This subroutine of expand_doubleword_shift handles the cases in which
779 the effective shift value is >= BITS_PER_WORD. The arguments and return
780 value are the same as for the parent routine, except that SUPERWORD_OP1
781 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
782 INTO_TARGET may be null if the caller has decided to calculate it. */
783
784 static bool
785 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
786 rtx outof_target, rtx into_target,
787 int unsignedp, enum optab_methods methods)
788 {
789 if (into_target != 0)
790 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
791 into_target, unsignedp, methods))
792 return false;
793
794 if (outof_target != 0)
795 {
796 /* For a signed right shift, we must fill OUTOF_TARGET with copies
797 of the sign bit, otherwise we must fill it with zeros. */
798 if (binoptab != ashr_optab)
799 emit_move_insn (outof_target, CONST0_RTX (word_mode));
800 else
801 if (!force_expand_binop (word_mode, binoptab,
802 outof_input, GEN_INT (BITS_PER_WORD - 1),
803 outof_target, unsignedp, methods))
804 return false;
805 }
806 return true;
807 }
808
809 /* This subroutine of expand_doubleword_shift handles the cases in which
810 the effective shift value is < BITS_PER_WORD. The arguments and return
811 value are the same as for the parent routine. */
812
813 static bool
814 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
815 rtx outof_input, rtx into_input, rtx op1,
816 rtx outof_target, rtx into_target,
817 int unsignedp, enum optab_methods methods,
818 unsigned HOST_WIDE_INT shift_mask)
819 {
820 optab reverse_unsigned_shift, unsigned_shift;
821 rtx tmp, carries;
822
823 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
824 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
825
826 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
827 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
828 the opposite direction to BINOPTAB. */
829 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
830 {
831 carries = outof_input;
832 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
833 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
834 0, true, methods);
835 }
836 else
837 {
838 /* We must avoid shifting by BITS_PER_WORD bits since that is either
839 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
840 has unknown behavior. Do a single shift first, then shift by the
841 remainder. It's OK to use ~OP1 as the remainder if shift counts
842 are truncated to the mode size. */
843 carries = expand_binop (word_mode, reverse_unsigned_shift,
844 outof_input, const1_rtx, 0, unsignedp, methods);
845 if (shift_mask == BITS_PER_WORD - 1)
846 {
847 tmp = immed_double_const (-1, -1, op1_mode);
848 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
849 0, true, methods);
850 }
851 else
852 {
853 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
854 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
855 0, true, methods);
856 }
857 }
858 if (tmp == 0 || carries == 0)
859 return false;
860 carries = expand_binop (word_mode, reverse_unsigned_shift,
861 carries, tmp, 0, unsignedp, methods);
862 if (carries == 0)
863 return false;
864
865 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
866 so the result can go directly into INTO_TARGET if convenient. */
867 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
868 into_target, unsignedp, methods);
869 if (tmp == 0)
870 return false;
871
872 /* Now OR in the bits carried over from OUTOF_INPUT. */
873 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
874 into_target, unsignedp, methods))
875 return false;
876
877 /* Use a standard word_mode shift for the out-of half. */
878 if (outof_target != 0)
879 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
880 outof_target, unsignedp, methods))
881 return false;
882
883 return true;
884 }
885
886
887 #ifdef HAVE_conditional_move
888 /* Try implementing expand_doubleword_shift using conditional moves.
889 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
890 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
891 are the shift counts to use in the former and latter case. All other
892 arguments are the same as the parent routine. */
893
894 static bool
895 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
896 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
897 rtx outof_input, rtx into_input,
898 rtx subword_op1, rtx superword_op1,
899 rtx outof_target, rtx into_target,
900 int unsignedp, enum optab_methods methods,
901 unsigned HOST_WIDE_INT shift_mask)
902 {
903 rtx outof_superword, into_superword;
904
905 /* Put the superword version of the output into OUTOF_SUPERWORD and
906 INTO_SUPERWORD. */
907 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
908 if (outof_target != 0 && subword_op1 == superword_op1)
909 {
910 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
911 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
912 into_superword = outof_target;
913 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
914 outof_superword, 0, unsignedp, methods))
915 return false;
916 }
917 else
918 {
919 into_superword = gen_reg_rtx (word_mode);
920 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
921 outof_superword, into_superword,
922 unsignedp, methods))
923 return false;
924 }
925
926 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
927 if (!expand_subword_shift (op1_mode, binoptab,
928 outof_input, into_input, subword_op1,
929 outof_target, into_target,
930 unsignedp, methods, shift_mask))
931 return false;
932
933 /* Select between them. Do the INTO half first because INTO_SUPERWORD
934 might be the current value of OUTOF_TARGET. */
935 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
936 into_target, into_superword, word_mode, false))
937 return false;
938
939 if (outof_target != 0)
940 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
941 outof_target, outof_superword,
942 word_mode, false))
943 return false;
944
945 return true;
946 }
947 #endif
948
949 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
950 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
951 input operand; the shift moves bits in the direction OUTOF_INPUT->
952 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
953 of the target. OP1 is the shift count and OP1_MODE is its mode.
954 If OP1 is constant, it will have been truncated as appropriate
955 and is known to be nonzero.
956
957 If SHIFT_MASK is zero, the result of word shifts is undefined when the
958 shift count is outside the range [0, BITS_PER_WORD). This routine must
959 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
960
961 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
962 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
963 fill with zeros or sign bits as appropriate.
964
965 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
966 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
967 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
968 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
969 are undefined.
970
971 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
972 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
973 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
974 function wants to calculate it itself.
975
976 Return true if the shift could be successfully synthesized. */
977
978 static bool
979 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
980 rtx outof_input, rtx into_input, rtx op1,
981 rtx outof_target, rtx into_target,
982 int unsignedp, enum optab_methods methods,
983 unsigned HOST_WIDE_INT shift_mask)
984 {
985 rtx superword_op1, tmp, cmp1, cmp2;
986 rtx subword_label, done_label;
987 enum rtx_code cmp_code;
988
989 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
990 fill the result with sign or zero bits as appropriate. If so, the value
991 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
992 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
993 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
994
995 This isn't worthwhile for constant shifts since the optimizers will
996 cope better with in-range shift counts. */
997 if (shift_mask >= BITS_PER_WORD
998 && outof_target != 0
999 && !CONSTANT_P (op1))
1000 {
1001 if (!expand_doubleword_shift (op1_mode, binoptab,
1002 outof_input, into_input, op1,
1003 0, into_target,
1004 unsignedp, methods, shift_mask))
1005 return false;
1006 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1007 outof_target, unsignedp, methods))
1008 return false;
1009 return true;
1010 }
1011
1012 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1013 is true when the effective shift value is less than BITS_PER_WORD.
1014 Set SUPERWORD_OP1 to the shift count that should be used to shift
1015 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1016 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1017 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1018 {
1019 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1020 is a subword shift count. */
1021 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1022 0, true, methods);
1023 cmp2 = CONST0_RTX (op1_mode);
1024 cmp_code = EQ;
1025 superword_op1 = op1;
1026 }
1027 else
1028 {
1029 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1030 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1031 0, true, methods);
1032 cmp2 = CONST0_RTX (op1_mode);
1033 cmp_code = LT;
1034 superword_op1 = cmp1;
1035 }
1036 if (cmp1 == 0)
1037 return false;
1038
1039 /* If we can compute the condition at compile time, pick the
1040 appropriate subroutine. */
1041 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1042 if (tmp != 0 && CONST_INT_P (tmp))
1043 {
1044 if (tmp == const0_rtx)
1045 return expand_superword_shift (binoptab, outof_input, superword_op1,
1046 outof_target, into_target,
1047 unsignedp, methods);
1048 else
1049 return expand_subword_shift (op1_mode, binoptab,
1050 outof_input, into_input, op1,
1051 outof_target, into_target,
1052 unsignedp, methods, shift_mask);
1053 }
1054
1055 #ifdef HAVE_conditional_move
1056 /* Try using conditional moves to generate straight-line code. */
1057 {
1058 rtx start = get_last_insn ();
1059 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1060 cmp_code, cmp1, cmp2,
1061 outof_input, into_input,
1062 op1, superword_op1,
1063 outof_target, into_target,
1064 unsignedp, methods, shift_mask))
1065 return true;
1066 delete_insns_since (start);
1067 }
1068 #endif
1069
1070 /* As a last resort, use branches to select the correct alternative. */
1071 subword_label = gen_label_rtx ();
1072 done_label = gen_label_rtx ();
1073
1074 NO_DEFER_POP;
1075 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1076 0, 0, subword_label, -1);
1077 OK_DEFER_POP;
1078
1079 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1080 outof_target, into_target,
1081 unsignedp, methods))
1082 return false;
1083
1084 emit_jump_insn (gen_jump (done_label));
1085 emit_barrier ();
1086 emit_label (subword_label);
1087
1088 if (!expand_subword_shift (op1_mode, binoptab,
1089 outof_input, into_input, op1,
1090 outof_target, into_target,
1091 unsignedp, methods, shift_mask))
1092 return false;
1093
1094 emit_label (done_label);
1095 return true;
1096 }
1097 \f
1098 /* Subroutine of expand_binop. Perform a double word multiplication of
1099 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1100 as the target's word_mode. This function return NULL_RTX if anything
1101 goes wrong, in which case it may have already emitted instructions
1102 which need to be deleted.
1103
1104 If we want to multiply two two-word values and have normal and widening
1105 multiplies of single-word values, we can do this with three smaller
1106 multiplications.
1107
1108 The multiplication proceeds as follows:
1109 _______________________
1110 [__op0_high_|__op0_low__]
1111 _______________________
1112 * [__op1_high_|__op1_low__]
1113 _______________________________________________
1114 _______________________
1115 (1) [__op0_low__*__op1_low__]
1116 _______________________
1117 (2a) [__op0_low__*__op1_high_]
1118 _______________________
1119 (2b) [__op0_high_*__op1_low__]
1120 _______________________
1121 (3) [__op0_high_*__op1_high_]
1122
1123
1124 This gives a 4-word result. Since we are only interested in the
1125 lower 2 words, partial result (3) and the upper words of (2a) and
1126 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1127 calculated using non-widening multiplication.
1128
1129 (1), however, needs to be calculated with an unsigned widening
1130 multiplication. If this operation is not directly supported we
1131 try using a signed widening multiplication and adjust the result.
1132 This adjustment works as follows:
1133
1134 If both operands are positive then no adjustment is needed.
1135
1136 If the operands have different signs, for example op0_low < 0 and
1137 op1_low >= 0, the instruction treats the most significant bit of
1138 op0_low as a sign bit instead of a bit with significance
1139 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1140 with 2**BITS_PER_WORD - op0_low, and two's complements the
1141 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1142 the result.
1143
1144 Similarly, if both operands are negative, we need to add
1145 (op0_low + op1_low) * 2**BITS_PER_WORD.
1146
1147 We use a trick to adjust quickly. We logically shift op0_low right
1148 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1149 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1150 logical shift exists, we do an arithmetic right shift and subtract
1151 the 0 or -1. */
1152
1153 static rtx
1154 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1155 bool umulp, enum optab_methods methods)
1156 {
1157 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1158 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1159 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1160 rtx product, adjust, product_high, temp;
1161
1162 rtx op0_high = operand_subword_force (op0, high, mode);
1163 rtx op0_low = operand_subword_force (op0, low, mode);
1164 rtx op1_high = operand_subword_force (op1, high, mode);
1165 rtx op1_low = operand_subword_force (op1, low, mode);
1166
1167 /* If we're using an unsigned multiply to directly compute the product
1168 of the low-order words of the operands and perform any required
1169 adjustments of the operands, we begin by trying two more multiplications
1170 and then computing the appropriate sum.
1171
1172 We have checked above that the required addition is provided.
1173 Full-word addition will normally always succeed, especially if
1174 it is provided at all, so we don't worry about its failure. The
1175 multiplication may well fail, however, so we do handle that. */
1176
1177 if (!umulp)
1178 {
1179 /* ??? This could be done with emit_store_flag where available. */
1180 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1181 NULL_RTX, 1, methods);
1182 if (temp)
1183 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1184 NULL_RTX, 0, OPTAB_DIRECT);
1185 else
1186 {
1187 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1188 NULL_RTX, 0, methods);
1189 if (!temp)
1190 return NULL_RTX;
1191 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1192 NULL_RTX, 0, OPTAB_DIRECT);
1193 }
1194
1195 if (!op0_high)
1196 return NULL_RTX;
1197 }
1198
1199 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1200 NULL_RTX, 0, OPTAB_DIRECT);
1201 if (!adjust)
1202 return NULL_RTX;
1203
1204 /* OP0_HIGH should now be dead. */
1205
1206 if (!umulp)
1207 {
1208 /* ??? This could be done with emit_store_flag where available. */
1209 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1210 NULL_RTX, 1, methods);
1211 if (temp)
1212 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1213 NULL_RTX, 0, OPTAB_DIRECT);
1214 else
1215 {
1216 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1217 NULL_RTX, 0, methods);
1218 if (!temp)
1219 return NULL_RTX;
1220 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1221 NULL_RTX, 0, OPTAB_DIRECT);
1222 }
1223
1224 if (!op1_high)
1225 return NULL_RTX;
1226 }
1227
1228 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1229 NULL_RTX, 0, OPTAB_DIRECT);
1230 if (!temp)
1231 return NULL_RTX;
1232
1233 /* OP1_HIGH should now be dead. */
1234
1235 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1236 NULL_RTX, 0, OPTAB_DIRECT);
1237
1238 if (target && !REG_P (target))
1239 target = NULL_RTX;
1240
1241 if (umulp)
1242 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1243 target, 1, OPTAB_DIRECT);
1244 else
1245 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1246 target, 1, OPTAB_DIRECT);
1247
1248 if (!product)
1249 return NULL_RTX;
1250
1251 product_high = operand_subword (product, high, 1, mode);
1252 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1253 NULL_RTX, 0, OPTAB_DIRECT);
1254 emit_move_insn (product_high, adjust);
1255 return product;
1256 }
1257 \f
1258 /* Wrapper around expand_binop which takes an rtx code to specify
1259 the operation to perform, not an optab pointer. All other
1260 arguments are the same. */
1261 rtx
1262 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1263 rtx op1, rtx target, int unsignedp,
1264 enum optab_methods methods)
1265 {
1266 optab binop = code_to_optab (code);
1267 gcc_assert (binop);
1268
1269 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1270 }
1271
1272 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1273 binop. Order them according to commutative_operand_precedence and, if
1274 possible, try to put TARGET or a pseudo first. */
1275 static bool
1276 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1277 {
1278 int op0_prec = commutative_operand_precedence (op0);
1279 int op1_prec = commutative_operand_precedence (op1);
1280
1281 if (op0_prec < op1_prec)
1282 return true;
1283
1284 if (op0_prec > op1_prec)
1285 return false;
1286
1287 /* With equal precedence, both orders are ok, but it is better if the
1288 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1289 if (target == 0 || REG_P (target))
1290 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1291 else
1292 return rtx_equal_p (op1, target);
1293 }
1294
1295 /* Return true if BINOPTAB implements a shift operation. */
1296
1297 static bool
1298 shift_optab_p (optab binoptab)
1299 {
1300 switch (optab_to_code (binoptab))
1301 {
1302 case ASHIFT:
1303 case SS_ASHIFT:
1304 case US_ASHIFT:
1305 case ASHIFTRT:
1306 case LSHIFTRT:
1307 case ROTATE:
1308 case ROTATERT:
1309 return true;
1310
1311 default:
1312 return false;
1313 }
1314 }
1315
1316 /* Return true if BINOPTAB implements a commutative binary operation. */
1317
1318 static bool
1319 commutative_optab_p (optab binoptab)
1320 {
1321 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1322 || binoptab == smul_widen_optab
1323 || binoptab == umul_widen_optab
1324 || binoptab == smul_highpart_optab
1325 || binoptab == umul_highpart_optab);
1326 }
1327
1328 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1329 optimizing, and if the operand is a constant that costs more than
1330 1 instruction, force the constant into a register and return that
1331 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1332
1333 static rtx
1334 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1335 int opn, rtx x, bool unsignedp)
1336 {
1337 bool speed = optimize_insn_for_speed_p ();
1338
1339 if (mode != VOIDmode
1340 && optimize
1341 && CONSTANT_P (x)
1342 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1343 > set_src_cost (x, speed)))
1344 {
1345 if (CONST_INT_P (x))
1346 {
1347 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1348 if (intval != INTVAL (x))
1349 x = GEN_INT (intval);
1350 }
1351 else
1352 x = convert_modes (mode, VOIDmode, x, unsignedp);
1353 x = force_reg (mode, x);
1354 }
1355 return x;
1356 }
1357
1358 /* Helper function for expand_binop: handle the case where there
1359 is an insn that directly implements the indicated operation.
1360 Returns null if this is not possible. */
1361 static rtx
1362 expand_binop_directly (enum machine_mode mode, optab binoptab,
1363 rtx op0, rtx op1,
1364 rtx target, int unsignedp, enum optab_methods methods,
1365 rtx last)
1366 {
1367 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1368 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1369 from_mode, 1);
1370 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1371 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1372 enum machine_mode mode0, mode1, tmp_mode;
1373 struct expand_operand ops[3];
1374 bool commutative_p;
1375 rtx pat;
1376 rtx xop0 = op0, xop1 = op1;
1377 rtx swap;
1378
1379 /* If it is a commutative operator and the modes would match
1380 if we would swap the operands, we can save the conversions. */
1381 commutative_p = commutative_optab_p (binoptab);
1382 if (commutative_p
1383 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1384 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1385 {
1386 swap = xop0;
1387 xop0 = xop1;
1388 xop1 = swap;
1389 }
1390
1391 /* If we are optimizing, force expensive constants into a register. */
1392 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1393 if (!shift_optab_p (binoptab))
1394 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1395
1396 /* In case the insn wants input operands in modes different from
1397 those of the actual operands, convert the operands. It would
1398 seem that we don't need to convert CONST_INTs, but we do, so
1399 that they're properly zero-extended, sign-extended or truncated
1400 for their mode. */
1401
1402 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1403 if (xmode0 != VOIDmode && xmode0 != mode0)
1404 {
1405 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1406 mode0 = xmode0;
1407 }
1408
1409 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1410 if (xmode1 != VOIDmode && xmode1 != mode1)
1411 {
1412 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1413 mode1 = xmode1;
1414 }
1415
1416 /* If operation is commutative,
1417 try to make the first operand a register.
1418 Even better, try to make it the same as the target.
1419 Also try to make the last operand a constant. */
1420 if (commutative_p
1421 && swap_commutative_operands_with_target (target, xop0, xop1))
1422 {
1423 swap = xop1;
1424 xop1 = xop0;
1425 xop0 = swap;
1426 }
1427
1428 /* Now, if insn's predicates don't allow our operands, put them into
1429 pseudo regs. */
1430
1431 if (binoptab == vec_pack_trunc_optab
1432 || binoptab == vec_pack_usat_optab
1433 || binoptab == vec_pack_ssat_optab
1434 || binoptab == vec_pack_ufix_trunc_optab
1435 || binoptab == vec_pack_sfix_trunc_optab)
1436 {
1437 /* The mode of the result is different then the mode of the
1438 arguments. */
1439 tmp_mode = insn_data[(int) icode].operand[0].mode;
1440 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1441 {
1442 delete_insns_since (last);
1443 return NULL_RTX;
1444 }
1445 }
1446 else
1447 tmp_mode = mode;
1448
1449 create_output_operand (&ops[0], target, tmp_mode);
1450 create_input_operand (&ops[1], xop0, mode0);
1451 create_input_operand (&ops[2], xop1, mode1);
1452 pat = maybe_gen_insn (icode, 3, ops);
1453 if (pat)
1454 {
1455 /* If PAT is composed of more than one insn, try to add an appropriate
1456 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1457 operand, call expand_binop again, this time without a target. */
1458 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1459 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1460 ops[1].value, ops[2].value))
1461 {
1462 delete_insns_since (last);
1463 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1464 unsignedp, methods);
1465 }
1466
1467 emit_insn (pat);
1468 return ops[0].value;
1469 }
1470 delete_insns_since (last);
1471 return NULL_RTX;
1472 }
1473
1474 /* Generate code to perform an operation specified by BINOPTAB
1475 on operands OP0 and OP1, with result having machine-mode MODE.
1476
1477 UNSIGNEDP is for the case where we have to widen the operands
1478 to perform the operation. It says to use zero-extension.
1479
1480 If TARGET is nonzero, the value
1481 is generated there, if it is convenient to do so.
1482 In all cases an rtx is returned for the locus of the value;
1483 this may or may not be TARGET. */
1484
1485 rtx
1486 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1487 rtx target, int unsignedp, enum optab_methods methods)
1488 {
1489 enum optab_methods next_methods
1490 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1491 ? OPTAB_WIDEN : methods);
1492 enum mode_class mclass;
1493 enum machine_mode wider_mode;
1494 rtx libfunc;
1495 rtx temp;
1496 rtx entry_last = get_last_insn ();
1497 rtx last;
1498
1499 mclass = GET_MODE_CLASS (mode);
1500
1501 /* If subtracting an integer constant, convert this into an addition of
1502 the negated constant. */
1503
1504 if (binoptab == sub_optab && CONST_INT_P (op1))
1505 {
1506 op1 = negate_rtx (mode, op1);
1507 binoptab = add_optab;
1508 }
1509
1510 /* Record where to delete back to if we backtrack. */
1511 last = get_last_insn ();
1512
1513 /* If we can do it with a three-operand insn, do so. */
1514
1515 if (methods != OPTAB_MUST_WIDEN
1516 && find_widening_optab_handler (binoptab, mode,
1517 widened_mode (mode, op0, op1), 1)
1518 != CODE_FOR_nothing)
1519 {
1520 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1521 unsignedp, methods, last);
1522 if (temp)
1523 return temp;
1524 }
1525
1526 /* If we were trying to rotate, and that didn't work, try rotating
1527 the other direction before falling back to shifts and bitwise-or. */
1528 if (((binoptab == rotl_optab
1529 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1530 || (binoptab == rotr_optab
1531 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1532 && mclass == MODE_INT)
1533 {
1534 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1535 rtx newop1;
1536 unsigned int bits = GET_MODE_PRECISION (mode);
1537
1538 if (CONST_INT_P (op1))
1539 newop1 = GEN_INT (bits - INTVAL (op1));
1540 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1541 newop1 = negate_rtx (GET_MODE (op1), op1);
1542 else
1543 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1544 GEN_INT (bits), op1,
1545 NULL_RTX, unsignedp, OPTAB_DIRECT);
1546
1547 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1548 target, unsignedp, methods, last);
1549 if (temp)
1550 return temp;
1551 }
1552
1553 /* If this is a multiply, see if we can do a widening operation that
1554 takes operands of this mode and makes a wider mode. */
1555
1556 if (binoptab == smul_optab
1557 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1558 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1559 : smul_widen_optab),
1560 GET_MODE_2XWIDER_MODE (mode), mode)
1561 != CODE_FOR_nothing))
1562 {
1563 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1564 unsignedp ? umul_widen_optab : smul_widen_optab,
1565 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1566
1567 if (temp != 0)
1568 {
1569 if (GET_MODE_CLASS (mode) == MODE_INT
1570 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1571 return gen_lowpart (mode, temp);
1572 else
1573 return convert_to_mode (mode, temp, unsignedp);
1574 }
1575 }
1576
1577 /* If this is a vector shift by a scalar, see if we can do a vector
1578 shift by a vector. If so, broadcast the scalar into a vector. */
1579 if (mclass == MODE_VECTOR_INT)
1580 {
1581 optab otheroptab = unknown_optab;
1582
1583 if (binoptab == ashl_optab)
1584 otheroptab = vashl_optab;
1585 else if (binoptab == ashr_optab)
1586 otheroptab = vashr_optab;
1587 else if (binoptab == lshr_optab)
1588 otheroptab = vlshr_optab;
1589 else if (binoptab == rotl_optab)
1590 otheroptab = vrotl_optab;
1591 else if (binoptab == rotr_optab)
1592 otheroptab = vrotr_optab;
1593
1594 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1595 {
1596 rtx vop1 = expand_vector_broadcast (mode, op1);
1597 if (vop1)
1598 {
1599 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1600 target, unsignedp, methods, last);
1601 if (temp)
1602 return temp;
1603 }
1604 }
1605 }
1606
1607 /* Look for a wider mode of the same class for which we think we
1608 can open-code the operation. Check for a widening multiply at the
1609 wider mode as well. */
1610
1611 if (CLASS_HAS_WIDER_MODES_P (mclass)
1612 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1613 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1614 wider_mode != VOIDmode;
1615 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1616 {
1617 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1618 || (binoptab == smul_optab
1619 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1620 && (find_widening_optab_handler ((unsignedp
1621 ? umul_widen_optab
1622 : smul_widen_optab),
1623 GET_MODE_WIDER_MODE (wider_mode),
1624 mode, 0)
1625 != CODE_FOR_nothing)))
1626 {
1627 rtx xop0 = op0, xop1 = op1;
1628 int no_extend = 0;
1629
1630 /* For certain integer operations, we need not actually extend
1631 the narrow operands, as long as we will truncate
1632 the results to the same narrowness. */
1633
1634 if ((binoptab == ior_optab || binoptab == and_optab
1635 || binoptab == xor_optab
1636 || binoptab == add_optab || binoptab == sub_optab
1637 || binoptab == smul_optab || binoptab == ashl_optab)
1638 && mclass == MODE_INT)
1639 {
1640 no_extend = 1;
1641 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1642 xop0, unsignedp);
1643 if (binoptab != ashl_optab)
1644 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1645 xop1, unsignedp);
1646 }
1647
1648 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1649
1650 /* The second operand of a shift must always be extended. */
1651 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1652 no_extend && binoptab != ashl_optab);
1653
1654 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1655 unsignedp, OPTAB_DIRECT);
1656 if (temp)
1657 {
1658 if (mclass != MODE_INT
1659 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1660 {
1661 if (target == 0)
1662 target = gen_reg_rtx (mode);
1663 convert_move (target, temp, 0);
1664 return target;
1665 }
1666 else
1667 return gen_lowpart (mode, temp);
1668 }
1669 else
1670 delete_insns_since (last);
1671 }
1672 }
1673
1674 /* If operation is commutative,
1675 try to make the first operand a register.
1676 Even better, try to make it the same as the target.
1677 Also try to make the last operand a constant. */
1678 if (commutative_optab_p (binoptab)
1679 && swap_commutative_operands_with_target (target, op0, op1))
1680 {
1681 temp = op1;
1682 op1 = op0;
1683 op0 = temp;
1684 }
1685
1686 /* These can be done a word at a time. */
1687 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1688 && mclass == MODE_INT
1689 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1690 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1691 {
1692 int i;
1693 rtx insns;
1694
1695 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1696 won't be accurate, so use a new target. */
1697 if (target == 0
1698 || target == op0
1699 || target == op1
1700 || !valid_multiword_target_p (target))
1701 target = gen_reg_rtx (mode);
1702
1703 start_sequence ();
1704
1705 /* Do the actual arithmetic. */
1706 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1707 {
1708 rtx target_piece = operand_subword (target, i, 1, mode);
1709 rtx x = expand_binop (word_mode, binoptab,
1710 operand_subword_force (op0, i, mode),
1711 operand_subword_force (op1, i, mode),
1712 target_piece, unsignedp, next_methods);
1713
1714 if (x == 0)
1715 break;
1716
1717 if (target_piece != x)
1718 emit_move_insn (target_piece, x);
1719 }
1720
1721 insns = get_insns ();
1722 end_sequence ();
1723
1724 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1725 {
1726 emit_insn (insns);
1727 return target;
1728 }
1729 }
1730
1731 /* Synthesize double word shifts from single word shifts. */
1732 if ((binoptab == lshr_optab || binoptab == ashl_optab
1733 || binoptab == ashr_optab)
1734 && mclass == MODE_INT
1735 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1736 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1737 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1738 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1739 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1740 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1741 {
1742 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1743 enum machine_mode op1_mode;
1744
1745 double_shift_mask = targetm.shift_truncation_mask (mode);
1746 shift_mask = targetm.shift_truncation_mask (word_mode);
1747 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1748
1749 /* Apply the truncation to constant shifts. */
1750 if (double_shift_mask > 0 && CONST_INT_P (op1))
1751 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1752
1753 if (op1 == CONST0_RTX (op1_mode))
1754 return op0;
1755
1756 /* Make sure that this is a combination that expand_doubleword_shift
1757 can handle. See the comments there for details. */
1758 if (double_shift_mask == 0
1759 || (shift_mask == BITS_PER_WORD - 1
1760 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1761 {
1762 rtx insns;
1763 rtx into_target, outof_target;
1764 rtx into_input, outof_input;
1765 int left_shift, outof_word;
1766
1767 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1768 won't be accurate, so use a new target. */
1769 if (target == 0
1770 || target == op0
1771 || target == op1
1772 || !valid_multiword_target_p (target))
1773 target = gen_reg_rtx (mode);
1774
1775 start_sequence ();
1776
1777 /* OUTOF_* is the word we are shifting bits away from, and
1778 INTO_* is the word that we are shifting bits towards, thus
1779 they differ depending on the direction of the shift and
1780 WORDS_BIG_ENDIAN. */
1781
1782 left_shift = binoptab == ashl_optab;
1783 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1784
1785 outof_target = operand_subword (target, outof_word, 1, mode);
1786 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1787
1788 outof_input = operand_subword_force (op0, outof_word, mode);
1789 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1790
1791 if (expand_doubleword_shift (op1_mode, binoptab,
1792 outof_input, into_input, op1,
1793 outof_target, into_target,
1794 unsignedp, next_methods, shift_mask))
1795 {
1796 insns = get_insns ();
1797 end_sequence ();
1798
1799 emit_insn (insns);
1800 return target;
1801 }
1802 end_sequence ();
1803 }
1804 }
1805
1806 /* Synthesize double word rotates from single word shifts. */
1807 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1808 && mclass == MODE_INT
1809 && CONST_INT_P (op1)
1810 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1811 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1812 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1813 {
1814 rtx insns;
1815 rtx into_target, outof_target;
1816 rtx into_input, outof_input;
1817 rtx inter;
1818 int shift_count, left_shift, outof_word;
1819
1820 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1821 won't be accurate, so use a new target. Do this also if target is not
1822 a REG, first because having a register instead may open optimization
1823 opportunities, and second because if target and op0 happen to be MEMs
1824 designating the same location, we would risk clobbering it too early
1825 in the code sequence we generate below. */
1826 if (target == 0
1827 || target == op0
1828 || target == op1
1829 || !REG_P (target)
1830 || !valid_multiword_target_p (target))
1831 target = gen_reg_rtx (mode);
1832
1833 start_sequence ();
1834
1835 shift_count = INTVAL (op1);
1836
1837 /* OUTOF_* is the word we are shifting bits away from, and
1838 INTO_* is the word that we are shifting bits towards, thus
1839 they differ depending on the direction of the shift and
1840 WORDS_BIG_ENDIAN. */
1841
1842 left_shift = (binoptab == rotl_optab);
1843 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1844
1845 outof_target = operand_subword (target, outof_word, 1, mode);
1846 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1847
1848 outof_input = operand_subword_force (op0, outof_word, mode);
1849 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1850
1851 if (shift_count == BITS_PER_WORD)
1852 {
1853 /* This is just a word swap. */
1854 emit_move_insn (outof_target, into_input);
1855 emit_move_insn (into_target, outof_input);
1856 inter = const0_rtx;
1857 }
1858 else
1859 {
1860 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1861 rtx first_shift_count, second_shift_count;
1862 optab reverse_unsigned_shift, unsigned_shift;
1863
1864 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1865 ? lshr_optab : ashl_optab);
1866
1867 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1868 ? ashl_optab : lshr_optab);
1869
1870 if (shift_count > BITS_PER_WORD)
1871 {
1872 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1873 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1874 }
1875 else
1876 {
1877 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1878 second_shift_count = GEN_INT (shift_count);
1879 }
1880
1881 into_temp1 = expand_binop (word_mode, unsigned_shift,
1882 outof_input, first_shift_count,
1883 NULL_RTX, unsignedp, next_methods);
1884 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1885 into_input, second_shift_count,
1886 NULL_RTX, unsignedp, next_methods);
1887
1888 if (into_temp1 != 0 && into_temp2 != 0)
1889 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1890 into_target, unsignedp, next_methods);
1891 else
1892 inter = 0;
1893
1894 if (inter != 0 && inter != into_target)
1895 emit_move_insn (into_target, inter);
1896
1897 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1898 into_input, first_shift_count,
1899 NULL_RTX, unsignedp, next_methods);
1900 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1901 outof_input, second_shift_count,
1902 NULL_RTX, unsignedp, next_methods);
1903
1904 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1905 inter = expand_binop (word_mode, ior_optab,
1906 outof_temp1, outof_temp2,
1907 outof_target, unsignedp, next_methods);
1908
1909 if (inter != 0 && inter != outof_target)
1910 emit_move_insn (outof_target, inter);
1911 }
1912
1913 insns = get_insns ();
1914 end_sequence ();
1915
1916 if (inter != 0)
1917 {
1918 emit_insn (insns);
1919 return target;
1920 }
1921 }
1922
1923 /* These can be done a word at a time by propagating carries. */
1924 if ((binoptab == add_optab || binoptab == sub_optab)
1925 && mclass == MODE_INT
1926 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1927 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1928 {
1929 unsigned int i;
1930 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1931 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1932 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1933 rtx xop0, xop1, xtarget;
1934
1935 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1936 value is one of those, use it. Otherwise, use 1 since it is the
1937 one easiest to get. */
1938 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1939 int normalizep = STORE_FLAG_VALUE;
1940 #else
1941 int normalizep = 1;
1942 #endif
1943
1944 /* Prepare the operands. */
1945 xop0 = force_reg (mode, op0);
1946 xop1 = force_reg (mode, op1);
1947
1948 xtarget = gen_reg_rtx (mode);
1949
1950 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1951 target = xtarget;
1952
1953 /* Indicate for flow that the entire target reg is being set. */
1954 if (REG_P (target))
1955 emit_clobber (xtarget);
1956
1957 /* Do the actual arithmetic. */
1958 for (i = 0; i < nwords; i++)
1959 {
1960 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1961 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1962 rtx op0_piece = operand_subword_force (xop0, index, mode);
1963 rtx op1_piece = operand_subword_force (xop1, index, mode);
1964 rtx x;
1965
1966 /* Main add/subtract of the input operands. */
1967 x = expand_binop (word_mode, binoptab,
1968 op0_piece, op1_piece,
1969 target_piece, unsignedp, next_methods);
1970 if (x == 0)
1971 break;
1972
1973 if (i + 1 < nwords)
1974 {
1975 /* Store carry from main add/subtract. */
1976 carry_out = gen_reg_rtx (word_mode);
1977 carry_out = emit_store_flag_force (carry_out,
1978 (binoptab == add_optab
1979 ? LT : GT),
1980 x, op0_piece,
1981 word_mode, 1, normalizep);
1982 }
1983
1984 if (i > 0)
1985 {
1986 rtx newx;
1987
1988 /* Add/subtract previous carry to main result. */
1989 newx = expand_binop (word_mode,
1990 normalizep == 1 ? binoptab : otheroptab,
1991 x, carry_in,
1992 NULL_RTX, 1, next_methods);
1993
1994 if (i + 1 < nwords)
1995 {
1996 /* Get out carry from adding/subtracting carry in. */
1997 rtx carry_tmp = gen_reg_rtx (word_mode);
1998 carry_tmp = emit_store_flag_force (carry_tmp,
1999 (binoptab == add_optab
2000 ? LT : GT),
2001 newx, x,
2002 word_mode, 1, normalizep);
2003
2004 /* Logical-ior the two poss. carry together. */
2005 carry_out = expand_binop (word_mode, ior_optab,
2006 carry_out, carry_tmp,
2007 carry_out, 0, next_methods);
2008 if (carry_out == 0)
2009 break;
2010 }
2011 emit_move_insn (target_piece, newx);
2012 }
2013 else
2014 {
2015 if (x != target_piece)
2016 emit_move_insn (target_piece, x);
2017 }
2018
2019 carry_in = carry_out;
2020 }
2021
2022 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2023 {
2024 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2025 || ! rtx_equal_p (target, xtarget))
2026 {
2027 rtx temp = emit_move_insn (target, xtarget);
2028
2029 set_dst_reg_note (temp, REG_EQUAL,
2030 gen_rtx_fmt_ee (optab_to_code (binoptab),
2031 mode, copy_rtx (xop0),
2032 copy_rtx (xop1)),
2033 target);
2034 }
2035 else
2036 target = xtarget;
2037
2038 return target;
2039 }
2040
2041 else
2042 delete_insns_since (last);
2043 }
2044
2045 /* Attempt to synthesize double word multiplies using a sequence of word
2046 mode multiplications. We first attempt to generate a sequence using a
2047 more efficient unsigned widening multiply, and if that fails we then
2048 try using a signed widening multiply. */
2049
2050 if (binoptab == smul_optab
2051 && mclass == MODE_INT
2052 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2053 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2054 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2055 {
2056 rtx product = NULL_RTX;
2057 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2058 != CODE_FOR_nothing)
2059 {
2060 product = expand_doubleword_mult (mode, op0, op1, target,
2061 true, methods);
2062 if (!product)
2063 delete_insns_since (last);
2064 }
2065
2066 if (product == NULL_RTX
2067 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2068 != CODE_FOR_nothing)
2069 {
2070 product = expand_doubleword_mult (mode, op0, op1, target,
2071 false, methods);
2072 if (!product)
2073 delete_insns_since (last);
2074 }
2075
2076 if (product != NULL_RTX)
2077 {
2078 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2079 {
2080 temp = emit_move_insn (target ? target : product, product);
2081 set_dst_reg_note (temp,
2082 REG_EQUAL,
2083 gen_rtx_fmt_ee (MULT, mode,
2084 copy_rtx (op0),
2085 copy_rtx (op1)),
2086 target ? target : product);
2087 }
2088 return product;
2089 }
2090 }
2091
2092 /* It can't be open-coded in this mode.
2093 Use a library call if one is available and caller says that's ok. */
2094
2095 libfunc = optab_libfunc (binoptab, mode);
2096 if (libfunc
2097 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2098 {
2099 rtx insns;
2100 rtx op1x = op1;
2101 enum machine_mode op1_mode = mode;
2102 rtx value;
2103
2104 start_sequence ();
2105
2106 if (shift_optab_p (binoptab))
2107 {
2108 op1_mode = targetm.libgcc_shift_count_mode ();
2109 /* Specify unsigned here,
2110 since negative shift counts are meaningless. */
2111 op1x = convert_to_mode (op1_mode, op1, 1);
2112 }
2113
2114 if (GET_MODE (op0) != VOIDmode
2115 && GET_MODE (op0) != mode)
2116 op0 = convert_to_mode (mode, op0, unsignedp);
2117
2118 /* Pass 1 for NO_QUEUE so we don't lose any increments
2119 if the libcall is cse'd or moved. */
2120 value = emit_library_call_value (libfunc,
2121 NULL_RTX, LCT_CONST, mode, 2,
2122 op0, mode, op1x, op1_mode);
2123
2124 insns = get_insns ();
2125 end_sequence ();
2126
2127 target = gen_reg_rtx (mode);
2128 emit_libcall_block_1 (insns, target, value,
2129 gen_rtx_fmt_ee (optab_to_code (binoptab),
2130 mode, op0, op1),
2131 trapv_binoptab_p (binoptab));
2132
2133 return target;
2134 }
2135
2136 delete_insns_since (last);
2137
2138 /* It can't be done in this mode. Can we do it in a wider mode? */
2139
2140 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2141 || methods == OPTAB_MUST_WIDEN))
2142 {
2143 /* Caller says, don't even try. */
2144 delete_insns_since (entry_last);
2145 return 0;
2146 }
2147
2148 /* Compute the value of METHODS to pass to recursive calls.
2149 Don't allow widening to be tried recursively. */
2150
2151 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2152
2153 /* Look for a wider mode of the same class for which it appears we can do
2154 the operation. */
2155
2156 if (CLASS_HAS_WIDER_MODES_P (mclass))
2157 {
2158 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2159 wider_mode != VOIDmode;
2160 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2161 {
2162 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2163 != CODE_FOR_nothing
2164 || (methods == OPTAB_LIB
2165 && optab_libfunc (binoptab, wider_mode)))
2166 {
2167 rtx xop0 = op0, xop1 = op1;
2168 int no_extend = 0;
2169
2170 /* For certain integer operations, we need not actually extend
2171 the narrow operands, as long as we will truncate
2172 the results to the same narrowness. */
2173
2174 if ((binoptab == ior_optab || binoptab == and_optab
2175 || binoptab == xor_optab
2176 || binoptab == add_optab || binoptab == sub_optab
2177 || binoptab == smul_optab || binoptab == ashl_optab)
2178 && mclass == MODE_INT)
2179 no_extend = 1;
2180
2181 xop0 = widen_operand (xop0, wider_mode, mode,
2182 unsignedp, no_extend);
2183
2184 /* The second operand of a shift must always be extended. */
2185 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2186 no_extend && binoptab != ashl_optab);
2187
2188 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2189 unsignedp, methods);
2190 if (temp)
2191 {
2192 if (mclass != MODE_INT
2193 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2194 {
2195 if (target == 0)
2196 target = gen_reg_rtx (mode);
2197 convert_move (target, temp, 0);
2198 return target;
2199 }
2200 else
2201 return gen_lowpart (mode, temp);
2202 }
2203 else
2204 delete_insns_since (last);
2205 }
2206 }
2207 }
2208
2209 delete_insns_since (entry_last);
2210 return 0;
2211 }
2212 \f
2213 /* Expand a binary operator which has both signed and unsigned forms.
2214 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2215 signed operations.
2216
2217 If we widen unsigned operands, we may use a signed wider operation instead
2218 of an unsigned wider operation, since the result would be the same. */
2219
2220 rtx
2221 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2222 rtx op0, rtx op1, rtx target, int unsignedp,
2223 enum optab_methods methods)
2224 {
2225 rtx temp;
2226 optab direct_optab = unsignedp ? uoptab : soptab;
2227 bool save_enable;
2228
2229 /* Do it without widening, if possible. */
2230 temp = expand_binop (mode, direct_optab, op0, op1, target,
2231 unsignedp, OPTAB_DIRECT);
2232 if (temp || methods == OPTAB_DIRECT)
2233 return temp;
2234
2235 /* Try widening to a signed int. Disable any direct use of any
2236 signed insn in the current mode. */
2237 save_enable = swap_optab_enable (soptab, mode, false);
2238
2239 temp = expand_binop (mode, soptab, op0, op1, target,
2240 unsignedp, OPTAB_WIDEN);
2241
2242 /* For unsigned operands, try widening to an unsigned int. */
2243 if (!temp && unsignedp)
2244 temp = expand_binop (mode, uoptab, op0, op1, target,
2245 unsignedp, OPTAB_WIDEN);
2246 if (temp || methods == OPTAB_WIDEN)
2247 goto egress;
2248
2249 /* Use the right width libcall if that exists. */
2250 temp = expand_binop (mode, direct_optab, op0, op1, target,
2251 unsignedp, OPTAB_LIB);
2252 if (temp || methods == OPTAB_LIB)
2253 goto egress;
2254
2255 /* Must widen and use a libcall, use either signed or unsigned. */
2256 temp = expand_binop (mode, soptab, op0, op1, target,
2257 unsignedp, methods);
2258 if (!temp && unsignedp)
2259 temp = expand_binop (mode, uoptab, op0, op1, target,
2260 unsignedp, methods);
2261
2262 egress:
2263 /* Undo the fiddling above. */
2264 if (save_enable)
2265 swap_optab_enable (soptab, mode, true);
2266 return temp;
2267 }
2268 \f
2269 /* Generate code to perform an operation specified by UNOPPTAB
2270 on operand OP0, with two results to TARG0 and TARG1.
2271 We assume that the order of the operands for the instruction
2272 is TARG0, TARG1, OP0.
2273
2274 Either TARG0 or TARG1 may be zero, but what that means is that
2275 the result is not actually wanted. We will generate it into
2276 a dummy pseudo-reg and discard it. They may not both be zero.
2277
2278 Returns 1 if this operation can be performed; 0 if not. */
2279
2280 int
2281 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2282 int unsignedp)
2283 {
2284 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2285 enum mode_class mclass;
2286 enum machine_mode wider_mode;
2287 rtx entry_last = get_last_insn ();
2288 rtx last;
2289
2290 mclass = GET_MODE_CLASS (mode);
2291
2292 if (!targ0)
2293 targ0 = gen_reg_rtx (mode);
2294 if (!targ1)
2295 targ1 = gen_reg_rtx (mode);
2296
2297 /* Record where to go back to if we fail. */
2298 last = get_last_insn ();
2299
2300 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2301 {
2302 struct expand_operand ops[3];
2303 enum insn_code icode = optab_handler (unoptab, mode);
2304
2305 create_fixed_operand (&ops[0], targ0);
2306 create_fixed_operand (&ops[1], targ1);
2307 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2308 if (maybe_expand_insn (icode, 3, ops))
2309 return 1;
2310 }
2311
2312 /* It can't be done in this mode. Can we do it in a wider mode? */
2313
2314 if (CLASS_HAS_WIDER_MODES_P (mclass))
2315 {
2316 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2317 wider_mode != VOIDmode;
2318 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2319 {
2320 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2321 {
2322 rtx t0 = gen_reg_rtx (wider_mode);
2323 rtx t1 = gen_reg_rtx (wider_mode);
2324 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2325
2326 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2327 {
2328 convert_move (targ0, t0, unsignedp);
2329 convert_move (targ1, t1, unsignedp);
2330 return 1;
2331 }
2332 else
2333 delete_insns_since (last);
2334 }
2335 }
2336 }
2337
2338 delete_insns_since (entry_last);
2339 return 0;
2340 }
2341 \f
2342 /* Generate code to perform an operation specified by BINOPTAB
2343 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2344 We assume that the order of the operands for the instruction
2345 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2346 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2347
2348 Either TARG0 or TARG1 may be zero, but what that means is that
2349 the result is not actually wanted. We will generate it into
2350 a dummy pseudo-reg and discard it. They may not both be zero.
2351
2352 Returns 1 if this operation can be performed; 0 if not. */
2353
2354 int
2355 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2356 int unsignedp)
2357 {
2358 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2359 enum mode_class mclass;
2360 enum machine_mode wider_mode;
2361 rtx entry_last = get_last_insn ();
2362 rtx last;
2363
2364 mclass = GET_MODE_CLASS (mode);
2365
2366 if (!targ0)
2367 targ0 = gen_reg_rtx (mode);
2368 if (!targ1)
2369 targ1 = gen_reg_rtx (mode);
2370
2371 /* Record where to go back to if we fail. */
2372 last = get_last_insn ();
2373
2374 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2375 {
2376 struct expand_operand ops[4];
2377 enum insn_code icode = optab_handler (binoptab, mode);
2378 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2379 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2380 rtx xop0 = op0, xop1 = op1;
2381
2382 /* If we are optimizing, force expensive constants into a register. */
2383 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2384 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2385
2386 create_fixed_operand (&ops[0], targ0);
2387 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2388 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2389 create_fixed_operand (&ops[3], targ1);
2390 if (maybe_expand_insn (icode, 4, ops))
2391 return 1;
2392 delete_insns_since (last);
2393 }
2394
2395 /* It can't be done in this mode. Can we do it in a wider mode? */
2396
2397 if (CLASS_HAS_WIDER_MODES_P (mclass))
2398 {
2399 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2400 wider_mode != VOIDmode;
2401 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2402 {
2403 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2404 {
2405 rtx t0 = gen_reg_rtx (wider_mode);
2406 rtx t1 = gen_reg_rtx (wider_mode);
2407 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2408 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2409
2410 if (expand_twoval_binop (binoptab, cop0, cop1,
2411 t0, t1, unsignedp))
2412 {
2413 convert_move (targ0, t0, unsignedp);
2414 convert_move (targ1, t1, unsignedp);
2415 return 1;
2416 }
2417 else
2418 delete_insns_since (last);
2419 }
2420 }
2421 }
2422
2423 delete_insns_since (entry_last);
2424 return 0;
2425 }
2426
2427 /* Expand the two-valued library call indicated by BINOPTAB, but
2428 preserve only one of the values. If TARG0 is non-NULL, the first
2429 value is placed into TARG0; otherwise the second value is placed
2430 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2431 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2432 This routine assumes that the value returned by the library call is
2433 as if the return value was of an integral mode twice as wide as the
2434 mode of OP0. Returns 1 if the call was successful. */
2435
2436 bool
2437 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2438 rtx targ0, rtx targ1, enum rtx_code code)
2439 {
2440 enum machine_mode mode;
2441 enum machine_mode libval_mode;
2442 rtx libval;
2443 rtx insns;
2444 rtx libfunc;
2445
2446 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2447 gcc_assert (!targ0 != !targ1);
2448
2449 mode = GET_MODE (op0);
2450 libfunc = optab_libfunc (binoptab, mode);
2451 if (!libfunc)
2452 return false;
2453
2454 /* The value returned by the library function will have twice as
2455 many bits as the nominal MODE. */
2456 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2457 MODE_INT);
2458 start_sequence ();
2459 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2460 libval_mode, 2,
2461 op0, mode,
2462 op1, mode);
2463 /* Get the part of VAL containing the value that we want. */
2464 libval = simplify_gen_subreg (mode, libval, libval_mode,
2465 targ0 ? 0 : GET_MODE_SIZE (mode));
2466 insns = get_insns ();
2467 end_sequence ();
2468 /* Move the into the desired location. */
2469 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2470 gen_rtx_fmt_ee (code, mode, op0, op1));
2471
2472 return true;
2473 }
2474
2475 \f
2476 /* Wrapper around expand_unop which takes an rtx code to specify
2477 the operation to perform, not an optab pointer. All other
2478 arguments are the same. */
2479 rtx
2480 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2481 rtx target, int unsignedp)
2482 {
2483 optab unop = code_to_optab (code);
2484 gcc_assert (unop);
2485
2486 return expand_unop (mode, unop, op0, target, unsignedp);
2487 }
2488
2489 /* Try calculating
2490 (clz:narrow x)
2491 as
2492 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2493
2494 A similar operation can be used for clrsb. UNOPTAB says which operation
2495 we are trying to expand. */
2496 static rtx
2497 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2498 {
2499 enum mode_class mclass = GET_MODE_CLASS (mode);
2500 if (CLASS_HAS_WIDER_MODES_P (mclass))
2501 {
2502 enum machine_mode wider_mode;
2503 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2504 wider_mode != VOIDmode;
2505 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2506 {
2507 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2508 {
2509 rtx xop0, temp, last;
2510
2511 last = get_last_insn ();
2512
2513 if (target == 0)
2514 target = gen_reg_rtx (mode);
2515 xop0 = widen_operand (op0, wider_mode, mode,
2516 unoptab != clrsb_optab, false);
2517 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2518 unoptab != clrsb_optab);
2519 if (temp != 0)
2520 temp = expand_binop (wider_mode, sub_optab, temp,
2521 GEN_INT (GET_MODE_PRECISION (wider_mode)
2522 - GET_MODE_PRECISION (mode)),
2523 target, true, OPTAB_DIRECT);
2524 if (temp == 0)
2525 delete_insns_since (last);
2526
2527 return temp;
2528 }
2529 }
2530 }
2531 return 0;
2532 }
2533
2534 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2535 quantities, choosing which based on whether the high word is nonzero. */
2536 static rtx
2537 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2538 {
2539 rtx xop0 = force_reg (mode, op0);
2540 rtx subhi = gen_highpart (word_mode, xop0);
2541 rtx sublo = gen_lowpart (word_mode, xop0);
2542 rtx hi0_label = gen_label_rtx ();
2543 rtx after_label = gen_label_rtx ();
2544 rtx seq, temp, result;
2545
2546 /* If we were not given a target, use a word_mode register, not a
2547 'mode' register. The result will fit, and nobody is expecting
2548 anything bigger (the return type of __builtin_clz* is int). */
2549 if (!target)
2550 target = gen_reg_rtx (word_mode);
2551
2552 /* In any case, write to a word_mode scratch in both branches of the
2553 conditional, so we can ensure there is a single move insn setting
2554 'target' to tag a REG_EQUAL note on. */
2555 result = gen_reg_rtx (word_mode);
2556
2557 start_sequence ();
2558
2559 /* If the high word is not equal to zero,
2560 then clz of the full value is clz of the high word. */
2561 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2562 word_mode, true, hi0_label);
2563
2564 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2565 if (!temp)
2566 goto fail;
2567
2568 if (temp != result)
2569 convert_move (result, temp, true);
2570
2571 emit_jump_insn (gen_jump (after_label));
2572 emit_barrier ();
2573
2574 /* Else clz of the full value is clz of the low word plus the number
2575 of bits in the high word. */
2576 emit_label (hi0_label);
2577
2578 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2579 if (!temp)
2580 goto fail;
2581 temp = expand_binop (word_mode, add_optab, temp,
2582 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2583 result, true, OPTAB_DIRECT);
2584 if (!temp)
2585 goto fail;
2586 if (temp != result)
2587 convert_move (result, temp, true);
2588
2589 emit_label (after_label);
2590 convert_move (target, result, true);
2591
2592 seq = get_insns ();
2593 end_sequence ();
2594
2595 add_equal_note (seq, target, CLZ, xop0, 0);
2596 emit_insn (seq);
2597 return target;
2598
2599 fail:
2600 end_sequence ();
2601 return 0;
2602 }
2603
2604 /* Try calculating
2605 (bswap:narrow x)
2606 as
2607 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2608 static rtx
2609 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2610 {
2611 enum mode_class mclass = GET_MODE_CLASS (mode);
2612 enum machine_mode wider_mode;
2613 rtx x, last;
2614
2615 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2616 return NULL_RTX;
2617
2618 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2619 wider_mode != VOIDmode;
2620 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2621 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2622 goto found;
2623 return NULL_RTX;
2624
2625 found:
2626 last = get_last_insn ();
2627
2628 x = widen_operand (op0, wider_mode, mode, true, true);
2629 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2630
2631 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2632 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2633 if (x != 0)
2634 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2635 GET_MODE_BITSIZE (wider_mode)
2636 - GET_MODE_BITSIZE (mode),
2637 NULL_RTX, true);
2638
2639 if (x != 0)
2640 {
2641 if (target == 0)
2642 target = gen_reg_rtx (mode);
2643 emit_move_insn (target, gen_lowpart (mode, x));
2644 }
2645 else
2646 delete_insns_since (last);
2647
2648 return target;
2649 }
2650
2651 /* Try calculating bswap as two bswaps of two word-sized operands. */
2652
2653 static rtx
2654 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2655 {
2656 rtx t0, t1;
2657
2658 t1 = expand_unop (word_mode, bswap_optab,
2659 operand_subword_force (op, 0, mode), NULL_RTX, true);
2660 t0 = expand_unop (word_mode, bswap_optab,
2661 operand_subword_force (op, 1, mode), NULL_RTX, true);
2662
2663 if (target == 0 || !valid_multiword_target_p (target))
2664 target = gen_reg_rtx (mode);
2665 if (REG_P (target))
2666 emit_clobber (target);
2667 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2668 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2669
2670 return target;
2671 }
2672
2673 /* Try calculating (parity x) as (and (popcount x) 1), where
2674 popcount can also be done in a wider mode. */
2675 static rtx
2676 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2677 {
2678 enum mode_class mclass = GET_MODE_CLASS (mode);
2679 if (CLASS_HAS_WIDER_MODES_P (mclass))
2680 {
2681 enum machine_mode wider_mode;
2682 for (wider_mode = mode; wider_mode != VOIDmode;
2683 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2684 {
2685 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2686 {
2687 rtx xop0, temp, last;
2688
2689 last = get_last_insn ();
2690
2691 if (target == 0)
2692 target = gen_reg_rtx (mode);
2693 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2694 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2695 true);
2696 if (temp != 0)
2697 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2698 target, true, OPTAB_DIRECT);
2699 if (temp == 0)
2700 delete_insns_since (last);
2701
2702 return temp;
2703 }
2704 }
2705 }
2706 return 0;
2707 }
2708
2709 /* Try calculating ctz(x) as K - clz(x & -x) ,
2710 where K is GET_MODE_PRECISION(mode) - 1.
2711
2712 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2713 don't have to worry about what the hardware does in that case. (If
2714 the clz instruction produces the usual value at 0, which is K, the
2715 result of this code sequence will be -1; expand_ffs, below, relies
2716 on this. It might be nice to have it be K instead, for consistency
2717 with the (very few) processors that provide a ctz with a defined
2718 value, but that would take one more instruction, and it would be
2719 less convenient for expand_ffs anyway. */
2720
2721 static rtx
2722 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2723 {
2724 rtx seq, temp;
2725
2726 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2727 return 0;
2728
2729 start_sequence ();
2730
2731 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2732 if (temp)
2733 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2734 true, OPTAB_DIRECT);
2735 if (temp)
2736 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2737 if (temp)
2738 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_PRECISION (mode) - 1),
2739 temp, target,
2740 true, OPTAB_DIRECT);
2741 if (temp == 0)
2742 {
2743 end_sequence ();
2744 return 0;
2745 }
2746
2747 seq = get_insns ();
2748 end_sequence ();
2749
2750 add_equal_note (seq, temp, CTZ, op0, 0);
2751 emit_insn (seq);
2752 return temp;
2753 }
2754
2755
2756 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2757 else with the sequence used by expand_clz.
2758
2759 The ffs builtin promises to return zero for a zero value and ctz/clz
2760 may have an undefined value in that case. If they do not give us a
2761 convenient value, we have to generate a test and branch. */
2762 static rtx
2763 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2764 {
2765 HOST_WIDE_INT val = 0;
2766 bool defined_at_zero = false;
2767 rtx temp, seq;
2768
2769 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2770 {
2771 start_sequence ();
2772
2773 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2774 if (!temp)
2775 goto fail;
2776
2777 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2778 }
2779 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2780 {
2781 start_sequence ();
2782 temp = expand_ctz (mode, op0, 0);
2783 if (!temp)
2784 goto fail;
2785
2786 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2787 {
2788 defined_at_zero = true;
2789 val = (GET_MODE_PRECISION (mode) - 1) - val;
2790 }
2791 }
2792 else
2793 return 0;
2794
2795 if (defined_at_zero && val == -1)
2796 /* No correction needed at zero. */;
2797 else
2798 {
2799 /* We don't try to do anything clever with the situation found
2800 on some processors (eg Alpha) where ctz(0:mode) ==
2801 bitsize(mode). If someone can think of a way to send N to -1
2802 and leave alone all values in the range 0..N-1 (where N is a
2803 power of two), cheaper than this test-and-branch, please add it.
2804
2805 The test-and-branch is done after the operation itself, in case
2806 the operation sets condition codes that can be recycled for this.
2807 (This is true on i386, for instance.) */
2808
2809 rtx nonzero_label = gen_label_rtx ();
2810 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2811 mode, true, nonzero_label);
2812
2813 convert_move (temp, GEN_INT (-1), false);
2814 emit_label (nonzero_label);
2815 }
2816
2817 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2818 to produce a value in the range 0..bitsize. */
2819 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2820 target, false, OPTAB_DIRECT);
2821 if (!temp)
2822 goto fail;
2823
2824 seq = get_insns ();
2825 end_sequence ();
2826
2827 add_equal_note (seq, temp, FFS, op0, 0);
2828 emit_insn (seq);
2829 return temp;
2830
2831 fail:
2832 end_sequence ();
2833 return 0;
2834 }
2835
2836 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2837 conditions, VAL may already be a SUBREG against which we cannot generate
2838 a further SUBREG. In this case, we expect forcing the value into a
2839 register will work around the situation. */
2840
2841 static rtx
2842 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2843 enum machine_mode imode)
2844 {
2845 rtx ret;
2846 ret = lowpart_subreg (omode, val, imode);
2847 if (ret == NULL)
2848 {
2849 val = force_reg (imode, val);
2850 ret = lowpart_subreg (omode, val, imode);
2851 gcc_assert (ret != NULL);
2852 }
2853 return ret;
2854 }
2855
2856 /* Expand a floating point absolute value or negation operation via a
2857 logical operation on the sign bit. */
2858
2859 static rtx
2860 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2861 rtx op0, rtx target)
2862 {
2863 const struct real_format *fmt;
2864 int bitpos, word, nwords, i;
2865 enum machine_mode imode;
2866 double_int mask;
2867 rtx temp, insns;
2868
2869 /* The format has to have a simple sign bit. */
2870 fmt = REAL_MODE_FORMAT (mode);
2871 if (fmt == NULL)
2872 return NULL_RTX;
2873
2874 bitpos = fmt->signbit_rw;
2875 if (bitpos < 0)
2876 return NULL_RTX;
2877
2878 /* Don't create negative zeros if the format doesn't support them. */
2879 if (code == NEG && !fmt->has_signed_zero)
2880 return NULL_RTX;
2881
2882 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2883 {
2884 imode = int_mode_for_mode (mode);
2885 if (imode == BLKmode)
2886 return NULL_RTX;
2887 word = 0;
2888 nwords = 1;
2889 }
2890 else
2891 {
2892 imode = word_mode;
2893
2894 if (FLOAT_WORDS_BIG_ENDIAN)
2895 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2896 else
2897 word = bitpos / BITS_PER_WORD;
2898 bitpos = bitpos % BITS_PER_WORD;
2899 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2900 }
2901
2902 mask = double_int_zero.set_bit (bitpos);
2903 if (code == ABS)
2904 mask = ~mask;
2905
2906 if (target == 0
2907 || target == op0
2908 || (nwords > 1 && !valid_multiword_target_p (target)))
2909 target = gen_reg_rtx (mode);
2910
2911 if (nwords > 1)
2912 {
2913 start_sequence ();
2914
2915 for (i = 0; i < nwords; ++i)
2916 {
2917 rtx targ_piece = operand_subword (target, i, 1, mode);
2918 rtx op0_piece = operand_subword_force (op0, i, mode);
2919
2920 if (i == word)
2921 {
2922 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2923 op0_piece,
2924 immed_double_int_const (mask, imode),
2925 targ_piece, 1, OPTAB_LIB_WIDEN);
2926 if (temp != targ_piece)
2927 emit_move_insn (targ_piece, temp);
2928 }
2929 else
2930 emit_move_insn (targ_piece, op0_piece);
2931 }
2932
2933 insns = get_insns ();
2934 end_sequence ();
2935
2936 emit_insn (insns);
2937 }
2938 else
2939 {
2940 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2941 gen_lowpart (imode, op0),
2942 immed_double_int_const (mask, imode),
2943 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2944 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2945
2946 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2947 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2948 target);
2949 }
2950
2951 return target;
2952 }
2953
2954 /* As expand_unop, but will fail rather than attempt the operation in a
2955 different mode or with a libcall. */
2956 static rtx
2957 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2958 int unsignedp)
2959 {
2960 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2961 {
2962 struct expand_operand ops[2];
2963 enum insn_code icode = optab_handler (unoptab, mode);
2964 rtx last = get_last_insn ();
2965 rtx pat;
2966
2967 create_output_operand (&ops[0], target, mode);
2968 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2969 pat = maybe_gen_insn (icode, 2, ops);
2970 if (pat)
2971 {
2972 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2973 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
2974 ops[1].value, NULL_RTX))
2975 {
2976 delete_insns_since (last);
2977 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2978 }
2979
2980 emit_insn (pat);
2981
2982 return ops[0].value;
2983 }
2984 }
2985 return 0;
2986 }
2987
2988 /* Generate code to perform an operation specified by UNOPTAB
2989 on operand OP0, with result having machine-mode MODE.
2990
2991 UNSIGNEDP is for the case where we have to widen the operands
2992 to perform the operation. It says to use zero-extension.
2993
2994 If TARGET is nonzero, the value
2995 is generated there, if it is convenient to do so.
2996 In all cases an rtx is returned for the locus of the value;
2997 this may or may not be TARGET. */
2998
2999 rtx
3000 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3001 int unsignedp)
3002 {
3003 enum mode_class mclass = GET_MODE_CLASS (mode);
3004 enum machine_mode wider_mode;
3005 rtx temp;
3006 rtx libfunc;
3007
3008 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3009 if (temp)
3010 return temp;
3011
3012 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3013
3014 /* Widening (or narrowing) clz needs special treatment. */
3015 if (unoptab == clz_optab)
3016 {
3017 temp = widen_leading (mode, op0, target, unoptab);
3018 if (temp)
3019 return temp;
3020
3021 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3022 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3023 {
3024 temp = expand_doubleword_clz (mode, op0, target);
3025 if (temp)
3026 return temp;
3027 }
3028
3029 goto try_libcall;
3030 }
3031
3032 if (unoptab == clrsb_optab)
3033 {
3034 temp = widen_leading (mode, op0, target, unoptab);
3035 if (temp)
3036 return temp;
3037 goto try_libcall;
3038 }
3039
3040 /* Widening (or narrowing) bswap needs special treatment. */
3041 if (unoptab == bswap_optab)
3042 {
3043 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3044 or ROTATERT. First try these directly; if this fails, then try the
3045 obvious pair of shifts with allowed widening, as this will probably
3046 be always more efficient than the other fallback methods. */
3047 if (mode == HImode)
3048 {
3049 rtx last, temp1, temp2;
3050
3051 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3052 {
3053 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3054 unsignedp, OPTAB_DIRECT);
3055 if (temp)
3056 return temp;
3057 }
3058
3059 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3060 {
3061 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3062 unsignedp, OPTAB_DIRECT);
3063 if (temp)
3064 return temp;
3065 }
3066
3067 last = get_last_insn ();
3068
3069 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3070 unsignedp, OPTAB_WIDEN);
3071 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3072 unsignedp, OPTAB_WIDEN);
3073 if (temp1 && temp2)
3074 {
3075 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3076 unsignedp, OPTAB_WIDEN);
3077 if (temp)
3078 return temp;
3079 }
3080
3081 delete_insns_since (last);
3082 }
3083
3084 temp = widen_bswap (mode, op0, target);
3085 if (temp)
3086 return temp;
3087
3088 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3089 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3090 {
3091 temp = expand_doubleword_bswap (mode, op0, target);
3092 if (temp)
3093 return temp;
3094 }
3095
3096 goto try_libcall;
3097 }
3098
3099 if (CLASS_HAS_WIDER_MODES_P (mclass))
3100 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3101 wider_mode != VOIDmode;
3102 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3103 {
3104 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3105 {
3106 rtx xop0 = op0;
3107 rtx last = get_last_insn ();
3108
3109 /* For certain operations, we need not actually extend
3110 the narrow operand, as long as we will truncate the
3111 results to the same narrowness. */
3112
3113 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3114 (unoptab == neg_optab
3115 || unoptab == one_cmpl_optab)
3116 && mclass == MODE_INT);
3117
3118 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3119 unsignedp);
3120
3121 if (temp)
3122 {
3123 if (mclass != MODE_INT
3124 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3125 {
3126 if (target == 0)
3127 target = gen_reg_rtx (mode);
3128 convert_move (target, temp, 0);
3129 return target;
3130 }
3131 else
3132 return gen_lowpart (mode, temp);
3133 }
3134 else
3135 delete_insns_since (last);
3136 }
3137 }
3138
3139 /* These can be done a word at a time. */
3140 if (unoptab == one_cmpl_optab
3141 && mclass == MODE_INT
3142 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3143 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3144 {
3145 int i;
3146 rtx insns;
3147
3148 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3149 target = gen_reg_rtx (mode);
3150
3151 start_sequence ();
3152
3153 /* Do the actual arithmetic. */
3154 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3155 {
3156 rtx target_piece = operand_subword (target, i, 1, mode);
3157 rtx x = expand_unop (word_mode, unoptab,
3158 operand_subword_force (op0, i, mode),
3159 target_piece, unsignedp);
3160
3161 if (target_piece != x)
3162 emit_move_insn (target_piece, x);
3163 }
3164
3165 insns = get_insns ();
3166 end_sequence ();
3167
3168 emit_insn (insns);
3169 return target;
3170 }
3171
3172 if (optab_to_code (unoptab) == NEG)
3173 {
3174 /* Try negating floating point values by flipping the sign bit. */
3175 if (SCALAR_FLOAT_MODE_P (mode))
3176 {
3177 temp = expand_absneg_bit (NEG, mode, op0, target);
3178 if (temp)
3179 return temp;
3180 }
3181
3182 /* If there is no negation pattern, and we have no negative zero,
3183 try subtracting from zero. */
3184 if (!HONOR_SIGNED_ZEROS (mode))
3185 {
3186 temp = expand_binop (mode, (unoptab == negv_optab
3187 ? subv_optab : sub_optab),
3188 CONST0_RTX (mode), op0, target,
3189 unsignedp, OPTAB_DIRECT);
3190 if (temp)
3191 return temp;
3192 }
3193 }
3194
3195 /* Try calculating parity (x) as popcount (x) % 2. */
3196 if (unoptab == parity_optab)
3197 {
3198 temp = expand_parity (mode, op0, target);
3199 if (temp)
3200 return temp;
3201 }
3202
3203 /* Try implementing ffs (x) in terms of clz (x). */
3204 if (unoptab == ffs_optab)
3205 {
3206 temp = expand_ffs (mode, op0, target);
3207 if (temp)
3208 return temp;
3209 }
3210
3211 /* Try implementing ctz (x) in terms of clz (x). */
3212 if (unoptab == ctz_optab)
3213 {
3214 temp = expand_ctz (mode, op0, target);
3215 if (temp)
3216 return temp;
3217 }
3218
3219 try_libcall:
3220 /* Now try a library call in this mode. */
3221 libfunc = optab_libfunc (unoptab, mode);
3222 if (libfunc)
3223 {
3224 rtx insns;
3225 rtx value;
3226 rtx eq_value;
3227 enum machine_mode outmode = mode;
3228
3229 /* All of these functions return small values. Thus we choose to
3230 have them return something that isn't a double-word. */
3231 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3232 || unoptab == clrsb_optab || unoptab == popcount_optab
3233 || unoptab == parity_optab)
3234 outmode
3235 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3236 optab_libfunc (unoptab, mode)));
3237
3238 start_sequence ();
3239
3240 /* Pass 1 for NO_QUEUE so we don't lose any increments
3241 if the libcall is cse'd or moved. */
3242 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3243 1, op0, mode);
3244 insns = get_insns ();
3245 end_sequence ();
3246
3247 target = gen_reg_rtx (outmode);
3248 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3249 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3250 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3251 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3252 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3253 emit_libcall_block_1 (insns, target, value, eq_value,
3254 trapv_unoptab_p (unoptab));
3255
3256 return target;
3257 }
3258
3259 /* It can't be done in this mode. Can we do it in a wider mode? */
3260
3261 if (CLASS_HAS_WIDER_MODES_P (mclass))
3262 {
3263 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3264 wider_mode != VOIDmode;
3265 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3266 {
3267 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3268 || optab_libfunc (unoptab, wider_mode))
3269 {
3270 rtx xop0 = op0;
3271 rtx last = get_last_insn ();
3272
3273 /* For certain operations, we need not actually extend
3274 the narrow operand, as long as we will truncate the
3275 results to the same narrowness. */
3276 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3277 (unoptab == neg_optab
3278 || unoptab == one_cmpl_optab
3279 || unoptab == bswap_optab)
3280 && mclass == MODE_INT);
3281
3282 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3283 unsignedp);
3284
3285 /* If we are generating clz using wider mode, adjust the
3286 result. Similarly for clrsb. */
3287 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3288 && temp != 0)
3289 temp = expand_binop (wider_mode, sub_optab, temp,
3290 GEN_INT (GET_MODE_PRECISION (wider_mode)
3291 - GET_MODE_PRECISION (mode)),
3292 target, true, OPTAB_DIRECT);
3293
3294 /* Likewise for bswap. */
3295 if (unoptab == bswap_optab && temp != 0)
3296 {
3297 gcc_assert (GET_MODE_PRECISION (wider_mode)
3298 == GET_MODE_BITSIZE (wider_mode)
3299 && GET_MODE_PRECISION (mode)
3300 == GET_MODE_BITSIZE (mode));
3301
3302 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3303 GET_MODE_BITSIZE (wider_mode)
3304 - GET_MODE_BITSIZE (mode),
3305 NULL_RTX, true);
3306 }
3307
3308 if (temp)
3309 {
3310 if (mclass != MODE_INT)
3311 {
3312 if (target == 0)
3313 target = gen_reg_rtx (mode);
3314 convert_move (target, temp, 0);
3315 return target;
3316 }
3317 else
3318 return gen_lowpart (mode, temp);
3319 }
3320 else
3321 delete_insns_since (last);
3322 }
3323 }
3324 }
3325
3326 /* One final attempt at implementing negation via subtraction,
3327 this time allowing widening of the operand. */
3328 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3329 {
3330 rtx temp;
3331 temp = expand_binop (mode,
3332 unoptab == negv_optab ? subv_optab : sub_optab,
3333 CONST0_RTX (mode), op0,
3334 target, unsignedp, OPTAB_LIB_WIDEN);
3335 if (temp)
3336 return temp;
3337 }
3338
3339 return 0;
3340 }
3341 \f
3342 /* Emit code to compute the absolute value of OP0, with result to
3343 TARGET if convenient. (TARGET may be 0.) The return value says
3344 where the result actually is to be found.
3345
3346 MODE is the mode of the operand; the mode of the result is
3347 different but can be deduced from MODE.
3348
3349 */
3350
3351 rtx
3352 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3353 int result_unsignedp)
3354 {
3355 rtx temp;
3356
3357 if (! flag_trapv)
3358 result_unsignedp = 1;
3359
3360 /* First try to do it with a special abs instruction. */
3361 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3362 op0, target, 0);
3363 if (temp != 0)
3364 return temp;
3365
3366 /* For floating point modes, try clearing the sign bit. */
3367 if (SCALAR_FLOAT_MODE_P (mode))
3368 {
3369 temp = expand_absneg_bit (ABS, mode, op0, target);
3370 if (temp)
3371 return temp;
3372 }
3373
3374 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3375 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3376 && !HONOR_SIGNED_ZEROS (mode))
3377 {
3378 rtx last = get_last_insn ();
3379
3380 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3381 if (temp != 0)
3382 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3383 OPTAB_WIDEN);
3384
3385 if (temp != 0)
3386 return temp;
3387
3388 delete_insns_since (last);
3389 }
3390
3391 /* If this machine has expensive jumps, we can do integer absolute
3392 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3393 where W is the width of MODE. */
3394
3395 if (GET_MODE_CLASS (mode) == MODE_INT
3396 && BRANCH_COST (optimize_insn_for_speed_p (),
3397 false) >= 2)
3398 {
3399 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3400 GET_MODE_PRECISION (mode) - 1,
3401 NULL_RTX, 0);
3402
3403 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3404 OPTAB_LIB_WIDEN);
3405 if (temp != 0)
3406 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3407 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3408
3409 if (temp != 0)
3410 return temp;
3411 }
3412
3413 return NULL_RTX;
3414 }
3415
3416 rtx
3417 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3418 int result_unsignedp, int safe)
3419 {
3420 rtx temp, op1;
3421
3422 if (! flag_trapv)
3423 result_unsignedp = 1;
3424
3425 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3426 if (temp != 0)
3427 return temp;
3428
3429 /* If that does not win, use conditional jump and negate. */
3430
3431 /* It is safe to use the target if it is the same
3432 as the source if this is also a pseudo register */
3433 if (op0 == target && REG_P (op0)
3434 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3435 safe = 1;
3436
3437 op1 = gen_label_rtx ();
3438 if (target == 0 || ! safe
3439 || GET_MODE (target) != mode
3440 || (MEM_P (target) && MEM_VOLATILE_P (target))
3441 || (REG_P (target)
3442 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3443 target = gen_reg_rtx (mode);
3444
3445 emit_move_insn (target, op0);
3446 NO_DEFER_POP;
3447
3448 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3449 NULL_RTX, NULL_RTX, op1, -1);
3450
3451 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3452 target, target, 0);
3453 if (op0 != target)
3454 emit_move_insn (target, op0);
3455 emit_label (op1);
3456 OK_DEFER_POP;
3457 return target;
3458 }
3459
3460 /* Emit code to compute the one's complement absolute value of OP0
3461 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3462 (TARGET may be NULL_RTX.) The return value says where the result
3463 actually is to be found.
3464
3465 MODE is the mode of the operand; the mode of the result is
3466 different but can be deduced from MODE. */
3467
3468 rtx
3469 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3470 {
3471 rtx temp;
3472
3473 /* Not applicable for floating point modes. */
3474 if (FLOAT_MODE_P (mode))
3475 return NULL_RTX;
3476
3477 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3478 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3479 {
3480 rtx last = get_last_insn ();
3481
3482 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3483 if (temp != 0)
3484 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3485 OPTAB_WIDEN);
3486
3487 if (temp != 0)
3488 return temp;
3489
3490 delete_insns_since (last);
3491 }
3492
3493 /* If this machine has expensive jumps, we can do one's complement
3494 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3495
3496 if (GET_MODE_CLASS (mode) == MODE_INT
3497 && BRANCH_COST (optimize_insn_for_speed_p (),
3498 false) >= 2)
3499 {
3500 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3501 GET_MODE_PRECISION (mode) - 1,
3502 NULL_RTX, 0);
3503
3504 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3505 OPTAB_LIB_WIDEN);
3506
3507 if (temp != 0)
3508 return temp;
3509 }
3510
3511 return NULL_RTX;
3512 }
3513
3514 /* A subroutine of expand_copysign, perform the copysign operation using the
3515 abs and neg primitives advertised to exist on the target. The assumption
3516 is that we have a split register file, and leaving op0 in fp registers,
3517 and not playing with subregs so much, will help the register allocator. */
3518
3519 static rtx
3520 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3521 int bitpos, bool op0_is_abs)
3522 {
3523 enum machine_mode imode;
3524 enum insn_code icode;
3525 rtx sign, label;
3526
3527 if (target == op1)
3528 target = NULL_RTX;
3529
3530 /* Check if the back end provides an insn that handles signbit for the
3531 argument's mode. */
3532 icode = optab_handler (signbit_optab, mode);
3533 if (icode != CODE_FOR_nothing)
3534 {
3535 imode = insn_data[(int) icode].operand[0].mode;
3536 sign = gen_reg_rtx (imode);
3537 emit_unop_insn (icode, sign, op1, UNKNOWN);
3538 }
3539 else
3540 {
3541 double_int mask;
3542
3543 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3544 {
3545 imode = int_mode_for_mode (mode);
3546 if (imode == BLKmode)
3547 return NULL_RTX;
3548 op1 = gen_lowpart (imode, op1);
3549 }
3550 else
3551 {
3552 int word;
3553
3554 imode = word_mode;
3555 if (FLOAT_WORDS_BIG_ENDIAN)
3556 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3557 else
3558 word = bitpos / BITS_PER_WORD;
3559 bitpos = bitpos % BITS_PER_WORD;
3560 op1 = operand_subword_force (op1, word, mode);
3561 }
3562
3563 mask = double_int_zero.set_bit (bitpos);
3564
3565 sign = expand_binop (imode, and_optab, op1,
3566 immed_double_int_const (mask, imode),
3567 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3568 }
3569
3570 if (!op0_is_abs)
3571 {
3572 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3573 if (op0 == NULL)
3574 return NULL_RTX;
3575 target = op0;
3576 }
3577 else
3578 {
3579 if (target == NULL_RTX)
3580 target = copy_to_reg (op0);
3581 else
3582 emit_move_insn (target, op0);
3583 }
3584
3585 label = gen_label_rtx ();
3586 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3587
3588 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3589 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3590 else
3591 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3592 if (op0 != target)
3593 emit_move_insn (target, op0);
3594
3595 emit_label (label);
3596
3597 return target;
3598 }
3599
3600
3601 /* A subroutine of expand_copysign, perform the entire copysign operation
3602 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3603 is true if op0 is known to have its sign bit clear. */
3604
3605 static rtx
3606 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3607 int bitpos, bool op0_is_abs)
3608 {
3609 enum machine_mode imode;
3610 double_int mask;
3611 int word, nwords, i;
3612 rtx temp, insns;
3613
3614 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3615 {
3616 imode = int_mode_for_mode (mode);
3617 if (imode == BLKmode)
3618 return NULL_RTX;
3619 word = 0;
3620 nwords = 1;
3621 }
3622 else
3623 {
3624 imode = word_mode;
3625
3626 if (FLOAT_WORDS_BIG_ENDIAN)
3627 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3628 else
3629 word = bitpos / BITS_PER_WORD;
3630 bitpos = bitpos % BITS_PER_WORD;
3631 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3632 }
3633
3634 mask = double_int_zero.set_bit (bitpos);
3635
3636 if (target == 0
3637 || target == op0
3638 || target == op1
3639 || (nwords > 1 && !valid_multiword_target_p (target)))
3640 target = gen_reg_rtx (mode);
3641
3642 if (nwords > 1)
3643 {
3644 start_sequence ();
3645
3646 for (i = 0; i < nwords; ++i)
3647 {
3648 rtx targ_piece = operand_subword (target, i, 1, mode);
3649 rtx op0_piece = operand_subword_force (op0, i, mode);
3650
3651 if (i == word)
3652 {
3653 if (!op0_is_abs)
3654 op0_piece
3655 = expand_binop (imode, and_optab, op0_piece,
3656 immed_double_int_const (~mask, imode),
3657 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3658
3659 op1 = expand_binop (imode, and_optab,
3660 operand_subword_force (op1, i, mode),
3661 immed_double_int_const (mask, imode),
3662 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3663
3664 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3665 targ_piece, 1, OPTAB_LIB_WIDEN);
3666 if (temp != targ_piece)
3667 emit_move_insn (targ_piece, temp);
3668 }
3669 else
3670 emit_move_insn (targ_piece, op0_piece);
3671 }
3672
3673 insns = get_insns ();
3674 end_sequence ();
3675
3676 emit_insn (insns);
3677 }
3678 else
3679 {
3680 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3681 immed_double_int_const (mask, imode),
3682 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3683
3684 op0 = gen_lowpart (imode, op0);
3685 if (!op0_is_abs)
3686 op0 = expand_binop (imode, and_optab, op0,
3687 immed_double_int_const (~mask, imode),
3688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3689
3690 temp = expand_binop (imode, ior_optab, op0, op1,
3691 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3692 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3693 }
3694
3695 return target;
3696 }
3697
3698 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3699 scalar floating point mode. Return NULL if we do not know how to
3700 expand the operation inline. */
3701
3702 rtx
3703 expand_copysign (rtx op0, rtx op1, rtx target)
3704 {
3705 enum machine_mode mode = GET_MODE (op0);
3706 const struct real_format *fmt;
3707 bool op0_is_abs;
3708 rtx temp;
3709
3710 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3711 gcc_assert (GET_MODE (op1) == mode);
3712
3713 /* First try to do it with a special instruction. */
3714 temp = expand_binop (mode, copysign_optab, op0, op1,
3715 target, 0, OPTAB_DIRECT);
3716 if (temp)
3717 return temp;
3718
3719 fmt = REAL_MODE_FORMAT (mode);
3720 if (fmt == NULL || !fmt->has_signed_zero)
3721 return NULL_RTX;
3722
3723 op0_is_abs = false;
3724 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3725 {
3726 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3727 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3728 op0_is_abs = true;
3729 }
3730
3731 if (fmt->signbit_ro >= 0
3732 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3733 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3734 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3735 {
3736 temp = expand_copysign_absneg (mode, op0, op1, target,
3737 fmt->signbit_ro, op0_is_abs);
3738 if (temp)
3739 return temp;
3740 }
3741
3742 if (fmt->signbit_rw < 0)
3743 return NULL_RTX;
3744 return expand_copysign_bit (mode, op0, op1, target,
3745 fmt->signbit_rw, op0_is_abs);
3746 }
3747 \f
3748 /* Generate an instruction whose insn-code is INSN_CODE,
3749 with two operands: an output TARGET and an input OP0.
3750 TARGET *must* be nonzero, and the output is always stored there.
3751 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3752 the value that is stored into TARGET.
3753
3754 Return false if expansion failed. */
3755
3756 bool
3757 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3758 enum rtx_code code)
3759 {
3760 struct expand_operand ops[2];
3761 rtx pat;
3762
3763 create_output_operand (&ops[0], target, GET_MODE (target));
3764 create_input_operand (&ops[1], op0, GET_MODE (op0));
3765 pat = maybe_gen_insn (icode, 2, ops);
3766 if (!pat)
3767 return false;
3768
3769 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3770 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3771
3772 emit_insn (pat);
3773
3774 if (ops[0].value != target)
3775 emit_move_insn (target, ops[0].value);
3776 return true;
3777 }
3778 /* Generate an instruction whose insn-code is INSN_CODE,
3779 with two operands: an output TARGET and an input OP0.
3780 TARGET *must* be nonzero, and the output is always stored there.
3781 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3782 the value that is stored into TARGET. */
3783
3784 void
3785 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3786 {
3787 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3788 gcc_assert (ok);
3789 }
3790 \f
3791 struct no_conflict_data
3792 {
3793 rtx target, first, insn;
3794 bool must_stay;
3795 };
3796
3797 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3798 the currently examined clobber / store has to stay in the list of
3799 insns that constitute the actual libcall block. */
3800 static void
3801 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3802 {
3803 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3804
3805 /* If this inns directly contributes to setting the target, it must stay. */
3806 if (reg_overlap_mentioned_p (p->target, dest))
3807 p->must_stay = true;
3808 /* If we haven't committed to keeping any other insns in the list yet,
3809 there is nothing more to check. */
3810 else if (p->insn == p->first)
3811 return;
3812 /* If this insn sets / clobbers a register that feeds one of the insns
3813 already in the list, this insn has to stay too. */
3814 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3815 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3816 || reg_used_between_p (dest, p->first, p->insn)
3817 /* Likewise if this insn depends on a register set by a previous
3818 insn in the list, or if it sets a result (presumably a hard
3819 register) that is set or clobbered by a previous insn.
3820 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3821 SET_DEST perform the former check on the address, and the latter
3822 check on the MEM. */
3823 || (GET_CODE (set) == SET
3824 && (modified_in_p (SET_SRC (set), p->first)
3825 || modified_in_p (SET_DEST (set), p->first)
3826 || modified_between_p (SET_SRC (set), p->first, p->insn)
3827 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3828 p->must_stay = true;
3829 }
3830
3831 \f
3832 /* Emit code to make a call to a constant function or a library call.
3833
3834 INSNS is a list containing all insns emitted in the call.
3835 These insns leave the result in RESULT. Our block is to copy RESULT
3836 to TARGET, which is logically equivalent to EQUIV.
3837
3838 We first emit any insns that set a pseudo on the assumption that these are
3839 loading constants into registers; doing so allows them to be safely cse'ed
3840 between blocks. Then we emit all the other insns in the block, followed by
3841 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3842 note with an operand of EQUIV. */
3843
3844 static void
3845 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3846 bool equiv_may_trap)
3847 {
3848 rtx final_dest = target;
3849 rtx next, last, insn;
3850
3851 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3852 into a MEM later. Protect the libcall block from this change. */
3853 if (! REG_P (target) || REG_USERVAR_P (target))
3854 target = gen_reg_rtx (GET_MODE (target));
3855
3856 /* If we're using non-call exceptions, a libcall corresponding to an
3857 operation that may trap may also trap. */
3858 /* ??? See the comment in front of make_reg_eh_region_note. */
3859 if (cfun->can_throw_non_call_exceptions
3860 && (equiv_may_trap || may_trap_p (equiv)))
3861 {
3862 for (insn = insns; insn; insn = NEXT_INSN (insn))
3863 if (CALL_P (insn))
3864 {
3865 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3866 if (note)
3867 {
3868 int lp_nr = INTVAL (XEXP (note, 0));
3869 if (lp_nr == 0 || lp_nr == INT_MIN)
3870 remove_note (insn, note);
3871 }
3872 }
3873 }
3874 else
3875 {
3876 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3877 reg note to indicate that this call cannot throw or execute a nonlocal
3878 goto (unless there is already a REG_EH_REGION note, in which case
3879 we update it). */
3880 for (insn = insns; insn; insn = NEXT_INSN (insn))
3881 if (CALL_P (insn))
3882 make_reg_eh_region_note_nothrow_nononlocal (insn);
3883 }
3884
3885 /* First emit all insns that set pseudos. Remove them from the list as
3886 we go. Avoid insns that set pseudos which were referenced in previous
3887 insns. These can be generated by move_by_pieces, for example,
3888 to update an address. Similarly, avoid insns that reference things
3889 set in previous insns. */
3890
3891 for (insn = insns; insn; insn = next)
3892 {
3893 rtx set = single_set (insn);
3894
3895 next = NEXT_INSN (insn);
3896
3897 if (set != 0 && REG_P (SET_DEST (set))
3898 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3899 {
3900 struct no_conflict_data data;
3901
3902 data.target = const0_rtx;
3903 data.first = insns;
3904 data.insn = insn;
3905 data.must_stay = 0;
3906 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3907 if (! data.must_stay)
3908 {
3909 if (PREV_INSN (insn))
3910 NEXT_INSN (PREV_INSN (insn)) = next;
3911 else
3912 insns = next;
3913
3914 if (next)
3915 PREV_INSN (next) = PREV_INSN (insn);
3916
3917 add_insn (insn);
3918 }
3919 }
3920
3921 /* Some ports use a loop to copy large arguments onto the stack.
3922 Don't move anything outside such a loop. */
3923 if (LABEL_P (insn))
3924 break;
3925 }
3926
3927 /* Write the remaining insns followed by the final copy. */
3928 for (insn = insns; insn; insn = next)
3929 {
3930 next = NEXT_INSN (insn);
3931
3932 add_insn (insn);
3933 }
3934
3935 last = emit_move_insn (target, result);
3936 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3937
3938 if (final_dest != target)
3939 emit_move_insn (final_dest, target);
3940 }
3941
3942 void
3943 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3944 {
3945 emit_libcall_block_1 (insns, target, result, equiv, false);
3946 }
3947 \f
3948 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3949 PURPOSE describes how this comparison will be used. CODE is the rtx
3950 comparison code we will be using.
3951
3952 ??? Actually, CODE is slightly weaker than that. A target is still
3953 required to implement all of the normal bcc operations, but not
3954 required to implement all (or any) of the unordered bcc operations. */
3955
3956 int
3957 can_compare_p (enum rtx_code code, enum machine_mode mode,
3958 enum can_compare_purpose purpose)
3959 {
3960 rtx test;
3961 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3962 do
3963 {
3964 enum insn_code icode;
3965
3966 if (purpose == ccp_jump
3967 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3968 && insn_operand_matches (icode, 0, test))
3969 return 1;
3970 if (purpose == ccp_store_flag
3971 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3972 && insn_operand_matches (icode, 1, test))
3973 return 1;
3974 if (purpose == ccp_cmov
3975 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3976 return 1;
3977
3978 mode = GET_MODE_WIDER_MODE (mode);
3979 PUT_MODE (test, mode);
3980 }
3981 while (mode != VOIDmode);
3982
3983 return 0;
3984 }
3985
3986 /* This function is called when we are going to emit a compare instruction that
3987 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3988
3989 *PMODE is the mode of the inputs (in case they are const_int).
3990 *PUNSIGNEDP nonzero says that the operands are unsigned;
3991 this matters if they need to be widened (as given by METHODS).
3992
3993 If they have mode BLKmode, then SIZE specifies the size of both operands.
3994
3995 This function performs all the setup necessary so that the caller only has
3996 to emit a single comparison insn. This setup can involve doing a BLKmode
3997 comparison or emitting a library call to perform the comparison if no insn
3998 is available to handle it.
3999 The values which are passed in through pointers can be modified; the caller
4000 should perform the comparison on the modified values. Constant
4001 comparisons must have already been folded. */
4002
4003 static void
4004 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4005 int unsignedp, enum optab_methods methods,
4006 rtx *ptest, enum machine_mode *pmode)
4007 {
4008 enum machine_mode mode = *pmode;
4009 rtx libfunc, test;
4010 enum machine_mode cmp_mode;
4011 enum mode_class mclass;
4012
4013 /* The other methods are not needed. */
4014 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4015 || methods == OPTAB_LIB_WIDEN);
4016
4017 /* If we are optimizing, force expensive constants into a register. */
4018 if (CONSTANT_P (x) && optimize
4019 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4020 > COSTS_N_INSNS (1)))
4021 x = force_reg (mode, x);
4022
4023 if (CONSTANT_P (y) && optimize
4024 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4025 > COSTS_N_INSNS (1)))
4026 y = force_reg (mode, y);
4027
4028 #ifdef HAVE_cc0
4029 /* Make sure if we have a canonical comparison. The RTL
4030 documentation states that canonical comparisons are required only
4031 for targets which have cc0. */
4032 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4033 #endif
4034
4035 /* Don't let both operands fail to indicate the mode. */
4036 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4037 x = force_reg (mode, x);
4038 if (mode == VOIDmode)
4039 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4040
4041 /* Handle all BLKmode compares. */
4042
4043 if (mode == BLKmode)
4044 {
4045 enum machine_mode result_mode;
4046 enum insn_code cmp_code;
4047 tree length_type;
4048 rtx libfunc;
4049 rtx result;
4050 rtx opalign
4051 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4052
4053 gcc_assert (size);
4054
4055 /* Try to use a memory block compare insn - either cmpstr
4056 or cmpmem will do. */
4057 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4058 cmp_mode != VOIDmode;
4059 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4060 {
4061 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4062 if (cmp_code == CODE_FOR_nothing)
4063 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4064 if (cmp_code == CODE_FOR_nothing)
4065 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4066 if (cmp_code == CODE_FOR_nothing)
4067 continue;
4068
4069 /* Must make sure the size fits the insn's mode. */
4070 if ((CONST_INT_P (size)
4071 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4072 || (GET_MODE_BITSIZE (GET_MODE (size))
4073 > GET_MODE_BITSIZE (cmp_mode)))
4074 continue;
4075
4076 result_mode = insn_data[cmp_code].operand[0].mode;
4077 result = gen_reg_rtx (result_mode);
4078 size = convert_to_mode (cmp_mode, size, 1);
4079 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4080
4081 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4082 *pmode = result_mode;
4083 return;
4084 }
4085
4086 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4087 goto fail;
4088
4089 /* Otherwise call a library function, memcmp. */
4090 libfunc = memcmp_libfunc;
4091 length_type = sizetype;
4092 result_mode = TYPE_MODE (integer_type_node);
4093 cmp_mode = TYPE_MODE (length_type);
4094 size = convert_to_mode (TYPE_MODE (length_type), size,
4095 TYPE_UNSIGNED (length_type));
4096
4097 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4098 result_mode, 3,
4099 XEXP (x, 0), Pmode,
4100 XEXP (y, 0), Pmode,
4101 size, cmp_mode);
4102 x = result;
4103 y = const0_rtx;
4104 mode = result_mode;
4105 methods = OPTAB_LIB_WIDEN;
4106 unsignedp = false;
4107 }
4108
4109 /* Don't allow operands to the compare to trap, as that can put the
4110 compare and branch in different basic blocks. */
4111 if (cfun->can_throw_non_call_exceptions)
4112 {
4113 if (may_trap_p (x))
4114 x = force_reg (mode, x);
4115 if (may_trap_p (y))
4116 y = force_reg (mode, y);
4117 }
4118
4119 if (GET_MODE_CLASS (mode) == MODE_CC)
4120 {
4121 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4122 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4123 return;
4124 }
4125
4126 mclass = GET_MODE_CLASS (mode);
4127 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4128 cmp_mode = mode;
4129 do
4130 {
4131 enum insn_code icode;
4132 icode = optab_handler (cbranch_optab, cmp_mode);
4133 if (icode != CODE_FOR_nothing
4134 && insn_operand_matches (icode, 0, test))
4135 {
4136 rtx last = get_last_insn ();
4137 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4138 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4139 if (op0 && op1
4140 && insn_operand_matches (icode, 1, op0)
4141 && insn_operand_matches (icode, 2, op1))
4142 {
4143 XEXP (test, 0) = op0;
4144 XEXP (test, 1) = op1;
4145 *ptest = test;
4146 *pmode = cmp_mode;
4147 return;
4148 }
4149 delete_insns_since (last);
4150 }
4151
4152 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4153 break;
4154 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4155 }
4156 while (cmp_mode != VOIDmode);
4157
4158 if (methods != OPTAB_LIB_WIDEN)
4159 goto fail;
4160
4161 if (!SCALAR_FLOAT_MODE_P (mode))
4162 {
4163 rtx result;
4164 enum machine_mode ret_mode;
4165
4166 /* Handle a libcall just for the mode we are using. */
4167 libfunc = optab_libfunc (cmp_optab, mode);
4168 gcc_assert (libfunc);
4169
4170 /* If we want unsigned, and this mode has a distinct unsigned
4171 comparison routine, use that. */
4172 if (unsignedp)
4173 {
4174 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4175 if (ulibfunc)
4176 libfunc = ulibfunc;
4177 }
4178
4179 ret_mode = targetm.libgcc_cmp_return_mode ();
4180 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4181 ret_mode, 2, x, mode, y, mode);
4182
4183 /* There are two kinds of comparison routines. Biased routines
4184 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4185 of gcc expect that the comparison operation is equivalent
4186 to the modified comparison. For signed comparisons compare the
4187 result against 1 in the biased case, and zero in the unbiased
4188 case. For unsigned comparisons always compare against 1 after
4189 biasing the unbiased result by adding 1. This gives us a way to
4190 represent LTU.
4191 The comparisons in the fixed-point helper library are always
4192 biased. */
4193 x = result;
4194 y = const1_rtx;
4195
4196 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4197 {
4198 if (unsignedp)
4199 x = plus_constant (ret_mode, result, 1);
4200 else
4201 y = const0_rtx;
4202 }
4203
4204 *pmode = word_mode;
4205 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4206 ptest, pmode);
4207 }
4208 else
4209 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4210
4211 return;
4212
4213 fail:
4214 *ptest = NULL_RTX;
4215 }
4216
4217 /* Before emitting an insn with code ICODE, make sure that X, which is going
4218 to be used for operand OPNUM of the insn, is converted from mode MODE to
4219 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4220 that it is accepted by the operand predicate. Return the new value. */
4221
4222 rtx
4223 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4224 enum machine_mode wider_mode, int unsignedp)
4225 {
4226 if (mode != wider_mode)
4227 x = convert_modes (wider_mode, mode, x, unsignedp);
4228
4229 if (!insn_operand_matches (icode, opnum, x))
4230 {
4231 if (reload_completed)
4232 return NULL_RTX;
4233 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4234 }
4235
4236 return x;
4237 }
4238
4239 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4240 we can do the branch. */
4241
4242 static void
4243 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4244 {
4245 enum machine_mode optab_mode;
4246 enum mode_class mclass;
4247 enum insn_code icode;
4248 rtx insn;
4249
4250 mclass = GET_MODE_CLASS (mode);
4251 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4252 icode = optab_handler (cbranch_optab, optab_mode);
4253
4254 gcc_assert (icode != CODE_FOR_nothing);
4255 gcc_assert (insn_operand_matches (icode, 0, test));
4256 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4257 XEXP (test, 1), label));
4258 if (prob != -1
4259 && profile_status != PROFILE_ABSENT
4260 && insn
4261 && JUMP_P (insn)
4262 && any_condjump_p (insn)
4263 && !find_reg_note (insn, REG_BR_PROB, 0))
4264 add_reg_note (insn, REG_BR_PROB, GEN_INT (prob));
4265 }
4266
4267 /* Generate code to compare X with Y so that the condition codes are
4268 set and to jump to LABEL if the condition is true. If X is a
4269 constant and Y is not a constant, then the comparison is swapped to
4270 ensure that the comparison RTL has the canonical form.
4271
4272 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4273 need to be widened. UNSIGNEDP is also used to select the proper
4274 branch condition code.
4275
4276 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4277
4278 MODE is the mode of the inputs (in case they are const_int).
4279
4280 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4281 It will be potentially converted into an unsigned variant based on
4282 UNSIGNEDP to select a proper jump instruction.
4283
4284 PROB is the probability of jumping to LABEL. */
4285
4286 void
4287 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4288 enum machine_mode mode, int unsignedp, rtx label,
4289 int prob)
4290 {
4291 rtx op0 = x, op1 = y;
4292 rtx test;
4293
4294 /* Swap operands and condition to ensure canonical RTL. */
4295 if (swap_commutative_operands_p (x, y)
4296 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4297 {
4298 op0 = y, op1 = x;
4299 comparison = swap_condition (comparison);
4300 }
4301
4302 /* If OP0 is still a constant, then both X and Y must be constants
4303 or the opposite comparison is not supported. Force X into a register
4304 to create canonical RTL. */
4305 if (CONSTANT_P (op0))
4306 op0 = force_reg (mode, op0);
4307
4308 if (unsignedp)
4309 comparison = unsigned_condition (comparison);
4310
4311 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4312 &test, &mode);
4313 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4314 }
4315
4316 \f
4317 /* Emit a library call comparison between floating point X and Y.
4318 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4319
4320 static void
4321 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4322 rtx *ptest, enum machine_mode *pmode)
4323 {
4324 enum rtx_code swapped = swap_condition (comparison);
4325 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4326 enum machine_mode orig_mode = GET_MODE (x);
4327 enum machine_mode mode, cmp_mode;
4328 rtx true_rtx, false_rtx;
4329 rtx value, target, insns, equiv;
4330 rtx libfunc = 0;
4331 bool reversed_p = false;
4332 cmp_mode = targetm.libgcc_cmp_return_mode ();
4333
4334 for (mode = orig_mode;
4335 mode != VOIDmode;
4336 mode = GET_MODE_WIDER_MODE (mode))
4337 {
4338 if (code_to_optab (comparison)
4339 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4340 break;
4341
4342 if (code_to_optab (swapped)
4343 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4344 {
4345 rtx tmp;
4346 tmp = x; x = y; y = tmp;
4347 comparison = swapped;
4348 break;
4349 }
4350
4351 if (code_to_optab (reversed)
4352 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4353 {
4354 comparison = reversed;
4355 reversed_p = true;
4356 break;
4357 }
4358 }
4359
4360 gcc_assert (mode != VOIDmode);
4361
4362 if (mode != orig_mode)
4363 {
4364 x = convert_to_mode (mode, x, 0);
4365 y = convert_to_mode (mode, y, 0);
4366 }
4367
4368 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4369 the RTL. The allows the RTL optimizers to delete the libcall if the
4370 condition can be determined at compile-time. */
4371 if (comparison == UNORDERED
4372 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4373 {
4374 true_rtx = const_true_rtx;
4375 false_rtx = const0_rtx;
4376 }
4377 else
4378 {
4379 switch (comparison)
4380 {
4381 case EQ:
4382 true_rtx = const0_rtx;
4383 false_rtx = const_true_rtx;
4384 break;
4385
4386 case NE:
4387 true_rtx = const_true_rtx;
4388 false_rtx = const0_rtx;
4389 break;
4390
4391 case GT:
4392 true_rtx = const1_rtx;
4393 false_rtx = const0_rtx;
4394 break;
4395
4396 case GE:
4397 true_rtx = const0_rtx;
4398 false_rtx = constm1_rtx;
4399 break;
4400
4401 case LT:
4402 true_rtx = constm1_rtx;
4403 false_rtx = const0_rtx;
4404 break;
4405
4406 case LE:
4407 true_rtx = const0_rtx;
4408 false_rtx = const1_rtx;
4409 break;
4410
4411 default:
4412 gcc_unreachable ();
4413 }
4414 }
4415
4416 if (comparison == UNORDERED)
4417 {
4418 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4419 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4420 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4421 temp, const_true_rtx, equiv);
4422 }
4423 else
4424 {
4425 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4426 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4427 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4428 equiv, true_rtx, false_rtx);
4429 }
4430
4431 start_sequence ();
4432 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4433 cmp_mode, 2, x, mode, y, mode);
4434 insns = get_insns ();
4435 end_sequence ();
4436
4437 target = gen_reg_rtx (cmp_mode);
4438 emit_libcall_block (insns, target, value, equiv);
4439
4440 if (comparison == UNORDERED
4441 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4442 || reversed_p)
4443 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4444 else
4445 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4446
4447 *pmode = cmp_mode;
4448 }
4449 \f
4450 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4451
4452 void
4453 emit_indirect_jump (rtx loc)
4454 {
4455 struct expand_operand ops[1];
4456
4457 create_address_operand (&ops[0], loc);
4458 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4459 emit_barrier ();
4460 }
4461 \f
4462 #ifdef HAVE_conditional_move
4463
4464 /* Emit a conditional move instruction if the machine supports one for that
4465 condition and machine mode.
4466
4467 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4468 the mode to use should they be constants. If it is VOIDmode, they cannot
4469 both be constants.
4470
4471 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4472 should be stored there. MODE is the mode to use should they be constants.
4473 If it is VOIDmode, they cannot both be constants.
4474
4475 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4476 is not supported. */
4477
4478 rtx
4479 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4480 enum machine_mode cmode, rtx op2, rtx op3,
4481 enum machine_mode mode, int unsignedp)
4482 {
4483 rtx tem, comparison, last;
4484 enum insn_code icode;
4485 enum rtx_code reversed;
4486
4487 /* If one operand is constant, make it the second one. Only do this
4488 if the other operand is not constant as well. */
4489
4490 if (swap_commutative_operands_p (op0, op1))
4491 {
4492 tem = op0;
4493 op0 = op1;
4494 op1 = tem;
4495 code = swap_condition (code);
4496 }
4497
4498 /* get_condition will prefer to generate LT and GT even if the old
4499 comparison was against zero, so undo that canonicalization here since
4500 comparisons against zero are cheaper. */
4501 if (code == LT && op1 == const1_rtx)
4502 code = LE, op1 = const0_rtx;
4503 else if (code == GT && op1 == constm1_rtx)
4504 code = GE, op1 = const0_rtx;
4505
4506 if (cmode == VOIDmode)
4507 cmode = GET_MODE (op0);
4508
4509 if (swap_commutative_operands_p (op2, op3)
4510 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4511 != UNKNOWN))
4512 {
4513 tem = op2;
4514 op2 = op3;
4515 op3 = tem;
4516 code = reversed;
4517 }
4518
4519 if (mode == VOIDmode)
4520 mode = GET_MODE (op2);
4521
4522 icode = direct_optab_handler (movcc_optab, mode);
4523
4524 if (icode == CODE_FOR_nothing)
4525 return 0;
4526
4527 if (!target)
4528 target = gen_reg_rtx (mode);
4529
4530 code = unsignedp ? unsigned_condition (code) : code;
4531 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4532
4533 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4534 return NULL and let the caller figure out how best to deal with this
4535 situation. */
4536 if (!COMPARISON_P (comparison))
4537 return NULL_RTX;
4538
4539 do_pending_stack_adjust ();
4540 last = get_last_insn ();
4541 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4542 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4543 &comparison, &cmode);
4544 if (comparison)
4545 {
4546 struct expand_operand ops[4];
4547
4548 create_output_operand (&ops[0], target, mode);
4549 create_fixed_operand (&ops[1], comparison);
4550 create_input_operand (&ops[2], op2, mode);
4551 create_input_operand (&ops[3], op3, mode);
4552 if (maybe_expand_insn (icode, 4, ops))
4553 {
4554 if (ops[0].value != target)
4555 convert_move (target, ops[0].value, false);
4556 return target;
4557 }
4558 }
4559 delete_insns_since (last);
4560 return NULL_RTX;
4561 }
4562
4563 /* Return nonzero if a conditional move of mode MODE is supported.
4564
4565 This function is for combine so it can tell whether an insn that looks
4566 like a conditional move is actually supported by the hardware. If we
4567 guess wrong we lose a bit on optimization, but that's it. */
4568 /* ??? sparc64 supports conditionally moving integers values based on fp
4569 comparisons, and vice versa. How do we handle them? */
4570
4571 int
4572 can_conditionally_move_p (enum machine_mode mode)
4573 {
4574 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4575 return 1;
4576
4577 return 0;
4578 }
4579
4580 #endif /* HAVE_conditional_move */
4581
4582 /* Emit a conditional addition instruction if the machine supports one for that
4583 condition and machine mode.
4584
4585 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4586 the mode to use should they be constants. If it is VOIDmode, they cannot
4587 both be constants.
4588
4589 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4590 should be stored there. MODE is the mode to use should they be constants.
4591 If it is VOIDmode, they cannot both be constants.
4592
4593 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4594 is not supported. */
4595
4596 rtx
4597 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4598 enum machine_mode cmode, rtx op2, rtx op3,
4599 enum machine_mode mode, int unsignedp)
4600 {
4601 rtx tem, comparison, last;
4602 enum insn_code icode;
4603
4604 /* If one operand is constant, make it the second one. Only do this
4605 if the other operand is not constant as well. */
4606
4607 if (swap_commutative_operands_p (op0, op1))
4608 {
4609 tem = op0;
4610 op0 = op1;
4611 op1 = tem;
4612 code = swap_condition (code);
4613 }
4614
4615 /* get_condition will prefer to generate LT and GT even if the old
4616 comparison was against zero, so undo that canonicalization here since
4617 comparisons against zero are cheaper. */
4618 if (code == LT && op1 == const1_rtx)
4619 code = LE, op1 = const0_rtx;
4620 else if (code == GT && op1 == constm1_rtx)
4621 code = GE, op1 = const0_rtx;
4622
4623 if (cmode == VOIDmode)
4624 cmode = GET_MODE (op0);
4625
4626 if (mode == VOIDmode)
4627 mode = GET_MODE (op2);
4628
4629 icode = optab_handler (addcc_optab, mode);
4630
4631 if (icode == CODE_FOR_nothing)
4632 return 0;
4633
4634 if (!target)
4635 target = gen_reg_rtx (mode);
4636
4637 code = unsignedp ? unsigned_condition (code) : code;
4638 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4639
4640 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4641 return NULL and let the caller figure out how best to deal with this
4642 situation. */
4643 if (!COMPARISON_P (comparison))
4644 return NULL_RTX;
4645
4646 do_pending_stack_adjust ();
4647 last = get_last_insn ();
4648 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4649 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4650 &comparison, &cmode);
4651 if (comparison)
4652 {
4653 struct expand_operand ops[4];
4654
4655 create_output_operand (&ops[0], target, mode);
4656 create_fixed_operand (&ops[1], comparison);
4657 create_input_operand (&ops[2], op2, mode);
4658 create_input_operand (&ops[3], op3, mode);
4659 if (maybe_expand_insn (icode, 4, ops))
4660 {
4661 if (ops[0].value != target)
4662 convert_move (target, ops[0].value, false);
4663 return target;
4664 }
4665 }
4666 delete_insns_since (last);
4667 return NULL_RTX;
4668 }
4669 \f
4670 /* These functions attempt to generate an insn body, rather than
4671 emitting the insn, but if the gen function already emits them, we
4672 make no attempt to turn them back into naked patterns. */
4673
4674 /* Generate and return an insn body to add Y to X. */
4675
4676 rtx
4677 gen_add2_insn (rtx x, rtx y)
4678 {
4679 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4680
4681 gcc_assert (insn_operand_matches (icode, 0, x));
4682 gcc_assert (insn_operand_matches (icode, 1, x));
4683 gcc_assert (insn_operand_matches (icode, 2, y));
4684
4685 return GEN_FCN (icode) (x, x, y);
4686 }
4687
4688 /* Generate and return an insn body to add r1 and c,
4689 storing the result in r0. */
4690
4691 rtx
4692 gen_add3_insn (rtx r0, rtx r1, rtx c)
4693 {
4694 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4695
4696 if (icode == CODE_FOR_nothing
4697 || !insn_operand_matches (icode, 0, r0)
4698 || !insn_operand_matches (icode, 1, r1)
4699 || !insn_operand_matches (icode, 2, c))
4700 return NULL_RTX;
4701
4702 return GEN_FCN (icode) (r0, r1, c);
4703 }
4704
4705 int
4706 have_add2_insn (rtx x, rtx y)
4707 {
4708 enum insn_code icode;
4709
4710 gcc_assert (GET_MODE (x) != VOIDmode);
4711
4712 icode = optab_handler (add_optab, GET_MODE (x));
4713
4714 if (icode == CODE_FOR_nothing)
4715 return 0;
4716
4717 if (!insn_operand_matches (icode, 0, x)
4718 || !insn_operand_matches (icode, 1, x)
4719 || !insn_operand_matches (icode, 2, y))
4720 return 0;
4721
4722 return 1;
4723 }
4724
4725 /* Generate and return an insn body to subtract Y from X. */
4726
4727 rtx
4728 gen_sub2_insn (rtx x, rtx y)
4729 {
4730 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4731
4732 gcc_assert (insn_operand_matches (icode, 0, x));
4733 gcc_assert (insn_operand_matches (icode, 1, x));
4734 gcc_assert (insn_operand_matches (icode, 2, y));
4735
4736 return GEN_FCN (icode) (x, x, y);
4737 }
4738
4739 /* Generate and return an insn body to subtract r1 and c,
4740 storing the result in r0. */
4741
4742 rtx
4743 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4744 {
4745 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4746
4747 if (icode == CODE_FOR_nothing
4748 || !insn_operand_matches (icode, 0, r0)
4749 || !insn_operand_matches (icode, 1, r1)
4750 || !insn_operand_matches (icode, 2, c))
4751 return NULL_RTX;
4752
4753 return GEN_FCN (icode) (r0, r1, c);
4754 }
4755
4756 int
4757 have_sub2_insn (rtx x, rtx y)
4758 {
4759 enum insn_code icode;
4760
4761 gcc_assert (GET_MODE (x) != VOIDmode);
4762
4763 icode = optab_handler (sub_optab, GET_MODE (x));
4764
4765 if (icode == CODE_FOR_nothing)
4766 return 0;
4767
4768 if (!insn_operand_matches (icode, 0, x)
4769 || !insn_operand_matches (icode, 1, x)
4770 || !insn_operand_matches (icode, 2, y))
4771 return 0;
4772
4773 return 1;
4774 }
4775
4776 /* Generate the body of an instruction to copy Y into X.
4777 It may be a list of insns, if one insn isn't enough. */
4778
4779 rtx
4780 gen_move_insn (rtx x, rtx y)
4781 {
4782 rtx seq;
4783
4784 start_sequence ();
4785 emit_move_insn_1 (x, y);
4786 seq = get_insns ();
4787 end_sequence ();
4788 return seq;
4789 }
4790 \f
4791 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4792 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4793 no such operation exists, CODE_FOR_nothing will be returned. */
4794
4795 enum insn_code
4796 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4797 int unsignedp)
4798 {
4799 convert_optab tab;
4800 #ifdef HAVE_ptr_extend
4801 if (unsignedp < 0)
4802 return CODE_FOR_ptr_extend;
4803 #endif
4804
4805 tab = unsignedp ? zext_optab : sext_optab;
4806 return convert_optab_handler (tab, to_mode, from_mode);
4807 }
4808
4809 /* Generate the body of an insn to extend Y (with mode MFROM)
4810 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4811
4812 rtx
4813 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4814 enum machine_mode mfrom, int unsignedp)
4815 {
4816 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4817 return GEN_FCN (icode) (x, y);
4818 }
4819 \f
4820 /* can_fix_p and can_float_p say whether the target machine
4821 can directly convert a given fixed point type to
4822 a given floating point type, or vice versa.
4823 The returned value is the CODE_FOR_... value to use,
4824 or CODE_FOR_nothing if these modes cannot be directly converted.
4825
4826 *TRUNCP_PTR is set to 1 if it is necessary to output
4827 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4828
4829 static enum insn_code
4830 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4831 int unsignedp, int *truncp_ptr)
4832 {
4833 convert_optab tab;
4834 enum insn_code icode;
4835
4836 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4837 icode = convert_optab_handler (tab, fixmode, fltmode);
4838 if (icode != CODE_FOR_nothing)
4839 {
4840 *truncp_ptr = 0;
4841 return icode;
4842 }
4843
4844 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4845 for this to work. We need to rework the fix* and ftrunc* patterns
4846 and documentation. */
4847 tab = unsignedp ? ufix_optab : sfix_optab;
4848 icode = convert_optab_handler (tab, fixmode, fltmode);
4849 if (icode != CODE_FOR_nothing
4850 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4851 {
4852 *truncp_ptr = 1;
4853 return icode;
4854 }
4855
4856 *truncp_ptr = 0;
4857 return CODE_FOR_nothing;
4858 }
4859
4860 enum insn_code
4861 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4862 int unsignedp)
4863 {
4864 convert_optab tab;
4865
4866 tab = unsignedp ? ufloat_optab : sfloat_optab;
4867 return convert_optab_handler (tab, fltmode, fixmode);
4868 }
4869
4870 /* Function supportable_convert_operation
4871
4872 Check whether an operation represented by the code CODE is a
4873 convert operation that is supported by the target platform in
4874 vector form (i.e., when operating on arguments of type VECTYPE_IN
4875 producing a result of type VECTYPE_OUT).
4876
4877 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4878 This function checks if these operations are supported
4879 by the target platform either directly (via vector tree-codes), or via
4880 target builtins.
4881
4882 Output:
4883 - CODE1 is code of vector operation to be used when
4884 vectorizing the operation, if available.
4885 - DECL is decl of target builtin functions to be used
4886 when vectorizing the operation, if available. In this case,
4887 CODE1 is CALL_EXPR. */
4888
4889 bool
4890 supportable_convert_operation (enum tree_code code,
4891 tree vectype_out, tree vectype_in,
4892 tree *decl, enum tree_code *code1)
4893 {
4894 enum machine_mode m1,m2;
4895 int truncp;
4896
4897 m1 = TYPE_MODE (vectype_out);
4898 m2 = TYPE_MODE (vectype_in);
4899
4900 /* First check if we can done conversion directly. */
4901 if ((code == FIX_TRUNC_EXPR
4902 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4903 != CODE_FOR_nothing)
4904 || (code == FLOAT_EXPR
4905 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4906 != CODE_FOR_nothing))
4907 {
4908 *code1 = code;
4909 return true;
4910 }
4911
4912 /* Now check for builtin. */
4913 if (targetm.vectorize.builtin_conversion
4914 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4915 {
4916 *code1 = CALL_EXPR;
4917 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4918 return true;
4919 }
4920 return false;
4921 }
4922
4923 \f
4924 /* Generate code to convert FROM to floating point
4925 and store in TO. FROM must be fixed point and not VOIDmode.
4926 UNSIGNEDP nonzero means regard FROM as unsigned.
4927 Normally this is done by correcting the final value
4928 if it is negative. */
4929
4930 void
4931 expand_float (rtx to, rtx from, int unsignedp)
4932 {
4933 enum insn_code icode;
4934 rtx target = to;
4935 enum machine_mode fmode, imode;
4936 bool can_do_signed = false;
4937
4938 /* Crash now, because we won't be able to decide which mode to use. */
4939 gcc_assert (GET_MODE (from) != VOIDmode);
4940
4941 /* Look for an insn to do the conversion. Do it in the specified
4942 modes if possible; otherwise convert either input, output or both to
4943 wider mode. If the integer mode is wider than the mode of FROM,
4944 we can do the conversion signed even if the input is unsigned. */
4945
4946 for (fmode = GET_MODE (to); fmode != VOIDmode;
4947 fmode = GET_MODE_WIDER_MODE (fmode))
4948 for (imode = GET_MODE (from); imode != VOIDmode;
4949 imode = GET_MODE_WIDER_MODE (imode))
4950 {
4951 int doing_unsigned = unsignedp;
4952
4953 if (fmode != GET_MODE (to)
4954 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4955 continue;
4956
4957 icode = can_float_p (fmode, imode, unsignedp);
4958 if (icode == CODE_FOR_nothing && unsignedp)
4959 {
4960 enum insn_code scode = can_float_p (fmode, imode, 0);
4961 if (scode != CODE_FOR_nothing)
4962 can_do_signed = true;
4963 if (imode != GET_MODE (from))
4964 icode = scode, doing_unsigned = 0;
4965 }
4966
4967 if (icode != CODE_FOR_nothing)
4968 {
4969 if (imode != GET_MODE (from))
4970 from = convert_to_mode (imode, from, unsignedp);
4971
4972 if (fmode != GET_MODE (to))
4973 target = gen_reg_rtx (fmode);
4974
4975 emit_unop_insn (icode, target, from,
4976 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4977
4978 if (target != to)
4979 convert_move (to, target, 0);
4980 return;
4981 }
4982 }
4983
4984 /* Unsigned integer, and no way to convert directly. Convert as signed,
4985 then unconditionally adjust the result. */
4986 if (unsignedp && can_do_signed)
4987 {
4988 rtx label = gen_label_rtx ();
4989 rtx temp;
4990 REAL_VALUE_TYPE offset;
4991
4992 /* Look for a usable floating mode FMODE wider than the source and at
4993 least as wide as the target. Using FMODE will avoid rounding woes
4994 with unsigned values greater than the signed maximum value. */
4995
4996 for (fmode = GET_MODE (to); fmode != VOIDmode;
4997 fmode = GET_MODE_WIDER_MODE (fmode))
4998 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4999 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5000 break;
5001
5002 if (fmode == VOIDmode)
5003 {
5004 /* There is no such mode. Pretend the target is wide enough. */
5005 fmode = GET_MODE (to);
5006
5007 /* Avoid double-rounding when TO is narrower than FROM. */
5008 if ((significand_size (fmode) + 1)
5009 < GET_MODE_PRECISION (GET_MODE (from)))
5010 {
5011 rtx temp1;
5012 rtx neglabel = gen_label_rtx ();
5013
5014 /* Don't use TARGET if it isn't a register, is a hard register,
5015 or is the wrong mode. */
5016 if (!REG_P (target)
5017 || REGNO (target) < FIRST_PSEUDO_REGISTER
5018 || GET_MODE (target) != fmode)
5019 target = gen_reg_rtx (fmode);
5020
5021 imode = GET_MODE (from);
5022 do_pending_stack_adjust ();
5023
5024 /* Test whether the sign bit is set. */
5025 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5026 0, neglabel);
5027
5028 /* The sign bit is not set. Convert as signed. */
5029 expand_float (target, from, 0);
5030 emit_jump_insn (gen_jump (label));
5031 emit_barrier ();
5032
5033 /* The sign bit is set.
5034 Convert to a usable (positive signed) value by shifting right
5035 one bit, while remembering if a nonzero bit was shifted
5036 out; i.e., compute (from & 1) | (from >> 1). */
5037
5038 emit_label (neglabel);
5039 temp = expand_binop (imode, and_optab, from, const1_rtx,
5040 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5041 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5042 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5043 OPTAB_LIB_WIDEN);
5044 expand_float (target, temp, 0);
5045
5046 /* Multiply by 2 to undo the shift above. */
5047 temp = expand_binop (fmode, add_optab, target, target,
5048 target, 0, OPTAB_LIB_WIDEN);
5049 if (temp != target)
5050 emit_move_insn (target, temp);
5051
5052 do_pending_stack_adjust ();
5053 emit_label (label);
5054 goto done;
5055 }
5056 }
5057
5058 /* If we are about to do some arithmetic to correct for an
5059 unsigned operand, do it in a pseudo-register. */
5060
5061 if (GET_MODE (to) != fmode
5062 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5063 target = gen_reg_rtx (fmode);
5064
5065 /* Convert as signed integer to floating. */
5066 expand_float (target, from, 0);
5067
5068 /* If FROM is negative (and therefore TO is negative),
5069 correct its value by 2**bitwidth. */
5070
5071 do_pending_stack_adjust ();
5072 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5073 0, label);
5074
5075
5076 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5077 temp = expand_binop (fmode, add_optab, target,
5078 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5079 target, 0, OPTAB_LIB_WIDEN);
5080 if (temp != target)
5081 emit_move_insn (target, temp);
5082
5083 do_pending_stack_adjust ();
5084 emit_label (label);
5085 goto done;
5086 }
5087
5088 /* No hardware instruction available; call a library routine. */
5089 {
5090 rtx libfunc;
5091 rtx insns;
5092 rtx value;
5093 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5094
5095 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5096 from = convert_to_mode (SImode, from, unsignedp);
5097
5098 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5099 gcc_assert (libfunc);
5100
5101 start_sequence ();
5102
5103 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5104 GET_MODE (to), 1, from,
5105 GET_MODE (from));
5106 insns = get_insns ();
5107 end_sequence ();
5108
5109 emit_libcall_block (insns, target, value,
5110 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5111 GET_MODE (to), from));
5112 }
5113
5114 done:
5115
5116 /* Copy result to requested destination
5117 if we have been computing in a temp location. */
5118
5119 if (target != to)
5120 {
5121 if (GET_MODE (target) == GET_MODE (to))
5122 emit_move_insn (to, target);
5123 else
5124 convert_move (to, target, 0);
5125 }
5126 }
5127 \f
5128 /* Generate code to convert FROM to fixed point and store in TO. FROM
5129 must be floating point. */
5130
5131 void
5132 expand_fix (rtx to, rtx from, int unsignedp)
5133 {
5134 enum insn_code icode;
5135 rtx target = to;
5136 enum machine_mode fmode, imode;
5137 int must_trunc = 0;
5138
5139 /* We first try to find a pair of modes, one real and one integer, at
5140 least as wide as FROM and TO, respectively, in which we can open-code
5141 this conversion. If the integer mode is wider than the mode of TO,
5142 we can do the conversion either signed or unsigned. */
5143
5144 for (fmode = GET_MODE (from); fmode != VOIDmode;
5145 fmode = GET_MODE_WIDER_MODE (fmode))
5146 for (imode = GET_MODE (to); imode != VOIDmode;
5147 imode = GET_MODE_WIDER_MODE (imode))
5148 {
5149 int doing_unsigned = unsignedp;
5150
5151 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5152 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5153 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5154
5155 if (icode != CODE_FOR_nothing)
5156 {
5157 rtx last = get_last_insn ();
5158 if (fmode != GET_MODE (from))
5159 from = convert_to_mode (fmode, from, 0);
5160
5161 if (must_trunc)
5162 {
5163 rtx temp = gen_reg_rtx (GET_MODE (from));
5164 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5165 temp, 0);
5166 }
5167
5168 if (imode != GET_MODE (to))
5169 target = gen_reg_rtx (imode);
5170
5171 if (maybe_emit_unop_insn (icode, target, from,
5172 doing_unsigned ? UNSIGNED_FIX : FIX))
5173 {
5174 if (target != to)
5175 convert_move (to, target, unsignedp);
5176 return;
5177 }
5178 delete_insns_since (last);
5179 }
5180 }
5181
5182 /* For an unsigned conversion, there is one more way to do it.
5183 If we have a signed conversion, we generate code that compares
5184 the real value to the largest representable positive number. If if
5185 is smaller, the conversion is done normally. Otherwise, subtract
5186 one plus the highest signed number, convert, and add it back.
5187
5188 We only need to check all real modes, since we know we didn't find
5189 anything with a wider integer mode.
5190
5191 This code used to extend FP value into mode wider than the destination.
5192 This is needed for decimal float modes which cannot accurately
5193 represent one plus the highest signed number of the same size, but
5194 not for binary modes. Consider, for instance conversion from SFmode
5195 into DImode.
5196
5197 The hot path through the code is dealing with inputs smaller than 2^63
5198 and doing just the conversion, so there is no bits to lose.
5199
5200 In the other path we know the value is positive in the range 2^63..2^64-1
5201 inclusive. (as for other input overflow happens and result is undefined)
5202 So we know that the most important bit set in mantissa corresponds to
5203 2^63. The subtraction of 2^63 should not generate any rounding as it
5204 simply clears out that bit. The rest is trivial. */
5205
5206 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5207 for (fmode = GET_MODE (from); fmode != VOIDmode;
5208 fmode = GET_MODE_WIDER_MODE (fmode))
5209 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5210 && (!DECIMAL_FLOAT_MODE_P (fmode)
5211 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5212 {
5213 int bitsize;
5214 REAL_VALUE_TYPE offset;
5215 rtx limit, lab1, lab2, insn;
5216
5217 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5218 real_2expN (&offset, bitsize - 1, fmode);
5219 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5220 lab1 = gen_label_rtx ();
5221 lab2 = gen_label_rtx ();
5222
5223 if (fmode != GET_MODE (from))
5224 from = convert_to_mode (fmode, from, 0);
5225
5226 /* See if we need to do the subtraction. */
5227 do_pending_stack_adjust ();
5228 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5229 0, lab1);
5230
5231 /* If not, do the signed "fix" and branch around fixup code. */
5232 expand_fix (to, from, 0);
5233 emit_jump_insn (gen_jump (lab2));
5234 emit_barrier ();
5235
5236 /* Otherwise, subtract 2**(N-1), convert to signed number,
5237 then add 2**(N-1). Do the addition using XOR since this
5238 will often generate better code. */
5239 emit_label (lab1);
5240 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5241 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5242 expand_fix (to, target, 0);
5243 target = expand_binop (GET_MODE (to), xor_optab, to,
5244 gen_int_mode
5245 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5246 GET_MODE (to)),
5247 to, 1, OPTAB_LIB_WIDEN);
5248
5249 if (target != to)
5250 emit_move_insn (to, target);
5251
5252 emit_label (lab2);
5253
5254 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5255 {
5256 /* Make a place for a REG_NOTE and add it. */
5257 insn = emit_move_insn (to, to);
5258 set_dst_reg_note (insn, REG_EQUAL,
5259 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5260 copy_rtx (from)),
5261 to);
5262 }
5263
5264 return;
5265 }
5266
5267 /* We can't do it with an insn, so use a library call. But first ensure
5268 that the mode of TO is at least as wide as SImode, since those are the
5269 only library calls we know about. */
5270
5271 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5272 {
5273 target = gen_reg_rtx (SImode);
5274
5275 expand_fix (target, from, unsignedp);
5276 }
5277 else
5278 {
5279 rtx insns;
5280 rtx value;
5281 rtx libfunc;
5282
5283 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5284 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5285 gcc_assert (libfunc);
5286
5287 start_sequence ();
5288
5289 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5290 GET_MODE (to), 1, from,
5291 GET_MODE (from));
5292 insns = get_insns ();
5293 end_sequence ();
5294
5295 emit_libcall_block (insns, target, value,
5296 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5297 GET_MODE (to), from));
5298 }
5299
5300 if (target != to)
5301 {
5302 if (GET_MODE (to) == GET_MODE (target))
5303 emit_move_insn (to, target);
5304 else
5305 convert_move (to, target, 0);
5306 }
5307 }
5308
5309 /* Generate code to convert FROM or TO a fixed-point.
5310 If UINTP is true, either TO or FROM is an unsigned integer.
5311 If SATP is true, we need to saturate the result. */
5312
5313 void
5314 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5315 {
5316 enum machine_mode to_mode = GET_MODE (to);
5317 enum machine_mode from_mode = GET_MODE (from);
5318 convert_optab tab;
5319 enum rtx_code this_code;
5320 enum insn_code code;
5321 rtx insns, value;
5322 rtx libfunc;
5323
5324 if (to_mode == from_mode)
5325 {
5326 emit_move_insn (to, from);
5327 return;
5328 }
5329
5330 if (uintp)
5331 {
5332 tab = satp ? satfractuns_optab : fractuns_optab;
5333 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5334 }
5335 else
5336 {
5337 tab = satp ? satfract_optab : fract_optab;
5338 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5339 }
5340 code = convert_optab_handler (tab, to_mode, from_mode);
5341 if (code != CODE_FOR_nothing)
5342 {
5343 emit_unop_insn (code, to, from, this_code);
5344 return;
5345 }
5346
5347 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5348 gcc_assert (libfunc);
5349
5350 start_sequence ();
5351 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5352 1, from, from_mode);
5353 insns = get_insns ();
5354 end_sequence ();
5355
5356 emit_libcall_block (insns, to, value,
5357 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5358 }
5359
5360 /* Generate code to convert FROM to fixed point and store in TO. FROM
5361 must be floating point, TO must be signed. Use the conversion optab
5362 TAB to do the conversion. */
5363
5364 bool
5365 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5366 {
5367 enum insn_code icode;
5368 rtx target = to;
5369 enum machine_mode fmode, imode;
5370
5371 /* We first try to find a pair of modes, one real and one integer, at
5372 least as wide as FROM and TO, respectively, in which we can open-code
5373 this conversion. If the integer mode is wider than the mode of TO,
5374 we can do the conversion either signed or unsigned. */
5375
5376 for (fmode = GET_MODE (from); fmode != VOIDmode;
5377 fmode = GET_MODE_WIDER_MODE (fmode))
5378 for (imode = GET_MODE (to); imode != VOIDmode;
5379 imode = GET_MODE_WIDER_MODE (imode))
5380 {
5381 icode = convert_optab_handler (tab, imode, fmode);
5382 if (icode != CODE_FOR_nothing)
5383 {
5384 rtx last = get_last_insn ();
5385 if (fmode != GET_MODE (from))
5386 from = convert_to_mode (fmode, from, 0);
5387
5388 if (imode != GET_MODE (to))
5389 target = gen_reg_rtx (imode);
5390
5391 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5392 {
5393 delete_insns_since (last);
5394 continue;
5395 }
5396 if (target != to)
5397 convert_move (to, target, 0);
5398 return true;
5399 }
5400 }
5401
5402 return false;
5403 }
5404 \f
5405 /* Report whether we have an instruction to perform the operation
5406 specified by CODE on operands of mode MODE. */
5407 int
5408 have_insn_for (enum rtx_code code, enum machine_mode mode)
5409 {
5410 return (code_to_optab (code)
5411 && (optab_handler (code_to_optab (code), mode)
5412 != CODE_FOR_nothing));
5413 }
5414
5415 /* Initialize the libfunc fields of an entire group of entries in some
5416 optab. Each entry is set equal to a string consisting of a leading
5417 pair of underscores followed by a generic operation name followed by
5418 a mode name (downshifted to lowercase) followed by a single character
5419 representing the number of operands for the given operation (which is
5420 usually one of the characters '2', '3', or '4').
5421
5422 OPTABLE is the table in which libfunc fields are to be initialized.
5423 OPNAME is the generic (string) name of the operation.
5424 SUFFIX is the character which specifies the number of operands for
5425 the given generic operation.
5426 MODE is the mode to generate for.
5427 */
5428
5429 static void
5430 gen_libfunc (optab optable, const char *opname, int suffix,
5431 enum machine_mode mode)
5432 {
5433 unsigned opname_len = strlen (opname);
5434 const char *mname = GET_MODE_NAME (mode);
5435 unsigned mname_len = strlen (mname);
5436 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5437 int len = prefix_len + opname_len + mname_len + 1 + 1;
5438 char *libfunc_name = XALLOCAVEC (char, len);
5439 char *p;
5440 const char *q;
5441
5442 p = libfunc_name;
5443 *p++ = '_';
5444 *p++ = '_';
5445 if (targetm.libfunc_gnu_prefix)
5446 {
5447 *p++ = 'g';
5448 *p++ = 'n';
5449 *p++ = 'u';
5450 *p++ = '_';
5451 }
5452 for (q = opname; *q; )
5453 *p++ = *q++;
5454 for (q = mname; *q; q++)
5455 *p++ = TOLOWER (*q);
5456 *p++ = suffix;
5457 *p = '\0';
5458
5459 set_optab_libfunc (optable, mode,
5460 ggc_alloc_string (libfunc_name, p - libfunc_name));
5461 }
5462
5463 /* Like gen_libfunc, but verify that integer operation is involved. */
5464
5465 void
5466 gen_int_libfunc (optab optable, const char *opname, char suffix,
5467 enum machine_mode mode)
5468 {
5469 int maxsize = 2 * BITS_PER_WORD;
5470
5471 if (GET_MODE_CLASS (mode) != MODE_INT)
5472 return;
5473 if (maxsize < LONG_LONG_TYPE_SIZE)
5474 maxsize = LONG_LONG_TYPE_SIZE;
5475 if (GET_MODE_CLASS (mode) != MODE_INT
5476 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5477 return;
5478 gen_libfunc (optable, opname, suffix, mode);
5479 }
5480
5481 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5482
5483 void
5484 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5485 enum machine_mode mode)
5486 {
5487 char *dec_opname;
5488
5489 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5490 gen_libfunc (optable, opname, suffix, mode);
5491 if (DECIMAL_FLOAT_MODE_P (mode))
5492 {
5493 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5494 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5495 depending on the low level floating format used. */
5496 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5497 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5498 gen_libfunc (optable, dec_opname, suffix, mode);
5499 }
5500 }
5501
5502 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5503
5504 void
5505 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5506 enum machine_mode mode)
5507 {
5508 if (!ALL_FIXED_POINT_MODE_P (mode))
5509 return;
5510 gen_libfunc (optable, opname, suffix, mode);
5511 }
5512
5513 /* Like gen_libfunc, but verify that signed fixed-point operation is
5514 involved. */
5515
5516 void
5517 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5518 enum machine_mode mode)
5519 {
5520 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5521 return;
5522 gen_libfunc (optable, opname, suffix, mode);
5523 }
5524
5525 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5526 involved. */
5527
5528 void
5529 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5530 enum machine_mode mode)
5531 {
5532 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5533 return;
5534 gen_libfunc (optable, opname, suffix, mode);
5535 }
5536
5537 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5538
5539 void
5540 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5541 enum machine_mode mode)
5542 {
5543 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5544 gen_fp_libfunc (optable, name, suffix, mode);
5545 if (INTEGRAL_MODE_P (mode))
5546 gen_int_libfunc (optable, name, suffix, mode);
5547 }
5548
5549 /* Like gen_libfunc, but verify that FP or INT operation is involved
5550 and add 'v' suffix for integer operation. */
5551
5552 void
5553 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5554 enum machine_mode mode)
5555 {
5556 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5557 gen_fp_libfunc (optable, name, suffix, mode);
5558 if (GET_MODE_CLASS (mode) == MODE_INT)
5559 {
5560 int len = strlen (name);
5561 char *v_name = XALLOCAVEC (char, len + 2);
5562 strcpy (v_name, name);
5563 v_name[len] = 'v';
5564 v_name[len + 1] = 0;
5565 gen_int_libfunc (optable, v_name, suffix, mode);
5566 }
5567 }
5568
5569 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5570 involved. */
5571
5572 void
5573 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5574 enum machine_mode mode)
5575 {
5576 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5577 gen_fp_libfunc (optable, name, suffix, mode);
5578 if (INTEGRAL_MODE_P (mode))
5579 gen_int_libfunc (optable, name, suffix, mode);
5580 if (ALL_FIXED_POINT_MODE_P (mode))
5581 gen_fixed_libfunc (optable, name, suffix, mode);
5582 }
5583
5584 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5585 involved. */
5586
5587 void
5588 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5589 enum machine_mode mode)
5590 {
5591 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5592 gen_fp_libfunc (optable, name, suffix, mode);
5593 if (INTEGRAL_MODE_P (mode))
5594 gen_int_libfunc (optable, name, suffix, mode);
5595 if (SIGNED_FIXED_POINT_MODE_P (mode))
5596 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5597 }
5598
5599 /* Like gen_libfunc, but verify that INT or FIXED operation is
5600 involved. */
5601
5602 void
5603 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5604 enum machine_mode mode)
5605 {
5606 if (INTEGRAL_MODE_P (mode))
5607 gen_int_libfunc (optable, name, suffix, mode);
5608 if (ALL_FIXED_POINT_MODE_P (mode))
5609 gen_fixed_libfunc (optable, name, suffix, mode);
5610 }
5611
5612 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5613 involved. */
5614
5615 void
5616 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5617 enum machine_mode mode)
5618 {
5619 if (INTEGRAL_MODE_P (mode))
5620 gen_int_libfunc (optable, name, suffix, mode);
5621 if (SIGNED_FIXED_POINT_MODE_P (mode))
5622 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5623 }
5624
5625 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5626 involved. */
5627
5628 void
5629 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5630 enum machine_mode mode)
5631 {
5632 if (INTEGRAL_MODE_P (mode))
5633 gen_int_libfunc (optable, name, suffix, mode);
5634 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5635 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5636 }
5637
5638 /* Initialize the libfunc fields of an entire group of entries of an
5639 inter-mode-class conversion optab. The string formation rules are
5640 similar to the ones for init_libfuncs, above, but instead of having
5641 a mode name and an operand count these functions have two mode names
5642 and no operand count. */
5643
5644 void
5645 gen_interclass_conv_libfunc (convert_optab tab,
5646 const char *opname,
5647 enum machine_mode tmode,
5648 enum machine_mode fmode)
5649 {
5650 size_t opname_len = strlen (opname);
5651 size_t mname_len = 0;
5652
5653 const char *fname, *tname;
5654 const char *q;
5655 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5656 char *libfunc_name, *suffix;
5657 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5658 char *p;
5659
5660 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5661 depends on which underlying decimal floating point format is used. */
5662 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5663
5664 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5665
5666 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5667 nondec_name[0] = '_';
5668 nondec_name[1] = '_';
5669 if (targetm.libfunc_gnu_prefix)
5670 {
5671 nondec_name[2] = 'g';
5672 nondec_name[3] = 'n';
5673 nondec_name[4] = 'u';
5674 nondec_name[5] = '_';
5675 }
5676
5677 memcpy (&nondec_name[prefix_len], opname, opname_len);
5678 nondec_suffix = nondec_name + opname_len + prefix_len;
5679
5680 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5681 dec_name[0] = '_';
5682 dec_name[1] = '_';
5683 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5684 memcpy (&dec_name[2+dec_len], opname, opname_len);
5685 dec_suffix = dec_name + dec_len + opname_len + 2;
5686
5687 fname = GET_MODE_NAME (fmode);
5688 tname = GET_MODE_NAME (tmode);
5689
5690 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5691 {
5692 libfunc_name = dec_name;
5693 suffix = dec_suffix;
5694 }
5695 else
5696 {
5697 libfunc_name = nondec_name;
5698 suffix = nondec_suffix;
5699 }
5700
5701 p = suffix;
5702 for (q = fname; *q; p++, q++)
5703 *p = TOLOWER (*q);
5704 for (q = tname; *q; p++, q++)
5705 *p = TOLOWER (*q);
5706
5707 *p = '\0';
5708
5709 set_conv_libfunc (tab, tmode, fmode,
5710 ggc_alloc_string (libfunc_name, p - libfunc_name));
5711 }
5712
5713 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5714 int->fp conversion. */
5715
5716 void
5717 gen_int_to_fp_conv_libfunc (convert_optab tab,
5718 const char *opname,
5719 enum machine_mode tmode,
5720 enum machine_mode fmode)
5721 {
5722 if (GET_MODE_CLASS (fmode) != MODE_INT)
5723 return;
5724 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5725 return;
5726 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5727 }
5728
5729 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5730 naming scheme. */
5731
5732 void
5733 gen_ufloat_conv_libfunc (convert_optab tab,
5734 const char *opname ATTRIBUTE_UNUSED,
5735 enum machine_mode tmode,
5736 enum machine_mode fmode)
5737 {
5738 if (DECIMAL_FLOAT_MODE_P (tmode))
5739 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5740 else
5741 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5742 }
5743
5744 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5745 fp->int conversion. */
5746
5747 void
5748 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5749 const char *opname,
5750 enum machine_mode tmode,
5751 enum machine_mode fmode)
5752 {
5753 if (GET_MODE_CLASS (fmode) != MODE_INT)
5754 return;
5755 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5756 return;
5757 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5758 }
5759
5760 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5761 fp->int conversion with no decimal floating point involved. */
5762
5763 void
5764 gen_fp_to_int_conv_libfunc (convert_optab tab,
5765 const char *opname,
5766 enum machine_mode tmode,
5767 enum machine_mode fmode)
5768 {
5769 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5770 return;
5771 if (GET_MODE_CLASS (tmode) != MODE_INT)
5772 return;
5773 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5774 }
5775
5776 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5777 The string formation rules are
5778 similar to the ones for init_libfunc, above. */
5779
5780 void
5781 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5782 enum machine_mode tmode, enum machine_mode fmode)
5783 {
5784 size_t opname_len = strlen (opname);
5785 size_t mname_len = 0;
5786
5787 const char *fname, *tname;
5788 const char *q;
5789 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5790 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5791 char *libfunc_name, *suffix;
5792 char *p;
5793
5794 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5795 depends on which underlying decimal floating point format is used. */
5796 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5797
5798 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5799
5800 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5801 nondec_name[0] = '_';
5802 nondec_name[1] = '_';
5803 if (targetm.libfunc_gnu_prefix)
5804 {
5805 nondec_name[2] = 'g';
5806 nondec_name[3] = 'n';
5807 nondec_name[4] = 'u';
5808 nondec_name[5] = '_';
5809 }
5810 memcpy (&nondec_name[prefix_len], opname, opname_len);
5811 nondec_suffix = nondec_name + opname_len + prefix_len;
5812
5813 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5814 dec_name[0] = '_';
5815 dec_name[1] = '_';
5816 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5817 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5818 dec_suffix = dec_name + dec_len + opname_len + 2;
5819
5820 fname = GET_MODE_NAME (fmode);
5821 tname = GET_MODE_NAME (tmode);
5822
5823 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5824 {
5825 libfunc_name = dec_name;
5826 suffix = dec_suffix;
5827 }
5828 else
5829 {
5830 libfunc_name = nondec_name;
5831 suffix = nondec_suffix;
5832 }
5833
5834 p = suffix;
5835 for (q = fname; *q; p++, q++)
5836 *p = TOLOWER (*q);
5837 for (q = tname; *q; p++, q++)
5838 *p = TOLOWER (*q);
5839
5840 *p++ = '2';
5841 *p = '\0';
5842
5843 set_conv_libfunc (tab, tmode, fmode,
5844 ggc_alloc_string (libfunc_name, p - libfunc_name));
5845 }
5846
5847 /* Pick proper libcall for trunc_optab. We need to chose if we do
5848 truncation or extension and interclass or intraclass. */
5849
5850 void
5851 gen_trunc_conv_libfunc (convert_optab tab,
5852 const char *opname,
5853 enum machine_mode tmode,
5854 enum machine_mode fmode)
5855 {
5856 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5857 return;
5858 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5859 return;
5860 if (tmode == fmode)
5861 return;
5862
5863 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5864 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5865 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5866
5867 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5868 return;
5869
5870 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5871 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5872 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5873 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5874 }
5875
5876 /* Pick proper libcall for extend_optab. We need to chose if we do
5877 truncation or extension and interclass or intraclass. */
5878
5879 void
5880 gen_extend_conv_libfunc (convert_optab tab,
5881 const char *opname ATTRIBUTE_UNUSED,
5882 enum machine_mode tmode,
5883 enum machine_mode fmode)
5884 {
5885 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5886 return;
5887 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5888 return;
5889 if (tmode == fmode)
5890 return;
5891
5892 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5893 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5894 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5895
5896 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5897 return;
5898
5899 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5900 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5901 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5902 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5903 }
5904
5905 /* Pick proper libcall for fract_optab. We need to chose if we do
5906 interclass or intraclass. */
5907
5908 void
5909 gen_fract_conv_libfunc (convert_optab tab,
5910 const char *opname,
5911 enum machine_mode tmode,
5912 enum machine_mode fmode)
5913 {
5914 if (tmode == fmode)
5915 return;
5916 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5917 return;
5918
5919 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5920 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5921 else
5922 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5923 }
5924
5925 /* Pick proper libcall for fractuns_optab. */
5926
5927 void
5928 gen_fractuns_conv_libfunc (convert_optab tab,
5929 const char *opname,
5930 enum machine_mode tmode,
5931 enum machine_mode fmode)
5932 {
5933 if (tmode == fmode)
5934 return;
5935 /* One mode must be a fixed-point mode, and the other must be an integer
5936 mode. */
5937 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5938 || (ALL_FIXED_POINT_MODE_P (fmode)
5939 && GET_MODE_CLASS (tmode) == MODE_INT)))
5940 return;
5941
5942 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5943 }
5944
5945 /* Pick proper libcall for satfract_optab. We need to chose if we do
5946 interclass or intraclass. */
5947
5948 void
5949 gen_satfract_conv_libfunc (convert_optab tab,
5950 const char *opname,
5951 enum machine_mode tmode,
5952 enum machine_mode fmode)
5953 {
5954 if (tmode == fmode)
5955 return;
5956 /* TMODE must be a fixed-point mode. */
5957 if (!ALL_FIXED_POINT_MODE_P (tmode))
5958 return;
5959
5960 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5961 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5962 else
5963 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5964 }
5965
5966 /* Pick proper libcall for satfractuns_optab. */
5967
5968 void
5969 gen_satfractuns_conv_libfunc (convert_optab tab,
5970 const char *opname,
5971 enum machine_mode tmode,
5972 enum machine_mode fmode)
5973 {
5974 if (tmode == fmode)
5975 return;
5976 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5977 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
5978 return;
5979
5980 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5981 }
5982
5983 /* A table of previously-created libfuncs, hashed by name. */
5984 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
5985
5986 /* Hashtable callbacks for libfunc_decls. */
5987
5988 static hashval_t
5989 libfunc_decl_hash (const void *entry)
5990 {
5991 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
5992 }
5993
5994 static int
5995 libfunc_decl_eq (const void *entry1, const void *entry2)
5996 {
5997 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
5998 }
5999
6000 /* Build a decl for a libfunc named NAME. */
6001
6002 tree
6003 build_libfunc_function (const char *name)
6004 {
6005 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6006 get_identifier (name),
6007 build_function_type (integer_type_node, NULL_TREE));
6008 /* ??? We don't have any type information except for this is
6009 a function. Pretend this is "int foo()". */
6010 DECL_ARTIFICIAL (decl) = 1;
6011 DECL_EXTERNAL (decl) = 1;
6012 TREE_PUBLIC (decl) = 1;
6013 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6014
6015 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6016 are the flags assigned by targetm.encode_section_info. */
6017 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6018
6019 return decl;
6020 }
6021
6022 rtx
6023 init_one_libfunc (const char *name)
6024 {
6025 tree id, decl;
6026 void **slot;
6027 hashval_t hash;
6028
6029 if (libfunc_decls == NULL)
6030 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6031 libfunc_decl_eq, NULL);
6032
6033 /* See if we have already created a libfunc decl for this function. */
6034 id = get_identifier (name);
6035 hash = IDENTIFIER_HASH_VALUE (id);
6036 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6037 decl = (tree) *slot;
6038 if (decl == NULL)
6039 {
6040 /* Create a new decl, so that it can be passed to
6041 targetm.encode_section_info. */
6042 decl = build_libfunc_function (name);
6043 *slot = decl;
6044 }
6045 return XEXP (DECL_RTL (decl), 0);
6046 }
6047
6048 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6049
6050 rtx
6051 set_user_assembler_libfunc (const char *name, const char *asmspec)
6052 {
6053 tree id, decl;
6054 void **slot;
6055 hashval_t hash;
6056
6057 id = get_identifier (name);
6058 hash = IDENTIFIER_HASH_VALUE (id);
6059 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6060 gcc_assert (slot);
6061 decl = (tree) *slot;
6062 set_user_assembler_name (decl, asmspec);
6063 return XEXP (DECL_RTL (decl), 0);
6064 }
6065
6066 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6067 MODE to NAME, which should be either 0 or a string constant. */
6068 void
6069 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6070 {
6071 rtx val;
6072 struct libfunc_entry e;
6073 struct libfunc_entry **slot;
6074
6075 e.op = op;
6076 e.mode1 = mode;
6077 e.mode2 = VOIDmode;
6078
6079 if (name)
6080 val = init_one_libfunc (name);
6081 else
6082 val = 0;
6083 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6084 if (*slot == NULL)
6085 *slot = ggc_alloc_libfunc_entry ();
6086 (*slot)->op = op;
6087 (*slot)->mode1 = mode;
6088 (*slot)->mode2 = VOIDmode;
6089 (*slot)->libfunc = val;
6090 }
6091
6092 /* Call this to reset the function entry for one conversion optab
6093 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6094 either 0 or a string constant. */
6095 void
6096 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6097 enum machine_mode fmode, const char *name)
6098 {
6099 rtx val;
6100 struct libfunc_entry e;
6101 struct libfunc_entry **slot;
6102
6103 e.op = optab;
6104 e.mode1 = tmode;
6105 e.mode2 = fmode;
6106
6107 if (name)
6108 val = init_one_libfunc (name);
6109 else
6110 val = 0;
6111 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6112 if (*slot == NULL)
6113 *slot = ggc_alloc_libfunc_entry ();
6114 (*slot)->op = optab;
6115 (*slot)->mode1 = tmode;
6116 (*slot)->mode2 = fmode;
6117 (*slot)->libfunc = val;
6118 }
6119
6120 /* Call this to initialize the contents of the optabs
6121 appropriately for the current target machine. */
6122
6123 void
6124 init_optabs (void)
6125 {
6126 if (libfunc_hash)
6127 htab_empty (libfunc_hash);
6128 else
6129 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6130
6131 /* Fill in the optabs with the insns we support. */
6132 init_all_optabs ();
6133
6134 /* The ffs function operates on `int'. Fall back on it if we do not
6135 have a libgcc2 function for that width. */
6136 if (INT_TYPE_SIZE < BITS_PER_WORD)
6137 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6138 "ffs");
6139
6140 /* Explicitly initialize the bswap libfuncs since we need them to be
6141 valid for things other than word_mode. */
6142 if (targetm.libfunc_gnu_prefix)
6143 {
6144 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6145 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6146 }
6147 else
6148 {
6149 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6150 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6151 }
6152
6153 /* Use cabs for double complex abs, since systems generally have cabs.
6154 Don't define any libcall for float complex, so that cabs will be used. */
6155 if (complex_double_type_node)
6156 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6157 "cabs");
6158
6159 abort_libfunc = init_one_libfunc ("abort");
6160 memcpy_libfunc = init_one_libfunc ("memcpy");
6161 memmove_libfunc = init_one_libfunc ("memmove");
6162 memcmp_libfunc = init_one_libfunc ("memcmp");
6163 memset_libfunc = init_one_libfunc ("memset");
6164 setbits_libfunc = init_one_libfunc ("__setbits");
6165
6166 #ifndef DONT_USE_BUILTIN_SETJMP
6167 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6168 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6169 #else
6170 setjmp_libfunc = init_one_libfunc ("setjmp");
6171 longjmp_libfunc = init_one_libfunc ("longjmp");
6172 #endif
6173 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6174 unwind_sjlj_unregister_libfunc
6175 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6176
6177 /* For function entry/exit instrumentation. */
6178 profile_function_entry_libfunc
6179 = init_one_libfunc ("__cyg_profile_func_enter");
6180 profile_function_exit_libfunc
6181 = init_one_libfunc ("__cyg_profile_func_exit");
6182
6183 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6184
6185 /* Allow the target to add more libcalls or rename some, etc. */
6186 targetm.init_libfuncs ();
6187 }
6188
6189 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6190 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6191
6192 static void
6193 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6194 {
6195 enum machine_mode mode;
6196 char buf[64];
6197 size_t len = strlen (base);
6198 int i;
6199
6200 gcc_assert (max <= 8);
6201 gcc_assert (len + 3 < sizeof (buf));
6202
6203 memcpy (buf, base, len);
6204 buf[len] = '_';
6205 buf[len + 1] = '0';
6206 buf[len + 2] = '\0';
6207
6208 mode = QImode;
6209 for (i = 1; i <= max; i *= 2)
6210 {
6211 buf[len + 1] = '0' + i;
6212 set_optab_libfunc (tab, mode, buf);
6213 mode = GET_MODE_2XWIDER_MODE (mode);
6214 }
6215 }
6216
6217 void
6218 init_sync_libfuncs (int max)
6219 {
6220 if (!flag_sync_libcalls)
6221 return;
6222
6223 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6224 "__sync_val_compare_and_swap", max);
6225 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6226 "__sync_lock_test_and_set", max);
6227
6228 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6229 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6230 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6231 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6232 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6233 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6234
6235 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6236 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6237 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6238 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6239 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6240 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6241 }
6242
6243 /* Print information about the current contents of the optabs on
6244 STDERR. */
6245
6246 DEBUG_FUNCTION void
6247 debug_optab_libfuncs (void)
6248 {
6249 int i, j, k;
6250
6251 /* Dump the arithmetic optabs. */
6252 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6253 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6254 {
6255 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6256 if (l)
6257 {
6258 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6259 fprintf (stderr, "%s\t%s:\t%s\n",
6260 GET_RTX_NAME (optab_to_code ((optab) i)),
6261 GET_MODE_NAME (j),
6262 XSTR (l, 0));
6263 }
6264 }
6265
6266 /* Dump the conversion optabs. */
6267 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6268 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6269 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6270 {
6271 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6272 (enum machine_mode) k);
6273 if (l)
6274 {
6275 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6276 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6277 GET_RTX_NAME (optab_to_code ((optab) i)),
6278 GET_MODE_NAME (j),
6279 GET_MODE_NAME (k),
6280 XSTR (l, 0));
6281 }
6282 }
6283 }
6284
6285 \f
6286 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6287 CODE. Return 0 on failure. */
6288
6289 rtx
6290 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6291 {
6292 enum machine_mode mode = GET_MODE (op1);
6293 enum insn_code icode;
6294 rtx insn;
6295 rtx trap_rtx;
6296
6297 if (mode == VOIDmode)
6298 return 0;
6299
6300 icode = optab_handler (ctrap_optab, mode);
6301 if (icode == CODE_FOR_nothing)
6302 return 0;
6303
6304 /* Some targets only accept a zero trap code. */
6305 if (!insn_operand_matches (icode, 3, tcode))
6306 return 0;
6307
6308 do_pending_stack_adjust ();
6309 start_sequence ();
6310 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6311 &trap_rtx, &mode);
6312 if (!trap_rtx)
6313 insn = NULL_RTX;
6314 else
6315 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6316 tcode);
6317
6318 /* If that failed, then give up. */
6319 if (insn == 0)
6320 {
6321 end_sequence ();
6322 return 0;
6323 }
6324
6325 emit_insn (insn);
6326 insn = get_insns ();
6327 end_sequence ();
6328 return insn;
6329 }
6330
6331 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6332 or unsigned operation code. */
6333
6334 static enum rtx_code
6335 get_rtx_code (enum tree_code tcode, bool unsignedp)
6336 {
6337 enum rtx_code code;
6338 switch (tcode)
6339 {
6340 case EQ_EXPR:
6341 code = EQ;
6342 break;
6343 case NE_EXPR:
6344 code = NE;
6345 break;
6346 case LT_EXPR:
6347 code = unsignedp ? LTU : LT;
6348 break;
6349 case LE_EXPR:
6350 code = unsignedp ? LEU : LE;
6351 break;
6352 case GT_EXPR:
6353 code = unsignedp ? GTU : GT;
6354 break;
6355 case GE_EXPR:
6356 code = unsignedp ? GEU : GE;
6357 break;
6358
6359 case UNORDERED_EXPR:
6360 code = UNORDERED;
6361 break;
6362 case ORDERED_EXPR:
6363 code = ORDERED;
6364 break;
6365 case UNLT_EXPR:
6366 code = UNLT;
6367 break;
6368 case UNLE_EXPR:
6369 code = UNLE;
6370 break;
6371 case UNGT_EXPR:
6372 code = UNGT;
6373 break;
6374 case UNGE_EXPR:
6375 code = UNGE;
6376 break;
6377 case UNEQ_EXPR:
6378 code = UNEQ;
6379 break;
6380 case LTGT_EXPR:
6381 code = LTGT;
6382 break;
6383
6384 default:
6385 gcc_unreachable ();
6386 }
6387 return code;
6388 }
6389
6390 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6391 unsigned operators. Do not generate compare instruction. */
6392
6393 static rtx
6394 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6395 bool unsignedp, enum insn_code icode)
6396 {
6397 struct expand_operand ops[2];
6398 rtx rtx_op0, rtx_op1;
6399 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6400
6401 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6402
6403 /* Expand operands. */
6404 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6405 EXPAND_STACK_PARM);
6406 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6407 EXPAND_STACK_PARM);
6408
6409 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6410 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6411 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6412 gcc_unreachable ();
6413 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6414 }
6415
6416 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6417 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6418
6419 bool
6420 can_vec_perm_p (enum machine_mode mode, bool variable,
6421 const unsigned char *sel)
6422 {
6423 enum machine_mode qimode;
6424
6425 /* If the target doesn't implement a vector mode for the vector type,
6426 then no operations are supported. */
6427 if (!VECTOR_MODE_P (mode))
6428 return false;
6429
6430 if (!variable)
6431 {
6432 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6433 && (sel == NULL
6434 || targetm.vectorize.vec_perm_const_ok == NULL
6435 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6436 return true;
6437 }
6438
6439 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6440 return true;
6441
6442 /* We allow fallback to a QI vector mode, and adjust the mask. */
6443 if (GET_MODE_INNER (mode) == QImode)
6444 return false;
6445 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6446 if (!VECTOR_MODE_P (qimode))
6447 return false;
6448
6449 /* ??? For completeness, we ought to check the QImode version of
6450 vec_perm_const_optab. But all users of this implicit lowering
6451 feature implement the variable vec_perm_optab. */
6452 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6453 return false;
6454
6455 /* In order to support the lowering of variable permutations,
6456 we need to support shifts and adds. */
6457 if (variable)
6458 {
6459 if (GET_MODE_UNIT_SIZE (mode) > 2
6460 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6461 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6462 return false;
6463 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6464 return false;
6465 }
6466
6467 return true;
6468 }
6469
6470 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6471
6472 static rtx
6473 expand_vec_perm_1 (enum insn_code icode, rtx target,
6474 rtx v0, rtx v1, rtx sel)
6475 {
6476 enum machine_mode tmode = GET_MODE (target);
6477 enum machine_mode smode = GET_MODE (sel);
6478 struct expand_operand ops[4];
6479
6480 create_output_operand (&ops[0], target, tmode);
6481 create_input_operand (&ops[3], sel, smode);
6482
6483 /* Make an effort to preserve v0 == v1. The target expander is able to
6484 rely on this to determine if we're permuting a single input operand. */
6485 if (rtx_equal_p (v0, v1))
6486 {
6487 if (!insn_operand_matches (icode, 1, v0))
6488 v0 = force_reg (tmode, v0);
6489 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6490 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6491
6492 create_fixed_operand (&ops[1], v0);
6493 create_fixed_operand (&ops[2], v0);
6494 }
6495 else
6496 {
6497 create_input_operand (&ops[1], v0, tmode);
6498 create_input_operand (&ops[2], v1, tmode);
6499 }
6500
6501 if (maybe_expand_insn (icode, 4, ops))
6502 return ops[0].value;
6503 return NULL_RTX;
6504 }
6505
6506 /* Generate instructions for vec_perm optab given its mode
6507 and three operands. */
6508
6509 rtx
6510 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6511 {
6512 enum insn_code icode;
6513 enum machine_mode qimode;
6514 unsigned int i, w, e, u;
6515 rtx tmp, sel_qi = NULL;
6516 rtvec vec;
6517
6518 if (!target || GET_MODE (target) != mode)
6519 target = gen_reg_rtx (mode);
6520
6521 w = GET_MODE_SIZE (mode);
6522 e = GET_MODE_NUNITS (mode);
6523 u = GET_MODE_UNIT_SIZE (mode);
6524
6525 /* Set QIMODE to a different vector mode with byte elements.
6526 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6527 qimode = VOIDmode;
6528 if (GET_MODE_INNER (mode) != QImode)
6529 {
6530 qimode = mode_for_vector (QImode, w);
6531 if (!VECTOR_MODE_P (qimode))
6532 qimode = VOIDmode;
6533 }
6534
6535 /* If the input is a constant, expand it specially. */
6536 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6537 if (GET_CODE (sel) == CONST_VECTOR)
6538 {
6539 icode = direct_optab_handler (vec_perm_const_optab, mode);
6540 if (icode != CODE_FOR_nothing)
6541 {
6542 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6543 if (tmp)
6544 return tmp;
6545 }
6546
6547 /* Fall back to a constant byte-based permutation. */
6548 if (qimode != VOIDmode)
6549 {
6550 vec = rtvec_alloc (w);
6551 for (i = 0; i < e; ++i)
6552 {
6553 unsigned int j, this_e;
6554
6555 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6556 this_e &= 2 * e - 1;
6557 this_e *= u;
6558
6559 for (j = 0; j < u; ++j)
6560 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6561 }
6562 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6563
6564 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6565 if (icode != CODE_FOR_nothing)
6566 {
6567 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6568 gen_lowpart (qimode, v0),
6569 gen_lowpart (qimode, v1), sel_qi);
6570 if (tmp)
6571 return gen_lowpart (mode, tmp);
6572 }
6573 }
6574 }
6575
6576 /* Otherwise expand as a fully variable permuation. */
6577 icode = direct_optab_handler (vec_perm_optab, mode);
6578 if (icode != CODE_FOR_nothing)
6579 {
6580 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6581 if (tmp)
6582 return tmp;
6583 }
6584
6585 /* As a special case to aid several targets, lower the element-based
6586 permutation to a byte-based permutation and try again. */
6587 if (qimode == VOIDmode)
6588 return NULL_RTX;
6589 icode = direct_optab_handler (vec_perm_optab, qimode);
6590 if (icode == CODE_FOR_nothing)
6591 return NULL_RTX;
6592
6593 if (sel_qi == NULL)
6594 {
6595 /* Multiply each element by its byte size. */
6596 enum machine_mode selmode = GET_MODE (sel);
6597 if (u == 2)
6598 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6599 sel, 0, OPTAB_DIRECT);
6600 else
6601 sel = expand_simple_binop (selmode, ASHIFT, sel,
6602 GEN_INT (exact_log2 (u)),
6603 sel, 0, OPTAB_DIRECT);
6604 gcc_assert (sel != NULL);
6605
6606 /* Broadcast the low byte each element into each of its bytes. */
6607 vec = rtvec_alloc (w);
6608 for (i = 0; i < w; ++i)
6609 {
6610 int this_e = i / u * u;
6611 if (BYTES_BIG_ENDIAN)
6612 this_e += u - 1;
6613 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6614 }
6615 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6616 sel = gen_lowpart (qimode, sel);
6617 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6618 gcc_assert (sel != NULL);
6619
6620 /* Add the byte offset to each byte element. */
6621 /* Note that the definition of the indicies here is memory ordering,
6622 so there should be no difference between big and little endian. */
6623 vec = rtvec_alloc (w);
6624 for (i = 0; i < w; ++i)
6625 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6626 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6627 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6628 sel, 0, OPTAB_DIRECT);
6629 gcc_assert (sel_qi != NULL);
6630 }
6631
6632 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6633 gen_lowpart (qimode, v0),
6634 gen_lowpart (qimode, v1), sel_qi);
6635 if (tmp)
6636 tmp = gen_lowpart (mode, tmp);
6637 return tmp;
6638 }
6639
6640 /* Return insn code for a conditional operator with a comparison in
6641 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6642
6643 static inline enum insn_code
6644 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6645 {
6646 enum insn_code icode = CODE_FOR_nothing;
6647 if (uns)
6648 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6649 else
6650 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6651 return icode;
6652 }
6653
6654 /* Return TRUE iff, appropriate vector insns are available
6655 for vector cond expr with vector type VALUE_TYPE and a comparison
6656 with operand vector types in CMP_OP_TYPE. */
6657
6658 bool
6659 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6660 {
6661 enum machine_mode value_mode = TYPE_MODE (value_type);
6662 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6663 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6664 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6665 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6666 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6667 return false;
6668 return true;
6669 }
6670
6671 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6672 three operands. */
6673
6674 rtx
6675 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6676 rtx target)
6677 {
6678 struct expand_operand ops[6];
6679 enum insn_code icode;
6680 rtx comparison, rtx_op1, rtx_op2;
6681 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6682 enum machine_mode cmp_op_mode;
6683 bool unsignedp;
6684 tree op0a, op0b;
6685 enum tree_code tcode;
6686
6687 if (COMPARISON_CLASS_P (op0))
6688 {
6689 op0a = TREE_OPERAND (op0, 0);
6690 op0b = TREE_OPERAND (op0, 1);
6691 tcode = TREE_CODE (op0);
6692 }
6693 else
6694 {
6695 /* Fake op0 < 0. */
6696 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6697 op0a = op0;
6698 op0b = build_zero_cst (TREE_TYPE (op0));
6699 tcode = LT_EXPR;
6700 }
6701 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6702 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6703
6704
6705 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6706 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6707
6708 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6709 if (icode == CODE_FOR_nothing)
6710 return 0;
6711
6712 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6713 rtx_op1 = expand_normal (op1);
6714 rtx_op2 = expand_normal (op2);
6715
6716 create_output_operand (&ops[0], target, mode);
6717 create_input_operand (&ops[1], rtx_op1, mode);
6718 create_input_operand (&ops[2], rtx_op2, mode);
6719 create_fixed_operand (&ops[3], comparison);
6720 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6721 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6722 expand_insn (icode, 6, ops);
6723 return ops[0].value;
6724 }
6725
6726 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6727 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6728 2 for even/odd widening, and 3 for hi/lo widening. */
6729
6730 int
6731 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6732 {
6733 optab op;
6734 unsigned char *sel;
6735 unsigned i, nunits;
6736
6737 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6738 if (optab_handler (op, mode) != CODE_FOR_nothing)
6739 return 1;
6740
6741 /* If the mode is an integral vector, synth from widening operations. */
6742 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6743 return 0;
6744
6745 nunits = GET_MODE_NUNITS (mode);
6746 sel = XALLOCAVEC (unsigned char, nunits);
6747
6748 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6749 if (optab_handler (op, mode) != CODE_FOR_nothing)
6750 {
6751 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6752 if (optab_handler (op, mode) != CODE_FOR_nothing)
6753 {
6754 for (i = 0; i < nunits; ++i)
6755 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6756 if (can_vec_perm_p (mode, false, sel))
6757 return 2;
6758 }
6759 }
6760
6761 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6762 if (optab_handler (op, mode) != CODE_FOR_nothing)
6763 {
6764 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6765 if (optab_handler (op, mode) != CODE_FOR_nothing)
6766 {
6767 for (i = 0; i < nunits; ++i)
6768 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6769 if (can_vec_perm_p (mode, false, sel))
6770 return 3;
6771 }
6772 }
6773
6774 return 0;
6775 }
6776
6777 /* Expand a highpart multiply. */
6778
6779 rtx
6780 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6781 rtx target, bool uns_p)
6782 {
6783 struct expand_operand eops[3];
6784 enum insn_code icode;
6785 int method, i, nunits;
6786 enum machine_mode wmode;
6787 rtx m1, m2, perm;
6788 optab tab1, tab2;
6789 rtvec v;
6790
6791 method = can_mult_highpart_p (mode, uns_p);
6792 switch (method)
6793 {
6794 case 0:
6795 return NULL_RTX;
6796 case 1:
6797 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6798 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6799 OPTAB_LIB_WIDEN);
6800 case 2:
6801 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6802 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6803 break;
6804 case 3:
6805 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6806 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6807 if (BYTES_BIG_ENDIAN)
6808 {
6809 optab t = tab1;
6810 tab1 = tab2;
6811 tab2 = t;
6812 }
6813 break;
6814 default:
6815 gcc_unreachable ();
6816 }
6817
6818 icode = optab_handler (tab1, mode);
6819 nunits = GET_MODE_NUNITS (mode);
6820 wmode = insn_data[icode].operand[0].mode;
6821 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6822 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6823
6824 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6825 create_input_operand (&eops[1], op0, mode);
6826 create_input_operand (&eops[2], op1, mode);
6827 expand_insn (icode, 3, eops);
6828 m1 = gen_lowpart (mode, eops[0].value);
6829
6830 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6831 create_input_operand (&eops[1], op0, mode);
6832 create_input_operand (&eops[2], op1, mode);
6833 expand_insn (optab_handler (tab2, mode), 3, eops);
6834 m2 = gen_lowpart (mode, eops[0].value);
6835
6836 v = rtvec_alloc (nunits);
6837 if (method == 2)
6838 {
6839 for (i = 0; i < nunits; ++i)
6840 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6841 + ((i & 1) ? nunits : 0));
6842 }
6843 else
6844 {
6845 for (i = 0; i < nunits; ++i)
6846 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6847 }
6848 perm = gen_rtx_CONST_VECTOR (mode, v);
6849
6850 return expand_vec_perm (mode, m1, m2, perm, target);
6851 }
6852 \f
6853 /* Return true if there is a compare_and_swap pattern. */
6854
6855 bool
6856 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6857 {
6858 enum insn_code icode;
6859
6860 /* Check for __atomic_compare_and_swap. */
6861 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6862 if (icode != CODE_FOR_nothing)
6863 return true;
6864
6865 /* Check for __sync_compare_and_swap. */
6866 icode = optab_handler (sync_compare_and_swap_optab, mode);
6867 if (icode != CODE_FOR_nothing)
6868 return true;
6869 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6870 return true;
6871
6872 /* No inline compare and swap. */
6873 return false;
6874 }
6875
6876 /* Return true if an atomic exchange can be performed. */
6877
6878 bool
6879 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6880 {
6881 enum insn_code icode;
6882
6883 /* Check for __atomic_exchange. */
6884 icode = direct_optab_handler (atomic_exchange_optab, mode);
6885 if (icode != CODE_FOR_nothing)
6886 return true;
6887
6888 /* Don't check __sync_test_and_set, as on some platforms that
6889 has reduced functionality. Targets that really do support
6890 a proper exchange should simply be updated to the __atomics. */
6891
6892 return can_compare_and_swap_p (mode, allow_libcall);
6893 }
6894
6895
6896 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6897 pattern. */
6898
6899 static void
6900 find_cc_set (rtx x, const_rtx pat, void *data)
6901 {
6902 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6903 && GET_CODE (pat) == SET)
6904 {
6905 rtx *p_cc_reg = (rtx *) data;
6906 gcc_assert (!*p_cc_reg);
6907 *p_cc_reg = x;
6908 }
6909 }
6910
6911 /* This is a helper function for the other atomic operations. This function
6912 emits a loop that contains SEQ that iterates until a compare-and-swap
6913 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6914 a set of instructions that takes a value from OLD_REG as an input and
6915 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6916 set to the current contents of MEM. After SEQ, a compare-and-swap will
6917 attempt to update MEM with NEW_REG. The function returns true when the
6918 loop was generated successfully. */
6919
6920 static bool
6921 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6922 {
6923 enum machine_mode mode = GET_MODE (mem);
6924 rtx label, cmp_reg, success, oldval;
6925
6926 /* The loop we want to generate looks like
6927
6928 cmp_reg = mem;
6929 label:
6930 old_reg = cmp_reg;
6931 seq;
6932 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6933 if (success)
6934 goto label;
6935
6936 Note that we only do the plain load from memory once. Subsequent
6937 iterations use the value loaded by the compare-and-swap pattern. */
6938
6939 label = gen_label_rtx ();
6940 cmp_reg = gen_reg_rtx (mode);
6941
6942 emit_move_insn (cmp_reg, mem);
6943 emit_label (label);
6944 emit_move_insn (old_reg, cmp_reg);
6945 if (seq)
6946 emit_insn (seq);
6947
6948 success = NULL_RTX;
6949 oldval = cmp_reg;
6950 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
6951 new_reg, false, MEMMODEL_SEQ_CST,
6952 MEMMODEL_RELAXED))
6953 return false;
6954
6955 if (oldval != cmp_reg)
6956 emit_move_insn (cmp_reg, oldval);
6957
6958 /* Mark this jump predicted not taken. */
6959 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
6960 GET_MODE (success), 1, label, 0);
6961 return true;
6962 }
6963
6964
6965 /* This function tries to emit an atomic_exchange intruction. VAL is written
6966 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6967 using TARGET if possible. */
6968
6969 static rtx
6970 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6971 {
6972 enum machine_mode mode = GET_MODE (mem);
6973 enum insn_code icode;
6974
6975 /* If the target supports the exchange directly, great. */
6976 icode = direct_optab_handler (atomic_exchange_optab, mode);
6977 if (icode != CODE_FOR_nothing)
6978 {
6979 struct expand_operand ops[4];
6980
6981 create_output_operand (&ops[0], target, mode);
6982 create_fixed_operand (&ops[1], mem);
6983 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6984 create_convert_operand_to (&ops[2], val, mode, true);
6985 create_integer_operand (&ops[3], model);
6986 if (maybe_expand_insn (icode, 4, ops))
6987 return ops[0].value;
6988 }
6989
6990 return NULL_RTX;
6991 }
6992
6993 /* This function tries to implement an atomic exchange operation using
6994 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6995 The previous contents of *MEM are returned, using TARGET if possible.
6996 Since this instructionn is an acquire barrier only, stronger memory
6997 models may require additional barriers to be emitted. */
6998
6999 static rtx
7000 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7001 enum memmodel model)
7002 {
7003 enum machine_mode mode = GET_MODE (mem);
7004 enum insn_code icode;
7005 rtx last_insn = get_last_insn ();
7006
7007 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7008
7009 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7010 exists, and the memory model is stronger than acquire, add a release
7011 barrier before the instruction. */
7012
7013 if (model == MEMMODEL_SEQ_CST
7014 || model == MEMMODEL_RELEASE
7015 || model == MEMMODEL_ACQ_REL)
7016 expand_mem_thread_fence (model);
7017
7018 if (icode != CODE_FOR_nothing)
7019 {
7020 struct expand_operand ops[3];
7021 create_output_operand (&ops[0], target, mode);
7022 create_fixed_operand (&ops[1], mem);
7023 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7024 create_convert_operand_to (&ops[2], val, mode, true);
7025 if (maybe_expand_insn (icode, 3, ops))
7026 return ops[0].value;
7027 }
7028
7029 /* If an external test-and-set libcall is provided, use that instead of
7030 any external compare-and-swap that we might get from the compare-and-
7031 swap-loop expansion later. */
7032 if (!can_compare_and_swap_p (mode, false))
7033 {
7034 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7035 if (libfunc != NULL)
7036 {
7037 rtx addr;
7038
7039 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7040 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7041 mode, 2, addr, ptr_mode,
7042 val, mode);
7043 }
7044 }
7045
7046 /* If the test_and_set can't be emitted, eliminate any barrier that might
7047 have been emitted. */
7048 delete_insns_since (last_insn);
7049 return NULL_RTX;
7050 }
7051
7052 /* This function tries to implement an atomic exchange operation using a
7053 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7054 *MEM are returned, using TARGET if possible. No memory model is required
7055 since a compare_and_swap loop is seq-cst. */
7056
7057 static rtx
7058 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7059 {
7060 enum machine_mode mode = GET_MODE (mem);
7061
7062 if (can_compare_and_swap_p (mode, true))
7063 {
7064 if (!target || !register_operand (target, mode))
7065 target = gen_reg_rtx (mode);
7066 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7067 val = convert_modes (mode, GET_MODE (val), val, 1);
7068 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7069 return target;
7070 }
7071
7072 return NULL_RTX;
7073 }
7074
7075 /* This function tries to implement an atomic test-and-set operation
7076 using the atomic_test_and_set instruction pattern. A boolean value
7077 is returned from the operation, using TARGET if possible. */
7078
7079 #ifndef HAVE_atomic_test_and_set
7080 #define HAVE_atomic_test_and_set 0
7081 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7082 #endif
7083
7084 static rtx
7085 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7086 {
7087 enum machine_mode pat_bool_mode;
7088 struct expand_operand ops[3];
7089
7090 if (!HAVE_atomic_test_and_set)
7091 return NULL_RTX;
7092
7093 /* While we always get QImode from __atomic_test_and_set, we get
7094 other memory modes from __sync_lock_test_and_set. Note that we
7095 use no endian adjustment here. This matches the 4.6 behavior
7096 in the Sparc backend. */
7097 gcc_checking_assert
7098 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7099 if (GET_MODE (mem) != QImode)
7100 mem = adjust_address_nv (mem, QImode, 0);
7101
7102 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7103 create_output_operand (&ops[0], target, pat_bool_mode);
7104 create_fixed_operand (&ops[1], mem);
7105 create_integer_operand (&ops[2], model);
7106
7107 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7108 return ops[0].value;
7109 return NULL_RTX;
7110 }
7111
7112 /* This function expands the legacy _sync_lock test_and_set operation which is
7113 generally an atomic exchange. Some limited targets only allow the
7114 constant 1 to be stored. This is an ACQUIRE operation.
7115
7116 TARGET is an optional place to stick the return value.
7117 MEM is where VAL is stored. */
7118
7119 rtx
7120 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7121 {
7122 rtx ret;
7123
7124 /* Try an atomic_exchange first. */
7125 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7126 if (ret)
7127 return ret;
7128
7129 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7130 if (ret)
7131 return ret;
7132
7133 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7134 if (ret)
7135 return ret;
7136
7137 /* If there are no other options, try atomic_test_and_set if the value
7138 being stored is 1. */
7139 if (val == const1_rtx)
7140 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7141
7142 return ret;
7143 }
7144
7145 /* This function expands the atomic test_and_set operation:
7146 atomically store a boolean TRUE into MEM and return the previous value.
7147
7148 MEMMODEL is the memory model variant to use.
7149 TARGET is an optional place to stick the return value. */
7150
7151 rtx
7152 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7153 {
7154 enum machine_mode mode = GET_MODE (mem);
7155 rtx ret, trueval, subtarget;
7156
7157 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7158 if (ret)
7159 return ret;
7160
7161 /* Be binary compatible with non-default settings of trueval, and different
7162 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7163 another only has atomic-exchange. */
7164 if (targetm.atomic_test_and_set_trueval == 1)
7165 {
7166 trueval = const1_rtx;
7167 subtarget = target ? target : gen_reg_rtx (mode);
7168 }
7169 else
7170 {
7171 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7172 subtarget = gen_reg_rtx (mode);
7173 }
7174
7175 /* Try the atomic-exchange optab... */
7176 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7177
7178 /* ... then an atomic-compare-and-swap loop ... */
7179 if (!ret)
7180 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7181
7182 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7183 if (!ret)
7184 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7185
7186 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7187 things with the value 1. Thus we try again without trueval. */
7188 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7189 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7190
7191 /* Failing all else, assume a single threaded environment and simply
7192 perform the operation. */
7193 if (!ret)
7194 {
7195 emit_move_insn (subtarget, mem);
7196 emit_move_insn (mem, trueval);
7197 ret = subtarget;
7198 }
7199
7200 /* Recall that have to return a boolean value; rectify if trueval
7201 is not exactly one. */
7202 if (targetm.atomic_test_and_set_trueval != 1)
7203 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7204
7205 return ret;
7206 }
7207
7208 /* This function expands the atomic exchange operation:
7209 atomically store VAL in MEM and return the previous value in MEM.
7210
7211 MEMMODEL is the memory model variant to use.
7212 TARGET is an optional place to stick the return value. */
7213
7214 rtx
7215 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7216 {
7217 rtx ret;
7218
7219 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7220
7221 /* Next try a compare-and-swap loop for the exchange. */
7222 if (!ret)
7223 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7224
7225 return ret;
7226 }
7227
7228 /* This function expands the atomic compare exchange operation:
7229
7230 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7231 *PTARGET_OVAL is an optional place to store the old value from memory.
7232 Both target parameters may be NULL to indicate that we do not care about
7233 that return value. Both target parameters are updated on success to
7234 the actual location of the corresponding result.
7235
7236 MEMMODEL is the memory model variant to use.
7237
7238 The return value of the function is true for success. */
7239
7240 bool
7241 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7242 rtx mem, rtx expected, rtx desired,
7243 bool is_weak, enum memmodel succ_model,
7244 enum memmodel fail_model)
7245 {
7246 enum machine_mode mode = GET_MODE (mem);
7247 struct expand_operand ops[8];
7248 enum insn_code icode;
7249 rtx target_oval, target_bool = NULL_RTX;
7250 rtx libfunc;
7251
7252 /* Load expected into a register for the compare and swap. */
7253 if (MEM_P (expected))
7254 expected = copy_to_reg (expected);
7255
7256 /* Make sure we always have some place to put the return oldval.
7257 Further, make sure that place is distinct from the input expected,
7258 just in case we need that path down below. */
7259 if (ptarget_oval == NULL
7260 || (target_oval = *ptarget_oval) == NULL
7261 || reg_overlap_mentioned_p (expected, target_oval))
7262 target_oval = gen_reg_rtx (mode);
7263
7264 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7265 if (icode != CODE_FOR_nothing)
7266 {
7267 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7268
7269 /* Make sure we always have a place for the bool operand. */
7270 if (ptarget_bool == NULL
7271 || (target_bool = *ptarget_bool) == NULL
7272 || GET_MODE (target_bool) != bool_mode)
7273 target_bool = gen_reg_rtx (bool_mode);
7274
7275 /* Emit the compare_and_swap. */
7276 create_output_operand (&ops[0], target_bool, bool_mode);
7277 create_output_operand (&ops[1], target_oval, mode);
7278 create_fixed_operand (&ops[2], mem);
7279 create_convert_operand_to (&ops[3], expected, mode, true);
7280 create_convert_operand_to (&ops[4], desired, mode, true);
7281 create_integer_operand (&ops[5], is_weak);
7282 create_integer_operand (&ops[6], succ_model);
7283 create_integer_operand (&ops[7], fail_model);
7284 expand_insn (icode, 8, ops);
7285
7286 /* Return success/failure. */
7287 target_bool = ops[0].value;
7288 target_oval = ops[1].value;
7289 goto success;
7290 }
7291
7292 /* Otherwise fall back to the original __sync_val_compare_and_swap
7293 which is always seq-cst. */
7294 icode = optab_handler (sync_compare_and_swap_optab, mode);
7295 if (icode != CODE_FOR_nothing)
7296 {
7297 rtx cc_reg;
7298
7299 create_output_operand (&ops[0], target_oval, mode);
7300 create_fixed_operand (&ops[1], mem);
7301 create_convert_operand_to (&ops[2], expected, mode, true);
7302 create_convert_operand_to (&ops[3], desired, mode, true);
7303 if (!maybe_expand_insn (icode, 4, ops))
7304 return false;
7305
7306 target_oval = ops[0].value;
7307
7308 /* If the caller isn't interested in the boolean return value,
7309 skip the computation of it. */
7310 if (ptarget_bool == NULL)
7311 goto success;
7312
7313 /* Otherwise, work out if the compare-and-swap succeeded. */
7314 cc_reg = NULL_RTX;
7315 if (have_insn_for (COMPARE, CCmode))
7316 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7317 if (cc_reg)
7318 {
7319 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7320 const0_rtx, VOIDmode, 0, 1);
7321 goto success;
7322 }
7323 goto success_bool_from_val;
7324 }
7325
7326 /* Also check for library support for __sync_val_compare_and_swap. */
7327 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7328 if (libfunc != NULL)
7329 {
7330 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7331 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7332 mode, 3, addr, ptr_mode,
7333 expected, mode, desired, mode);
7334
7335 /* Compute the boolean return value only if requested. */
7336 if (ptarget_bool)
7337 goto success_bool_from_val;
7338 else
7339 goto success;
7340 }
7341
7342 /* Failure. */
7343 return false;
7344
7345 success_bool_from_val:
7346 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7347 expected, VOIDmode, 1, 1);
7348 success:
7349 /* Make sure that the oval output winds up where the caller asked. */
7350 if (ptarget_oval)
7351 *ptarget_oval = target_oval;
7352 if (ptarget_bool)
7353 *ptarget_bool = target_bool;
7354 return true;
7355 }
7356
7357 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7358
7359 static void
7360 expand_asm_memory_barrier (void)
7361 {
7362 rtx asm_op, clob;
7363
7364 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7365 rtvec_alloc (0), rtvec_alloc (0),
7366 rtvec_alloc (0), UNKNOWN_LOCATION);
7367 MEM_VOLATILE_P (asm_op) = 1;
7368
7369 clob = gen_rtx_SCRATCH (VOIDmode);
7370 clob = gen_rtx_MEM (BLKmode, clob);
7371 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7372
7373 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7374 }
7375
7376 /* This routine will either emit the mem_thread_fence pattern or issue a
7377 sync_synchronize to generate a fence for memory model MEMMODEL. */
7378
7379 #ifndef HAVE_mem_thread_fence
7380 # define HAVE_mem_thread_fence 0
7381 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7382 #endif
7383 #ifndef HAVE_memory_barrier
7384 # define HAVE_memory_barrier 0
7385 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7386 #endif
7387
7388 void
7389 expand_mem_thread_fence (enum memmodel model)
7390 {
7391 if (HAVE_mem_thread_fence)
7392 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7393 else if (model != MEMMODEL_RELAXED)
7394 {
7395 if (HAVE_memory_barrier)
7396 emit_insn (gen_memory_barrier ());
7397 else if (synchronize_libfunc != NULL_RTX)
7398 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7399 else
7400 expand_asm_memory_barrier ();
7401 }
7402 }
7403
7404 /* This routine will either emit the mem_signal_fence pattern or issue a
7405 sync_synchronize to generate a fence for memory model MEMMODEL. */
7406
7407 #ifndef HAVE_mem_signal_fence
7408 # define HAVE_mem_signal_fence 0
7409 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7410 #endif
7411
7412 void
7413 expand_mem_signal_fence (enum memmodel model)
7414 {
7415 if (HAVE_mem_signal_fence)
7416 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7417 else if (model != MEMMODEL_RELAXED)
7418 {
7419 /* By default targets are coherent between a thread and the signal
7420 handler running on the same thread. Thus this really becomes a
7421 compiler barrier, in that stores must not be sunk past
7422 (or raised above) a given point. */
7423 expand_asm_memory_barrier ();
7424 }
7425 }
7426
7427 /* This function expands the atomic load operation:
7428 return the atomically loaded value in MEM.
7429
7430 MEMMODEL is the memory model variant to use.
7431 TARGET is an option place to stick the return value. */
7432
7433 rtx
7434 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7435 {
7436 enum machine_mode mode = GET_MODE (mem);
7437 enum insn_code icode;
7438
7439 /* If the target supports the load directly, great. */
7440 icode = direct_optab_handler (atomic_load_optab, mode);
7441 if (icode != CODE_FOR_nothing)
7442 {
7443 struct expand_operand ops[3];
7444
7445 create_output_operand (&ops[0], target, mode);
7446 create_fixed_operand (&ops[1], mem);
7447 create_integer_operand (&ops[2], model);
7448 if (maybe_expand_insn (icode, 3, ops))
7449 return ops[0].value;
7450 }
7451
7452 /* If the size of the object is greater than word size on this target,
7453 then we assume that a load will not be atomic. */
7454 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7455 {
7456 /* Issue val = compare_and_swap (mem, 0, 0).
7457 This may cause the occasional harmless store of 0 when the value is
7458 already 0, but it seems to be OK according to the standards guys. */
7459 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7460 const0_rtx, false, model, model))
7461 return target;
7462 else
7463 /* Otherwise there is no atomic load, leave the library call. */
7464 return NULL_RTX;
7465 }
7466
7467 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7468 if (!target || target == const0_rtx)
7469 target = gen_reg_rtx (mode);
7470
7471 /* Emit the appropriate barrier before the load. */
7472 expand_mem_thread_fence (model);
7473
7474 emit_move_insn (target, mem);
7475
7476 /* For SEQ_CST, also emit a barrier after the load. */
7477 if (model == MEMMODEL_SEQ_CST)
7478 expand_mem_thread_fence (model);
7479
7480 return target;
7481 }
7482
7483 /* This function expands the atomic store operation:
7484 Atomically store VAL in MEM.
7485 MEMMODEL is the memory model variant to use.
7486 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7487 function returns const0_rtx if a pattern was emitted. */
7488
7489 rtx
7490 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7491 {
7492 enum machine_mode mode = GET_MODE (mem);
7493 enum insn_code icode;
7494 struct expand_operand ops[3];
7495
7496 /* If the target supports the store directly, great. */
7497 icode = direct_optab_handler (atomic_store_optab, mode);
7498 if (icode != CODE_FOR_nothing)
7499 {
7500 create_fixed_operand (&ops[0], mem);
7501 create_input_operand (&ops[1], val, mode);
7502 create_integer_operand (&ops[2], model);
7503 if (maybe_expand_insn (icode, 3, ops))
7504 return const0_rtx;
7505 }
7506
7507 /* If using __sync_lock_release is a viable alternative, try it. */
7508 if (use_release)
7509 {
7510 icode = direct_optab_handler (sync_lock_release_optab, mode);
7511 if (icode != CODE_FOR_nothing)
7512 {
7513 create_fixed_operand (&ops[0], mem);
7514 create_input_operand (&ops[1], const0_rtx, mode);
7515 if (maybe_expand_insn (icode, 2, ops))
7516 {
7517 /* lock_release is only a release barrier. */
7518 if (model == MEMMODEL_SEQ_CST)
7519 expand_mem_thread_fence (model);
7520 return const0_rtx;
7521 }
7522 }
7523 }
7524
7525 /* If the size of the object is greater than word size on this target,
7526 a default store will not be atomic, Try a mem_exchange and throw away
7527 the result. If that doesn't work, don't do anything. */
7528 if (GET_MODE_PRECISION(mode) > BITS_PER_WORD)
7529 {
7530 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7531 if (!target)
7532 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7533 if (target)
7534 return const0_rtx;
7535 else
7536 return NULL_RTX;
7537 }
7538
7539 /* If there is no mem_store, default to a move with barriers */
7540 if (model == MEMMODEL_SEQ_CST || model == MEMMODEL_RELEASE)
7541 expand_mem_thread_fence (model);
7542
7543 emit_move_insn (mem, val);
7544
7545 /* For SEQ_CST, also emit a barrier after the load. */
7546 if (model == MEMMODEL_SEQ_CST)
7547 expand_mem_thread_fence (model);
7548
7549 return const0_rtx;
7550 }
7551
7552
7553 /* Structure containing the pointers and values required to process the
7554 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7555
7556 struct atomic_op_functions
7557 {
7558 direct_optab mem_fetch_before;
7559 direct_optab mem_fetch_after;
7560 direct_optab mem_no_result;
7561 optab fetch_before;
7562 optab fetch_after;
7563 direct_optab no_result;
7564 enum rtx_code reverse_code;
7565 };
7566
7567
7568 /* Fill in structure pointed to by OP with the various optab entries for an
7569 operation of type CODE. */
7570
7571 static void
7572 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7573 {
7574 gcc_assert (op!= NULL);
7575
7576 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7577 in the source code during compilation, and the optab entries are not
7578 computable until runtime. Fill in the values at runtime. */
7579 switch (code)
7580 {
7581 case PLUS:
7582 op->mem_fetch_before = atomic_fetch_add_optab;
7583 op->mem_fetch_after = atomic_add_fetch_optab;
7584 op->mem_no_result = atomic_add_optab;
7585 op->fetch_before = sync_old_add_optab;
7586 op->fetch_after = sync_new_add_optab;
7587 op->no_result = sync_add_optab;
7588 op->reverse_code = MINUS;
7589 break;
7590 case MINUS:
7591 op->mem_fetch_before = atomic_fetch_sub_optab;
7592 op->mem_fetch_after = atomic_sub_fetch_optab;
7593 op->mem_no_result = atomic_sub_optab;
7594 op->fetch_before = sync_old_sub_optab;
7595 op->fetch_after = sync_new_sub_optab;
7596 op->no_result = sync_sub_optab;
7597 op->reverse_code = PLUS;
7598 break;
7599 case XOR:
7600 op->mem_fetch_before = atomic_fetch_xor_optab;
7601 op->mem_fetch_after = atomic_xor_fetch_optab;
7602 op->mem_no_result = atomic_xor_optab;
7603 op->fetch_before = sync_old_xor_optab;
7604 op->fetch_after = sync_new_xor_optab;
7605 op->no_result = sync_xor_optab;
7606 op->reverse_code = XOR;
7607 break;
7608 case AND:
7609 op->mem_fetch_before = atomic_fetch_and_optab;
7610 op->mem_fetch_after = atomic_and_fetch_optab;
7611 op->mem_no_result = atomic_and_optab;
7612 op->fetch_before = sync_old_and_optab;
7613 op->fetch_after = sync_new_and_optab;
7614 op->no_result = sync_and_optab;
7615 op->reverse_code = UNKNOWN;
7616 break;
7617 case IOR:
7618 op->mem_fetch_before = atomic_fetch_or_optab;
7619 op->mem_fetch_after = atomic_or_fetch_optab;
7620 op->mem_no_result = atomic_or_optab;
7621 op->fetch_before = sync_old_ior_optab;
7622 op->fetch_after = sync_new_ior_optab;
7623 op->no_result = sync_ior_optab;
7624 op->reverse_code = UNKNOWN;
7625 break;
7626 case NOT:
7627 op->mem_fetch_before = atomic_fetch_nand_optab;
7628 op->mem_fetch_after = atomic_nand_fetch_optab;
7629 op->mem_no_result = atomic_nand_optab;
7630 op->fetch_before = sync_old_nand_optab;
7631 op->fetch_after = sync_new_nand_optab;
7632 op->no_result = sync_nand_optab;
7633 op->reverse_code = UNKNOWN;
7634 break;
7635 default:
7636 gcc_unreachable ();
7637 }
7638 }
7639
7640 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7641 using memory order MODEL. If AFTER is true the operation needs to return
7642 the value of *MEM after the operation, otherwise the previous value.
7643 TARGET is an optional place to place the result. The result is unused if
7644 it is const0_rtx.
7645 Return the result if there is a better sequence, otherwise NULL_RTX. */
7646
7647 static rtx
7648 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7649 enum memmodel model, bool after)
7650 {
7651 /* If the value is prefetched, or not used, it may be possible to replace
7652 the sequence with a native exchange operation. */
7653 if (!after || target == const0_rtx)
7654 {
7655 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7656 if (code == AND && val == const0_rtx)
7657 {
7658 if (target == const0_rtx)
7659 target = gen_reg_rtx (GET_MODE (mem));
7660 return maybe_emit_atomic_exchange (target, mem, val, model);
7661 }
7662
7663 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7664 if (code == IOR && val == constm1_rtx)
7665 {
7666 if (target == const0_rtx)
7667 target = gen_reg_rtx (GET_MODE (mem));
7668 return maybe_emit_atomic_exchange (target, mem, val, model);
7669 }
7670 }
7671
7672 return NULL_RTX;
7673 }
7674
7675 /* Try to emit an instruction for a specific operation varaition.
7676 OPTAB contains the OP functions.
7677 TARGET is an optional place to return the result. const0_rtx means unused.
7678 MEM is the memory location to operate on.
7679 VAL is the value to use in the operation.
7680 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7681 MODEL is the memory model, if used.
7682 AFTER is true if the returned result is the value after the operation. */
7683
7684 static rtx
7685 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7686 rtx val, bool use_memmodel, enum memmodel model, bool after)
7687 {
7688 enum machine_mode mode = GET_MODE (mem);
7689 struct expand_operand ops[4];
7690 enum insn_code icode;
7691 int op_counter = 0;
7692 int num_ops;
7693
7694 /* Check to see if there is a result returned. */
7695 if (target == const0_rtx)
7696 {
7697 if (use_memmodel)
7698 {
7699 icode = direct_optab_handler (optab->mem_no_result, mode);
7700 create_integer_operand (&ops[2], model);
7701 num_ops = 3;
7702 }
7703 else
7704 {
7705 icode = direct_optab_handler (optab->no_result, mode);
7706 num_ops = 2;
7707 }
7708 }
7709 /* Otherwise, we need to generate a result. */
7710 else
7711 {
7712 if (use_memmodel)
7713 {
7714 icode = direct_optab_handler (after ? optab->mem_fetch_after
7715 : optab->mem_fetch_before, mode);
7716 create_integer_operand (&ops[3], model);
7717 num_ops = 4;
7718 }
7719 else
7720 {
7721 icode = optab_handler (after ? optab->fetch_after
7722 : optab->fetch_before, mode);
7723 num_ops = 3;
7724 }
7725 create_output_operand (&ops[op_counter++], target, mode);
7726 }
7727 if (icode == CODE_FOR_nothing)
7728 return NULL_RTX;
7729
7730 create_fixed_operand (&ops[op_counter++], mem);
7731 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7732 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7733
7734 if (maybe_expand_insn (icode, num_ops, ops))
7735 return (target == const0_rtx ? const0_rtx : ops[0].value);
7736
7737 return NULL_RTX;
7738 }
7739
7740
7741 /* This function expands an atomic fetch_OP or OP_fetch operation:
7742 TARGET is an option place to stick the return value. const0_rtx indicates
7743 the result is unused.
7744 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7745 CODE is the operation being performed (OP)
7746 MEMMODEL is the memory model variant to use.
7747 AFTER is true to return the result of the operation (OP_fetch).
7748 AFTER is false to return the value before the operation (fetch_OP).
7749
7750 This function will *only* generate instructions if there is a direct
7751 optab. No compare and swap loops or libcalls will be generated. */
7752
7753 static rtx
7754 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7755 enum rtx_code code, enum memmodel model,
7756 bool after)
7757 {
7758 enum machine_mode mode = GET_MODE (mem);
7759 struct atomic_op_functions optab;
7760 rtx result;
7761 bool unused_result = (target == const0_rtx);
7762
7763 get_atomic_op_for_code (&optab, code);
7764
7765 /* Check to see if there are any better instructions. */
7766 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7767 if (result)
7768 return result;
7769
7770 /* Check for the case where the result isn't used and try those patterns. */
7771 if (unused_result)
7772 {
7773 /* Try the memory model variant first. */
7774 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7775 if (result)
7776 return result;
7777
7778 /* Next try the old style withuot a memory model. */
7779 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7780 if (result)
7781 return result;
7782
7783 /* There is no no-result pattern, so try patterns with a result. */
7784 target = NULL_RTX;
7785 }
7786
7787 /* Try the __atomic version. */
7788 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7789 if (result)
7790 return result;
7791
7792 /* Try the older __sync version. */
7793 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7794 if (result)
7795 return result;
7796
7797 /* If the fetch value can be calculated from the other variation of fetch,
7798 try that operation. */
7799 if (after || unused_result || optab.reverse_code != UNKNOWN)
7800 {
7801 /* Try the __atomic version, then the older __sync version. */
7802 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7803 if (!result)
7804 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7805
7806 if (result)
7807 {
7808 /* If the result isn't used, no need to do compensation code. */
7809 if (unused_result)
7810 return result;
7811
7812 /* Issue compensation code. Fetch_after == fetch_before OP val.
7813 Fetch_before == after REVERSE_OP val. */
7814 if (!after)
7815 code = optab.reverse_code;
7816 if (code == NOT)
7817 {
7818 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7819 true, OPTAB_LIB_WIDEN);
7820 result = expand_simple_unop (mode, NOT, result, target, true);
7821 }
7822 else
7823 result = expand_simple_binop (mode, code, result, val, target,
7824 true, OPTAB_LIB_WIDEN);
7825 return result;
7826 }
7827 }
7828
7829 /* No direct opcode can be generated. */
7830 return NULL_RTX;
7831 }
7832
7833
7834
7835 /* This function expands an atomic fetch_OP or OP_fetch operation:
7836 TARGET is an option place to stick the return value. const0_rtx indicates
7837 the result is unused.
7838 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7839 CODE is the operation being performed (OP)
7840 MEMMODEL is the memory model variant to use.
7841 AFTER is true to return the result of the operation (OP_fetch).
7842 AFTER is false to return the value before the operation (fetch_OP). */
7843 rtx
7844 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7845 enum memmodel model, bool after)
7846 {
7847 enum machine_mode mode = GET_MODE (mem);
7848 rtx result;
7849 bool unused_result = (target == const0_rtx);
7850
7851 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7852 after);
7853
7854 if (result)
7855 return result;
7856
7857 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7858 if (code == PLUS || code == MINUS)
7859 {
7860 rtx tmp;
7861 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7862
7863 start_sequence ();
7864 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7865 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7866 model, after);
7867 if (result)
7868 {
7869 /* PLUS worked so emit the insns and return. */
7870 tmp = get_insns ();
7871 end_sequence ();
7872 emit_insn (tmp);
7873 return result;
7874 }
7875
7876 /* PLUS did not work, so throw away the negation code and continue. */
7877 end_sequence ();
7878 }
7879
7880 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7881 if (!can_compare_and_swap_p (mode, false))
7882 {
7883 rtx libfunc;
7884 bool fixup = false;
7885 enum rtx_code orig_code = code;
7886 struct atomic_op_functions optab;
7887
7888 get_atomic_op_for_code (&optab, code);
7889 libfunc = optab_libfunc (after ? optab.fetch_after
7890 : optab.fetch_before, mode);
7891 if (libfunc == NULL
7892 && (after || unused_result || optab.reverse_code != UNKNOWN))
7893 {
7894 fixup = true;
7895 if (!after)
7896 code = optab.reverse_code;
7897 libfunc = optab_libfunc (after ? optab.fetch_before
7898 : optab.fetch_after, mode);
7899 }
7900 if (libfunc != NULL)
7901 {
7902 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7903 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7904 2, addr, ptr_mode, val, mode);
7905
7906 if (!unused_result && fixup)
7907 result = expand_simple_binop (mode, code, result, val, target,
7908 true, OPTAB_LIB_WIDEN);
7909 return result;
7910 }
7911
7912 /* We need the original code for any further attempts. */
7913 code = orig_code;
7914 }
7915
7916 /* If nothing else has succeeded, default to a compare and swap loop. */
7917 if (can_compare_and_swap_p (mode, true))
7918 {
7919 rtx insn;
7920 rtx t0 = gen_reg_rtx (mode), t1;
7921
7922 start_sequence ();
7923
7924 /* If the result is used, get a register for it. */
7925 if (!unused_result)
7926 {
7927 if (!target || !register_operand (target, mode))
7928 target = gen_reg_rtx (mode);
7929 /* If fetch_before, copy the value now. */
7930 if (!after)
7931 emit_move_insn (target, t0);
7932 }
7933 else
7934 target = const0_rtx;
7935
7936 t1 = t0;
7937 if (code == NOT)
7938 {
7939 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7940 true, OPTAB_LIB_WIDEN);
7941 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7942 }
7943 else
7944 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7945 OPTAB_LIB_WIDEN);
7946
7947 /* For after, copy the value now. */
7948 if (!unused_result && after)
7949 emit_move_insn (target, t1);
7950 insn = get_insns ();
7951 end_sequence ();
7952
7953 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7954 return target;
7955 }
7956
7957 return NULL_RTX;
7958 }
7959 \f
7960 /* Return true if OPERAND is suitable for operand number OPNO of
7961 instruction ICODE. */
7962
7963 bool
7964 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
7965 {
7966 return (!insn_data[(int) icode].operand[opno].predicate
7967 || (insn_data[(int) icode].operand[opno].predicate
7968 (operand, insn_data[(int) icode].operand[opno].mode)));
7969 }
7970 \f
7971 /* TARGET is a target of a multiword operation that we are going to
7972 implement as a series of word-mode operations. Return true if
7973 TARGET is suitable for this purpose. */
7974
7975 bool
7976 valid_multiword_target_p (rtx target)
7977 {
7978 enum machine_mode mode;
7979 int i;
7980
7981 mode = GET_MODE (target);
7982 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
7983 if (!validate_subreg (word_mode, mode, target, i))
7984 return false;
7985 return true;
7986 }
7987
7988 /* Like maybe_legitimize_operand, but do not change the code of the
7989 current rtx value. */
7990
7991 static bool
7992 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
7993 struct expand_operand *op)
7994 {
7995 /* See if the operand matches in its current form. */
7996 if (insn_operand_matches (icode, opno, op->value))
7997 return true;
7998
7999 /* If the operand is a memory whose address has no side effects,
8000 try forcing the address into a non-virtual pseudo register.
8001 The check for side effects is important because copy_to_mode_reg
8002 cannot handle things like auto-modified addresses. */
8003 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8004 {
8005 rtx addr, mem;
8006
8007 mem = op->value;
8008 addr = XEXP (mem, 0);
8009 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8010 && !side_effects_p (addr))
8011 {
8012 rtx last;
8013 enum machine_mode mode;
8014
8015 last = get_last_insn ();
8016 mode = get_address_mode (mem);
8017 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8018 if (insn_operand_matches (icode, opno, mem))
8019 {
8020 op->value = mem;
8021 return true;
8022 }
8023 delete_insns_since (last);
8024 }
8025 }
8026
8027 return false;
8028 }
8029
8030 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8031 on success, storing the new operand value back in OP. */
8032
8033 static bool
8034 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8035 struct expand_operand *op)
8036 {
8037 enum machine_mode mode, imode;
8038 bool old_volatile_ok, result;
8039
8040 mode = op->mode;
8041 switch (op->type)
8042 {
8043 case EXPAND_FIXED:
8044 old_volatile_ok = volatile_ok;
8045 volatile_ok = true;
8046 result = maybe_legitimize_operand_same_code (icode, opno, op);
8047 volatile_ok = old_volatile_ok;
8048 return result;
8049
8050 case EXPAND_OUTPUT:
8051 gcc_assert (mode != VOIDmode);
8052 if (op->value
8053 && op->value != const0_rtx
8054 && GET_MODE (op->value) == mode
8055 && maybe_legitimize_operand_same_code (icode, opno, op))
8056 return true;
8057
8058 op->value = gen_reg_rtx (mode);
8059 break;
8060
8061 case EXPAND_INPUT:
8062 input:
8063 gcc_assert (mode != VOIDmode);
8064 gcc_assert (GET_MODE (op->value) == VOIDmode
8065 || GET_MODE (op->value) == mode);
8066 if (maybe_legitimize_operand_same_code (icode, opno, op))
8067 return true;
8068
8069 op->value = copy_to_mode_reg (mode, op->value);
8070 break;
8071
8072 case EXPAND_CONVERT_TO:
8073 gcc_assert (mode != VOIDmode);
8074 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8075 goto input;
8076
8077 case EXPAND_CONVERT_FROM:
8078 if (GET_MODE (op->value) != VOIDmode)
8079 mode = GET_MODE (op->value);
8080 else
8081 /* The caller must tell us what mode this value has. */
8082 gcc_assert (mode != VOIDmode);
8083
8084 imode = insn_data[(int) icode].operand[opno].mode;
8085 if (imode != VOIDmode && imode != mode)
8086 {
8087 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8088 mode = imode;
8089 }
8090 goto input;
8091
8092 case EXPAND_ADDRESS:
8093 gcc_assert (mode != VOIDmode);
8094 op->value = convert_memory_address (mode, op->value);
8095 goto input;
8096
8097 case EXPAND_INTEGER:
8098 mode = insn_data[(int) icode].operand[opno].mode;
8099 if (mode != VOIDmode && const_int_operand (op->value, mode))
8100 goto input;
8101 break;
8102 }
8103 return insn_operand_matches (icode, opno, op->value);
8104 }
8105
8106 /* Make OP describe an input operand that should have the same value
8107 as VALUE, after any mode conversion that the target might request.
8108 TYPE is the type of VALUE. */
8109
8110 void
8111 create_convert_operand_from_type (struct expand_operand *op,
8112 rtx value, tree type)
8113 {
8114 create_convert_operand_from (op, value, TYPE_MODE (type),
8115 TYPE_UNSIGNED (type));
8116 }
8117
8118 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8119 of instruction ICODE. Return true on success, leaving the new operand
8120 values in the OPS themselves. Emit no code on failure. */
8121
8122 bool
8123 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8124 unsigned int nops, struct expand_operand *ops)
8125 {
8126 rtx last;
8127 unsigned int i;
8128
8129 last = get_last_insn ();
8130 for (i = 0; i < nops; i++)
8131 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8132 {
8133 delete_insns_since (last);
8134 return false;
8135 }
8136 return true;
8137 }
8138
8139 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8140 as its operands. Return the instruction pattern on success,
8141 and emit any necessary set-up code. Return null and emit no
8142 code on failure. */
8143
8144 rtx
8145 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8146 struct expand_operand *ops)
8147 {
8148 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8149 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8150 return NULL_RTX;
8151
8152 switch (nops)
8153 {
8154 case 1:
8155 return GEN_FCN (icode) (ops[0].value);
8156 case 2:
8157 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8158 case 3:
8159 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8160 case 4:
8161 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8162 ops[3].value);
8163 case 5:
8164 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8165 ops[3].value, ops[4].value);
8166 case 6:
8167 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8168 ops[3].value, ops[4].value, ops[5].value);
8169 case 7:
8170 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8171 ops[3].value, ops[4].value, ops[5].value,
8172 ops[6].value);
8173 case 8:
8174 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8175 ops[3].value, ops[4].value, ops[5].value,
8176 ops[6].value, ops[7].value);
8177 }
8178 gcc_unreachable ();
8179 }
8180
8181 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8182 as its operands. Return true on success and emit no code on failure. */
8183
8184 bool
8185 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8186 struct expand_operand *ops)
8187 {
8188 rtx pat = maybe_gen_insn (icode, nops, ops);
8189 if (pat)
8190 {
8191 emit_insn (pat);
8192 return true;
8193 }
8194 return false;
8195 }
8196
8197 /* Like maybe_expand_insn, but for jumps. */
8198
8199 bool
8200 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8201 struct expand_operand *ops)
8202 {
8203 rtx pat = maybe_gen_insn (icode, nops, ops);
8204 if (pat)
8205 {
8206 emit_jump_insn (pat);
8207 return true;
8208 }
8209 return false;
8210 }
8211
8212 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8213 as its operands. */
8214
8215 void
8216 expand_insn (enum insn_code icode, unsigned int nops,
8217 struct expand_operand *ops)
8218 {
8219 if (!maybe_expand_insn (icode, nops, ops))
8220 gcc_unreachable ();
8221 }
8222
8223 /* Like expand_insn, but for jumps. */
8224
8225 void
8226 expand_jump_insn (enum insn_code icode, unsigned int nops,
8227 struct expand_operand *ops)
8228 {
8229 if (!maybe_expand_jump_insn (icode, nops, ops))
8230 gcc_unreachable ();
8231 }
8232
8233 /* Reduce conditional compilation elsewhere. */
8234 #ifndef HAVE_insv
8235 #define HAVE_insv 0
8236 #define CODE_FOR_insv CODE_FOR_nothing
8237 #endif
8238 #ifndef HAVE_extv
8239 #define HAVE_extv 0
8240 #define CODE_FOR_extv CODE_FOR_nothing
8241 #endif
8242 #ifndef HAVE_extzv
8243 #define HAVE_extzv 0
8244 #define CODE_FOR_extzv CODE_FOR_nothing
8245 #endif
8246
8247 /* Enumerates the possible types of structure operand to an
8248 extraction_insn. */
8249 enum extraction_type { ET_unaligned_mem, ET_reg };
8250
8251 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8252 insertion or extraction of type TYPE on a structure of mode MODE.
8253 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8254 operand number of the structure (the first sign_extract or zero_extract
8255 operand) and FIELD_OP is the operand number of the field (the other
8256 side of the set from the sign_extract or zero_extract). */
8257
8258 static bool
8259 get_traditional_extraction_insn (extraction_insn *insn,
8260 enum extraction_type type,
8261 enum machine_mode mode,
8262 enum insn_code icode,
8263 int struct_op, int field_op)
8264 {
8265 const struct insn_data_d *data = &insn_data[icode];
8266
8267 enum machine_mode struct_mode = data->operand[struct_op].mode;
8268 if (struct_mode == VOIDmode)
8269 struct_mode = word_mode;
8270 if (mode != struct_mode)
8271 return false;
8272
8273 enum machine_mode field_mode = data->operand[field_op].mode;
8274 if (field_mode == VOIDmode)
8275 field_mode = word_mode;
8276
8277 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8278 if (pos_mode == VOIDmode)
8279 pos_mode = word_mode;
8280
8281 insn->icode = icode;
8282 insn->field_mode = field_mode;
8283 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8284 insn->pos_mode = pos_mode;
8285 return true;
8286 }
8287
8288 /* Return true if an optab exists to perform an insertion or extraction
8289 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8290
8291 REG_OPTAB is the optab to use for register structures and
8292 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8293 POS_OP is the operand number of the bit position. */
8294
8295 static bool
8296 get_optab_extraction_insn (struct extraction_insn *insn,
8297 enum extraction_type type,
8298 enum machine_mode mode, direct_optab reg_optab,
8299 direct_optab misalign_optab, int pos_op)
8300 {
8301 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8302 enum insn_code icode = direct_optab_handler (optab, mode);
8303 if (icode == CODE_FOR_nothing)
8304 return false;
8305
8306 const struct insn_data_d *data = &insn_data[icode];
8307
8308 insn->icode = icode;
8309 insn->field_mode = mode;
8310 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8311 insn->pos_mode = data->operand[pos_op].mode;
8312 if (insn->pos_mode == VOIDmode)
8313 insn->pos_mode = word_mode;
8314 return true;
8315 }
8316
8317 /* Return true if an instruction exists to perform an insertion or
8318 extraction (PATTERN says which) of type TYPE in mode MODE.
8319 Describe the instruction in *INSN if so. */
8320
8321 static bool
8322 get_extraction_insn (extraction_insn *insn,
8323 enum extraction_pattern pattern,
8324 enum extraction_type type,
8325 enum machine_mode mode)
8326 {
8327 switch (pattern)
8328 {
8329 case EP_insv:
8330 if (HAVE_insv
8331 && get_traditional_extraction_insn (insn, type, mode,
8332 CODE_FOR_insv, 0, 3))
8333 return true;
8334 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8335 insvmisalign_optab, 2);
8336
8337 case EP_extv:
8338 if (HAVE_extv
8339 && get_traditional_extraction_insn (insn, type, mode,
8340 CODE_FOR_extv, 1, 0))
8341 return true;
8342 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8343 extvmisalign_optab, 3);
8344
8345 case EP_extzv:
8346 if (HAVE_extzv
8347 && get_traditional_extraction_insn (insn, type, mode,
8348 CODE_FOR_extzv, 1, 0))
8349 return true;
8350 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8351 extzvmisalign_optab, 3);
8352
8353 default:
8354 gcc_unreachable ();
8355 }
8356 }
8357
8358 /* Return true if an instruction exists to access a field of mode
8359 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8360 Describe the "best" such instruction in *INSN if so. PATTERN and
8361 TYPE describe the type of insertion or extraction we want to perform.
8362
8363 For an insertion, the number of significant structure bits includes
8364 all bits of the target. For an extraction, it need only include the
8365 most significant bit of the field. Larger widths are acceptable
8366 in both cases. */
8367
8368 static bool
8369 get_best_extraction_insn (extraction_insn *insn,
8370 enum extraction_pattern pattern,
8371 enum extraction_type type,
8372 unsigned HOST_WIDE_INT struct_bits,
8373 enum machine_mode field_mode)
8374 {
8375 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8376 while (mode != VOIDmode)
8377 {
8378 if (get_extraction_insn (insn, pattern, type, mode))
8379 {
8380 while (mode != VOIDmode
8381 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8382 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8383 field_mode))
8384 {
8385 get_extraction_insn (insn, pattern, type, mode);
8386 mode = GET_MODE_WIDER_MODE (mode);
8387 }
8388 return true;
8389 }
8390 mode = GET_MODE_WIDER_MODE (mode);
8391 }
8392 return false;
8393 }
8394
8395 /* Return true if an instruction exists to access a field of mode
8396 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8397 Describe the "best" such instruction in *INSN if so. PATTERN describes
8398 the type of insertion or extraction we want to perform.
8399
8400 For an insertion, the number of significant structure bits includes
8401 all bits of the target. For an extraction, it need only include the
8402 most significant bit of the field. Larger widths are acceptable
8403 in both cases. */
8404
8405 bool
8406 get_best_reg_extraction_insn (extraction_insn *insn,
8407 enum extraction_pattern pattern,
8408 unsigned HOST_WIDE_INT struct_bits,
8409 enum machine_mode field_mode)
8410 {
8411 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8412 field_mode);
8413 }
8414
8415 /* Return true if an instruction exists to access a field of BITSIZE
8416 bits starting BITNUM bits into a memory structure. Describe the
8417 "best" such instruction in *INSN if so. PATTERN describes the type
8418 of insertion or extraction we want to perform and FIELDMODE is the
8419 natural mode of the extracted field.
8420
8421 The instructions considered here only access bytes that overlap
8422 the bitfield; they do not touch any surrounding bytes. */
8423
8424 bool
8425 get_best_mem_extraction_insn (extraction_insn *insn,
8426 enum extraction_pattern pattern,
8427 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8428 enum machine_mode field_mode)
8429 {
8430 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8431 + bitsize
8432 + BITS_PER_UNIT - 1);
8433 struct_bits -= struct_bits % BITS_PER_UNIT;
8434 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8435 struct_bits, field_mode);
8436 }
8437
8438 #include "gt-optabs.h"